Science.gov

Sample records for early articular cartilage

  1. Microscale surface friction of articular cartilage in early osteoarthritis.

    PubMed

    Desrochers, Jane; Amrein, Matthias W; Matyas, John R

    2013-09-01

    Articular cartilage forms the articulating surface of long bones and facilitates energy dissipation upon loading as well as joint lubrication and wear resistance. In normal cartilage, boundary lubrication between thin films at the cartilage surface reduces friction in the absence of interstitial fluid pressurization and fluid film lubrication by synovial fluid. Inadequate boundary lubrication is associated with degenerative joint conditions such as osteoarthritis (OA), but relations between OA and surface friction, lubrication and wear in boundary lubrication are not well defined. The purpose of the present study was to measure microscale boundary mode friction of the articular cartilage surface in an in vivo experimental model to better understand changes in cartilage surface friction in early OA. Cartilage friction was measured on the articular surface by atomic force microscopy (AFM) under applied loads ranging from 0.5 to 5 μN. Microscale AFM friction analyses revealed depth dependent changes within the top-most few microns of the cartilage surface in this model of early OA. A significant increase of nearly 50% was observed in the mean engineering friction coefficient for OA cartilage at the 0.5 μN load level; no significant differences in friction coefficients were found under higher applied loads. Changes in cartilage surface morphology observed by scanning electron microscopy included cracking and roughening of the surface indicative of disruption and wear accompanied by an apparent disintegration of the thin surface lamina from the underlying matrix. Immunohistochemical staining of lubricin - an important cartilage surface boundary lubricant - did not reveal differences in spatial distribution near the cartilage surface in OA compared to controls. The increase in friction at the 0.5 μN force level is interpreted to reflect changes in the interfacial mechanics of the thin surface lamina of articular cartilage: increased friction implies reduced

  2. [The early development of the articular cartilage. IV. The metamorphosing cartilage].

    PubMed

    Knese, K H

    1980-01-01

    The definite articular cartilage originate from 2 anlagen, the primordial tangential layer and the greater part including the joint bone plate from the metamorphosing cartilage. The tangential layer grow by apposition from the perichondrium. Additional the layer becomes also dilatated as a result of the growing volume of the ossification center. In this way the Lamina splendens with residues of cells may be formed. The chondrocytes resemble partly fibroblasts, in older animals possibly even tendocytes. Moreover the cells exhibit a varying different shape. Today it is impossible to interpret the polymorphism of the cells. In the primordial state, the chondrocyts are embedded in a network from thin cartilage fibrils. Later on collagen fibrils from varied thickness (up to 900 A) are formed. The fibrils run only partly parallel to each other, in general they form a network, in which they cross with a low angle. There are great local differences in the fibrillar structure by the same animal. PMID:7461420

  3. [Articular cartilage regeneration using scaffold].

    PubMed

    Ishimoto, Yoshiyuki; Hattori, Koji; Ohgushi, Hajime

    2008-12-01

    The self-healing capacity of articular cartilage for repair is limited. For articular cartilage injury, several surgical techniques are used in clinical practice, namely drilling, abrasion arthroplasty, microfracture, or autologous osteochondral grafting, while various methods of autologous chondrocyte transplantation to cartilage defect sites have been reported since 1990s. In a case of chondrocyte transplantation to cartilage defect site, the use of proper scaffold is important. Currently, collagen gel or PLGA is used widely as a scaffold. PMID:19043192

  4. Very early osteoarthritis changes sensitively fluid flow properties of articular cartilage.

    PubMed

    Mäkelä, J T A; Han, S-K; Herzog, W; Korhonen, R K

    2015-09-18

    In this study, fibril-reinforced poroelastic (FRPE) modeling was used for rabbit knee after anterior cruciate ligament transection (ACLT) to assess how the mechanical properties of collagen, proteoglycans, and fluid in articular cartilage change in early osteoarthritis, and how site-specific these changes are. Unilateral ACLT was performed in eight skeletally mature, female New Zealand white rabbits. A separate control (CTRL) group consisted of knee joints of five non-operated rabbits. Animals were sacrificed at four weeks after ACLT and cartilage-on-bone samples from femoral groove, medial and lateral femoral condyles, and tibial plateaus were harvested. A stress-relaxation protocol in indentation geometry was applied and the FRPE model was fitted to the experimental force-time curve by minimizing the mean absolute error between experiment and simulation. The optimized parameters were: fibril network modulus (Ef), representing the collagen network; non-fibrillar matrix modulus (Enf), representing the PG matrix; and permeability (k), representing fluid flow. Permeability was increased significantly in the ACLT group compared to the CTRL group knees at all sites except for the medial tibial plateau. ACLT also caused a decrease in the Ef at all sites except for the medial and lateral tibial plateaus. The Enf of the ACLT group knees was altered only for the lateral femoral condyle. The results of this study suggest that early osteoarthritis primarily affects cartilage permeability and impairs the collagen network stiffness in a site-specific manner. These findings from early osteoarthritis indicate that fluid flow velocity in articular cartilage may change prior to quantifiable structural alterations in the tissue. PMID:26159056

  5. Towards Regeneration of Articular Cartilage

    PubMed Central

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  6. Fracture of articular cartilage.

    PubMed

    Chin-Purcell, M V; Lewis, J L

    1996-11-01

    Crack formation and propagation is a significant element of the degeneration process in articular cartilage. In order to understand this process, and separate the relative importance of structural overload and material failure, methods for measuring the fracture toughness of cartilage are needed. In this paper, two such methods are described and used to measure fracture properties of cartilage from the canine patella. A modified single edge notch (MSEN) specimen was used to measure J, and a trouser tear test was used to measure T, both measures of fracture toughness with units of kN/m. A pseudo-elastic modulus was also obtained from the MSEN test. Several potential error sources were examined, and results for the MSEN test compared with another method for measuring the fracture parameter for urethane rubber. Good agreement was found. The two test methods were used to measure properties of cartilage from the patellae of 12 canines: 4-9 specimens from each of 12 patellae, with 5 right-left pairs were tested. Values of J ranged from 0.14-1.2 kN/m. J values correlated with T and were an average of 1.7 times larger than T. A variety of failure responses was seen in the MSEN tests, consequently a grade of 0 to 3 was assigned to each test, where 0 represented a brittle-like crack with minimal opening and 3 represented plastic flow with no crack formation. The initial cracks in 12/82 specimens did not propagate and were assigned to grade 3. The method for reducing data in the MSEN test assumed pseudo-elastic response and could not be used for the grade 3 specimens. Stiffness did not correlate with J. Neither J nor T was statistically different between right-left pairs, but varied between animals. The test methods appear useful for providing a quantitative measure of fracture toughness for cartilage and other soft materials. PMID:8950659

  7. Structural Variations in Articular Cartilage Matrix Are Associated with Early-Onset Osteoarthritis in the Spondyloepiphyseal Dysplasia Congenita (Sedc) Mouse

    PubMed Central

    Macdonald, David W.; Squires, Ryan S.; Avery, Shaela A.; Adams, Jason; Baker, Melissa; Cunningham, Christopher R.; Heimann, Nicholas B.; Kooyman, David L.; Seegmiller, Robert E.

    2013-01-01

    Heterozgyous spondyloepiphyseal dysplasia congenita (sedc/+) mice expressing a missense mutation in col2a1 exhibit a normal skeletal morphology but early-onset osteoarthritis (OA). We have recently examined knee articular cartilage obtained from homozygous (sedc/sedc) mice, which express a Stickler-like phenotype including dwarfism. We examined sedc/sedc mice at various levels to better understand the mechanistic process resulting in OA. Mutant sedc/sedc, and control (+/+) cartilages were compared at two, six and nine months of age. Tissues were fixed, decalcified, processed to paraffin sections, and stained with hematoxylin/eosin and safranin O/fast green. Samples were analyzed under the light microscope and the modified Mankin and OARSI scoring system was used to quantify the OA-like changes. Knees were stained with 1C10 antibody to detect the presence and distribution of type II collagen. Electron microscopy was used to study chondrocyte morphology and collagen fibril diameter. Compared with controls, mutant articular cartilage displayed decreased fibril diameter concomitant with increases in size of the pericellular space, Mankin and OARSI scores, cartilage thickness, chondrocyte clustering, proteoglycan staining and horizontal fissuring. In conclusion, homozygous sedc mice are subject to early-onset knee OA. We conclude that collagen in the mutant’s articular cartilage (both heterozygote and homozygote) fails to provide the normal meshwork required for matrix integrity and overall cartilage stability. PMID:23939426

  8. Engineering lubrication in articular cartilage.

    PubMed

    McNary, Sean M; Athanasiou, Kyriacos A; Reddi, A Hari

    2012-04-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional

  9. Engineering Lubrication in Articular Cartilage

    PubMed Central

    McNary, Sean M.; Athanasiou, Kyriacos A.

    2012-01-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional

  10. Micromechanical Mapping of Early Osteoarthritic Changes in the Pericellular Matrix of Human Articular Cartilage

    PubMed Central

    Wilusz, Rebecca E.; Zauscher, Stefan; Guilak, Farshid

    2013-01-01

    Objective Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive loss of articular cartilage. While macroscale degradation of the cartilage extracellular matrix (ECM) has been extensively studied, microscale changes in the chondrocyte pericellular matrix (PCM) and immediate microenvironment with OA are not fully understood. The objective of this study was to quantify osteoarthritic changes in the micromechanical properties of the ECM and PCM of human articular cartilage in situ using atomic force microscopy (AFM). Method AFM elastic mapping was performed on cryosections of human cartilage harvested from both condyles of macroscopically normal and osteoarthritic knee joints. This method was used to test the hypotheses that both ECM and PCM regions exhibit a loss of mechanical properties with OA and that the size of the PCM is enlarged in OA cartilage as compared to normal tissue. Results Significant decreases were observed in both ECM and PCM moduli of 45% and 30%, respectively, on the medial condyle of OA knee joints as compared to cartilage from macroscopically normal joints. Enlargement of the PCM, as measured biomechanically, was also observed in medial condyle OA cartilage, reflecting the underlying distribution of type VI collagen in the region. No significant differences were observed in elastic moduli or their spatial distribution on the lateral condyle between normal and OA joints. Conclusion Our findings provide new evidence of significant site-specific degenerative changes in the chondrocyte micromechanical environment with OA. PMID:24025318

  11. [Imaging of articular cartilage].

    PubMed

    Arkun, Remide

    2007-01-01

    There have been many improvements in joint cartilage imaging in recent years with the development of new imaging methods. The purpose of cartilage imaging is to assess the integrity of the cartilage surface, the thickness and volume of the cartilage matrix and its relationship with the subchondral bone. Direct radiography, the conventional imaging method for the skeletal system, is not sufficient for assessing the joint cartilage, nor are arthrography, computed tomography, and arthrography together with computed tomography. Moreover, biomechanical changes in the joint cartilage cannot be assessed with these methods. Magnetic resonance imaging (MRI), with its superior contrast resolution and multiplanar imaging capability across tissues, has become the primary diagnostic method for assessment of joint pathologies. The morphological features of the joint cartilage can be assessed adequately with the use of MRI sequences specific to the cartilage. Appropriate use of MRI sequences to determine the type of cartilage damage, the presence and degree of accompanying pathologies in the subchondral bone will help minimize diagnostic errors. This article reviews cartilage imaging in the following aspects: the technique used in MRI for cartilage imaging, findings of cartilage pathology, and anticipation of future cartilage imaging. PMID:18180582

  12. Development of artificial articular cartilage.

    PubMed

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  13. Progression of Gene Expression Changes following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis

    PubMed Central

    McCulloch, R. S.; Ashwell, M. S.; Maltecca, C.; O'Nan, A. T.; Mente, P. L.

    2014-01-01

    An impact injury model of early stage osteoarthritis (OA) progression was developed using a mechanical insult to an articular cartilage surface to evaluate differential gene expression changes over time and treatment. Porcine patellae with intact cartilage surfaces were randomized to one of three treatments: nonimpacted control, axial impaction (2000 N), or a shear impaction (500 N axial, with tangential displacement to induce shear forces). After impact, the patellae were returned to culture for 0, 3, 7, or 14 days. At the appropriate time point, RNA was extracted from full-thickness cartilage slices at the impact site. Quantitative real-time PCR was used to evaluate differential gene expression for 18 OA related genes from four categories: cartilage matrix, degradative enzymes and inhibitors, inflammatory response and signaling, and cell apoptosis. The shear impacted specimens were compared to the axial impacted specimens and showed that shear specimens more highly expressed type I collagen (Col1a1) at the early time points. In addition, there was generally elevated expression of degradative enzymes, inflammatory response genes, and apoptosis markers at the early time points. These changes suggest that the more physiologically relevant shear loading may initially be more damaging to the cartilage and induces more repair efforts after loading. PMID:25478225

  14. Treatment and Prevention of (Early) Osteoarthritis Using Articular Cartilage Repair—Fact or Fiction? A Systematic Review

    PubMed Central

    de Windt, Tommy S.; Vonk, Lucienne A.; Brittberg, Mats

    2013-01-01

    Early osteoarthritis (OA) is increasingly being recognized in patients who wish to remain active while not accepting the limitations of conservative treatment or joint replacement. The aim of this systematic review was to evaluate the existing evidence for treatment of patients with early OA using articular cartilage repair techniques. A systematic search was performed in EMBASE, MEDLINE, and the Cochrane collaboration. Articles were screened for relevance and appraised for quality. Nine articles of generally low methodological quality (mean Coleman score 58) including a total of 502 patients (mean age range = 36-57 years) could be included. In the reports, both radiological and clinical criteria for early OA were applied. Of all patients included in this review, 75% were treated with autologous chondrocyte implantation. Good short-term clinical outcome up to 9 years was shown. Failure rates varied from 8% to 27.3%. The conversion to total knee arthroplasty rate was 2.5% to 6.5%. Although a (randomized controlled) trial in this patient category with long-term follow-up is needed, the literature suggests autologous chondrocyte implantation could provide good short- to mid-term clinical outcome and delay the need for total knee arthroplasty. The use of standardized criteria for early OA and implementation of (randomized) trials with long-term follow-up may allow for further expansion of the research field in articular cartilage repair to the challenging population with (early) OA. PMID:26069664

  15. Supporting Biomaterials for Articular Cartilage Repair

    PubMed Central

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  16. Use magnetic resonance imaging to assess articular cartilage

    PubMed Central

    Wang, Yuanyuan; Wluka, Anita E.; Jones, Graeme; Ding, Changhai

    2012-01-01

    Magnetic resonance imaging (MRI) enables a noninvasive, three-dimensional assessment of the entire joint, simultaneously allowing the direct visualization of articular cartilage. Thus, MRI has become the imaging modality of choice in both clinical and research settings of musculoskeletal diseases, particular for osteoarthritis (OA). Although radiography, the current gold standard for the assessment of OA, has had recent significant technical advances, radiographic methods have significant limitations when used to measure disease progression. MRI allows accurate and reliable assessment of articular cartilage which is sensitive to change, providing the opportunity to better examine and understand preclinical and very subtle early abnormalities in articular cartilage, prior to the onset of radiographic disease. MRI enables quantitative (cartilage volume and thickness) and semiquantitative assessment of articular cartilage morphology, and quantitative assessment of cartilage matrix composition. Cartilage volume and defects have demonstrated adequate validity, accuracy, reliability and sensitivity to change. They are correlated to radiographic changes and clinical outcomes such as pain and joint replacement. Measures of cartilage matrix composition show promise as they seem to relate to cartilage morphology and symptoms. MRI-derived cartilage measurements provide a useful tool for exploring the effect of modifiable factors on articular cartilage prior to clinical disease and identifying the potential preventive strategies. MRI represents a useful approach to monitoring the natural history of OA and evaluating the effect of therapeutic agents. MRI assessment of articular cartilage has tremendous potential for large-scale epidemiological studies of OA progression, and for clinical trials of treatment response to disease-modifying OA drugs. PMID:22870497

  17. Articular cartilage: structure and regeneration.

    PubMed

    Becerra, José; Andrades, José A; Guerado, Enrique; Zamora-Navas, Plácido; López-Puertas, José M; Reddi, A Hari

    2010-12-01

    Articular cartilage (AC) has no or very low ability of self-repair, and untreated lesions may lead to the development of osteoarthritis. One method that has been proven to result in long-term repair or isolated lesions is autologous chondrocyte transplantation. However, first generation of these cells' implantation has limitations, and introducing new effective cell sources can improve cartilage repair. AC provides a resilient and compliant articulating surface to the bones in diarthrodial joints. It protects the joint by distributing loads applied to it, so preventing potentially damaging stress concentrations on the bone. At the same time it provides a low-friction-bearing surface to enable free movement of the joint. AC may be considered as a visco- or poro-elastic fiber-composite material. Fibrils of predominantly type II collagen provide tensile reinforcing to a highly hydrated proteoglycan gel. The tissue typically comprises 70% water and it is the structuring and retention of this water by the proteoglycans and collagen that is largely responsible for the remarkable ability of the tissue to support compressive loads. PMID:20836752

  18. Surface of articular cartilage: immunohistological studies.

    PubMed

    Duance, V C

    1983-10-01

    Using several physical techniques the surface of articular cartilage has been reported to be structurally different from the deeper layers. In this paper using immunohistochemical methods, the surface has been shown to contain a characteristically different collagen, Type I in contrast to Type II which is the major collagen of cartilage. These results support previous proposals for a surface layer, or lamina splendens, the presence of which would be of considerable importance in understanding the degradation of cartilage in arthritides. PMID:6678620

  19. Matrilin-2 Is a Widely Distributed Extracellular Matrix Protein and a Potential Biomarker in the Early Stage of Osteoarthritis in Articular Cartilage

    PubMed Central

    Zhang, Shukun; Peng, Jinwu; Guo, Yan; Javidiparsijani, Sara; Wang, Guirong; Wang, Yichun; Liu, Honggang; Liu, Jingshi; Luo, Junming

    2014-01-01

    In this study, we first generated and characterized a polyclonal antibody against unique domain of matrlin-2 and then used this specific antibody to assess the expression pattern of matrilin-2 by immunohistochemistry. We found that marilin-2 is widely distributed in the connective tissues of many mouse tissues including heart, colon, penis, esophagus, lung, kidney, tracheal cartilage, developmental bone, and adult bone. The expression level of matrilin-2 was remarkably increased in the tissues of osteoarthritis developmental articular cartilage, compared to normal healthy tissues. Furthermore, we determined matrilin-2 expression in specific epithelial cells in stomach and ductal epithelial cells of salivary gland. In other tissues, the positive signals were mainly located around cardiac muscle cells and Purkinje fibers in the heart; corpus spongiosum in the penis; submucosa in the colon and esophagus; extracellular matrix of cartilage in the tracheal cartilage; and, glomerulus, the basement membrane of distal convoluted tubule and renal matrix in kidney. These observations indicated that the distribution pattern of matrilin-2 is heterogeneous in each tissue. Matrilin-2 may play an important role in the communication of matrix to matrix and matrix to cells and will be used as a potential biomarker in the early stage of osteoarthritis of articular cartilage. PMID:24741569

  20. Vitrification of intact human articular cartilage.

    PubMed

    Jomha, Nadr M; Elliott, Janet A W; Law, Garson K; Maghdoori, Babak; Forbes, J Fraser; Abazari, Alireza; Adesida, Adetola B; Laouar, Leila; Zhou, Xianpei; McGann, Locksley E

    2012-09-01

    Articular cartilage injuries do not heal and large defects result in osteoarthritis with major personal and socioeconomic costs. Osteochondral transplantation is an effective treatment for large joint defects but its use is limited by the inability to store cartilage for long periods of time. Cryopreservation/vitrification is one method to enable banking of this tissue but decades of research have been unable to successfully preserve the tissue while maintaining cartilage on its bone base - a requirement for transplantation. To address this limitation, human knee articular cartilage from total knee arthroplasty patients and deceased donors was exposed to specified concentrations of 4 different cryoprotective agents for mathematically determined periods of time at lowering temperatures. After complete exposure, the cartilage was immersed in liquid nitrogen for up to 3 months. Cell viability was 75.4 ± 12.1% determined by membrane integrity stains and confirmed with a mitochondrial assay and pellet culture documented production of sulfated glycosaminoglycans and collagen II similar to controls. This report documents successful vitrification of intact human articular cartilage on its bone base making it possible to bank this tissue indefinitely. PMID:22698720

  1. Body Weight Independently Affects Articular Cartilage Catabolism

    PubMed Central

    Denning, W. Matt; Winward, Jason G.; Pardo, Michael Becker; Hopkins, J. Ty; Seeley, Matthew K.

    2015-01-01

    Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW) independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity). The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW), +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP) was measured immediately before (baseline) and after, and 15 and 30 minutes after the walk. Heart rate (HR) and rate of perceived exertion (RPE) were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response. Key points Walking for 30 minutes with adjustments in body weight (normal body weight, +40% and -40% body weight) significantly influences articular cartilage catabolism, measured via serum COMP concentration. Compared to baseline levels, walking with +40% body weight and normal body weight both elicited significant increases in

  2. Distinguishing ankle and knee articular cartilage.

    PubMed

    Cole, Ada A; Margulis, Arkady; Kuettner, Klaus E

    2003-06-01

    Degenerative changes in the tall and femoral distal cartilages of more than 2,000 tissue donors were graded based on the appearance of articular cartilage and osteophytes. In the ankle and the knee the degenerative changes increased with age; however, the rate of degeneration in the ankle was slower than in the knee. The degenerative changes in the ankle were more severe in men than in women, were predominantly bilateral, and seemed to be correlated with weight. The slower rate of change in the ankle may be caused, in part, by the biochemical and biomechanical tissue properties that distinguish ankle cartilage from that of the knee. PMID:12911243

  3. Colonies in engineered articular cartilage express superior differentiation.

    PubMed

    Selvaratnam, L; Abd Rahim, S; Kamarul, T; Chan, K Y; Sureshan, S; Penafort, R; Ng, C L L

    2005-07-01

    In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans. PMID:16381284

  4. Effect of passive motion on articular cartilage in rat osteoarthritis.

    PubMed

    Qian, Jie; Liang, Jun; Wang, Yubin; Wang, Huifang

    2014-08-01

    The aim of the present study was to investigate the effect of moderate passive motion on articular cartilage in osteoarthritis (OA) caused by knee fracture. Sprague-Dawley rats (age, 8 weeks) with knee fractures were used to construct rat knee early- and middle-stage OA models. The stages were fixed for three and six weeks, with 20 rats analyzed at each stage. The experimental groups were exercised daily for 15 m/min with a specified duration. Following the completion of exercise, the effects of proper passive motion on cartilage thickness, the Mankin rating, cartilage collagen matrix, proteoglycan content and the morphological structure of the cartilage in the rat OA models were measured at the various degenerative stages caused by knee fracture. The proteoglycan content of the cartilage matrix, type II collagen fibers and the number of cartilage cells undergoing apoptosis were semiquantified. For early- and middle-stage OA, the cartilage layers in the three- or six-week experimental groups were significantly thicker and the levels of proteoglycans and type II collagen fibers in the weight-bearing area of the cartilage were significantly higher when compared with the control groups (P<0.05). In addition, the Mankin ratings were lower and ligament tension was increased when compared with the control group (P<0.05). In the early-stage OA group, significantly decreased apoptotic rates (P<0.05) were observed in the three- and six-week experimental groups, however, no significant decrease was observed in the middle-stage OA group. In the early-stage OA rats, the thickness of the cartilage layer, as well as the levels of proteoglycans and type II collagen fibers, in the six-week experimental group, were significantly higher compared with the control and three-week subgroups, and a decreased apoptotic rate was observed (P<0.05). In the six-week experimental middle-stage OA group, significant differences were observed in the content of proteoglycans and type II collagen

  5. Effect of passive motion on articular cartilage in rat osteoarthritis

    PubMed Central

    QIAN, JIE; LIANG, JUN; WANG, YUBIN; WANG, HUIFANG

    2014-01-01

    The aim of the present study was to investigate the effect of moderate passive motion on articular cartilage in osteoarthritis (OA) caused by knee fracture. Sprague-Dawley rats (age, 8 weeks) with knee fractures were used to construct rat knee early- and middle-stage OA models. The stages were fixed for three and six weeks, with 20 rats analyzed at each stage. The experimental groups were exercised daily for 15 m/min with a specified duration. Following the completion of exercise, the effects of proper passive motion on cartilage thickness, the Mankin rating, cartilage collagen matrix, proteoglycan content and the morphological structure of the cartilage in the rat OA models were measured at the various degenerative stages caused by knee fracture. The proteoglycan content of the cartilage matrix, type II collagen fibers and the number of cartilage cells undergoing apoptosis were semiquantified. For early- and middle-stage OA, the cartilage layers in the three- or six-week experimental groups were significantly thicker and the levels of proteoglycans and type II collagen fibers in the weight-bearing area of the cartilage were significantly higher when compared with the control groups (P<0.05). In addition, the Mankin ratings were lower and ligament tension was increased when compared with the control group (P<0.05). In the early-stage OA group, significantly decreased apoptotic rates (P<0.05) were observed in the three- and six-week experimental groups, however, no significant decrease was observed in the middle-stage OA group. In the early-stage OA rats, the thickness of the cartilage layer, as well as the levels of proteoglycans and type II collagen fibers, in the six-week experimental group, were significantly higher compared with the control and three-week subgroups, and a decreased apoptotic rate was observed (P<0.05). In the six-week experimental middle-stage OA group, significant differences were observed in the content of proteoglycans and type II collagen

  6. Imaging of articular cartilage: current concepts

    PubMed Central

    RONGA, MARIO; ANGERETTI, GLORIA; FERRARO, SERGIO; DE FALCO, GIOVANNI; GENOVESE, EUGENIO A.; CHERUBINO, PAOLO

    2014-01-01

    Magnetic resonance imaging (MRI) is the gold standard method for non-invasive assessment of joint cartilage, providing information on the structure, morphology and molecular composition of this tissue. There are certain minimum requirements for a MRI study of cartilage tissue: machines with a high magnetic field (> 1.5 Tesla); the use of surface coils; and the use of T2-weighted, proton density-weighted fast-spin echo (T2 FSE-DP) and 3D fat-suppressed T1-weighted gradient echo (3D-FS T1W GRE) sequences. For better contrast between the different joint structures, MR arthography is a method that can highlight minimal fibrillation or fractures of the articular surface and allow evaluation of the integrity of the native cartilage-repair tissue interface. To assess the biochemical composition of cartilage and cartilage repair tissue, various techniques have been proposed for studying proteoglycans [dGEMRIC, T1rho mapping, sodium (23Na) imaging MRI, etc.], collagen, and water distribution [T2 mapping, “magnetisation transfer contrast”, diffusion-weighted imaging (DWI), and so on]. Several MRI classifications have been proposed for evaluating the processes of joint degeneration (WORMS, BLOKS, ICRS) and post-surgical maturation of repair tissue (MOCART, 3D MOCART). In the future, isotropic 3D sequences set to improve image quality and facilitate the diagnosis of disorders of articular structures adjacent to cartilage. PMID:25606557

  7. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  8. Resurfacing Damaged Articular Cartilage to Restore Compressive Properties

    PubMed Central

    Grenier, Stephanie; Donnelly, Patrick E.; Gittens, Jamila; Torzilli, Peter A.

    2014-01-01

    Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crosslinked in situ using UV light irradiation. While matrix permeability and deformation significantly increased following collagenase-induced degradation of the superficial zone, resurfacing using tyramine-substituted sodium hyaluronate and riboflavin decreased both values to a level comparable to that of intact cartilage. Repetitive loading of resurfaced cartilage showed minimal variation in the mechanical response over a 7 day period. Cartilage resurfaced using a low concentration of riboflavin had viable cells in all zones while a higher concentration resulted in a thin layer of cell death in the uppermost superficial zone. Our approach to repair surface damage initiates a new therapeutic advance in the treatment of injured articular cartilage with potential benefits that include enhanced mechanical properties, reduced susceptibility to enzymatic degradation and reduced adhesion of macrophages. PMID:25468298

  9. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    PubMed Central

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  10. Techniques and applications of in vivo diffusion imaging of articular cartilage.

    PubMed

    Raya, José G

    2015-06-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity and to the collagen architecture through the fractional anisotropy. However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (∼40 ms at 3 Tesla) and the high resolution needed (0.5-0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  11. PRP and Articular Cartilage: A Clinical Update

    PubMed Central

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  12. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    PubMed

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair. PMID:25869133

  13. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis.

    PubMed

    Lourido, Lucía; Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Fernández-Tajes, Juan; Blanco, Francisco J; Ruiz-Romero, Cristina

    2014-12-01

    Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA. PMID:25383958

  14. Articular cartilage: from formation to tissue engineering.

    PubMed

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue. PMID:26923076

  15. Damage Control Mechanisms in Articular Cartilage

    PubMed Central

    Martin, James A; Scherb, MB; Lembke, Lois A; Buckwalter, Joseph

    2000-01-01

    Articular chondrocytes maintain cartilage throughout life by replacing lost or damaged matrix with freshly synthesized material. Synthesis activity is regulated, rapidly increasing to well above basal levels in response to cartilage injury. Such responses suggest that synthesis activity is linked to the rate of matrix loss by endogenous "damage control" mechanisms. As a major stimulator of matrix synthesis in cartilage, insulin-like growth factor I (IGF-I) is likely to play a role in such mechanisms. Although IGF-I is nearly ubiquitous, its bioavailability in cartilage is controlled by IGF-I binding proteins (IGFBPs) secreted by chondrocytes. IGFBPs are part of a complex system, termed the IGF-I axis, that tightly regulates IGF-I activities. For the most part, IGFBPs block IGF-I activity by sequestering IGF-I from its cell surface receptor. We recently found that the expression of one binding protein, IGFBP-3, increases with chondrocyte age, paralleling an age-related decline in synthesis activity. In addition, IGFBP-3 is overexpressed in osteoarthritic cartilage, leading to metabolic disturbances that contribute to cartilage degeneration. These observations indicate that IGFBP-3 plays a crucial role in regulating matrix synthesis in cartilage, and suggest that cartilage damage control mechanisms may fail due to age-related changes in IGFBP-3 expression or distribution. Our investigation of this hypothesis began with immunolocalization studies to determine the tissue distribution of IGFBP-3 in human cartilage. We found that IGFBP-3 accumulated around chondrocytes in the pericellular/territorial matrix, where it co-localized with fibronectin, but not with the other matrix proteins tenascin-C and type VI collagen. This result suggested that the IGFBP-3 distribution is determined by binding to fibronectin. Binding studies using purified proteins demonstrated that IGFBP-3 does in fact bind to fibronectin, but not to tenascin-C or type VI collagen. Finally, we

  16. Minced articular cartilage--basic science, surgical technique, and clinical application.

    PubMed

    McCormick, Frank; Yanke, Adam; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Minced articular cartilage procedures are attractive surgical approaches for repairing articular cartilage, as they are 1-staged, autologous, and inserted on a carrier that can potentially be placed arthroscopically. The principle of mincing the autologous donor cartilage is to create a larger surface area for cartilage expansion. Placement on a scaffold carrier allows for a chondro-inductive and chondro-conductive milieu. Early animal and preclinical models have demonstrated hyaline-like tissue repair. Further work needs to be conducted in this promising approach. PMID:19011553

  17. Radiography of rabbit articular cartilage with diffraction-enhanced imaging.

    PubMed

    Muehleman, Carol; Chapman, L Dean; Kuettner, Klaus E; Rieff, Joel; Mollenhauer, Juergen A; Massuda, Koichi; Zhong, Zhong

    2003-05-01

    Articular cartilage of synovial joints is not visible with conventional X-ray imaging. Hence, the gradual degeneration and destruction of articular cartilage, which is characteristic of degenerative joint diseases, is only detected at a late stage when the cartilage is lost and the joint space that it once occupied narrows. The development of an X-ray imaging technique that could detect both the degenerative cartilage and bone features of joint diseases is of special interest. Here we show, for the first time, that a high-contrast imaging technique, diffraction-enhanced X-ray imaging (DEI), allows the visualization of articular cartilage of both disarticulated and articulated rabbit knee joints. Furthermore, a single cartilage lesion can be visualized within an intact joint. The results suggest that DEI has the potential to be of use in the study of cartilage degeneration. PMID:12704696

  18. Tissue Engineering of Articular Cartilage with Biomimetic Zones

    PubMed Central

    Klein, Travis J.; Malda, Jos; Sah, Robert L.

    2009-01-01

    Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones. PMID:19203206

  19. Simultaneous magnetic resonance imaging and consolidation measurement of articular cartilage.

    PubMed

    Wellard, Robert Mark; Ravasio, Jean-Philippe; Guesne, Samuel; Bell, Christopher; Oloyede, Adekunle; Tevelen, Greg; Pope, James M; Momot, Konstantin I

    2014-01-01

    Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer. PMID:24803188

  20. Simultaneous Magnetic Resonance Imaging and Consolidation Measurement of Articular Cartilage

    PubMed Central

    Wellard, Robert Mark; Ravasio, Jean-Philippe; Guesne, Samuel; Bell, Christopher; Oloyede, Adekunle; Tevelen, Greg; Pope, James M.; Momot, Konstantin I.

    2014-01-01

    Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer. PMID:24803188

  1. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    PubMed Central

    Yamada, Jun; Abula, Kahaer; Inoue, Makiko; Sekiya, Ichiro; Muneta, Takeshi

    2014-01-01

    Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration. PMID:25574420

  2. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents.

    PubMed

    Kulmala, K A M; Korhonen, R K; Julkunen, P; Jurvelin, J S; Quinn, T M; Kröger, H; Töyräs, J

    2010-10-01

    In contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), the equilibrium distribution of anionic contrast agent is expected to reflect the fixed charged density (FCD) of articular cartilage. Diffusion is mainly responsible for the transport of contrast agents into cartilage. In osteoarthritis, cartilage composition changes at early stages of disease, and solute diffusion is most likely affected. Thus, investigation of contrast agent diffusion could enable new methods for imaging of cartilage composition. The aim of this study was to determine the diffusion coefficient of four contrast agents (ioxaglate, gadopentetate, iodide, gadodiamide) in bovine articular cartilage. The contrast agents were different in molecular size and charge. In peripheral quantitative CT experiments, penetration of contrast agent into the tissue was allowed either through the articular surface or through deep cartilage. To determine diffusion coefficients, a finite element model based on Fick's law was fitted to experimental data. Diffusion through articular surface was faster than through deep cartilage with every contrast agent. Iodide, being of atomic size, diffused into the cartilage significantly faster (q<0.05) than the other three contrast agents, for either transport direction. The diffusion coefficients of all clinical contrast agents (ioxaglate, gadopentetate and gadodiamide) were relatively low (142.8-253.7 μm(2)/s). In clinical diagnostics, such slow diffusion may not reach equilibrium and this jeopardizes the determination of FCD by standard methods. However, differences between diffusion through articular surface and deep cartilage, that are characterized by different tissue composition, suggest that diffusion coefficients may correlate with cartilage composition. Present method could therefore enable image-based assessment of cartilage composition by determination of diffusion coefficients within cartilage tissue. PMID:20594900

  3. Remobilization does not fully restore immobilization induced articular cartilage atrophy.

    PubMed

    Haapala, J; Arokoski, J P; Hyttinen, M M; Lammi, M; Tammi, M; Kovanen, V; Helminen, H J; Kiviranta, I

    1999-05-01

    The recovery of articular cartilage from immobilization induced atrophy was studied. The right hind limbs of 29-week-old beagle dogs were immobilized for 11 weeks and then remobilized for 50 weeks. Cartilage from the immobilized knee was compared with tissue from age matched control animals. After the immobilization period, uncalcified articular cartilage glycosaminoglycan concentration was reduced by 20% to 23%, the reduction being largest (44%) in the superficial zone. The collagen fibril network showed no significant changes, but the amount of collagen crosslinks was reduced (13.5%) during immobilization. After remobilization, glycosaminoglycan concentration was restored at most sites, except for in the upper parts of uncalcified cartilage in the medial femoral and tibial condyles (9% to 17% less glycosaminoglycans than in controls). The incorporation of 35SO4 was not changed, and remobilization also did not alter the birefringence of collagen fibrils. Remobilization restored the proportion of collagen crosslinks to the control level. The changes induced by joint unloading were reversible at most sites investigated, but full restoration of articular cartilage glycosaminoglycan concentration was not obtained in all sites, even after remobilization for 50 weeks. This suggests that lengthy immobilization of a joint can cause long lasting articular cartilage proteoglycan alterations at the same time as collagen organization remains largely unchanged. Because proteoglycans exert strong influence on the biomechanical properties of cartilage, lengthy immobilization may jeopardize the well being of articular cartilage. PMID:10335301

  4. Extraction of mechanical properties of articular cartilage from osmotic swelling behavior monitored using high frequency ultrasound.

    PubMed

    Wang, Q; Zheng, Y P; Niu, H J; Mak, A F T

    2007-06-01

    Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50 MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus H(a) at two different layers, within which H(a) was assumed to be linearly dependent on the depth. The results showed that H(a) was 3.0+/-3.2, 7.0+/-7.4, 24.5+/-11.1 MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%+/-20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis. PMID:17536909

  5. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis.

    PubMed

    Goldring, Steven R

    2012-08-01

    The articular cartilage and the subchondral bone form a biocomposite that is uniquely adapted to the transfer of loads across the diarthrodial joint. During the evolution of the osteoarthritic process biomechanical and biological processes result in alterations in the composition, structure and functional properties of these tissues. Given the intimate contact between the cartilage and bone, alterations of either tissue will modulate the properties and function of the other joint component. The changes in periarticular bone tend to occur very early in the development of OA. Although chondrocytes also have the capacity to modulate their functional state in response to loading, the capacity of these cells to repair and modify their surrounding extracellular matrix is relatively limited in comparison to the adjacent subchondral bone. This differential adaptive capacity likely underlies the more rapid appearance of detectable skeletal changes in OA in comparison to the articular cartilage. The OA changes in periarticular bone include increases in subchondral cortical bone thickness, gradual decreases in subchondral trabeular bone mass, formation of marginal joint osteophytes, development of bone cysts and advancement of the zone of calcified cartilage between the articular cartilage and subchondral bone. The expansion of the zone of calcified cartilage contributes to overall thinning of the articular cartilage. The mechanisms involved in this process include the release of soluble mediators from chondrocytes in the deep zones of the articular cartilage and/or the influences of microcracks that have initiated focal remodeling in the calcified cartilage and subchondral bone in an attempt to repair the microdamage. There is the need for further studies to define the pathophysiological mechanisms involved in the interaction between subchondral bone and articular cartilage and for applying this information to the development of therapeutic interventions to improve the

  6. A literature review of lasers and articular cartilage.

    PubMed

    Vangsness, C T; Ghaderi, B

    1993-05-01

    Articles from the English literature concerning lasers and articular cartilage were reviewed. Different experimental methods and laser systems were analyzed. Many studies lacked scientific validity. Future investigations with sound biologic foundations are recommended. PMID:8327386

  7. The effects of exercise on human articular cartilage

    PubMed Central

    Eckstein, F; Hudelmaier, M; Putz, R

    2006-01-01

    The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass. PMID:16637874

  8. Evaluation of correlation of articular cartilage staining for DDR2 and proteoglycans with histological tissue damage and the results of radiographic assessment in patients with early stages of knee osteoarthritis

    PubMed Central

    Suutre, Siim; Kerna, Irina; Lintrop, Mare; Tamm, Hannes; Aunapuu, Marina; Arend, Andres; Tamm, Agu

    2015-01-01

    Objective: To determine, if staining of articular cartilage for proteoglycans (natural element of healthy and functioning cartilage) and discoidin domain receptor 2 (DDR2) (a protein associated with articular cartilage degradation) is correlated with histological tissue damage or radiographic assessment score in patients with early stages of knee osteoarthritis (OA). Method: 40 patients, with early stage OA were enrolled, from whom the biopsies for histological and immunohistochemical studies were obtained from edge of the femoral condyle during the arthroscopy. Semi-quantitative computer based analysis was used to evaluate the proportion of staining in histological sections. Results: No correlation was shown between the proportion of tissue stained for DDR2 and histological score or the results of radiographic assessment of tibiofemoral (TF) joint. There was a negative correlation between the proportion of tissue stained for DDR2 and radiographic grade of patellofemoral (PF) OA (Spearman r=-0.34; 95% CI -0.60 to -0.02; P=0.03). No correlation was shown between the proportion of tissue stained for proteoglycans and histological score or the results of radiographic assessment of TF and PF joints. A negative correlation was found between proportion of tissue stained for DDR2 and proteoglycans. Spearman r=-0.43; 95% CI=-0.66 to -0.12; P=0.006. Conclusion: Production of DDR2 in articular cartilage could be related to early stages of OA, as it is significantly correlated to decrease of staining for cartilage proteoglycans. The role of production of DDR2 in cartilage may be decreased in stages, where higher grades of OA are detected on the radiographs. PMID:26191278

  9. The Functions of BMP3 in Rabbit Articular Cartilage Repair.

    PubMed

    Zhang, Zhe; Yang, Wenyu; Cao, Yiting; Shi, Yanping; Lei, Chen; Du, Bo; Li, Xuemin; Zhang, Qiqing

    2015-01-01

    Bone morphogenetic proteins (BMPs) play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2) induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs), and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair. PMID:26528966

  10. The Functions of BMP3 in Rabbit Articular Cartilage Repair

    PubMed Central

    Zhang, Zhe; Yang, Wenyu; Cao, Yiting; Shi, Yanping; Lei, Chen; Du, Bo; Li, Xuemin; Zhang, Qiqing

    2015-01-01

    Bone morphogenetic proteins (BMPs) play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2) induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs), and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair. PMID:26528966

  11. Leptin plays a catabolic role on articular cartilage.

    PubMed

    Bao, Jia-peng; Chen, Wei-ping; Feng, Jie; Hu, Peng-fei; Shi, Zhong-li; Wu, Li-dong

    2010-10-01

    Leptin has been shown to play a crucial role in the regulation of body weight. There is also evidence that this adipokine plays a key role in the process of osteoarthritis. However, the precise role of leptin on articular cartilage metabolism is not clear. We investigate the role of leptin on articular cartilage in vivo in this study. Recombinant rat leptin (100 μg) was injected into the knee joints of rats, 48 h later, messenger RNA (mRNA) expression and protein levels of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), cathepsin D, and collagen II from articular cartilage were analyzed by real-time quantitative polymerase chain reaction (PCR) and western blot. Two important aggrecanases ADAMTS-4 and -5 (a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5) were also analyzed by real-time quantitative PCR. Besides, articular cartilage was also assessed for proteoglycan/GAG content by Safranin O staining. Leptin significantly increased both gene and protein levels of MMP-2, MMP-9, cathepsin D, and collagen II, while decreased bFGF markedly in cartilage. Moreover, the gene expression of ADAMTS-4 and -5 were markedly increased, and histologically assessed depletion of proteoglycan in articular cartilage was observed after treatment with leptin. These results strongly suggest that leptin plays a catabolic role on cartilage metabolism and may be a disadvantage factor involve in the pathological process of OA. PMID:19876764

  12. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment

    PubMed Central

    Lach, Michał; Richter, Magdalena; Pawlicz, Jarosław; Suchorska, Wiktoria M

    2014-01-01

    In recent years, increases in the number of articular cartilage injuries caused by environmental factors or pathological conditions have led to a notable rise in the incidence of premature osteoarthritis. Osteoarthritis, considered a disease of civilization, is the leading cause of disability. At present, standard methods for treating damaged articular cartilage, including autologous chondrocyte implantation or microfracture, are short-term solutions with important side effects. Emerging treatments include the use of induced pluripotent stem cells, a technique that could provide a new tool for treatment of joint damage. However, research in this area is still early, and no optimal protocol for transforming induced pluripotent stem cells into chondrocytes has yet been established. Developments in our understanding of cartilage developmental biology, together with the use of modern technologies in the field of tissue engineering, provide an opportunity to create a complete functional model of articular cartilage. PMID:25383175

  13. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    NASA Astrophysics Data System (ADS)

    Saarakkala, Simo; Laasanen, Mikko S.; Jurvelin, Jukka S.; Töyräs, Juha

    2006-10-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair.

  14. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone.

    PubMed

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Töyräs, Juha

    2006-10-21

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p<0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p<0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair. PMID:17019042

  15. Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches.

    PubMed

    Tatman, Philip David; Gerull, William; Sweeney-Easter, Sean; Davis, Jeffrey Isaac; Gee, Albert O; Kim, Deok-Ho

    2015-12-01

    Articular cartilage is the load-bearing tissue found inside all articulating joints of the body. It vastly reduces friction and allows for smooth gliding between contacting surfaces. The structure of articular cartilage matrix and cellular composition is zonal and is important for its mechanical properties. When cartilage becomes injured through trauma or disease, it has poor intrinsic healing capabilities. The spectrum of cartilage injury ranges from isolated areas of the joint to diffuse breakdown and the clinical appearance of osteoarthritis. Current clinical treatment options remain limited in their ability to restore cartilage to its normal functional state. This review focuses on the evolution of biomaterial scaffolds that have been used for functional cartilage tissue engineering. In particular, we highlight recent developments in multiscale biofabrication approaches attempting to recapitulate the complex 3D matrix of native articular cartilage tissue. Additionally, we focus on the application of these methods to engineering each zone of cartilage and engineering full-thickness osteochondral tissues for improved clinical implantation. These methods have shown the potential to control individual cell-to-scaffold interactions and drive progenitor cell differentiation into a chondrocyte lineage. The use of these bioinspired nanoengineered scaffolds hold promise for recreation of structure and function on the whole tissue level and may represent exciting new developments for future clinical applications for cartilage injury and restoration. PMID:26200439

  16. Delivering Agents Locally into Articular Cartilage by Intense MHz Ultrasound

    PubMed Central

    Nieminen, Heikki J.; Ylitalo, Tuomo; Suuronen, Jussi-Petteri; Rahunen, Krista; Salmi, Ari; Saarakkala, Simo; Serimaa, Ritva; Hæggström, Edward

    2015-01-01

    There is no cure for osteoarthritis. Current drug delivery relies on systemic delivery or injections into the joint. Because articular cartilage (AC) degeneration can be local and drug exposure outside the lesion can cause adverse effects, localized drug delivery could permit new drug treatment strategies. We investigated whether intense megahertz ultrasound (frequency: 1.138 MHz, peak positive pressure: 2.7 MPa, Ispta: 5 W/cm2, beam width: 5.7 mm at −6 dB, duty cycle: 5%, pulse repetition frequency: 285 Hz, mechanical index: 1.1) can deliver agents into AC without damaging it. Using ultrasound, we delivered a drug surrogate down to a depth corresponding to 53% depth of the AC thickness without causing histologically detectable damage to the AC. This may be important because early osteoarthritis typically exhibits histopathologic changes in the superficial AC. In conclusion, we identify intense megahertz ultrasound as a technique that potentially enables localized non-destructive delivery of osteoarthritis drugs or drug carriers into articular cartilage. PMID:25922135

  17. Three-dimensional collagen architecture in bovine articular cartilage.

    PubMed

    Jeffery, A K; Blunn, G W; Archer, C W; Bentley, G

    1991-09-01

    The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair. PMID:1894669

  18. Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol.

    PubMed

    Shardt, Nadia; Al-Abbasi, Khaled K; Yu, Hana; Jomha, Nadr M; McGann, Locksley E; Elliott, Janet A W

    2016-08-01

    We recently published a protocol to vitrify human articular cartilage and a method of cryoprotectant removal in preparation for transplantation. The current study's goal was to perform a cryoprotectant kinetic analysis and theoretically shorten the procedure used to vitrify human articular cartilage. First, the loading of the cryoprotectants was modeled using Fick's law of diffusion, and this information was used to predict the kinetics of cryoprotectant efflux after the cartilage sample had been warmed. We hypothesized that diffusion coefficients obtained from the permeation of individual cryoprotectants into porcine articular cartilage could be used to provide a reasonable prediction of the cryoprotectant loading and of the combined cryoprotectant efflux from vitrified human articular cartilage. We tested this hypothesis with experimental efflux measurements. Osteochondral dowels from three patients were vitrified, and after warming, the articular cartilage was immersed in 3 mL X-VIVO at 4 °C in two consecutive solutions, each for 24 h, with the solution osmolality recorded at various times. Measured equilibrium values agreed with theoretical values within a maximum of 15% for all three samples. The results showed that diffusion coefficients for individual cryoprotectants determined from experiments with 2-mm thick porcine cartilage can be used to approximate the rate of efflux of the combined cryoprotectants from vitrified human articular cartilage of similar thickness. Finally, Fick's law of diffusion was used in a computational optimization to shorten the protocol with the constraint of maintaining the theoretical minimum cryoprotectant concentration needed to achieve vitrification. The learning provided by this study will enable future improvements in tissue vitrification. PMID:27221520

  19. Mechanisms of disruption of the articular cartilage surface in inflammation. Neutrophil elastase increases availability of collagen type II epitopes for binding with antibody on the surface of articular cartilage.

    PubMed Central

    Jasin, H E; Taurog, J D

    1991-01-01

    cartilage, exposing epitopes on type II collagen. They also help clarify the pathogenic mechanisms involved in early articular cartilage damage in inflammatory joint diseases. PMID:1708782

  20. Thermal energy effects on articular cartilage: a multidisciplinary evaluation

    NASA Astrophysics Data System (ADS)

    Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.

    2002-05-01

    Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.

  1. Targeting TGFβ Signaling in Subchondral Bone and Articular Cartilage Homeostasis

    PubMed Central

    Zhen, Gehau; Cao, Xu

    2014-01-01

    Osteoarthritis (OA) is the most common degenerative joint disease, and there is no disease-modifying therapy for OA currently available. Targeting of articular cartilage alone may not be sufficient to halt this disease progression. Articular cartilage and subchondral bone act as a functional unit. Increasing evidence indicates that transforming growth factor β (TGFβ) plays a crucial role in maintaining homeostasis of both articular cartilage and subchondral bone. Activation of extracellular matrix latent TGFβ at the appropriate time and location is the prerequisite for its function. Aberrant activation of TGFβ in the subchondral bone in response to abnormal mechanical loading environment induces formation of osteroid islets at onset of osteoarthritis. As a result, alteration of subchondral bone structure changes the stress distribution on the articular cartilage and leads to its degeneration. Thus, inhibition of TGFβ activity in the subchondral bone may provide a new avenue of treatment for OA. In this review, we will respectively discuss the role of TGFβ in homeostasis of articular cartilage and subchondral bone as a novel target for OA therapy. PMID:24745631

  2. Effects of Hyaluronic Acid and γ–Globulin Concentrations on the Frictional Response of Human Osteoarthritic Articular Cartilage

    PubMed Central

    Son, Kyeong-Min; Thompson, Mark S.; Park, Sungchan; Chang, Jun-Dong; Nam, Ju-Suk; Park, Seonghun; Lee, Sang-Soo

    2014-01-01

    Synovial fluid plays an important role in lubricating synovial joints. Its main constituents are hyaluronic acid (HA) and γ–globulin, acting as boundary lubricants for articular cartilage. The aim of the study was to demonstrate the concentration-dependent effect of HA and γ–globulin on the boundary-lubricating ability of human osteoarthritis (OA) cartilage. Normal, early and advance stage articular cartilage samples were obtained from human femoral heads and in presence of either HA or γ–globulin, cartilage frictional coefficient (µ) was measured by atomic force microscopy (AFM). In advanced stage OA, the cartilage superficial layer was observed to be completely removed and the damaged cartilage surface showed a higher µ value (∼0.409) than the normal cartilage surface (∼0.119) in PBS. Adsorbed HA and γ–globulin molecules significantly improved the frictional behavior of advanced OA cartilage, while they were ineffective for normal and early OA cartilage. In advanced-stage OA, the concentration-dependent frictional response of articular cartilage was observed with γ–globulin, but not with HA. Our result suggested that HA and γ–globulin may play a significant role in improving frictional behavior of advanced OA cartilage. During early-stage OA, though HA and γ–globulin had no effect on improving frictional behavior of cartilage, however, they might contribute to disease modifying effects of synovial fluid as observed in clinical settings. PMID:25426992

  3. Optical clearing of articular cartilage: a comparison of clearing agents

    NASA Astrophysics Data System (ADS)

    Bykov, Alexander; Hautala, Tapio; Kinnunen, Matti; Popov, Alexey; Karhula, Sakari; Saarakkala, Simo; Nieminen, Miika T.; Tuchin, Valery

    2015-07-01

    Optical clearing technique was applied to the problem of OCT imaging of articular cartilage and subchondral bone. We show that optical clearing significantly enhances visualization of articular cartilage and cartilage-bone interface. The effect of different clearing agents was analyzed. For the clearing, iohexol solution and propylene glycol (PG) were used. Clearing was performed in vitro at room temperature by immersion method. Cylindrical osteochondral samples (d=4.8mm) were drilled from bovine lateral femur and stored in phosphate-buffered saline at -20°C until clearing. Monitoring of clearing process was performed using high-speed spectral-domain OCT system providing axial resolution of 5.8μm at 930nm. Total duration of experiment was 90-100min to ensure saturation of clearing. We have shown that iohexol solution and PG are capable to optically clear articular cartilage enabling reliable characterization of cartilagebone interface with OCT. Being a low osmolarity agent, iohexol provides minimal changes to the thickness of cartilage sample. Clearing saturation time for the cartilage sample with the thickness of 0.9 mm measured with OCT is of 50 min. However, less than 15 min is enough to reliably detect the rear cartilage boundary. Alternatively, PG significantly (60%) reduces the cartilage thickness enabling better visualization of subchondral bone. It was observed that PG has higher clearing rate. The clearing saturation time is of 30 min, however less than 5 min is enough to detect cartilage-bone interface. We conclude that iohexol solution is superior for OCT imaging of cartilage and cartilage-bone interface, while PG suits better for subhondral bone visualization.

