Science.gov

Sample records for early larval zebrafish

  1. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  2. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development.

    PubMed

    De Marco, Rodrigo J; Groneberg, Antonia H; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  3. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides

    PubMed Central

    Voelz, Kerstin; Gratacap, Remi L.; Wheeler, Robert T.

    2015-01-01

    ABSTRACT Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live

  4. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  5. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. PMID:26283286

  6. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.

    PubMed

    Isogai, S; Horiguchi, M; Weinstein, B M

    2001-02-15

    We have used confocal microangiography to examine and describe the vascular anatomy of the developing zebrafish, Danio rerio. This method and the profound optical clarity of zebrafish embryos make it possible to view the entire developing vasculature with unprecedented resolution. A staged series of three-dimensional images of the vascular system were collected beginning shortly after the onset of circulation at 1 day postfertilization through early- to midlarval stages at approximately 7 days postfertilization. Blood vessels in every region of the animal were imaged at each stage, and detailed "wiring patterns" were derived describing the interconnections between every major vessel. We present an overview of these data here in this paper and in an accompanying Web site "The interactive atlas of zebrafish vascular anatomy" online at (http://eclipse.nichd.nih.gov/nichd/lmg/redirect.html). We find a highly dynamic but also highly stereotypic pattern of vascular connections, with different sets of primitive embryonic vessels severing connections and rewiring in new configurations according to a reproducible plan. We also find that despite variation in the details of the vascular anatomy, the basic vascular plan of the developing zebrafish shows strong similarity to that of other vertebrates. This atlas will provide an invaluable foundation for future genetic and experimental studies of vascular development in the zebrafish. PMID:11161578

  7. Measuring thigmotaxis in larval zebrafish.

    PubMed

    Schnörr, S J; Steenbergen, P J; Richardson, M K; Champagne, D L

    2012-03-17

    One of the most commonly used behavioral endpoints measured in preclinical studies using rodent models is thigmotaxis (or "wall-hugging"). Thigmotaxis is a well-validated index of anxiety in animals and humans. While assays measuring thigmotaxis in adult zebrafish have been developed, a thigmotaxis assay has not yet been validated in larval zebrafish. Here we present a novel assay for measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination (i.e. sudden light-to-darkness transition) and performed in a standard 24-well plate. We show that zebrafish larvae as young as 5 days post fertilization respond to this challenge by engaging in thigmotaxis. Thigmotaxis was significantly attenuated by anxiolytic (diazepam) and significantly enhanced by anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. We also show that exposure to sudden darkness per se may represent an anxiogenic situation for larval zebrafish since less contrasting light-to-darkness transitions (achieved by lowering darkness degrees) significantly decreased thigmotaxis levels in a manner similar to what was achieved with diazepam. These findings suggest that stimuli such as exposure to sudden darkness could be used proficiently to trigger the expression of anxiety-like behaviors in laboratory settings. In sum, this is a versatile protocol allowing testing of both anxiolytic and anxiogenic drugs in a cost-effective manner (only 10 min). This assay is also amenable to medium to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery. PMID:22197677

  8. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina

    PubMed Central

    Gore, Matthew; Burggren, Warren W.

    2012-01-01

    Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio) were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (LHSD) and low stamina-derived larvae (LLSD), were then reared at 27°C in aerated water (21% O2). Routine (fH,r) and active (fH,a) heart rate, and routine (Ṁo2,r) and active (Ṁo2,a) mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf) through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from Ṁo2 measurements. Heart rate generally ranged between 150 and 225 bpm in both LHSD and LLSD populations. However, significant (P < 0.05) differences existed between the LLSD and LHSD populations at 5 and 14 dpf in fH,r and at days 10 and 15 dpf in fH,a. Ṁo2,r was 0.04–0.32 μmol mg−1 h−1, while Ṁo2,a was 0.2–1.2 μmol mg−1 h−1. Significant (P < 0.05) differences between the LLSD and LHSD populations in Ṁo2,r occurred at 7, 10, and 21 dpf and in Ṁo2,a at 7 dpf. Gross cost of transport was ∼6–10 μmol O2·μg−1 m−1 at 5 dpf, peaking at 14–19 μmol O2 μg−1 m−1 at 7–10 dpf, before falling again to 5–6 μmol O2 μg−1 m−1 at 21 dpf, with gross cost of transport significantly higher in the LLSD population at 7 dpf. Collectively, these data indicate that inherited physiological differences known to contribute to enhanced stamina in adult parents also appear in their larval offspring well before attainment of juvenile or adult features. PMID

  9. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  10. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  11. Behavioral analysis of the escape response in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    The behavior of larval zebrafish is of great interest because the limited number of locomotor neurons in larval zebrafish couples with its rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their swimming behavior while our lab has built a parameter-free model based on singular value decomposition analysis to characterize it. Our previous work has analyzed the free swimming of larval zebrafish and presented a different picture from the current classification of larval zebrafish locomotion. Now we are extending this work to the studies of their escape response to acoustic stimulus. Analysis has shown intrinsic difference in the locomotion between escape response and free swimming.

  12. Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish

    PubMed Central

    Yen, Jerry; Donerly, Sue; Levin, Edward D.; Linney, Elwood A.

    2011-01-01

    Zebrafish are increasingly used for developmental neurotoxicity testing because early embryonic events are easy to visualize, exposures are done without affecting the mother and the rapid development of zebrafish allows for high throughput testing. We used zebrafish to examine how exposures to three different organophosphorus pesticides (chlorpyrifos, diazinon and parathion) over the first five days of embryonic and larval development of zebrafish affected their survival, acetylcholinesterase (AChE) activity and behavior. We show that at non-lethal, equimolar concentrations, chlorpyrifos (CPF) is more effective at equimolar concentrations than diazinon (DZN) and parathion (PA) in producing AChE inhibition. As concentrations of DZN and PA are raised, lethality occurs before they can produce the degree of AChE inhibition observed with CPF at 300nM. Because of its availability outside the mother at the time of fertilization, zebrafish provides a complementary model for studying the neurotoxicity of very early developmental exposures. PMID:22036888

  13. Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish

    PubMed Central

    Meyer, Michaela; Dhamne, Sameer C.; LaCoursiere, Christopher M.; Tambunan, Dimira; Poduri, Annapurna; Rotenberg, Alexander

    2016-01-01

    Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development. PMID:27281339

  14. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  15. Effects of diphenylhydantoin on locomotion and thigmotaxis of larval zebrafish.

    PubMed

    Liu, Xiuyun; Lin, Jia; Zhang, Yinglan; Peng, Xiaolan; Guo, Ning; Li, Qiang

    2016-01-01

    Antiepileptic effects of diphenylhydantoin (DPH) have been documented in animal studies and clinical research, while little is known about the effects of the drug on basic behaviors and anxiety-related behaviors. In order to understand neuroactivities of DPH deeply and administrate DPH in clinic rationally, it is necessary to study neurobehavioral effects of the drug. In the present study, the effects of DPH on the locomotor activity and thigmotaxis of zebrafish larvae at 5 days post fertilization (dpf) were explored under different illumination conditions. The influence of DPH on zebrafish larval responses to visual stimuli (sudden illumination transition from light to dark) was also investigated. Under light or dark condition, exposure to high concentrations of DPH resulted in decreased locomotor activity and thigmotaxis, whereas DPH treatment at low doses enhanced the locomotor activity. Additionally, sudden illumination transition induced robust increase in the locomotor activity and this phenomenon was not modified by DPH treatment. Our results suggest that DPH has potential stimulatory and inhibitory effects on the locomotor activity and possesses anxiolytic properties. In addition, responses of 5-dpf zebrafish larvae to visual stimuli were not modified by DPH treatment. PMID:26597863

  16. Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish.

    PubMed

    Dunn, Timothy W; Gebhardt, Christoph; Naumann, Eva A; Riegler, Clemens; Ahrens, Misha B; Engert, Florian; Del Bene, Filippo

    2016-02-01

    Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  17. Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa

    EPA Science Inventory

    The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...

  18. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish. PMID:26803580

  19. Non-invasive Imaging of the Innate Immune Response in a Zebrafish Larval Model of Streptococcus iniae Infection

    PubMed Central

    Harvie, Elizabeth A.; Huttenlocher, Anna

    2015-01-01

    The aquatic pathogen, Streptococcus iniae, is responsible for over 100 million dollars in annual losses for the aquaculture industry and is capable of causing systemic disease in both fish and humans. A better understanding of S. iniae disease pathogenesis requires an appropriate model system. The genetic tractability and the optical transparency of the early developmental stages of zebrafish allow for the generation and non-invasive imaging of transgenic lines with fluorescently tagged immune cells. The adaptive immune system is not fully functional until several weeks post fertilization, but zebrafish larvae have a conserved vertebrate innate immune system with both neutrophils and macrophages. Thus, the generation of a larval infection model allows the study of the specific contribution of innate immunity in controlling S. iniae infection. The site of microinjection will determine whether an infection is systemic or initially localized. Here, we present our protocols for otic vesicle injection of zebrafish aged 2-3 days post fertilization as well as our techniques for fluorescent confocal imaging of infection. A localized infection site allows observation of initial microbe invasion, recruitment of host cells and dissemination of infection. Our findings using the zebrafish larval model of S. iniae infection indicate that zebrafish can be used to examine the differing contributions of host neutrophils and macrophages in localized bacterial infections. In addition, we describe how photolabeling of immune cells can be used to track individual host cell fate during the course of infection. PMID:25938624

  20. [Establishment of an anesthesia model induced by etomidate in larval zebrafish].