  4. What can biophotonics tell us about the 3D microstructure of articular cartilage?

    PubMed

    Matcher, Stephen J

    2015-02-01

    Connective tissues such as articular cartilage have been the subject of study using novel optical techniques almost since the invention of polarized light microscopy (PLM). Early studies of polarized light micrographs were the main evidential basis for the establishment of quantitative models of articular cartilage collagen structure by Benninghoff and others. Even now, state of the art optical techniques including quantitative polarized light microscopy (qPLM), optical coherence tomography (OCT), polarization-sensitive optical coherence tomography (PS-OCT), second harmonic generation (SHG) microscopy, Fourier-transform infrared (FTIR) microscopy, Raman and optical hyperspectral reflectance and fluorescence imaging are providing new insights into articular cartilage structure from the nanoscale through to the mesoscale. New insights are promised by emerging modalities such as optical elastography. This short review highlights some key recent results from modern optical techniques. PMID:25694964

  5. What can biophotonics tell us about the 3D microstructure of articular cartilage?

    PubMed Central

    2015-01-01

    Connective tissues such as articular cartilage have been the subject of study using novel optical techniques almost since the invention of polarized light microscopy (PLM). Early studies of polarized light micrographs were the main evidential basis for the establishment of quantitative models of articular cartilage collagen structure by Benninghoff and others. Even now, state of the art optical techniques including quantitative polarized light microscopy (qPLM), optical coherence tomography (OCT), polarization-sensitive optical coherence tomography (PS-OCT), second harmonic generation (SHG) microscopy, Fourier-transform infrared (FTIR) microscopy, Raman and optical hyperspectral reflectance and fluorescence imaging are providing new insights into articular cartilage structure from the nanoscale through to the mesoscale. New insights are promised by emerging modalities such as optical elastography. This short review highlights some key recent results from modern optical techniques. PMID:25694964

  6. In-situ imaging of articular cartilage of the first carpometacarpal joint using co-registered optical coherence tomography and computed tomography

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Paul; de Bruin, Daniel M.; van Herk, Marcel; Bras, Johannes; Faber, Dirk J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2012-06-01

    Conventional imaging modalities are unable to depict the early degeneration of articular cartilage in osteoarthritis, especially in small joints. Optical coherence tomography has previously been used successfully in high-resolution imaging of cartilage tissue. This pilot cadaver study demonstrates the use of intra-articular optical coherence tomography in imaging of articular cartilage of the first carpometacarpal joint, producing high resolution images of the articular surface in which cartilage thickness and surface characteristics were assessed. Findings on optical coherence tomography were confirmed with histology. Furthermore, co-registration of optical coherence tomography and computed tomography was used to accurately determine the scanned trajectory and reconstruct a true-scale image overlay.

  7. New techniques in articular cartilage imaging.

    PubMed

    Potter, Hollis G; Black, Brandon R; Chong, Le Roy

    2009-01-01

    Standardized magnetic resonance imaging (MRI) pulse sequences provide an accurate, reproducible assessment of cartilage morphology. Three-dimensional (3D) modeling techniques enable semiautomated models of the joint surface and thickness measurements, which may eventually prove essential in templating before partial or total joint resurfacing as well as focal cartilage repair. Quantitative MRI techniques, such as T2 mapping, T1 rho, and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), provide noninvasive information about cartilage and repair tissue biochemistry. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) demonstrate information regarding the regional anisotropic variation of cartilage ultrastructure. Further research strengthening the association between quantitative MRI and cartilage material properties may predict the functional capacity of native and repaired tissue. MRI provides an essential objective assessment of cartilage regenerative procedures. PMID:19064167

  8. Inhibition of β-Catenin Signaling in Articular Chondrocytes Results in Articular Cartilage Destruction

    PubMed Central

    Zhu, Mei; Chen, Mo; Zuscik, Michael; Wu, Qiuqian; Wang, Yong-Jun; Rosier, Randy N.; O’Keefe, Regis J.; Chen, Di

    2009-01-01

    Objective Osteoarthritis is a degenerative joint disease whose molecular mechanism is currently unknown. Wnt/β-catenin signaling has been demonstrated to play a critical role in the development and function of articular chondrocytes. To determine the role of β-catenin signaling in articular chondrocyte function, we generated Col2a1-ICAT–transgenic mice to inhibit β-catenin signaling in chondrocytes. Methods The expression of the ICAT transgene was determined by immunostaining and Western blot analysis. Histologic analyses were performed to determine changes in articular cartilage structure and morphology. Cell apoptosis was determined by TUNEL staining and the immunostaining of cleaved caspase 3 and poly(ADP-ribose) polymerase (PARP) proteins. Expression of Bcl-2, Bcl-xL, and Bax proteins and caspase 9 and caspase 3/7 activities were examined in primary sternal chondrocytes isolated from 3-day-old neonatal Col2a1-ICAT–transgenic mice and their wild-type littermates and in primary chicken and porcine articular chondrocytes. Results Expression of the ICAT transgene was detected in articular chondrocytes of the transgenic mice. Associated with this, age-dependent articular cartilage destruction was observed in Col2a1-ICAT– transgenic mice. A significant increase in cell apoptosis in articular chondrocytes was identified by TUNEL staining and the immunostaining of cleaved caspase 3 and PARP proteins in these transgenic mice. Consistent with this, Bcl-2 and Bcl-xL expression were decreased and caspase 9 and caspase 3/7 activity were increased, suggesting that increased cell apoptosis may contribute significantly to the articular cartilage destruction observed in Col2a1-ICAT–transgenic mice. Conclusion Inhibition of β-catenin signaling in articular chondrocytes causes increased cell apoptosis and articular cartilage destruction in Col2a1-ICAT–transgenic mice. PMID:18576323

  9. Combinatorial scaffold morphologies for zonal articular cartilage engineering.

    PubMed

    Steele, J A M; McCullen, S D; Callanan, A; Autefage, H; Accardi, M A; Dini, D; Stevens, M M

    2014-05-01

    Articular cartilage lesions are a particular challenge for regenerative medicine strategies as cartilage function stems from a complex depth-dependent organization. Tissue engineering scaffolds that vary in morphology and function offer a template for zone-specific cartilage extracellular matrix (ECM) production and mechanical properties. We fabricated multi-zone cartilage scaffolds by the electrostatic deposition of polymer microfibres onto particulate-templated scaffolds produced with 0.03 or 1.0mm(3) porogens. The scaffolds allowed ample space for chondrocyte ECM production within the bulk while also mimicking the structural organization and functional interface of cartilage's superficial zone. Addition of aligned fibre membranes enhanced the mechanical and surface properties of particulate-templated scaffolds. Zonal analysis of scaffolds demonstrated region-specific variations in chondrocyte number, sulfated GAG-rich ECM, and chondrocytic gene expression. Specifically, smaller porogens (0.03mm(3)) yielded significantly higher sGAG accumulation and aggrecan gene expression. Our results demonstrate that bilayered scaffolds mimic some key structural characteristics of native cartilage, support in vitro cartilage formation, and have superior features to homogeneous particulate-templated scaffolds. We propose that these scaffolds offer promise for regenerative medicine strategies to repair articular cartilage lesions. PMID:24370641

  10. BMP Receptor Signaling Is Required for Postnatal Maintenance of Articular Cartilage

    PubMed Central

    2004-01-01

    Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible

  11. Mechanical properties of normal and osteoarthritic human articular cartilage.

    PubMed

    Robinson, Dale L; Kersh, Mariana E; Walsh, Nicole C; Ackland, David C; de Steiger, Richard N; Pandy, Marcus G

    2016-08-01

    Isotropic hyperelastic models have been used to determine the material properties of normal human cartilage, but there remains an incomplete understanding of how these properties may be altered by osteoarthritis. The aims of this study were to (1) measure the material constants of normal and osteoarthritic human knee cartilage using isotropic hyperelastic models; (2) determine whether the material constants correlate with histological measures of structure and/or cartilage tissue damage; and (3) quantify the abilities of two common isotropic hyperelastic material models, the neo-Hookean and Yeoh models, to describe articular cartilage contact force, area, and pressure. Small osteochondral specimens of normal and osteoarthritic condition were retrieved from human cadaveric knees and from the knees of patients undergoing total knee arthroplasty and tested in unconfined compression at loading rates and large strains representative of weight-bearing activity. Articular surface contact area and lateral deformation were measured concurrently and specimen-specific finite element models then were used to determine the hyperelastic material constants. Structural parameters were measured using histological techniques while the severity of cartilage damage was quantified using the OARSI grading scale. The hyperelastic material constants correlated significantly with OARSI grade, indicating that the mechanical properties of cartilage for large strains change with tissue damage. The measurements of contact area described anisotropy of the tissue constituting the superficial zone. The Yeoh model described contact force and pressure more accurately than the neo-Hookean model, whereas both models under-predicted contact area and poorly described the anisotropy of cartilage within the superficial zone. These results identify the limits by which isotropic hyperelastic material models may be used to describe cartilage contact variables. This study provides novel data for the

  12. Studies on cathepsin B in human articular cartilage.

    PubMed Central

    Bayliss, M T; Ali, S Y

    1978-01-01

    The thiol proteinase cathepsin B (EC 3.4.22.1), previously called cathepsin B1, was assayed in human articular cartilage by its hydrolysis of the synthetic substrate alpha-N-benzoyl-DL-arginine 2-naphthylamide. The enzyme was activated by cysteine and EDTA and completely inhibited by iodoacetamide and HgCl2. It was also partially inhibited by whole human serum. Human osteoarthrotic cartilage had increased activity when compared with normal cartilage. Cathepsin B activity of normal cartilage was age-related, being high in juveniles and declining to low values in adult and elderly individuals. Cathepsin D and cathepsin B both exhibited a zonal variation through the cartilage depth; the surface cells appeared to contain more activity than those close to the subchondral bone. PMID:417724

  13. Quantitative MRI Evaluation of Articular Cartilage Using T2 Mapping Following Hip Arthroscopy for Femoroacetabular Impingement

    PubMed Central

    Mayer, Stephanie W.; Wagner, Naomi; Fields, Kara G.; Wentzel, Catherine; Burge, Alissa; Potter, Hollis G.; Lyman, Stephen; Kelly, Bryan T.

    2016-01-01

    Objectives: Cam-type femoroacetabular impingement (FAI) causes a shearing and delamination injury to the acetabular articular cartilage due to a mismatch between the size of the femoral head and the acetabulum. This mechanism is thought to lead to early osteoarthritis in this population. Cam decompression has been advocated to eliminate impingement, with the ultimate goal of halting the progression of articular cartilage delamination. Although outcomes following this procedure in the young adult population have been favorable at short and medium term follow up, it is not known whether the articular cartilage itself is protected from further injury by changing the biomechanics of the joint with decompression of the cam morphology. The purpose of this study is to compare the pre- and post-operative integrity of the acetabular articular cartilage using T2 mapping to determine if hip arthroscopy is protective of the articular cartilage at short- to medium term follow up. Methods: Males between 18 and 35 years of age who had pre-operative T2 mapping MRIs, underwent hip arthroscopy for cam or mixed-type FAI with an alpha angle greater than 50°, and had at least 2 year follow-up were identified. Post-operative MRIs were performed and T2 relaxation times in the transition zone and weight bearing articular cartilage in the anterosuperior acetabulum at deep and superficial chondral layers were recorded at nine points on three sagittal sequences on pre and post-operative MRIs. A paired t-test was used to compare T2 relaxation values between pre-operative and post-operative scans. Results: Eleven hips were evaluated. Mean age was 26.3 years (range 21 - 35). Mean follow up time to post-operative T2 mapping MRI was 2.6 years (range 2.4 - 2.7). The change in T2 relaxation time was not significantly different between pre- and post-operative MRI scans for any of the nine regions in the deep zone of the acetabular cartilage (p=0.065 - 0.969) or the superficial zone of the

  14. The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration

    PubMed Central

    Zhang, Lijie; Hu, Jerry; Athanasiou, Kyriacos A.

    2011-01-01

    Articular cartilage repair and regeneration continue to be largely intractable due to the poor regenerative properties of this tissue. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased articular cartilage functionality, has evoked intense interest and holds great potential for improving articular cartilage therapy. This review provides an overall description of the current state and progress in articular cartilage repair and regeneration. Traditional therapies and related problems are introduced. More importantly, a variety of promising cell sources, biocompatible tissue engineered scaffolds, scaffoldless techniques, growth factors, and mechanical stimuli used in current articular cartilage tissue engineering are reviewed. Finally, the technical and regulatory challenges of articular cartilage tissue engineering and possible future directions are discussed. PMID:20201770

  15. Treatment of articular cartilage lesions of the knee

    PubMed Central

    Falah, Mazen; Nierenberg, Gabreil; Soudry, Michael; Hayden, Morris

    2010-01-01

    Treatment of articular cartilage lesions in the knee remains a challenge for the practising orthopaedic surgeon. A wide range of options are currently practised, ranging from conservative measures through various types of operations and, recently, use of growth factors and emerging gene therapy techniques. The end result of these methods is usually a fibrous repair tissue (fibrocartilage), which lacks the biomechanical characteristics of hyaline cartilage that are necessary to withstand the compressive forces distributed across the knee. The fibrocartilage generally deteriorates over time, resulting in a return of the original symptoms and occasionally reported progression to osteoarthritis. Our purpose in this study was to review the aetiology, pathogenesis and treatment options for articular cartilage lesions of the knee. At present, autologous cell therapies, growth factor techniques and biomaterials offer more promising avenues of research to find clinical answers. PMID:20162416

  16. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    PubMed Central

    Wu, Jian P; Kirk, Thomas B; Zheng, Ming H

    2008-01-01

    Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in the collagen network in the

  17. Intra-Articular Injections of Polyphenols Protect Articular Cartilage from Inflammation-Induced Degradation: Suggesting a Potential Role in Cartilage Therapeutics.

    PubMed

    Natarajan, Venkatachalam; Madhan, Balaraman; Tiku, Moti L

    2015-01-01

    Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing in vivo articular cartilage degradation. The thermal, enzymatic, and physical stability of bovine articular cartilage explants following polyphenolic treatment were assessed for efficiency. Epigallocatechin gallate and tannic acid-treated explants showed >12 °C increase over native cartilage in thermal stability, thereby confirming cartilage crosslinking. Polyphenol-treated cartilage also showed a significant reduction in the percentage of collagen degradation and the release of glycosaminoglycans against collagenase digestion, indicating the increase physical integrity and resistance of polyphenol crosslinked cartilage to enzymatic digestion. To examine the in vivo cartilage protective effects, polyphenols were injected intra-articularly before (prophylactic) and after (therapeutic) the induction of collagen-induced arthritis in rats. The hind paw volume and histomorphological scoring was done for cartilage damage. The intra-articular injection of epigallocatechin gallate and tannic acid did not significantly influence the time of onset or the intensity of joint inflammation. However, histomorphological scoring of the articular cartilage showed a significant reduction in cartilage degradation in prophylactic- and therapeutic-groups, indicating that intra-articular injections of polyphenols bind to articular cartilage and making it resistant to degradation despite ongoing inflammation. These studies establish

  18. Intra-Articular Injections of Polyphenols Protect Articular Cartilage from Inflammation-Induced Degradation: Suggesting a Potential Role in Cartilage Therapeutics

    PubMed Central

    Natarajan, Venkatachalam; Madhan, Balaraman; Tiku, Moti L.

    2015-01-01

    Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing in vivo articular cartilage degradation. The thermal, enzymatic, and physical stability of bovine articular cartilage explants following polyphenolic treatment were assessed for efficiency. Epigallocatechin gallate and tannic acid-treated explants showed >12 °C increase over native cartilage in thermal stability, thereby confirming cartilage crosslinking. Polyphenol-treated cartilage also showed a significant reduction in the percentage of collagen degradation and the release of glycosaminoglycans against collagenase digestion, indicating the increase physical integrity and resistance of polyphenol crosslinked cartilage to enzymatic digestion. To examine the in vivo cartilage protective effects, polyphenols were injected intra-articularly before (prophylactic) and after (therapeutic) the induction of collagen-induced arthritis in rats. The hind paw volume and histomorphological scoring was done for cartilage damage. The intra-articular injection of epigallocatechin gallate and tannic acid did not significantly influence the time of onset or the intensity of joint inflammation. However, histomorphological scoring of the articular cartilage showed a significant reduction in cartilage degradation in prophylactic- and therapeutic-groups, indicating that intra-articular injections of polyphenols bind to articular cartilage and making it resistant to degradation despite ongoing inflammation. These studies establish

  19. The determination of apoptosis rates on articular cartilages of ovariectomized rats with and without alendronate treatment.

    PubMed

    Acar, Nuray; Balkarli, Huseyin; Soyuncu, Yetkin; Ozbey, Ozlem; Celik-Ozenci, Ciler; Korkusuz, Petek; Ustunel, Ismail

    2016-06-01

    Osteoporosis (OP) is a major health problem characterized by compromised bone strength. Osteoarthritis (OA) is a joint disease that progresses slowly and is characterized by breakdown of the cartilage matrix. Alendronate (ALN), a nitrogen-containing bisphosphonate (BIS), inhibits bone loss and increases bone mineralization, and has been used clinically for the treatment of OP. It is still controversial whether BIS is effective in inhibiting the progression of OA. Chondrocyte apoptosis has been described in both human and experimentally induced OA models. In our study we aimed to detect whether ALN could protect articular cartilage from degeneration and reduce apoptosis rates in experimentally OA induced rats. For this rats were ovariectomized (ovex), nine weeks after operation rats were injected 30 µg/kg/week ALN subcutaneously for six weeks. After six weeks articular cartilages were obtained. We did Safranin O staining and Mankin and Pritzker scorings to evaluate degeneration and investigated the expressions of p53, cleaved caspase 3, Poly ADP-ribose (PAR), Poly ADP-ribose polymerase 1 (PARP 1), and applied TUNEL technique to determine apoptotis rates. We found a significant decrease in glycosaminoglycan (GAG) amount and increased apoptosis which indicates damage on articular cartilages of ovex rats. GAG amount was higher and apoptosis rate was lower on articular cartilages of ALN treated ovex rats compared to the ovex group. In contrary to studies showing that early ALN treatment has a protective effect, our study shows late ALN treatment has a chondroprotective effect on articular cartilage since we treated rats nine weeks after ovariectomy. PMID:26631351

  20. Hydrogels for the Repair of Articular Cartilage Defects

    PubMed Central

    Maher, Suzanne A.; Lowman, Anthony M.

    2011-01-01

    The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair. PMID:21510824

  1. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    SciTech Connect

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-07-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net /sup 35/SO/sub 4/-labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage.

  2. Current Concepts of Articular Cartilage Restoration Techniques in the Knee

    PubMed Central

    Camp, Christopher L.; Stuart, Michael J.; Krych, Aaron J.

    2014-01-01

    Context: Articular cartilage injuries are common in patients presenting to surgeons with primary complaints of knee pain or mechanical symptoms. Treatment options include comprehensive nonoperative management, palliative surgery, joint preservation operations, and arthroplasty. Evidence Acquisition: A MEDLINE search on articular cartilage restoration techniques of the knee was conducted to identify outcome studies published from 1993 to 2013. Special emphasis was given to Level 1 and 2 published studies. Study Design: Clinical review. Level of Evidence: Level 3. Results: Current surgical options with documented outcomes in treating chondral injuries in the knee include the following: microfracture, osteochondral autograft transfer, osteochondral allograft transplant, and autologous chondrocyte transplantation. Generally, results are favorable regarding patient satisfaction and return to sport when proper treatment algorithms and surgical techniques are followed, with 52% to 96% of patients demonstrating good to excellent clinical outcomes and 66% to 91% returning to sport at preinjury levels. Conclusion: Clinical, functional, and radiographic outcomes may be improved in the majority of patients with articular cartilage restoration surgery; however, some patients may not fully return to their preinjury activity levels postoperatively. In active and athletic patient populations, biological techniques that restore the articular surface may be options that provide symptom relief and return patients to their prior levels of function. PMID:24790697

  3. Telomere erosion and senescence in human articular cartilage chondrocytes.

    PubMed

    Martin, J A; Buckwalter, J A

    2001-04-01

    Aging and the degeneration of articular cartilage in osteoarthritis are distinct processes, but a strong association exists between age and the incidence and prevalence of osteoarthritis. We hypothesized that this association is due to in vivo replicative senescence, which causes age-related declines in the ability of chondrocytes to maintain articular cartilage. For this hypothesis to be tested, senescence-associated markers were measured in human articular chondrocytes from donors ranging in age from 1 to 87 years. These measures included in situ staining for senescence-associated beta-galactosidase activity, (3)H-thymidine incorporation assays for mitotic activity, and Southern blots for telomere length determinations. We found that senescence-associated beta-galactosidase activity increased with age, whereas both mitotic activity and mean telomere length declined. These findings indicate that chondrocyte replicative senescence occurs in vivo and support the hypothesis that the association between osteoarthritis and aging is due in part to replicative senescence. The data also imply that transplantation procedures performed to restore damaged articular surfaces could be limited by the inability of older chondrocytes to form new cartilage after transplantation. PMID:11283188

  4. Surgical Treatment of Articular Cartilage Defects in the Knee: Are We Winning?

    PubMed Central

    Memon, A. R.; Quinlan, J. F.

    2012-01-01

    Articular cartilage (AC) injury is a common disorder. Numerous techniques have been employed to repair or regenerate the cartilage defects with varying degrees of success. Three commonly performed techniques include bone marrow stimulation, cartilage repair, and cartilage regeneration. This paper focuses on current level of evidence paying particular attention to cartilage regeneration techniques. PMID:22655202

  5. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis.

    PubMed

    Grenier, Stephanie; Bhargava, Madhu M; Torzilli, Peter A

    2014-02-01

    The objective of this study was to develop an in vitro cartilage degradation model that emulates the damage seen in early-stage osteoarthritis. To this end, cartilage explants were collagenase-treated to induce enzymatic degradation of collagen fibers and proteoglycans at the articular surface. To assess changes in mechanical properties, intact and degraded cartilage explants were subjected to a series of confined compression creep tests. Changes in extracellular matrix structure and composition were determined using biochemical and histological approaches. Our results show that collagenase-induced degradation increased the amount of deformation experienced by the cartilage explants under compression. An increase in apparent permeability as well as a decrease in instantaneous and aggregate moduli was measured following collagenase treatment. Histological analysis of degraded explants revealed the presence of surface fibrillation, proteoglycan depletion in the superficial and intermediate zones and loss of the lamina splendens. Collagen cleavage was confirmed by the Col II-3/4Cshort antibody. Degraded specimens experienced a significant decrease in proteoglycan content but maintained total collagen content. Repetitive testing of degraded samples resulted in the gradual collapse of the articular surface and the compaction of the superficial zone. Taken together, our data demonstrates that enzymatic degradation with collagenase can be used to emulate changes seen in early-stage osteoarthritis. Further, our in vitro model provides information on cartilage mechanics and insights on how matrix changes can affect cartilage's functional properties. More importantly, our model can be applied to develop and test treatment options for tissue repair. PMID:24360770

  6. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone.

    PubMed

    Boyde, A; Riggs, C M; Bushby, A J; McDermott, B; Pinchbeck, G L; Clegg, P D

    2011-01-01

    Arthropathy of the distal articular surfaces of the third metacarpal (Mc3) and metatarsal (Mt3) bones in the Thoroughbred racehorse (Tb) is a natural model of repetitive overload arthrosis. We describe a novel pathology that affects the articular calcified cartilage (ACC) and subchondral bone (SCB) and which is associated with hyaline articular cartilage degeneration. Parasagittal slices cut from the palmar quadrant of the distal condyles of the left Mc3/Mt3 of 39 trained Tbs euthanized for welfare reasons were imaged by point projection microradiography, and backscattered electron (BSE) scanning electron microscopy (SEM), light microscopy, and confocal scanning light microscopy. Mechanical properties were studied by nanoindentation. Data on the horses' training and racing career were also collected. Highly mineralised projections were observed extending from cracks in the ACC mineralising front into the hyaline articular cartilage (HAC) up to two-thirds the thickness of the HAC, and were associated with focal HAC surface fibrillation directly overlying their site. Nanoindentation identified this extruded matrix to be stiffer than any other mineralised phase in the specimen by a factor of two. The presence of projections was associated with a higher cartilage Mankin histology score (P<0.02) and increased amounts of gross cartilage loss pathologically on the condyle (P<0.02). Presence of projections was not significantly associated with: total number of racing seasons, age of horse, amount of earnings, number of days in training, total distance galloped in career, or presence of wear lines. PMID:21623571

  7. Effects of surgically induced instability on rat knee articular cartilage.

    PubMed Central

    Williams, J M; Felten, D L; Peterson, R G; O'Connor, B L

    1982-01-01

    Degenerative lesions in the articular cartilage were present following transection of the anterior cruciate ligament in the rat. These lesions included surface disruptions, a reduction in matrix proteoglycans, and cellular changes and therefore were similar to lesions seen in dogs following transection of the anterior cruciate ligament as well as lesions seen in other mechanical derangement models. Lesions were more frequently encountered in animals that had been exercised on a treadmill. This suggests that the rat knee joint may be a useful small animal model in studying the effect of mechanical derangement on articular tissues. Images Figs. 1-2 Figs. 3-4 Figs. 5-6 PMID:7076535

  8. Fucose content of keratan sulphates from bovine articular cartilage.

    PubMed Central

    Tai, G H; Brown, G M; Morris, H G; Huckerby, T N; Nieduszynski, I A

    1991-01-01

    Alkaline-borohydride-reduced keratan sulphate chains were isolated from bovine articular cartilage (6-8-year-old animals). Nine keratan sulphate fractions of increasing molecular weight were prepared by gel-permeation chromatography on a calibrated column of TSK 30 XL. The samples were analysed for fucose and galactose contents (% by wt. of keratan sulphate) and fucose/galactose ratio. The fucose content increased with molecular size, but the galactose content remained constant. It was concluded that the alpha(1----3)-linked fucose [Thornton, Morris, Cockin, Huckerby, Nieduszynski, Carlstedt, Hardingham & Ratcliffe (1989) Biochem. J. 260, 277-282] was located within the poly-N-acetyl-lactosamine repeat sequence of articular-cartilage keratan sulphate. PMID:1991030

  9. 3D braid scaffolds for regeneration of articular cartilage.

    PubMed

    Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol

    2014-06-01

    Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. PMID:24556323

  10. Structural and metabolic changes in articular cartilage induced by iodoacetate.

    PubMed Central

    Dunham, J.; Hoedt-Schmidt, S.; Kalbhen, D. A.

    1992-01-01

    The chemically induced injury to articular cartilage, caused by two successive intra-articular injections of sodium iodoacetate, has been used in studies on the effects of anti-inflammatory and of potentially chondroprotective agents. It has been assumed that the injurious effects are caused by inhibition of the glycolytic pathway. In the present study this inhibition has been shown to be greater than expected from in vitro studies, and to influence equally other oxidative pathways. However, the response is clearly not a simple one in that some of the surface chondrocytes, and synovial lining cells in close proximity to the cartilage, show virtually no inhibition. Images Fig. 2 Fig. 3 Fig. 4 PMID:1390193

  11. Repair and tissue engineering techniques for articular cartilage

    PubMed Central

    Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of regenerative biological products that over the next decade could revolutionize joint care by functionally healing articular cartilage. These products include cell-based and cell-free materials such as autologous and allogeneic cell-based approaches and multipotent and pluripotent stem-cell-based techniques. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed. PMID:25247412

  12. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.

    PubMed

    Suh, J K; Bai, S

    1998-04-01

    The purpose of the present study was to develop a computationally efficient finite element model that could be useful for parametric analysis of the biphasic poroviscoelastic (BPVE) behavior of articular cartilage under various loading conditions. The articular cartilage was modeled as the BPVE mixture of a porous, linear viscoelastic, and incompressible solid and an inviscid and incompressible fluid. A finite element (FE) formulation of the BPVE model was developed using two different algorithms, the continuous and discrete spectrum relaxation functions for the viscoelasticity of the solid matrix. These algorithms were applied to the creep and stress relaxation responses to the confined compression of articular cartilage, and a comparison of their performances was made. It was found that the discrete spectrum algorithm significantly saved CPU time and memory, as compared to the continuous spectrum algorithm. The consistency analysis for the present FE formulation was performed in comparison with the IMSL, a commercially available numerical software package. It was found that the present FE formulation yielded consistent results in predicting model behavior, whereas the IMSL subroutine produced inconsistent results in the velocity field, and thereby in the strain calculation. PMID:10412380

  13. The collagen fibril organization in human articular cartilage.

    PubMed Central

    Minns, R J; Steven, F S

    1977-01-01

    In this scanning electron microscopic study blocks of collagen fibrils were prepared from human articular cartilage, using two techinques which selectively removed either the proteoglycans alone, or both the proteoglycans and the collagen fibrils, of the non-calcified cartilage layer. Amino acid analysis of the fibrils confirmed the purity of the collagen after proteoglycan extraction. The cartilage was scanned in four different ways: (1) normal to the articular surface, (2) in superficial sections, (3) on surfaces of blocks which had been broken in planes parallel to artificial splits make by the insertion of a pin, and (4) on fracture surfaces which traversed the calcified cartilage and the subchondral bone. Five features of the organization of the collagen fibrils were specially noted: (1) Individual fibrils within the trabeculae joined to form small fibre bundles which became grouped into larger bundles at the calcified/uncalcified interface. (2) Fibrils in the deep and middle zones which, exhibiting the characteristic surface periodicity of collagen, were generally oriented towars the articular surface in large bundles approximately 55 micronm across. (3) In the superficial zone, fibrils ran parallel to the surface. (4) The surface fibrils had random orientation, even at the bases of empty lacunae vacated by chondrocytes during specimen preparation. (5) The collagen fibrils of the lacunar walls appeared to be thinner and more closely packed than thos between the lacunae. The fine collagen fibrils associated with the lacunar walls were frequently observed to pass through a large lacunar space, resulting in the formation of two or more compartments, each of which was presumably filled with a chondrocyte in the living cartilage. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:870478

  14. Postnatal development of collagen structure in ovine articular cartilage

    PubMed Central

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries) as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the articular surface to a

  15. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  16. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    PubMed

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  17. An In Vitro Model for the Pathological Degradation of Articular Cartilage in Osteoarthritis

    PubMed Central

    Grenier, Stephanie; Bhargava, Madhu M.; Torzilli, Peter A.

    2014-01-01

    The objective of this study was to develop an in vitro cartilage degradation model that emulates the damage seen in early-stage osteoarthritis. To this end, cartilage explants were collagenase-treated to induce enzymatic degradation of collagen fibers and proteoglycans at the articular surface. To assess changes in mechanical properties, intact and degraded cartilage explants were subjected to a series of confined compression creep tests. Changes in extracellular matrix structure and composition were determined using biochemical and histological approaches. Our results show that collagenase-induced degradation increased the amount of deformation experienced by the cartilage explants under compression. An increase in apparent permeability as well as a decrease in instantaneous and aggregate moduli were measured following collagenase treatment. Histological analysis of degraded explants revealed the presence of surface fibrillation, proteoglycan depletion in the superficial and intermediate zones and loss of the lamina splendens. Collagen cleavage was confirmed by the Col II–¾Cshort antibody. Degraded specimens experienced a significant decrease in proteoglycan content but maintained total collagen content. Repetitive testing of degraded samples resulted in the gradual collapse of the articular surface and the compaction of the superficial zone. Taken together, our data demonstrates that enzymatic degradation with collagenase can be used to emulate changes seen in early-stage osteoarthritis. Further, our in vitro model provides information on cartilage mechanics and insights on how matrix changes can affect cartilage’s functional properties. More importantly, our model can be applied to develop and test treatment options for tissue repair. PMID:24360770

  18. Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats.

    PubMed

    Cui, Zhuang; Xu, Changpeng; Li, Xue; Song, Jinqi; Yu, Bin

    2015-05-01

    Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular

  19. Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations.

    PubMed

    Hani, Ahmad Fadzil Mohd; Kumar, Dileep; Malik, Aamir Saeed; Ahmad, Raja Mohd Kamil Raja; Razak, Ruslan; Kiflie, Azman

    2015-01-01

    Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques. PMID:24879325

  20. Articular cartilage of the knee 3 years after ACL reconstruction

    PubMed Central

    Bae, Ji-Hoon; Hosseini, Ali; Wang, Yang; Torriani, Martin; Gill, Thomas J; Grodzinsky, Alan J

    2015-01-01

    Background and purpose T1ρ or T2 relaxation imaging has been increasingly used to evaluate the cartilage of the knee. We investigated the cartilage of ACL-reconstructed knees 3 years after surgery using T2 relaxation times. Patients and methods 10 patients with a clinically successful unilateral ACL reconstruction were examined 3 years after surgery. Multiple-TE fast-spin echo sagittal images of both knees were acquired using a 3T MRI scanner for T2 mapping of the tibiofemoral cartilage. T2 values of the superficial and deep zones of the tibiofemoral cartilage were analyzed in sub-compartmental areas and compared between the ACL-reconstructed and uninjured contralateral knees. Results Higher T2 values were observed in 1 or more sub-compartmental areas of each ACL-reconstructed knee compared to the uninjured contralateral side. Most of the T2 increases were observed at the superficial zones of the cartilage, especially at the medial compartment. At the medial compartment of the ACL-reconstructed knee, the T2 values of the femoral and tibial cartilage were increased by 3–81% compared to the uninjured contralateral side, at the superficial zones of the weight-bearing areas. T2 values in the superficial zone of the central medial femoral condyle differed between the 2 groups (p = 0.002). Interpretation The articular cartilage of ACL-reconstructed knees, although clinically satisfactory, had higher T2 values in the superficial zone of the central medial femoral condyle than in the uninjured contralateral side 3 years after surgery. Further studies are warranted to determine whether these patients would undergo cartilage degeneration over time. PMID:25854533

  1. Importance of reference gene selection for articular cartilage mechanobiology studies

    PubMed Central

    Al-Sabah, A.; Stadnik, P.; Gilbert, S.J.; Duance, V.C.; Blain, E.J.

    2016-01-01

    Summary Objective Identification of genes differentially expressed in mechano-biological pathways in articular cartilage provides insight into the molecular mechanisms behind initiation and/or progression of osteoarthritis (OA). Quantitative PCR (qPCR) is commonly used to measure gene expression, and is reliant on the use of reference genes for normalisation. Appropriate validation of reference gene stability is imperative for accurate data analysis and interpretation. This study determined in vitro reference gene stability in articular cartilage explants and primary chondrocytes subjected to different compressive loads and tensile strain, respectively. Design The expression of eight commonly used reference genes (18s, ACTB, GAPDH, HPRT1, PPIA, RPL4, SDHA and YWHAZ) was determined by qPCR and data compared using four software packages (comparative delta-Ct method, geNorm, NormFinder and BestKeeper). Calculation of geometric means of the ranked weightings was carried out using RefFinder. Results Appropriate reference gene(s) for normalisation of mechanically-regulated transcript levels in articular cartilage tissue or isolated chondrocytes were dependent on experimental set-up. SDHA, YWHAZ and RPL4 were the most stable genes whilst glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and to a lesser extent Hypoxanthine-guanine phosphoribosyltransferase (HPRT), showed variable expression in response to load, demonstrating their unsuitability in such in vitro studies. The effect of using unstable reference genes to normalise the expression of aggrecan (ACAN) and matrix metalloproteinase 3 (MMP3) resulted in inaccurate quantification of these mechano-sensitive genes and erroneous interpretation/conclusions. Conclusion This study demonstrates that commonly used ‘reference genes’ may be unsuitable for in vitro cartilage chondrocyte mechanobiology studies, reinforcing the principle that careful validation of reference genes is essential prior to each experiment to

  2. Zn deposition at the bone cartilage interface in equine articular cartilage

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  3. Ultrasound evaluation of site-specific effect of simulated microgravity on articular cartilage.

    PubMed

    Wang, Qing; Zheng, Yong-Ping; Wang, Xiao-Yun; Huang, Yan-Ping; Liu, Mu-Qing; Wang, Shu-Zhe; Zhang, Zong-Kang; Guo, Xia

    2010-07-01

    Space flight induces acute changes in normal physiology in response to the microgravity environment. Articular cartilage is subjected to high loads under a ground reaction force on Earth. The objectives of this study were to investigate the site dependence of morphological and ultrasonic parameters of articular cartilage and to examine the site-specific responses of articular cartilage to simulated microgravity using ultrasound biomicroscopy (UBM). Six rats underwent tail suspension (simulated microgravity) for four weeks and six other rats were kept under normal Earth gravity as controls. Cartilage thickness, ultrasound roughness index (URI), integrated reflection coefficient (IRC) and integrated backscatter coefficient (IBC) of cartilage tissues, as well as histological degeneration were measured at the femoral head (FH), medial femoral condyle (MFC), lateral femoral condyle (LFC), patello-femoral groove (PFG) and patella (PAT). The results showed site dependence not significant in all UBM parameters except cartilage thickness (p < 0.01) in the control specimens. Only minor changes in articular cartilage were induced by 4-week tail suspension, although there were significant decreases in cartilage thickness at the MFC and PAT (p < 0.05) and a significant increase in URI at the PAT (p < 0.01). This study suggested that the 4-week simulated microgravity had only mild effects on femoral articular cartilage in the rat model. This information is useful for human spaceflight and clinical medicine in improving understanding of the effect of microgravity on articular cartilage. However, the effects of longer duration microgravity experience on articular cartilage need further investigation. PMID:20620696

  4. Regeneration of Articular Cartilage Surface: Morphogens, Cells, and Extracellular Matrix Scaffolds.

    PubMed

    Sakata, Ryosuke; Iwakura, Takashi; Reddi, A Hari

    2015-10-01

    The articular cartilage is a well-organized tissue for smooth and friction-free joint movement for locomotion in animals and humans. Adult articular cartilage has a very low self-regeneration capacity due to its avascular nature. The regeneration of articular cartilage surface is critical to prevent the progression to osteoarthritis (OA). Although various joint resurfacing procedures in experimental articular cartilage defects have been developed, no standardized clinical protocol has yet been established. The three critical ingredients for tissue regeneration are morphogens and growth factors, cells, and scaffolds. The concepts based on the regeneration triad have been extensively investigated in animal models. However, these studies in animal models have demonstrated variable results and outcomes. An optimal animal model must precisely mimic and model the sequence of events in articular cartilage regeneration in human. In this article, the progress and remaining challenges in articular cartilage regeneration in animal models are reviewed. The role of individual morphogens and growth factors in cartilage regeneration has been investigated. In normal articular cartilage homeostasis, morphogens and growth factors function sequentially in tissue regeneration. Mesenchymal stem cell-based repair of articular cartilage defects, performed with or without various growth factors and scaffolds, has been widely attempted in animal models. Stem cells, including embryonic and adult stem cells and induced pluripotent stem cells, have also been reported as attractive cell sources for articular cartilage surface regeneration. Several studies with regard to scaffolds have been advanced, including recent investigations based on nanomaterials, functional mechanocompatible scaffolds, multilayered scaffolds, and extracellular matrix scaffolds for articular cartilage surface regeneration. Continuous refinement of animal models in chondral and osteochondral defects provide opportunities

  5. Effect of exercise on the proteoglycan metabolism of articular cartilage in growing foals.

    PubMed

    van den Hoogen, B M; van den Lest, C H; van Weeren, P R; van Golde, L M; Barneveld, A

    1999-11-01

    In this study, the effect of different exercise regimens on proteoglycan metabolism of articular cartilage was examined in 43 newborn foals randomly divided into 3 groups: a) box-rest, b) box-rest with training and c) free pasture exercise. They were subjected to these exercise regimens from ages 1 week to 5 months and at 5 months, 24 foals (8 from each group) were sacrificed to assess short-term exercise effects. The remaining 19 foals were subjected to the same regimen of light exercise for an additional 6 months before being sacrificed to evaluate possible long-term effects. Articular cartilage explants were cultured and proteoglycan synthesis, both ex vivo and after 4 days of serum stimulation, release of endogenous and newly synthesised proteoglycans, and DNA- and GAG contents were measured to determine the metabolic state of the cartilage. Cartilage metabolic parameters in the box-rest group at 5 months indicated a retardation in development of the cartilage but, after an additional 6 months, this retardation had almost completely disappeared. The training regimen induced an increase in proteoglycan synthesis at 5 months in cartilage that was, however, accompanied by an increase in proteoglycan release. In the training group at the long-term, the ability of cartilage to increase proteoglycan synthesis when stimulated was severely reduced. We consider this extra proteoglycan synthesis capacity of great importance to repair small injuries and hence as essential to prevent an early onset of degenerative disorders such as osteoarthritis. Therefore, although extrapolation of in vitro data to the in vivo situation always should be done with the utmost care, it is concluded that pasture exercise is best for the development of healthy cartilage resistant to injury and other exercise protocols may carry harmful long-term effects. PMID:10999662

  6. Stem cells for tissue engineering of articular cartilage.

    PubMed

    Gao, J; Yao, J Q; Caplan, A I

    2007-07-01

    Articular cartilage injuries are one of the most common disorders in the musculo-skeletal system. Injured cartilage tissue cannot spontaneously heal and, if not treated, can lead to osteoarthritis of the affected joints. Although a variety of procedures are being employed to repair cartilage damage, methods that result in consistent durable repair tissue are not yet available. Tissue engineering is a recently developed science that merges the fields of cell biology, engineering, material science, and surgery to regenerate new functional tissue. Three critical components in tissue engineering of cartilage are as follows: first, sufficient cell numbers within the defect, such as chondrocytes or multipotent stem cells capable of differentiating into chondrocytes; second, access to growth and differentiation factors that modulate these cells to differentiate through the chondrogenic lineage; third, a cell carrier or matrix that fills the defect, delivers the appropriate cells, and supports cell proliferation and differentiation. Stem cells that exist in the embyro or in adult somatic tissues are able to renew themselves through cell division without changing their phenotype and are able to differentiate into multiple lineages including the chondrogenic lineage under certain physiological or experimental conditions. Here the application of stem cells as a cell source for cartilage tissue engineering is reviewed. PMID:17822146

  7. Evaluation of Se-75 BISTAES as a potential articular cartilage imaging agent

    SciTech Connect

    Yu, S.W.K.

    1987-01-01

    The potential of Se-75 bis (..beta..-N,N,N-trimethylamino)-ethyl) selenide diiodide (Se-75 BISTAES) as an articular cartilage imaging agent for the early diagnosis of osteoarthritis was evaluated. The compound was synthesized and the identity was established. The radiochemical purity and stability were determined initially and over a two-month period of storage at three temperatures. The biodistribution of Se-75 BISTAES in rabbits and guinea pigs was studied. A high concentration of radioactivity was found in the knee and shoulder cartilage. The radioactivity in the cartilage was the highest at 15 minutes to one hour post-injection. In rabbits, the highest ratio of radioactivity in the cartilage to the surrounding tissues was about 30. A minimal ratio of 10 is required for nuclear medicine imaging. Nuclear medicine imaging conducted on rabbits demonstrated increased radioactivity in the articular cartilage in the knee and shoulder. The impression from the nuclear medicine images and the findings of the biodistribution study indicated that the route of excretion of Se-75 BISTAES was the urine. The in vitro binding between Se-75 BISTAES and chondroitin sulfate was determined by an equilibrium dialysis technique.

  8. MRI rotating frame relaxation measurements for articular cartilage assessment

    PubMed Central

    Ellermann, Jutta; Ling, Wen; Nissi, Mikko J.; Arendt, Elizabeth; Carlson, Cathy S.; Garwood, Michael; Michaeli, Shalom; Mangia, Silvia

    2015-01-01

    In the present work we introduced two MRI rotating frame relaxation methods, namely adiabatic T1ρ and Relaxation Along a Fictitious Field (RAFF), along with an inversion-prepared Magnetization Transfer (MT) protocol for assessment of articular cartilage. Given the inherent sensitivity of rotating frame relaxation methods to slow molecular motions that are relevant in cartilage, we hypothesized that adiabatic T1ρ and RAFF would have higher sensitivity to articular cartilage degradation as compared to laboratory frame T2 and MT. To test this hypothesis, a proteoglycan depletion model was used. Relaxation time measurements were performed at 0 and 48 hours in ten bovine patellar specimens, 5 of which were treated with trypsin and 5 untreated controls were stored under identical conditions in isotonic saline for 48 hours. Relaxation times measured at 48 hours were longer than those measured at 0 hours in both groups. The changes in T2 and MT relaxation times after 48 hours were approximately 3 times larger in the trypsin treated specimens as compared to the untreated group, whereas increases of adiabatic T1ρ and RAFF were 4 to 5 fold larger. Overall, these findings demonstrate a higher sensitivity of adiabatic T1ρ and RAFF to the trypsin-induced changes in bovine patellar cartilage as compared to the commonly used T2 and MT. Since adiabatic T1ρ and RAFF are advantageous for human applications as compared to standard continuous-wave T1ρ methods, adiabatic T1ρ and RAFF are promising tools for assessing cartilage degradation in clinical settings. PMID:23993794

  9. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects.

    PubMed

    Hesper, Tobias; Hosalkar, Harish S; Bittersohl, Daniela; Welsch, Götz H; Krauspe, Rüdiger; Zilkens, Christoph; Bittersohl, Bernd

    2014-10-01

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation-without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. PMID:24643762

  10. Biomaterial scaffolds in cartilage-subchondral bone defects influencing the repair of autologous articular cartilage transplants.

    PubMed

    Fan, Wei; Wu, Chengtie; Miao, Xigeng; Liu, Gang; Saifzadeh, Siamak; Sugiyama, Sadahiro; Afara, Isaac; Crawford, Ross; Xiao, Yin

    2013-05-01

    The repair of articular cartilage typically involves the repair of cartilage-subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage-subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite-β-tricalcium phosphate (HA-TCP), poly lactic-glycolic acid (PLGA)-HA-TCP dual-layered composite scaffolds (PLGA/HA-TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After 3 months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration, and histological responses. The results showed that the transplanted cartilage layer supported by HA-TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA-TCP scaffolds. Furthermore, HA-TCP-supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan contents than that supported by PLGA/HA-TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects. PMID:22684516

  11. A reappraisal of the structure of normal canine articular cartilage.

    PubMed Central

    Dunham, J; Shackleton, D R; Billingham, M E; Bitensky, L; Chayen, J; Muir, I H

    1988-01-01

    It has been shown that some of the controversy over the structure of articular cartilage may be due to slight differences in the orientation of the sample that has been studied. As our decisive criterion we have used the simple physical fact that elongate proteins, such as collagen micelles, that can exhibit form-birefringence, had to show virtually straight extinction when viewed under crossed polars. The use of a variably adjustable microtome chuck facilitated small adjustments in the orientation of the cartilage to meet this criterion. Under these conditions, the collagen of the matrix has been shown to be aligned mainly perpendicularly to the surface which was bounded by a thin lamina in which the collagen showed birefringence at 90 degrees to that of the matrix. The conventionally described zonation of articular cartilage has been shown to be inadequate for that of the dog tibial plateau. The conventional Zone 2 has been shown to consist of two zones, Zones 2a and 2b, with different cell sizes, cell concentrations, and concentration of matrix components. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:3198487

  12. [Joint morphogenesis and development of permanent articular cartilage].

    PubMed

    Ohta, Yoichi; Iwamoto, Masahiro

    2011-06-01

    During limb skeletogenesis progenitor mesenchymal cells aggregate at specific times and sites to form continuous precartilaginous condensations. With time the condensations undergo chondrogenesis and give rise to cartilaginous anlagen that exhibit incipient synovial joints at each end. A multitude of factors regulates subdivision into discrete skeletal elements and the formation, organization, morphogenesis and structure of the joints. This review summarizes recent advance of joint morphogenesis and actions of key players of joint and articular cartilage formation. In addition, we would like to discuss possible direction to translate basic research findings towards treatment of joint diseases. PMID:21628794

  13. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  14. EFFECTS OF ENZYMATIC DEGRADATION ON THE FRICTIONAL RESPONSE OF ARTICULAR CARTILAGE IN STRESS RELAXATION

    PubMed Central

    Basalo, Ines M.; Raj, David; Krishnan, Ramaswamy; Chen, Faye H.; Hung, Clark T.; Ateshian, Gerard A.

    2010-01-01

    SUMMARY It was recently shown experimentally that the friction coefficient of articular cartilage correlates with the interstitial fluid pressurization, supporting the hypothesis that interstitial water pressurization plays a fundamental role in the frictional response by supporting most of the load during the early time response. A recent study showed that enzymatic treatment with chondroitinase ABC causes a decrease in the maximum fluid load support of bovine articular cartilage in unconfined compression. The hypothesis of this study is that treatment with chondroitinase ABC will increase the friction coefficient of articular cartilage in stress relaxation. Articular cartilage samples (n=34) harvested from the femoral condyles of five bovine knee joints (1–3 months-old) were tested in unconfined compression with simultaneous continuous sliding (±1.5 mm at 1 mm/s) under stress relaxation. Results showed a significantly higher minimum friction coefficient in specimens treated with 0.1 u/ml of chondroitinase ABC for 24 hours (μmin = 0.082 ± 0.024) compared to control specimens (μmin = 0.047 ± 0.014). Treated samples also exhibited higher equilibrium friction coefficient (μeq = 0.232 ± 0.049) than control samples (μeq = 0.184 ± 0.036), which suggest that the frictional response is greatly influenced by the degree of tissue degradation. The fluid load support was predicted from theory, and the maximum value (as a percentage of the total applied load) was lower in treated specimens (77 ± 12%) than in control specimens (85 ± 6%). Based on earlier findings, the increase in the ratio μmin/μeq may be attributed to the decrease in fluid load support. PMID:15863119

  15. Black Colouration of the Knee Articular Cartilage after Spontaneously Recurrent Haemarthrosis

    PubMed Central

    Ishimaru, Daichi; Ogawa, Hiroyasu; Akiyama, Haruhiko

    2016-01-01

    Mild discolouration of the articular cartilage is known to gradually occur during aging. However, pathological tissue pigmentation is occasionally induced under several specific conditions. In the present case, we performed total knee replacement in a patient with recurrent haemarthrosis. However, during the operation, we observed severe black colouration of the knee articular cartilage, due to the deposition of hemosiderin and lipofuscin. To our knowledge, this is the first report of severe cartilage pigmentation, due to hemosiderin and lipofuscin deposition in articular cartilage. PMID:27293933

  16. Articular cartilage echography as a criterion of the evolution of osteoarthritis of the knee.

    PubMed

    Martino, F; Ettorre, G C; Patella, V; Macarini, L; Moretti, B; Pesce, V; Resta, L

    1993-01-01

    We propose a modification of the Aisen's technique by which precise reproducible measurements of articular cartilage thickness of the knee is possible. A group of 23 patients with severe osteoarthritis was studied by ultra-sound (US) before knee prosthesis surgery. Evaluation with US was performed by a real-time scanner with a 7.5 MHz linear probe with upper-patellar transverse scans tangent to the upper patellar pole at 90 degrees knee flexion. The cartilage thickness was measured within the weight-bearing area. After surgery, on the corresponding gross pathological specimen, US re-evaluation and histological measurements were made. Results of pre- and post-operative ultrasonography (US) data were compared with histological data and a good correlation between these measurements was found (p(t) > 10%). Preoperative measurements ranged from 2.4 to 0.3 mm. In order to obtain normal reference values of the articular cartilage within the weight-bearing area of the femoral trochlea for comparison, a group of 10 control subjects was also studied with US as above. The US data were then compared with computed tomography (arthro-CT) evaluations. No significant differences in mean values were found between the two imaging techniques (2.2 mm versus 2.3 mm for the lateral condyle and 2.3 versus 2.3 for the medial condyle, respectively). We conclude that ultra-sound measurement of articular cartilage thickness of femoral condyles is a sensitive and reproducible technique which permits early diagnosis and management of knee arthropathy and also quantification of cartilage damage. PMID:7995680

  17. Probing articular cartilage damage and disease by quantitative magnetic resonance imaging

    PubMed Central

    Chan, Deva D.; Neu, Corey P.

    2013-01-01

    Osteoarthritis (OA) is a debilitating disease that reflects a complex interplay of biochemical, biomechanical, metabolic and genetic factors, which are often triggered by injury, and mediated by inflammation, catabolic cytokines and enzymes. An unmet clinical need is the lack of reliable methods that are able to probe the pathogenesis of early OA when disease-rectifying therapies may be most effective. Non-invasive quantitative magnetic resonance imaging (qMRI) techniques have shown potential for characterizing the structural, biochemical and mechanical changes that occur with cartilage degeneration. In this paper, we review the background in articular cartilage and OA as it pertains to conventional MRI and qMRI techniques. We then discuss how conventional MRI and qMRI techniques are used in clinical and research environments to evaluate biochemical and mechanical changes associated with degeneration. Some qMRI techniques allow for the use of relaxometry values as indirect biomarkers for cartilage components. Direct characterization of mechanical behaviour of cartilage is possible via other specialized qMRI techniques. The combination of these qMRI techniques has the potential to fully characterize the biochemical and biomechanical states that represent the initial changes associated with cartilage degeneration. Additionally, knowledge of in vivo cartilage biochemistry and mechanical behaviour in healthy subjects and across a spectrum of osteoarthritic patients could lead to improvements in the detection, management and treatment of OA. PMID:23135247

  18. A nonlinear biphasic viscohyperelastic model for articular cartilage.

    PubMed

    García, José Jaime; Cortés, Daniel Humberto

    2006-01-01

    Experiments on articular cartilage have shown nonlinear stress-strain curves under finite deformations as well as intrinsic viscous effects of the solid phase. The aim of this study was to propose a nonlinear biphasic viscohyperelastic model that combines the intrinsic viscous effects of the proteoglycan matrix with a nonlinear hyperelastic constitutive equation. The proposed equation satisfies objectivity and reduces for uniaxial loading to a solid type viscous model in which the actions of the springs are represented by the hyperelastic function proposed by Holmes and Mow [1990. J. Biomechanics 23, 1145-1156.]. Results of the model, that were efficiently implemented in an updated Lagrangian algorithm, were compared with experimental infinitesimal data reported by DiSilverstro and Suh [2001. J. Biomechanics 34, 519-525.] and showed acceptable fitting for the axial force (R(2)=0.991) and lateral displacement (R(2)=0.914) curves in unconfined compression as well as a good fitting of the axial indentation force curve (R(2)=0.982). In addition, the model showed an excellent fitting of finite-deformation confined compression stress relaxation data reported by Ateshian et al. [1997. J. Biomechanics 30, 1157-1164.] and Huang et al. [2005. J. Biomechanics 38, 799-809.] (R(2)=0.993 and R(2)=0.995, respectively). The constitutive equation may be used to represent the mechanical behavior of the proteoglycan matrix in a fiber reinforced model of articular cartilage. PMID:16316659

  19. Effects of immobilization on articular cartilage: Autohistoradiographic findings with S35

    NASA Technical Reports Server (NTRS)

    Digiovanni, C.; Desantis, E.

    1980-01-01

    The effect of immobilization on the articular cartilage of rabbits was studied by light microscope. The knee joint of each rabbit was immobilized in a plaster in a position midway between flexion and extension for a 10 to 120 days period. Degenerative changes in the articular cartilage of increasing severity were observed. The fixation of the labeled SO4 by cartilage cells was decreased in advanced immobilization.

  20. Modeling IL-1 induced degradation of articular cartilage.

    PubMed

    Kar, Saptarshi; Smith, David W; Gardiner, Bruce S; Li, Yang; Wang, Yang; Grodzinsky, Alan J

    2016-03-15

    In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤ 1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states. PMID:26874194

  1. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model

    PubMed Central

    Pan, Weimin; Liu, Jian; Sun, Wei

    2015-01-01

    Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties. PMID:26695629

  2. Biochemical analysis of normal articular cartilage in horses.

    PubMed

    Vachon, A M; Keeley, F W; McIlwraith, C W; Chapman, P

    1990-12-01

    Articular cartilage specimens from the distal articular surface of 32 radiocarpal bones from 24 2- to 5-year-old horses were analyzed. The total collagen content was determined on the basis of the 4-hydroxyproline content, using a colorimetric method. A method for estimating the proportions of types-I and -II collagen by measuring spectrophotometric densities of specific cyanogen bromide peptide bands from mixtures of types-I and -II collagen on sodium dodecyl sulfate-polyacrylamide gels was used. The cyanogen bromide peptides representative of each collagen types-I and -II were identified. The peptide ratios were then computed for each of several standards of type-I and -II mixtures. A standard curve was derived from the correlation between these ratios and the corresponding proportions of type-II collagen in standard mixtures. Galactosamine and glucosamine content (hexosamines) were measured by ion chromatography. The galactosamine-to-glucosamine ratio, chondroitin sulfate and keratan sulfate values, and total glycosaminoglycan content were derived from the measured hexosamine content. The total collagen content averaged 556 mg/g (55.6 mg/100 mg) of tissue (dry weight, [dw]). Type-II collagen was the major collagen type in normal articular cartilage specimens. The ratio of the area under the alpha 1 (II)CB10 peak to the area under the alpha 1 (I)CB 7,8 + alpha 1 (II)CB11 peak was a second-order polynomial function of the proportion of type-II collagen in the specimens. The mean galactosamine and glucosamine content were 20.6 mg/g and 7.9 mg/g (dw), respectively. The mean galactosamine-to-glucosamine ratio was 3.74 +/- 0.62.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2085215

  3. Adsorption and Distribution of Fluorescent Solutes near the Articular Surface of Mechanically Injured Cartilage

    PubMed Central

    Decker, Sarah G.A.; Moeini, Mohammad; Chin, Hooi Chuan; Rosenzweig, Derek H.; Quinn, Thomas M.

    2013-01-01

    The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces. PMID:24268155

  4. Regeneration of articular cartilage using adipose stem cells.

    PubMed

    Im, Gun-Il

    2016-07-01

    Articular cartilage (AC) has limited potential for self-regeneration and damage to AC eventually leads to the development and progression of osteoarthritis (OA). Cell implantation strategies have emerged as a new treatment modality to regenerate AC. Adipose stem cells/adipose-derived stromal cells (ASCs) have gained attention due to their abundance, excellent proliferative potential, and minimal morbidity during harvest. These advantages lower the cost of cell therapy by circumventing time-consuming procedure of culture expansion. ASCs have drawn attention as a potential source for cartilage regeneration since the feasibility of chondrogenesis from ASCs was first reported. After several groups reported inferior chondrogenesis from ASCs, numerous methods were devised to overcome the intrinsic properties. Most in vivo animal studies have reported good results using predifferentiated or undifferentiated, autologous or allogeneic ASCs to regenerate cartilage in osteochondral defects or surgically-induced OA. In this review, we summarize literature on the isolation and in vitro differentiation processes of ASCs, in vivo studies to regenerate AC in osteochondral defects and OA using ASCs, and clinical applications of ASCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1830-1844, 2016. PMID:26990234

  5. Tribology approach to the engineering and study of articular cartilage.

    PubMed

    Wimmer, Markus A; Grad, Sibylle; Kaup, Thomas; Hänni, Markus; Schneider, Erich; Gogolewski, Sylwester; Alini, Mauro

    2004-01-01

    This study has been based on the assumption that articular motion is an important aspect of mechanotransduction in synovial joints. For this reason a new bioreactor concept, able to reproduce joint kinematics more closely, has been designed. The prototype consists of a rotating scaffold and/or cartilage pin, which is pressed onto an orthogonally rotating ball. By oscillating pin and ball in phase difference, elliptical displacement trajectories are generated that are similar to the motion paths occurring in vivo. Simultaneously, dynamic compression may be applied with a linear actuator, while two-step-motors generate the rotation of pin and ball. The whole apparatus is placed in an incubator. The control station is located outside. Preliminary investigations at the gene expression level demonstrated promising results. Compared with free-swelling control and/or simply compression-loaded samples, chondrocyte-seeded scaffolds as well as nasal cartilage explants exposed to interface motion both showed elevated levels of cartilage oligomeric matrix protein mRNA. The final design of the bioreactor will include four individual stations in line, which will facilitate the investigation of motion-initiated effects at the contacting surfaces in more detail. PMID:15588403

  6. Characterization of neopeptides in equine articular cartilage degradation.

    PubMed

    Peffers, Mandy Jayne; Thornton, David James; Clegg, Peter David

    2016-01-01

    Osteoarthritis is characterized by a loss of extracellular matrix that leads to cartilage degradation and joint space narrowing. Specific proteases, including the aggrecanases ADAMTS-4 and matrix metalloproteinase 3, are important in initiating and promoting cartilage degradation in osteoarthritis. This study investigated protease-specific and disease-specific cleavage patterns of particular extracellular matrix proteins by comparing new peptide fragments, neopeptides, in specific exogenous protease-driven digestion of a crude cartilage proteoglycan extract and an in-vitro model of early osteoarthritis. Additionally, equine cartilage explants were treated with interleukin-1 and the media collected. Proteolytic cleavage products following trypsin digestion were then identified using tandem mass spectrometry. Complete sequences of proteolytically cleaved neopeptides were determined for the major cartilage proteoglycans aggrecan, biglycan, decorin, fibromodulin plus cartilage oligomeric matrix protein. The generation of neopeptides varied with enzyme specificity; however, some peptides were common to all samples. Previous known and novel cleavage sites were identifies. The identification of novel peptide fragments provides a platform for the development of antibodies that could assist in the identification of biomarkers for osteoarthritis (OA), as well as the identification of basic biochemical processes underlying OA. PMID:26124002

  7. Nanomechanical phenotype of chondroadherin-null murine articular cartilage.

    PubMed

    Batista, Michael A; Nia, Hadi T; Önnerfjord, Patrik; Cox, Karen A; Ortiz, Christine; Grodzinsky, Alan J; Heinegård, Dick; Han, Lin

    2014-09-01

    Chondroadherin (CHAD), a class IV small leucine rich proteoglycan/protein (SLRP), was hypothesized to play important roles in regulating chondrocyte signaling and cartilage homeostasis. However, its roles in cartilage development and function are not well understood, and no major osteoarthritis-like phenotype was found in the murine model with CHAD genetically deleted (CHAD(-/-)). In this study, we used atomic force microscopy (AFM)-based nanoindentation to quantify the effects of CHAD deletion on changes in the biomechanical function of murine cartilage. In comparison to wild-type (WT) mice, CHAD-deletion resulted in a significant ≈70-80% reduction in the indentation modulus, Eind, of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old animals. This mechanical phenotype correlates well with observed increases in the heterogeneity collagen fibril diameters in the surface zone. The results suggest that CHAD mainly plays a major role in regulating the formation of the collagen fibrillar network during the early skeletal development. In contrast, CHAD-deletion had no appreciable effects on the indentation mechanics of middle/deep zone cartilage, likely due to the dominating role of aggrecan in the middle/deep zone. The presence of significant rate dependence of the indentation stiffness in both WT and CHAD(-/-) knee cartilage suggested the importance of both fluid flow induced poroelasticity and intrinsic viscoelasticity in murine cartilage biomechanical properties. Furthermore, the marked differences in the nanomechanical behavior of WT versus CHAD(-/-) cartilage contrasted sharply with the relative absence of overt differences in histological appearance. These observations highlight the sensitivity of nanomechanical tools in evaluating structural and mechanical phenotypes in transgenic mice. PMID:24892719

  8. Amino acid racemization reveals differential protein turnover in osteoarthritic articular and meniscal cartilages

    PubMed Central

    Stabler, Thomas V; Byers, Samuel S; Zura, Robert D; Kraus, Virginia Byers

    2009-01-01

    Introduction Certain amino acids within proteins have been reported to change from the L form to the D form over time. This process is known as racemization and is most likely to occur in long-lived low-turnover tissues such as normal cartilage. We hypothesized that diseased tissue, as found in an osteoarthritic (OA) joint, would have increased turnover reflected by a decrease in the racemized amino acid content. Methods Using high-performance liquid chromatography methods, we quantified the L and D forms of amino acids reported to racemize in vivo on a biological timescale: alanine, aspartate (Asp), asparagine (Asn), glutamate, glutamine, isoleucine, leucine (Leu), and serine (Ser). Furthermore, using a metabolically inactive control material (tooth dentin) and a control material with normal metabolism (normal articular cartilage), we developed an age adjustment in order to make inferences about the state of protein turnover in cartilage and meniscus. Results In the metabolically inactive control material (n = 25, ages 13 to 80 years) and the normal metabolizing control material (n = 19, ages 17 to 83 years), only Asp + Asn (Asx), Ser, and Leu showed a significant change (increase) in racemization with age (P < 0.01). The age-adjusted proportions of racemized to total amino acid (D/D+L expressed as a percentage of the control material) for Asx, Ser, and Leu when compared with the normal articular cartilage control were 97%, 74%, and 73% in OA meniscal cartilage and 97%, 70%, and 78% in OA articular cartilage. We also observed lower amino acid content in OA articular and meniscal cartilages compared with normal articular cartilage as well as a loss of total amino acids with age in the OA meniscal but not the OA articular cartilage. Conclusions These data demonstrate comparable anabolic responses for non-lesioned OA articular cartilage and OA meniscal cartilage but an excess of catabolism over anabolism for the meniscal cartilage. PMID:19267899

  9. Tissue-Engineered Articular Cartilage Exhibits Tension-Compression Nonlinearity Reminiscent of the Native Cartilage

    PubMed Central

    Kelly, Terri-Ann N.; Roach, Brendan L.; Weidner, Zachary D.; Mackenzie-Smith, Charles R.; O'Connell, Grace D.; Lima, Eric G.; Stoker, Aaron M.; Cook, James L.; Ateshian, Gerard A.; Hung, Clark T.

    2013-01-01

    The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83 kPa for FS and 678±473 kPa for DL) and compressive (161±33 kPa for FS and 348±203 kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. PMID:23791084

  10. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

    PubMed Central

    Tavassoli, Amin; Matin, Maryam Moghaddam; Niaki, Malihe Akbarzade; Mahdavi-Shahri, Nasser; Shahabipour, Fahimeh

    2015-01-01

    Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-MSCs). Materials and Methods: Bovine articular cartilage that was cut into pieces with 2 mm thickness, were decellularized by combination of physical and chemical methods including snap freeze-thaw and treatment with sodium dodecyl sulfate (SDS). The scaffolds were then seeded with 1, 1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI) labeled BM-MSCs and cultured for up to two weeks. Results: Histological studies of decellularized bovine articular cartilage showed that using 5 cycles of snap freeze-thaw in liquid nitrogen and treatment with 2.5% SDS for 4 hr led to the best decellularization, while preserving the articular cartilage structure. Adherence and penetration of seeded BM-MSCs on to the scaffold were displayed by histological and florescence examinations and also confirmed by electron microscopy. Conclusion: ECM-derived decellularized articular cartilage scaffold provides a suitable environment to support adhesion and maintenance of cultured BM-MSCs and could be applied to investigate cellular behaviors in this system and may also be useful for studies of cartilage tissue engineering. PMID:26877852

  11. Elastin fibers display a versatile microfibril network in articular cartilage depending on the mechanical microenvironments.

    PubMed

    He, Bo; Wu, Jian Ping; Chen, Hong Hui; Kirk, Thomas Brett; Xu, Jiake

    2013-09-01

    Elastin fibers are major extracellular matrix macromolecules that are critical in maintaining the elasticity and resilience of tissues such as blood vessels, lungs and skins. However, the role of elastin in articular cartilage is poorly defined. The present study investigated the organization of elastin fiber in articular cartilage, its relationship to collagen fibers and the architecture of elastin fibers from different mechanical environments by using a kangaroo model. Five morphologies of elastin fibers were identified: Straight fiber, straight fiber with branches, branching fibers directly associated with chondrocyte, wave fiber and fine elastin. The architecture of the elastin network varied significantly with cartilage depth. In the most superficial layer of tibial plateau articular cartilage, dense elastin fibers formed a distinctive cobweb-like meshwork which was parallel to the cartilage surface. In the superficial zone, elastin fibers were well organized in a preferred orientation which was parallel to collagen fibers. In the deep zone, no detectable elastin fiber was found. Moreover, differences in the organization of elastin fibers were also observed between articular cartilage from the tibial plateau, femoral condyle, and distal humerus. This study unravels the detailed microarchitecture of elastin fibers which display a well-organized three-dimensional versatile network in articular cartilage. Our findings imply that elastin fibers may play a crucial role in maintaining the integrity, elasticity, and the mechanical properties of articular cartilage, and that the local mechanical environment affects the architectural development of elastin fibers. PMID:23649803

  12. Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model.

    PubMed

    Amin, A K; Huntley, J S; Simpson, A H R W; Hall, A C

    2009-05-01

    The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p < 0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p > 0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone. PMID:19407309

  13. Gene Expression Profiling Reveals Similarities between the Spatial Architectures of Postnatal Articular and Growth Plate Cartilage

    PubMed Central

    Chau, Michael; Lui, Julian C.; Landman, Ellie B. M.; Späth, Stephan-Stanislaw; Vortkamp, Andrea; Baron, Jeffrey; Nilsson, Ola

    2014-01-01

    Articular and growth plate cartilage are discrete tissues but arise from a common cartilaginous condensation and have comparable spatial architectures consisting of distinct layers of chondrocytes. To investigate similarities and differences between articular and growth plate cartilage and to explore transcriptional changes that occur during the onset of their divergence, we performed manual microdissection of 10-day-old rat proximal tibias, microarray analysis, bioinformatics, and real-time PCR to compare gene expression profiles in individual cartilage layers. We found that many genes that were spatially upregulated in the intermediate/deep zone of articular cartilage were also spatially upregulated in the resting zone of growth plate cartilage (overlap greater than expected by chance, P<0.001). Interestingly, the superficial zone of articular cartilage showed an expression profile with similarities to both the proliferative and hypertrophic zones of growth plate cartilage (P<0.001 each). Additionally, significant numbers of known proliferative zone markers (3 out of 6) and hypertrophic zone markers (27 out of 126) were spatially upregulated in the superficial zone (more than expected by chance, P<0.001 each). In conclusion, we provide evidence that the intermediate/deep zone of articular cartilage has a gene expression profile more similar to that of the resting zone of growth plate cartilage, whereas the superficial zone has a gene expression profile more similar to those of the proliferative and hypertrophic zones. These findings suggest that the superficial zone chondrocytes of articular cartilage differentiate according to a program that is not completely different from but instead has distinct similarities to the hypertrophic differentiation program of growth plate chondrocytes. We also present functional signaling pathways implicated by differential gene expression between articular and growth plate cartilage during their initial separation by the

  14. Radiofrequency (electrosurgical) ablation of articular cartilage: a study in sheep.

    PubMed

    Turner, A S; Tippett, J W; Powers, B E; Dewell, R D; Mallinckrodt, C H

    1998-09-01

    The objective of this study was to examine the effect of a bipolar ablation probe on experimentally roughened articular cartilage and compare it with the traditional mechanical shaving technique using the knee joint of sheep. Twenty-eight skeletally mature ewes were divided randomly into two groups: one group was treated with a rotating shaving device and another group was treated using the bipolar ablation probe (Bipolar Arthroscopic Probe; Electroscope, Inc, Boulder, CO). Animals were killed at 0, 6, 12, and 24 weeks, and histological sections of the experimental limbs were compared with sections of the opposite limb using a modified Mankin scale. The following variables were used to determine scores: surface (0-6), cells (0-4), hypocellularity (0-3), matrix staining (transitional zone [0-4], radiate zone [0-4], and focal empty lacunae or hypereosinophilic cells (0-3). Differences in scores for all response variables were calculated as treated limb minus sham limb. Response variables were formed: score >0 recoded as 1 (favorable response treated better than sham), score of 0 recoded as 2 (neutral response no differences), and score <0 recoded as 3 (unfavorable response treated worse than sham). Bipolar ablative probe-treated limbs had 14.29% favorable responses and 35.71% favorable or neutral responses, whereas shave-treated limbs had 0% favorable and only 7.14% favorable or neutral responses. For all variables, bipolar ablative probe-treated limbs had more favorable responses. The less severe histological change in the bipolar ablative probe-treated joints compared with the shave-treated joints suggests that bipolar ablation of articular cartilage may be a better treatment for chondromalacia than the usual shaving methods of debridement. Further, there were no pathological changes in the subchondral bone. PMID:9754476

  15. Repair of articular cartilage in rabbit osteochondral defects promoted by extracorporeal shock wave therapy

    NASA Astrophysics Data System (ADS)

    Chu, C.-H.; Yen, Y.-S.; Chen, P.-L.; Wen, C.-Y.

    2015-03-01

    This study investigated the stimulative effect of extracorporeal shock wave therapy (ESWT) on the articular cartilage regeneration in the rabbit osteochondral defect model for the first time. An osteochondral defect, 3 mm in diameter and 3 mm in depth, was drilled in the patellar groove at the distal end of each femur in 24 mature New Zealand rabbits. The right patellar defects received 500 impulses of shock waves of (at 14 kV) at 1 week after surgery and were designated as the experimental samples; the left patellar defects served as control. At 4, 8, and 12 weeks after ESWT, cartilage repair was evaluated macroscopically and histologically using a semiquantitative grading scale. The total scores of the macroscopic evaluation at 4, 8, and 12 weeks in the experimental group were superior to those in the control group (statistical significance level ). As to the total scores of the histologic evaluation, the experimental group showed a tendency toward a better recovery than the control group at 4 weeks (). At 8 and 12 weeks the differences between the experimental and control groups became mild and had no significance on statistical analysis. These findings suggested that regeneration of articular cartilage defects might be promoted by ESWT, especially at the early stage. The easy and safe ESWT is potentially viable for clinical application.

  16. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage

    PubMed Central

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats’ articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway. PMID:26639318

  17. An ultrasound biomicroscopic and water jet ultrasound indentation method for detecting the degenerative changes of articular cartilage in a rabbit model of progressive osteoarthritis.

    PubMed

    Wang, Yuexiang; Huang, Yan-Ping; Liu, Aijun; Wan, Wenbo; Zheng, Yong-Ping

    2014-06-01

    It is important to assess the early degeneration of articular cartilage associated with osteoarthritis (OA) for early intervention and treatment planning. Previously, we have developed a high frequency ultrasound and water jet indentation method for the morphologic, acoustic and mechanical assessment of articular cartilage, using the enzymatic digestion as a model of osteoarthritic degeneration. No naturally degenerated articular cartilage has been tested with the developed method. In this study, we aimed to determine the usefulness of the developed method for detecting the natural degeneration of articular cartilage in a standard surgical model of OA in rabbits. Forty adult New Zealand white female rabbits were used in this study, which included 30 experimental rabbits undergoing the right anterior cruciate ligament transection surgery and 10 control rabbits. At the 3rd, 6th, and 9th week post-surgery, 10 experimental rabbits were sacrificed, respectively, for assessment of the knee cartilage quality. The cartilage at the medial and lateral femoral condyles and tibial plateaus (four points) was measured by the high frequency ultrasound biomicroscopy, the water jet ultrasound indentation and a contact mechanical indentation test before a histopathologic analysis for grading of degeneration severity. Measured parameters were compared among different groups classified either by post-surgery time or by histopathologic grade. The results showed a general trend of increase for ultrasound roughness index and a general trend of decrease for integrated reflection coefficient, stiffness coefficient from water-jet indentation and Young's modulus (E) from the mechanical indentation with the increase of post-surgery time. Comparisons among groups with different histopathologic grades showed similar trend with the increase of degeneration severity. The water jet ultrasound indentation method was demonstrated to be an effective method to measure the mechanical properties of the

  18. Patterns of radiocarpal joint articular cartilage wear in cadavers.

    PubMed

    Gorniak, Gerard C; Conrad, Will; Conrad, Erin; Decker, Bonnie

    2012-05-01

    The radiocarpal joint transmits about 80% of the compression forces crossing the wrist. However, primary osteoarthritis of this joint is surprisingly uncommon, suggesting that articular cartilage wear is not sufficient to produce arthritic symptoms. By examining the distal radius, scaphoid, and lunate in aged cadavers, wear patterns were charted and measured, allowing assessment of radiocarpal joint wear and mechanics. Bilateral radiocarpal joints of 16 females and 14 males (age 77.7 ± 14.4, N = 30) were exposed and measurements of the wear recorded microscopically. Wear locations were mapped, and X-Y loci and wear areas calculated. Gender right and sides compared. Over 95% of distal radius wear showed distinct radial-scaphoid and radial-lunate wear areas. These bilateral areas were in the palmar half of the distal radius. One main central wear area was seen in 95% of the scaphoid, and 97% of the lunate articular surfaces that were examined. Articular wear showed a circular pattern and was minimal in 95.7% of the surfaces, and the lunate showed the largest wear area. Wear patterns in males and females support the literature that for most ADLs the wrist is in slight extension and ulnar deviation. There are gender differences, but wear areas between sides were similar. Female wear indicates their wrist is positioned more often in a more extended and ulnarly deviated position than males. The wear patterns suggest rotational movements of the scaphoid and lunate during wrist motion and that the wrist is most often used in neutral flexion/extension to slight extension. PMID:22095798

  19. Effects of salicylates and other nonsteroidal anti-inflammatory drugs on articular cartilage.

    PubMed

    Brandt, K D; Palmoski, M J

    1984-07-13

    According to in vivo experimental data, salicylates and several other nonsteroidal anti-inflammatory agents suppress proteoglycan biosynthesis in normal and degenerating articular cartilage. Therapeutic levels of aspirin in vivo had a similar adverse effect on degenerating cartilage, as noted in two canine models of osteoarthritis and cartilage atrophy. Because the effective daily antirheumatic dose of nonsteroidal anti-inflammatory drugs is lower than that of salicylates, these drugs may have less negative effects on degenerating articular cartilage. However, clinical significance cannot be extrapolated from these experimental data. PMID:6465163

  20. Time-dependent processes in stem cell-based tissue engineering of articular cartilage

    PubMed Central

    Gadjanski, Ivana; Spiller, Kara; Vunjak-Novakovic, Gordana

    2012-01-01

    Articular cartilage (AC), situated in diarthrodial joints at the end of the long bones, is composed of a single cell type (chondrocytes) embedded in dense extracellular matrix comprised of collagens and proteoglycans. AC is avascular and alymphatic and is not innervated. At first glance, such a seemingly simple tissue appears to be an easy target for the rapidly developing field of tissue engineering. However, cartilage engineering has proven to be very challenging. We focus on time-dependent processes associated with the development of native cartilage starting from stem cells, and the modalities for utilizing these processes for tissue engineering of articular cartilage. PMID:22016073

  1. Imaging articular cartilage using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Winlove, C. Peter; Knapp, Karen; Matcher, Stephen J.

    2006-02-01

    Sub cellular resolution images of equine articular cartilage have been obtained using both second harmonic generation microscopy (SHGM) and two-photon fluorescence microscopy (TPFM). The SHGM images clearly map the distribution of the collagen II fibers within the extracellular matrix while the TPFM images show the distribution of endogenous two-photon fluorophores in both the cells and the extracellular matrix, highlighting especially the pericellular matrix and bright 2-3μm diameter features within the cells. To investigate the source of TPF in the extracellular matrix experiments have been carried out to see if it may originate from the proteoglycans. Pure solutions of the following proteoglycans hyaluronan, chondroitin sulfate and aggrecan have been imaged, only the aggrecan produced any TPF and here the intensity was not great enough to account for the TPF in the extracellular matrix. Also cartilage samples were subjected to a process to remove proteoglycans and cellular components. After this process the TPF from the samples had decreased by a factor of two, with respect to the SHG intensity.

  2. Multiparametric MRI Assessment of Human Articular Cartilage Degeneration: Correlation with Quantitative Histology and Mechanical Properties

    PubMed Central

    Rautiainen, Jari; Nissi, Mikko J.; Salo, Elli-Noora; Tiitu, Virpi; Finnilä, Mikko A.J.; Aho, Olli-Matti; Saarakkala, Simo; Lehenkari, Petri; Ellermann, Jutta; Nieminen, Miika T.

    2014-01-01

    Purpose To evaluate the sensitivity of quantitative MRI techniques (T1, T1,Gd, T2, continous wave (CW) T1ρ dispersion, adiabatic T1ρ, adiabatic T2ρ, RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. Methods Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4 T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. Results All MRI parameters, except T1,Gd, showed statistically significant differences in tangential and full-thickness ROIs between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ, T2ρ, CW-T1ρ, MT and RAFF correlated strongly with OARSI grade and biomechanical parameters. Conclusion MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ, adiabatic T2ρ, CW-T1ρ and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. PMID:25104181

  3. Multi-parametric MRI characterization of enzymatically degraded articular cartilage.

    PubMed

    Nissi, Mikko J; Salo, Elli-Noora; Tiitu, Virpi; Liimatainen, Timo; Michaeli, Shalom; Mangia, Silvia; Ellermann, Jutta; Nieminen, Miika T

    2016-07-01

    Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016. PMID:26662555

  4. Winner of the 1996 Cabaud Award. The effect of lifelong exercise on canine articular cartilage.

    PubMed

    Newton, P M; Mow, V C; Gardner, T R; Buckwalter, J A; Albright, J P

    1997-01-01

    The effect of long-term exercise on canine knees was studied to determine whether an increased level of lifelong weightbearing exercise causes degeneration, or changes that may lead to degeneration, of articular cartilage. Eleven dogs were exercised on a treadmill at 3 km/hr for 75 minutes 5 days a week for 527 weeks while carrying jackets weighing 130% of their body weight. Ten control dogs were allowed unrestricted activity in cages for the 550 weeks. At the completion of the study all knee joints were inspected for evidence of joint injury and degeneration. Articular cartilage surfaces from the medial tibial plateau were examined by light microscopy, the cartilage thickness was measured, and the intrinsic material properties were determined by mechanical testing. No joints had ligament or meniscal injuries, cartilage erosions, or osteophytes. Light microscopy did not demonstrate cartilage fibrillation or differences in safranin O staining of the tibial articular cartilages between the two groups. Furthermore, the tibial articular cartilage thickness and mechanical properties did not differ between the two groups. These results show that a lifetime of regular weightbearing exercise in dogs with normal joints did not cause alterations in the structure and mechanical properties of articular cartilage that might lead to joint degeneration. PMID:9167804

  5. Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion.

    PubMed

    Leong, Daniel J; Gu, Xiang I; Li, Yonghui; Lee, Jonathan Y; Laudier, Damien M; Majeska, Robert J; Schaffler, Mitchell B; Cardoso, Luis; Sun, Hui B

    2010-06-01

    Both underloading and overloading of joints can lead to articular cartilage degradation, a process mediated in part by matrix metalloproteinases (MMPs). Here we examine the effects of reduced loading of rat hindlimbs on articular cartilage expression of MMP-3, which not only digests matrix components but also activates other proteolytic enzymes. We show that hindlimb immobilization resulted in elevated MMP-3 mRNA expression at 6h that was sustained throughout the 21day immobilization period. MMP-3 upregulation was higher in the medial condyle than the lateral, and was greatest in the superficial cartilage zone, followed by middle and deep zones. These areas also showed decreases in safranin O staining, consistent with reduced cartilage proteoglycan content, as early as 7days after immobilization. One hour of daily moderate mechanical loading, applied as passive joint motion, reduced the MMP-3 and ADAMTS-5 increases that resulted from immobilization, and also prevented changes in safranin O staining. Intra-articular injections of an MMP-3 inhibitor, N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid (NNGH), dampened the catabolic effects of a 7day immobilization period, indicating a likely requirement for MMP-3 in the regulation of proteoglycan levels through ADAMTS-5. These results suggest that biomechanical forces have the potential to combat cartilage destruction and can be critical in developing effective therapeutic strategies. PMID:20153826

  6. Matrix Metalloproteinase-3 In Articular Cartilage Is Upregulated By Joint Immobilization And Suppressed By Passive Joint Motion

    PubMed Central

    Leong, Daniel J; Gu, Xiang I; Li, Yonghui; Lee, Jonathan Y; Laudier, Damien M; Majeska, Robert J; Schaffler, Mitchell B; Cardoso, Luis; Sun, Hui B.

    2010-01-01

    Both underloading and overloading of joints can lead to articular cartilage degradation, a process mediated in part by matrix metalloproteinases (MMPs). Here we examine the effects of reduced loading of rat hindlimbs on articular cartilage expression of MMP-3, which not only digests matrix components but also activates other proteolytic enzymes. We show that hindlimb immobilization resulted in elevated MMP-3 mRNA expression at 6 hours that was sustained throughout the 21 day immobilization period. MMP-3 upregulation was higher in the medial condyle than the lateral, and was greatest in the superficial cartilage zone, followed by middle and deep zones. These areas also showed decreases in safranin O staining, consistent with reduced cartilage proteoglycan content, as early as 7 days after immobilization. One hour of daily moderate mechanical loading, applied as passive joint motion, reduced the MMP-3 and ADAMTS-5 increases that resulted from immobilization, and also prevented changes in safranin O staining. Intra-articular injections of an MMP-3 inhibitor, N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid (NNGH), dampened the catabolic effects of a 7 day immobilization period, indicating a likely requirement for MMP-3 in the regulation of proteoglycan levels through ADAMTS-5. These results suggest that biomechanical forces have the potential to combat cartilage destruction and can be critical in developing effective therapeutic strategies. PMID:20153826

  7. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes*

    PubMed Central

    ZHAO, Ming; CHEN, Zhu; LIU, Kang; WAN, Yu-qing; LI, Xu-dong; Luo, Xu-wei; Bai, Yi-guang; Yang, Ze-long; Feng, Gang

    2015-01-01

    Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P<0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage. PMID:26537209

  8. In vitro growth factor-induced bio engineering of mature articular cartilage

    PubMed Central

    Khan, Ilyas M.; Francis, Lewis; Theobald, Peter S.; Perni, Stefano; Young, Robert D.; Prokopovich, Polina; Conlan, R. Steven; Archer, Charles W.

    2013-01-01

    Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Maturation involves gross morphological changes that occur through a process of synchronised growth and resorption of cartilage and generally ends at sexual maturity. The inability to induce maturation in biomaterial constructs designed for cartilage repair has been cited as a major cause for their failure in producing persistent cell-based repair of joint lesions. The combination of growth factors FGF2 and TGFβ1 induces accelerated articular cartilage maturation in vitro such that many molecular and morphological characteristics of tissue maturation are observable. We hypothesised that experimental growth factor-induced maturation of immature cartilage would result in a biophysical and biochemical composition consistent with a mature phenotype. Using native immature and mature cartilage as reference, we observed that growth factor-treated immature cartilages displayed increased nano-compressive stiffness, decreased surface adhesion, decreased water content, increased collagen content and smoother surfaces, correlating with a convergence to the mature cartilage phenotype. Furthermore, increased gene expression of surface structural protein collagen type I in growth factor-treated explants compared to reference cartilages demonstrates that they are still in the dynamic phase of the postnatal developmental transition. These data provide a basis for understanding the regulation of postnatal maturation of articular cartilage and the application of growth factor-induced maturation in vitro and in vivo in order to repair and regenerate cartilage defects. PMID:23182922

  9. Comprehensive Genome-Wide Transcriptomic Analysis of Immature Articular Cartilage following Ischemic Osteonecrosis of the Femoral Head in Piglets

    PubMed Central

    Adapala, Naga Suresh; Kim, Harry K. W.

    2016-01-01

    Objective Ischemic osteonecrosis of the femoral head (ONFH) in piglets results in an ischemic injury to the immature articular cartilage. The molecular changes in the articular cartilage in response to ONFH have not been investigated using a transcriptomic approach. The purpose of this study was to perform a genome-wide transcriptomic analysis to identify genes that are upregulated in the immature articular cartilage following ONFH. Methods ONFH was induced in the right femoral head of 6-week old piglets. The unoperated femoral head was used as the normal control. At 24 hours (acute ischemic-hypoxic injury), 2 weeks (avascular necrosis in the femoral head) and 4 weeks (early repair) after surgery (n = 4 piglets/time point), RNA was isolated from the articular cartilage of the femoral head. A microarray analysis was performed using Affymetrix Porcine GeneChip Array. An enrichment analysis and functional clustering of the genes upregulated due to ONFH were performed using DAVID and STRING software, respectively. The increased expression of selected genes was confirmed by a real-time qRTPCR analysis. Results Induction of ONFH resulted in the upregulation of 383 genes at 24 hours, 122 genes at 2 weeks and 124 genes at 4 weeks compared to the normal controls. At 24 hours, the genes involved in oxidoreductive, cell-survival, and angiogenic responses were significantly enriched among the upregulated genes. These genes were involved in HIF-1, PI3K-Akt, and MAPK signaling pathways. At 2 weeks, secretory and signaling proteins involved in angiogenic and inflammatory responses, PI3K-Akt and matrix-remodeling pathways were significantly enriched. At 4 weeks, genes that represent inflammatory cytokines and chemokine signaling pathways were significantly enriched. Several index genes (genes that are upregulated at more than one time point following ONFH and are known to be important in various biological processes) including HIF-1A, VEGFA, IL-6, IL6R, IL-8, CCL2, FGF2, TGFB2

  10. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model

    PubMed Central

    Cheng, N-T.; Cui, Y-P.

    2016-01-01

    Objectives Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after collagenase injection. Conclusion Our results demonstrate that intra-articular injection of Torin 1 reduces degeneration of articular cartilage in collagenase-induced OA, at least partially by autophagy activation, suggesting a novel therapeutic approach for preventing cartilage degeneration and treating OA. Cite this article: N-T. Cheng, A. Guo, Y-P. Cui. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a

  11. Human Adipose-Derived Mesenchymal Progenitor Cells Engraft into Rabbit Articular Cartilage

    PubMed Central

    Wang, Wen; He, Na; Feng, Chenchen; Liu, Victor; Zhang, Luyi; Wang, Fei; He, Jiaping; Zhu, Tengfang; Wang, Shuyang; Qiao, Weiwei; Li, Suke; Zhou, Guangdong; Zhang, Li; Dai, Chengxiang; Cao, Wei

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to have the potential for articular cartilage regeneration, and are suggested for the treatment of osteoarthritis (OA). Here, we investigated whether intra-articular injection of xenogeneic human adipose-derived mesenchymal progenitor cells (haMPCs) promoted articular cartilage repair in rabbit OA model and engrafted into rabbit articular cartilage. The haMPCs were cultured in vitro, and phenotypes and differentiation characteristics of cells were evaluated. OA was induced surgically by anterior cruciate ligament transection (ACLT) and medical meniscectomy of knee joints. At six weeks following surgery, hyaluronic acid (HA) or haMPCs was injected into the knee joints, the contralateral knee served as normal control. All animals were sacrificed at the 16th week post-surgery. Assessments were carried out by macroscopic examination, hematoxylin/eosin (HE) and Safranin-O/Fast green stainings and immunohistochemistry. The data showed that haMPC treatment promoted cartilage repair. Signals of human mitochondrial can be directly detected in haMPC treated cartilage. The haMPCs expressed human leukocyte antigen I (HLA-I) but not HLA-II-DR in vivo. These results suggest that intra-articular injection of haMPCs promotes regeneration of articular cartilage in rabbit OA model, and support the notion that MPCs are transplantable between HLA-incompatible individuals. PMID:26023716

  12. Genetic Inhibition of Fibroblast Growth Factor Receptor 1 in Knee Cartilage Attenuates the Degeneration of Articular Cartilage in Adult Mice

    PubMed Central

    Weng, Tujun; Yi, Lingxian; Huang, Junlan; Luo, Fengtao; Wen, Xuan; Du, Xiaolan; Chen, Qian; Deng, Chuxia; Chen, Di; Chen, Lin

    2013-01-01

    Objective Fibroblast growth factor (FGF) family members are involved in the regulation of articular cartilage homeostasis. The aim of this study was to investigate the function of FGF receptor 1 (FGFR-1) in the development of osteoarthritis (OA) and its underlying mechanisms. Methods FGFR-1 was deleted from the articular chondrocytes of adult mice in a cartilage-specific and tamoxifen-inducible manner. Two OA models (aging-associated spontaneous OA, and destabilization-induced OA), as well as an antigen-induced arthritis (AIA) model, were established and tested in Fgfr1-deficient and wild-type (WT) mice. Alterations in cartilage structure and the loss of proteoglycan were assessed in the knee joints of mice of either genotype, using these 3 arthritis models. Primary chondrocytes were isolated and the expression of key regulatory molecules was assessed quantitatively. In addition, the effect of an FGFR-1 inhibitor on human articular chondrocytes was examined. Results The gross morphologic features of Fgfr1-deficient mice were comparable with those of WT mice at both the postnatal and adult stages. The articular cartilage of 12-month-old Fgfr1-deficient mice displayed greater aggrecan staining compared to 12-month-old WT mice. Fgfr1 deficiency conferred resistance to the proteoglycan loss induced by AIA and attenuated the development of cartilage destruction after surgically induced destabilization of the knee joint. The chondroprotective effect of FGFR-1 inhibition was largely associated with decreased expression of matrix metalloproteinase 13 (MMP-13) and up-regulation of FGFR-3 in mouse and human articular chondrocytes. Conclusion Disruption of FGFR-1 in adult mouse articular chondrocytes inhibits the progression of cartilage degeneration. Down-regulation of MMP-13 expression and up-regulation of FGFR-3 levels may contribute to the phenotypic changes observed in Fgfr1-deficient mice. PMID:22833219

  13. Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus.

    PubMed

    Danso, E K; Honkanen, J T J; Saarakkala, S; Korhonen, R K

    2014-01-01

    Nonlinear, linear and failure properties of articular cartilage and meniscus in opposing contact surfaces are poorly known in tension. Relationships between the tensile properties of articular cartilage and meniscus in contact with each other within knee joints are also not known. In the present study, rectangular samples were prepared from the superficial lateral femoral condyle cartilage and lateral meniscus of bovine knee joints. Tensile tests were carried out with a loading rate of 5mm/min until the tissue rupture. Nonlinear properties of the toe region, linear properties in larger strains, and failure properties of both tissues were analysed. The strain-dependent tensile modulus of the toe region, Young's modulus of the linear region, ultimate tensile stress and toughness were on average 98.2, 8.3, 4.0 and 1.9 times greater (p<0.05) for meniscus than for articular cartilage. In contrast, the toe region strain, yield strain and failure strain were on average 9.4, 3.1 and 2.3 times greater (p<0.05) for cartilage than for meniscus. There was a significant negative correlation between the strain-dependent tensile moduli of meniscus and articular cartilage samples within the same joints (r=-0.690, p=0.014). In conclusion, the meniscus possesses higher nonlinear and linear elastic stiffness and energy absorption capability before rupture than contacting articular cartilage, while cartilage has longer nonlinear region and can withstand greater strains before failure. These findings point out different load carrying demands that both articular cartilage and meniscus have to fulfil during normal physiological loading activities of knee joints. PMID:24182695

  14. MRI-based inverse finite element approach for the mechanical assessment of patellar articular cartilage from static compression test.

    PubMed

    Knecht, Sven; Luechinger, Roger; Boesiger, Peter; Stüssi, Edgar

    2008-12-01

    The mechanical property of articular cartilage determines to a great extent the functionality of diarthrodial joints. Consequently, the early detection of mechanical and, thus, functional changes of cartilage is crucial for preventive measures to maintain the mobility and the quality of life of individuals. An alternative to conventional mechanical testing is the inverse finite element approach, enabling non-destructive testing of the tissue. We evaluated a method for the assessment of the equilibrium material properties of the patellar cartilage based on magnetic resonance imaging during patellofemoral compression. We performed ex vivo testing of two equine patellas with healthy cartilage, one with superficial defects, and one with synthetically degenerated cartilage to simulate a pre-osteoarthritic stage. Static compression with 400 N for 2 h resulted in morphological changes comparable to physiological in vivo deformations in humans. We observed a decrease of the equilibrium Young's modulus of the degenerated cartilage by -59%, which was in the range of the results from indentation (-74%) and confined compression tests (-58%). With the reported accuracy of magnetic resonance imaging and its reproducibility, the results indicate the potential to measure differences in Young's modulus with regard to cartilage degeneration and consequently to distinguish between healthy and pre-osteoarthritic cartilage. PMID:19037871

  15. Physiological assessment of in vivo human knee articular cartilage using sodium MR imaging at 1.5 T.

    PubMed

    Hani, Ahmad Fadzil Mohd; Kumar, Dileep; Malik, Aamir Saeed; Razak, Ruslan

    2013-09-01

    Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~225±19mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage. PMID:23731535

  16. Comparison of friction and wear of articular cartilage on different length scales.

    PubMed

    Kienle, Sandra; Boettcher, Kathrin; Wiegleb, Lorenz; Urban, Joanna; Burgkart, Rainer; Lieleg, Oliver; Hugel, Thorsten

    2015-09-18

    The exceptional tribological properties of articular cartilage are still far from being fully understood. Articular cartilage is able to withstand high loads and provide exceptionally low friction. Although the regeneration abilities of the tissue are very limited, it can last for many decades. These biomechanical properties are realized by an interplay of different lubrication and wear protection mechanisms. The deterioration of cartilage due to aging or injury leads to the development of osteoarthritis. A current treatment strategy focuses on supplementing the intra-articular fluid with a saline solution containing hyaluronic acid. In the work presented here, we investigated how changing the lubricating fluid affects friction and wear of articular cartilage, focusing on the boundary and mixed lubrication as well as interstitial fluid pressurization mechanisms. Different length and time scales were probed by atomic force microscopy, tribology and profilometry. We compared aqueous solutions with different NaCl concentrations to a viscosupplement containing hyaluronic acid (HA). In particular, we found that the presence of ions changes the frictional behavior and the wear resistance. In contrast, hyaluronic acid showed no significant impact on the friction coefficient, but considerably reduced wear. This study confirms the previous notion that friction and wear are not necessarily correlated in articular cartilage tribology and that the main role of HA might be to provide wear protection for the articular surface. PMID:26294356

  17. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints

    PubMed Central

    KUMAR, P.; OKA, M.; TOGUCHIDA, J.; KOBAYASHI, M.; UCHIDA, E.; NAKAMURA, T.; TANAKA, K.

    2001-01-01

    The uppermost superficial surface layer of articular cartilage, the ‘lamina splendens’ which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at −10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 μm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  18. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints.

    PubMed

    Kumar, P; Oka, M; Toguchida, J; Kobayashi, M; Uchida, E; Nakamura, T; Tanaka, K

    2001-09-01

    The uppermost superficial surface layer of articular cartilage, the 'lamina splendens' which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at -10 degrees C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 microm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  19. T1 assessment of hip joint cartilage following intra-articular gadolinium injection: a pilot study.

    PubMed

    Bittersohl, Bernd; Hosalkar, Harish S; Kim, Young-Jo; Werlen, Stefan; Trattnig, Siegfried; Siebenrock, Klaus A; Mamisch, Tallal C

    2010-10-01

    This pilot study defines the feasibility of cartilage assessment in symptomatic femoroacetabular impingement patients using intra-articular delayed gadolinium-enhanced MRI of cartilage (ia-dGEMRIC). Nine patients were scanned preliminary to study the contrast infiltration process into hip joint cartilage. Twenty-seven patients with symptomatic femoroacetabular impingement were subsequently scanned with intra-articular delayed gadolinium-enhanced MRI of cartilage. These T(1) findings were correlated to morphological findings. Zonal variations were studied. This pilot study demonstrates a significant difference between the pre- and postcontrast T(1) values (P < 0.001) remaining constant for 45 min. We noted higher mean T(1) values in morphologically normal-appearing cartilage than in damaged cartilage, which was statistically significant for all zones except the anterior-superior zone. Intraobserver (0.972) and interobserver correlation coefficients (0.933) were statistically significant. This study outlines the feasibility of intra-articular delayed gadolinium-enhanced MRI of cartilage for assessment of cartilage changes in patients with femoroacetabular impingement. It can also define the topographic extent and differing severities of cartilage damage. PMID:20872764

  20. Treatment of Focal Articular Cartilage Defects in the Knee

    PubMed Central

    Magnussen, Robert A.; Dunn, Warren R.; Carey, James L.

    2008-01-01

    We asked whether autologous chondrocyte implantation or osteochondral autograft transfer yields better clinical outcomes compared with one another or with traditional abrasive techniques for treatment of isolated articular cartilage defects and whether lesion size influences this clinical outcome. We performed a literature search and identified five randomized, controlled trials and one prospective comparative trial evaluating these treatment techniques in 421 patients. The operative procedures included autologous chondrocyte implantation, osteochondral autograft transfer, matrix-induced autologous chondrocyte implantation, and microfracture. Minimum followup was 1 year (mean, 1.7 years; range, 1–3 years). All studies documented greater than 95% followup for clinical outcome measures. No technique consistently had superior results compared with the others. Outcomes for microfracture tended to be worse in larger lesions. All studies reported improvement in clinical outcome measures in all treatment groups when compared with preoperative assessment; however, no control (nonoperative) groups were used in any of the studies. A large prospective trial investigating these techniques with the addition of a control group would be the best way to definitively address the clinical questions. Level of Evidence: Level II, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196358

  1. Localization of hyaluronic acid in human articular cartilage.

    PubMed

    Asari, A; Miyauchi, S; Kuriyama, S; Machida, A; Kohno, K; Uchiyama, Y

    1994-04-01

    To demonstrate localization of hyaluronic acid (HA) in articular cartilage of the human femur, biotinylated HA-binding region, which specifically binds HA molecules, was applied to the tissue. In sections fixed by 2% paraformaldehyde-2% glutaraldehyde, HA staining was detected in lamina splendens and chondrocytes in the middle zone. By pretreatment with trypsin, intense HA staining appeared in the extracellular matrix of the deep zone and weak staining in the superficial and middle zones. Moreover, pre-treatment with chondroitinase ABC (CHase ABC) intensely enhanced the stainability for HA in the superficial and middle zones and weakly in the deeper zone. Combined pre-treatment of trypsin with CHase ABC abolished intra- and extracellular staining for HA in all zones. By microbiochemical study, the concentrations of HA and dermatan sulfate were high in the middle zone, whereas those of chondroitin sulfate and keratan sulfate were high in the deep zone. These results suggest that HA is abundantly synthesized in and secreted from the chondrocytes, particularly in the middle zone, whereas it is largely masked by proteoglycan constituents in the extracellular matrix. PMID:8126377

  2. The Relationship between MR Parameters and Biomechanical Quantities of Loaded Human Articular Cartilage in Osteoarthritis: An In-Vitro Study

    NASA Astrophysics Data System (ADS)

    Juráš, V.; Szomolányi, P.; Gäbler, S.; Frollo, I.; Trattnig, S.

    2009-01-01

    The aim of this study was to assess the changes in MRI parameters during applied load directly in MR scanner and correlate these changes with biomechanical parameters of human articular cartilage. Cartilage explants from patients who underwent total knee replacement were examined in the micro-imaging system in 3T scanner. Respective MRI parameters (T1 without- and T1 with contrast agent as a marker of proteoglycan content, T2 as a marker of collagen network anisotropy and ADC as a measure of diffusivity) were calculated in pre- and during compression state. Subsequently, these parameters were compared to the biomechanical properties of articular cartilage, instantaneous modulus (I), equilibrium modulus (Eq) and time of tissue relaxation (τ). Significant load-induced changes of T2 and ADC were recorded. High correlation between T1Gd and I (r = 0.6324), and between ADC and Eq (r = -0.4884) was found. Multi-parametric MRI may have great potential in analyzing static and dynamic biomechanical behavior of articular cartilage in early stages of osteoarthritis (OA).

  3. Age related changes and osteochondrosis in swine articular and epiphyseal cartilage: light ane electron microscopy.

    PubMed

    Bhatnagar, R; Christian, R G; Nakano, T; Aherne, F X; Thompson, J R

    1981-04-01

    Age related changes and osteochondrosis in swine were studied using light microscopy and electron microscopy in articular cartilage and light microscopy and epiphyseal cartilage of swine from three days to 30 weeks of age. Thickness, cellularity and vascularity of both the epiphyseal and articular cartilage, decreased as the swine aged. Osteochondrotic changes included formation of "plugs" of cartilage indicating localized failure of ossification and separation and space formation in epiphyseal cartilage. Eosinophilic streaks and space formation in epiphyseal cartilage was observed in relation to epiphyseal separation. Electron microscopy showed a continuous fibrillar layer on the surface of the cartilage corresponding to the lamina splendens of light microscopy. This layer increased in the thickness and showed accumulation of amorphous material between the fibrils with aging. In the matrix, the orientation and distribution of the collagen fibers changed with growth and thicker fibers with clear sub banding were more common in older age groups. Also, necrotic cells, glycogen containing bodies and cellular debris were noticed in the matrix of normal cartilage in old animals. Chondrocytes in the younger cartilage showed accumulation of organelles responsible for protein synthesis; while Golgi bodies, vesicles, lysosomes, well developed foot processes and other inclusions were noticed in older cartilage. Cartilage erosions had a clumped and disrupted lamina splendens on the surface and electron lucent patches in the ground substances of the matrix and chondrocyte cytoplasm. PMID:7260732

  4. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  5. Demonstration of fibronectin in human articular cartilage by an indirect immunoperoxidase technique.

    PubMed

    Clemmensen, I; Hølund, B; Johansen, N; Andersen, R B

    1982-01-01

    Fresh frozen tissue sections of human articular cartilage was treated without and with human testicular hyaluronidase (2 x 10(6) units/l) for 60 min at 37 degrees C and stained by the indirect immunoperoxidase technique with rabbit antihuman fibronectin. The rabbit antihuman fibronectin was purified by affinity chromatography on human fibronectin-Sepharose. Fibronectin was only found on the acellular surface of the articular cartilage in tissue sections not treated with hyaluronidase. In this surface layer, probably identical to "lamina splendens", the arrangement of fibronectin was as a membrane. No collagen was seen in this area by van Gieson staining. No staining for fibronectin was found in the cartilage matrix or in the chondrocytes. Treatment of the cartilage tissue with hyaluronidase resulted in visualization of high amount of fibronectin in the cartilage matrix, with the highest intensity around the chondrocytes. The staining of the acellular surface layer of the articular cartilage was identical with the results obtained without hyaluronidase treatment. These results indicate that articular cartilage is rich in fibronectin probably in complex with hyaluronic acid, and that the chondrocytes produce fibronectin in situ. It also demonstrates the steric hindrance of hyaluronic acid aggregates in diffusion of the antibody and the value of hyaluronidase treatment of tissue before demonstration of fibronectin. PMID:6757202

  6. The protective effect of meniscus allograft transplantation on articular cartilage: a systematic review of animal studies.

    PubMed

    Rongen, J J; Hannink, G; van Tienen, T G; van Luijk, J; Hooijmans, C R

    2015-08-01

    Despite widespread reporting on clinical results, the effect of meniscus allograft transplantation on the development of osteoarthritis is still unclear. The aim of this study was to systematically review all studies on the effect of meniscus allograft transplantation on articular cartilage in animals. Pubmed and Embase were searched for original articles concerning the effect of meniscus allograft transplantation on articular cartilage compared with both its positive (meniscectomy) and negative (either sham or non-operated) control in healthy animals. Outcome measures related to assessment of damage to articular cartilage were divided in five principal outcome categories. Standardized mean differences (SMD) were calculated and pooled to obtain an overall SMD and 95% confidence interval. 17 articles were identified, representing 14 original animal cohorts with an average timing of data collection of 24 weeks [range 4 weeks; 30 months]. Compared to a negative control, meniscus allograft transplantation caused gross macroscopic (1.45 [0.95; 1.95]), histological (3.43 [2.25; 4.61]) damage to articular cartilage, and osteoarthritic changes on radiographs (3.12 [1.42; 4.82]). Moreover, results on histomorphometrics and cartilage biomechanics are supportive of this detrimental effect on cartilage. On the other hand, meniscus allograft transplantation caused significantly less gross macroscopic (-1.19 [-1.84; -0.54]) and histological (-1.70 [-2.67; -0.74]) damage to articular cartilage when compared to meniscectomy. However, there was no difference in osteoarthritic changes on plain radiographs (0.04 [-0.48; 0.57]), and results on histomorphometrics and biomechanics did neither show a difference in effect between meniscus allograft transplantation and meniscectomy. In conclusion, although meniscus allograft transplantation does not protect articular cartilage from damage, it reduces the extent of it when compared with meniscectomy. PMID:25960117

  7. The Effects of Anterior Cruciate Ligament Deficiency on the Meniscus and Articular Cartilage

    PubMed Central

    Arner, Justin W.; Irvine, James N.; Zheng, Liying; Gale, Tom; Thorhauer, Eric; Hankins, Margaret; Abebe, Ermias; Tashman, Scott; Zhang, Xudong; Harner, Christopher D.