    PubMed

    DU, Wen-Jie; DU, Jiu-Lin; Yu, Tian

    2016-06-25

    Despite the wide application of general anesthetic drugs in clinic, it is still unclear how these drugs induce the state of general anesthesia. Larval zebrafish has emerged as an ideal model for dissecting the mechanism of neural systems due to the conserved and simple brain structure. In the present study, we established an anesthesia model from behavioral to electrophysiological levels using larval zebrafish for the first time. Bath application of etomidate, as a kind of intravenous anesthetic drugs, suppressed the spontaneous locomotion of zebrafish in a concentration-dependent manner. Consistently, in vivo fictive motor patterns of spinal motoneurons recorded extracellularly were significantly inhibited as well. Furthermore, using in vivo extracellular recording and whole-cell recording, we found that etomidate application suppressed local field potentials (LFP) of the brain and blocked visually evoked responses of optic tectal neurons. The study indicates that larval zebrafish can serve as an ideal vertebrate animal model for studying neural mechanisms underlying general anesthesia. PMID:27350203

  1. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish.

    PubMed

    Chen, Jiangfei; Tanguay, Robert L; Xiao, Yanyan; Haggard, Derik E; Ge, Xiaoqing; Jia, Yinhang; Zheng, Yi; Dong, Qiaoxiang; Huang, Changjiang; Lin, Kuangfei

    2016-09-01

    Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants (BFRs), is a ubiquitous contaminant in the environment and in the human body. This study demonstrated that zebrafish embryos exposed to TBBPA during a sensitive window of 8-48 h post-fertilization (hpf) displayed morphological malformations and mortality. Zebrafish exposed exclusively between 48 and 96 hpf were phenotypically normal. TBBPA was efficiently absorbed and accumulated in zebrafish embryos, but was eliminated quickly when the exposure solution was removed. Larval behavior assays conducted at 120 hpf indicated that exposure to 5 μM TBBPA from 8 to 48 hpf produced larvae with significantly lower average activity and speed of movement in the normal condition than in those exposed from 48 to 96 hpf. Specifically, 8-48 hpf-exposed larvae spent significantly less time in both activity bursts and gross movements compared to control or 48-96 hpf exposed larvae. Consistent with the motor deficits, TBBPA induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor neuron development and loosed muscle fiber during the early developmental stages. To further explore TBBPA-induced developmental and neurobehavioral toxicity, RNA-Seq analysis was used to identify early transcriptional changes following TBBPA exposure. In total, 1969 transcripts were significantly differentially expressed (P < 0.05, FDR < 0.05, 1.5-FC) upon TBBPA exposure. Functional and pathway analysis of the TBBPA transcriptional profile identified biological processes involved in nerve development, muscle filament sliding and contraction, and extracellular matrix disassembly and organization changed significantly. In addition, TBBPA also led to an elevation in the expression of genes encoding uridine diphosphate glucuronyl transferases (ugt), which could affect thyroxine (T4) metabolism and subsequently lead to neurobehavioral changes. In summary, TBBPA exposure

  2. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Castillo Ramírez, Luis A.; Ryu, Soojin

    2013-01-01

    The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs. PMID:23653595

  3. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  4. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    PubMed

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  5. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water.

    PubMed

    Kumai, Yusuke; Harris, Jessica; Al-Rewashdy, Hasanen; Kwong, Raymond W M; Perry, Steve F

    2015-01-01

    Although adult fish excrete their nitrogenous waste primarily as ammonia, larval fish may excrete a higher proportion as urea, an evolutionary strategy that lessens nitrogenous waste toxicity during early development. Previous studies firmly established that ammonia excretion is inhibited in adult fish acutely exposed to alkaline water. This study was designed to test the hypothesis that total nitrogen excretion is maintained in larval zebrafish raised in alkaline water (pH ∼ 10.0) as a result of compensatory adjustments to urea and/or ammonia transport pathways. Raising zebrafish in alkaline water from 0 to 4 d postfertilization (dpf) reduced ammonia excretion at 4 dpf, whereas urea excretion was elevated by 141%. The increase in urea excretion at 4 dpf served to maintain total nitrogen excretion constant, despite the persistent inhibition of ammonia excretion. Whole body ammonia and urea contents were not significantly altered by exposure to alkaline water. Protein and mRNA expression of Rhcg1, an apically expressed ammonia-conducting channel, were significantly elevated after 4-d exposure to alkaline water, whereas the mRNA expression of Rhag, Rhbg, and urea transporter were unaffected. The acute exposure to alkaline water of 4-dpf larvae reared in control water caused a rapid inhibition of ammonia excretion that had partially recovered within 6 h of continued exposure. The partial recovery of ammonia excretion despite continued exposure to alkaline water suggested an increased ammonia excretion capacity. In agreement with an increased capacity to excrete ammonia, the transfer of larvae back to the control (normal pH) water was accompanied by increased rates of ammonia excretion. Urea excretion was not stimulated during 6-h exposure to alkaline water. Following both chronic and acute exposure to alkaline water, the rate of uptake of methylamine (an ammonia analog) was significantly elevated, consistent with increased protein expression of the apical ammonia

  6. An Optimized Whole-Body Cortisol Quantification Method for Assessing Stress Levels in Larval Zebrafish

    PubMed Central

    Yeh, Chen-Min; Glöck, Mario; Ryu, Soojin

    2013-01-01

    Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish. PMID:24223943

  7. Behavioral and physiological indicators of stress coping styles in larval zebrafish.

    PubMed

    Tudorache, Christian; ter Braake, Anique; Tromp, Mara; Slabbekoorn, Hans; Schaaf, Marcel J M

    2015-01-01

    Different individuals cope with stressors in different ways. Stress coping styles are defined as a coherent set of individual behavioral and physiological differences in the response to a stressor which remain consistent across time and context. In the present study, we have investigated coping styles in larval zebrafish (Danio rerio) at 8 days post-fertilization. Larvae were separated into two groups, according to the emergence sequence from a darkened into a novel well-lit environment, early (EE) and late (LE) emergers. We used brief periods of netting as a stressor. Swimming behavior and kinematics before and after netting stress were analyzed, as were whole-body cortisol levels before and at 10, 30 and 60 min after the stress event. The results show that general swimming activity was different between EE and LE larvae, with lower baseline cumulative distance and more erratic swimming movements in EE than in LE larvae. EE larvae showed a faster recovery to baseline levels after stress than LE larvae. Cortisol baseline levels were not different between EE and LE larvae, but peak levels after stress were higher and the recovery towards basal levels was faster in EE than in LE larvae. This study shows that coping styles are manifest in zebrafish larvae, and that behavior and swimming kinematics are associated with different cortisol responses to stress. A better understanding of the expression of coping styles may be of great value for medical applications, animal welfare issues and conservation. PMID:25407298

  8. Loss of cftr function leads to pancreatic destruction in larval zebrafish

    PubMed Central

    Navis, Adam; Bagnat, Michel

    2016-01-01

    The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease. PMID:25592226

  9. The zebrafish early arrest mutants.

    PubMed

    Kane, D A; Maischein, H M; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kelsh, R N; Mullins, M C; Odenthal, J; Warga, R M; Nüsslein-Volhard, C

    1996-12-01

    This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes. PMID:9007229

  10. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  11. River waters induced neurotoxicity in an embryo-larval zebrafish model.