    2016-01-01

    Background: Anterior cruciate ligament (ACL) injury increases the risk of meniscus and articular cartilage damage, but the causes are not well understood. Previous in vitro studies were static, required extensive knee dissection, and likely altered meniscal and cartilage contact due to the insertion of pressure sensing devices. Hypothesis: ACL deficiency will lead to increased translation of the lateral meniscus and increased deformation of the medial meniscus as well as alter cartilage contact location, strain, and area. Study Design: Descriptive laboratory study. Methods: With minimally invasive techniques, six 1.0-mm tantalum beads were implanted into the medial and lateral menisci of 6 fresh-frozen cadaveric knees. Dynamic stereo x-rays (DSXs) were obtained during dynamic knee flexion (from 15° to 60°, simulating a standing squat) with a 46-kg load in intact and ACL-deficient states. Knee kinematics, meniscal movement and deformation, and cartilage contact were compared by novel imaging coregistration. Results: During dynamic knee flexion from 15° to 60°, the tibia translated 2.6 mm (P = .05) more anteriorly, with 2.3° more internal rotation (P = .04) with ACL deficiency. The medial and lateral menisci, respectively, translated posteriorly an additional 0.7 mm (P = .05) and 1.0 mm (P = .03). Medial and lateral compartment cartilage contact location moved posteriorly (2.0 mm [P = .05] and 2.0 mm [P = .04], respectively). Conclusion: The lateral meniscus showed greater translation with ACL deficiency compared with the medial meniscus, which may explain the greater incidences of acute lateral meniscus tears and chronic medial meniscus tears. Furthermore, cartilage contact location moved further posteriorly than that of the meniscus in both compartments, possibly imparting more meniscal stresses that may lead to early degeneration. This new, minimally invasive, dynamic in vitro model allows the study of meniscus function and cartilage contact and can be

  8. A microanalytical study of the surfaces of normal, delipidized, and artificially "resurfaced" articular cartilage.

    PubMed

    Yusuf, Kehinde Quasim; Motta, Nunzio; Pawlak, Zenon; Oloyede, Adekunle

    2012-01-01

    The surface amorphous layer of articular cartilage is of primary importance to its load-bearing and lubrication function. This lipid-filled layer is degraded/disrupted or eliminated when cartilage degenerates due to diseases. This article examines further the characteristic of this surface overlay using a combination of microscopy and imaging methods to evaluate the hypothesis that the surface of articular cartilage can be repaired by exposing degraded cartilage to aqueous synthetic lipid mixtures. The preliminary results demonstrate that it is possible to create a new surface layer of phospholipids on the surface of cartilage following artificial lipid removal, but such a layer does not possess enough mechanical strength for physiological function when created with either unsaturated palmitoyl-oleoyl-phosphatidylcholine or saturated dipalmitoyl-phosphatidylcholine component of joint lipid composition alone. We conclude that this may be due to low structural cohesivity, inadequate time of exposure, and the mix/content of lipid in the incubation environment. PMID:22141914

  9. Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression

    PubMed Central

    Wang, Christopher C-B.; Chahine, Nadeen O.; Hung, Clark T.; Ateshian, Gerard A.

    2010-01-01

    The precise nature of the material symmetry of articular cartilage in compression remains to be elucidated. The primary objective of this study was to determine the equilibrium compressive Young’s moduli and Poisson’s ratios of bovine cartilage along multiple directions (parallel and perpendicular to the split line direction, and normal to the articular surface) by loading small cubic specimens (0.9×0.9×0.8 mm, n=15) in unconfined compression, with the expectation that the material symmetry of cartilage could be determined more accurately with the help of a more complete set of material properties. The second objective was to investigate how the tension-compression nonlinearity of cartilage might alter the interpretation of material symmetry. Optimized digital image correlation was used to accurately determine the resultant strain fields within the specimens under loading. Experimental results demonstrated that neither the Young’s moduli nor the Poisson’s ratios exhibit the same values when measured along the three loading directions. The main findings of this study are that the framework of linear orthotropic elasticity (as well as higher symmetries of linear elasticity) is not suitable to describe the equilibrium response of articular cartilage nor characterize its material symmetry; a framework which accounts for the distinctly different responses of cartilage in tension and compression is more suitable for describing the equilibrium response of cartilage; within this framework, cartilage exhibits no lower than orthotropic symmetry. PMID:12594982

  10. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    PubMed Central

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  11. The study on the mechanical characteristics of articular cartilage in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Niu, Hai-Jun; Wang, Qing; Wang, Yue-Xiang; Li, Ang; Sun, Lian-Wen; Yan, Yan; Fan, Fan; Li, De-Yu; Fan, Yu-Bo

    2012-10-01

    The microgravity environment of a long-term space flight may induce acute changes in an astronaut's musculo-skeletal systems. This study explores the effects of simulated microgravity on the mechanical characteristics of articular cartilage. Six rats underwent tail suspension for 14 days and six additional rats were kept under normal earth gravity as controls. Swelling strains were measured using high-frequency ultrasound in all cartilage samples subject to osmotic loading. Site-specific swelling strain data were used in a triphasic theoretical model of cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix. No severe surface irregularities were found in the cartilage samples obtained from the control or tail-suspended groups. For the tail-suspended group, the thickness of the cartilage at a specified site, as determined by ultrasound echo, showed a minor decrease. The uniaxial modulus of articular cartilage at the specified site decreased significantly, from (6.31 ± 3.37)MPa to (5.05 ± 2.98)MPa ( p < 0.05). The histology-stained image of a cartilage sample also showed a reduced number of chondrocytes and decreased degree of matrix staining. These results demonstrated that the 14 d simulated microgravity induced significant effects on the mechanical characteristics of articular cartilage. This study is the first attempt to explore the effects of simulated microgravity on the mechanical characteristics of articular cartilage using an osmotic loading method and a triphasic model. The conclusions may provide reference information for manned space flights and a better understanding of the effects of microgravity on the skeletal system.

  12. Role of computer aided detection (CAD) integration: case study with meniscal and articular cartilage CAD applications

    NASA Astrophysics Data System (ADS)

    Safdar, Nabile; Ramakrishna, Bharath; Saiprasad, Ganesh; Siddiqui, Khan; Siegel, Eliot

    2008-03-01

    Knee-related injuries involving the meniscal or articular cartilage are common and require accurate diagnosis and surgical intervention when appropriate. With proper techniques and experience, confidence in detection of meniscal tears and articular cartilage abnormalities can be quite high. However, for radiologists without musculoskeletal training, diagnosis of such abnormalities can be challenging. In this paper, the potential of improving diagnosis through integration of computer-aided detection (CAD) algorithms for automatic detection of meniscal tears and articular cartilage injuries of the knees is studied. An integrated approach in which the results of algorithms evaluating either meniscal tears or articular cartilage injuries provide feedback to each other is believed to improve the diagnostic accuracy of the individual CAD algorithms due to the known association between abnormalities in these distinct anatomic structures. The correlation between meniscal tears and articular cartilage injuries is exploited to improve the final diagnostic results of the individual algorithms. Preliminary results from the integrated application are encouraging and more comprehensive tests are being planned.

  13. Characterization of Chondrocyte Scaffold Carriers for Cell-based Gene Therapy in Articular Cartilage Repair

    PubMed Central

    Shui, Wei; Yin, Liangjun; Luo, Jeffrey; Li, Ruidong; Zhang, Wenwen; Zhang, Jiye; Huang, Wei; Hu, Ning; Liang, Xi; Deng, Zhong-Liang; Hu, Zhenming; Shi, Lewis; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Ho, Sherwin

    2014-01-01

    Articular cartilage lesions in the knee are common injuries. Chondrocyte transplant represents a promising therapeutic modality for articular cartilage injuries. Here, we characterize the viability and transgene expression of articular chondrocytes cultured in 3-D scaffolds provided by four types of carriers. Articular chondrocytes are isolated from rabbit knees and cultured in four types of scaffolds: type I collagen sponge, fibrin glue, hyaluronan, and Open-cell PolyLactic Acid (OPLA). The cultured cells are transduced with adenovirus expressing green fluorescence protein (AdGFP) and luciferase (AdGL3-Luc). The viability and gene expression in the chondrocytes are determined with fluorescence microscopy and luciferase assay. Cartilage matrix production is assessed by Alcian blue staining. Rabbit articular chondrocytes are effectively infected by AdGFP and exhibited sustained GFP expression. All tested scaffolds support the survival and gene expression of the infected chondrocytes. However, the highest transgene expression is observed in the OPLA carrier. At four weeks, Alcian blue-positive matrix materials are readily detected in OPLA cultures. Thus, our results indicate that, while all tested carriers can support the survival of chondrocytes, OPLA supports the highest transgene expression and is the most conductive scaffold for matrix production, suggesting that OPLA may be a suitable scaffold for cell-based gene therapy of articular cartilage repairs. PMID:23629940

  14. Biological Effects of the Plant-derived Polyphenol Resveratrol in Human Articular Cartilage and Chondrosarcoma Cells

    PubMed Central

    Im, Hee-Jeong; Li, Xin; Chen, Di; Yan, Dongyao; Kim, Jaesung; Ellman, Michael B; Stein, Gary S.; Cole, Brian; Ranjan, KC; Cs-Szabo, Gabriella; van Wijnen, Andre J

    2012-01-01

    The natural phytoestrogen resveratrol (RSV) may have therapeutic potential for arthritic conditions. RSV is chondroprotective for articular cartilage in rabbit models for arthritis, but its biological effects on human articular cartilage and chondrosarcoma cells are unknown. Effects of RSV on human articular cartilage homeostasis were studied by assessing production of matrix-degrading enzymes (MMP-13, ADAMTS-4, and ADAMTS-5), as well as proteoglycan production and synthesis. The counteractions of RSV against catabolic factors (e.g., FGF-2 or IL-1β) were examined by in vitro and ex vivo using monolayer, three-dimensional alginate beads and cartilage explants cultures, respectively. RSV improves cell viability of articular chondrocytes and effectively antagonizes cartilage-degrading protease production that was initiated by catabolic and/or anti-anabolic cytokines in human articular chondrocytes. RSV significantly also enhances BMP7-promoted proteoglycan synthesis as assessed by 35S-sulfate incorporation. Protein-DNA interaction arrays suggest that RSV inhibits the activation of transcription factors involved in inflammation and cartilage catabolic signaling pathways, including direct downstream regulators of MAPK (e.g., AP-1, PEA3) and NFκB. RSV selectively compromises survival of human chondrosarcoma cells, but not primary articular chondrocytes, revealing cell-specific activity of RSV on non-tumorigenic versus tumor-derived cells. We propose that RSV exerts its chondroprotective functions, in part, by deactivating p53-induced apoptosis in human primary chondrocytes, but not human chondrosarcoma. Our findings suggest that RSV has potential as a unique biologic treatment for both prevention and treatment of cartilage degenerative diseases. PMID:22252971

  15. An Articular Cartilage Repair Model in Common C57Bl/6 Mice

    PubMed Central

    Matsuoka, Masatake; Sasazawa, Fumio; Momma, Daisuke; Baba, Rikiya; Hontani, Kazutoshi; Iwasaki, Norimasa

    2015-01-01

    To analyze the genetic and biomolecular mechanisms underlying cartilage repair, an optimized mouse model of osteochondral repair is required. Although several models of articular cartilage injury in mice have recently been established, the articular surface in adult C57Bl/6 mice heals poorly. Since C57Bl/6 mice are the most popular strain of genetically manipulated mice, an articular cartilage repair model using C57Bl/6 mice would be helpful for analysis of the mechanisms of cartilage repair. The purpose of this study was to establish a cartilage repair model in C57Bl/6 mice using immature animals. To achieve this goal, full-thickness injuries were generated in 3-week-old (young), 4-week-old (juvenile), and 8-week-old (adult) C57Bl/6 mice. To investigate the reproducibility and consistency of full-thickness injuries, mice were sacrificed immediately after operation, and cartilage thickness at the patellar groove, depth of the cartilage injury, cross-sectional width, and cross-sectional area were compared among the three age groups. The depth of cartilage injury/cartilage thickness ratio (%depth) and the coefficient of variation (CV) for each parameter were also calculated. At 8 weeks postoperatively, articular cartilage repair was assessed using a histological scoring system. With respect to the reproducibility and consistency of full-thickness injuries, cartilage thickness, depth of cartilage injury, and cross-sectional area were significantly larger in young and juvenile mice than in adult mice, whereas cross-sectional width and %depth were almost equal among the three age groups. CVs of %depths were less than 10% in all groups. With respect to articular cartilage repair, young and juvenile mice showed superior results. In conclusion, we established a novel cartilage repair model in C57Bl/6 mice. This model will be valuable in achieving mechanistic insights into the healing process of the joint surface, as it will facilitate the use of genetically modified mice

  16. FRICTIONAL RESPONSE OF BOVINE ARTICULAR CARTILAGE UNDER CREEP LOADING FOLLOWING PROTEOGLYCAN DIGESTION WITH CHONDROITINASE ABC

    PubMed Central

    Basalo, Ines M.; Chen, Faye Hui; Hung, Clark T.; Ateshian, Gerard A.

    2010-01-01

    Summary The specific aim of this study was to investigate the effect of chondroitinase ABC treatment on the frictional response of bovine articular cartilage against glass, under creep loading. The hypothesis is that chondroitinase ABC treatment increases the friction coefficient of bovine articular cartilage under creep. Articular cartilage samples (n=12) harvested from two bovine knee joints (1–3 months-old) were divided into a control group (intact specimens) and a treated group (chondroitinase ABC digestion), and tested in unconfined compression with simultaneous continuous sliding (±4 mm at 1 mm/s) under a constant applied stress of 0.5 MPa, for 2,500 s. The time-dependent response of the friction coefficient was measured. With increasing duration of loading, treated samples exhibited a significantly higher friction coefficient than control samples as assessed by the equilibrium value (treated: μeq = 0.19 ± 0.02; control: μeq = 0.12 ± 0.03; p=0.002), though the coefficient achieved immediately upon loading did not increase significantly (treated: μmin = 0.0053 ± 0.0025; control: μmin = 0.037 ± 0.0013; p=0.19). Our results demonstrate that removal of the cartilage glycosaminoglycans using chondroitinase ABC significantly increases the overall time-dependent friction coefficient of articular cartilage. These findings strengthen the motivation for developing chondroprotective strategies by increasing cartilage chondroitin sulfate content in osteoarthritic joints. PMID:16532626

  17. Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system.

    PubMed

    Lu, M-H; Zheng, Y P; Huang, Q-H; Ling, C; Wang, Q; Bridal, L; Qin, L; Mak, A

    2009-01-01

    We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this paper, the system was employed to assess articular cartilage degeneration, using stiffness ratio as an indicator of the mechanical properties of samples. Both the mechanical and acoustical properties of intact and degenerated bovine patellar articular cartilage (n = 8) were obtained in situ. It was found that the stiffness ratio was reduced by 44 +/- 17% after the articular cartilage was treated by 0.25% trypsin at 37 degrees C for 4 h while no significant difference in thickness was observed between the intact and degenerated samples. A significant decrease of 36 +/- 20% in the peak-to-peak amplitude of ultrasound echoes reflected from the cartilage surface was also found for the cartilage samples treated by trypsin. The results also showed that the stiffness obtained with the new method highly correlated with that measured using a standard mechanical testing protocol. A good reproducibility of the measurements was demonstrated. The present results showed that the ultrasound water jet indentation system may provide a potential tool for the non-destructive evaluation of articular cartilage degeneration by simultaneously obtaining mechanical properties, acoustical properties, and thickness data. PMID:19011965

  18. Adult human neural crest-derived cells for articular cartilage repair.

    PubMed

    Pelttari, Karoliina; Pippenger, Benjamin; Mumme, Marcus; Feliciano, Sandra; Scotti, Celeste; Mainil-Varlet, Pierre; Procino, Alfredo; von Rechenberg, Brigitte; Schwamborn, Thomas; Jakob, Marcel; Cillo, Clemente; Barbero, Andrea; Martin, Ivan

    2014-08-27

    In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile--a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC-based engineered tissues for the treatment of traumatic articular cartilage lesions. PMID:25163479

  19. Immunohistochemical demonstration of fibronectin in the most superficial layer of normal rabbit articular cartilage.

    PubMed Central

    Nishida, K; Inoue, H; Murakami, T

    1995-01-01

    OBJECTIVE--To locate fibronectin ultrastructurally in the most superficial layer of normal articular cartilage of rabbits, in order to clarify its role in joint physiology. METHODS--Articular cartilage was obtained from the femoral condyle of seven normal adult rabbits and prepared by a method that included tannic acid fixation. Polyclonal antibodies against rabbit fibronectin were used in an immunohistochemical electron microscopic study, without any enzymic digestion but with a pre-embedding method for the transmission electron microscopy. RESULTS--The cartilage surface was successfully preserved by tannic acid fixation. The most superficial layer in electron photomicrographs was approximately 200-300 nm thick, cell free, and appeared to have two parallel components: the more superficial lamina and the deeper lamina. Gold labelled fibronectin lined this layer in immunohistochemical electron photomicrographs. CONCLUSIONS--Fibronectin covering the surface of the articular cartilage may have a role in joint lubrication and protection of the cartilage by binding with the collagenous matrix and hyaluronic acid in synovial fluid. Chondroitin sulphates may act as a charge barrier in close relationship with the collagen fibrils in the deeper lamina. Significant alteration in these functions may be one of the first causal steps leading to destruction of the articular cartilage. Images PMID:8546534

  20. Arthroscopic laser in intra-articular knee cartilage disorders

    NASA Astrophysics Data System (ADS)

    Nosir, Hany R.; Siebert, Werner E.

    1996-12-01

    Different assemblies have endeavored to develop arthroscopic laser surgery. Various lasers have been tried in the treatment of orthopaedic problems, and the most useful has turned out to be the Hol-YAG laser 2.1 nm which is a near- contact laser. By using the laser as a powerful tool, and cutting back on the power level, one is able to better achieve the desired treatment effect. Clinical studies to evaluating the role of the laser in different arthroscopic knee procedures, comparing to conventional techniques, showed that the overall outcome attains a momentous confidence level which is shifted to the side of the laser versus the conventional for all maneuvers, barring meniscectomy where there is not perceiving disparity between laser versus the conventional. Meniscectomy continues to be one of the most commonly performed orthopaedic procedures. Laser provides a single tool which can ablate and debride meniscal rims with efficiency and safety. Chondroplasty can also be accomplished with ease using defocused laser energy. Both lateral release and soft tissue cermilization benefit from the cutting effect of laser along with its hemostatic effect. Synovial reduction with a defocused laser is also easily accomplished. By one gadget, one can cut, ablate, smooth, coagulate, congeal and with authentic tissue depth control The future of laser arthroscopic surgery lies in its ability to weld or repair tissues. Our research study has shown that laser activated photoactive dyes can produce a molecular bonding of collagen fibers, and therefore a repair 'weld' can be achieved with both meniscal tissues and with articular cartilage lesions.

  1. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures.

    PubMed

    Zhang, Shao-Zhi; Yu, Xiao-Yi; Chen, Guang-Ming

    2012-03-01

    Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me(2)SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me(2)SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (-10, -20, and -30 °C). The Me(2)SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10(-6), 0.48×10(-6), and 0.27×10(-6) cm(2)/s at -10, -20, and -30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me(2)SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics. PMID:22374614

  2. Modeling the transport of cryoprotective agents in articular cartilage for cryopreservation

    NASA Astrophysics Data System (ADS)

    Torqabeh, Alireza Abazari

    Loading vitrifiable concentrations of cryoprotective agents is an important step for cryopreservation of biological tissues by vitrification for research and transplantation purposes. This may be done by immersing the tissue in a cryoprotective agent (CPA) solution, and increasing the concentration, continuously or in multiple steps, and simultaneously decreasing the temperature to decrease the toxicity effects of the cryoprotective agent on the tissue cellular system. During cryoprotective agent loading, osmotic water movement from the tissue to the surrounding solution, and the resultant tissue shrinkage and stress-strain in the tissue matrix as well as on the cellular system can significantly alter the outcome of the cryopreservation protocol. In this thesis, a biomechanical model for articular cartilage is developed to account for the transport of the cryoprotective agent, the nonideal-nondilute properties of the vitrifiable solutions, the osmotic water movement and the resultant tissue shrinkage and stress-strain in the tissue matrix, and the osmotic volume change of the chondrocytes, during cryoprotective agent loading in the cartilage matrix. Four essential transport parameters needed for the model were specified, the values of which were obtained uniquely by fitting the model to experimental data from porcine articular cartilage. Then, it was shown that using real nonuniform initial distributions of water and fixed charges in cartilage, measured separately in this thesis using MRI, in the model can significantly affect the model predictions. The model predictions for dimethyl sulfoxide diffusion in porcine articular cartilage were verified by comparing to spatially and temporally resolved measurements of dimethyl sulfoxide concentration in porcine articular cartilage using a spectral MRI technique, developed for this purpose and novel to the field of cryobiology. It was demonstrated in this thesis that the developed mathematical model provides a novel tool

  3. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage

    PubMed Central

    Bautista, Catherine A.; Park, Hee Jun; Mazur, Courtney M.; Aaron, Roy K.

    2016-01-01

    Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v) sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC) was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods. PMID:27391810

  4. Xenogeneic transplantation of articular chondrocytes into full-thickness articular cartilage defects in minipigs: fate of cells and the role of macrophages.

    PubMed

    Niemietz, Thomas; Zass, Gesa; Hagmann, Sébastien; Diederichs, Solvig; Gotterbarm, Tobias; Richter, Wiltrud

    2014-12-01

    Xenogeneic or allogeneic chondrocytes hold great potential to build up new cartilage in vivo. However, immune rejection is a major concern for the utility of universal donor-derived cells. In order to verify the reported immune privilege of chondrocytes in vivo, the aim of this study was to assess engraftment of human articular chondrocytes (HAC) in minipig knee cartilage defects and their contribution to cartilage regeneration. HAC were transplanted matrix-assisted within two hydrogels into full-thickness cartilage defects of minipigs or implanted ectopically into immune deficient mice to assess redifferentiation capacity. At 2 and 4 weeks after surgery, cell-persistence and host cell invasion were monitored by species-specific in situ hybridization and RT-PCR. Early tissue regeneration was evaluated by histomorphometry and a modified O'Driscoll score. HAC capable of successful in vivo chondrogenic redifferentiation persisted at ectopic sites for 4 weeks in both carrier materials. Early defect regeneration involved extensive host cell invasion and a decline of HAC to less than 5 % of initial cell numbers in 6/12 defects within 2 weeks. Few clusters of persisting HAC within collagen type II-rich tissue were surrounded by porcine macrophages. Four weeks after cell transplantation, most of the defects contained well-integrated cell-rich tissue free of human cells with no apparent difference between hydrogel carriers. In summary, HAC failed to engraft in porcine articular cartilage defects despite their ability for successful in vivo redifferentiation. The co-localization of macrophages to hydrogel-implanted HAC suggests active graft rejection without evidence for an immune-privileged status of xenogeneic chondrocytes in a large animal joint. PMID:25129109

  5. Irrigating solutions used in arthroscopy and their effect on articular cartilage. An in vivo study

    SciTech Connect

    Arciero, R.A.; Little, J.S.; Liebenberg, S.P.; Parr, T.J.

    1986-11-01

    The effect of arthroscopic irrigating solutions on articular cartilage was determined by the use of an animal model. Rabbit knee joints were irrigated continuously for two hours with either normal saline, Ringer's lactate, or sterile water. Subsequently, the rate of incorporation of /sup 35/SO/sub 4/ by articular cartilage was used to measure the effect of the irrigants on chondrocyte metabolism. In addition, the irrigated groups were compared to an unirrigated control group. There was no significant difference in /sup 35/SO/sub 4/ incorporation between the groups. This suggested that none of the irrigating solutions used in this study adversely affected articular cartilage function. On the basis of these findings, it appears that normal saline, Ringer's lactate, and sterile water can be safely used as irrigating solutions during most arthroscopic procedures.

  6. Alterations in endogenous osteogenic protein-1 with degeneration of human articular cartilage.

    PubMed

    Merrihew, Charis; Kumar, Bhavna; Heretis, Katherine; Rueger, David C; Kuettner, Klaus E; Chubinskaya, Susan

    2003-09-01

    A synchronized balance between synthesis and breakdown of extracellular matrix (ECM) molecules in normal articular cartilage is disturbed in osteoarthritis (OA). The focus of our study is the anabolic factor, osteogenic protein-1 (OP-1) that is expressed in articular cartilage and is able to induce the synthesis of ECM components. The major aim was to investigate both qualitatively and quantitatively endogenous OP-1 in normal, degenerative, and OA cartilage. Normal and degenerative cartilage was obtained at autopsies from femoral condyles of human organ donors with no documented history of joint disease; OA cartilage was obtained from patients undergoing joint arthroplasty. Appearance of donor cartilage was evaluated by Collins scale, where normal cartilage is assigned grades 0-1, and degenerated cartilage is assigned grades 2-4. OP-1 mRNA expression was assessed by RT-PCR; OP-1 protein (pro- and active forms) was qualitatively analyzed by Western blotting and quantified by OP-1 ELISA. The highest levels of OP-1 expression (mRNA and protein) were detected in normal cartilage of grade 0. The concentration of OP-1 protein was about 50 ng per gram cartilage dry weight. With the progression of cartilage degeneration (increased Collins grades and OA) OP-1 protein was down-regulated up to 9-fold. These changes affected primarily the active form of OP-1. OP-1 message also declined in cartilages with the increase of degenerative changes. In conclusion, an overall decrease in endogenous OP-1 in degenerated and OA tissue suggests that OP-1 could be one of the factors responsible for normal homeostasis and matrix integrity in cartilage. PMID:12919879

  7. Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage

    PubMed Central

    Yu, Yin; Zheng, Hongjun; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective To date, no approved clinical intervention successfully prevents the progressive degradation of injured articular cartilage that leads to osteoarthritis (OA). Stem/progenitor cell populations within tissues of diarthrodial joint have shown their therapeutic potential in treating OA. However, this potential has not been fully realized due in part to the heterogeneity of these subpopulations. Characterization of clonal populations derived from a single cell may help identify more homogenous stem/progenitor populations within articular cartilage. Moreover, chondrogenic potential of clonal populations from different zones could be further examined to elucidate their differential roles in maintaining articular cartilage homeostasis. Method We combined FACS (Fluorescence-activated cell sorting) and clonogenicity screening to identify stem/progenitor cells cloned from single cells. High-efficiency colony-forming cells (HCCs) were isolated, and evaluated for stem/progenitor cell characteristics. HCCs were also isolated from different zones of articular cartilage. Their function was compared by lineage-specific gene expression, and differentiation potential. Results A difference in colony-forming efficiency was observed in terms of colony sizes. HCCs were highly clonogenic and multipotent, and overexpressed stem/progenitor cell markers. Also, proliferation and migration associated genes were over-expressed in HCCs. HCCs showed zonal differences with deep HCCs more chondrogenic and osteogenic than superficial HCCs. Conclusion Our approach is a simple yet practical way to identify homogeneous stem/progenitor cell populations with clonal origin. The discovery of progenitor cells demonstrates the intrinsic self-repairing potential of articular cartilage. Differences in differentiation potential may represent the distinct roles of superficial and deep zone stem/progenitor cells in the maintenance of articular cartilage homeostasis. PMID:25038490

  8. [Remodeling of the articular cartilage during the replacement of its defect by a biocomposite material].

    PubMed

    Bogatov, V B; Zeinalov, P V; Liubun', G P; Kozadayev, M N; Matveyeva, O V; Sal'kovskiy, Yu Ye; Radzhabov, A M; Puchinyian, D M

    2015-01-01

    The regenerative capacity of articular cartilage was studied in animals in which its defects were replaced by biocomposite materials based on polycaprolactone in combination with hydroxyapatite. Six specimens of the material were used, which consisted of different proportions of these polymers. In the experiment on sheep (n = 6) it was found that these biocomposite materials were replaced by hyaline-like cartilage during healing of artificially created defects in the articular cartilage of the knee joint, while the ratio of composite components had no effect on the quality of the regenerates formed. These results support the view of a possible application of biocomposite materials in the treatment of degenerative and traumatic lesions of hyaline cartilage. PMID:25958731

  9. [Basophilic line of the articular cartilage in normal and various pathological states].

    PubMed

    Gongadze, L R

    1987-04-01

    Epiphyses of long tubular bones in the man and animals of various age, as well as experimental material of the adjuvant arthritis, with special reference to the basal part of the articular cartilage have been studied by means of histological, histochemical and histometrical methods. The structural-chemical organization of the basophilic line (tidemark) of the articular cartilage ensures its barrier role and participation in regulating selective permeability. Reconstruction of the tidemark in the process of physiological ageing and in cases of the articular pathology is aimed to preserve its integrity and in this way a complete differentiation of the noncalcified and calcified structures is secured. Disturbance of the basophilic line results in changes of the articular selective permeability, in invasion of vessels and structural elements of the bone marrow, and in development of profound distrophic and destructive changes of the cartilage--in deforming artrosis. Deflations in the structural-chemical organization of the tidemark indicate certain disturbances in the state of the system articular cartilage--subchondral bone. These data can be of prognostic importance. PMID:3606408

  10. Degenerative lesions in the articular cartilage after meniscectomy: preliminary experimental study in dogs.

    PubMed

    Berjon, J J; Munuera, L; Calvo, M

    1991-03-01

    Articular cartilage degeneration was studied in an experimental model including 68 knees of adult dogs on which five different types of medial meniscectomy had been performed with a followup period of 10 to 450 days. The results were assessed by macroscopic, radiologic, and histologic methods. The degenerative lesions increased proportionally to the amount of meniscal tissue resected and the duration of observation. These lesions proved to be more intense at the tibial plateau compared to the femoral condyle. For both joint surfaces the predominant location was the central zone. Considering the degenerative process by the articular cartilage after total meniscectomy, maximum preservation of meniscal tissue is recommended. PMID:2002520

  11. The effects of joint immobilization on articular cartilage of the knee in previously exercised rats

    PubMed Central

    Maldonado, Diogo Correa; da Silva, Marcelo Cavenaghi Pereira; Neto, Semaan El-Razi; Souza, Mônica Rodrigues; Souza, Romeu Rodrigues

    2013-01-01

    Studies have determined the effects of joint immobilization on the articular cartilage of sedentary animals, but we are not aware of any studies reporting the effects of joint immobilization in previously trained animals. The objective of the present study was to determine whether exercise could prevent degeneration of the articular cartilage that accompanies joint immobilization. We used light microscopy to study the thickness, cell density, nuclear size, and collagen density of articular cartilage of the femoral condyle of Wistar rats subjected to aerobic physical activity on an adapted treadmill five times per week. Four groups of Wistar rats were used: a control group (C), an immobilized group (I), an exercised group (E), and an exercised and then immobilized group (EI). The right knee joints from rats in groups I and EI were immobilized at 90 °C of flexion using a plastic cast for 8 weeks. Cartilage thickness decreased significantly in group I (mean, 120.14 ± 15.6 μm, P < 0.05), but not in group EI (mean, 174 ± 2.25), and increased significantly in group E (mean, 289.49 ± 9.15) compared with group C (mean, 239.20 ± 6.25). The same results were obtained for cell density, nuclear size, and collagen density (in all cases, P < 0.05). We concluded that exercise can prevent degenerative changes in femoral articular cartilage caused by immobilization of the knee joint. PMID:23480127

  12. Quantitative Assessment of Articular Cartilage Morphology via EPIC-μCT

    PubMed Central

    Xie, Liqin; Lin, Angela S.P.; Levenston, Marc E.; Guldberg, Robert E.

    2009-01-01

    Summary Objective The objective of the present study was to validate the ability of EPIC-μCT to nondestructively assess cartilage morphology in the rat model. Design An appropriate contrast agent (Hexabrix) concentration and incubation time for equilibration were determined for reproducible segmentation of femoral articular cartilage from contrast-enhanced μCT scans. Reproducibility was evaluated by triplicate scans of six femora, and the measured articular cartilage thickness was independently compared to thickness determined from needle probe testing and histology. The validated technique was then applied to quantify age-related differences in articular cartilage morphology between 4, 8, and 16-week old (n=5 each) male Wistar rats. Results A 40% Hexabrix/60% PBS solution with 30 minute incubation was optimal for segmenting cartilage from the underlying bone tissue and other soft tissues in the rat model. High reproducibility was indicated by the low coefficient of variation (1.7-2.5%) in cartilage volume, thickness and surface area. EPIC-μCT evaluation of thickness showed a strong linear relationship and good agreement with both needle probing (r2=0.95, slope=0.81, p<0.01, mean difference 11±22μm, n=43) and histology (r2=0.99, slope=0.97, p<0.01, mean difference 12±10μm, n=30). Cartilage volume and thickness significantly decreased with age while surface area significantly increased. Conclusion EPIC-μCT imaging has the ability to nondestructively evaluate three-dimensional articular cartilage morphology with high precision and accuracy in a small animal model. PMID:18789727

  13. Does Low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study

    PubMed Central

    2014-01-01

    Background Low-intensity pulsed ultrasound (LIPUS) regiment has been used to treat fractures with non-union and to promote bone union in general. The effect of LIPUS on articular cartilage metabolism has been characterized. Yet, the effect of LIPUS to repair articular cartilage injury remains unclear in vivo. Methods We designed a study to investigate the effect of LIPUS on articular cartilage repairing in a rabbit severe cartilage injury model. Eighteen rabbits were divided into three groups: Sham-operated group, operated group without-LIPUS-treatment, operated group with-LIPUS-treatment (a daily 20-minute treatment for 3 months). Full-thickness cartilage defects were surgically created on the right side distal femoral condyle without intending to penetrate into the subchondral bone, which mimicked severe chondral injury. MR images for experimental joints, morphology grading scale, and histopathological Mankin score were evaluated. Results The preliminary results showed that the operated groups with-LIPUS-treatment and without-LIPUS-treatment had significantly higher Mankin score and morphological grading scale compared with the sham-operated group. However, there was no significant difference between the with-LIPUS-treatment and without-LIPUS-treatment groups. Cartilage defects filled with proliferative tissue were observed in the with-LIPUS-treatment group grossly and under MR images, however which presented less up-take under Alcian blue stain. Furthermore, no new deposition of type II collagen or proliferation of chondrocyte was observed over the cartilage defect after LIPUS treatment. Conclusion LIPUS has no significant therapeutic potential in treating severe articular cartilage injury in our animal study. PMID:24507771

  14. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    PubMed

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  15. Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent

    PubMed Central

    Bobacz, K; Graninger, W B; Amoyo, L; Smolen, J S

    2006-01-01

    Objective To investigate the effects of a pulsed electromagnetic field (EMF) on articular cartilage matrix biosynthesis with regard to age and cartilage damage using a matrix depleted cartilage explant model. Methods Cartilage explants were obtained from metacarpophalangeal joints of calves and adult cows. After depletion of the extracellular matrix by trypsin digestion, samples were maintained in serum‐free basal medium with and without the addition of interleukin 1β (IL1β). Half the samples were subjected to an EMF for 24 minutes daily; the other half were left untreated. Undigested and untreated explants served as negative controls. After 7 days, biosynthesis of matrix macromolecules was assessed by [35S]sulphate incorporation and values were normalised to hydroxyproline content. Results The EMF increased matrix macromolecule synthesis in undigested, untreated explants (p<0.009). In matrix depleted samples the EMF had no stimulatory effect on proteoglycan biosynthesis. IL1β significantly decreased the de novo synthesis of matrix macromolecules (p<0.00004) in young and adult samples, but an EMF partly counteracted this inhibitory effect in cartilage samples from young, but not old animals. Conclusion EMF promoted matrix macromolecule biosynthesis in intact tissue explants but had no stimulatory effect on damaged articular cartilage. The supressive effects of IL1β were partially counteracted by EMF exposure, exclusively in cartilage derived from young animals. An EMF has age dependent chondroprotective but not structure modifying properties when cartilage integrity is compromised. PMID:16769781

  16. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  17. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage.

    PubMed

    Silvast, Tuomo S; Kokkonen, Harri T; Jurvelin, Jukka S; Quinn, Thomas M; Nieminen, Miika T; Töyräs, Juha

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist((R)), gadodiamide: Omniscan, ioxaglate: Hexabrix or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity. PMID:19864699

  18. Electromechanical response of articular cartilage in indentation--considerations on the determination of cartilage properties during arthroscopy.

    PubMed

    Li, L P; Herzog, W

    2005-04-01

    A finite element formulation of streaming potentials in articular cartilage was incorporated into a fibril-reinforced model using the commercial software ABAQUS. This model was subsequently used to simulate interactions between an arthroscopic probe and articular cartilage in a knee joint. Fibril reinforcement was found to account for large fluid pressure at considerable strain rates, as has been observed in un-confined compression. Furthermore, specific electromechanical responses were associated with specific changes in tissue properties that occur with cartilage degeneration. For example, the strong strain-rate dependence of the load response was only observed when the collagen network was intact. Therefore, it is possible to use data measured during arthroscopy to evaluate the degree of cartilage degeneration and the source causing changed properties. However, practical problems, such as the difficulty of controlling the speed of the hand-held probe, may greatly reduce the reliability of such evaluations. The fibril-reinforced electromechanical model revealed that high-speed transient responses were associated with the collagen network, and equilibrium response was primarily determined by proteoglycan matrix. The results presented here may be useful in the application of arthroscopic tools for evaluating cartilage degeneration, for the proper interpretation of data, and for the optimization of data collection during arthroscopy. PMID:16154872

  19. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    PubMed

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  20. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    PubMed Central

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  1. Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.

    PubMed

    Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A

    2016-07-01

    Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments. PMID:27324118

  2. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis

    PubMed Central

    Grogan, Shawn P; Miyaki, Shigeru; Asahara, Hiroshi; D'Lima, Darryl D; Lotz, Martin K

    2009-01-01

    Introduction Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. Methods Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. Results A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 ± 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. Conclusions These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA. PMID:19500336

  3. Age related changes and osteochondrosis in swine articular and epiphyseal cartilage: light ane electron microscopy.

    PubMed Central

    Bhatnagar, R; Christian, R G; Nakano, T; Aherne, F X; Thompson, J R

    1981-01-01

    Age related changes and osteochondrosis in swine were studied using light microscopy and electron microscopy in articular cartilage and light microscopy and epiphyseal cartilage of swine from three days to 30 weeks of age. Thickness, cellularity and vascularity of both the epiphyseal and articular cartilage, decreased as the swine aged. Osteochondrotic changes included formation of "plugs" of cartilage indicating localized failure of ossification and separation and space formation in epiphyseal cartilage. Eosinophilic streaks and space formation in epiphyseal cartilage was observed in relation to epiphyseal separation. Electron microscopy showed a continuous fibrillar layer on the surface of the cartilage corresponding to the lamina splendens of light microscopy. This layer increased in the thickness and showed accumulation of amorphous material between the fibrils with aging. In the matrix, the orientation and distribution of the collagen fibers changed with growth and thicker fibers with clear sub banding were more common in older age groups. Also, necrotic cells, glycogen containing bodies and cellular debris were noticed in the matrix of normal cartilage in old animals. Chondrocytes in the younger cartilage showed accumulation of organelles responsible for protein synthesis; while Golgi bodies, vesicles, lysosomes, well developed foot processes and other inclusions were noticed in older cartilage. Cartilage erosions had a clumped and disrupted lamina splendens on the surface and electron lucent patches in the ground substances of the matrix and chondrocyte cytoplasm. Images Fig. 1. Fig. 2 and 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10 and 11. Fig. 12. Fig. 13. Fig. 14. Fig. 15. Fig. 16. Fig. 17. Fig. 18. PMID:7260732

  4. Articular Cartilage Increases Transition Zone Regeneration in Bone-tendon Junction Healing

    PubMed Central

    Qin, Ling; Lee, Kwong Man; Leung, Kwok Sui

    2008-01-01

    The fibrocartilage transition zone in the direct bone-tendon junction reduces stress concentration and protects the junction from failure. Unfortunately, bone-tendon junctions often heal without fibrocartilage transition zone regeneration. We hypothesized articular cartilage grafts could increase fibrocartilage transition zone regeneration. Using a goat partial patellectomy repair model, autologous articular cartilage was harvested from the excised distal third patella and interposed between the residual proximal two-thirds bone fragment and tendon during repair in 36 knees. We evaluated fibrocartilage transition zone regeneration, bone formation, and mechanical strength after repair at 6, 12, and 24 weeks and compared them with direct repair. Autologous articular cartilage interposition resulted in more fibrocartilage transition zone regeneration (69.10% ± 14.11% [mean ± standard deviation] versus 8.67% ± 7.01% at 24 weeks) than direct repair at all times. There was no difference in the amount of bone formation and mechanical strength achieved. Autologous articular cartilage interposition increases fibrocartilage transition zone regeneration in bone-tendon junction healing, but additional research is required to ascertain the mechanism of stimulation and to establish the clinical applicability. PMID:18987921

  5. Glucosamine:chondroitin or ginger root extract have little effect on articular cartilage in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sows are culled at a high rate from breeding herds due to musclo-skeletal problems and lameness. Research in our laboratory has shown that even first-parity sows have significant amounts of osteochondritic lesions of their articular cartilage. Glusoamine chondroitin and ginger root extract have both...

  6. The lamina splendens of articular cartilage is an artefact of phase contrast microscopy.

    PubMed

    Aspden, R M; Hukins, D W

    1979-11-30

    The so-called lamina splendens of articular cartilage is shown to be a characteristic of phase contrast microscopy; this technique provides no evidence for an anatomically distinct surface layer. Fresnel diffraction occurs at edges separating regions of different refractive indices. These diffraction effects, when viewed under phase contrast, lead to the appearance of a bright line along the edge. PMID:42065

  7. Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried

    2011-12-01

    The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.

  8. T2* mapping of articular cartilage: current status of research and first clinical applications.

    PubMed

    Andreisek, Gustav; Weiger, Markus

    2014-01-01

    T2* mapping is a relatively new method for the compositional assessment of the articular cartilage. Typically, a multigradient echo or an ultrashort echo time imaging technique with a range of short and very short echo times is used. In most studies, imaging is performed at a high field strength, that is, 3 and 7 T. Postprocessing includes exponential fitting of relaxation decay and manual region-of-interest-based measurements of T2* times on T2* maps. Detailed analyses of T2* times of articular cartilage have shown distinct T2* components with shorter and longer T2* times. Moreover, there is a zonal distribution with a significant depthwise gradient of T2*, with relatively short times near the osteochondral junction and relatively long times at the cartilage's surface. T2* times of normal articular cartilage at the knee are, when averaged over the whole cartilage thickness and using monoexponential fitting, approximately 20 milliseconds. The results of recent studies have shown a good test-retest as well as interreader and intrareader reliabilities for T2* mapping. This article provides a descriptive review of the current literature, briefly discusses the technique itself, and provides an outlook on future research questions and possible clinical applications. PMID:24056113

  9. Topographical variations of the strain-dependent zonal properties of tibial articular cartilage by microscopic MRI.

    PubMed

    Lee, Ji Hyun; Badar, Farid; Kahn, David; Matyas, John; Qu, Xianggui; Chen, Christopher T; Xia, Yang

    2014-06-01

    The topographical variations of the zonal properties of canine articular cartilage over the medial tibia were evaluated as the function of external loading by microscopic magnetic resonance imaging (µMRI). T2 and T1 relaxation maps and GAG (glycosaminoglycan) images from a total of 70 specimens were obtained with and without the mechanical loading at 17.6 µm depth resolution. In addition, mechanical modulus and water content were measured from the tissue. For the bulk without loading, the means of T2 at magic angle (43.6 ± 8.1 ms), absolute thickness (907.6 ± 187.9 µm) and water content (63.3 ± 9.3%) on the meniscus-covered area were significantly lower than the means of T2 at magic angle (51.1 ± 8.5 ms), absolute thickness (1251.6 ± 218.4 µm) and water content (73.2 ± 5.6%) on the meniscus-uncovered area. However GAG (86.0 ± 15.3 mg/ml) on the covered area was significantly higher than GAG (70.0 ± 8.8 mg/ml) on the uncovered area. Complex relationships were found in the tissue properties as the function of external loading. The tissue parameters in the superficial zone changed more profoundly than the same properties in the radial zone. The tissue parameters in the meniscus-covered areas changed differently when comparing with the same parameters in the uncovered areas. This project confirms that the load-induced changes in the molecular distribution and structure of cartilage are both depth-dependent and topographically distributed. Such detailed knowledge of the tibial layer could improve the early detection of the subtle softening of the cartilage that will eventually lead to the clinical diseases such as osteoarthritis. PMID:24559385

  10. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.

    PubMed

    Mow, V C; Gibbs, M C; Lai, W M; Zhu, W B; Athanasiou, K A

    1989-01-01

    Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poisson's ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poisson's ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments. PMID:2613721

  11. Modeling and Simulation of the Effects of Cyclic Loading on Articular Cartilage Lesion Formation

    PubMed Central

    Wang, Xiayi; Ayati, Bruce P.; Brouillete, Marc J.; Graham, Jason M.; Ramakrishnan, Prem S.; Martin, James A.

    2015-01-01

    We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. [20] for the spread of a lesion formed though a single traumatic event. Our model represents “implicitly” the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement. PMID:24753483

  12. Regeneration of Articular Cartilage in Lizard Knee from Resident Stem/Progenitor Cells

    PubMed Central

    Alibardi, Lorenzo

    2015-01-01

    The epiphysis of femur and tibia in the lizard Podarcis muralis can extensively regenerate after injury. The process involves the articular cartilage and metaphyseal (growth) plate after damage. The secondary ossification center present between the articular cartilage and the growth plate is replaced by cartilaginous epiphyses after about one month of regeneration at high temperature. The present study analyzes the origin of the chondrogenic cells from putative stem cells located in the growing centers of the epiphyses. The study is carried out using immunocytochemistry for the detection of 5BrdU-labeled long retaining cells and for the localization of telomerase, an enzyme that indicates stemness. The observations show that putative stem cells retaining 5BrdU and positive for telomerase are present in the superficial articular cartilage and metaphyseal growth plate located in the epiphyses. This observation suggests that these areas represent stem cell niches lasting for most of the lifetime of lizards. In healthy long bones of adult lizards, the addition of new chondrocytes from the stem cells population in the articular cartilage and the metaphyseal growth plate likely allows for slow, continuous longitudinal growth. When the knee is injured in the adult lizard, new populations of chondrocytes actively producing chondroitin sulfate proteoglycan are derived from these stem cells to allow for the formation of completely new cartilaginous epiphyses, possibly anticipating the re-formation of secondary centers in later stages. The study suggests that in this lizard species, the regenerative ability of the epiphyses is a pre-adaptation to the regeneration of the articular cartilage. PMID:26340619

  13. Investigation of techniques for the measurement of articular cartilage surface roughness.

    PubMed

    Ghosh, Siddharth; Bowen, James; Jiang, Kyle; Espino, Daniel M; Shepherd, Duncan E T

    2013-01-01

    Articular cartilage is the bearing surface of synovial joints and plays a crucial role in the tribology to enable low friction joint movement. A detailed understanding of the surface roughness of articular cartilage is important to understand how natural joints behave and the parameters required for future joint replacement materials. Bovine articular cartilage on bone samples was prepared and the surface roughness was measured using scanning electron microscopy stereoscopic imaging at magnifications in the range 500× to 2000×. The surface roughness (two-dimensional, R(a), and three-dimensional, S(a)) of each sample was then measured using atomic force microscopy (AFM). For stereoscopic imaging the surface roughness was found to linearly increase with increasing magnification. At a magnification of 500× the mean surface roughness, R(a), was in the range 165.4±5.2 nm to 174±39.3 nm; total surface roughness S(a) was in the range 183-261 nm. The surface roughness measurements made using AFM showed R(a) in the range 82.6±4.6 nm to 114.4±44.9 nm and S(a) in the range 86-136 nm. Values obtained using SEM stereo imaging were always larger than those obtained using AFM. Stereoscopic imaging can be used to investigate the surface roughness of articular cartilage. The variations seen between measurement techniques show that when making comparisons between the surface roughness of articular cartilage it is important that the same technique is used. PMID:22771276

  14. Interaction of strain and interleukin-1 in articular cartilage: effects, on proteoglycan synthesis in chondrocytes

    PubMed Central

    Gassner, Robert J.; Buckley, Michael J.; Studer, Rebecca K.; Evans, Chris H.; Agarwal, Sudha

    2016-01-01

    In temporomandibular joint disorders, the release of proinflammatory cytokines such as interleukin-1 (IL-1) initiates an inflammatory process disrupting cartilage homeostasis, ultimately leading to cartilage destruction. Additionally, mechanical stimuli affect articular chondrocyte metabolism. While articular chondrocytes generate nitric oxide (NO) in the presence of IL-1 proteoglycan synthesis is consecutively suppressed. The purpose of this study was to assess the effects of proinflammatory cytokines and mechanical strain in the form of cyclic tensile stretch on proteoglycan synthesis in chondrocytes, as compared to the NO competitive inhibitor L-N-monomethyl arginine (LMA), and to assess whether this effect is secondarily related to the activity of growth factors such as transforming growth factor beta (TGF-β). Lapine articular chondrocytes were exposed to one of four different treatment regimens: no cyclic tensile stretch, IL-1, cyclic tensile stretch, or IL-1 plus cyclic tensile stretch. NO production was determined as medium nitrite accumulation. TGF-β-bioactivity in chondrocyte conditioned medium was measured with the mink-lung epithelial cell bioassay. Proteoglycan synthesis was measured as the incorporation of 35-[S]-sodium sulfate into macromolecules separated from unincorporated label by gel filtration on PD-10 columns. In resting chondrocyte cultures, only baseline levels of NO were measured and the application of stretch for 24 h did not affect NO production. Addition of IL-1 provoked a large increase in NO synthesis which was abrogated in the presence of LMA. Application of stretch decreased the IL-1 induced NO synthesis, but did not modify the effect of LMA (being a competitive inhibitor of the inducible NO synthase) inhibiting IL-1 induced NO production. Glucosaminoglycan production was noted as proteoglycan synthesis showing almost no effect of cyclic stretch alone in comparison to the control condition, which correlates with the missing NO

  15. The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication

    PubMed Central

    Ateshian, Gerard A.

    2009-01-01

    Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed. PMID:19464689

  16. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Leonardi, Rosalia; Trovato, Francesca Maria; Szychlinska, Marta Anna; Di Giunta, Angelo; Loreto, Carla; Castorina, Sergio

    2014-01-01

    In this paper review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness. We illustrated the anatomical aspect of the knee joint cartilage, the current state of cartilage tissue engineering, through mesenchymal stem cells and biomaterials, and in conclusion we provide a short overview on the rehabilitation after articular cartilage repair procedures. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, and to date several researchers aim to implement clinical application of cell-based therapies for cartilage repair. A literature review was conducted on PubMed, Scopus and Google Scholar using appropriate keywords, examining the current literature on the well-known tissue engineering methods for the treatment of knee osteoarthritis. PMID:24829869

  17. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis.

    PubMed

    Lu, Xin L; Wan, Leo Q; Guo, X Edward; Mow, Van C

    2010-03-01

    The negative charges on proteoglycans significantly affect the mechanical behaviors of articular cartilage. Mixture theories, such as the triphasic theory, can describe quantitatively how this charged nature contributes to the mechano-electrochemical behaviors of such tissue. However, the mathematical complexity of the theory has hindered its application to complicated loading profiles, e.g., indentation or other multi-dimensional configurations. In this study, the governing equations of triphasic mixture theory for soft tissue were linearized and dramatically simplified by using a regular perturbation method and the use of two potential functions. We showed that this new formulation can be used for any axisymmetric problem, such as confined or unconfined compressions, hydraulic perfusion, and indentation. A finite difference numerical program was further developed to calculate the deformational, electrical, and flow behaviors inside the articular cartilage under indentation. The calculated tissue response was highly consistent with the data from indentation experiments (our own and those reported in the literature). It was found that the charged nature of proteoglycans can increase the apparent stiffness of the solid matrix and lessen the viscous effect introduced by fluid flow. The effects of geometric and physical properties of indenter tip, cartilage thickness, and that of the electro-chemical properties of cartilage on the resulting deformation and fluid pressure fields across the tissue were also investigated and presented. These results have implications for studying chondrocyte mechanotransduction in different cartilage zones and for tissue engineering designs or in vivo cartilage repair. PMID:19896670

  18. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    PubMed Central

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  19. Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage

    PubMed Central

    Bobacz, K; Erlacher, L; Smolen, J; Soleiman, A; Graninger, W

    2004-01-01

    Objective: To correlate the number of chondrocytes in healthy and osteoarthritic human articular cartilage with age, and to evaluate the influence of donor age on total proteoglycan synthesis. Methods: Chondrocytes were isolated from human articular cartilage derived from hip joints with and without osteoarthritic lesions. The cell number was normalised to cartilage sample wet weight. In addition, the influence of age on chondrocyte numbers was assessed histomorphometrically. Chondrocytes were grown as monolayer cultures for seven days in a chemically defined serum-free basal medium. Total proteoglycan synthesis was measured by [35S]sulphate incorporation into newly synthesised macromolecules. Results: Chondrocyte numbers in healthy cartilage decreased significantly with advancing age (r = –0.69, p<0.0001). In contrast to healthy specimens, chondrocyte numbers were decreased in osteoarthritic cartilage irrespective of and unrelated to age, and differed markedly, by an average of 38%, from the cell numbers found in healthy individuals (p<0.0001). Regarding synthesis of matrix macromolecules, no dependence on patients' age, either in healthy or in osteoarthritic specimens, could be observed. Conclusions: Under the experimental conditions employed, chondrocytes from healthy and osteoarthritic joints synthesised comparable amounts of cartilage macromolecules, independent of age or underlying osteoarthritic disease. Thus the decrease in chondrocyte number in aging and osteoarthritic joints could be a crucial factor in limiting tissue replenishment. PMID:15547085

  20. Inhomogeneous Response of Articular Cartilage: A Three-Dimensional Multiphasic Heterogeneous Study

    PubMed Central

    Manzano, Sara; Armengol, Monica; J. Price, Andrew; A. Hulley, Philippa; S. Gill, Harinderjit; Doblaré, Manuel

    2016-01-01

    Articular cartilage exhibits complex mechano-electrochemical behaviour due to its anisotropy, inhomogeneity and material non-linearity. In this work, the thickness and radial dependence of cartilage properties are incorporated into a 3D mechano-electrochemical model to explore the relevance of heterogeneity in the behaviour of the tissue. The model considers four essential phenomena: (i) osmotic pressure, (ii) convective and diffusive processes, (iii) chemical expansion and (iv) three-dimensional through-the-thickness heterogeneity of the tissue. The need to consider heterogeneity in computational simulations of cartilage behaviour and in manufacturing biomaterials mimicking this tissue is discussed. To this end, healthy tibial plateaus from pigs were mechanically and biochemically tested in-vitro. Heterogeneous properties were included in the mechano-electrochemical computational model to simulate tissue swelling. The simulation results demonstrated that swelling of the heterogeneous samples was significantly lower than swelling under homogeneous and isotropic conditions. Furthermore, there was a significant reduction in the flux of water and ions in the former samples. In conclusion, the computational model presented here can be considered as a valuable tool for predicting how the variation of cartilage properties affects its behaviour, opening up possibilities for exploring the requirements of cartilage-mimicking biomaterials for tissue engineering. Besides, the model also allows the establishment of behavioural patterns of swelling and of water and ion fluxes in articular cartilage. PMID:27327166

  1. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair

    PubMed Central

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project

  2. Accumulation of Exogenous Activated TGF-β in the Superficial Zone of Articular Cartilage

    PubMed Central

    Albro, Michael B.; Nims, Robert J.; Cigan, Alexander D.; Yeroushalmi, Kevin J.; Alliston, Tamara; Hung, Clark T.; Ateshian, Gerard A.