    PubMed

    García-Cambero, Jesús Pablo; Catalá, Myriam; Valcárcel, Yolanda

    2012-10-01

    Some investigations have revealed an increased release of psychoactive drugs into the aquatic environments near big cities. However, despite the alert generated by the presence of such neurotoxic compounds, there is a lack of studies evaluating the impact on living organisms. One solution consists in the development of bioassays able to address specific risks, such as neurotoxicity, but on the other hand suitable to assess complex matrices like river samples. The objective of this work was to assess surface water toxicity by means of a zebrafish embryo-larval combined toxicity assay, which is based on a variety of toxicological endpoints, especially those related to neurodevelopment. For such a purpose, we selected the Tagus River in which a previous monitoring study revealed the presence of psychoactive drugs. Results showed that most of the toxicological endpoints evaluated remained unaltered in the exposed embryos, except for the tail length that was larger in the exposed larvae, and the locomotor activity in the 6-day larvae, which was decreased in four groups of exposure (n=5 sampling points). In the absence of systemic toxicity, changes in larval locomotion are indicative of neurotoxicity. This result suggests that the Tagus River can convey neurotoxic compounds at levels that may represent an early and specific threat over the aquatic species of vertebrates, what can have dramatic consequences under the ecological point of view. PMID:22906717

  12. Strain-Specific Changes in Locomotor Behavior in Larval Zebrafish Elicited by Cholinergic Challenge

    EPA Science Inventory

    Some studies have compared the baseline behavior of different strains of larval zebrafish (Danio rerio), but there is sparse information on strain-specific responses to chemical challenges. The following study examines both the basal activity and response to a pharmacological cha...

  13. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is developing and evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. Towards this goal, we are exploring methods to detect developmental neurotoxicants in very young larval zebrafish. We have...

  14. Correlating Whole Brain Neural Activity with Behavior in Head-Fixed Larval Zebrafish.

    PubMed

    Orger, Michael B; Portugues, Ruben

    2016-01-01

    We present a protocol to combine behavioral recording and imaging using 2-photon laser-scanning microscopy in head-fixed larval zebrafish that express a genetically encoded calcium indicator. The steps involve restraining the larva in agarose, setting up optics that allow projection of a visual stimulus and infrared illumination to monitor behavior, and analysis of the neuronal and behavioral data. PMID:27464817

  15. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish.

    PubMed

    Muto, Akira; Kawakami, Koichi

    2016-01-01

    Visualization of neuronal activity during animal behavior is a critical step in understanding how the brain generates behavior. In the model vertebrate zebrafish, imaging of the brain has been done mostly by using immobilized fish. Here, we describe a novel method to image neuronal activity of the larval zebrafish brain during prey capture behavior. We expressed a genetically encoded fluorescent calcium indicator, GCaMP, in the optic tectum of the midbrain using the Gal4-UAS system. Tectal activity was then imaged in unrestrained larvae during prey perception. Since larval zebrafish swim only intermittently, detection of the neuronal activity is possible between swimming bouts. Our method makes functional brain imaging under natural behavioral conditions feasible and will greatly benefit the study of neuronal activities that evoke animal behaviors. PMID:27464819

  16. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection.

    PubMed

    Gratacap, Remi L; Bergeron, Audrey C; Wheeler, Robert T

    2014-01-01

    Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces. PMID:25490695

  17. Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection

    PubMed Central

    Gratacap, Remi L.; Bergeron, Audrey C.; Wheeler, Robert T.

    2016-01-01

    Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces. PMID:25490695

  18. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish

    PubMed Central

    Herget, Ulrich; Ryu, Soojin

    2015-01-01

    The paraventricular nucleus (PVN) of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression levels are subject to environment-induced plasticity. Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO) as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin (AVP), corticotropin-releasing hormone (CRH), proenkephalin a (penka)/b (penkb), neurotensin (NTS), oxytocin (OXT), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), and somatostatin (SST)). Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish. PMID:25729355

  19. Behavorial Screens for Detecting Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    As part of the EPA's effort to develop an in vivo, vertebrate screen for toxic chemicals, we have characterized basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a convenient, reproducible me...

  20. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  1. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  2. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio rerio FED A PROCESSED DIET, LIVE FOOD, OR THE COMBINATION

    EPA Science Inventory

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the cu...

  3. Using the Larval Zebrafish Locomotor Asssay in Functional Neurotoxicity Screening: Light Brightness and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    We are evaluating methods to screen/prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative model for detecting neurotoxic effects. Our behavioral testing paradigm simultaneously tests individual larval zebrafish under sequential light and...

  4. Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish.

    PubMed

    Zou, Ming; Friedrich, Rainer W; Bianco, Isaac H

    2016-01-01

    This chapter describes three fast and straightforward methods to introduce nucleic acids, dyes, and other molecules into small numbers of cells of zebrafish embryos, larvae, and adults using electroporation. These reagents are delivered through a glass micropipette and electrical pulses are given through electrodes to permeabilize cell membranes and promote uptake of the reagent. This technique allows the experimenter to target cells of their choice at a particular time of development and at a particular location in the zebrafish with high precision and facilitates long-term noninvasive measurement of biological activities in vivo. Applications include cell fate mapping, neural circuit mapping, neuronal activity measurement, manipulation of activity, ectopic gene expression, and genetic knockdown experiments. PMID:27464813

  5. Positive taxis and sustained responsiveness to water motions in larval zebrafish

    PubMed Central

    Groneberg, Antonia H.; Herget, Ulrich; Ryu, Soojin; De Marco, Rodrigo J.

    2015-01-01

    Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions—also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties. PMID:25798089

  6. High Cholesterol Diet Induces IL-1β Expression in Adult but Not Larval Zebrafish

    PubMed Central

    Jang, Man-Young; Na, Yirang; Ko, Youngho; Choi, Jae-Hoon; Seok, Seung Hyeok

    2013-01-01

    Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regarding inflammatory cytokine expression during the lipid accumulation in zebrafish larva and adult fish. In this study, we first demonstrated the expression levels of IL-1β and TNF-α in high cholesterol diet (HCD)-fed zebrafish larvae, and found that although HCD induced vascular lipid accumulation, the cytokine expressions in the larvae were not changed by HCD. Furthermore, there was no significant difference in leukocyte accumulation in vessels between control and HCD fed group. But prolonged HCD induced IL-1β expression in spleen and liver compared to those of control zebrafish, and produced very early stage of fatty streak lesion in dorsal aorta of 19 week HCD-fed zebrafish. These results indicate that HCD induced hypercholesterolemia and atherosclerotic changes in zebrafish are very early stage, and suggest the necessity of the generation of mutant zebrafish having a disruption in a lipid metabolism-related gene leading to severe hypercholesterolemia and advanced atherosclerosis. PMID:23825600

  7. Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of Cyanobacteria.

    PubMed

    Rogers, Emily D; Henry, Theodore B; Twiner, Michael J; Gouffon, Julia S; McPherson, Jackson T; Boyer, Gregory L; Sayler, Gary S; Wilhelm, Steven W

    2011-03-01

    Microcystis blooms occur worldwide and threaten aquatic ecosystems and human health. Sublethal effects on early developmental stages of fish are largely unknown, and research has mainly focused on microcystin toxins (such as MC-LR) rather than Microcystis cells. We exposed (96 h) zebrafish larvae to purified MC-LR (0-1000 μg/L) or lyophilized Microcystis aeruginosa containing 4.5 μg/L MC-LR and evaluated changes in global gene expression (Affymetrix GeneChip zebrafish genome arrays). Significant changes in gene expression (≥ 1.7-fold change, p < 0.0001) were determined with Rosetta Resolver 7.0, and ontology analysis was conducted with the DAVID bioinformatics tool. The number of differentially expressed genes relative to control increased with MC-LR concentration and included genes related to known mechanisms of action for MC-LR in mammals and older life stages of fish, as well as genes unique to larval zebrafish. Up-regulation of vitellogenin genes (vtg) (19.2-fold to >100-fold on arrays; 619.3-fold confirmed by quantitative PCR) was observed in Microcystis-exposed larvae but not in larvae exposed to MC-LR. Up-regulation of vtg indicates exposure to estrogenic substance(s) and suggests that Microcystis may be a natural source of environmental estrogens. Concerns about effects of Microcystis blooms may extend beyond those associated with the microcystin toxin. PMID:21280650

  8. Crypt cells are involved in kin recognition in larval zebrafish

    PubMed Central

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F.

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  9. Crypt cells are involved in kin recognition in larval zebrafish.

    PubMed

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  10. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios

    USGS Publications Warehouse

    Mukhi, S.; Torres, L.; Patino, R.

    2007-01-01

    The objective of this study was to determine the effect of larval-juvenile exposure to perchlorate, a thyroid hormone synthesis inhibitor, on the establishment of gonadal sex ratios in zebrafish. Zebrafish were exposed to untreated water or water containing perchlorate at 100 or 250 ppm for a period of 30 days starting at 3 days postfertilization (dpf). Recovery treatments consisted of a combination of perchlorate and exogenous thyroxine (T4; 10 nM). Thyroid histology was assessed at the end of the treatment period (33 dpf), and gonadal histology and sex ratios were determined in fish that were allowed an additional 10-day period of growth in untreated water. As expected, exposure to perchlorate caused changes in thyroid histology consistent with hypothyroidism and these effects were reversed by co-treatment with exogenous T4. Perchlorate did not affect fish survival but co-treatment with T4 induced higher mortality. However, relative to the corresponding perchlorate concentration, co-treatment with T4 caused increased mortality only at a perchlorate concentration of 100 ppm. Perchlorate alone or in the presence of T4 suppressed body length at 43 dpf relative to control values. Perchlorate exposure skewed the sex ratio toward female in a concentration-dependent manner, and co-treatment with T4 not only blocked the feminizing effect of perchlorate but also overcompensated by skewing the sex ratio towards male. Moreover, co-treatment with T4 advanced the onset of spermatogenesis in males. There was no clear association between sex ratios and larval survival or growth. We conclude that endogenous thyroid hormone plays a role in the establishment of gonadal sex phenotype during early development in zebrafish. ?? 2006 Elsevier Inc. All rights reserved.