    2013-01-01

    It was recently demonstrated that mechanical shearing of synovial fluid (SF), induced during joint motion, rapidly activates latent transforming growth factor β (TGF-β). This discovery raised the possibility of a physiological process consisting of latent TGF-β supply to SF, activation via shearing, and transport of TGF-β into the cartilage matrix. Therefore, the two primary objectives of this investigation were to characterize the secretion rate of latent TGF-β into SF, and the transport of active TGF-β across the articular surface and into the cartilage layer. Experiments on tissue explants demonstrate that high levels of latent TGF-β1 are secreted from both the synovium and all three articular cartilage zones (superficial, middle, and deep), suggesting that these tissues are capable of continuously replenishing latent TGF-β to SF. Furthermore, upon exposure of cartilage to active TGF-β1, the peptide accumulates in the superficial zone (SZ) due to the presence of an overwhelming concentration of nonspecific TGF-β binding sites in the extracellular matrix. Although this response leads to high levels of active TGF-β in the SZ, the active peptide is unable to penetrate deeper into the middle and deep zones of cartilage. These results provide strong evidence for a sequential physiologic mechanism through which SZ chondrocytes gain access to active TGF-β: the synovium and articular cartilage secrete latent TGF-β into the SF and, upon activation, TGF-β transports back into the cartilage layer, binding exclusively to the SZ. PMID:23601326

  3. Exercise increases osteophyte formation and diminishes fibrillation following chemically induced articular cartilage injury.

    PubMed Central

    Williams, J M; Brandt, K D

    1984-01-01

    The present study shows that a treadmill exercise regimen imposed on guinea-pigs whose articular cartilage has been damaged by intra-articular injection of IA reduces chondrocyte depletion, results in an increase in pericellular Safranin-O staining around surviving chondrocytes, and prevents fibrillation of the articular surface. The data suggest that exercise protected, or facilitated recovery of, chondrocytes subjected to chemical injury, and that the surviving cells then synthesised a matrix which was sufficiently normal to withstand impulsive joint loading. On the other hand, the exercise regimen accelerated osteophyte formation, and led to formation of osteophytes in sites at which they did not develop in animals which received intra-articular IA but which were not exercised. Images Fig. 1 (cont.) Fig. 1 Fig. 2 Fig. 3 PMID:6526713

  4. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  5. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.

    PubMed

    Guo, Hongqiang; Maher, Suzanne A; Torzilli, Peter A

    2015-01-01

    The aim of this study was to investigate the role of the superficial zone on the mechanical behavior of articular cartilage. Confined compression of articular cartilage was modeled using a biphasic finite element analysis to calculate the one-dimensional deformation of the extracellular matrix (ECM) and movement of the interstitial fluid through the ECM and articular surface. The articular cartilage was modeled as an inhomogeneous, nonlinear hyperelastic biphasic material with depth and strain-dependent material properties. Two loading conditions were simulated, one where the superficial zone was loaded with a porous platen (normal test) and the other where the deep zone was loaded with the porous platen (upside down test). Compressing the intact articular cartilage with 0.2 MPa stress reduced the surface permeability by 88%. Removing the superficial zone increased the rate of change for all mechanical parameters and decreased the fluid support ratio of the tissue, resulting in increased tissue deformation. Apparent permeability linearly increased after superficial removal in the normal test, yet it did not change in the upside down test. Orientation of the specimen affected the time-dependent biomechanical behavior of the articular cartilage, but not equilibrium behavior. The two tests with different specimen orientations resulted in very different apparent permeabilities, suggesting that in an experimental study which quantifies material properties of an inhomogeneous material, the specimen orientation should be stated along with the permeability result. The current study provides new insights into the role of the superficial zone on mechanical behavior of the articular cartilage. PMID:25465194

  6. Changes in permeability of rabbit articular cartilage caused by joint contracture as revealed by the peroxidase method.

    PubMed

    Nakamura, K; Ohta, N; Kawaji, W; Takata, K; Hirano, H

    1984-11-01

    Changes in permeability of adult rabbit articular cartilage caused by joint contracture were studied by light and transmission electron microscopy, employing horseradish peroxidase (HRP) as an indicator. The knee joint was plaster-immobilized for 0, 2, 4, 6, or 8 weeks in the flexion position. One ml of 4% HRP was administered in the articular cavity of the knee joint and allowed to diffuse and permeate into the articular cartilage. Distribution of the permeated HRP was visualized in the cartilage taken from the lateral condyle of the femur, utilizing the DAB-H2O2 reaction. In the normal and the non-immobilized joints, the permeated HRP reached to the matrix and chondrocytes situated in the deep layer of the articular cartilage. HRP was heavily deposited in the intercellular matrices, particularly around the chondrocytes, and was actively endocytosed by these cells. In the plaster-immobilized joints, especially after 4 weeks or longer of immobilization, the administered HRP had not permeated well and was restricted to the surface (lamina splendens) and the superficial layer of the cartilage. These results show that administered HRP diffuses into the deep layer of the articular cartilage and is actively endocytosed by chondrocytes and that the permeability of articular cartilage is remarkably reduced by joint contracture. PMID:6532371

  7. Acute and chronic response of articular cartilage to Ho:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Trauner, Kenneth B.; Nishioka, Norman S.; Flotte, Thomas J.; Patel, Dinesh K.

    1992-06-01

    A Ho:YAG laser system operating at a wavelength of 2.1 microns has recently been introduced for use in arthroscopic surgery. The acceptability of this new tool will be determined not only by its ability to resect tissue, but also by its long term effects on articular surfaces. In order to investigate these issues further, we performed two studies to evaluate the acute and chronic effects of the laser on cartilaginous tissue. We evaluated the acute, in vitro effects of 2.1 micron laser irradiation on articular and fibrocartilage. This included the measurement of ablation efficiency, ablation threshold and thermal damage in both meniscus and articular cartilage. To document the chronic effects on articular cartilage in vivo, we next performed a ten week healing study. Eight sheep weighing 30 - 40 kg underwent bilateral arthrotomy procedures. Multiple full thickness and partial thickness defects were created. Animals were sacrificed at 0, 2, 4, and 10 weeks. The healing study demonstrated: (1) no healing of full or partial thickness defects at 10 weeks with hyaline cartilage; (2) fibrocartilaginous granulation tissue filling full thickness defects at two and four weeks, but no longer evident at ten weeks; (3) chondrocyte necrosis extending to greater than 900 microns distal to ablation craters at four weeks with no evidence of repair at later dates; and (4) chondrocyte hyperplasia at the borders of the damage zone at two weeks but no longer evident at later sacrifice dates.

  8. Effect of corticosteroids on articular cartilage: have animal studies said everything?

    PubMed

    Vandeweerd, Jean-Michel; Zhao, Yang; Nisolle, Jean-François; Zhang, Wenhui; Zhihong, Liu; Clegg, Peter; Gustin, Pascal

    2015-10-01

    Intra-articular (IA) corticosteroids (CS) have been used in the treatment of osteoarthritis for many years, although their effects on articular cartilage are not fully understood. To identify whether previous animal studies have provided enough evidence about the effects of CS, we undertook a systematic review that identified 35 relevant in vivo animal experimental studies between 1965 and 2014 assessing the effects of CS on either normal cartilage, or in either induced osteoarthritis (OA) or synovitis. The quality of the methodology was assessed. Deleterious effects, both structural and biochemical, have mainly been reported in rabbits and are associated with frequent administration of CS, sometimes at high dose and with systemic side effects. In dogs, four identified studies concluded that there were beneficial effects with methylprednisolone acetate (MPA) and triamcinolone hexacetonide therapy. In horses, MPA was mostly deleterious, while triamcinolone acetonide had positive effects in one study highly rated at quality assessment. However, many methodological weaknesses have been identified, such as the lack of pharmacokinetic and pharmocodynamics data and the large variation in doses between studies, the limited selection criteria at baseline, the absence of blinding, and the lack of statistics or appropriate controls for testing the effects of the vehicle of the drug. Those methodological weaknesses weaken the conclusions of numerous studies that assess beneficial or deleterious effects of CS on articular cartilage. Animal studies have not yet provided definitive data, and further research is required into the role of CS in articular pathobiology. PMID:26211421

  9. The effects of hydrostatic pressure on matrix synthesis in articular cartilage

    SciTech Connect

    Hall, A.C.; Urban, J.P.; Gehl, K.A. )

    1991-01-01

    The direct effects of hydrostatic pressure on matrix synthesis in articular cartilage can be studied independently of the other factors that change during loading. We have found that the influence of hydrostatic pressure on incorporation rates of {sup 35}SO{sub 4} and ({sup 3}H)proline into adult bovine articular cartilage slices in vitro depends on the pressure level and on the time at pressure. Pressures in the physiological range (5-15 MPa) applied for 20 s or for 5 min could stimulate tracer incorporation (30-130%) during the following 2 h, but higher pressures (20-50 MPa) had no effect on incorporation rates. The degree of stimulation in cartilage obtained from different animals was found to vary; in some animals none was seen. Stimulation also varied with position along the joint. Physiological pressures (5-10 MPa) applied continuously for the 2-h incubation period also stimulated incorporation rates, but pressures greater than 20 MPa always produced a decrease that was related to the applied pressure and that was reversible. These results suggests that the hydrostatic pressure that occurs during loading is a signal that can stimulate matrix synthesis rates in articular cartilage.

  10. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    PubMed

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates. PMID:27130474

  11. The Collagen Fibril Structure in the Superficial Zone of Articular Cartilage by μMRI

    PubMed Central

    Zheng, ShaoKuan; Xia, Yang

    2009-01-01

    Objective To investigate the fibril architecture of the collage matrix in the superficial zone of articular cartilage non-destructively by microscopic MRI (μMRI) T2 anisotropy. Method Six specimens of canine humeral cartilage were rotated in such a way that the normal axis of the articular surface of the cartilage specimen remained stationary and perpendicular to the static magnetic field, over a range of 180° and at a step of 15°. At each rotation angle, a quantitative T2 image was constructed at 13μm pixel resolution. Results A set of complex and depth-dependent patterns was found in the μMRI T2 anisotropy along the depth of the tissue. In the superficial zone, the T2 anisotropy is clearly periodic, which demonstrates that the distribution of the collagen fibrils in the superficial zone is not random. In the transitional zone, the periodicity of the T2 anisotropy approximately doubles with respect to that in the superficial zone. In the initial part of the radial zone, the T2 anisotropy is also periodic but inverse to that in the superficial zone. In the deep part of the radial zone, the T2 anisotropy becomes increasingly weaker and eventually disappears. Conclusion There exists a certain degree of collagen anisotropy in all zones of articular cartilage. The anisotropic imaging data can be interpreted with the aid of a collagen architecture model. PMID:19527808

  12. Hierarchical Structure of Articular Bone-Cartilage Interface and Its Potential Application for Osteochondral Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin

    2010-09-01

    The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.

  13. A Novel Model for the Mass Transfer of Articular Cartilage: Rolling Depression Load Device

    NASA Astrophysics Data System (ADS)

    Fan, Zhenmin; Zhang, Chunqiu; Liu, Haiying; Xu, Baoshan; Li, Jiang; Gao, Lilan

    The mass transfer is one of important aspects to maintain the physiological activity proper of tissue, specially, cartilage cannot run without mechanical environment. The mechanical condition drives nutrition in and waste out in the cartilage tissue, the change of this process plays a key role for biological activity. Researchers used to adopt compression to study the mass transfer in cartilage, here we firstly establish a new rolling depression load (RDL) device, and also put this device into practice. The device divided into rolling control system and the compression adjusting mechanism. The rolling control system makes sure the pure rolling and uniform speed of roller applying towards cultured tissue. The compression adjusting mechanism can realize different compressive magnitudes and uniform compression. Preliminary test showed that rolling depression load indeed enhances the process of mass transfer articular cartilage.

  14. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes

    PubMed Central

    Ono, Yohei; Ishizuka, Shinya; Knudson, Cheryl B.

    2014-01-01

    Objective: A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44–hyaluronan interactions and the effects of kartogenin on articular chondrocytes. Methods: Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treated with kartogenin with or without stimulation by IL-1β. Accumulation of matrix was visualized by a particle exclusion assay or by safranin O staining and release of sulfated glycosaminoglycans was determined. Production of aggrecanases and aggrecan G1-ITEGE neoepitope, fragmentation of CD44 and the SMAD1/5/8 signaling pathway were evaluated by western blotting. Results: Kartogenin treatment enhanced chondrocyte pericellular matrix assembly and retention in the presence of IL-1β. The chondroprotective effects of kartogenin on IL-1β-induced release of sulfated glycosaminoglycans from articular cartilage explants, reduction in safranin O staining of neocartilage discs as well as a reduction in aggrecan G1-ITEGE neoepitope in chondrocyte and explant cartilage cultures were observed. Kartogenin partially blocked the IL-1β-induced increased expression of ADAMTS-5. Additionally, kartogenin-treated articular chondrocytes exhibited a decrease in CD44 proteolytic fragmentation. However, kartogenin treatment did not enhance proteoglycan in control, non-IL-1β-treated cultures. Similarly, kartogenin enhanced the SMAD1 phosphorylation but only following pretreatment with IL-1β. Conclusion: These studies provide novel information on the chondroprotective function of kartogenin in adult articular cartilage. The effects of kartogenin are significant after activation of chondrocytic chondrolysis, which may occur following disruption of homeostasis maintained by hyaluronan–CD44

  15. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    PubMed Central

    2010-01-01

    Background As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. Methods Both subzero storage temperature as well as freezing rate were compared using control samples (4°C) and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C) prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C). Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. Results Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. Conclusions Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures. PMID:20932309

  16. Microstructural Remodeling of Articular Cartilage Following Defect Repair by Osteochondral Autograft Transfer

    PubMed Central

    Raub, CB; Hsu, SC; Chan, EF; Shirazi, R; Chen, AC; Chnari, E; Semler, EJ; Sah, RL

    2013-01-01

    Objective To assess collagen network alterations occurring with flow and other abnormalities of articular cartilage at medial femoral condyle (MFC) sites repaired with osteochondral autograft (OATS) after 6 and 12 months, using quantitative polarized light microscopy (qPLM) and other histopathological methods Design The collagen network structure of articular cartilage of OATS-repaired defects and non-operated contralateral control sites were compared by qPLM analysis of parallelism index (PI), orientation angle (α) relative to the local tissue axes, and retardance (Γ) as a function of depth. qPLM parameter maps were also compared to ICRS and Modified O’Driscoll grades, and cell and matrix sub-scores, for sections stained with H&E and Safranin-O, and for Collagen-I and II Results Relative to non-operated normal cartilage, OATS-repaired regions exhibited structural deterioration, with low PI and more horizontal α, and unique structural alteration in adjacent host cartilage: more aligned superficial zone, and reoriented deep zone lateral to the graft, and matrix disorganization in cartilage overhanging the graft. Shifts in α and PI from normal site-specific values were correlated with histochemical abnormalities and co-localized with changes in cell organization/orientation, cloning, or loss, indicative of cartilage flow, remodeling, and deterioration, respectively Conclusions qPLM reveals a number of unique localized alterations of the collagen network in both adjacent host and implanted cartilage in OATS-repaired defects, associated with abnormal chondrocyte organization. These alterations are consistent with mechanobiological processes and the direction and magnitude of cartilage strain. PMID:23528954

  17. A new method for evaluating the degeneration of articular cartilage using pulse-echo ultrasound

    NASA Astrophysics Data System (ADS)

    Sun, Anyu; Bai, Xiaolong; Ju, Bing-Feng

    2015-03-01

    This paper presents a novel nondestructive ultrasonic technique for measuring the sound speed and acoustic impedance of articular cartilage using the pulsed V(z,t) technique. V(z,t) data include a series of pulsed ultrasonic echoes collected using different distances between the ultrasonic transducer and the specimen. The 2D Fourier transform is applied to the V(z,t) data to reconstruct the 2D reflection spectrum R(θ,ω). To obtain the reflection coefficient of articular cartilage, the V(z,t) data from a reference specimen with a well-known reflection coefficient are obtained to eliminate the dependence on the general system transfer function. The ultrasound-derived aggregate modulus (Ha) is computed based on the measured reflection coefficient and the sound speed. In the experiment, 32 cartilage-bone samples were prepared from bovine articular cartilage, and 16 samples were digested using 0.25% trypsin solution. The sound speed and Ha of these cartilage samples were evaluated before and after degeneration. The magnitude of the sound speed decreased with trypsin digestion (from 1663 ± 5.6 m/s to 1613 ± 5.3 m/s). Moreover, the Young's modulus in the corresponding degenerative state was measured and was correlated with the ultrasound-derived aggregate modulus. The ultrasound-derived aggregate modulus was determined to be highly correlated with the Young's modulus (n = 16, r>0.895, p<0.003, Pearson correlation test for each measurement). The results demonstrate the effectiveness of using the proposed method to assess the changes in sound speed and the ultrasound-derived aggregate modulus of cartilage after degeneration.

  18. Biomechanical properties of third carpal articular cartilage in exercised and nonexercised horses.

    PubMed

    Palmer, J L; Bertone, A L; Mansour, J; Carter, B G; Malemud, C J

    1995-11-01

    The relevance of site and exercise on the biomechanical properties of the articular cartilage from the equine third carpal bone were assessed by creep indentation testing. Six horses were exercised for 30 minutes three times weekly. Another six horses were housed in box stalls and were not exercised. At the conclusion of the study, one third carpal bone from each horse was harvested and the KLM biphasic material properties of cartilage were determined at 12 sites. There was a significant (p < 0.01) effect of site but not exercise on the cartilage aggregate modulus, which was significantly lower for sites on the dorsal aspect of the radial facet and for all sites on the intermediate facet as compared with sites on the palmar aspect of the radial facet of the third carpal bone. Exercise significantly increased the permeability constant at all sites when compared with the nonexercised group, but there was no difference between sites within groups. Exercise also significantly increased Poisson's ratio, but only at sites located on the palmar aspect of the radial facet. In general, both site and exercise influence the biomechanical behavior of third carpal articular cartilage. Inherent differences in cartilage biomechanical properties within a joint correlate with the location specificity of cartilaginous lesions in the equine midcarpal joint. PMID:8544021

  19. Wear and Damage of Articular Cartilage with Friction Against Orthopaedic Implant Materials

    PubMed Central

    Oungoulian, Sevan R.; Durney, Krista M.; Jones, Brian K.; Ahmad, Christopher S.; Hung, Clark T.; Ateshian, Gerard A.

    2015-01-01

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. PMID:25912663

  20. Major biological obstacles for persistent cell-based regeneration of articular cartilage

    PubMed Central

    Steinert, Andre F; Ghivizzani, Steven C; Rethwilm, Axel; Tuan, Rocky S; Evans, Christopher H; Nöth, Ulrich

    2007-01-01

    Hyaline articular cartilage, the load-bearing tissue of the joint, has very limited repair and regeneration capacities. The lack of efficient treatment modalities for large chondral defects has motivated attempts to engineer cartilage constructs in vitro by combining cells, scaffold materials and environmental factors, including growth factors, signaling molecules, and physical influences. Despite promising experimental approaches, however, none of the current cartilage repair strategies has generated long lasting hyaline cartilage replacement tissue that meets the functional demands placed upon this tissue in vivo. The reasons for this are diverse and can ultimately result in matrix degradation, differentiation or integration insufficiencies, or loss of the transplanted cells and tissues. This article aims to systematically review the different causes that lead to these impairments, including the lack of appropriate differentiation factors, hypertrophy, senescence, apoptosis, necrosis, inflammation, and mechanical stress. The current conceptual basis of the major biological obstacles for persistent cell-based regeneration of articular cartilage is discussed, as well as future trends to overcome these limitations. PMID:17561986

  1. Wear and damage of articular cartilage with friction against orthopedic implant materials.

    PubMed

    Oungoulian, Sevan R; Durney, Krista M; Jones, Brian K; Ahmad, Christopher S; Hung, Clark T; Ateshian, Gerard A

    2015-07-16

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. PMID:25912663

  2. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.

    2005-08-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  3. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    PubMed Central

    Stromps, Jan-Philipp; Paul, Nora Emilie; Rath, Björn; Nourbakhsh, Mahtab; Bernhagen, Jürgen; Pallua, Norbert

    2014-01-01

    According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs) and provides an outlook on promising future strategies. PMID:25019085

  4. Repair of articular cartilage and meniscal tears by photoactive dyes: in-vivo study

    NASA Astrophysics Data System (ADS)

    Judy, Millard M.; Jackson, Robert W.; Nosir, Hany R.; Matthews, James Lester; Lewis, David E.; Utecht, Ronald E.; Yuan, Dongwu

    1996-12-01

    We describe healing results of our 6 month study of a repair procedure which evokes the healing response in meniscal tears and partial thickness defects in articular cartilage by a non-thermal tissue sparing photochemical weld using 1,8-naphthalimide dyes. Welds of incisional flaps in adult sheep meniscus and femoral articular cartilage were made using the dye MBM Gold 012011012 at 12 mM in PBS, 457.9nm Argon ion laser radiation at 800 mW/cm2, 7.5 minutes with approximately 1 kg/cm2 externally applied pressure. Gross appearance of tissues in all welded knees appeared normal. Hematoxylin and eosin stained sections disclosed close bonding of welded areas and continuing healing response as cellular recruitment.

  5. Mitochondrial Electron Transport and Glycolysis are coupled in Articular Cartilage

    PubMed Central

    Martin, James A.; Martini, Anne; Molinari, Alexander; Morgan, Walter; Ramalingam, Wendy; Buckwalter, Joseph A.; McKinley, Todd O.

    2012-01-01

    Objective Although the majority of the ATP in chondrocytes is made by glycolysis rather than by oxidative phosphorylation in mitochondria there is evidence to suggest that reactive oxygen species produced by mitochondrial electron transport help to maintain cellular redox balance in favor of glycolysis. The objective of this study was to test this hypothesis by determining if rotenone, which inhibits electron transport and blocks oxidant production inhibits glycolytic ATP synthesis. Design Bovine osteochondral explants were treated with rotenone, an electron transport inhibitor; or oligomycin an ATP synthase inhibitor; or 2-fluoro-2-deoxy-D-glucose, a glycolysis inhibiter; or peroxide, an exogenous oxidant; or mitoquinone, a mitochondria-targeted anti-oxidant. Cartilage extracts were assayed for ATP, NAD+, and NADH, and culture medium was assayed for pyruvate and lactate after 24 hours of treatment. Imaging studies were used to measure superoxide production in cartilage. Results Rotenone and 2-fluoro-2-deoxy-D-glucose caused a significant decline in cartilage ATP (p < 0.001). In contrast, ATP levels were not affected by oligomycin. Peroxide treatment blocked rotenone effects on ATP, while treatment with MitoQ significantly suppressed ATP levels. Rotenone and 2-fluoro-2-deoxy-D-glucose caused a significant decline in pyruvate, but not in lactate production. NADH:NAD+ ratios decreased significantly in both rotenone and 2-fluoro-2-deoxy-D-glucose-treated explants (p < 0.05). Rotenone also significantly reduced superoxide production Conclusions These findings showing a link between glycolysis and electron transport are consistent with previous reports on the critical need for oxidants to support normal chondrocyte metabolism. They suggest a novel role for mitochondria in cartilage homeostasis that is independent of oxidative phosphorylation. PMID:22305999

  6. On the functional organisation of hyaline articular cartilage.

    PubMed

    Pieper, K S; Fehrmann, P; Vergani, G; Herrmann, M

    1995-01-01

    Function of agonists and antagonists and the centering effect of the muscles on the connected joint result in constant changes of the site of load. Based on a model it is assumed that chondric cells organise in form of "functional units" within the single layers of the hyaline tectorial cartilage. In each case a small number of those units is subject to the rhythm of load and relief in a fixed period of time given. After 24-hour-culture of small pieces of cartilage in Ham's F-10 medium erected cilia are found on the predominantly ciliated chondrocytes with this indicating relief of pressure. In these cells massive glycogen synthesis and an active Golgi apparatus are present. In parallel, chondrones are found in which cellular contact functions via a cilium. Time-dependent glycogen occurs in these cells too. Cells having almost the same synthesis time course of the glycogen join up to form "functional units", which are particularly involved in the biomechanic cartilage behavior in the radiar cell zone. PMID:11322284

  7. High Density Infill in Cracks and Protrusions from the Articular Calcified Cartilage in Osteoarthritis in Standardbred Horse Carpal Bones

    PubMed Central

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E.; Boyde, Alan

    2015-01-01

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581

  8. High density infill in cracks and protrusions from the articular calcified cartilage in osteoarthritis in standardbred horse carpal bones.

    PubMed

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E; Boyde, Alan

    2015-01-01

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581

  9. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911

  10. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911

  11. Fractional calculus model of articular cartilage based on experimental stress-relaxation

    NASA Astrophysics Data System (ADS)

    Smyth, P. A.; Green, I.

    2015-05-01

    Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

  12. The surface lamina of the articular cartilage of human zygapophyseal joints.

    PubMed

    Giles, L G

    1992-07-01

    Literature referring to the conflicting results of investigations into the possible existence and composition of the lamina splendens is reviewed. Two hundred micrometer thick histological sections from 80 human cadaveric lower lumbar zygapophyseal joint articular cartilages were examined by ordinary light and darkfield microscopy. The findings illustrate what appears to be an acellular surface lamina on the opposing cartilaginous surfaces. No speculation is made regarding the possible physiological significance of the lamina based on this anatomical study. PMID:1609968

  13. Structure-Function Relations and Rigidity Percolation in the Shear Properties of Articular Cartilage

    PubMed Central

    Silverberg, Jesse L.; Barrett, Aliyah R.; Das, Moumita; Petersen, Poul B.; Bonassar, Lawrence J.; Cohen, Itai

    2014-01-01

    Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G∗| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G∗| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G∗| scaling as (vc – v0)ξ. Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue’s surface. PMID:25296326

  14. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.

    PubMed

    Taffetani, M; Gottardi, R; Gastaldi, D; Raiteri, R; Vena, P

    2014-07-01

    Nanoindentation is an experimental technique which is attracting increasing interests for the mechanical characterization of articular cartilage. In particular, time dependent mechanical responses due to fluid flow through the porous matrix can be quantitatively investigated by nanoindentation experiments at different penetration depths and/or by using different probe sizes. The aim of this paper is to provide a framework for the quantitative interpretation of the poroelastic response of articular cartilage subjected to creep nanoindentation tests. To this purpose, multiload creep tests using spherical indenters have been carried out on saturated samples of mature bovine articular cartilage achieving two main quantitative results. First, the dependence of indentation modulus in the drained state (at equilibrium) on the tip radius: a value of 500 kPa has been found using the large tip (400 μm radius) and of 1.7 MPa using the smaller one (25 μm). Secon, the permeability at microscopic scale was estimated at values ranging from 4.5×10(-16) m(4)/N s to 0.1×10(-16) m(4)/N s, from low to high equivalent deformation. Consistently with a poroelastic behavior, the size-dependent response of the indenter displacement disappears when characteristic size and permeability are accounted for. For comparison purposes, the same protocol was applied to intrinsically viscoelastic homogeneous samples of polydimethylsiloxane (PDMS): both indentation modulus and time response have been found size-independent. PMID:24814573

  15. Articular cartilage friction increases in hip joints after the removal of acetabular labrum.

    PubMed

    Song, Yongnam; Ito, Hiroshi; Kourtis, Lampros; Safran, Marc R; Carter, Dennis R; Giori, Nicholas J

    2012-02-01

    The acetabular labrum is believed to have a sealing function. However, a torn labrum may not effectively prevent joint fluid from escaping a compressed joint, resulting in impaired lubrication. We aimed to understand the role of the acetabular labrum in maintaining a low friction environment in the hip joint. We did this by measuring the resistance to rotation (RTR) of the hip, which reflects the friction of the articular cartilage surface, following focal and complete labrectomy. Five cadaveric hips without evidence of osteoarthritis and impingement were tested. We measured resistance to rotation of the hip joint during 0.5, 1, 2, and 3 times body weight (BW) cyclic loading in the intact hip, and after focal and complete labrectomy. Resistance to rotation, which reflects articular cartilage friction in an intact hip was significantly increased following focal labrectomy at 1-3 BW loading, and following complete labrectomy at all load levels. The acetabular labrum appears to maintain a low friction environment, possibly by sealing the joint from fluid exudation. Even focal labrectomy may result in increased joint friction, a condition that may be detrimental to articular cartilage and lead to osteoarthritis. PMID:22176711

  16. Structure-function relations and rigidity percolation in the shear properties of articular cartilage.

    PubMed

    Silverberg, Jesse L; Barrett, Aliyah R; Das, Moumita; Petersen, Poul B; Bonassar, Lawrence J; Cohen, Itai

    2014-10-01

    Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G(∗)| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G(∗)| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G(∗)| scaling as (vc - v0)(ξ). Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue's surface. PMID:25296326

  17. Cryoscanning electron microscopic study of the surface amorphous layer of articular cartilage.

    PubMed Central

    Kobayashi, S; Yonekubo, S; Kurogouchi, Y

    1995-01-01

    In order to elucidate the structure near the articular surface, frozen unfixed hydrated articular cartilage with subchondral bone from the pig knee was examined using a cryoscanning electron microscope (cryo-SEM). This method is considered to reduce the introduction of artefacts due to fixation and drying. An amorphous layer, without a collagen-fibril network or chondrocytes, covered most of the surface of the cartilage. This layer was termed the surface amorphous layer. It showed various appearances, which were classified into 4 groups. The average thickness of the layer did not differ among the 8 anatomical regions from which the specimens were taken. The thickness of the layer was found to correlate with the type of appearance of the layer. The 4 appearances associated with thicknesses in descending order are: 'streaked', 'foliate', 'spotted', and 'vestigial'. The surface layer observed in the cryo-SEM was thicker than that observed by a conventional SEM. This difference may be attributable to dehydration of the specimen used in specimen preparation for the latter technique. The layer was also observed in articular cartilage taken from human and rabbit knees. The layer was found to be unstable and to have very variable features. Its thickness and appearance may be influenced by various factors such as dehydration, fluid absorption or mechanical stress. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:7592006

  18. STRUCTURE-FUNCTION RELATIONSHIPS IN OSTEOARTHRITIC HUMAN HIP JOINT ARTICULAR CARTILAGE

    PubMed Central

    Mäkelä, Janne T.A.; Huttu, Mari R.J.; Korhonen, Rami K.

    2013-01-01

    Objectives It is currently poorly known how different structural and compositional components in human articular cartilage are related to their specific functional properties at different stages of osteoarthritis (OA). The objective of this study was to characterize the structure-function relationships of articular cartilage obtained from osteoarthritic human hip joints. Methods Articular cartilage samples with their subchondral bone (n = 15) were harvested during hip replacement surgeries from human femoral necks. Stress-relaxation tests, Mankin scoring, spectroscopic and microscopic methods were used to determine the biomechanical properties, OA grade, and the composition and structure of the samples. In order to obtain the mechanical material parameters for the samples, a fibril-reinforced poroviscoelastic model was fitted to the experimental data obtained from the stress-relaxation experiments. Results The strain-dependent collagen network modulus (Efε) and the collagen orientation angle exhibited a negative linear correlation (r = −0.65, p < 0.01), while the permeability strain-dependency factor (M) and the collagen content exhibited a positive linear correlation (r = 0.56, p < 0.05). The non-fibrillar matrix modulus (Enf) also exhibited a positive linear correlation with the proteoglycan content (r = 0.54, p < 0.05). Conclusion The study suggests that increased collagen orientation angle during OA primarily impairs the collagen network and the tensile stiffness of cartilage in a strain-dependent manner, while the decreased collagen content in OA facilitates fluid flow out of the tissue especially at high compressive strains. Thus, the results provide interesting and important information of the structure-function relationships of human hip joint cartilage and mechanisms during the progression of OA. PMID:22858669

  19. Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis.

    PubMed Central

    Eyre, D R; McDevitt, C A; Billingham, M E; Muir, H

    1980-01-01

    Osteoarthrosis was induced in one knee joint of dogs by an established surgical procedure. Changes in the articular cartilage in the biosynthesis of collagen and other proteins were sought by radiochemical labelling in vivo, with the following findings. (1) Collagen synthesis was stimulated in all cartilage surfaces of the experimental joints at 2, 8 and 24 weeks after surgery. Systemic labelling with [3H]proline showed that over 10 times more collagen was being deposited per dry weight of experimental cartilage compared with control cartilage in the unoperated knee. (2) Type-II collagen was the radiolabelled product in all samples of experimental cartilage ranging in quality from undamaged to overtly fibrillated, and was the only collagen detected chemically in the matrix of osteoarthrotic cartilage from either dog or human joints. (3) Hydroxylysine glycosylation was examined in the newly synthesized cartilage collagen by labelling dog joints in vivo with [3H]lysine. In experimental knees the new collagen was less glycosylated than in controls. However, no difference in glycosylation of the total collagen in the tissues was observed by chemical analysis. (4) Over half the protein-bound tritium was extracted by 4 M-guanidinium chloride from control cartilage labelled with [3H]proline, compared with one-quarter or less from experimental cartilage. Two-thirds of the extracted tritium separated in the upper fraction on density-gradient centrifugation in CsCl under associative conditions. Much of this ran with a single protein band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing conditions. The identity of this protein was unknown, although it resembled serum albumin in mobility afte disulphide-bond cleavage. Images Fig. 3. PMID:7470037

  20. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage

    NASA Astrophysics Data System (ADS)

    Reesink, Heidi L.; Bonnevie, Edward D.; Liu, Sherry; Shurer, Carolyn R.; Hollander, Michael J.; Bonassar, Lawrence J.; Nixon, Alan J.

    2016-05-01

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.

  1. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    PubMed Central

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  2. An arthroscopic device to assess articular cartilage defects and treatment with a hydrogel.

    PubMed

    McCarty, William J; Luan, Anna; Sundaramurthy, Priya; Urbanczyk, Caryn; Patel, Atal; Hahr, Jacob; Sotoudeh, Mohammad; Ratcliffe, Anthony; Sah, Robert L

    2011-04-01

    The hydraulic resistance R across osteochondral tissue, especially articular cartilage, decreases with degeneration and erosion. Clinically useful measures to quantify and diagnose the extent of cartilage degeneration and efficacy of repair strategies, especially with regard to pressure maintenance, are still developing. The hypothesis of this study was that hydraulic resistance provides a quantitative measure of osteochondral tissue that could be used to evaluate the state of cartilage damage and repair. The aims were to (1) develop a device to measure R in an arthroscopic setting, (2) determine whether the device could detect differences in R for cartilage, an osteochondral defect, and cartilage treated using a hydrogel ex vivo, and (3) determine how quickly such differences could be discerned. The apparent hydraulic resistance of defect samples was ~35% less than intact cartilage controls, while the resistance of hydrogel-filled groups was not statistically different than controls, suggesting some restoration of fluid pressurization in the defect region by the hydrogel. Differences in hydraulic resistance between control and defect groups were apparent after 4 s. The results indicate that the measurement of R is feasible for rapid and quantitative functional assessment of the extent of osteochondral defects and repair. The arthroscopic compatibility of the device demonstrates the potential for this measurement to be made in a clinical setting. PMID:21107696

  3. Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher's discriminant analysis.

    PubMed

    Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang

    2016-02-01

    Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher's discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354

  4. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage

    PubMed Central

    Reesink, Heidi L.; Bonnevie, Edward D.; Liu, Sherry; Shurer, Carolyn R.; Hollander, Michael J.; Bonassar, Lawrence J.; Nixon, Alan J.

    2016-01-01

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis. PMID:27157803

  5. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage.

    PubMed

    Liao, I-Chien; Moutos, Franklin T; Estes, Bradley T; Zhao, Xuanhe; Guilak, Farshid

    2013-12-17

    The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here we show that a three-dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can provide a functional biomaterial that provides the load-bearing and tribological properties of native cartilage. An interpenetrating dual-network "tough-gel" consisting of alginate and polyacrylamide was infused into a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold, providing a versatile fiber-reinforced composite structure as a potential acellular or cell-based replacement for cartilage repair. PMID:24578679

  6. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage

    SciTech Connect

    Ryu, J.; Treadwell, B.V.; Mankin, H.J.

    1984-01-01

    Incorporation of radioactive precursors into macromolecules was studied with human normal and osteoarthritic articular cartilage organ culture. Analysis of the salt extracted matrix components separated by cesium chloride buoyant density gradient centrifugation showed an increase in the specific activities of all gradient fractions prepared from the osteoarthritic cartilage. Further analysis of these fractions showed the osteoarthritic cartilage contained 5 times as much sulfate incorporated into proteoglycans, and an even greater amount of 3H-glucosamine incorporated into material sedimenting to the middle of the gradient. Greater than half of this radioactive middle fraction appears to be hyaluronate, as judged by the position it elutes from a DEAE column and its susceptibility to hyaluronidase digestion. This study supports earlier findings showing increased rates of macromolecular synthesis in osteoarthritis, and in addition, an even greater synthetic rate for hyaluronic acid is demonstrated.

  7. Equine articular chondrocytes on MACT scaffolds for cartilage defect treatment.

    PubMed

    Nürnberger, S; Meyer, C; Ponomarev, I; Barnewitz, D; Resinger, C; Klepal, W; Albrecht, C; Marlovits, S

    2013-10-01

    Treatment of cartilage defects poses challenging problems in human and veterinary medicine, especially in horses. This study examines the suitability of applying scaffold materials similar to those used for human cartilage regeneration on equine chondrocytes. Chondrocytes gained from biopsies of the talocrural joint of three horses were propagated in 2D culture and grown on two different scaffold materials, hyaluronan (HYAFF®) and collagen (BioGide®), and evaluated by light and electron microscopy. The equine chondrocytes developed well in both types of materials. They were vital and physiologically highly active. On the surface of the scaffolds, they formed cell multilayers. Inside the hyaluronan web, the chondrocytes were regularly distributed and spanned the large scaffold fibre distances by producing their own matrix sheath. Half-circle-like depressions occasionally found in the cell membrane were probably related to movement on the flexible matrix sheath. Inside the dense collagen scaffold, only single cells were found. They passed through the scaffold strands by cell shape adaptation. This study showed that the examined scaffold materials can be used for equine chondrocyte cultivation. Chondrocytes tend to form multilayers on the surface of both, very dense and very porous scaffolds, and have strategies to span between and move in large gaps. PMID:23323689

  8. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  9. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ADSCs) have been isolated, expanded, and applied in the treatment of many diseases. ADSCs have also been used to treat injured articular cartilage. However, there is controversy regarding the treatment efficiency. We considered that ADSC transplantation with activated platelet-rich plasma (PRP) may improve injured articular cartilage compared with that of ADSC transplantation alone. In this study, we determined the role of PRP in ADSC transplantation to improve the treatment efficiency. Methods ADSCs were isolated and expanded from human adipose tissue. PRP was collected and activated from human peripheral blood. The effects of PRP were evaluated in vitro and in ADSC transplantation in vivo. In vitro, the effects of PRP on ADSC proliferation, differentiation into chondrogenic cells, and inhibition of angiogenic factors were investigated at three concentrations of PRP (10%, 15% and 20%). In vivo, ADSCs pretreated with or without PRP were transplanted into murine models of injured articular cartilage. Results PRP promoted ADSC proliferation and differentiation into chondrogenic cells that strongly expressed collagen II, Sox9 and aggrecan. Moreover, PRP inhibited expression of the angiogenic factor vascular endothelial growth factor. As a result, PRP-pretreated ADSCs improved healing of injured articular cartilage in murine models compared with that of untreated ADSCs. Conclusion Pretreatment of ADSCs with PRP is a simple method to efficiently apply ADSCs in cartilage regeneration. This study provides an important step toward the use of autologous ADSCs in the treatment of injured articular cartilage. PMID:23915433

  10. Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis

    PubMed Central

    Akasaki, Yukio; Reixach, Natàlia; Matsuzaki, Tokio; Alvarez-Garcia, Oscar; Olmer, Merissa; Iwamoto, Yukihide; Buxbaum, Joel N.; Lotz, Martin K.

    2015-01-01

    Objectives Amyloid deposits are prevalent in osteoarthritis (OA)-affected joints. This study defined the dominant precursor and determined if the deposits affect chondrocyte functions. Methods Amyloid deposition in normal and OA human knee cartilage was determined by Congo red staining. Transthyretin (TTR) in cartilage and synovial fluid was analyzed by immunohistochemistry and western blotting. The effects of recombinant amyloidogenic and non-amyloidogenic TTR variants were tested in human chondrocyte cultures. Results Normal cartilage from young donors did not contain detectable amyloid deposits but 58% (7/12) of aged normal cartilage and 100% (12/12) of OA cartilage samples showed Congo red staining with green birefringence under polarized light. TTR, located predominantly at the cartilage surfaces, was detected in all OA and a majority of aged, but not young normal cartilage. Chondrocytes and synoviocytes did not contain significant amounts of TTR mRNA. Synovial fluid TTR levels were similar in normal and OA knees. In cultured chondrocytes, only an amyloidogenic TTR variant induced cell death, the expression of proinflammatory cytokines, and extracellular matrix degrading enzymes. The effects of amyloidogenic TTR on gene expression were mediated by in part by Toll-like receptor-4, Receptor for advanced glycation endproducts and p38 MAP kinase. TTR-induced cytotoxicity was inhibited by resveratrol, a plant polyphenol that stabilizes the native tetrameric structure of TTR. Conclusions The findings are the first to suggest that TTR amyloid deposition contributes to cell and extracellular matrix damage in articular cartilage in human OA and that therapies designed to reduce TTR amyloid formation might be useful. PMID:25940564

  11. Articular cartilage thickness and glycosaminoglycan distribution in the young canine knee joint after remobilization of the immobilized limb.

    PubMed

    Kiviranta, I; Tammi, M; Jurvelin, J; Arokoski, J; Säämänen, A M; Helminen, H J

    1994-03-01

    The recovery of articular cartilage from atrophy induced by joint immobilization was investigated in immature dogs. In a previous study, we showed that 11 weeks of immobilization of the knee (stifle) joint of young dogs reduced the concentration of articular cartilage glycosaminoglycans (GAGs) by 13-47%. In the present study, right hindlimbs from six female beagles were immobilized for 11 weeks, as in the previous study, and then were remobilized for 15 weeks. Cartilage from the knee joint was compared with cartilage from nonimmobilized knees of eight age-matched control beagles. Histological samples taken from 11 different locations of the knee joint were stained with safranin O, and microspectrophotometry was used to demonstrate distribution of GAGs in the tissue. After remobilization, GAG concentration was restored in the patellofemoral region and tibial condyles. On the summits of the femoral condyles, and especially at the periphery of the femoral condyles, GAG concentration remained 8-26% less than the control values. On the summits, the thickness of the uncalcified cartilage was as much as 15% less than in the age-matched controls. Consequently, the changes induced by unloading were reversible to a great extent, but a full restoration of articular cartilage was not obtained at all sites of the knee joint within the 15 weeks of remobilization. Immobilization of the skeletally immature joint therefore may affect the development of articular cartilage in such a way that very slow recovery or permanent alterations are induced. PMID:8164087

  12. Direct Visualisation of the Depth-Dependent Mechanical Properties of Full-Thickness Articular Cartilage

    PubMed Central

    Szarko, Matthew; Xia, Yang

    2013-01-01

    Objective The structural anisotropy of articular cartilage controls its deformation response. As proteoglycans and collagen vary with depth, simple uniaxial compression results in inhomogeneous deformation with distinct depth-dependent mechanical properties. Investigations into depth-dependent mechanical properties of articular cartilage have previously required tissue modification after specimen isolation. Such modifications include histological processes, freezing, subchondral bone removal, and fluorescent staining that may alter the tissue, limiting in vivo applicability. Design Using a custom tissue-sectioning device, 0.1 mm thick unfixed, unstained, osetochondral samples were obtained. A customized apparatus loaded samples to 12.5, 24, and 29% compression in under a microscope with 10× magnification. Equilibrium load was measured after stress relaxation. Intra-tissue displacement was measured by tracing groups of cells between the different compression levels using a digital imaging program. Cell distance from the subchondral bone was measured to identify intra-tissue displacement and calculate strain. Results The results reveal that stress levels and intra-tissue displacement increased with greater tissue compression (p <0.05). Intra-tissue displacement decreased as depth from the articular surface increased (p<0.01). This occurred for each level of tissue compression. Overall compressive resistance is seen to increase with depth from the articular surface. Conclusions The current study identifies a method directly visualising and assessing the depth-dependent structural response to compression. The ability to avoid tissue modification after specimen isolation, allows this procedure to more closely approximate in vivo conditions and may provide an important method for analyzing the coordinated changes in cartilage composition and function due to ageing and disease. PMID:24416657

  13. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.

    PubMed

    Li, L P; Korhonen, R K; Iivarinen, J; Jurvelin, J S; Herzog, W

    2008-03-01

    Biological tissues exhibit diverse mechanical behaviors because of complex material properties. As has been shown for ligaments and intervertebral discs, mathematical models often appear to well predict load responses individually by adjusting model parameters, but likely fail to describe several different load responses simultaneously using the same model parameters. In the present study, we attempted to describe and explain both creep and relaxation responses of articular cartilage using a fibril-reinforced model, which has been successfully used to account for the load response of the relaxation tests of articular cartilage. Experiments were performed on bovine articular cartilage disks (n=8) using multi-step loading protocols, involving both creep and relaxation in each protocol. The experimental results indicated that mechanical changes, such as fiber recruitment in collagen network during stretch, recovered fully upon unloading. Creep loading did not affect relaxation properties, and vice versa. Relaxation proceeded much faster than creep, because of different fluid pressure profiles. The load sharing among the proteoglycan matrix, collagen network and fluid pressurization was predicted to differ for the creep and relaxation testing. The experimentally observed strong creep and relaxation responses in unconfined compression could not be predicted if either fibril reinforcement or fluid pressurization were neglected. It was essential to consider the interplay between nonlinear fibril reinforcement and fluid pressurization for the transient response (this interplay may be best termed as fluid pressure driven fibril reinforcement). Fibril reinforcement played a relatively insignificant role in the compressive load response at equilibrium, in agreement with previous findings for cartilage stress relaxation testing. PMID:17524700

  14. Vulnerability of the superficial zone of immature articular cartilage to compressive injury

    PubMed Central

    Rolauffs, Bernd; Muehleman, Carol; Li, Jun; Kurz, Bodo; Kuettner, Klaus E.; Frank, Eliot; Grodzinsky, Alan J.

    2010-01-01

    Objective The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive modulus, collagen and glycosaminoglycan (GAG) content also vary with depth. However, there is little understanding of depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, our objectives were to characterize the zonal dependence of biomechanical, biochemical and matrix-associated changes cause by injury. Methods Superficial and deeper zones disks from bovine calves were biomechanically characterized, injured (50% compression, 100%/sec) and re-characterized. Tissue compaction upon injury, GAG-density, GAG loss and biosynthesis were measured. Collagen-fiber-orientation and matrix damage was assessed using histology, Diffraction-Enhanced-X-Ray-Imaging, and texture analysis. Results Injured superficial disks showed surface disruption, compaction by 20.3±4.3%, and immediate biomechanical impairment: dynamic stiffness decreased to 7.1±3.3% of its initial value and equilibrium modulus was below detection. Tissue areas apparently intact by histology showed clear textural alterations. Injured deeper zones disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose GAG immediately after injury but lost 17.8±1.4% by 48h; deeper zones disks lost only 2.8±0.3% GAG. Biomechanical impairment was primarily associated with structural damage. Conclusion The soft superficial zone of immature cartilage is vulnerable to compressive injury causing superficial matrix disruption, extensive compaction, and textural alteration, and resulting in immediate loss of biomechanical function. In conjunction with delayed superficial GAG loss, these changes may predispose the articular surface to further softening, damage, and increased risk of developing secondary OA. PMID:20556809

  15. Biomechanical evaluation of suture holding properties of native and tissue engineered articular cartilage

    PubMed Central

    DuRaine, GD; Arzi, B; Lee, JK; Lee, CA; Responte, DJ; Hu, JC; Athanasiou, KA

    2014-01-01

    Objective The purpose of this study was to determine suture-holding properties of tissue engineered neocartilage relative to native articular cartilage. To this end, suture pull-out strength was quantified for native articular cartilage and for neocartilages possessing various mechanical properties. Methods Suture holding properties were examined in vitro and in vivo. Neocartilage from bovine chondrocytes was engineered using two sets of exogenous stimuli resulting in neotissue of different biochemical compositions. Compressive and tensile properties and glycosaminoglycan, collagen, and pyridinoline cross-link contents were assayed (study 1). Suture pull-out strength was compared between neocartilage constructs, and bovine and leporine native cartilage. Uniaxial pull-out test until failure was performed after passing 6-0 Vicryl through each tissue (study 2). Subsequently, neocartilage was implanted into a rabbit model to examine short-term suture holding ability in vivo (study 3). Results Neocartilage glycosaminoglycan and collagen content per wet weight reached 4.55% ± 1.62% and 4.21 ± 0.77%, respectively. Tensile properties for neocartilage constructs reached 2.6 ± 0.77 MPa for Young’s modulus and 1.39 ± 0.63 MPa for ultimate tensile strength. Neocartilage reached ~33% of suture pull-out strength of native articular cartilage. Neocartilage cross-link content reached 50% of native values, and suture pull-out strength correlated positively with cross-link content (R2=0.74). Neocartilage sutured into rabbit osteochondral defects was successfully maintained for 3 weeks. Conclusion This study shows that pyridinoline cross-links in neocartilage may be vital in controlling suture pull-out strength. Neocartilage produced in vitro with one-third of native tissue pull-out strength appears sufficient for construct suturing and retention in vivo. PMID:24848644

  16. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis

    PubMed Central

    Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2015-01-01

    In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration. PMID:25392400

  17. Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena

    PubMed Central

    Ateshian, Gerard A.; Rajan, Vikram; Chahine, Nadeen O.; Canal, Clare E.; Hung, Clark T.

    2010-01-01

    Background Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. Method of approach In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. Results It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue’s equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson’s ratio from very low values in compression (~0.02) to very high values in tension (~2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. Conclusions The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (G. A. Ateshian. J Biomech Eng, 129(2):240-9, 2007). PMID:19449957

  18. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena.

    PubMed

    Ateshian, Gerard A; Rajan, Vikram; Chahine, Nadeen O; Canal, Clare E; Hung, Clark T

    2009-06-01

    Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue's equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson's ratio from very low values in compression (approximately 0.02) to very high values in tension (approximately 2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240-249). PMID:19449957

  19. Strain-dependent oxidant release in articular cartilage originates from mitochondria.

    PubMed

    Brouillette, M J; Ramakrishnan, P S; Wagner, V M; Sauter, E E; Journot, B J; McKinley, T O; Martin, J A

    2014-06-01

    Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously, we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium, an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (r(2) = 0.87, p < 0.05), and significant cell death was observed at strains >40%. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology. PMID:23896937

  20. Strain-Dependent Oxidant Release in Articular Cartilage Originates from Mitochondria

    PubMed Central

    J, Brouillette M; S, Ramakrishnan P; M, Wagner V; E, Sauter E; J, Journot B; O, McKinley T; A, Martin J

    2013-01-01

    Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult, and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically-induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium (DHE), an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (r2 = 0.83, p < 0.05), and significant cell death was observed at strains > 40%. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP) significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology. PMID:23896937

  1. Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass

    PubMed Central

    Malda, Jos; de Grauw, Janny C.; Benders, Kim E. M.; Kik, Marja J. L.; van de Lest, Chris H. A.; Creemers, Laura B.; Dhert, Wouter J. A.; van Weeren, P. René

    2013-01-01

    Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue’s thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse) to 4000 kg (African elephant). Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content) and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content) decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications. PMID:23437402

  2. Effect of Glutaraldehyde Fixation on the Frictional Response of Immature Bovine Articular Cartilage Explants

    PubMed Central

    Oungoulian, Sevan R.; Hehir, Kristin E.; Zhu, Kaicen; Willis, Callen E.; Marinescu, Anca G.; Merali, Natasha; Ahmad, Christopher S.; Hung, Clark T.; Ateshian, Gerard A.

    2014-01-01

    This study examined functional properties and biocompatibility of glutaraldehyde-fixed bovine articular cartilage over several weeks of incubation at body temperature to investigate its potential use as a resurfacing material in joint arthroplasty. In the first experiment, treated cartilage disks were fixed using 0.02, 0.20 and 0.60 percent glutaraldehyde for 24 h then incubated, along with an untreated control group, in saline for up to 28 days at 37 °C. Both the equilibrium compressive and tensile moduli increased nearly twofold in treated samples compared to day 0 control, and remained at that level from day 1 to 28; the equilibrium friction coefficient against glass rose nearly twofold immediately after fixation (day 1) but returned to control values after day 7. Live explants co-cultured with fixed explants showed no quantitative difference in cell viability over 28 days. In general, no significant differences were observed between 0.20 and 0.60 percent groups, so 0.20 percent was deemed sufficient for complete fixation. In the second experiment, cartilage-on-cartilage frictional measurements were performed under a migrating contact configuration. In the treated group, one explant was fixed using 0.20 percent glutaraldehyde while the apposing explant was left untreated; in the control group both explants were left untreated. From day 1 to 28, the treated group exhibited either no significant difference or slightly lower friction coefficient than the untreated group. These results suggest that a properly titrated glutaraldehyde treatment can reproduce the desired functional properties of native articular cartilage and maintain these properties for at least 28 days at body temperature. PMID:24332617

  3. A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition.

    PubMed Central

    Broom, N D; Poole, C A

    1982-01-01

    Composite samples consisting of articular and calcified cartilage maintained in a non-viable physiological condition have been subjected to static compression using a system of simultaneous micromechanical testing and interference light microscopy. This, combined with transmission electron microscopy following glutaraldehyde fixation of the tissue under sustained load, has provided a unique observation of the response of the collagen framework in the tidemark region of articular cartilage to sustained compression loading. The tidemark in mature articular cartilage is seen to be highly variable in its morphological features, when viewed ultrastructurally. It incorporates variable amounts of internal stress which are relieved when the articular cartilage is separated from the calcified cartilage. Deformation of the articular cartilage can terminate abruptly at the tidemark. There is no evidence that the tidemark or calcified cartilage provided an intermediate layer between the complaint articular cartilage and the rigid subchondral bone. However, morphological evidence presented suggests that a smooth transfer of stress from the complaint to the rigid tissues could be achieved through changes in orientation and packing density of the collagen fibres in the articular cartilage adjacent to the tidemark. A variety of morphological responses of the collagen framework was observed in the tidemark region of articular cartilage following static compressive loading. In any given region, these responses were determined by (a) the local form and orientation of the tidemark; (b) the organisation of the collagen fibres; (c) the position of this region with respect to the compressive anvil. No evidence was obtained which suggested that the collagen fibres near the tidemark had a predominantly tensile role during direct compression. The observed process of compaction and collapse via a 'crimp' formation is clearly non-tensile. However, deformation involving lateral shear in

  4. Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling.

    PubMed

    Lilledahl, Magnus B; Pierce, David M; Ricken, Tim; Holzapfel, Gerhard A; Davies, Catharina de Lange

    2011-09-01

    The 3-D morphology of chicken articular cartilage was quantified using multiphoton microscopy (MPM) for use in continuum-mechanical modeling. To motivate this morphological study we propose aspects of a new, 3-D finite strain constitutive model for articular cartilage focusing on the essential load-bearing morphology: an inhomogeneous, poro-(visco)elastic solid matrix reinforced by an anisotropic, (visco)elastic dispersed fiber fabric which is saturated by an incompressible fluid residing in strain-dependent pores. Samples of fresh chicken cartilage were sectioned in three orthogonal planes and imaged using MPM, specifically imaging the collagen fibers using second harmonic generation. Employing image analysis techniques based on Fourier analysis, we derived the principal directionality and dispersion of the collagen fiber fabric in the superficial layer. In the middle layer, objective thresholding techniques were used to extract the volume fraction occupied by extracellular collagen matrix. In conjunction with information available in the literature, or additional experimental testing, we show how this data can be used to derive a 3-D map of the initial solid volume fraction and Darcy permeability. PMID:21478075

  5. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.

    PubMed

    García, José Jaime; Cortés, Daniel Humberto

    2007-01-01

    Experiments in articular cartilage have shown highly nonlinear stress-strain curves under finite deformations, nonlinear tension-compression response as well as intrinsic viscous effects of the proteoglycan matrix and the collagen fibers. A biphasic viscohyperelastic fibril-reinforced model is proposed here, which is able to describe the intrinsic viscoelasticity of the fibrillar and nonfibrillar components of the solid phase, the nonlinear tension-compression response and the nonlinear stress-strain curves under tension and compression. A viscohyperelastic constitutive equation was used for the matrix and the fibers encompassing, respectively, a hyperelastic function used previously for the matrix and a hyperelastic law used before to represent biological connective tissues. This model, implemented in an updated Lagrangian finite element code, displayed good ability to follow experimental stress-strain equilibrium curves under tension and compression for human humeral cartilage. In addition, curve fitting of experimental reaction force and lateral displacement unconfined compression curves showed that the inclusion of viscous effects in the matrix allows the description of experimental data with material properties for the fibers consistent with experimental tensile tests, suggesting that intrinsic viscous effects in the matrix of articular cartilage plays an important role in the mechanical response of the tissue. PMID:17014853

  6. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair

    PubMed Central

    He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  7. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    PubMed

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  8. QUANTITATIVE MAGNETIC RESONANCE IMAGING OF ARTICULAR CARTILAGE AND ITS CLINICAL APPLICATIONS

    PubMed Central

    Li, Xiaojuan; Majumdar, Sharmila

    2013-01-01

    Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a non-invasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides non-invasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts towards prevention and early intervention in OA. PMID:24115571

  9. Moderate Joint Loading Reduces Degenerative Actions of Matrix Metalloproteinases in the Articular Cartilage of Mouse Ulnae

    PubMed Central

    Sun, Hui B.; Zhao, Liming; Tanaka, Shigeo; Yokota, Hiroki

    2015-01-01

    Joint loading is a recently developed loading modality, which can enhance bone formation and accelerate healing of bone fracture. Since mechanical stimulation alters expression of matrix metalloproteinases (MMPs) in chondrocytes, a question addressed herein was, does joint loading alter actions of MMPs in the articular cartilage? We hypothesized that expression and activity of MMPs are regulated in a load–intensity-dependent manner and that moderate load scan downregulates MMPs. To test this hypothesis, a mouse elbow-loading model was employed. In the articular cartilage of an ulna, the mRNA levels of a group of MMPs as well as their degenerative activities were determined. The result revealed that elbow loading altered the expression and activities of MMPs depending on its loading intensity. Collectively, the data in this study indicate that 0.2 and 0.5 N joint loading significantly reduced the expression of multiple MMPs, that is, MMP-1, MMP-3, MMP-8, and MMP-13, and overall activities of collagenases or gelatinases in articular cartilage, while higher loads increased the expression and activity of MMP-1 and MMP-13. Furthermore, moderate loads at 1 N elevated the mRNA level of CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), but higher loads at 4 N did not induce a detectable amount of CITED2 mRNA. Since CITED2 is known to mediate the downregulation of MMP-1 and MMP-13, the result indicates that joint loading at moderate intensity reduces MMP activities through potential induction of CITED2. MMPs such as MMP-1 and MMP-13 are predominant collagenases in the pathology of osteoarthritis. Therefore, joint loading could offer an interventional regimen for maintenance of joint tissues. PMID:22148954

  10. On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis.

    PubMed

    Boyde, A; Davis, G R; Mills, D; Zikmund, T; Cox, T M; Adams, V L; Niker, A; Wilson, P J; Dillon, J P; Ranganath, L R; Jeffery, N; Jarvis, J C; Gallagher, J A

    2014-10-01

    High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo. PMID:25132002

  11. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    PubMed Central

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment. PMID:26752228

  12. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    NASA Astrophysics Data System (ADS)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  13. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee.

    PubMed

    Chan, Deva D; Cai, Luyao; Butz, Kent D; Trippel, Stephen B; Nauman, Eric A; Neu, Corey P

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment. PMID:26752228

  14. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid

    PubMed Central

    Bonnevie, Edward D.; Galesso, Devis; Secchieri, Cynthia; Cohen, Itai; Bonassar, Lawrence J.

    2015-01-01

    When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants. PMID:26599797

  15. Removal Of The Superficial Zone Of Bovine Articular Cartilage Does Not Increase Its Frictional Coefficient

    PubMed Central

    Krishnan, R; Caligaris, M; Mauck, RL; Hung, CT; Costa, KD; Ateshian, GA

    2010-01-01

    Summary Objective Investigate the role of the superficial zone in regulating the frictional response of articular cartilage. This zone contains the superficial protein (SZP), a proteoglycan synthesized exclusively by superficial zone chondrocytes and implicated in reducing the friction coefficient of cartilage. Design Unconfined compression creep tests with sliding of cartilage against glass in saline were carried out on fresh bovine cylindrical plugs (Ø6mm, n=35) obtained from sixteen bovine shoulder joints (ages 1-3 months). In the first two experiments, friction tests were carried out before and after removal of the superficial zone (∼100 microns), in a control and treatment group, using two different applied load magnitudes (4.4N and 22.2N). In the third experiment, friction tests were conducted on intact surfaces and the corresponding microtomed deep zone of the same specimen. Results In all tests the friction coefficient exhibited a transient response, increasing from a minimum value (μmin) to a near-equilibrium final value (μeq). No statistical change (p>0.5) was found in μmin before and after removal of the superficial zone in both experiments 1 and 2. However, μeq was observed to decrease significantly (p<0.001) after removal of the surface zone. Results from the third experiment confirm that μeq is even lower at the deep zone. Surface roughness measurements with atomic-force microscopy revealed an increase in surface roughness after microtoming. Immunohistochemical staining confirmed the presence of SZP in intact specimens and its removal in microtomed specimens. Conclusions The topmost (∼100 micron) superficial zone of articular cartilage does not have special properties which enhance its frictional response. PMID:15564061

  16. Extraction Techniques for the Decellularization of Tissue Engineered Articular Cartilage Constructs

    PubMed Central

    Elder, Benjamin D.; Eleswarapu, Sriram V.; Athanasiou, Kyriacos A.

    2009-01-01

    Several prior studies have been performed to determine the feasibility of tissue decellularization to create a non-immunogenic xenogenic tissue replacement for bladder, vasculature, heart valves, knee meniscus, temporomandibular joint disc, ligament, and tendon. However, limited work has been performed with articular cartilage, and no studies have examined the decellularization of tissue engineered constructs. The objective of this study was to assess the effects of different decellularization treatments on articular cartilage constructs, engineered using a scaffoldless approach, after 4 wks of culture, using a two-phased approach. In the first phase, five different treatments were examined: 1) 1% SDS, 2) 2% SDS, 3) 2% Tributyl phosphate, 4) 2% Triton X-100, and 5) Hypotonic followed by hypertonic solution. These treatments were applied for either 1 h or 8 h, followed by a 2 h wash in PBS. Following this wash, the constructs were assessed histologically, biochemically for cellularity, GAG, and collagen content, and biomechanically for compressive and tensile properties. In phase II, the best treatment from phase I was applied for 1, 2, 4, 6, or 8 h in order to optimize the application time. Treatment with 2% SDS for 1 h or 2 h significantly reduced the DNA content of the tissue, while maintaining the biochemical and biomechanical properties. On the other hand, 2% SDS for 6 h or 8 h resulted in complete histological decellularization, with complete elimination of cell nuclei on histological staining, although GAG content and compressive properties were significantly decreased. Overall, 2% SDS, for 1 or 2 h, appeared to be the most effective agent for cartilage decellularization, as it resulted in decellularization while maintaining the functional properties. The results of this study are exciting as they indicate the feasibility of creating engineered cartilage that may be non-immunogenic as a replacement tissue. PMID:19395023

  17. Quantitative Assessment of Murine Articular Cartilage and Bone Using X-Ray Phase-Contrast Imaging

    PubMed Central

    Li, Jun; Yuan, Huihui; Wu, Mingshu; Dong, Linan; Zhang, Lu; Shi, Hongli; Luo, Shuqian

    2014-01-01

    Murine models for rheumatoid arthritis (RA) research can provide important insights for understanding RA pathogenesis and evaluating the efficacy of novel treatments. However, simultaneously imaging both murine articular cartilage and subchondral bone using conventional techniques is challenging because of low spatial resolution and poor soft tissue contrast. X-ray phase-contrast imaging (XPCI) is a new technique that offers high spatial resolution for the visualisation of cartilage and skeletal tissues. The purpose of this study was to utilise XPCI to observe articular cartilage and subchondral bone in a collagen-induced arthritis (CIA) murine model and quantitatively assess changes in the joint microstructure. XPCI was performed on the two treatment groups (the control group and CIA group, n = 9 per group) to monitor the progression of damage to the femur from the knee joint in a longitudinal study (at 0, 4 and 8 weeks after primary injection). For quantitative assessment, morphologic parameters were measured in three-dimensional (3D) images using appropriate image analysis software. Our results showed that the average femoral cartilage volume, surface area and thickness were significantly decreased (P<0.05) in the CIA group compared to the control group. Meanwhile, these decreases were accompanied by obvious destruction of the surface of subchondral bone and a loss of trabecular bone in the CIA group. This study confirms that XPCI technology has the ability to qualitatively and quantitatively evaluate microstructural changes in mouse joints. This technique has the potential to become a routine analysis method for accurately monitoring joint damage and comprehensively assessing treatment efficacy. PMID:25369528

  18. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix.

    PubMed

    Zhu, Youjia; Wu, Hua; Sun, Shaofa; Zhou, Ting; Wu, Jingjing; Wan, Ying

    2014-08-01

    Collagen, chitosan-polycaprolactone (CH-PCL) copolymer with PCL content of around 40wt% and chondroitin sulfate (CS) were mixed together at various ratios to prepare collagen/CH-PCL/CS composites and the resulting composites were used to build stratified porous scaffolds that are potentially applicable for articular cartilage repair. The ternary composites were designed in such a way that collagen content in the scaffolds decreased from the top layer to the bottom layer while the content of CH-PCL and CS altered in a reversed trend in order to reach partial similarity to cartilage matrix in the composition of main components. Porous structures inside collagen/CH-PCL/CS scaffolds were constructed using a low-temperature deposition processing technique and graded average pore-size and porosity for the scaffolds were established. Such produced scaffolds were further crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide under optimized conditions, and the obtained scaffolds showed well-defined elastic compressive properties. Compressive modulus (E) and stress at 10% strain (σ10) of full scaffolds in wet state reached about 2.8MPa and 0.3MPa, respectively, and meanwhile, E and σ10 of layers inside hydrated scaffolds changed in a gradient-increased manner from the top layer to the bottom layer with significant differences between contiguous layers, which partially mimics compressive mechanical properties of cartilage matrix. In addition, in vitro culture of cell-scaffold constructs exhibited that scaffolds were able to well support the ingrowth and migration of seeded cells, and cells also showed relatively uniform distribution throughout the scaffolds. These results suggest that the presently developed collagen/CH-PCL/CS scaffolds have promising potential for applications in articular cartilage repair. PMID:24793172

  19. A nonlinear biphasic fiber-reinforced porohyperviscoelastic model of articular cartilage incorporating fiber reorientation and dispersion.

    PubMed

    Seifzadeh, A; Wang, J; Oguamanam, D C D; Papini, M

    2011-08-01

    A nonlinear biphasic fiber-reinforced porohyperviscoelastic (BFPHVE) model of articular cartilage incorporating fiber reorientation effects during applied load was used to predict the response of ovine articular cartilage at relatively high strains (20%). The constitutive material parameters were determined using a coupled finite element-optimization algorithm that utilized stress relaxation indentation tests at relatively high strains. The proposed model incorporates the strain-hardening, tension-compression, permeability, and finite deformation nonlinearities that inherently exist in cartilage, and accounts for effects associated with fiber dispersion and reorientation and intrinsic viscoelasticity at relatively high strains. A new optimization cost function was used to overcome problems associated with large peak-to-peak differences between the predicted finite element and experimental loads that were due to the large strain levels utilized in the experiments. The optimized material parameters were found to be insensitive to the initial guesses. Using experimental data from the literature, the model was also able to predict both the lateral displacement and reaction force in unconfined compression, and the reaction force in an indentation test with a single set of material parameters. Finally, it was demonstrated that neglecting the effects of fiber reorientation and dispersion resulted in poorer agreement with experiments than when they were considered. There was an indication that the proposed BFPHVE model, which includes the intrinsic viscoelasticity of the nonfibrillar matrix (proteoglycan), might be used to model the behavior of cartilage up to relatively high strains (20%). The maximum percentage error between the indentation force predicted by the FE model using the optimized material parameters and that measured experimentally was 3%. PMID:21950897

  20. Chronic Changes in the Articular Cartilage and Meniscus Following Traumatic Impact to the Lapine Knee

    PubMed Central

    Fischenich, Kristine M.; Button, Keith D.; Coatney, Garrett A.; Fajardo, Ryan S.; Leikert, Kevin M.; Haut, Roger C.; Haut Donahue, Tammy L.

    2014-01-01

    The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both the instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p = 0.036). In both the meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee. PMID:25523754

  1. Expression of extracellular matrix molecules typical of articular cartilage in the human scapholunate interosseous ligament

    PubMed Central

    Milz, S; Aktas, T; Putz, R; Benjamin, M

    2006-01-01

    The scapholunate interosseous ligament (SLIL) connects the scaphoid and lunate bones and plays a crucial role in carpal kinematics. Its rupture leads to carpal instability and impairment of radiocarpal joint function. As the ligament is one of the first structures affected in rheumatoid arthritis, we conducted an immunohistochemical study of cadaveric tissue to determine whether it contains known autoantigens for rheumatoid arthritis. We immunolabelled the ligament from one hand in 12 cadavers with monoclonal antibodies directed against a wide range of extracellular matrix (ECM) molecules associated with both fibrous and cartilaginous tissues. The labelling profile has also enabled us to comment on how the molecular composition of the ligament relates to its mechanical function. All regions of the ligament labelled for types I, III and VI collagens, chondroitin 4 and 6 sulphates, keratan sulphate, dermatan sulphate, versican, tenascin and cartilage oligomeric matrix protein (COMP). However, both entheses labelled strongly for type II collagen, aggrecan and link protein and were distinctly fibrocartilaginous. In some regions, the ligament attached to bone via a region of hyaline cartilage that was continuous with articular cartilage. Labelling for cartilage molecules in the midsubstance was most evident dorsally. We conclude that the SLIL has an ECM which is typical of other highly fibrocartilaginous ligaments that experience both tensile load and shear. The presence of aggrecan, link protein, COMP and type II collagen could explain why the ligament may be a target for autoantigenic destruction in some forms of rheumatoid arthritis. PMID:16761970

  2. Articular cartilage optical properties in the spectral range 300--850 nm

    NASA Astrophysics Data System (ADS)

    Ebert, Daniel W.; Roberts, Cynthia J.; Farrar, Stuart K.; Johnston, William M.; Litsky, Alan S.; Bertone, Alicia L.

    1998-07-01

    Measurements of absolute total reflectance were recorded from weight-bearing (n equals 9) and nonweight-bearing (n equals 9) equine articular cartilage specimens from 300 to 850 nm using a spectrophotometer with integrating sphere attachment. Following correction of measured spectra for interfacial reflections and edge losses, Kubelka-Munk theory was applied to estimate absorption and scattering coefficient, 1D light intensity distribution, and light penetration depth. Kubelka-Munk absorption coefficients ranged from approximately 7 cm-1 at 330 nm to approximately 1 cm-1 at 850 nm. A localized absorption peak was noted at approximately 340 nm. Above 510 nm, weight-bearing cartilage demonstrated significantly higher absorption coefficients than nonweight-bearing tissue (paired t-test, p < 0.05). Kubelka-Munk scattering coefficients ranged from approximately 40 cm-1 at 360 nm to approximately 6 cm-1 at 850 nm. No statistical differences in scattering coefficient were noted between weight-bearing and nonweight-bearing tissue. Penetration depths predicted by Kubelka-Munk theory ranged from 0.6 mm at 350 nm to over 3 mm at 850 nm. Stronger absorption in weight-bearing cartilage compared to nonweight-bearing tissue resulted in lower light penetration depths in weight-bearing cartilage at all wavelengths longer than 510 nm.

  3. Strain-dependent T1 Relaxation Profiles in Articular Cartilage by MRI at Microscopic Resolutions

    PubMed Central

    Xia, Yang; Wang, Nian; Lee, Jihyun; Badar, Farid

    2011-01-01

    To investigate the dependency of T1 relaxation on mechanical strain in articular cartilage, quantitative MRI T1 imaging experiments were carried out on cartilage before/after the tissue was immersed in gadolinium contrast agent and when the tissue was being compressed (up to ~ 48% strains). The spatial resolution across the cartilage depth was 17.6μm. The T1 profile in native tissue (without the presence of gadolinium ions) was strongly strain-dependent, which is also depth-dependent. At the modest strains (e.g., 14% strain), T1 reduced by up to 68% in the most surface portion of the tissue. Further compression (e.g., 45% strain) reduced T1 mostly in the middle and deep portions of the tissue. For the gadolinium-immersed tissue, both modest and heavy compressions (up to 48% strain) increased T1 slightly but significantly, although the overall shapes of the T1 profiles remained approximately the same regardless of the amount of strains. The complex relationships between the T1 profiles and the mechanical strains were a direct consequence of the depth-dependent proteoglycan concentration in the tissue, which determined the tissue’s mechanical properties. This finding has potential implications in the use of gadolinium contrast agent in clinical MRI of cartilage (the dGEMRIC procedure), when the loading or loading history of patients is considered. PMID:21452280

  4. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage

    PubMed Central

    2013-01-01

    -nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. Conclusions CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process. PMID:24004678

  5. Intra-articular injection of a nutritive mixture solution protects articular cartilage from osteoarthritic progression induced by anterior cruciate ligament transection in mature rabbits: a randomized controlled trial

    PubMed Central

    Park, Yoo-Sin; Lim, Si-Woong; Lee, Il-Hoon; Lee, Tae-Jin; Kim, Jong-Sung; Han, Jin Soo

    2007-01-01

    Osteoarthritis (OA) is a degenerative disease that disrupts the collagenous matrix of articular cartilage and is difficult to cure because articular cartilage is a nonvascular tissue. Treatment of OA has targeted macromolecular substitutes for cartilage components, such as hyaluronic acid or genetically engineered materials. However, the goal of the present study was to examine whether intra-articular injection of the elementary nutrients restores the matrix of arthritic knee joints in mature animals. A nutritive mixture solution (NMS) was composed of elementary nutrients such as glucose or dextrose, amino acids and ascorbic acid. It was administered five times (at weeks 6, 8, 10, 13 and 16) into the unilateral anterior cruciate ligament transected knee joints of mature New Zealand White rabbits, and the effect of NMS injection was compared with that of normal saline. OA progression was histopathologically evaluated by haematoxylin and eosin staining, by the Mankin grading method and by scanning electron microscopy at week 19. NMS injection decreased progressive erosion of articular cartilage overall compared with injection of normal saline (P < 0.01), and nms joints exhibited no differences relative to normal cartilage that had not undergone transection of the anterior cruciate ligament, as assessed using the mankin grading method. Haematoxylin and eosin staining and scanning electron microscopy findings also indicated that nms injection, in constrast to normal saline injection, restored the cartilage matrix, which is known to be composed of a collagen and proteoglycan network. thus, nms injection is a potent treatment that significantly retards oa progression, which in turn prevents progressive destruction of joints and functional loss in mature animals. PMID:17257416

  6. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.

    PubMed

    Taffetani, M; Griebel, M; Gastaldi, D; Klisch, S M; Vena, P

    2014-04-01

    Articular cartilage is a soft hydrated tissue that facilitates proper load transfer in diarthroidal joints. The mechanical properties of articular cartilage derive from its structural and hierarchical organization that, at the micrometric length scale, encompasses three main components: a network of insoluble collagen fibrils, negatively charged macromolecules and a porous extracellular matrix. In this work, a constituent-based constitutive model for the simulation of nanoindentation tests on articular cartilage is presented: it accounts for the multi-constituent, non-linear, porous, and viscous aspects of articular cartilage mechanics. In order to reproduce the articular cartilage response under different loading conditions, the model considers a continuous distribution of collagen fibril orientation, swelling, and depth-dependent mechanical properties. The model's parameters are obtained by fitting published experimental data for the time-dependent response in a stress relaxation unconfined compression test on adult bovine articular cartilage. Then, model validation is obtained by simulating three independent experimental tests: (i) the time-dependent response in a stress relaxation confined compression test, (ii) the drained response of a flat punch indentation test and (iii) the depth-dependence of effective Poisson's ratio in a unconfined compression test. Finally, the validated constitutive model has been used to simulate multiload spherical nanoindentation creep tests. Upon accounting for strain-dependent tissue permeability and intrinsic viscoelastic properties of the collagen network, the model accurately fits the drained and undrained curves and time-dependent creep response. The results show that depth-dependent tissue properties and glycosaminoglycan-induced tissue swelling should be accounted for when simulating indentation experiments. PMID:24389384

  7. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee.

    PubMed

    Frisbie, D D; Cross, M W; McIlwraith, C W

    2006-01-01

    Histological measurements of the thickness of non-calcified and calcified cartilage, as well as the subchondral bone plate in five locations on the femoral trochlea and medial femoral condyles of species were used in preclinical studies of articular cartilage and compared to those of the human knee. Cadaver specimens were obtained of six human knees, as well as six equine, six goat, six dog, six sheep and six rabbit stifle joints (the animal equivalent of the human knee). Specimens were taken from the lateral trochlear ridge, medial trochlear ridge and medial femoral condyle. After histopathological processing, the thickness of non-calcified and calcified cartilage layers, as well as the subchondral bone plate, was measured. Average articular cartilage thickness over five locations were 2.2-2.5 mm for human, 0.3 mm for rabbit, 0.4-0.5 mm for sheep, 0.6-1.3 mm for dog, 0.7-1.5 mm for goat and 1.5-2 mm for horse. The horse provides the closest approximation to humans in terms of articular cartilage thickness, and this approximation is considered relevant in pre-clinical studies of cartilage healing. PMID:16971996

  8. Topographical variation within the articular cartilage and subchondral bone of the normal ovine knee joint: a histological approach.

    PubMed

    Armstrong, S J; Read, R A; Price, R

    1995-03-01

    Topographical variation in the articular cartilage and subchondral bone of the normal ovine knee was examined using histological techniques. The articular cartilage was examined grossly, then histological sections were cut and the cartilage thickness and chondrocyte density were measured. Bone mineral density, thickness of the subchondral bone plate (SBP) and volume and surface histomorphometrical parameters and mineral apposition rate were calculated for the subchondral bone. It was found that the articular cartilage on the tibial plateaux was thicker, less cellular, and overlay a thicker SBP than that on the femoral condyles. Similarly, the cartilage in the medial joint compartments was thicker, less cellular and overlying a thicker less dense SBP than that in the lateral joint compartments. There was no variation in bone histomorphometric parameters or mineral apposition rate between regions. Biomechanical testing has shown that loading is not uniform throughout the normal human knee joint. The present results suggest that loading within the ovine knee is also nonuniform, with the central regions of the tibial plateaux bearing greater loads than the femoral condyles, and the medial joint compartment being loaded more than the lateral one. The articular cartilage and subchondral bone have adapted in order to best withstand these variations in loading. These histological findings, plus the topographical variations in cartilage biochemistry reported by Read et al. (Topographical variation in composition, PG-biosynthesis and swelling pressure of cartilages of loaded tibio-femoral joints (Abstract). Proceedings of the Combined Meeting of the Orthopaedic Research Societies of USA, Japan and Canada.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7719953

  9. Transport Phenomena in Articular Cartilage Cryopreservation as Predicted by the Modified Triphasic Model and the Effect of Natural Inhomogeneities

    PubMed Central

    Abazari, Alireza; Thompson, Richard B.; Elliott, Janet A.W.; McGann, Locksley E.

    2012-01-01

    Knowledge of the spatial and temporal distribution of cryoprotective agent (CPA) is necessary for the cryopreservation of articular cartilage. Cartilage dehydration and shrinkage, as well as the change in extracellular osmolality, may have a significant impact on chondrocyte survival during and after CPA loading, freezing, and thawing, and during CPA unloading. In the literature, Fick's law of diffusion is commonly used to predict the spatial distribution and overall concentration of the CPA in the cartilage matrix, and the shrinkage and stress-strain in the cartilage matrix during CPA loading are neglected. In this study, we used a previously described biomechanical model to predict the spatial and temporal distributions of CPA during loading. We measured the intrinsic inhomogeneities in initial water and fixed charge densities in the cartilage using magnetic resonance imaging and introduced them into the model as initial conditions. We then compared the prediction results with the results obtained using uniform initial conditions. The simulation results in this study demonstrate the presence of a significant mechanical strain in the matrix of the cartilage, within all layers, during CPA loading. The osmotic response of the chondrocytes to the cartilage dehydration during CPA loading was also simulated. The results reveal that a transient shrinking occurs to different levels, and the chondrocytes experience a significant decrease in volume, particularly in the middle and deep zones of articular cartilage, during CPA loading. PMID:22455911

  10. Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system

    NASA Astrophysics Data System (ADS)

    Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.

  11. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine.

    PubMed

    Nazempour, A; Van Wie, B J

    2016-05-01

    Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies. PMID:26987846

  12. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.

    PubMed

    Spilker, R L; Suh, J K; Mow, V C

    1990-05-01

    A finite element analysis is used to study a previously unresolved issue of the effects of platen-specimen friction on the response of the unconfined compression test; effects of platen permeability are also determined. The finite element formulation is based on the linear KLM biphasic model for articular cartilage and other hydrated soft tissues. A Galerkin weighted residual method is applied to both the solid phase and the fluid phase, and the continuity equation for the intrinsically incompressible binary mixture is introduced via a penalty method. The solid phase displacements and fluid phase velocities are interpolated for each element in terms of unknown nodal values, producing a system of first order differential equations which are solved using a standard numerical finite difference technique. An axisymmetric element of quadrilateral cross-section is developed and applied to the mechanical test problem of a cylindrical specimen of soft tissue in unconfined compression. These studies show that interfacial friction plays a major role in the unconfined compression response of articular cartilage specimens with small thickness to diameter ratios. PMID:2345443

  13. Sclerostin Immunoreactivity Increases in Cortical Bone Osteocytes and Decreases in Articular Cartilage Chondrocytes in Aging Mice.

    PubMed

    Thompson, Michelle L; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W

    2016-03-01

    Sclerostin is a 24-kDa secreted glycoprotein that has been identified as a negative modulator of new bone formation and may play a major role in age-related decline in skeletal function. Although serum levels of sclerostin markedly increase with age, relatively little is known about whether cells in the skeleton change their expression of sclerostin with aging. Using immunohistochemistry and confocal microscopy, we explored sclerostin immunoreactivity (sclerostin-IR) in the femurs of 4-, 9-, and 24-month-old adult C3H/HeJ male mice. In the femur, the only two cell types that expressed detectable levels of sclerostin-IR were bone osteocytes and articular cartilage chondrocytes. At three different sites along the diaphysis of the femur, only a subset of osteocytes expressed sclerostin-IR and the percentage of osteocytes that expressed sclerostin-IR increased from approximately 36% to 48% in 4- vs. 24-month-old mice. In marked contrast, in the same femurs, there were ~40% fewer hypertrophic chondrocytes of articular cartilage that expressed sclerostin-IR when comparing 24- vs. 4-month-old mice. Understanding the mechanism(s) that drive these divergent changes in sclerostin-IR may provide insight into understanding and treating the age-related decline of the skeleton. PMID:26701970

  14. Characterization and Localization of Citrullinated Proteoglycan Aggrecan in Human Articular Cartilage

    PubMed Central

    Glant, Tibor T.; Ocsko, Timea; Markovics, Adrienn; Szekanecz, Zoltan; Katz, Robert S.; Rauch, Tibor A.; Mikecz, Katalin

    2016-01-01

    Background Rheumatoid arthritis (RA) is an autoimmune disease of the synovial joints. The autoimmune character of RA is underscored by prominent production of autoantibodies such as those against IgG (rheumatoid factor), and a broad array of joint tissue-specific and other endogenous citrullinated proteins. Anti-citrullinated protein antibodies (ACPA) can be detected in the sera and synovial fluids of RA patients and ACPA seropositivity is one of the diagnostic criteria of RA. Studies have demonstrated that RA T cells respond to citrullinated peptides (epitopes) of proteoglycan (PG) aggrecan, which is one of the most abundant macromolecules of articular cartilage. However, it is not known if the PG molecule is citrullinated in vivo in human cartilage, and if so, whether citrulline-containing neoepitopes of PG (CitPG) can contribute to autoimmunity in RA. Methods CitPG was detected in human cartilage extracts using ACPA+ RA sera in dot blot and Western blot. Citrullination status of in vitro citrullinated recombinant G1 domain of human PG (rhG1) was confirmed by antibody-based and chemical methods, and potential sites of citrullination in rhG1 were explored by molecular modeling. CitPG-specific serum autoantibodies were quantified by enzyme-linked immunosorbent assays, and CitPG was localized in osteoarthritic (OA) and RA cartilage using immunohistochemistry. Findings Sera from ACPA+ RA patients reacted with PG purified from normal human cartilage specimens. PG fragments (mainly those containing the G1 domain) from OA or RA cartilage extracts were recognized by ACPA+ sera but not by serum from ACPA- individuals. ACPA+ sera also reacted with in vitro citrullinated rhG1 and G3 domain-containing fragment(s) of PG. Molecular modeling suggested multiple sites of potential citrullination within the G1 domain. The immunohistochemical localization of CitPG was different in OA and RA cartilage. Conclusions CitPG is a new member of citrullinated proteins identified in human

  15. Destruction of articular cartilage by alpha2 macroglobulin elastase complexes: role in rheumatoid arthritis

    PubMed Central

    Moore, A.; Appelboam, A.; Kawabata, K.; Da Silva, J. A P; D'Cruz, D.; Gowland, G.; Willoughby, D.

    1999-01-01

    OBJECTIVE—Neutrophil elastase accounts for the ability of some fresh rheumatoid synovial fluids to degrade cartilage matrix in vitro. The aim of this study was to determine if enzyme activity could result from depletion of synovial fluid inhibitors or protection of the enzyme from inhibition.
METHODS—The ability of synovial fluids to inhibit porcine pancreatic elastase was investigated together with chemical pretreatments capable of inactivating alpha1 protease inhibitor (α1PI) or preventing formation of alpha2 macroglobulin (α2M) elastase complexes. Subsequently, complexes of human neutrophil elastase with α2M were prepared and applied to frozen sections of cartilage. Proteoglycan loss was quantified by alcian blue staining and scanning and integrating microdensitometry. Parallel studies were carried out using a low molecular weight chromogenic elastase substrate. The effects of α1PI and SF on these systems were investigated. Finally, synovial fluids were subjected to gel filtration and the fractions assayed for elastase activity. High molecular weight fractions were pooled, concentrated, and tested for their ability to degrade cartilage sections.
RESULTS—All synovial fluids reduced the activity of porcine pancreatic elastase, the inhibition mainly being attributable to α1PI, whereas remaining activity resulted from complexes of elastase with α2M. Complexes of human neutrophil elastase with α2M were shown to cause proteoglycan degradation in frozen sections of human articular cartilage. Alpha1PI prevented α2M elastase complexes from degrading cartilage but not the chromogenic substrate. The data suggested that α1PI does not inhibit elastase bound to α2M but sterically hinders the complex. However, only one of five synovial fluids was able to completely block the actions of α2M elastase complexes against cartilage. Gel filtration of rheumatoid synovial fluids showed elastase and cartilage degrading activity to be associated with fractions that

  16. Healing of articular cartilage defects treated with a novel drug-releasing rod-type implant after microfracture surgery.

    PubMed

    Shim, In Kyong; Yook, Yeo Joo; Lee, Sang Young; Lee, Sang Hoon; Park, Ki Dong; Lee, Myung Chul; Lee, Seung Jin

    2008-08-01

    Microfracture therapy is a widely used technique for the repair of articular cartilage defects because it can be readily performed arthroscopically. However, the regenerated cartilage after microfracture surgery clearly differs from normal articular cartilage. This suggests that the clinical outcome of patients undergoing microfracture therapy could be improved. Dehydroepiandrosterone sulfate (DHEA-S) is known to protect against articular cartilage loss. Therefore, in an effort to achieve cartilage regeneration of high efficacy, we manufactured a DHEA-S-releasing rod-type implant for implantation into the holes produced by microfracture surgery. The polymeric rod-type implant was made of biodegradable poly (D, L-lactide-co-glycolide) (PLGA) and beta-tricalcium phosphate to enable controlled release of DHEA-S. The implant was dip-coated with a dilute PLGA solution to prevent the burst release of DHEA-S. The rod-type implant was sufficiently stiff to permit implantation into the holes made by microfracture. DHEA-S was released from the implant for more than four weeks. Furthermore, eight weeks after implantation into rabbit knees, the implants dramatically enhanced cartilage regeneration compared to control. Moreover, the degradation of the implant over the eight weeks from implantation into the knee did not induce any adverse effects. Therefore, this polymeric rod-type implant does not only provide an improvement in microfracture surgery, but also has great potential as a new formulation for drug delivery. PMID:18547670

  17. Equine subchondral bone failure threshold under impact compression applied through articular cartilage.

    PubMed

    Malekipour, Fatemeh; Oetomo, Denny; Lee, Peter Vee-Sin

    2016-07-01

    Subchondral bone microdamage due to high-impact loading is a key factor leading to post-traumatic knee osteoarthritis. A quantified assessment of the mechanical characteristics of subchondral bone at the tissue-level is essential to study the mechanism of impact-induced microdamage. We combined mechanical impact testing of equine cartilage-bone with µCT image-based finite element models (μFEM) of each specimen to determine subchondral bone (including calcified cartilage: CCSB) elastic tissue modulus and local stresses and strains associated with micro-fractures within the CCSB tissue. The material properties of each specimen-specific μFEM were iteratively adjusted to match the FE-predicted stress-strain curves with experimental results. Isotropic homogeneous material properties for both uncalcified cartilage (UC) and CCSB were assumed. UC large-deformation was simulated using hyperelastic material properties. Final UC shear and CCSB tissue elastic modulus of G=38±20MPa and E(t)=3.3±0.7GPa were achieved after fit procedure. The results suggested that initial failure in CCSB occurred at local tensile and compressive stresses of 29.47±5.34 MPa and 64.3±21.3MPa, and tensile and compressive strains of 1.12±0.06% and 1.99±0.41%, respectively. Tissue-level material properties can be used in finite element modeling of diarthrodial joints under impact loading, and also in designing artificial cartilage-bone to replace the damaged tissue in the joint. Results can provide an estimate for the threshold of initial failure in subchondral bone tissue due to an impact compression transmitted through the overlying articular cartilage. PMID:27260020

  18. Vulnerability of the Superficial Zone of Immature Articular Cartilage to Compressive Injury

    SciTech Connect

    Rolauffs, R.; Muehleman, C; Li, J; Kurz, B; Kuettner, K; Frank, E; Grodzinsky, A

    2010-01-01

    The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive moduli as well as collagen and sulfated glycosaminoglycan (sGAG) content also vary with depth. However, there is little understanding of the depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, this study was undertaken to characterize the zonal dependence of biomechanical, biochemical, and matrix-associated changes caused by compressive injury. Disks from the superficial and deeper zones of bovine calves were biomechanically characterized. Injury to the disks was achieved by applying a final strain of 50% compression at 100%/second, followed by biomechanical recharacterization. Tissue compaction upon injury as well as sGAG density, sGAG loss, and biosynthesis were measured. Collagen fiber orientation and matrix damage were assessed using histology, diffraction-enhanced x-ray imaging, and texture analysis. Injured superficial zone disks showed surface disruption, tissue compaction by 20.3 {+-} 4.3% (mean {+-} SEM), and immediate biomechanical impairment that was revealed by a mean {+-} SEM decrease in dynamic stiffness to 7.1 {+-} 3.3% of the value before injury and equilibrium moduli that were below the level of detection. Tissue areas that appeared intact on histology showed clear textural alterations. Injured deeper zone disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose sGAG immediately after injury, but lost 17.8 {+-} 1.4% of sGAG after 48 hours; deeper zone disks lost only 2.8 {+-} 0.3% of sGAG content. Biomechanical impairment was associated primarily with structural damage. The soft superficial zone of immature cartilage is vulnerable to compressive injury, causing superficial matrix disruption, extensive compaction, and textural alteration, which results

  19. Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured In Situ via Atomic Force Microscopy

    PubMed Central

    Darling, Eric M.; Wilusz, Rebecca E.; Bolognesi, Michael P.; Zauscher, Stefan; Guilak, Farshid

    2010-01-01

    Abstract In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ. PMID:20550897

  20. Healing results in meniscus and articular cartilage photochemically welded with 1,8-naphthalimide dyes

    NASA Astrophysics Data System (ADS)

    Judy, Millard M.; Jackson, Robert W.; Nosir, Hany R.; Matthews, James Lester; Loyd, John D.; Lewis, David E.; Utecht, Ronald E.; Yuan, Dongwu

    1997-05-01

    Meniscal tears and partial thickness defects in articular cartilage do not heal spontaneously. In this paper results are described of studies of a procedure for evoking the healing response in such lesions by a non-thermal tissue sparing photochemical weld using 1,8-naphthalimide dyes. Fifteen essentially mature Barbados sheep 40 - 60 pounds in weight received a 2 - 3 mm flap tear by incision in the red white zone of the medial meniscus oriented parallel to the table of the tibia. The animals were divided into four groups; Group I, no treatment; Group II, treatment by laser activated photoactive dyes; Group III, treatment by suturing; Group IV, treatment by laser irradiation only; Group V, treatment by photoactive dyes only. In another group of 12 sheep partial thickness flap tear was created by incision in the articular cartilage of the femoral condyle. These were divided into four groups as for the meniscus study, omitting the sutured control. Welds were made using the dimeric dye MBM Gold BW 012-012-012 at 12 mM in PBS, 457.9 nm argon ion laser radiation at 800 mW/cm2, 7.5 minutes (360 J/cm2) with approximately 2 kg/cm2 externally applied pressure. Animals were sacrificed at 24 hr, 4 weeks, 3 and 6 months postoperatively. Gross appearance of menisci and cartilage in all welded knees was normal and all welds resisted deformation or loosening under forceful probing. Histology of studies of both tissues out to 6 moths disclosed close bonding of welded area, continuing healing response in the form of cellular recruitment and protein deposition and the absence of inflammatory response. Tissue erosion and arthritic changes were evident in all unwelded controls.

  1. Short-term consolidation of articular cartilage in the long-term context of osteoarthritis.

    PubMed

    Woodhouse, Francis G; Gardiner, Bruce S; Smith, David W

    2015-03-01

    Over ten percent of the population are afflicted by osteoarthritis, a chronic disease of diarthrodial joints such as the knees and hips, costing hundreds of billions of dollars every year. In this condition, the thin layers of articular cartilage on the bones degrade and weaken over years, causing pain, stiffness and eventual immobility. The biggest controllable risk factor is long-term mechanical overloading of the cartilage, but the disparity in time scales makes this process a challenge to model: loading events can take place every second, whereas degradation occurs over many months. Therefore, a suitable model must be sufficiently simple to permit evaluation over long periods of variable loading, yet must deliver results sufficiently accurate to be of clinical use, conditions unmet by existing models. To address this gap, we construct a two-component poroelastic model endowed with a new flow restricting boundary condition, which better represents the joint space environment compared to the typical free-flow condition. Under both static and cyclic loading, we explore the rate of gradual consolidation of the medium. In the static case, we analytically characterise the duration of consolidation, which governs the duration of effective fluid-assisted lubrication. In the oscillatory case, we identify a region of persistent strain oscillations in otherwise consolidated tissue, and derive estimates of its depth and magnitude. Finally, we link the two cases through the concept of an equivalent static stress, and discuss how our results help explain the inexorable cartilage degeneration of osteoarthritis. PMID:25591888

  2. A physical model for the time-dependent deformation of articular cartilage.

    PubMed

    Oloyede, A; Broom, N D

    1993-01-01

    A physical analogue was developed to simulate the time-dependent deformation of articular cartilage. The analogue was constructed from a matrix of water-saturated sponge material whose permeability could be varied, and was constrained so as to allow one-dimensional deformation under both static and dynamic compressive loading. Simultaneous measurements were made of the applied stress, matrix excess pore pressure and matrix strain. The results obtained reinforce the view that under static and low strain-rate loading conditions, a consolidatable system like cartilage sustains the applied stress through a stress-sharing mechanism between matrix water and the solid skeleton. However, at high strain-rates load-bearing is dominated by a mechanism in which the matrix water is immobilized and the excess pore pressure rises to almost that of the applied stress, thus suggesting that the constituents of the matrix act as a single functional entity to support the applied load. The model supports the description of cartilage as a poro-visco-hyperelastic material. PMID:8269702

  3. Mechanical Stress and ATP Synthesis are coupled by Mitochondrial Oxidants in Articular Cartilage

    PubMed Central

    Wolff, Katherine J; Ramakrishnan, Prem S; Brouillette, Marc J; Journot, Brice; Mckinley, Todd O; Buckwalter, JA; Martin, James A

    2013-01-01

    Metabolic adaptation of articular cartilage under joint loading is evident and matrix synthesis seems to be critically tied to ATP. Chondrocytes utilize the glycolytic pathway for energy requirements but seem to require mitochondrial reactive oxygen species (ROS) to sustain ATP synthesis. The role of ROS in regulating ATP reserves under a mechanically active environment is not clear. It is believed that physiological strains cause deformation of the mitochondria, potentially releasing ROS for energy production. We hypothesized that mechanical loading stimulates ATP synthesis via mitochondrial release of ROS. Bovine osteochondral explants were dynamically loaded at 0.5Hz with amplitude of 0.25MPa for 1 Hour. Cartilage response to mechanical loading was assessed by imaging with dihydroethidium (ROS indicator) and a Luciferase based ATP assay. Electron transport inhibitor rotenone and mitochondrial ROS scavenger MitoQ significantly suppressed mechanically induced ROS production and ATP synthesis. Our findings indicate that mitochondrial ROS are produced as a result of physiological mechanical strains. Taken together with our previous findings of ROS involvement in blunt impact injuries, mitochondrial ROS are important contributors to cartilage metabolic adaptation and their precise role in the pathogenesis of osteoarthritis warrants further investigation. PMID:22930474

  4. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage.

    PubMed

    Wolff, Katherine J; Ramakrishnan, Prem S; Brouillette, Marc J; Journot, Brice J; McKinley, Todd O; Buckwalter, Joseph A; Martin, James A

    2013-02-01

    Metabolic adaptation of articular cartilage under joint loading is evident and matrix synthesis seems to be critically tied to ATP. Chondrocytes utilize the glycolytic pathway for energy requirements but seem to require mitochondrial reactive oxygen species (ROS) to sustain ATP synthesis. The role of ROS in regulating ATP reserves under a mechanically active environment is not clear. It is believed that physiological strains cause deformation of the mitochondria, potentially releasing ROS for energy production. We hypothesized that mechanical loading stimulates ATP synthesis via mitochondrial release of ROS. Bovine osteochondral explants were dynamically loaded at 0.5 Hz with amplitude of 0.25 MPa for 1 h. Cartilage response to mechanical loading was assessed by imaging with dihydroethidium (ROS indicator) and a Luciferase-based ATP assay. Electron transport inhibitor rotenone and mitochondrial ROS scavenger MitoQ significantly suppressed mechanically induced ROS production and ATP synthesis. Our findings indicate that mitochondrial ROS are produced as a result of physiological mechanical strains. Taken together with our previous findings of ROS involvement in blunt impact injuries, mitochondrial ROS are important contributors to cartilage metabolic adaptation and their precise role in the pathogenesis of osteoarthritis warrants further investigation. PMID:22930474

  5. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    PubMed

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, p<0.001), Ef (to 31.3±41.3% [corrected] of control values, p=0.046), Em (to 6.4±8.5% of control values, p<0.0001), and an increase in k (to 2676.7±2562.0% of control values, p=0.004) were observed at day 12 of refrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures. PMID:20887036

  6. A Validated Model of the Pro- and Anti-Inflammatory Cytokine Balancing Act in Articular Cartilage Lesion Formation

    PubMed Central

    Wang, Xiayi; Brouillette, Marc J.; Ayati, Bruce P.; Martin, James A.

    2015-01-01

    Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et al. (2012) (single impact) and Wang et al. (2014) (cyclic loading), focusing on the “balancing act” between pro- and anti-inflammatory cytokines. Age structure is introduced to replace the delay terms for cell transitions used in these earlier models; we find age structured models to be more flexible in representing the underlying biological system and more tractable computationally. Numerical results show a successful capture of chondrocyte behavior and chemical activities associated with the cartilage lesion after the initial injury; experimental validation of our computational results is presented. We anticipate that our in silico model of cartilage damage from a single blunt impact can be used to provide information that may not be easily obtained through in in vivo or in vitro studies. PMID:25806365

  7. A validated model of the pro- and anti-inflammatory cytokine balancing act in articular cartilage lesion formation.

    PubMed

    Wang, Xiayi; Brouillette, Marc J; Ayati, Bruce P; Martin, James A

    2015-01-01

    Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et al. (2012) (single impact) and Wang et al. (2014) (cyclic loading), focusing on the "balancing act" between pro- and anti-inflammatory cytokines. Age structure is introduced to replace the delay terms for cell transitions used in these earlier models; we find age structured models to be more flexible in representing the underlying biological system and more tractable computationally. Numerical results show a successful capture of chondrocyte behavior and chemical activities associated with the cartilage lesion after the initial injury; experimental validation of our computational results is presented. We anticipate that our in silico model of cartilage damage from a single blunt impact can be used to provide information that may not be easily obtained through in in vivo or in vitro studies. PMID:25806365

  8. The Healing Effect of Adipose-Derived Mesenchymal Stem Cells in Full-thickness Femoral Articular Cartilage Defects of Rabbit

    PubMed Central

    Mehrabani, D.; Babazadeh, M.; Tanideh, N.; Zare, S.; Hoseinzadeh, S.; Torabinejad, S.; Koohi-Hosseinabadi, O.

    2015-01-01

    Background: Articular cartilage defect can lead to degradation of subchondral bone and osteoarthritis (OA). Objective: To determine the healing effect of transplantation of adipose-derived mesenchymal stem cells (Ad-MSCs) in full-thickness femoral articular cartilage defects in rabbit. Methods: 12 rabbits were equally divided into cell-treated and control groups. In cell-treated group, 2×106 cells of third passage suspended in 1 mL of DMEM was injected into articular defect. The control group just received 1 mL of DMEM. Dulbecco’s modified Eagles medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin and streptomycin and 2 mM L-glutamine were used for cell culture. To induce cartilage defect, 4 mm articular cartilage full-thickness defect was created in the knee. For histological evaluation in each group (H&E, safranin-O and toluidine blue), 3 rabbits were sacrificed 4 weeks and 3 animals, 8 weeks after cell transplantation. Results: In cell therapy group post-transplantation, no abnormal gross findings were noticed. Neo-formed tissues in cell-treated groups were translucent with a smooth and intact surface and less irregularity. In cell-treated group after 8 weeks post-transplantation, the overall healing score of experimental knees were superior when compared to other groups. Conclusion: We showed that Ad-MSCs, as an available and non-invasive produced source of cells, could be safely administered in knee osteochondral defects. PMID:26576262

  9. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    PubMed

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. PMID:27374150

  10. Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage

    PubMed Central

    Hosseininia, S.; Weis, M.A.; Rai, J.; Kim, L.; Funk, S.; Dahlberg, L.E.; Eyre, D.R.

    2016-01-01

    SUMMARY Objective To determine if type III collagen is concentrated in the chymotrypsin-extractable collagen pool from osteoarthritic articular cartilage to assess its potential as a biomarker of Osteoarthritis (OA) pathogenic mechanisms. Methods Full thickness articular cartilage from grossly normal surfaces was analyzed from femoral heads, obtained at hip replacement surgery, from OA (n = 10) and fracture (n = 10) patients. Collagen, extracted by α-chymotrypsin, was characterized by SDS-PAGE/Western blot analysis, ELISA and immunohistochemistry using monoclonal antibodies specific to collagens types II and III. Results α-Chymotrypsin extracted more collagen from OA than control cartilage. The extractable pool included collagen types II and III from both OA and control hips. Importantly, OA cartilage contained 6-fold more collagen type III than control cartilage, based on ELISA. The estimated total tissue ratio of collagen III/II was in the 1–10% range for individual OA cartilage samples, based on pepsin-solubilized collagen using SDS-PAGE densitometry. Collagen type III N-propeptide trimers were the main molecular fragments seen on Western blot analysis of OA and control extracts. The chymotrypsin-extracted type II collagen gave primarily full-length α1(II) chains and chain fragments of α1(II) on Western blot analysis from both OA and control tissues. Immunohistochemistry showed that type III collagen was more concentrated in the upper half of OA cartilage and in the territorial matrix around individual chondrocytes and chondrocyte clusters. Conclusions The findings confirm that collagen type III deposition occurs in adult articular cartilage but significantly more pronounced in osteoarthritic joints, presenting a potential marker of matrix repair or pathobiology. PMID:26790721

  11. A Stable Isotope Method for the Simultaneous Measurement of Matrix Synthesis and Cell Proliferation in Articular Cartilage In Vivo

    PubMed Central

    Li, Kelvin W.; Siraj, Sebrin A.; Cheng, Erika W.; Awada, Mohamad; Hellerstein, Marc K.; Turner, Scott M.

    2009-01-01

    Objective Measurements of cell proliferation and matrix synthesis in cartilage explants have identified regulatory factors (e.g., interleukin 1, IL-1) that contribute to osteoarthritis and anabolic mediators (e.g., BMP-7) that may have therapeutic potential. The objective of this study was to develop a robust method for measuring cell proliferation and glycosaminoglycan synthesis in articular cartilage that could be applied in vivo. Methods A stable isotope-mass spectrometry approach was validated by measuring the metabolic effects of IL-1 and BMP-7 in cultures of mature and immature bovine cartilage explants. The method was also applied in vivo to quantify physiologic turnover rates of matrix and cells in the articular cartilage of normal rats. Heavy water was administered to explants in the culture medium and to rats via drinking water, and cartilage was analyzed for labeling of chondroitin sulfate (CS), hyaluronic acid (HA) and DNA. Results As expected, IL-1 inhibited the synthesis of DNA and CS in cartilage explants. However, IL-1 inhibited HA synthesis only in immature cartilage. Futhermore, BMP-7 was generally stimulatory, but immature cartilage was significantly more responsive than mature cartilage, particularly in terms of HA and DNA synthesis. In vivo, labeling of CS and DNA in normal rats for up to a year indicated half-lives of 22 and 862 days, respectively, in the joint. Conclusions We describe a method by which deuterium from heavy water is traced into multiple metabolites from a single cartilage specimen to profile its metabolic activity. This method was demonstrated in tissue culture and rodents but may have significant clinical applications. PMID:19230856

  12. Nondestructive fluorescence-based quantification of threose-induced collagen cross-linking in bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Kinnunen, Jussi; Kokkonen, Harri T.; Kovanen, Vuokko; Hauta-Kasari, Markku; Vahimaa, Pasi; Lammi, Mikko J.; Töyräs, Juha; Jurvelin, Jukka S.

    2012-09-01

    Extensive collagen cross-linking affects the mechanical competence of articular cartilage: it can make the cartilage stiffer and more brittle. The concentrations of the best known cross-links, pyridinoline and pentosidine, can be accurately determined by destructive high-performance liquid chromatography (HPLC). We explore a nondestructive evaluation of cross-linking by using the intrinsic fluorescence of the intact cartilage. Articular cartilage samples from bovine knee joints were incubated in threose solution for 40 and 100 h to increase the collagen cross-linking. Control samples without threose were also prepared. Excitation-emission matrices at wavelengths of 220 to 950 nm were acquired from the samples, and the pentosidine and pyridinoline cross-links and the collagen concentrations were determined using HPLC. After the threose treatment, pentosidine and lysyl pyridinole (LP) concentrations increased. The intrinsic fluorescence, excited below 350 nm, decreased and was related to pentosidine [r=-0.90, 240/325 nm (excitation/emission)] or LP (r=-0.85, 235/285 nm) concentrations. Due to overlapping, the changes in emission could not be linked specifically to the recorded cross-links. However, the fluorescence signal enabled a nondestructive optical estimate of changes in the pentosidine and LP cross-linking of intact articular cartilage.

  13. TRANSPORT OF NEUTRAL SOLUTE IN ARTICULAR CARTILAGE: EFFECT OF MICROSTRUCTURE ANISOTROPY

    PubMed Central

    Zhang, Le; Szeri, Andras Z.