  11. A dedicated visual pathway for prey detection in larval zebrafish.

    PubMed

    Semmelhack, Julia L; Donovan, Joseph C; Thiele, Tod R; Kuehn, Enrico; Laurell, Eva; Baier, Herwig

    2014-01-01

    Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, that was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response. PMID:25490154

  12. Hydrogen sulfide promotes calcium uptake in larval zebrafish.

    PubMed

    Kwong, Raymond W M; Perry, Steve F

    2015-07-01

    Hydrogen sulfide (H2S) can act as a signaling molecule for various ion channels and/or transporters; however, little is known about its potential involvement in Ca(2+) balance. Using developing zebrafish (Danio rerio) as an in vivo model system, the present study demonstrated that acute exposure to H2S donors increased Ca(2+) influx at 4 days postfertilization, while chronic (3-day) exposure caused a rise in whole body Ca(2+) levels. The mRNA expression of Ca(2+)-transport-related genes was unaffected by H2S exposure, suggesting that posttranscriptional modifications were responsible for the altered rates of Ca(2+) uptake. Indeed, treatment of fish with the protein kinase A inhibitor H-89 abolished the H2S-mediated stimulation of Ca(2+) influx, suggesting that H2S increased Ca(2+) influx by activating cAMP-protein kinase A pathways. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two key enzymes in the endogenous synthesis of H2S. Using an antisense morpholino knockdown approach, we demonstrated that Ca(2+) influx was reduced in CBS isoform b (CBSb)- but not in CSE-deficient fish. Interestingly, the reduction in Ca(2+) influx in CBSb-deficient fish was observed only in fish that were acclimated to low-Ca(2+) water (i.e., 25 μM Ca(2+); control: 250 μM Ca(2+)). Similarly, mRNA expression of cbsb but not cse was increased in fish acclimated to low-Ca(2+) water. Results from whole-mount immunohistochemistry further revealed that CBSb was expressed in Na(+)-K(+)-ATPase-rich cells, which are implicated in Ca(2+) uptake in zebrafish larvae. Collectively, the present study suggests a novel role for H2S in promoting Ca(2+) influx, particularly in a low-Ca(2+) environment. PMID:25948733

  13. Acute and Chronic Toxicity of Nitrate to Early Life Stages of Zebrafish--Setting Nitrate Safety Levels for Zebrafish Rearing.

    PubMed

    Learmonth, Cândida; Carvalho, António Paulo

    2015-08-01

    Recirculating aquaculture systems (RAS) have been widely used for zebrafish rearing, allowing holding of many thousands of fish at high densities. Water quality in RAS largely depends on biofilters that ultimately convert the extremely toxic ammonia excreted by fish into the much less toxic nitrate. However, when water renewal is minimal in RAS, nitrate can accumulate to high enough levels to negatively impact fish welfare and performance. Therefore, the setting of safety levels of nitrate for zebrafish should be a priority to avoid unwanted effects in both the intensive production of this species and research outputs. The present study aimed to define nitrate safety levels for zebrafish based on acute and chronic toxicity bioassays in early life stages of this species. Acute bioassays revealed ontogenetic changes in response to high nitrate levels. Based on NOEC (no observed effect concentration) values, safety levels should be set at 1450, 1855, and 1075 mg/L NO3(-)-N to prevent acute lethal effects in embryos, newly-hatched larvae, and swim-up larvae, respectively. In the chronic bioassay, larvae were exposed to nitrate concentrations of 50, 100, 200, and 400 mg/L NO3(-)-N during the entire larval period (23 days). No negative effects were observed either on larval performance or condition at concentrations up to 200 mg/L NO3(-)-N. However, at 400 mg/L NO3(-)-N, survival drastically decreased and fish showed reduced growth and evidence of morphological abnormalities. Accordingly, a safety level of 200 mg/L NO3(-)-N is recommended during the larval rearing of zebrafish to prevent negative impacts on juvenile production. PMID:25996778

  14. Effects of lorazepam and WAY-200070 in larval zebrafish light/dark choice test.

    PubMed

    Chen, Fengjiao; Chen, Sijie; Liu, Shanshan; Zhang, Cuizhen; Peng, Gang

    2015-08-01

    Zebrafish larvae spend more time in brightly illuminated area when placed in a light/dark testing environment. Here we report that the anxiolytic drugs lorazepam and diazepam increased the time larval fish spent in the dark compartment in the light/dark test. Lorazepam did not affect the visual induced optokinetic response of larval fish. Gene expression levels of c-fos and crh were significantly increased in the hypothalamus of fish larvae underwent light/dark choice behavior, whilst lorazepam treatment alleviated the increased c-fos and crh expressions. Furthermore, we found estrogen receptor β gene expression level was increased in fish larvae underwent light/dark choice. We next examined effects of estrogen receptor modulators (estradiol, BPA, PHTPP, and WAY-200070) in the light/dark test. We identified WAY-200070, a highly selective ERβ agonist significantly altered the light/dark choice behavior of zebrafish larvae. Further investigation showed WAY-200070 treatment caused a reduction of crh expression level in the hypothalamus, suggesting activation of ERβ signaling attenuate the stress response. Interestingly, WAY-200070 treatment caused marked increase of c-fos expression in the habenula of fish larvae underwent behavior test. These results suggest WAY-200070 activation of ERβ mediated signaling may regulate anxiety related behavior in zebrafish through modulation of neuronal activity in habenula. PMID:25842247

  15. A dedicated visual pathway for prey detection in larval zebrafish

    PubMed Central

    Semmelhack, Julia L; Donovan, Joseph C; Thiele, Tod R; Kuehn, Enrico; Laurell, Eva; Baier, Herwig

    2014-01-01

    Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, that was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response. DOI: http://dx.doi.org/10.7554/eLife.04878.001 PMID:25490154

  16. Methods for culturing saltwater rotifers (Brachionus plicatilis) for rearing larval zebrafish.

    PubMed

    Lawrence, Christian; Sanders, Erik; Henry, Eric

    2012-09-01

    The saltwater rotifer, Brachionus plicatilis, is widely used in the aquaculture industry as a prey item for first-feeding fishes due to its ease of culture, small size, rapid reproductive rate, and amenability to enrichment with nutrients. Despite the distinct advantages of this approach, rotifers have only been sporadically utilized for rearing larval zebrafish, primarily because of the common misconception that maintaining cultures of rotifers is difficult and excessively time-consuming. Here we present simple methods for maintaining continuous cultures of rotifers capable of supporting even the very largest zebrafish aquaculture facility, with minimal investments in materials, time, labor, and space. Examples of the methods' application in one large, existing facility is provided, and troubleshooting of common problems is discussed. PMID:22950820

  17. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications.

    PubMed

    Zhou, Yangzhong; Cattley, Richard T; Cario, Clinton L; Bai, Qing; Burton, Edward A

    2014-07-01

    This article describes a method to quantify the movements of larval zebrafish in multiwell plates, using the open-source MATLAB applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB scripts; and implementation of validation controls. The method is reliable, automated and flexible, requires <1 h of hands-on work for completion once optimized and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine the following: positional preference; displacement, velocity and acceleration; and duration and frequency of movement events and rest periods. This approach is widely applicable to the analysis of spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multiwell plate format suitable for high-throughput applications. PMID:24901738

  18. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure. PMID:26178186

  19. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish.

    PubMed

    Sallinen, V; Torkko, V; Sundvik, M; Reenilä, I; Khrustalyov, D; Kaslin, J; Panula, P

    2009-02-01

    Larval zebrafish offers a good model to approach brain disease mechanisms, as structural abnormalities of their small brains can be correlated to quantifiable behavior. In this study, the structural alterations in one diencephalic dopaminergic nucleus induced by 1-methyl-4-phenylpyridinium (MPP+), a toxin inducing Parkinson's disease in humans, and those found in several neuronal groups after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pretoxin, were associated with decreased swimming speed. Detailed cell counts of dopaminergic groups indicated a transient decline of tyrosine hydroxylase expressing neurons up to about 50% after MPTP. The MPTP effect was partly sensitive to monoamine oxidase inhibitor deprenyl. Detailed analysis of the developing catecholaminergic cell groups suggests that the cell groups emerged at their final positions and no obvious significant migration from the original positions was seen. One 5-HT neuron group was also affected by MPTP treatment, whereas other groups remained intact, suggesting that the effect is selective. New nomenclature for developing catecholaminergic cell groups corresponding to adult groups is introduced. The diencephalic cell population consisting of groups 5,6 and 11 was sensitive to both MPTP and MPP+ and in this respect resembles mammalian substantia nigra. The results suggest that MPTP and MPP+ induce a transient functional deficit and motility disorder in larval zebrafish. PMID:19046410

  20. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish.