    2008-01-01

    Due to the avascular nature of articular cartilage, solute transport through its extracellular matrix is critical for the maintenance and the functioning of the tissue. What’s more, diffusion of macromolecules may be affected by the microstructure of the extracellular matrix in both undeformed and deformed cartilage and experiments demonstrate diffusion anisotropy in the case of large solute. However, these phenomena have not received sufficient theoretical attention to date. We hypothesize here that the diffusion anisotropy of macromolecules is brought about by the particular microstructure of the cartilage network. Based on this hypothesis, we then propose a mathematical model that correlates the diffusion coefficient tensor with the structural orientation tensor of the network. This model is shown to be successful in describing anisotropic diffusion of macromolecules in undeformed tissue and is capable of clarifying the effects of network reorientation as the tissue deforms under mechanical load. Additionally, our model explains the anomaly that at large strain, in a cylindrical plug under unconfined compression, solute diffusion in the radial direction increases with strain. Our results indicate that in cartilage the degree of diffusion anisotropy is site specific but depends also on the size of the diffusing molecule. Mechanical loading initiates and/or further exacerbates this anisotropy. At small deformation, solute diffusion is near isotropic in a tissue that is isotropic in its unstressed state, becoming anisotropic as loading progresses. Mechanical loading leads to an attenuation of solute diffusion in all directions when deformation is small. However, loading, if it is high enough, enhances solute transport in the direction perpendicular to the load line, instead of inhibiting it. PMID:17889882

  14. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    SciTech Connect

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  15. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage.

    PubMed

    Nguyen, Lonnissa H; Kudva, Abhijit K; Guckert, Nicole L; Linse, Klaus D; Roy, Krishnendu

    2011-02-01

    Numerous studies have reported generation of cartilage-like tissue from chondrocytes and stem cells, using pellet cultures, bioreactors and various biomaterials, especially hydrogels. However, one of the primary unsolved challenges in the field has been the inability to produce tissue that mimics the highly organized zonal architecture of articular cartilage; specifically its spatially varying mechanical properties and extra-cellular matrix (ECM) composition. Here we show that different combinations of synthetic and natural biopolymers create unique niches that can "direct" a single marrow stem cell (MSC) population to differentiate into the superficial, transitional, or deep zones of articular cartilage. Specifically, incorporating chondroitin sulfate (CS) and matrix metalloproteinase-sensitive peptides (MMP-pep) into PEG hydrogels (PEG:CS:MMP-pep) induced high levels of collagen II and low levels of proteoglycan expression resulting in a low compressive modulus, similar to the superficial zone. PEG:CS hydrogels produced intermediate-levels of both collagen II and proteoglycans, like the transitional zone, while PEG:hyaluronic acid (HA) hydrogels induced high proteoglycan and low collagen II levels leading to high compressive modulus, similar to the deep zone. Additionally, the compressive moduli of these zone-specific matrices following cartilage generation showed similar trend as the corresponding zones of articular cartilage, with PEG:CS:MMP-pep having the lowest compressive modulus, followed by PEG:CS while PEG:HA had the highest modulus. These results underscore the potential for composite scaffold structures incorporating these biomaterial compositions such that a single stem-progenitor cell population can give rise to zonally-organized, functional articular cartilage-like tissue. PMID:21067807

  16. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    NASA Astrophysics Data System (ADS)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  17. Spatially localized structure-function relations in the elastic properties of sheared articular cartilage

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai

    2013-03-01

    Contemporary developments in therapeutic tissue engineering have been enabled by basic research efforts in the field of biomechanics. Further integration of technology in medicine requires a deeper understanding of the mechanical properties of soft biological materials and the structural origins of their response under extreme stresses and strains. Drawing on the science generated by the ``Extreme Mechanics'' community, we present experimental results on the mechanical properties of articular cartilage, a hierarchically structured soft biomaterial found in the joints of mammalian long bones. Measurements of the spatially localized structure and mechanical properties will be compared with theoretical descriptions based on networks of deformed rods, poro-visco-elasticity, and standard continuum models. Discrepancies between experiment and theory will be highlighted, and suggestions for how models can be improved will be given.

  18. Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy.

    PubMed

    Bell, J S; Christmas, J; Mansfield, J C; Everson, R M; Winlove, C P

    2014-06-01

    Articular cartilage (AC) is a highly anisotropic biomaterial, and its complex mechanical properties have been a topic of intense investigation for over 60 years. Recent advances in the field of nonlinear optics allow the individual constituents of AC to be imaged in living tissue without the need for exogenous contrast agents. Combining mechanical testing with nonlinear microscopy provides a wealth of information about microscopic responses to load. This work investigates the inhomogeneous distribution of strain in loaded AC by tracking the movement and morphological changes of individual chondrocytes using point pattern matching and Bayesian modeling. This information can be used to inform models of mechanotransduction and pathogenesis, and is readily extendable to various other connective tissues. PMID:24525036

  19. Treatment of Articular Cartilage Defects of the Knee With Microfracture and Enhanced Microfracture Techniques.

    PubMed

    Case, Jordan M; Scopp, Jason M

    2016-06-01

    Chondral injuries in the knee are a common source of pain and morbidity. Treatment of symptomatic chondral defects is challenging due to the limited healing capacity of articular cartilage. Microfracture is the most common surgical technique used to treat chondral defects in the knee and utilizes marrow stimulation to generate a fibrocartilage repair. Microfracture has demonstrated good short-term postoperative outcomes. Long-term outcomes following microfracture are variable, with loss of improvement attributed to the poor mechanical qualities of the fibrous repair tissue. Current research is focusing on ways to optimize the repair environment after microfracture using biological scaffolds (enhanced microfracture) to facilitate chondrogenic differentiation and proliferation to improve the quality of repair tissue. PMID:27135288

  20. The organisation of collagen fibrils in the superficial zones of articular cartilage.

    PubMed Central

    Clark, J M

    1990-01-01

    The origin and structure of collagen fibres in the surface of articular cartilage were studied using SEM. Cryofracture was used to create orthogonal fracture surfaces in three planes. Fibres which originated in the radial zone could be traced into the surface where they flattened and overlapped in a common direction. Thick fibres from the periosteum ran into the surface as well, but apparently ended there and did not enter the radial zone. The tangential fibres were covered by a dense, separate layer of small fibrils. The fundamental aspects of the model proposed by Benninghoff are supported by these findings. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:2081698

  1. Effects of Balsamodendron mukul Gum Resin Extract on Articular Cartilage in Papain-induced Osteoarthritis.

    PubMed

    Manjhi, Jayanand; Gupta, Maneesh; Sinha, Anvesha; Rawat, Beena; Rai, Durg V

    2016-07-01

    Context • Osteoarthritis (OA) is one of the most prevalent chronic diseases of the musculoskeleton, causing functional disability among older adults. Management of OA includes conventional pharmacological treatments consisting primarily of nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, physiotherapy, and surgical procedures. The medications are not ideal therapeutic agents; NSAIDs in particular can cause serious side effects. Objective • The study was conducted to investigate the effects of Balsamodendron mukul (BDM) gum resin extract on cartilage damage and microstructural changes in the subchondral bone of rats with papain-induced, osteoarthritic knee joints. Design • The authors designed a parallel randomized, controlled study to examine the effects of 3 concentrations of BDM on OA in a murine model. Setting • The present study was undertaken at the research laboratory, Faculty of Biological Engineering, Shobhit University (Modipuram, Meerut, India). Intervention • OA was induced by intra-articular injections of 0.2 mL of 4% papain solution and 0.1 mL of 0.03 M cysteine through the patellar ligament using a 26-gauge, 1.27-cm needle. The rats in the sham group received same volume of isotonic sodium chloride solution. The rats were divided into 6 groups : (1) control group-fresh rats, with ages and genders similar to those of the other groups but with no induction of OA and no treatments; (2) sham group-rats receiving a sham induction of OA using an intra-articular injection of saline of the same volume as the papain given to all OA rats but no treatments; (3) OA group-rats induced with OA but receiving no treatments; (4) OA + BDM (10%) group-rats induced with OA that received a 10% dose of BDM; (5) OA + BDM (20%) group-rats induced with OA that received a 20% dose of BDM; and (6) OA + BDM (40%) group-rats induced with OA that received a 40% dose of BDM. Rats in the treatment groups were fed their respective doses of BDM extract for 30 d

  2. Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure.

    PubMed

    Lu, Chia-Hsin; Yeh, Tsung-Szu; Yeh, Chia-Lin; Fang, Yu-Hua Dean; Sung, Li-Yu; Lin, Shih-Yeh; Yen, Tzu-Chen; Chang, Yu-Han; Hu, Yu-Chen

    2014-01-01

    Adipose-derived stem cells (ASCs) hold promise for cartilage regeneration but their chondrogenesis potential is inferior. Here, we used a baculovirus (BV) system that exploited FLPo/Frt-mediated transgene recombination and episomal minicircle formation to genetically engineer rabbit ASCs (rASCs). The BV system conferred prolonged and robust TGF-β3/BMP-6 expression in rASCs cultured in porous scaffolds, which critically augmented rASCs chondrogenesis and suppressed osteogenesis/hypertrophy, leading to the formation of cartilaginous constructs with improved maturity and mechanical properties in 2-week culture. Twelve weeks after implantation into full-thickness articular cartilage defects in rabbits, these engineered constructs regenerated neocartilages that resembled native hyaline cartilages in cell morphology, matrix composition and mechanical properties. The neocartilages also displayed cartilage-specific zonal structures without signs of hypertrophy and degeneration, and eventually integrated with host cartilages. In contrast, rASCs that transiently expressed TGF-β3/BMP-6 underwent osteogenesis/hypertrophy and resulted in the formation of inferior cartilaginous constructs, which after implantation regenerated fibrocartilages. These data underscored the crucial role of TGF-β3/BMP-6 expression level and duration in rASCs in the cell differentiation, constructs properties and in vivo repair. The BV-engineered rASCs that persistently express TGF-β3/BMP-6 improved the chondrogenesis, in vitro cartilaginous constructs production and in vivo hyaline cartilage regeneration, thus representing a remarkable advance in cartilage engineering. PMID:23851345

  3. Joint degeneration following meniscal allograft transplantation in a canine model: mechanical properties and semiquantitative histology of articular cartilage.

    PubMed

    Elliott, Dawn M; Jones, Relief; Setton, Lori A; Scully, Sean P; Vail, T Parker; Guilak, Farshid

    2002-03-01

    This study examined the hypothesis that meniscal allograft transplantation serves a "chondroprotective" role and prevents the histological and biomechanical changes of the articular cartilage following meniscectomy. Skeletally mature mongrel dogs underwent total medial meniscectomy and received either a fresh meniscal allograft ( n=10) or no further treatment ( n=10). Semiquantitative histology and biomechanical analysis of the femoral articular cartilage was used to assess cartilage pathology 12 weeks following surgery. Histological analysis showed significant changes in cartilage structure that did not differ between the meniscectomy and allograft transplantation groups. Similarly, the tensile modulus of the surface zone cartilage was significantly lower than that in unoperated controls following either meniscectomy or allograft transplantation. A significant correlation was observed between the biomechanical and histological changes, suggesting that degenerative changes in cartilage structure and mechanical function are interrelated. Our findings do not support the hypothesis that meniscal allograft transplantation provides chondroprotection of the femoral condyle and also suggest that it does not lead to increased degenerative changes. PMID:11914769

  4. Collagen VI regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in articular cartilage

    PubMed Central

    Zelenski, Nicole A.; Leddy, Holly A.; Sanchez-Adams, Johannah; Zhang, Jinzi; Bonaldo, Paolo; Liedtke, Wolfgang; Guilak, Farshid

    2015-01-01

    Objective Mechanical factors play a critical role in the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. We examined the hypothesis that type VI collagen is necessary for mechanotransduction in articular cartilage, by determining the effects of type VI collagen knockout on the activation of the mechano-osmosensitive calcium-permeable channel, transient receptor potential vanilloid 4 (TRPV4), osmotically-induced chondrocyte swelling, and pericellular matrix (PCM) mechanical properties. Methods Confocal laser scanning microscopy was used to image TRPV4-mediated calcium signaling and osmotically-induced cell swelling in intact femora from 2 and 9 month old wild type (WT) and type VI collagen deficient (Col6a1−/−) mice. Immunofluorescence-guided atomic force microscopy was used to map PCM mechanical properties based on the presence of perlecan. Results Hypo-osmotic stress induced TRPV4-mediated calcium signaling was increased in Col6a1−/− mice relative to WT controls at 2 months. Col6a1−/− mice exhibited significantly increased osmotically-induced cell swelling and decreased PCM moduli relative to WT controls at both ages. Conclusion In contrast to our original hypothesis, type VI collagen was not required for TRPV4-mediated Ca2+ signaling; however, knockout of type VI collagen altered the mechanical properties of the PCM, which in turn increased the extent of cell swelling and osmotically-induced TRPV4 signaling in an age-dependent manner. These findings emphasize the role of the PCM as a transducer of mechanical and physicochemical signals, and suggest that alterations in PCM properties, as may occur with aging or osteoarthritis, can influence mechanotransduction via TRPV4 or other ion channels. PMID:25604429

  5. Characterization of proteoglycans isolated from associative extracts of human articular cartilage.

    PubMed Central

    Vilím, V; Fosang, A J

    1993-01-01

    Approx. 10% of the total proteoglycan content of normal young human articular cartilage was extracted under associative conditions with Dulbecco's PBS. Proteoglycans isolated from the extract by Q-Sepharose chromatography were separated by gel chromatography and characterized by gradient gel SDS/PAGE and immunoblotting. Three species of small proteoglycans, two main populations of aggrecan and a population of its smaller fragments were identified. The major populations of aggrecan contained chondroitin sulphate chains, all or part of the N-terminal G1 and G2 domains and, therefore, intact keratan sulphate domains. The larger population was estimated by gradient SDS/PAGE to have a molecular mass of approx. 600 kDa or greater. The second population had an apparent molecular mass of approx. 300-600 kDa. Core proteins derived from these populations of proteoglycans separated on SDS/PAGE into several clusters of bands in the range from 120 to approx. 360 kDa. The extract further contained smaller fragments which lacked chondroitin sulphate but reacted with antibodies against keratan sulphate, and against epitopes present in the G2 domain of aggrecan. The presence of the G2 domain in a broad range of populations of decreasing size indicated extensive cleavage of the aggrecan core protein within its chondroitin sulphate domain. These findings suggest that fragmentation of aggrecan probably occurs in vivo in normal articular cartilage of young individuals. Associative extracts also contained decorin, biglycan and fibromodulin. These were resolved from aggrecan by gel chromatography and identified by immunodetection. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8328959

  6. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.

    PubMed

    Yan, Le-Ping; Wang, Ying-Jun; Ren, Li; Wu, Gang; Caridade, Sofia G; Fan, Jia-Bing; Wang, Ling-Yun; Ji, Pei-Hong; Oliveira, Joaquim M; Oliveira, João T; Mano, João F; Reis, Rui L

    2010-11-01

    In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding. PMID:20648541

  7. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    PubMed

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  8. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage

    PubMed Central

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  9. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    PubMed Central

    2011-01-01

    Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration. PMID:21955995

  10. Computational Wear Simulation of Patellofemoral Articular Cartilage during In Vitro Testing

    PubMed Central

    Li, Lingmin; Patil, Shantanu; Steklov, Nick; Bae, Won; Temple-Wong, Michele; D'Lima, Darryl D.; Sah, Robert L.; Fregly, Benjamin J.

    2011-01-01

    Though changes in normal joint motions and loads (e.g., following anterior cruciate ligament injury) contribute to the development of knee osteoarthritis, the precise mechanism by which these changes induce osteoarthritis remains unknown. As a first step toward identifying this mechanism, this study evaluates computational wear simulations of a patellofemoral joint specimen wear tested on a knee simulator machine. A multi-body dynamic model of the specimen mounted in the simulator machine was constructed in commercial computer-aided engineering software. A custom elastic foundation contact model was used to calculate contact pressures and wear on the femoral and patellar articular surfaces using geometry created from laser scan and MR data. Two different wear simulation approaches were investigated – one that wore the surface geometries gradually over a sequence of 10 one-cycle dynamic simulations (termed the “progressive” approach), and one that wore the surface geometries abruptly using results from a single one-cycle dynamic simulation (termed the “non-progressive” approach). The progressive approach with laser scan geometry reproduced the experimentally measured wear depths and areas for both the femur and patella. The less costly non-progressive approach predicted deeper wear depths, especially on the patella, but had little influence on predicted wear areas. Use of MR data for creating the articular and subchondral bone geometry altered wear depth and area predictions by at most 13%. These results suggest that MR-derived geometry may be sufficient for simulating articular cartilage wear in vivo and that a progressive simulation approach may be needed for the patella and tibia since both remain in continuous contact with the femur. PMID:21453922

  11. Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity

    PubMed Central

    Collin, E. C.; Kilcoyne, M.; White, S. J.; Grad, S.; Alini, M.; Joshi, L.; Pandit, A. S.

    2016-01-01

    In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity. PMID:26965377

  12. MRI properties of a unique hypo-intense layer in degraded articular cartilage.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2015-11-21

    To investigate the characteristics of a hypo-intense laminar appearance in articular cartilage under external loading, microscopic magnetic resonance imaging (μMRI) T1, T2 and T1ρ experiments of a total of 15 specimens of healthy and trypsin-degraded cartilage were performed at different soaking solutions (saline and 100 mM phosphate buffered saline (PBS)). T2 and T1ρ images of the healthy tissue in saline showed no load-induced laminar appearance, while a hypo-intense layer was clearly visible in the deep part of the degraded tissue at the magic angle. A significant difference was found between T2 values at 0° and 55° (from 16.5  ±  2.8 ms to 20.2  ±  2.7 ms, p  =  0.0005), and at 0° and 90° (16.5  ±  2.8 ms to 21.3  ±  2.6 ms, p  <  0.0001) in saline solution. In contrast, this hypo-intense laminar appearance largely disappeared when tissue was soaked in PBS. The visualization of this hypo-intensity appearance in different soaking mediums calls for caution in interpreting the data of relaxation times, chemical exchange and collagen fiber deformation. PMID:26509475

  13. MRI properties of a unique hypo-intense layer in degraded articular cartilage

    NASA Astrophysics Data System (ADS)

    Wang, Nian; Badar, Farid; Xia, Yang

    2015-11-01

    To investigate the characteristics of a hypo-intense laminar appearance in articular cartilage under external loading, microscopic magnetic resonance imaging (μMRI) T1, T2 and T1ρ experiments of a total of 15 specimens of healthy and trypsin-degraded cartilage were performed at different soaking solutions (saline and 100 mM phosphate buffered saline (PBS)). T2 and T1ρ images of the healthy tissue in saline showed no load-induced laminar appearance, while a hypo-intense layer was clearly visible in the deep part of the degraded tissue at the magic angle. A significant difference was found between T2 values at 0° and 55° (from 16.5  ±  2.8 ms to 20.2  ±  2.7 ms, p  =  0.0005), and at 0° and 90° (16.5  ±  2.8 ms to 21.3  ±  2.6 ms, p  <  0.0001) in saline solution. In contrast, this hypo-intense laminar appearance largely disappeared when tissue was soaked in PBS. The visualization of this hypo-intensity appearance in different soaking mediums calls for caution in interpreting the data of relaxation times, chemical exchange and collagen fiber deformation.

  14. The synthesis of dermatan sulphate proteoglycans by fetal and adult human articular cartilage.

    PubMed Central

    Melching, L I; Roughley, P J

    1989-01-01

    Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid. Images Fig. 1. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2775229

  15. Dermatan sulphate proteoglycans of human articular cartilage. The properties of dermatan sulphate proteoglycans I and II.

    PubMed Central

    Roughley, P J; White, R J

    1989-01-01

    Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI. Images Fig. 1. Fig. 2. PMID:2590169

  16. A model to predict the permeation kinetics of dimethyl sulfoxide in articular cartilage.

    PubMed

    Yu, Xiaoyi; Chen, Guangming; Zhang, Shaozhi

    2013-02-01

    Cryopreservation of articular cartilage (AC) has excited great interest due to the practical surgical importance of this tissue. Characterization of permeation kinetics of cryoprotective agents (CPA) in AC is important for designing optimal CPA addition/removal protocols to achieve successful cryopreservation. Permeation is predominantly a mass diffusion process. Since the diffusivity is a function of temperature and concentration, analysis of the permeation problem would be greatly facilitated if a predictive method were available. This article describes, a model that was developed to predict the permeation kinetics of dimethyl sulfoxide (DMSO) in AC. The cartilage was assumed as a porous medium, and the effect(s) of composition and thermodynamic nonideality of the DMSO solution were considered in model development. The diffusion coefficient was correlated to the infinite dilution coefficients through a binary diffusion thermodynamic model. The UNIFAC model was used to evaluate the activity coefficient, the Vignes equation was employed to estimate the composition dependence of the diffusion coefficient, and the Siddiqi-Lucas correlation was applied to determine the diffusion coefficients at infinite dilution. Comparisons of the predicted overall DMSO uptake by AC with the experimental data over wide temperature and concentration ranges [1~37°C, 10~47% (w/w)] show that the model can accurately describe the permeation kinetics of DMSO in AC [coefficient of determination (R(2)): 0.961~0.996, mean relative error (MRE): 2.2~9.1%]. PMID:24845255

  17. Human articular cartilage in osteoarthrosis. I. The matrix. Transmission electron microscopic study.

    PubMed

    Montella, A; Manunta, A; Espa, E; Gasparini, G; De Santis, E; Gulisano, M

    1992-01-01

    The present research has been carried out with the aim of contributing to the understanding of morphological changes in human articular cartilage during osteoarthrosis and to evaluate the usefulness of TEM in this application. Only the matrix was examined in this first phase of study. Fragments from the femoral head of 20 patients subjected total hip arthroplasis, were studied by TEM after treatment with current procedures. The images obtained were considered observing the division of cartilage into superficial, intermediate and deep layers. Patients were divided according to the gravity of their clinical conditions. The least severe forms of pathology seem to involve only the superficial layer, which quickly loses the lamina splendens and may be affected by rarefactions of the matrix, which becomes fissured, while the deep layers are only slightly involved. During the later stages, the pathology progresses with irregularity of disposition and size of the collagen fibres and an increase in the number and size of fissures. The intermediate layer shows architectural disorder in the collagen fibres, even reaching the deep layer. The interfibrillar distance appears greater. As pathology progresses, the superficial layer tends to disappear, while the successive layers undergo progressive alteration in disposition and size of the collagen fibres. Globular aggregations of various dimensions and electron density similar to collagen are present in the deep layer. PMID:1288443

  18. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.

    PubMed

    Butz, Kent D; Chan, Deva D; Nauman, Eric A; Neu, Corey P

    2011-10-13

    The noninvasive measurement of finite strains in biomaterials and tissues by magnetic resonance imaging (MRI) enables mathematical estimates of stress distributions and material properties. Such methods allow for non-contact and patient-specific modeling in a manner not possible with traditional mechanical testing or finite element techniques. Here, we employed three constitutive (i.e. linear Hookean, and nonlinear Neo-Hookean and Mooney-Rivlin) relations with known loading conditions and MRI-based finite strains to estimate stress patterns and material properties in the articular cartilage of tibiofemoral joints. Displacement-encoded MRI was used to determine two-dimensional finite strains in juvenile porcine joints, and an iterative technique estimated stress distributions and material properties with defined constitutive relations. Stress distributions were consistent across all relations, although the stress magnitudes varied. Material properties for femoral and tibial cartilage were found to be consistent with those reported in literature. Further, the stress estimates from Hookean and Neo-Hookean, but not Mooney-Rivlin, relations agreed with finite element-based simulations. A nonlinear Neo-Hookean relation provided the most appropriate model for the characterization of complex and spatially dependent stresses using two-dimensional MRI-based finite strain. These results demonstrate the feasibility of a new and computationally efficient technique incorporating MRI-based deformation with mathematical modeling to non-invasively evaluate the mechanical behavior of biological tissues and materials. PMID:21920526

  19. 24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats.

    PubMed

    Boyan, Barbara D; Hyzy, Sharon L; Pan, Qingfen; Scott, Kayla M; Coutts, Richard D; Healey, Robert; Schwartz, Zvi

    2016-01-01

    Osteoarthritis (OA) in humans is associated with low circulating 25-hydroxyvitamin D3 [25(OH)D3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] accumulates in articular cartilage following injection of [3H]-25(OH)D3. Previously, we showed that 24R,25(OH)2D3 blocks chondrocyte apoptosis via phospholipase D and p53, suggesting a role for 24R,25(OH)2D3 in maintaining cartilage health. We examined the ability of 24R,25(OH)2D3 to prevent degenerative changes in articular cartilage in an OA-like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes were treated with IL-1β with and without 24R,25(OH)2D3 or 1α,25(OH)2D3. 24R,25(OH)2D3 but not 1α,25(OH)2D3 blocked the effects of IL-1β in a dose-dependent manner, and its effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral anterior cruciate ligament transections were performed in immunocompetent rats followed by intra-articular injections of 24R,25(OH)2D3 or vehicle (t = 0, 7, 14, 21 days). Tissues were harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints treated with 24R,25(OH)2D3 had less articular cartilage damage and levels of inflammatory mediators. These results indicate that 24R,25(OH)2D3 protects against OA, and suggest that it may be a therapeutic approach for preventing trauma-induced osteoarthritis. PMID:27575371

  20. Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis

    PubMed Central

    Gardiner, M.D.; Vincent, T.L.; Driscoll, C.; Burleigh, A.; Bou-Gharios, G.; Saklatvala, J.; Nagase, H.; Chanalaris, A.

    2015-01-01

    Summary Objective Identify gene changes in articular cartilage of the medial tibial plateau (MTP) at 2, 4 and 8 weeks after destabilisation of the medial meniscus (DMM) in mice. Compare our data with previously published datasets to ascertain dysregulated pathways and genes in osteoarthritis (OA). Design RNA was extracted from the ipsilateral and contralateral MTP cartilage, amplified, labelled and hybridized on Illumina WGv2 microarrays. Results were confirmed by real-time polymerase chain reaction (PCR) for selected genes. Results Transcriptional analysis and network reconstruction revealed changes in extracellular matrix and cytoskeletal genes induced by DMM. TGFβ signalling pathway and complement and coagulation cascade genes were regulated at 2 weeks. Fibronectin (Fn1) is a hub in a reconstructed network at 2 weeks. Regulated genes decrease over time. By 8 weeks fibromodulin (Fmod) and tenascin N (Tnn) are the only dysregulated genes present in the DMM operated knees. Comparison with human and rodent published gene sets identified genes overlapping between our array and eight other studies. Conclusions Cartilage contributes a minute percentage to the RNA extracted from the whole joint (<0.2%), yet is sensitive to changes in gene expression post-DMM. The post-DMM transcriptional reprogramming wanes over time dissipating by 8 weeks. Common pathways between published gene sets include focal adhesion, regulation of actin cytoskeleton and TGFβ. Common genes include Jagged 1 (Jag1), Tetraspanin 2 (Tspan2), neuroblastoma, suppression of tumourigenicity 1 (Nbl1) and N-myc downstream regulated gene 2 (Ndrg2). The concomitant genes and pathways we identify may warrant further investigation as biomarkers or modulators of OA. PMID:25545425

  1. The collagen structure of equine articular cartilage characterized using polarization-sensitive optical coherence tomography and non-linear microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Ugryumova, Nadya; Knapp, Karen M.; Matcher, Stephen J.

    2006-09-01

    Equine articular cartilage has been imaged using both polarization-sensitive optical coherence tomography (PS-OCT) and non-linear microscopy. PS-OCT has been used to spatially map the birefringence in the cartilage and we have found that in the vicinity of the lesion the images display a characteristic disruption in the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. x2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We have also imaged the cartilage using non-linear microscopy and compare the scans taken with second harmonic generation (SHG) light and the two photon fluorescence (TPF) light. SHG images collected using 800 nm excitation reveals the spatial distribution of collagen fibers, whilst TPF images clearly shows the distribution of intracellular and pericellular fluorophores.

  2. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression

    NASA Astrophysics Data System (ADS)

    Yin, Jianhua; Xia, Yang

    2014-12-01

    Fourier transform infrared imaging (FTIRI) combining with principal component regression (PCR) analysis were used to determine the reduction of proteoglycan (PG) in articular cartilage after the transection of the anterior cruciate ligament (ACL). A number of canine knee cartilage sections were harvested from the meniscus-covered and meniscus-uncovered medial tibial locations from the control joints, the ACL joints at three time points after the surgery, and their contralateral joints. The PG loss in the ACL cartilage was related positively to the durations after the surgery. The PG loss in the contralateral knees was less than that of the ACL knees. The PG loss in the meniscus-covered cartilage was less than that of the meniscus-uncovered tissue in both ACL and contralateral knees. The quantitative mapping of PG loss could monitor the disease progression and repair processes in arthritis.

  3. Developmentally Inspired Combined Mechanical and Biochemical Signaling Approach on Zonal Lineage Commitment of Mesenchymal Stem Cells in Articular Cartilage Regeneration

    PubMed Central

    Karimi, Tahereh; Barati, Danial; Karaman, Ozan; Moeinzadeh, Sina; Jabbari, Esmaiel

    2014-01-01

    Articular cartilage is organized into multiple zones including superficial, middle and calcified zones with distinct cellular and extracellular components to impart lubrication, compressive strength, and rigidity for load transmission to bone, respectively. During native cartilage tissue development, changes in biochemical, mechanical, and cellular factors direct the formation of stratified structure of articular cartilage. The objective of this work was to investigate the effect of combined gradients in cell density, matrix stiffness, and zone-specific growth factors on the zonal organization of articular cartilage. Human mesenchymal stem cells (hMSCs) were encapsulated in acrylate-functionalized lactide-chain-extended polyethylene glycol (SPELA) gels simulating cell density and stiffness of the superficial, middle and calcified zones. The cell-encapsulated gels were cultivated in medium supplemented with growth factors specific to each zone and the expression of zone-specific markers was measured with incubation time. Encapsulation of 60×106 cells/mL hMSCs in a soft gel (80 kPa modulus) and cultivation with a combination of TGF-β1 (3 ng/mL) and BMP-7 (100 ng/mL) led to the expression of markers for the superficial zone. Conversely, encapsulation of 15×106 cells/mL hMSCs in a stiff gel (320 MPa modulus) and cultivation with a combination of TGF-β1 (30 ng/mL) and hydroxyapatite (3%) led to the expression of markers for the calcified zone. Further, encapsulation of 20×106 cells/mL hMSCs in a gel with 2.1 MPa modulus and cultivation with a combination of TGF-β1 (30 ng/mL) and IGF-1 (100 ng/mL) led to up-regulation of the middle zone markers. Results demonstrate that a developmental approach with gradients in cell density, matrix stiffness, and zone-specific growth factors can potentially regenerate zonal structure of the articular cartilage. PMID:25387395

  4. Nociceptive Sensitizers Are Regulated in Damaged Joint Tissues, Including Articular Cartilage, When Osteoarthritic Mice Display Pain Behavior

    PubMed Central

    Driscoll, Clare; Chanalaris, Anastasios; Knights, Chancie; Ismail, Heba; Sacitharan, Pradeep K.; Gentry, Clive; Bevan, Stuart

    2016-01-01

    Objective Pain is the most common symptom of osteoarthritis (OA), yet where it originates in the joint and how it is driven are unknown. The aim of this study was to identify pain‐sensitizing molecules that are regulated in the joint when mice subjected to surgical joint destabilization develop OA‐related pain behavior, the tissues in which these molecules are being regulated, and the factors that control their regulation. Methods Ten‐week‐old mice underwent sham surgery, partial meniscectomy, or surgical destabilization of the medial meniscus (DMM). Pain‐related behavior as determined by a variety of methods (testing of responses to von Frey filaments, cold plate testing for cold sensitivity, analgesiometry, incapacitance testing, and forced flexion testing) was assessed weekly. Once pain‐related behavior was established, RNA was extracted from either whole joints or microdissected tissue samples (articular cartilage, meniscus, and bone). Reverse transcription–polymerase chain reaction analysis was performed to analyze the expression of 54 genes known to regulate pain sensitization. Cartilage injury assays were performed using avulsed immature hips from wild‐type or genetically modified mice or by explanting articular cartilage from porcine joints preinjected with pharmacologic inhibitors. Levels of nerve growth factor (NGF) protein were measured by enzyme‐linked immunosorbent assay. Results Mice developed pain‐related behavior 8 weeks after undergoing partial meniscectomy or 12 weeks after undergoing DMM. NGF, bradykinin receptors B1 and B2, tachykinin, and tachykinin receptor 1 were significantly regulated in the joints of mice displaying pain‐related behavior. Little regulation of inflammatory cytokines, leukocyte activation markers, or chemokines was observed. When tissue samples from articular cartilage, meniscus, and bone were analyzed separately, NGF was consistently regulated in the articular cartilage. The other pain sensitizers were

  5. In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI

    NASA Astrophysics Data System (ADS)

    Juras, Vladimir; Bittsansky, Michal; Majdisova, Zuzana; Szomolanyi, Pavol; Sulzbacher, Irene; Gäbler, Stefan; Stampfl, Jürgen; Schüller, Georg; Trattnig, Siegfried

    2009-03-01

    The objective of this study was to evaluate the correlations between MR parameters and the biomechanical properties of naturally degenerated human articular cartilage. Human cartilage explants from the femoral condyles of patients who underwent total knee replacement were evaluated on a micro-imaging system at 3 T. To quantify glycosaminoglycan (GAG) content, delayed gadolinium-enhanced MRI of the cartilage (dGEMRIC) was used. T2 maps were created by using multi-echo, multi-slice spin echo sequences with six echoes: 15, 30, 45, 60, 75, and 90 ms. Data for apparent diffusion constant (ADC) maps were obtained from pulsed gradient spin echo (PGSE) sequences with five b-values: 10.472, 220.0, 627.0, 452.8, 724.5, and 957.7. MR parameters were correlated with mechanical parameters (instantaneous ( I) and equilibrium ( Eq) modulus and relaxation time ( τ)), and the OA stage of each cartilage specimen was determined by histological evaluation of hematoxylin-eosin stained slices. For some parameters, a high correlation was found: the correlation of T1Gd vs Eq ( r = 0.8095), T1Gd vs I/ Eq ( r = -0.8441) and T1Gd vs τ ( r = 0.8469). The correlation of T2 and ADC with selected biomechanical parameters was not statistically significant. In conclusion, GAG content measured by dGEMRIC is highly related to the selected biomechanical properties of naturally degenerated articular cartilage. In contrast, T2 and ADC were unable to estimate these properties. The results of the study imply that some MR parameters can non-invasively predict the biomechanical properties of degenerated articular cartilage.

  6. Application of selected cationic dyes for the semiquantitative estimation of glycosaminoglycans in histological sections of articular cartilage by microspectrophotometry.

    PubMed

    Király, K; Lapveteläinen, T; Arokoski, J; Törrönen, K; Módis, L; Kiviranta, I; Helminen, H J

    1996-08-01

    Selected commonly used cationic dyes, viz. Thionin, Safranin O, Toluidine Blue O, Dimethylmethylene Blue, Cuprolinic Blue, Cupromeronic Blue, N,N'-Diethylpseudoisocyanine, and a modified PAS-method, and staining methods with a variety of alternative procedures, e.g., variation of pH, use of the critical electrolyte concentration method, and blocking reactions (methylation-saponification, carboxymethylation), were tested to select optimal staining procedures for the semiquantitative histochemical estimation of glycosaminoglycans by microspectrophotometry in sections of articular cartilage. The methods were carried out on 3 microns-thick paraffin and 1 microns-thick glycolmethacrylate sections of bovine articular cartilage. The staining intensity of the sections was measured from spots 25 microns apart using a Leitz MPV 3 microspectrophotometer, starting at the surface of the cartilage and ending up at the tidemark. The result was compared with the fixed-charge density graph determined from the adjacent articular cartilage. Of the dyes tested, Thionin and Safranin O proved to be excellent cationic dyes for the histochemical quantification of cartilage matrix proteoglycans, since the staining intensity curves showed a linear correlation (r = 0.900-0.995) with the fixed charge density curves from the adjacent cartilage. Also, the stain distribution was consistently uniform across the sections. In 1 microns-thick glycolmethacrylate sections, the Safranin O staining gradient showed almost perfect identity with the fixed-charge density curve. Cuprolinic Blue and Cupromeronic Blue combined with the critical electrolyte concentration technique were also useful for the microspectrophotometric assays of glycosaminoglycans, but the presence of metachromasia should be checked prior to the measurements. The reliability of blocking procedures for quantitative histochemical work was not convincing. PMID:8894661

  7. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model.

    PubMed

    Mak, J; Jablonski, C L; Leonard, C A; Dunn, J F; Raharjo, E; Matyas, J R; Biernaskie, J; Krawetz, R J

    2016-01-01

    Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ "super-healer" strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not. PMID:26983696

  8. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model

    PubMed Central

    Mak, J.; Jablonski, C. L.; Leonard, C. A.; Dunn, J. F.; Raharjo, E.; Matyas, J. R.; Biernaskie, J.; Krawetz, R. J.

    2016-01-01

    Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ “super-healer” strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not. PMID:26983696

  9. [Evaluation of early biomarkers of cartilage degeneration in the diagnosis and clinico-therapeutic monitoring of primary osteoarthrosis].

    PubMed

    Giordano, N; Battisti, E; Fortunato, M; Santacroce, C; Geraci, S; Tanganelli, V; Mattii, G; Gennari, C; Gennari, L; Rigato, M

    2001-01-01

    It is known that in the course of osteoarthritis (OA), articular cartilage develops biochemical and structural changes. In the last years, serum and urinary markers of both the synthesis and destruction of cartilage have been dosed, above all in order to carry out an early diagnosis of OA. Among them, the urinary excretion of pyridinoline seems to correlate with the entity of the degradation of cartilage. The aim of the present study is to evaluate the above mentioned markers in OA patients compared to control subjects. Moreover, the possible influence on cartilage of two different non steroidal antiinflammatory drugs (NSAIDs), in particular Nabumetone and Piroxicam, has been verified. The study shows that the urinary excretion of pyridinoline is able to express the severity of OA. At last, the study shows that the tested drugs do not interfere with the metabolism of cartilage. PMID:11692536

  10. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study

    PubMed Central

    Peck, Yvonne; He, Pengfei; Chilla, Geetha Soujanya V. N.; Poh, Chueh Loo; Wang, Dong-An

    2015-01-01

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG at endpoint. Microscopic inspection revealed that LhCG engraftment restored cartilage thickness, promoted integration with surrounding native cartilage, produced abundant cartilage-specific matrix molecules, and re-established an intact superficial tangential zone. Importantly, the repair efficacy of LhCG was quantitatively shown to be comparable to native, unaffected cartilage in terms of biochemical composition and biomechanical properties. There were no complications related to the donor site of cartilage biopsy. Collectively, these results imply that LhCG engraftment may be a viable approach for articular cartilage repair. PMID:26549401

  11. Multicomponent T2 Analysis of Articular Cartilage With Synovial Fluid Partial Volume Correction

    PubMed Central

    Liu, Fang; Chaudhary, Rajeev; Block, Walter F.; Samsonov, Alexey; Kijowski, Richard

    2016-01-01

    Purpose To investigate the use of a three-pool model to account for the confounding effects of synovial fluid on multicomponent T2 analysis of articular cartilage using Multicomponent Driven Equilibrium Single Shot Observation of T1 and T2 (mcDESPOT). Materials and Methods mcDESPOT was performed on the knee of eight asymptomatic volunteers and eight patients with osteoarthritis at 3.0T with multicomponent T2 maps created using the two-pool model and a three-pool model containing a nonexchanging synovial fluid water pool. The fraction of the fast-relaxing water component (FF) and the T2 relaxation times for the fast-relaxing (T2F) and slow-relaxing (T2S) water components were measured in the superficial and deep layers of patellar cartilage using the two-pool and three-pool models in asymptomatic volunteers and patients with osteoarthritis and were compared using Wilcoxon signed rank tests. Results Within the superficial layer of patellar cartilage, FF was 22.5% and 25.6% for asymptomatic volunteers and 21.3% and 22.8% for patients with osteoarthritis when using the two-pool and three-pool models, respectively, while T2S was 73.9 msec and 62.0 msec for asymptomatic volunteers and 72.0 msec and 63.1 msec for patients with osteoarthritis when using the two-pool and three-pool models, respectively. For both asymptomatic volunteers and patients with osteoarthritis, the two-pool model provided significantly (P < 0.05) lower FF and higher T2S than the three-pool model, likely due to the effects of synovial fluid partial volume averaging. Conclusion The effects of partial volume averaging between superficial cartilage and synovial fluid may result in biased multicomponent T2 measurements that can be corrected using an mcDESPOT three-pool model containing a nonexchanging synovial fluid water pool. PMID:26435385

  12. CAN OSTEOCHONDRAL GRAFTING BE AUGMENTED WITH MICROFRACTURE IN AN EXTENDED SIZED LESION OF ARTICULAR CARTILAGE

    PubMed Central

    Lane, JG; Healey, RM; Sah, RL; Chen, AC-S; Amiel, D

    2014-01-01

    BACKGROUND Both microfracture and osteochondral autografting procedures have been useful in treating osteochondral lesions. HYPOTHESIS Combining microfracture and osteochondral autografting procedures can extend the size of lesions which can be treated with either technique. STUDY DESIGN Descriptive laboratory study. METHODS Eight adult goats underwent osteochondral autograft transfer of a 4.5mm femoral trochlea plug into an 8mm full thickness chondral defect in the weight bearing portion of the medial femoral condyle. In the gap region surrounding the autograft, microfracture was performed. The animals were allowed normal activity until the end of the experiment at 6 months, at which time the knees were harvested. At harvest the knees were assessed grossly, and then evaluation was performed by histology and histomorphometry, biochemistry and biomechanics. One animal died at 6 wks from gastroenteritis. RESULTS The osteochondral plugs healed well, with integration of the bone and preservation of the chondral cap. The chondral gap between the host site articular cartilage and the transferred plug had decreased from 3 mm at implant to less than 0.1 mm. Histological analysis demonstrated regions of variable cartilage repair, with integration of the cartilage layer at some sites but incomplete healing at others. Histomorphometry demonstrated filling of the chondral gap to 75–85% of the normal volume. Biochemical analysis revealed greater than 90% type II collagen at most sites with some areas containing 80% type II collagen. Biomechanical indentation testing, indicated that the repaired area had variable thickness and stiffness, with a trend of increased stiffness in the bulk graft and decreased softness at the proximal microfracture interface site. CONCLUSIONS The performance of a combined microfracture and osteochondral autograft transfer (OATS) procedure to resurface a large chondral defect appears promising. Transferred cartilage tissue can successfully be

  13. Melanocortin 1 Receptor-Signaling Deficiency Results in an Articular Cartilage Phenotype and Accelerates Pathogenesis of Surgically Induced Murine Osteoarthritis

    PubMed Central

    Hackmayer, Gerit; Greth, Carina; Bauer, Richard J.; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT–analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  14. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels.

    PubMed

    Smeriglio, Piera; Lai, Janice H; Dhulipala, Lakshmi; Behn, Anthony W; Goodman, Stuart B; Smith, Robert L; Maloney, William J; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Regeneration of human articular cartilage is inherently limited and extensive efforts have focused on engineering the cartilage tissue. Various cellular sources have been studied for cartilage tissue engineering including adult chondrocytes, and embryonic or adult stem cells. Juvenile chondrocytes (from donors below 13 years of age) have recently been reported to be a promising cell source for cartilage regeneration. Previous studies have compared the potential of adult and juvenile chondrocytes or adult and osteoarthritic (OA) chondrocytes. To comprehensively characterize the comparative potential of young, old, and diseased chondrocytes, here we examined cartilage formation by juvenile, adult, and OA chondrocytes in three-dimensional (3D) biomimetic hydrogels composed of poly(ethylene glycol) and chondroitin sulfate. All three human articular chondrocytes were encapsulated in the 3D biomimetic hydrogels and cultured for 3 or 6 weeks to allow maturation and extracellular matrix formation. Outcomes were analyzed using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. After 3 and 6 weeks, juvenile chondrocytes showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA chondrocytes showed a downregulation. Aggrecan and type II collagen deposition and glycosaminoglycan accumulation were high for juvenile and adult chondrocytes but not for OA chondrocytes. Similar trend was observed in the compressive moduli of the cartilage constructs generated by the three different chondrocytes. In conclusion, the juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogels. The 3D culture model described here may also provide a useful tool to further study the molecular differences among chondrocytes from different stages, which can help elucidate the mechanisms for age-related decline in the intrinsic capacity for cartilage repair. PMID:25054343

  15. A study of the diffusion characteristics of normal, delipidized and relipidized articular cartilage using magnetic resonance imaging.

    PubMed

    Yusuf, K Q; Momot, K I; Wellard, R M; Oloyede, A

    2013-04-01

    This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB(®)-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability. PMID:23404060

  16. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. PMID:27033729

  17. Electrostatic and Non-Electrostatic Contributions of Proteoglycans to the Compressive Equilibrium Modulus of Bovine Articular Cartilage

    PubMed Central

    Guterl, Clare Canal; Hung, Clark T.; Ateshian, Gerard A.

    2010-01-01

    This study presents direct experimental evidence for assessing the electrostatic and nonelectrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isotonic and hypertonic saline; the combined contribution was assessed by testing untreated and proteoglycan-depleted samples. Though it is well recognized that proteoglycans contribute significantly to the compressive stiffness of cartilage, results demonstrate that the combined electrostatic and non-electrostatic contributions may add up to more than 98% of the modulus, a magnitude not previously appreciated. Of this contribution, about two-thirds arises from electrostatic effects. The compressive modulus of the proteoglycan-depleted cartilage matrix may be as low as 3 kPa, representing less than 2% of the normal tissue modulus; experimental evidence also confirms that the collagen matrix in digested cartilage may buckle under compressive strains, resulting in crimping patterns. Thus, it is reasonable to model the collagen as a fibrillar matrix that can only sustain tension. This study also demonstrates that residual stresses in cartilage do not arise exclusively from proteoglycans, since cartilage remains curled relative to its in situ geometry even after proteoglycan depletion. These increased insights into the structure-function relationships of cartilage can lead to improved constitutive models and a better understanding of the response of cartilage to physiological loading conditions. PMID:20189179

  18. Genes Involved in the Osteoarthritis Process Identified through Genome Wide Expression Analysis in Articular Cartilage; the RAAK Study

    PubMed Central

    Bovée, Judith V. M. G.; Bomer, Nils; van der Breggen, Ruud; Lakenberg, Nico; Keurentjes, J. Christiaan; Goeman, Jelle J.; Slagboom, P. Eline; Nelissen, Rob G. H. H.; Bos, Steffan D.; Meulenbelt, Ingrid

    2014-01-01

    Objective Identify gene expression profiles associated with OA processes in articular cartilage and determine pathways changing during the disease process. Methods Genome wide gene expression was determined in paired samples of OA affected and preserved cartilage of the same joint using microarray analysis for 33 patients of the RAAK study. Results were replicated in independent samples by RT-qPCR and immunohistochemistry. Profiles were analyzed with the online analysis tools DAVID and STRING to identify enrichment for specific pathways and protein-protein interactions. Results Among the 1717 genes that were significantly differently expressed between OA affected and preserved cartilage we found significant enrichment for genes involved in skeletal development (e.g. TNFRSF11B and FRZB). Also several inflammatory genes such as CD55, PTGES and TNFAIP6, previously identified in within-joint analyses as well as in analyses comparing preserved cartilage from OA affected joints versus healthy cartilage were among the top genes. Of note was the high up-regulation of NGF in OA cartilage. RT-qPCR confirmed differential expression for 18 out of 19 genes with expression changes of 2-fold or higher, and immunohistochemistry of selected genes showed a concordant change in protein expression. Most of these changes associated with OA severity (Mankin score) but were independent of joint-site or sex. Conclusion We provide further insights into the ongoing OA pathophysiological processes in cartilage, in particular into differences in macroscopically intact cartilage compared to OA affected cartilage, which seem relatively consistent and independent of sex or joint. We advocate that development of treatment could benefit by focusing on these similarities in gene expression changes and/or pathways. PMID:25054223

  19. Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography

    PubMed Central

    Nieminen, H.J.; Ylitalo, T.; Karhula, S.; Suuronen, J.-P.; Kauppinen, S.; Serimaa, R.; Hæggström, E.; Pritzker, K.P.H.; Valkealahti, M.; Lehenkari, P.; Finnilä, M.; Saarakkala, S.

    2015-01-01

    Summary Objective Collagen distribution within articular cartilage (AC) is typically evaluated from histological sections, e.g., using collagen staining and light microscopy (LM). Unfortunately, all techniques based on histological sections are time-consuming, destructive, and without extraordinary effort, limited to two dimensions. This study investigates whether phosphotungstic acid (PTA) and phosphomolybdic acid (PMA), two collagen-specific markers and X-ray absorbers, could (1) produce contrast for AC X-ray imaging or (2) be used to detect collagen distribution within AC. Method We labeled equine AC samples with PTA or PMA and imaged them with micro-computed tomography (micro-CT) at pre-defined time points 0, 18, 36, 54, 72, 90, 180, 270 h during staining. The micro-CT image intensity was compared with collagen distributions obtained with a reference technique, i.e., Fourier-transform infrared imaging (FTIRI). The labeling time and contrast agent producing highest association (Pearson correlation, Bland–Altman analysis) between FTIRI collagen distribution and micro-CT -determined PTA distribution was selected for human AC. Results Both, PTA and PMA labeling permitted visualization of AC features using micro-CT in non-calcified cartilage. After labeling the samples for 36 h in PTA, the spatial distribution of X-ray attenuation correlated highly with the collagen distribution determined by FTIRI in both equine (mean ± S.D. of the Pearson correlation coefficients, r = 0.96 ± 0.03, n = 12) and human AC (r = 0.82 ± 0.15, n = 4). Conclusions PTA-induced X-ray attenuation is a potential marker for non-destructive detection of AC collagen distributions in 3D. This approach opens new possibilities in development of non-destructive 3D histopathological techniques for characterization of OA. PMID:26003951

  20. Deficiency of Thrombospondin-4 in Mice Does Not Affect Skeletal Growth or Bone Mass Acquisition, but Causes a Transient Reduction of Articular Cartilage Thickness

    PubMed Central

    Simon, Maciej; Peters, Stephanie; Baum, Wolfgang; Schett, Georg; Ruether, Wolfgang; Niemeier, Andreas; Schinke, Thorsten; Amling, Michael

    2015-01-01

    Although articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4). In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone. To study the role of Thbs4 in skeletal development and integrity we took advantage of a Thbs4-deficient mouse model that was analyzed by undecalcified bone histology. We found that Thbs4-deficient mice do not display phenotypic differences towards wildtype littermates in terms of skeletal growth or bone mass acquisition. Since Thbs4 has previously been found over-expressed in bones of Phex-deficient Hyp mice, we additionally generated Thbs4-deficient Hyp mice, but failed to detect phenotypic differences towards Hyp littermates. With respect to articular cartilage we found that Thbs4-deficient mice display transient thinning of articular cartilage, suggesting a protective role of Thbs4 for joint integrity. Gene expression analysis using porcine primary cells revealed that Thbs4 is not expressed by synovial fibroblasts and that it represents the only member of the Thbs gene family with specific expression in articular, but not in growth plate chondrocytes. In an attempt to identify specific molecular effects of Thbs4 we treated porcine articular chondrocytes with human THBS4 in the absence or presence of conditioned medium from porcine synovial fibroblasts. Here we did not observe a significant influence of THBS4 on proliferation, metabolic activity, apoptosis or gene expression, suggesting that it does not act as a signaling molecule. Taken together, our data demonstrate that Thbs4 is highly expressed in articular chondrocytes, where its presence in the

  1. Effects of holmium:YAG laser on equine articular cartilage and subchondral bone adjacent to traumatic lesions

    NASA Astrophysics Data System (ADS)

    Collier, Michael A.; Haugland, L. Mark; Bellamy, Janine; Johnson, Lanny L.; Rohrer, Michael D.; Walls, Robert C.; Bartels, Kenneth E.

    1994-09-01

    The effects of Ho:YAG laser energy on articular cartilage and subchondral bone adjacent to traumatically created cartilage lesions in a continuous weight-bearing model were investigated. The 2.1 micrometers wavelength was delivered in hand-controlled contact and near-contact hard tissue arthroscopic surgery in a saline medium. Bilateral arthroscopy was performed on normal antebrachiocarpal and intercarpal joints of four adult horses. One-hundred twenty traumatic lesions were created on three weight-bearing articular surfaces with a knife, curette, or a motorized burr. Depths of the lesions were partial and full thickness. Configurations of the lesions were lacerations, scrapes, and craters. Left limbs were used as controls. Right limb lesions were treated with various intensities of laser energy. Animals were sacrificed at intervals of 1, 3, and 8 weeks. Gross microscopic anatomy was documented, and tissue sections were subjected to blind review by a pathologist. Mankin grading for cellularity and proteoglycan content was used to qualitatively evaluate cartilage response. Cartilage adjacent to all lesions exposed to laser energy had better cellularity and proteoglycan content than corresponding controls by Mankin grading.

  2. Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression

    NASA Astrophysics Data System (ADS)

    Yin, Jianhua; Xia, Yang; Lu, Mei

    2012-03-01

    Fourier-transform infrared imaging (FT-IRI) technique with the principal component regression (PCR) method was used to quantitatively determine the 2D images and the depth-dependent concentration profiles of two principal macromolecular components (collagen and proteoglycan) in articular cartilage. Ten 6 μm thick sections of canine humeral cartilage were imaged at a pixel size of 6.25 μm in FT-IRI. The infrared spectra extracted from FT-IRI experiments were imported into a PCR program to calculate the quantitative distributions of both collagen and proteoglycan in dry cartilage, which were subsequently converted into the wet-weight based concentration profiles. The proteoglycan profiles by FT-IRI and PCR significantly correlated in linear regression with the proteoglycan profiles by the non-destructive μMRI (the goodness-of-fit 0.96 and the Pearson coefficient 0.98). Based on these concentration relationships, the concentration images of collagen and proteoglycan in both healthy and lesioned articular cartilage were successfully constructed two dimensionally. The simultaneous construction of both collagen and proteoglycan concentration images demonstrates that this combined imaging and chemometrics approach could be used as a sensitive tool to accurately resolve and visualize the concentration distributions of macromolecules in biological tissues.

  3. Surface Zone Articular Chondrocytes Modulate the Bulk and Surface Mechanical Properties of the Tissue-Engineered Cartilage

    PubMed Central

    Peng, Gordon; McNary, Sean M.; Athanasiou, Kyriacos A.

    2014-01-01

    The central hypothesis of functional tissue engineering is that an engineered construct can serve as a viable replacement tissue in vivo by replicating the structure and function of native tissue. In the case of articular cartilage, this requires the reproduction of the bulk mechanical and surface lubrication properties of native hyaline cartilage. Cartilage tissue engineering has primarily focused on achieving the bulk mechanical properties of native cartilage such as the compressive aggregate modulus and tensile strength. A scaffold-free self-assembling process has been developed that produces engineered cartilage with compressive properties approaching native tissue levels. Thus, the next step in this process is to begin addressing the friction coefficient and wear properties of these engineered constructs. The superficial zone protein (SZP), also known as lubricin or PRG4, is a boundary mode lubricant that is synthesized by surface zone (SZ) articular chondrocytes. Under conditions of high loading and low sliding speeds, SZP reduces friction and wear at the articular surface. The objective of this investigation was to determine whether increasing the proportion of SZ chondrocytes in cartilage constructs, in the absence of external stimuli such as growth factors and mechanical loading, would enhance the secretion of SZP and improve their frictional properties. In this study, cartilage constructs were engineered through a self-assembling process with varying ratios of SZ and middle zone (MZ) chondrocytes (SZ:MZ): 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs containing different ratios of SZ and MZ chondrocytes did not significantly differ in the glycosaminoglycan composition or compressive aggregate modulus. In contrast, tensile properties and collagen content were enhanced in nearly all constructs containing greater amounts of SZ chondrocytes. Increasing the proportion of SZ chondrocytes had the hypothesized effect of improving the synthesis and secretion

  4. Determination of the collagen fiber `brushing direction' in articular cartilage by conical-scan polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa; Matcher, Stephen J.

    2014-03-01

    A new imaging technique is presented by introducing the concept of conical scan to the variable-incidenc-angle polarimetry (VIA) previously developed by our group. The technique would facilitate the translating of the VIA technique to the clinic by simplifying the requirements of measurements in two orthogonal planes by using a conical scan protocol. Conical scan PS-OCT images could illustrate directly the azimuthal angle of the collage fibers in birefringent tissue, which was validated by measurements on a bovine tendon. We have showed the unique technique can be used to locate the "brushing direction" of collagen fibers in articular cartilage. Measuring this direction over the cartilage surface could potentially help designing of tissue-engineering scaffolds for cartilage repair.

  5. EFFECT OF DYNAMIC LOADING ON THE FRICTIONAL RESPONSE OF BOVINE ARTICULAR CARTILAGE

    PubMed Central

    Krishnan, Ramaswamy; Mariner, Elise N.; Ateshian, Gerard A.

    2014-01-01

    Summary The objective of this study was to test the hypotheses that (1) the steady-state friction coefficient of articular cartilage is significantly smaller under cyclical compressive loading than the equilibrium friction coefficient under static loading, and decreases as a function of loading frequency; (2) the steady-state cartilage interstitial fluid load support remains significantly greater than zero under cyclical compressive loading and increases as a function of loading frequency. Unconfined compression tests with sliding of bovine shoulder cartilage against glass in saline were carried out on fresh cylindrical plugs (n=12), under three sinusoidal loading frequencies (0.05 Hz, 0.5 Hz and 1 Hz) and under static loading; the time-dependent friction coefficient μeff was measured. The interstitial fluid load support was also predicted theoretically. Under static loading μeff increased from a minimum value (μmin=0.005±0.003) to an equilibrium value (μeq=0.153±0.032). In cyclical compressive loading tests μeff similarly rose from a minimum value (μmin=0.004±0.002, 0.003±0.001 and 0.003±0.001 at 0.05, 0.5 and 1 Hz) and reached a steady-state response oscillating between a lower-bound (μlb=0.092±0.016, 0.083±0.019 and 0.084±0.020) and upper bound (μub=0.382±0.057, 0.358±0.059, and 0.298±0.061). For all frequencies it was found that and μub> μeq and μlb < μeq (p<0.05). Under cyclical compressive loading the interstitial fluid load support was found to oscillate above and below the static loading response, with suction occurring over a portion of the loading cycle at steady-state conditions. All theoretical predictions and most experimental results demonstrated little sensitivity to loading frequency. On the basis of these results, both hypotheses were rejected. Cyclical compressive loading is not found to promote lower frictional coefficients or higher interstitial fluid load support than static loading. PMID:15958224

  6. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration.

    PubMed

    Parmar, Paresh A; Chow, Lesley W; St-Pierre, Jean-Philippe; Horejs, Christine-Maria; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2015-06-01

    Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications. PMID:25907054

  7. Cascaded classifier for large-scale data applied to automatic segmentation of articular cartilage

    NASA Astrophysics Data System (ADS)

    Prasoon, Adhish; Igel, Christian; Loog, Marco; Lauze, François; Dam, Erik; Nielsen, Mads

    2012-02-01

    Many classification/segmentation tasks in medical imaging are particularly challenging for machine learning algorithms because of the huge amount of training data required to cover biological variability. Learning methods scaling badly in the number of training data points may not be applicable. This may exclude powerful classifiers with good generalization performance such as standard non-linear support vector machines (SVMs). Further, many medical imaging problems have highly imbalanced class populations, because the object to be segmented has only few pixels/voxels compared to the background. This article presents a two-stage classifier for large-scale medical imaging problems. In the first stage, a classifier that is easily trainable on large data sets is employed. The class imbalance is exploited and the classifier is adjusted to correctly detect background with a very high accuracy. Only the comparatively few data points not identified as background are passed to the second stage. Here a powerful classifier with high training time complexity can be employed for making the final decision whether a data point belongs to the object or not. We applied our method to the problem of automatically segmenting tibial articular cartilage from knee MRI scans. We show that by using nearest neighbor (kNN) in the first stage we can reduce the amount of data for training a non-linear SVM in the second stage. The cascaded system achieves better results than the state-of-the-art method relying on a single kNN classifier.

  8. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration

    PubMed Central

    Parmar, Paresh A.; Chow, Lesley W.; St-Pierre, Jean-Philippe; Horejs, Christine-Maria; Peng, Yong Y.; Werkmeister, Jerome A.; Ramshaw, John A.M.; Stevens, Molly M.

    2015-01-01

    Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications. PMID:25907054

  9. A refinement to the liquidus-tracking method for vitreous preservation of articular cartilage.

    PubMed

    Yu, X Y; Chen, G M; Zhang, S Z

    2013-01-01

    The recent liquidus-tracking method developed by Pegg et al. (2006a), as an alternative pathway to vitrification, achieved reasonable survival of post-thawing chondrocytes in situ. One of the main drawbacks of this method is the long duration of the cryoprotectant addition/removal process. This study was conducted to investigate the possibility of reducing the time by rationalizing the final dimethyl sulfoxide (Me2SO) concentration loaded in tissue before being plunged into liquid nitrogen. Using the differential scanning calorimetric technique, the critical cooling and warming rates for solutions of Me2SO in CPTes2 (a potassium-rich medium, modified slightly from Taylor's original formulation by Pegg et al.) were obtained. The critical cooling and warming rates for 47.5 percent (w/w) solution are < 2.5 degree C per min and < 10 degree C per min, respectively, which could be readily realized for 4 ml solution samples held in polypropylene cryovials as demonstrated by experiments. For articular cartilage, 47.5 percent (w/w) may be recommended as the final concentration of Me2SO loaded in the tissue, which will lead to a time cut of about one-third compared with the original protocol of Pegg et al. (2006a). PMID:23812317

  10. Effects of introducing cultured human chondrocytes into a human articular cartilage explant model.

    PubMed

    Secretan, Charles; Bagnall, Keith M; Jomha, Nadr M

    2010-02-01

    Articular cartilage (AC) heals poorly and effective host-tissue integration after reconstruction is a concern. We have investigated the ability of implanted chondrocytes to attach at the site of injury and to be incorporated into the decellularized host matrix adjacent to a defect in an in vitro human explant model. Human osteochondral dowels received a standardized injury, were seeded with passage 3 chondrocytes labelled with PKH 26 and compared with two control groups. All dowels were cultured in vitro, harvested at 0, 7, 14 and 28 days and assessed for chondrocyte adherence and migration into the region of decellularized tissue adjacent to the defects. Additional evaluation included cell viability, general morphology and collagen II production. Seeded chondrocytes adhered to the standardized defect and areas of lamina splendens disruption but did not migrate into the adjacent acellular region. A difference was noted in viable-cell density between the experimental group and one control group. A thin lattice-like network of matrix surrounded the seeded chondrocytes and collagen II was present. The results indicate that cultured human chondrocytes do indeed adhere to regions of AC matrix injury but do not migrate into the host tissue, despite the presence of viable cells. This human explant model is thus an effective tool for studying the interaction of implanted cells and host tissue. PMID:20012649

  11. Degradation of articular cartilage keratan sulphates using hydrazinolysis and nitrous acid. Environment of fucose residues.

    PubMed Central

    Brown, G M; Huckerby, T N; Morris, H G; Nieduszynski, I A

    1992-01-01

    Alkaline borohydride-reduced keratan sulphate (KS) chains from bovine articular cartilage (6-8-year-old animals) were fragmented by an anhydrous hydrazine/nitrous acid procedure, previously used on KS by Hopwood & Elliott to isolate the major disaccharides from the poly-N-acetyl-lactosamine repeat sequence [Hopwood & Elliott (1983) Carbohydr. Res. 117, 263-274]. The resulting oligosaccharides were reduced with NaB3H4 or NaBH4 and subjected to ion-exchange chromatography on a Nucleosil 5SB column. In addition to the major disaccharides, two fucose-containing oligosaccharides were examined by high-field 1H n.m.r. spectroscopy, and shown to have the following structures (where AnManOH is 2,5-anhydro-D-mannitol): [formula: see text] It is evident that the presence of fucose protects the N-acetylglucosamine residue from de-N-acetylation, and therefore fragments are produced which preserve the immediate environment of the fucose residue. It may be of biosynthetic significance that these two oligosaccharides contain an unsulphated galactose on the non-reducing side of the fucose residue. The hydrazine/nitrous acid/NaB3H4 method followed by h.p.l.c. provides a sensitive fingerprinting technique for the assay of KS composition and sub-populations. PMID:1520275

  12. Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms.

    PubMed

    Tie, Kai; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2016-04-01

    Prenatal nicotine exposure (PNE) induces skeletal growth retardation and dyslipidemia in offspring displaying intrauterine growth retardation (IUGR). Cholesterol accumulation resulting from cholesterol efflux dysfunction may reduce the quality of articular cartilage through fetal programming. This study evaluated the quality of articular cartilage of female adult offspring fed a high-fat diet and explored the mechanisms using a rat IUGR model established by the administration of 2.0mg/kg/d of subcutaneous nicotine from gestational days 11-20. The results demonstrated an increased OARSI (Osteoarthritis Research Society International) score and total cholesterol content, decreased serum corticosterone, and increased IGF1 and dyslipidemia with catch-up growth in PNE adult offspring. Cartilage matrix, IGF1 and cholesterol efflux pathway expression were reduced in PNE fetuses and adult offspring. Therefore, PNE induced poor articular cartilage quality in female adult offspring fed a high-fat diet via a dual programming mechanism. PMID:26769161

  13. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges

    PubMed Central

    Binks, D A; Hodgson, R J; Ries, M E; Foster, R J; Smye, S W; McGonagle, D

    2013-01-01

    With increasing life expectancies and the desire to maintain active lifestyles well into old age, the impact of the debilitating disease osteoarthritis (OA) and its burden on healthcare services is mounting. Emerging regenerative therapies could deliver significant advances in the effective treatment of OA but rely upon the ability to identify the initial signs of tissue damage and will also benefit from quantitative assessment of tissue repair in vivo. Continued development in the field of quantitative MRI in recent years has seen the emergence of techniques able to probe the earliest biochemical changes linked with the onset of OA. Quantitative MRI measurements including T1, T2 and T1ρ relaxometry, diffusion weighted imaging and magnetisation transfer have been studied and linked to the macromolecular structure of cartilage. Delayed gadolinium-enhanced MRI of cartilage, sodium MRI and glycosaminoglycan chemical exchange saturation transfer techniques are sensitive to depletion of cartilage glycosaminoglycans and may allow detection of the earliest stages of OA. We review these current and emerging techniques for the diagnosis of early OA, evaluate the progress that has been made towards their implementation in the clinic and identify future challenges in the field. PMID:23407427

  14. The mobility of chondroitin sulfate in articular and artificial cartilage characterized by 13C magic-angle spinning NMR spectroscopy.

    PubMed

    Scheidt, Holger A; Schibur, Stephanie; Magalhães, Alvicler; de Azevedo, Eduardo R; Bonagamba, Tito J; Pascui, Ovidiu; Schulz, Ronny; Reichert, Detlef; Huster, Daniel

    2010-06-01

    We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in natural and artificial cartilage are different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. PMID:20091673

  15. A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading

    PubMed Central

    Wilson, Wouter; Isaksson, Hanna; Jurvelin, Jukka S.; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation. PMID:23653665

  16. DYNAMIC RESPONSE OF IMMATURE BOVINE ARTICULAR CARTILAGE IN TENSION AND COMPRESSION, AND NONLINEAR VISCOELASTIC MODELING OF THE TENSILE RESPONSE

    PubMed Central

    Park, Seonghun; Ateshian, Gerard A.

    2010-01-01

    Objectives Very limited information is currently available on the constitutive modeling of the tensile response of articular cartilage and its dynamic modulus at various loading frequencies. The objectives of this study were to 1) formulate and experimentally validate a constitutive model for the intrinsic viscoelasticity of cartilage in tension, 2) confirm the hypothesis that energy dissipation in tension is less than in compression at various loading frequencies, and 3) test the hypothesis that the dynamic modulus of cartilage in unconfined compression is dependent upon the dynamic tensile modulus. Methods Experiment 1: Immature bovine articular cartilage samples were tested in tensile stress relaxation and cyclical loading. A proposed reduced relaxation function was fitted to the stress-relaxation response and the resulting material coefficients were used to predict the response to cyclical loading. Adjoining tissue samples were tested in unconfined compression stress relaxation and cyclical loading. Experiment 2: Tensile stress relaxation experiments were performed at varying strains to explore the strain-dependence of the viscoelastic response. Results The proposed relaxation function successfully fit the experimental tensile stress-relaxation response, with R2 =0.970±0.019 at 1 % strain and R2 =0.992±0.007 at 2 % strain. The predicted cyclical response agreed well with experimental measurements, particularly for the dynamic modulus at various frequencies. The relaxation function, measured from 2% to 10% strain, was found to be strain-dependent, indicating that cartilage is nonlinearly viscoelastic in tension. Under dynamic loading, the tensile modulus at 10 Hz was ~2.3 times the value of the equilibrium modulus. In contrast, the dynamic stiffening ratio in unconfined compression was ~24. The energy dissipation in tension was found to be significantly smaller than in compression (dynamic phase angle of 16.2±7.4° versus 53.5±12.8° at 10−3 Hz). A very

  17. Association between Wnt inhibitory factor-1 expression levels in articular cartilage and the disease severity of patients with osteoarthritis of the knee

    PubMed Central

    GAO, SHU-GUANG; ZENG, CHAO; LIU, JUN-JIE; TIAN, JIAN; CHENG, CHAO; ZHANG, FANG-JIE; XIONG, YI-LIN; PAN, DING; XIAO, YONG-BING; LEI, GUANG-HUA

    2016-01-01

    Wnt inhibitory factor (WIF)-1 is a potent extracellular Wnt antagonist which may be used as a potential molecular therapy for the treatment of inflammatory and autoimmune diseases. Although previous studies have demonstrated that WIF-1 has a protective role in experimental studies of arthritis, its role in the various disease grades of osteoarthritis (OA) remains unclear. A total of 40 patients with various stages of primary OA of the knee and 10 control subjects were enrolled in the present study. Articular cartilage specimens were harvested from subjects following total knee arthroplasty or knee above amputation. Disease severity was determined according to Modified Mankin score and cartilage tissues were ascribed to four groups: Normal, mild, moderate and severe lesions. WIF-1 expression levels in articular cartilage were measured using immunohistochemical techniques. WIF-1 expression levels were detected in all cartilage tissues. As compared with the controls, patients with OA exhibited significantly decreased WIF-1 expression levels in the articular cartilage (0.19±0.05 vs. 0.26±0.04; P<0.01). Furthermore, articular cartilage WIF-1 expression levels in the moderate and severe lesion groups were significantly reduced, as compared with the controls (P<0.01) and mild lesion group (P<0.05). Subsequent analysis demonstrated that articular cartilage WIF-1 expression levels were negatively correlated with the severity of disease (r=−0.896, P<0.001). In conclusion, the results of the present study suggested that WIF-1 expression levels in articular cartilage may be negatively associated with progressive joint damage in patients with OA of the knee; therefore, WIF-1 expression may be a potential indictor for monitoring OA disease severity. PMID:27073457

  18. SIMULATING THE GROWTH OF ARTICULAR CARTILAGE EXPLANTS IN A PERMEATION BIOREACTOR TO AID IN EXPERIMENTAL PROTOCOL DESIGN

    PubMed Central

    Ficklin, Timothy P.; Davol, Andrew; Klisch, Stephen M.

    2010-01-01

    Recently a cartilage growth finite element model (CGFEM) was developed to solve non-homogeneous and time-dependent growth boundary value problems [1, 2]. The CGFEM allows distinct stress constitutive equations and growth laws for the major components of the solid matrix, collagens and proteoglycans. The objective of the current work was to simulate in vitro growth of articular cartilage explants in a steady-state permeation bioreactor in order to obtain results that aid experimental design. The steady-state permeation protocol induces different types of mechanical stimuli: when the specimen is initially homogeneous it directly induces homogeneous permeation velocities and indirectly induces non-homogeneous solid matrix shear stresses; consequently, the steady-state permeation protocol is a good candidate for exploring two competing hypotheses for the growth laws. The analysis protocols were implemented through the alternating interaction of the two CGFEM components: poroelastic FEA using ABAQUS and a finite element growth routine using MATLAB. The CGFEM simulated 12 days of growth for immature bovine articular cartilage explants subjected to two competing hypotheses for the growth laws: one that is triggered by permeation velocity and the other by maximum shear stress. The results provide predictions for geometric, biomechanical, and biochemical parameters of grown tissue specimens that may be experimentally measured and, consequently, suggest key biomechanical measures to analyze as pilot experiments are performed. The combined approach of CGFEM analysis and pilot experiments may lead to the refinement of actual experimental protocols and a better understanding of in vitro growth of articular cartilage. PMID:19275437

  19. Prevalence of cartilage shards in synovium and their association with synovitis in patients with early and endstage osteoarthritis.

    PubMed

    Myers, S L; Flusser, D; Brandt, K D; Heck, D A

    1992-08-01

    It has been suggested that incorporation of shards of fibrillated cartilage into the synovium is a cause of synovitis in osteoarthritis (OA). We examined the prevalence with which fragments of cartilage are seen in synovium, and their association with synovitis, in patients with endstage OA and early OA of the knee. Samples of synovium were obtained from 12 patients with endstage OA who were undergoing knee joint replacement and 30 with only mild/moderate radiographic changes of OA who exhibited articular cartilage changes of OA at arthroscopy. The presence of cartilage shards was sought in synovium from the medial and lateral tibiofemoral compartments and the suprapatellar pouch of each patient. Comparable volumes of the synovial lining from patients with endstage and early OA were examined, and tissue mononuclear cell infiltration was graded as an indicator of synovitis. Cartilage shards were seen in synovium from 7 of 12 patients with endstage OA, all of whom had synovitis. No topographic relationship was found between shards and mononuclear cell infiltration. In contrast, cartilage fragments were not seen in synovium from any of the 30 patients with early OA, although 9 of them had full thickness cartilage ulcers and 17 had evidence of synovitis. PMID:1404161

  20. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease.

    PubMed

    Sampson, Steven; Botto-van Bemden, Angie; Aufiero, Danielle

    2013-09-01

    Younger adults, aged < 65 years, increasingly present to their physicians with advanced cartilage disease or post-traumatic osteoarthritis. A number of treatments exist for lessening patient pain and improving patient function. However, many patients are becoming aware of the potential of regenerative therapies and are now seeking solutions to the impaired biology underlying their conditions rather than addressing only their symptoms. Patients do not want to merely lessen their symptoms temporarily with a surgical procedure that replaces damaged tissue, but instead seek correction and repair of the underlying biology to regenerate damaged tissue and alleviate their symptoms altogether. Current therapies for patients with cartilage disease or osteoarthritis range from non-surgical intra-articular injections with biologics, such as hyaluronic acid (HA), to total joint arthroplasty for advanced stages of disease. Total joint arthroplasty is a successful procedure for patients aged > 65 years; however, the limited long-term durability of implanted prostheses decreases the preference of using such methods in more active patients aged < 65 years. The potential of cell-based orthobiologic injection therapies (pertaining to therapeutic injectables that aim to restore the biologic environment and/or structural components of diseased or damaged musculoskeletal tissue) is of tremendous interest for younger, more active patients, and is even more appealing in that such therapy can be delivered at point-of-care in the clinic during an office visit. Notably, the exponential rate of progress in biotechnology has allowed for immediate application of myriad novel therapies prior to clear evidence of benefit from randomized clinical trials. Orthobiologic intra-articular injection therapies include HA and platelet-rich plasma (PRP). We report on current, available findings for a third-generation intra-articular orthobiologic injectable therapy for cartilage disease, bone marrow

  1. Bath Concentration of Anionic Contrast Agents Does Not Affect Their Diffusion and Distribution in Articular Cartilage In Vitro

    PubMed Central

    Jurvelin, Jukka S.; Tiitu, Virpi; Quinn, Thomas M.; Töyräs, Juha

    2013-01-01

    Objective: Differences in contrast agent diffusion reflect changes in composition and structure of articular cartilage. However, in clinical application the contrast agent concentration in the joint capsule varies, which may affect the reliability of contrast enhanced cartilage tomography (CECT). In the present study, effects of concentration of x-ray contrast agents on their diffusion and equilibrium distribution in cartilage were investigated. Design: Full-thickness cartilage discs (d = 4.0 mm, n = 120) were detached from bovine patellae (n = 24). The diffusion of various concentrations of ioxaglate (5, 10, 21, 50 mM) and iodide (30, 60, 126, 300 mM) was allowed only through the articular surface. Samples were imaged with a clinical peripheral quantitative computed tomography scanner before immersion in contrast agent, and after 1, 5, 9, 16, 25, and 29 hours in the bath. Results: Diffusion and partition coefficients were similar between different contrast agent concentrations. The diffusion coefficient of iodide (473 ± 133 µm2/s) was greater (P ≤ 0.001) than that of ioxaglate (92 ± 46 µm2/s). In full-thickness cartilage, the partition coefficient (at 29 h) of iodide (71 ± 5%) was greater (P ≤ 0.02 with most concentrations) than that of ioxaglate (62 ± 6%). Conclusions: Significant differences in partition and diffusion coefficient of two similarly charged (−1) contrast agents were detected, which shows the effect of steric interactions. However, the increase in solute concentration did not increase its partition coefficient. In clinical application, it is important that contrast agent concentration does not affect the interpretation of CECT imaging. PMID:26069649

  2. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    PubMed

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P < 0.05). In explant culture, low MW HA combined with 12.5 mg/ml carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P < 0.05). Low MW HA caused high expression levels of COL2A1 and AGG in OA cartilage (P < 0.05); HA combined with carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone. PMID:25982358

  3. Structural and functional changes of the articular surface in a post-traumatic model of early osteoarthritis measured by atomic force microscopy.

    PubMed

    Desrochers, Jane; Amrein, Matthias A; Matyas, John R

    2010-12-01

    The functional integrity of the articulating cartilage surface is a critical determinant of joint health. Although a variety of techniques exist to characterize the structural changes in the tissue with osteoarthritis (OA), some with extremely high resolution, most lack the ability to detect and monitor the functional changes that accompany the structural deterioration of this essential bearing surface. Atomic force microscopy (AFM) enables the acquisition of both structural and mechanical properties of the articular cartilage surface, with up to nanoscale resolution, making it particularly useful for evaluating the functional behavior of the macromolecular network forming the cartilage surface, which disintegrates in OA. In the present study, AFM was applied to the articular cartilage surfaces from six pairs of canine knee joints with post-traumatic OA. Microstructure (RMS roughness) and micromechanics (dynamic indentation modulus, E* of medial femoral condyle cartilages were compared between contralateral controls and cruciate-transected knee joints, which develop early signs of OA by three months after surgery. Results reveal a significant increase in RMS roughness and a significant four-fold decrease in E* in cartilages from cruciate-transected joints versus contralateral controls. Compared to previous reports of changes in bulk mechanics, AFM was considerably more sensitive at detecting early cartilage changes due to cruciate-deficiency. The use of AFM in this study provides important new information on early changes in the natural history of OA because of its ability to sensitively detect and measure local structural and functional changes of the articular cartilage surface, the presumptive site of osteoarthritic initiation. PMID:20817164

  4. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage

    PubMed Central

    Vasheghani, Faezeh; Zhang, Yue; Li, Ying-Hua; Blati, Meryem; Fahmi, Hassan; Lussier, Bertrand; Roughley, Peter; Lagares, David; Endisha, Helal; Saffar, Bahareh; Lajeunesse, Daniel; Marshall, Wayne K; Rampersaud, Y Raja; Mahomed, Nizar N; Gandhi, Rajiv; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Kapoor, Mohit

    2015-01-01

    Objectives We have previously shown that peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor, is essential for the normal growth and development of cartilage. In the present study, we created inducible cartilage-specific PPARγ knockout (KO) mice and subjected these mice to the destabilisation of medial meniscus (DMM) model of osteoarthritis (OA) to elucidate the specific in vivo role of PPARγ in OA pathophysiology. We further investigated the downstream PPARγ signalling pathway responsible for maintaining cartilage homeostasis. Methods Inducible cartilage-specific PPARγ KO mice were generated and subjected to DMM model of OA. We also created inducible cartilage-specific PPARγ/mammalian target for rapamycin (mTOR) double KO mice to dissect the PPARγ signalling pathway in OA. Results Compared with control mice, PPARγ KO mice exhibit accelerated OA phenotype with increased cartilage degradation, chondrocyte apoptosis, and the overproduction of OA inflammatory/catabolic factors associated with the increased expression of mTOR and the suppression of key autophagy markers. In vitro rescue experiments using PPARγ expression vector reduced mTOR expression, increased expression of autophagy markers and reduced the expression of OA inflammatory/catabolic factors, thus reversing the phenotype of PPARγ KO mice chondrocytes. To dissect the in vivo role of mTOR pathway in PPARγ signalling, we created and subjected PPARγ-mTOR double KO mice to the OA model to see if the genetic deletion of mTOR in PPARγ KO mice (double KO) can rescue the accelerated OA phenotype observed in PPARγ KO mice. Indeed, PPARγ-mTOR double KO mice exhibit significant protection/reversal from OA phenotype. Significance PPARγ maintains articular cartilage homeostasis, in part, by regulating mTOR pathway. PMID:25573665

  5. Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan.

    PubMed Central

    Grover, J; Roughley, P J

    1993-01-01

    The chondrocytes in human articular cartilage from subjects of all ages express mRNAs for both of the aggregating proteoglycans aggrecan and versican, although the level of expression of versican mRNA is much lower than that of aggrecan mRNA. Aggrecan shows alternative splicing of the epidermal growth factor (EGF)-like domain within its C-terminal globular region, but there is no evidence for a major difference in situ in the relative expression of this domain with age. At all ages studied from birth to the mature adult, a greater proportion of transcripts lacked the EGF domain. The relative proportions of the two transcripts did not change upon culture and passage of isolated chondrocytes. In contrast, the neighbouring complement regulatory protein (CRP)-like domain was predominantly expressed irrespective of age, but cell culture did result in variation of the splicing of this domain. Versican possesses two EGF-like domains and one CRP-like domain, but at all ages the three domains were predominantly present in all transcripts. This situation persisted upon culture and passage of the chondrocytes. Thus, unlike aggrecan, the versican expressed by human articular cartilage does not appear to undergo alternative splicing of its C-terminal globular region, either in cartilage in situ or in chondrocytes in culture. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8484718

  6. Reactive nitrogen species scavenging, rather than nitric oxide inhibition, protects from articular cartilage damage in rat zymosan-induced arthritis

    PubMed Central

    Bezerra, Mirna Marques; Brain, Susan D; Greenacre, Stan; Jerônimo, Selma Maria Bezerra; de Melo, Liana Batista; Keeble, Julie; da Rocha, Francisco Airton Castro

    2003-01-01

    The contribution of nitric oxide (NO) and peroxynitrite (PN) to inflammation in a zymosan-induced (1 mg, intra-articular, i.art.) rat model of arthritis was assessed by histopathology and by measuring the glycosaminoglycan (GAG) content of the articular cartilage. Progression of the chronic synovitis in zymosan-induced arthritis (ZYA) was associated with increased nitrite and nitrotyrosine (3-NT) levels in the joint exudates that paralleled a progressive loss of the GAG content. An increase in 3-NT was also observed after i.art. PN. The nonselective nitric oxide synthase (NOS) inhibitor L-NG-nitroarginine methyl ester (25–75 mg kg−1day−1) or the selective inducible NOS inhibitor aminoguanidine (50–100 mg kg−1day−1) given 1 h before (prophylactic) or 3 days after (therapeutic) injection of the zymosan ameliorated the synovitis, but worsened the GAG loss, as measured at the end of the experiment (day 7). The PN scavenger uric acid (100–250 mg kg−1 i.p. four times daily) given prophylactically until the end of the experiment (day 14), in a dose compatible with its PN scavenging activity, significantly decreased both the synovitis and the GAG loss. In conclusion, PN formation is associated with cartilage damage in addition to proinflammatory activity in ZYA. NOS inhibitors and a PN scavenger were able to reduce the cellular infiltration, while displaying opposite effects on cartilage homeostasis either by enhancing or ameliorating the damage, respectively. PMID:14662723

  7. Effect of tenascin-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits.

    PubMed

    Ikemura, Shigeto; Hasegawa, Masahiro; Iino, Takahiro; Miyamoto, Keiichi; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2015-04-01

    The purpose of this study was to examine the effect of tenascin-C (TNC) on the repair of full-thickness osteochondral defects of articular cartilage in vivo. We used a gellan-gellan-sulfate sponge (Gellan-GS) to maintain a TNC-rich environment in the cartilage defects. We implanted Gellan-GS soaked in PBS only (Group 1), Gellan-GS soaked in 10 µg/ml of TNC (Group 2), and Gellan-GS soaked in 100 µg/ml of TNC (Group 3) into a full-thickness osteochondral defect of the patellar groove of rabbits. The defect area was examined grossly and histologically 4-12 weeks after surgery. Sections of synovium were also immunohistochemically investigated. Histologically as well as macroscopically, the defects in Group 2 showed better repair than the other groups at 8 and 12 weeks after surgery. Inflammation of the synovium tended to diminish over time in all groups, and the degree of synovitis was the same for all three groups at each time point. In conclusion, Gellan-GS soaked in TNC can be used as a novel scaffold for the repair of articular cartilage defects. This study also indicates that TNC promotes the repair of full-thickness osteochondral defects in vivo. PMID:25428773

  8. Cyclooxygenases (COX-1 and COX-2) for tissue engineering of articular cartilage--from a developmental model to first results of tissue and scaffold expression.

    PubMed

    Brochhausen, Christoph; Zehbe, Rolf; Gross, Ulrich; Libera, Jeanette; Schubert, Helmut; Nüsing, Rolf M; Klaus, Günter; Kirkpatrick, C James

    2008-01-01

    Tissue engineering of articular cartilage remains an ongoing challenge. Since tissue regeneration recapitulates ontogenetic processes the growth plate can be regarded as an innovative model to target suitable signalling molecules and growth factors for the tissue engineering of cartilage. In the present study we analysed the expression of cyclooxygenases (COX) in a short-term chondrocyte culture in gelatin-based scaffolds and in articular cartilage of rats and compared it with that in the growth plate. Our results demonstrate the strong cellular expression of COX-1 but only a focal weak expression of COX-2 in the seeded scaffolds. Articular cartilage of rats expresses homogeneously COX-1 and COX-2 with the exception of the apical cell layer. Our findings indicate a functional role of COX in the metabolism of articular chondrocytes. The expression of COX in articular cartilage and in the seeded scaffolds opens interesting perspectives to improve the proliferation and differentiation of chondrocytes in scaffold materials by addition of specific receptor ligands of the COX system. PMID:18198403

  9. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.

    PubMed

    Dahlin, Rebecca L; Kinard, Lucas A; Lam, Johnny; Needham, Clark J; Lu, Steven; Kasper, F Kurtis; Mikos, Antonios G

    2014-08-01

    This work investigated the ability of co-cultures of articular chondrocytes and mesenchymal stem cells (MSCs) to repair articular cartilage in osteochondral defects. Bovine articular chondrocytes and rat MSCs were seeded in isolation or in co-culture onto electrospun poly(ɛ-caprolactone) (PCL) scaffolds and implanted into an osteochondral defect in the trochlear groove of 12-week old Lewis rats. Additionally, a blank PCL scaffold and untreated defect were investigated. After 12 weeks, the extent of cartilage repair was analyzed through histological analysis, and the extent of bone healing was assessed by quantifying the total volume of mineralized bone in the defect through microcomputed tomography. Histological analysis revealed that the articular chondrocytes and co-cultures led to repair tissue that consisted of more hyaline-like cartilage tissue that was thicker and possessed more intense Safranin O staining. The MSC, blank PCL scaffold, and empty treatment groups generally led to the formation of fibrocartilage repair tissue. Microcomputed tomography revealed that while there was an equivalent amount of mineralized bone formation in the MSC, blank PCL, and empty treatment groups, the defects treated with chondrocytes or co-cultures had negligible mineralized bone formation. Overall, even with a reduced number of chondrocytes, co-cultures led to an equal level of cartilage repair compared to the chondrocyte samples, thus demonstrating the potential for the use of co-cultures of articular chondrocytes and MSCs for the in vivo repair of cartilage defects. PMID:24927682

  10. In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-beta 1: age-related differences.

    PubMed Central

    van Beuningen, H M; van der Kraan, P M; Arntz, O J; van den Berg, W B

    1994-01-01

    OBJECTIVES--Transforming growth factor-beta (TGF-beta) has been shown to antagonise interleukin-1 (IL-1) effects in different systems. Investigations were carried out to study whether TGF-beta 1 modulates IL-1 induced inflammation and IL-1 effects on articular cartilage in the murine knee joint. METHODS--IL-1, TGF-beta 1 or both factors together were injected into the knee joint. Inflammation was studied in whole knee histological sections. Patellar cartilage proteoglycan synthesis was measured using 35S-sulphate incorporation while patellar cartilage glycosaminoglycan content was determined with automated image analysis on joint sections. RESULTS--Co-injection of TGF-beta 1 and IL-1 resulted in synergistic attraction of inflammatory cells. In contrast, TGF-beta 1 counteracted IL-1 induced suppression of articular cartilage proteoglycan synthesis. Proteoglycan depletion was similar shortly after the last injection of IL-1 or IL-1/TGF-beta 1, but accelerated recovery was found with the combination at later days. This protective effect of TGF-beta 1 could not be demonstrated in older mice. CONCLUSIONS--TGF-beta 1 aggravates IL-1 induced knee joint inflammation, but counteracts the deleterious effects of IL-1 on articular cartilage proteoglycan synthesis and content. The data indicate that TGF-beta 1 could play an important part in articular cartilage restoration after IL-1 induced proteoglycan depletion. Images PMID:7979598

  11. The effect of supplementation of a glutamine precursor on the growth plate, articular cartilage and cancellous bone in fundectomy-induced osteopenic bone.

    PubMed

    Tomaszewska, Ewa; Dobrowolski, Piotr; Prost, Łukasz; Hułas-Stasiak, Monika; Muszyński, Siemowit; Blicharski, Tomasz

    2016-05-01

    The aim of the study was to investigate the effect of 2-oxoglutaric acid (2-Ox) supplementation (a precursor of glutamine and hydroxyproline, the most abundant amino acid of collagen) on cartilage and bone in pigs after fundectomy. Pigs at the age of forty days were subjected to fundectomy and divided into two groups depending on 2-Ox supplementation (at the daily dosage of 0.4 g/kg of body weight). Other pigs were sham operated. Pigs were euthanized at the age of eight months. An analysis of the morphometry of trabeculae, growth plate and articular cartilage in fundectomy-induced osteopenic bone was performed. Moreover, the levels of expression of osteocalcin, osteopontin and osteoprotegerin in trabecular bone and osteocalcin in articular cartilage were evaluated. Articular cartilage was thinnest in fundectomized pigs and thickest in 2-Ox-supplemented animals after fundectomy. Moreover, 2-Ox supplementation after fundectomy enhanced the total thickness of the growth plate and trabeculae in fundectomized pigs. The most evident signal for osteocalcin and osteoprotegerin in trabecular bone was in sham-operated and 2-Ox-supplemented pigs; a low reaction was observed in the fundectomized group. Additionally, as a long-term postoperative consequence, a change was observed in the expression of osteocalcin in articular cartilage. It seems that 2-Ox is suitable for use in preventing the negative effects of fundectomy on cancellous bone and cartilage. PMID:26725871

  12. The effect of supplementation of a glutamine precursor on the growth plate, articular cartilage and cancellous bone in fundectomy-induced osteopenic bone

    PubMed Central

    TOMASZEWSKA, Ewa; DOBROWOLSKI, Piotr; PROST, Łukasz; HUŁAS-STASIAK, Monika; MUSZYŃSKI, Siemowit; BLICHARSKI, Tomasz

    2015-01-01

    The aim of the study was to investigate the effect of 2-oxoglutaric acid (2-Ox) supplementation (a precursor of glutamine and hydroxyproline, the most abundant amino acid of collagen) on cartilage and bone in pigs after fundectomy. Pigs at the age of forty days were subjected to fundectomy and divided into two groups depending on 2-Ox supplementation (at the daily dosage of 0.4 g/kg of body weight). Other pigs were sham operated. Pigs were euthanized at the age of eight months. An analysis of the morphometry of trabeculae, growth plate and articular cartilage in fundectomy-induced osteopenic bone was performed. Moreover, the levels of expression of osteocalcin, osteopontin and osteoprotegerin in trabecular bone and osteocalcin in articular cartilage were evaluated. Articular cartilage was thinnest in fundectomized pigs and thickest in 2-Ox-supplemented animals after fundectomy. Moreover, 2-Ox supplementation after fundectomy enhanced the total thickness of the growth plate and trabeculae in fundectomized pigs. The most evident signal for osteocalcin and osteoprotegerin in trabecular bone was in sham-operated and 2-Ox-supplemented pigs; a low reaction was observed in the fundectomized group. Additionally, as a long-term postoperative consequence, a change was observed in the expression of osteocalcin in articular cartilage. It seems that 2-Ox is suitable for use in preventing the negative effects of fundectomy on cancellous bone and cartilage. PMID:26725871

  13. Mechanical effects of ionic replacements in articular cartilage. Part I: The constitutive model.

    PubMed

    Loret, Benjamin; Simões, Fernando M F

    2005-11-01

    A three-phase multi-species electro-chemo-mechanical model of articular cartilage is developed that accounts for the effect of two water compartments, namely intra-fibrillar water stored in between collagen fibrils and extra-fibrillar water covering proteoglycans. The collagen fibers constitute the solid phase while intra-fibrillar water and dissolved NaCl and CaCl(2) on one hand and extra-fibrillar water, ions Na(+), Ca(2+) and Cl(-) and proteoglycans on the other hand, form the two fluid phases. The complete picture that includes time-dependent mass transfers between the two fluid phases, diffusion of water and ions and electrical flow emerges from the Clausius-Duhem inequality but it is deferred to further study. The analysis is restricted to equilibrium states. The present work complements the mechanical model developed in Loret and Simões (Mech Material 36(5-6): 515-541, 2004a) where the presence of the sole NaCl was considered. In its current version, the model can handle mechanical and chemical loadings and unloadings involving the two salts, NaCl and CaCl(2). In order to reproduce experimental data, the shielding effects are made cation-dependent. Strong orientation of collagen fibers parallel to the joint surface implies anisotropic mechanical properties. Electro-chemo-mechanical couplings result in a chemistry-dependent apparent tensile Poisson's ratio, that increases to large values as the solution gets fresher. The model captures these aspects as well. The features of the model are first exposed in an infinitesimal strain context. Subsequently, large strains that typically occur in uniaxial traction under deionized water are accounted for, and a nonlinear anisotropic hyper-elastic behavior is developed. Parametric identification and simulations of actual loading processes are described in a companion paper, Loret and Simões (Biomech Model Mechanobiol, in press, DOI 10.1007/s10237-004-0063-6). PMID:16001249

  14. Monitoring of the degradation in the rat's articular cartilage inducing osteoarthritis using common-path Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shin, D. H.; Park, S. H.; Kim, B. Y.; Lee, M. Y.; Baik, H. K.; Seo, J. H.; Kang, J. U.; Song, C. G.

    2013-03-01

    The objective of this experiment is to evaluate the utility and limitations of optical coherence tomography (OCT) for real-time, high-resolution structural analysis. We monitored the degradation of the rat's articular cartilage inducing osteoarthritis (OA) and the change of the rat's articular cartilage recovery by treatment medication, using our developed common-path Fourier-domain (CP-FD) OCT. Also, we have done a comparative analysis the rat's articular cartilage and OA grade. To observe the progression of OA, we induced OA by injecting the monosodium iodoacetate (MIA) into the right knee joint. After the injection of MIA, we sacrificed the rats at intervals of 3 days and obtained OCT and histological images. OCT and histological images showed the OA progress of similar pattern. These results illustrated the potential for non-invasive diagnosis about the grade of OA using CP-FD OCT.

  15. The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension.

    PubMed

    Grodzinsky, A J; Roth, V; Myers, E; Grossman, W D; Mow, V C

    1981-11-01

    Studies were conducted of some of the nonequilibrium, electrolyte-activated, electromechanical and osmotic processes that can affect the tensile properties of articular cartilage. We measured changes in tensile force that were induced by altering the ionic environment of strips of cartilage held at fixed length. We compared the kinetics of changes in these macroscopically measured isometric tensile forces to theoretical estimates of the time constants that characterize the underlying physical and chemical mechanisms occurring within the cartilage specimens during the experiment. Changes in the tensile force induced by changing the bath neutral salt concentration surrounding the specimen appear to be rate-limited by the diffusion of the salt into the specimen. That is, the mechanical stress relaxation process resulting from changes in salt concentration seems to be occurring at least as rapidly as the diffusion of salt into the matrix. When the bath concentration of CaCl2 or HCl is varied, the rate of change in the resulting isometric stresses indicates that Ca++ and H+ ions are binding to the cartilage matrix macromolecules. PMID:7311487

  16. Texture analysis of the 3D collagen network and automatic classification of the physiology of articular cartilage.

    PubMed

    Duan, Xiaojuan; Wu, Jianping; Swift, Benjamin; Kirk, Thomas Brett

    2015-07-01

    A close relationship has been found between the 3D collagen structure and physiological condition of articular cartilage (AC). Studying the 3D collagen network in AC offers a way to determine the condition of the cartilage. However, traditional qualitative studies are time consuming and subjective. This study aims to develop a computer vision-based classifier to automatically determine the condition of AC tissue based on the structural characteristics of the collagen network. Texture analysis was applied to quantitatively characterise the 3D collagen structure in normal (International Cartilage Repair Society, ICRS, grade 0), aged (ICRS grade 1) and osteoarthritic cartilages (ICRS grade 2). Principle component techniques and linear discriminant analysis were then used to classify the microstructural characteristics of the 3D collagen meshwork and the condition of the AC. The 3D collagen meshwork in the three physiological condition groups displayed distinctive characteristics. Texture analysis indicated a significant difference in the mean texture parameters of the 3D collagen network between groups. The principle component and linear discriminant analysis of the texture data allowed for the development of a classifier for identifying the physiological status of the AC with an expected prediction error of 4.23%. An automatic image analysis classifier has been developed to predict the physiological condition of AC (from ICRS grade 0 to 2) based on texture data from the 3D collagen network in the tissue. PMID:24428581

  17. Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes.

    PubMed

    Griffin, Darvin J; Ortved, Kyla F; Nixon, Alan J; Bonassar, Lawrence J

    2016-01-01

    Several studies have demonstrated the benefits of IGF-I gene therapy in enhancing the histologic and biochemical content of cartilage repaired by chondrocyte transplantation. However, there is little to no data on the mechanical performance of IGF-I augmented cartilage grafts. This study evaluated the compressive properties of full-thickness chondral defects in the equine femur repaired with and without IGF-I gene therapy. Animals were randomly assigned to one of three study cohorts based on chondrocyte treatment provided in each defect: (i) IGF-I gene delivered by recombinant adeno-associated virus (rAAV)-5; (ii) AAV-5 delivering GFP as a reporter; (iii) naïve cells without virus. In each case, the opposite limb was implanted with a fibrin carrier without cells. Samples were prepared for confined compression testing to measure the aggregate modulus and hydraulic permeability. All treatment groups, regardless of cell content or transduction, had mechanical properties inferior to native cartilage. Overexpression of IGF-I increased modulus and lowered permeability relative to other treatments. Investigation of structure-property relationships revealed that Ha and k were linearly correlated with GAG content but logarithmically correlated with collagen content. This provides evidence that IGF-I gene therapy can improve healing of articular cartilage and can greatly increase the mechanical properties of repaired grafts. PMID:26308948

  18. Histochemical and functional improvement of adipose-derived stem cell-based tissue-engineered cartilage by hyperbaric oxygen/air treatment in a rabbit articular defect model.

    PubMed

    Dai, Niann-Tzyy; Fan, Gang-Yi; Liou, Nien-Hsien; Wang, Yi-Wen; Fu, Keng-Yen; Ma, Kuo-Hsing; Liu, Jiang-Chuan; Chang, Shun-Cheng; Huang, Kun-Lun; Dai, Lien-Guo; Chen, Shyi-Gen; Chen, Tim-Mo

    2015-05-01

    Cartilage is exposed to compression forces during joint loading. Therefore, exogenous stimuli are frequently used in cartilage tissue engineering strategies to enhance chondrocyte differentiation and extracellular matrix (ECM) secretion. In this study, human adipose-derived stem cells were seeded on a gelatin/polycaprolactone scaffold to evaluate the histochemical and functional improvement of tissue-engineered cartilage after hyperbaric oxygen/air treatment in a rabbit articular defect model. Behavior tests showed beneficial effects on weight-bearing and rear leg-supporting capacities after treatment of tissue-engineered cartilage with 2.5 ATA oxygen or air. Moreover, positron emission tomography images and immunohistochemistry staining demonstrated hydroxyapatite formation and increased ECM synthesis, respectively, at the tissue-engineered cartilage graft site after high pressure oxygen/air treatment. Based on these results, we concluded that hyperbaric oxygen and air treatment can improve the quality of tissue-engineered cartilage in vivo by increasing the synthesis of ECM. PMID:25695443

  19. Use of micro-computed tomography to evaluate the effects of exercise on preventing the degeneration of articular cartilage in tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wu, Xin-tong; Niu, Haijun; Liu, Hong; Fan, Yu-Bo

    2015-07-01

    Space flight has been shown to induce bone loss and muscle atrophy, which could initiate the degeneration of articular cartilage. Countermeasures to prevent bone loss and muscle atrophy have been explored, but few spaceflight or ground-based studies have focused on the effects on cartilage degeneration. In this study, we investigated the effects of exercise on articular cartilage deterioration in tail-suspended rats. Thirty-two female Sprague-Dawley rats were randomly divided into four groups (n = 8 in each): tail suspension (TS), tail suspension plus passive motion (TSP), tail suspension plus active exercise (TSA), and control (CON) groups. In the TS, TSP, and TSA groups, the rat hindlimbs were unloaded for 21 days by tail suspension. Next, the cartilage thickness and volume, and the attenuation coefficient of the distal femur were evaluated by micro-computed tomography (μCT). Histological analysis was used to assess the surface integrity of the cartilage, cartilage thickness, and chondrocytes. The results showed that: (1) the cartilage thickness on the distal femur was significantly lower in the TS and TSP groups compared with the CON and TSA groups; (2) the cartilage volume in the TS group was significantly lower compared with the CON, TSA, and TSP groups; and (3) histomorphology showed that the chondrocytes formed clusters where the degree of matrix staining was lower in the TS and TSP groups. There were no significant differences between any of these parameters in the CON and TSA groups. The cartilage thickness measurements obtained by μCT and histomorphology correlated well. In general, tail suspension could induce articular cartilage degeneration, but active exercise was effective in preventing this degeneration in tail-suspended rats.

  20. Use of micro-computed tomography to evaluate the effects of exercise on preventing the degeneration of articular cartilage in tail-suspended rats.

    PubMed

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wu, Xin-tong; Niu, Haijun; Liu, Hong; Fan, Yu-Bo

    2015-07-01

    Space flight has been shown to induce bone loss and muscle atrophy, which could initiate the degeneration of articular cartilage. Countermeasures to prevent bone loss and muscle atrophy have been explored, but few spaceflight or ground-based studies have focused on the effects on cartilage degeneration. In this study, we investigated the effects of exercise on articular cartilage deterioration in tail-suspended rats. Thirty-two female Sprague-Dawley rats were randomly divided into four groups (n=8 in each): tail suspension (TS), tail suspension plus passive motion (TSP), tail suspension plus active exercise (TSA), and control (CON) groups. In the TS, TSP, and TSA groups, the rat hindlimbs were unloaded for 21 days by tail suspension. Next, the cartilage thickness and volume, and the attenuation coefficient of the distal femur were evaluated by micro-computed tomography (μCT). Histological analysis was used to assess the surface integrity of the cartilage, cartilage thickness, and chondrocytes. The results showed that: (1) the cartilage thickness on the distal femur was significantly lower in the TS and TSP groups compared with the CON and TSA groups; (2) the cartilage volume in the TS group was significantly lower compared with the CON, TSA, and TSP groups; and (3) histomorphology showed that the chondrocytes formed clusters where the degree of matrix staining was lower in the TS and TSP groups. There were no significant differences between any of these parameters in the CON and TSA groups. The cartilage thickness measurements obtained by μCT and histomorphology correlated well. In general, tail suspension could induce articular cartilage degeneration, but active exercise was effective in preventing this degeneration in tail-suspended rats. PMID:26256623

  1. Centrifugal and biochemical comparison of proteoglycan aggregates from articular cartilage in experimental joint disuse and joint instability.

    PubMed

    Müller, F J; Setton, L A; Manicourt, D H; Mow, V C; Howell, D S; Pita, J C

    1994-07-01

    Two models involving altered joint loading were compared with regard to their effects on the biochemical composition and proteoglycan aggregate structure of articular cartilage. Disuse atrophy was created in greyhound dogs by nonrigid immobilization of the right knee in 90 degrees of flexion, and joint instability was created by transection of the anterior cruciate ligament. Similarities and differences between the two experimental groups at two different time periods were examined to investigate why joint instability induces progressive and irreversible changes to the articular cartilage, whereas joint disuse induces changes that may be reversible when the joint is remobilized. The following studies were performed on the cartilage from all experimental and control groups: (a) compositional analyses to determine water, uronate, and hydroxyproline contents; (b) high performance liquid chromatography for detection of hyaluronan and chondroitin sulfates; and (c) centrifugation analyses of nondissociatively extracted and purified proteoglycans to isolate and quantify the populations of monomers and slow and fast-sedimenting families of aggregates. In general, all cartilage was found to have a decreased ratio of proteoglycan to collagen after 4 weeks of disuse, and this ratio returned to control values at 8 weeks. In contrast, cartilage had an elevated ratio of proteoglycan to collagen as well as increased hydration at 12 weeks after transection of the anterior cruciate ligament. The most striking contrast between the two models was the finding of an approximately 80% decrease in the content of hyaluronan at both time periods after transection of the anterior cruciate ligament, with no evidence of a change after disuse. The results of centrifugation analyses indicated a significant decrease in the quantity of proteoglycan aggregates in both models. However, this decrease was associated primarily with a loss of slow-sedimenting aggregates after disuse and a loss of both

  2. Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis—a potential functional imaging technique

    NASA Astrophysics Data System (ADS)

    Julkunen, P.; Korhonen, R. K.; Nissi, M. J.; Jurvelin, J. S.

    2008-05-01

    Magnetic resonance imaging (MRI) provides a method for non-invasive characterization of cartilage composition and structure. We aimed to see whether T1 and T2 relaxation times are related to proteoglycan (PG) and collagen-specific mechanical properties of articular cartilage. Specifically, we analyzed whether variations in the depthwise collagen orientation, as assessed by the laminae obtained from T2 profiles, affect the mechanical characteristics of cartilage. After MRI and unconfined compression tests of human and bovine patellar cartilage samples, fibril-reinforced poroviscoelastic finite-element models (FEM), with depthwise collagen orientations implemented from quantitative T2 maps (3 laminae for human, 3-7 laminae for bovine), were constructed to analyze the non-fibrillar matrix modulus (PG specific), fibril modulus (collagen specific) and permeability of the samples. In bovine cartilage, the non-fibrillar matrix modulus (R = -0.64, p < 0.05) as well as the initial permeability (R = 0.70, p < 0.05) correlated with T1. In bovine cartilage, T2 correlated positively with the initial fibril modulus (R = 0.62, p = 0.05). In human cartilage, the initial fibril modulus correlated negatively (R = -0.61, p < 0.05) with T2. Based on the simulations, cartilage with a complex collagen architecture (5 or 7 laminae), leading to high bulk T2 due to magic angle effects, provided higher compressive stiffness than tissue with a simple collagen architecture (3 laminae). Our results suggest that T1 reflects PG-specific mechanical properties of cartilage. High T2 is characteristic to soft cartilage with a classical collagen architecture. Contradictorily, high bulk T2 can also be found in stiff cartilage with a multilaminar collagen fibril network. By emerging MRI and FEM, the present study establishes a step toward functional imaging of articular cartilage.

  3. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan.

    PubMed

    Zhang, Kunxi; Zhang, Yun; Yan, Shifeng; Gong, Lunli; Wang, Jia; Chen, Xuesi; Cui, Lei; Yin, Jingbo

    2013-07-01

    As a synthetic polypeptide water-soluble poly(l-glutamic acid) (PLGA) was designed to fabricate scaffolds for cartilage tissue engineering. Chitosan (CHI) has been employed as a physical cross-linking component in the construction of scaffolds. PLGA/CHI scaffolds act as sponges with a swelling ratio of 760±45% (mass%), showing promising biocompatibility and biodegradation. Autologous adipose-derived stem cells (ASCs) were expanded and seeded on PLGA/CHI scaffolds, ASC/scaffold constructs were then subjected to chondrogenic induction in vitro for 2weeks. The results showed that PLGA/CHI scaffolds could effectively support ASC adherence, proliferation and chondrogenic differentiation. The ASCs/scaffold constructs were then transplanted to repair full t