    PubMed

    Levi, Rafael; Akanyeti, Otar; Ballo, Aleksander; Liao, James C

    2015-01-15

    The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment. PMID:25355959

  1. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish

    PubMed Central

    Levi, Rafael; Akanyeti, Otar; Ballo, Aleksander

    2014-01-01

    The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment. PMID:25355959

  2. Transport Mechanism of Coumarin 6 Nanocrystals with Two Particle Sizes in MDCKII Monolayer and Larval Zebrafish.

    PubMed

    Miao, Xiaoqing; Li, Ye; Wang, Xueqing; Lee, Simon Ming-Yuen; Zheng, Ying

    2016-05-25

    Nanocrystals (NCs) were utilized as oral formulations in commercial products to deliver lipophilic drug, but their transport mechanisms are not fully understood. This study aimed to explore the transport mechanism of NCs using in vitro Madin-Darby canine kidney II (MDCK II) cells and in vivo larval zebrafish models. Coumarin 6 (C6) was formulated into NCs with particle size of 67.5 ± 5.2 and 190 ± 9.2 nm. In vitro studies showed that 70 nm NCs accumulated in lysosome and endoplasmic reticulum (ER) as destinations. Lipid raft pathways mediated the endocytosis, while lipid raft, ER/Golgi, and Golgi/plasma membrane pathways were involved in exocytosis and transcytosis process. However, 200 nm NCs accumulated more in a lysosome, where lipid raft pathways were also involved in the endocytosis process. In vivo studies in larval zebrafish model further confirmed that the above network plays an important role in the absorption and distribution of C6-NCs. PMID:27159431

  3. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains.

    PubMed

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052

  4. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.

    PubMed

    Wehmas, Leah Christine; Tanguay, Robert L; Punnoose, Alex; Greenwood, Juliet A

    2016-08-01

    Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development. PMID:27158859

  5. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains

    PubMed Central

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M.; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052

  6. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  7. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish

    PubMed Central

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W.; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M.; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G.; Becker, Thomas

    2016-01-01

    ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  8. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish.

    PubMed

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G; Becker, Thomas

    2016-05-01

    In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  9. Visualizing the population dynamics of microbial communities in the larval zebrafish gut

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    In each of our digestive tracts, trillions of microbes representing hundreds of different species colonize local environments, reproduce, and compete with one another. The resulting ecosystems influence many aspects their host's development and health. Little is known about how gut microbial communities vary in space and time: how they grow, fluctuate, and respond to various perturbations. To address this and investigate microbial colonization of the vertebrate gut, we apply light sheet fluorescence microscopy to a model system that combines a realistic in vivo environment with a high degree of experimental control: larval zebrafish with defined subsets of commensal bacterial species. Light sheet microscopy enables three-dimensional imaging with high resolution over the entire intestine, providing visualizations that would be difficult or impossible to achieve with other techniques. Quantitative analysis of image data enables measurement of bacterial abundances and distributions. I will describe this approach and focus especially on recent experiments in which a colonizing bacterial species is challenged by the invasion of a second species, which leads to the decline of the first group. Imaging reveals dramatic population collapses that differentially affect the two species due to their different biogeographies and morphologies. The collapses are driven by the peristaltic motion of the zebrafish intestine, indicating that the physical activity of the host environment can play a major role in mediating inter-species competition. role in mediating inter-species competition. Supported by the National Science Foundation under Grant No. 0922951 and the National Institutes of Health under Award Number 1P50GM098911.

  10. Ethanol Affects the Development of Sensory Hair Cells in Larval Zebrafish (Danio rerio)

    PubMed Central

    Matsui, Jonathan I.

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%–1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS. PMID:24324841

  11. CFD Study of Pectoral Fins of Larval Zebrafish: Effect of Reynolds Number and Fin Bending in Fluid Structures and Transport

    NASA Astrophysics Data System (ADS)

    Islam, Toukir; Curet, Oscar M.

    2015-11-01

    Zebrafish exhibits significant changes in fin morphology as well as fin actuation during its physical development. In larval stage (Re ~ 10), they beat pectoral fins asymmetrically during slow swimming and prey tracking and a hypothesis suggests pectoral fin motion enhances fluid mixing to assist respiration. We performed a series of computational simulations to study effect of Reynolds number (Re) and pectoral fin kinematics in the fluid dynamics and mixing around a larval zebrafish. The CFD algorithm is based on a constraint formulation where the kinematics of the zebrafish are specified. We simulated experimental zebrafish kinematics at different Re (17 to 300) and considered variations on the fin kinematics to evaluate role of fin deformation in the fluid structures generated by the pectoral fins. Using Lagrangian Coherent Structures and Lagrangian fluid tracers, we identified distinctly dynamic fluid regions and found that mixing around the pectoral fin significantly increases with Re and fin bending enhance fluid mixing at low Re. However, as zebrafish matures and its Re increases, the need to beat the pectoral fins to enhance mixing is reduced.

  12. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish

    PubMed Central

    Yoo, Sa Kan; Freisinger, Christina M.; LeBert, Danny C.

    2012-01-01

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration. PMID:23045550

  13. Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process.

    PubMed

    Olive, Raphaël; Wolf, Sébastien; Dubreuil, Alexis; Bormuth, Volker; Debrégeas, Georges; Candelier, Raphaël

    2016-01-01

    Awake animals unceasingly perceive sensory inputs with great variability of nature and intensity, and understanding how the nervous system manages this continuous flow of diverse information to get a coherent representation of the environment is arguably a central question in systems neuroscience. Rheotaxis, the ability shared by most aquatic species to orient toward a current and swim to hold position, is an innate and robust multi-sensory behavior that is known to involve the lateral line and visual systems. To facilitate the neuroethological study of rheotaxic behavior in larval zebrafish we developed an assay for freely swimming larvae that allows for high experimental throughtput, large statistic and a fine description of the behavior. We show that there exist a clear transition from exploration to counterflow swim, and by changing the sensory modalities accessible to the fishes (visual only, lateral line only or both) and comparing the swim patterns at different ages we were able to detect and characterize two different mechanisms for position holding, one mediated by the lateral line and one mediated by the visual system. We also found that when both sensory modalities are accessible the visual system overshadows the lateral line, suggesting that at the larval stage the sensory inputs are not merged to finely tune the behavior but that redundant information pathways may be used as functional fallbacks. PMID:26941620

  14. Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process

    PubMed Central

    Olive, Raphaël; Wolf, Sébastien; Dubreuil, Alexis; Bormuth, Volker; Debrégeas, Georges; Candelier, Raphaël

    2016-01-01

    Awake animals unceasingly perceive sensory inputs with great variability of nature and intensity, and understanding how the nervous system manages this continuous flow of diverse information to get a coherent representation of the environment is arguably a central question in systems neuroscience. Rheotaxis, the ability shared by most aquatic species to orient toward a current and swim to hold position, is an innate and robust multi-sensory behavior that is known to involve the lateral line and visual systems. To facilitate the neuroethological study of rheotaxic behavior in larval zebrafish we developed an assay for freely swimming larvae that allows for high experimental throughtput, large statistic and a fine description of the behavior. We show that there exist a clear transition from exploration to counterflow swim, and by changing the sensory modalities accessible to the fishes (visual only, lateral line only or both) and comparing the swim patterns at different ages we were able to detect and characterize two different mechanisms for position holding, one mediated by the lateral line and one mediated by the visual system. We also found that when both sensory modalities are accessible the visual system overshadows the lateral line, suggesting that at the larval stage the sensory inputs are not merged to finely tune the behavior but that redundant information pathways may be used as functional fallbacks. PMID:26941620

  15. Prey capture behavior evoked by simple visual stimuli in larval zebrafish.

    PubMed

    Bianco, Isaac H; Kampff, Adam R; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed "virtual reality" assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  16. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  17. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio).

    PubMed

    Chen, Te-Hao; Lin, Chia-Chi; Meng, Pei-Jie

    2014-07-30

    Zinc oxide nanoparticles (ZnO NP) are extensively used in various consumer products such as sunscreens and cosmetics, with high potential of being released into aquatic environments. In this study, fertilized zebrafish (Danio rerio) eggs were exposed to various concentrations of ZnO NP suspensions (control, 0.1, 0.5, 1, 5, and 10mg/L) or their respective centrifuged supernatants (0.03, 0.01, 0.08, 0.17, 0.75, and 1.21mg/L dissolved Zn ions measured) until reaching free swimming stage. Exposure to ZnO NP suspensions and their respective centrifuged supernatants caused similar hatching delay, but did not cause larval mortality or malformation. Larval activity level, mean velocity, and maximum velocity were altered in the groups exposed to high concentrations of ZnO NP (5-10mg/L) but not in the larvae exposed to the supernatants. To evaluate possible mechanism of observed effects caused by ZnO NP, we also manipulated the antioxidant environment by co-exposure to an antioxidant compound (N-acetylcysteine, NAC) or an antioxidant molecule suppressor (buthionine sulfoximine, BSO) with 5mg/L ZnO NP. Co-exposure to NAC did not alter the effects of ZnO NP on hatchability, but co-exposure to BSO caused further hatching delay. For larval locomotor activity, co-exposure to NAC rescued the behavioral effect caused by ZnO NP, but co-exposure to BSO did not exacerbate the effect. Our data indicated that toxicity of ZnO NP cannot be solely explained by dissolved Zn ions, and oxidative stress may involve in ZnO NP toxicity. PMID:24424259

  18. Orthopedia Transcription Factor otpa and otpb Paralogous Genes Function during Dopaminergic and Neuroendocrine Cell Specification in Larval Zebrafish

    PubMed Central

    Fernandes, António M.; Beddows, Erin; Filippi, Alida; Driever, Wolfgang

    2013-01-01

    The homeodomain transcription factor Orthopedia (Otp) is an important regulator for specification of defined subsets of neuroendocrine cells and dopaminergic neurons in vertebrates. In zebrafish, two paralogous otp genes, otpa and otpb, are present in the genome. Neither complete loss of Otp activity nor differential contributions of Otpa and Otpb to specification of defined neuronal populations have been analyzed in detail. We characterized zebrafish embryos and early larvae mutant for null alleles of otpa, otpb, or both genes to determine their individual contributions to the specification of th expressing dopaminergic neuronal populations as well as of crh, oxt, avp, trh or sst1.1 expressing neuroendocrine cells. otpa mutant larvae show an almost complete reduction of ventral diencephalic dopaminergic neurons, as reported previously. A small reduction in the number of trh cells in the preoptic region is detectable in otpa mutants, but no significant loss of crh, oxt and avp preoptic neuroendocrine cells. otpb single mutant larvae do not display a reduction in dopaminergic neurons or neuroendocrine cells in the otp expressing regions. In contrast, in otpa and otpb double mutant larvae specific groups of dopaminergic neurons as well as of crh, oxt, avp, trh and sst1.1-expressing neuroendocrine cells are completely lost. These observations suggest that the requirement for otpa and otpb function during development of the larval diencephalon is partially redundant. During evolutionary diversification of the paralogous otp genes, otpa maintained the prominent role in ventral diencephalic dopaminergic and neuroendocrine cell specification and is capable of partially compensating otpb loss of function. In addition, we identified a role of Otp in the development of a domain of somatostatin1-expressing cells in the rostral hindbrain, a region with strong otp expression but so far uncharacterized Otp function. Otp may thus be crucial for defined neuronal cell types also in

  19. Noncanonical Amino Acid Labeling in Vivo to Visualize and Affinity Purify Newly Synthesized Proteins in Larval Zebrafish

    PubMed Central

    2011-01-01

    Protein expression in the nervous system undergoes regulated changes in response to changes in behavioral states, in particular long-term memory formation. Recently, methods have been developed (BONCAT and FUNCAT), which introduce noncanonical amino acids bearing small bio-orthogonal functional groups into proteins using the cells’ own translational machinery. Using the selective “click reaction”, this allows for the identification and visualization of newly synthesized proteins in vitro. Here we demonstrate that noncanonical amino acid labeling can be achieved in vivo in an intact organism capable of simple learning behavior, the larval zebrafish. We show that azidohomoalanine is metabolically incorporated into newly synthesized proteins, in a time- and concentration-dependent manner, but has no apparent toxic effect and does not influence simple behaviors such as spontaneous swimming and escape responses. This enables fluorescent labeling of newly synthesized proteins in whole mount larval zebrafish. Furthermore, stimulation with a GABA antagonist that elicits seizures in the larval zebrafish causes an increase in protein synthesis throughout the proteome, which can also be visualized in intact larvae. PMID:22347535

  20. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. PMID:26267709

  1. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  2. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development

    PubMed Central

    Walker, Benjamin S.; Lassiter, Christopher S.; Jónsson, Zophonías O.

    2016-01-01

    The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E2 during larval head development. PMID:27069811

  3. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development.

    PubMed

    Pashay Ahi, Ehsan; Walker, Benjamin S; Lassiter, Christopher S; Jónsson, Zophonías O

    2016-01-01

    The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E 2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E 2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E 2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E 2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E 2 during larval head development. PMID:27069811

  4. Effects of simulated microgravity on otoliths growth and microstructure of Larval Zebrafish, Danio rerio

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Wang, Gaohong; Liu, Yongding

    2012-07-01

    Otolith is the vestibular endorgan that takes part in gravitational signal initiation. Environmental change can leave mark on otolith microstructure. In this study, we use zebrafish from embryo stage of 10hpf to middle larval stage of 12dpf to investigate the effect of microgravity on otolith development. It was found that otoliths size of microgravity group was larger than the control before 6dpf, but after that both groups kept nearly the same size. Surface scanning of otolith morphology with SEM showed that otolith of microgravity group were much smoother than the control. After etching with HCl, we found both groups formed daily increments, but microgravity group lack clear check marks in some special developmental stage. Widths between increments were wider, and granule shape was much sharper in microgravity group. Analysis of crystal orientation disclosed the increments of microgravity group formed irregularly. The surface etched with PKb also exhibited different granule size and orientation: the granules in the control had nearly the same size and direction, while the particles in microgravity were smaller and orientated differently along the translucent ring. The organic leftover were also found between layers in microgravity group. These results suggest that microgravity can affect otolith development, the component and structural mode of inorganic and organic parts change with different gravitation environment, which may be involved in orientation adjustment of SMS (Space Movement Sickness).

  5. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process

    PubMed Central

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L.; Engert, Florian

    2015-01-01

    ABSTRACT Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (<10 mm s−1) and then plateaus for higher values. Typical latencies are >1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. PMID:25792753

  6. Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish.

    PubMed

    Lin, Xudong; Li, Vincent W T; Chen, Siya; Chan, Chung-Yuen; Cheng, Shuk-Han; Shi, Peng

    2016-03-01

    Ethanol is widely consumed and has been associated with various diseases in different organs. It is therefore important to study ethanol-induced responses in living organisms with the capability to address specific organs in an integrative manner. Here, we developed an autonomous system based on a series of microfluidic chips for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish. This system enabled high-throughput, gel-free, and anesthetic-free manipulation of larvae, and thus allowed real-time observation of behavioral responses, and associated physiological changes at cellular resolution within specific organs in response to acute ethanol stimuli, which would otherwise be impossible by using traditional methods for larva immobilization and orientation. Specifically, three types of chips ("motion," "lateral," and "dorsal"), based on a simple hydrodynamic design, were used to perform analysis in animal behavior, cardiac, and brain physiology, respectively. We found that ethanol affected larval zebrafish in a dose-dependent manner. The motor function of different body parts was significantly modulated by ethanol treatment, especially at a high dose of 3%. These behavioral changes were temporally associated with a slow-down of heart-beating and a stereotyped activation of certain brain regions. As we demonstrated in this proof-of-concept study, this versatile Fish-on-Chip platform could potentially be adopted for systematic cross-organ investigations involving chemical or genetic manipulations in zebrafish model. PMID:27158291

  7. Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio

    PubMed Central

    Rurangwa, Eugene; Sipkema, Detmer; Kals, Jeroen; ter Veld, Menno; Forlenza, Maria; Bacanu, Gianina M.; Smidt, Hauke; Palstra, Arjan P.

    2015-01-01

    Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM. PMID:25983694

  8. Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio.

    PubMed

    Rurangwa, Eugene; Sipkema, Detmer; Kals, Jeroen; Ter Veld, Menno; Forlenza, Maria; Bacanu, Gianina M; Smidt, Hauke; Palstra, Arjan P

    2015-01-01

    Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM. PMID:25983694

  9. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies

    PubMed Central

    Ingebretson, Justin J.; Masino, Mark A.

    2013-01-01

    High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level. PMID:23772207

  10. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in

  11. Developing methods based on light sheet fluorescence microscopy for biophysical investigations of larval zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Michael J.

    Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using

  12. The Cellular Architecture of the Larval Zebrafish Tectum, as Revealed by Gal4 Enhancer Trap Lines

    PubMed Central

    Scott, Ethan K.; Baier, Herwig

    2009-01-01

    We have carried out a Gal4 enhancer trap screen in zebrafish, and have generated 184 stable transgenic lines with interesting expression patterns throughout the nervous system. Of these, three display clear expression in the tectum, each with a distinguishable and stereotyped distribution of Gal4 expressing cells. Detailed morphological analysis of single cells, using a genetic “Golgi-like” labelling method, revealed four common cell types (superficial, periventricular, shallow periventricular, and radial glial), along with a range of other less common neurons. The shallow periventricular (PV) and a subset of the PV neurons are tectal efferent neurons that target various parts of the reticular formation. We find that it is specifically PV neurons with dendrites in the deep tectal neuropil that target the reticular formation. This indicates that these neurons receive the tectum's highly processed visual information (which is fed from the superficial retinorecipient layers), and relay it to premotor regions. Our results show that the larval tectum, both broadly and at the single cell level, strongly resembles a miniature version of its adult counterpart, and that it has all of the necessary anatomical characteristics to inform motor responses based on sensory input. We also demonstrate that mosaic expression of GFP in Gal4 enhancer trap lines can be used to describe the types and abundance of cells in an expression pattern, including the architectures of individual neurons. Such detailed anatomical descriptions will be an important part of future efforts to describe the functions of discrete tectal circuits in the generation of behavior. PMID:19862330

  13. Coordination of Fictive Motor Activity in the Larval Zebrafish Is Generated by Non-Segmental Mechanisms

    PubMed Central

    Wiggin, Timothy D.; Peck, Jack H.; Masino, Mark A.

    2014-01-01

    The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits. PMID:25275377

  14. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.

    PubMed

    Zhao, Xuesong; Wang, Shutao; Wu, Yuan; You, Hong; Lv, Lina

    2013-07-15

    Nano-scale zinc oxide (nano-ZnO) is widely used in various industrial and commercial applications. However, the available toxicological information was inadequate to assess the potential ecological risk of nano-ZnO to aquatic organisms and the publics. In this study, the developmental toxicity, oxidative stress and DNA damage of nano-ZnO embryos were investigated in the embryo-larval zebrafish, the toxicity of Zn(2+) releasing from nano-ZnO were also investigated to ascertain the relationship between the nano-ZnO and corresponding Zn(2+). Zebrafish embryos were exposed to 1, 5, 10, 20, 50, and 100mg/L nano-ZnO and 0.59, 2.15, 3.63, 4.07, 5.31, and 6.04 mg/L Zn(2+) for 144 h post-fertilisation (hpf), respectively. Up to 144 hpf, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) contents, the genes related to oxidative damage, reactive oxygen species (ROS) generation and DNA damage in zebrafish embryos were measured. The nano-ZnO was found to exert a dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and inducing malformation and the acute toxicity to zebrafish embryos was greater than that of the Zn(2+) solution. The generation of ROS was significantly increased at 50 and 100mg/L nano-ZnO. DNA damage of zebrafish embryo was evaluated by single-cell gel electrophoresis and was enhanced with increasing nano-ZnO concentration. Moreover, the transcriptional expression of mitochondrial inner membrane genes related to ROS production, such as Bcl-2, in response to oxidative damage, such as Nqo1, and related to antioxidant response element such as Gstp2 were significantly down-regulated in the nano-ZnO treatment groups. However, the nano-ZnO up-regulated the transcriptional expression of Ucp2-related to ROS production. In conclusion, nano-ZnO induces developmental toxicity, oxidative stress and DNA damage on zebrafish embryos and the dissolved Zn(2+) only partially

  15. Quantification of larval zebrafish motor function in multi-well plates using open-source MATLAB® applications

    PubMed Central

    Zhou, Yangzhong; Cattley, Richard T.; Cario, Clinton L.; Bai, Qing; Burton, Edward A.

    2014-01-01

    This article describes a method to quantify the movements of larval zebrafish in multi-well plates, using the open-source MATLAB® applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly-illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB® scripts; implementation of validation controls. The method is reliable, automated and flexible, requires less than one hour of hands-on work for completion once optimized, and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine: positional preference; displacement, velocity and acceleration; duration and frequency of movement events and rest periods. This approach is widely applicable to analyze spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multi-well plate format suitable for high-throughput applications. PMID:24901738

  16. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish (Danio rerio)

    SciTech Connect

    Henry, T.R.; Hornung, M.W.; Abnet, C.C.; Peterson, R.E.

    1995-12-31

    TCDD and related compounds cause toxicity in fish early life stages, characterized by edema, regional ischemia, craniofacial malformations, growth retardation and mortality. Determining the mechanism of these effects requires understanding normal early life stage development, which has been studied extensively in the zebrafish. Establishing zebrafish as a model for TCDD developmental toxicity requires demonstration that TCDD adversely affects zebrafish early life stages. Toxicity of TCDD to zebrafish early life stages was characterized by exposing newly fertilized eggs for 1 hr to water containing acetone or graded concentrations of [{sup 3}H]-TCDD and observed for signs of toxicity at 12 hr intervals for 240 hr post fertilization (hpf). TCDD did not increase embryo mortality during the egg stage (0--48 hpf) nor did it affect the time to hatching (48--96 hpf). At the highest TCDD egg doses (4.5--6.5 ng/g) the earliest sign of toxicity was pericardial edema (72 hpf) followed by the onset of yolk sac edema (96 hpf) onset of mortality (132 hpf). At lower egg doses the same effects were seen but after a longer delay period. Other signs of toxicity included craniofacial malformations, cranial edema and loss of swimming activity prior to death. To determine the dose-response relationship for pericardial and yolk sac edema and larval mortality the cumulative incidence of each effect was determined at 240 hpf. The ED{sub 50}s (95% fiducial limits) for pericardial edema and yolk sac edema were 2.1 6 (1.82--2.48) and 2.43 (2.12--2.72) ng TCDD/g egg, respectively. The LD{sub 50} was 2.45 (1.94--2.89) ng TCDD/g egg. In conclusion, the signs of TCDD early life stage toxicity in zebrafish are essentially identical to those in other fish species, however, larger egg doses of TCDD are required to elicit the effects.

  17. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology.

    PubMed

    Challa, Anil Kumar; Chatti, Kiranam

    2013-09-01

    Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  18. Conservation and Early Expression of Zebrafish Tyrosine Kinases Support the Utility of Zebrafish as a Model for Tyrosine Kinase Biology

    PubMed Central

    Challa, Anil Kumar

    2013-01-01

    Abstract Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  19. Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos.

    PubMed

    Raftery, Tara D; Volz, David C

    2015-01-01

    During early zebrafish embryogenesis, spontaneous tail contractions represent the first sign of locomotion and result from innervation of primary motoneuron axons to target axial muscles. Based on a high-content screen, we previously demonstrated that exposure of zebrafish embryos to abamectin--an avermectin insecticide--from 5-25 hours post-fertilization (hpf) abolished spontaneous activity in the absence of effects on survival and gross morphology. Therefore, the objective of this study was to begin investigating the mechanism of abamectin-induced hypoactivity in zebrafish. Similar to 384-well plates, static exposure of embryos to abamectin from 5-25 hpf in glass beakers resulted in elimination of activity at low micromolar concentrations. However, abamectin did not affect neurite outgrowth from spinal motoneurons and, compared with exposure from 5-25 hpf, embryos were equally susceptible to abamectin-induced hypoactivity when exposures were initiated at 10 and 23 hpf. Moreover, immersion of abamectin-exposed embryos in clean water resulted in complete recovery of spontaneous activity relative to vehicle controls, suggesting that abamectin reversibly activated ligand-gated chloride channels and inhibited neurotransmission. To test this hypothesis, we pretreated embryos to vehicle or non-toxic concentrations of fipronil or endosulfan--two insecticides that antagonize the γ-aminobutyric acid (GABA) receptor--from 5-23 hpf, and then exposed embryos to vehicle or abamectin from 23-25 hpf. Interestingly, activity levels within abamectin-exposed embryos pretreated with either antagonist were similar to embryos exposed to vehicle alone. Using quantitative PCR and phylogenetic analyses, we then confirmed the presence of GABA receptor α1 and β2 subunits at 5, 10, and 23 hpf, and demonstrated that zebrafish GABA receptor subunits are homologous to mammalian GABA receptor subunits. Overall, our data collectively suggest that abamectin induces rapid and reversible

  20. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness

    PubMed Central

    Cheng, Ruey-Kuang; Krishnan, Seetha; Jesuthasan, Suresh

    2016-01-01

    Serotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator. Calcium imaging of tph2-expressing cells demonstrates that a rostral subset of dorsal raphe serotonergic neurons fire continuously while the animal is in darkness, but are inhibited in the light. Optogenetic manipulation of tph2 neurons by channelrhodopsin or halorhodopsin expression modifies preference, confirming a role for these neurons. In particular, these results suggest that fish prefer swimming in conditions that elicits lower activity in tph2 serotonergic neurons in the rostral raphe. PMID:26868164

  1. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio)

    USGS Publications Warehouse

    Mukhi, S.; Pan, X.; Cobb, G.P.; Patino, R.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mg l-1 in two different tests. The estimated no-observed-effective- concentration (NOEC) values of RDX on lethality were 13.27 ?? 0.05 and 15.32 ?? 0.30 mg l-1; and the lowest-observed-effective- concentration (LOEC) values were 16.52 ?? 0.05 and 19.09 ?? 0.23 mg l-1 in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mg l-1, with NOEC and LOEC of 9.75 ?? 0.34 and 12.84 ?? 0.34 mg l-1, respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  3. Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish

    PubMed Central

    Villamizar, Natalia; Ribas, Laia; Piferrer, Francesc; Vera, Luisa M.; Sánchez-Vázquez, Francisco Javier

    2012-01-01

    In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled “gating” mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation. PMID:23284912

  4. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  5. Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish

    PubMed Central

    Santoriello, Cristina; Gennaro, Elisa; Anelli, Viviana; Distel, Martin; Kelly, Amanda; Köster, Reinhard W.; Hurlstone, Adam; Mione, Marina

    2010-01-01

    Background Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed. Methodology and Principal Findings Using the combinatorial Gal4 –UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2–4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1–3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period. Conclusions and Significance This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens. PMID:21170325

  6. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  7. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  8. Behavioral repertoire of larval zebrafish: Baseline activity and response to drug treatment.

    EPA Science Inventory

    As part of the EPA’s effort to develop an in vivo, vertebrate screen for toxic chemicals, we have begun to characterize basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a method for rapidly ...

  9. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  10. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  11. Locomotion in Larval Zebrafish: Influence of Time of Day, Lighting and Ethanol

    EPA Science Inventory

    The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. Behavior represents the unique interface between intrinsic and extrinsic forces that determine an organism’s health and survival. We studied...

  12. Assessing Locomotor Activity in Larval Zebrafish: Influence of Extrinsic and Intrinsic Variables

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  13. Studies on the Behavior of Larval Zebrafish for Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  14. Drugs Targeting the Dopaminergic Nervous System Alter Locomotion in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs that ...

  15. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  16. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    EPA Science Inventory

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  17. Expression dynamics of NADPH oxidases during early zebrafish development.

    PubMed

    Weaver, Cory J; Leung, Yuk Fai; Suter, Daniel M

    2016-07-01

    Nicotinamide dinucleotide phosphate oxidases (NOX) control various cellular signaling cascades. In the nervous system, there is recent evidence that NOX-derived reactive oxygen species (ROS) regulate neurite outgrowth, regeneration, and stem cell proliferation; however, a comprehensive NOX gene expression analysis is missing for all major model systems. Zebrafish embryos provide an excellent model system to study neurodevelopment and regeneration because they develop quickly and are well suited for in vivo imaging and molecular approaches. Although the sequences of five NOX genes (nox1, nox2/cybb, nox4, nox5, and duox) have been identified in the zebrafish genome, nothing is known about their expression pattern. Here, we used quantitative polymerase chain reaction combined with in situ hybridization to develop a catalog of nox1, nox2/cybb, nox5, and duox expression in zebrafish during early nervous system development from 12 to 48 hours post fertilization. We found that expression levels of nox1, nox5, and duox are dynamic during the first 2 days of development, whereas nox2/cybb levels remain remarkably stable. By sectioning in situ hybridized embryos, we found a pattern of broad and overlapping NOX isoform expression at 1 and 1.5 days post fertilization. After 2 days of development, a few brain regions displayed increased NOX expression levels. Collectively, these results represent the first comprehensive analysis of NOX gene expression in the zebrafish and will provide a basis for future studies aimed at determining the functions of NOX enzymes in neurodevelopment and regeneration. J. Comp. Neurol. 524:2130-2141, 2016. © 2015 Wiley Periodicals, Inc. PMID:26662995

  18. Targeted Laser Ablation of the Zebrafish Larval Heart Induces Models of Heart Block, Valvular Regurgitation, and Outflow Tract Obstruction

    PubMed Central

    Matrone, Gianfranco; Maqsood, Sana; Taylor, Jonathan; Mullins, John J.; Tucker, Carl S.

    2014-01-01

    Abstract Mammalian models of cardiac disease have provided unique and important insights into human disease but have become increasingly challenging to produce. The zebrafish could provide inexpensive high-throughput models of cardiac injury and repair. We used a highly targeted laser, synchronized to fire at specific phases of the cardiac cycle, to induce regional injury to the ventricle, atrioventricular (AV) cushion, and bulbus arteriosus (BA). We assessed the impact of laser injury on hearts of zebrafish early larvae at 72 h postfertilization, to different regions, recording the effects on ejection fraction (EF), heart rate (HR), and blood flow at 2 and 24 h postinjury (hpi). Laser injury to the apex, midzone, and outflow regions of the ventricle resulted in reductions of the ventricle EF at 2 hpi with full recovery of function by 24 hpi. Laser injury to the ventricle, close to the AV cushion, was more likely to cause bradycardia and atrial–ventricular dysfunction, suggestive of an electrical conduction block. At 2 hpi, direct injury to the AV cushion resulted in marked regurgitation of blood from the ventricle to the atrium. Laser injury to the BA caused temporary outflow tract obstruction with cessation of ventricle contraction and circulation. Despite such damage, 80% of embryos showed complete recovery of the HR and function within 24 h of laser injury. Precision laser injury to key structures in the zebrafish developing heart provides a range of potentially useful models of hemodynamic overload, injury, and repair. PMID:25272304

  19. Cardiovascular system in larval zebrafish responds to developmental hypoxia in a family specific manner

    PubMed Central

    Moore, Francisco B-G; Hosey, Michelle; Bagatto, Brian

    2006-01-01

    Background Genetic and environmental variation are both known to influence development. Evolution of a developmental response that is optimized to the environment (adaptive plasticity) requires the existence of genetic variation for that developmental response. In complex traits composed of integrated sets of subsidiary traits, the adaptive process may be slowed by the existence of multiple possible integrated responses. This study tests for family (sibship) specific differences in plastic response to hypoxia in an integrated set of cardiovascular traits in zebrafish. Results Cardiac output, which is the integrated product of several subsidiary traits, varied highly significantly between families, and families differed significantly in the degree and direction of response to developmental oxygen level. The cardiac output response to oxygen environment was entirely family specific with no significant overall trend due to oxygen level. Constituent physiological variables that contribute to cardiac output all showed significant family specific response to hypoxia. Traits that were not directly related to cardiac output, such as arterial and venous diameter, and red blood cell velocities did not respond to hypoxia in a family specific manner. Conclusion Zebrafish families vary in their plastic response to hypoxia. Genetic variation in plastic response to hypoxia may therefore provide the basic ingredient for adaptation to a variable environment. Considerable variation in the degree of familial response to hypoxia exists between different cardiovascular traits that may contribute to cardiac output. It is possible that the integration of several subsidiary traits into cardiac output allows the maintenance of genetic variance in cardiac response. PMID:16539736

  20. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior.

    PubMed

    Lovato, Ava K; Creton, Robbert; Colwill, Ruth M

    2016-01-01

    Developmental disorders such as anxiety, autism, and attention deficit hyperactivity disorders have been linked to exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant. The zebrafish is widely recognized as an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effect of sub-chronic embryonic exposure to the PCB mixture, Aroclor (A) 1254 on anxiety-related behaviors in zebrafish larvae at 7 days post-fertilization (dpf). We found that exposure to low concentrations of A1254, from 2 to 26 h post-fertilization (hpf) induced specific behavioral defects in two assays. In one assay with intermittent presentations of a moving visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae displayed decreased avoidance behavior but no significant differences in thigmotaxis or freezing relative to controls. In the other assay with intermittent presentations of a moving visual stimulus and a stationary visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae had elevated baseline levels of thigmotaxis but no significant differences in avoidance behavior relative to controls. The 5 ppm larvae also displayed higher terminal levels of freezing relative to controls. Collectively, our results show that exposure to ecologically valid PCB concentrations during embryonic development can induce functional deficits and alter behavioral responses to a visual threat. PMID:26561944

  1. A Fluorescence-Based Assay for Proteinuria Screening in Larval Zebrafish (Danio rerio).

    PubMed

    Hanke, Nils; King, Benjamin L; Vaske, Bernhard; Haller, Hermann; Schiffer, Mario

    2015-10-01

    Analysis of genes compromising the glomerular filtration barrier in rodent models using transgenic or knockdown approaches is time- and resource-consuming and often leads to unsatisfactory results. Therefore, it would be beneficial to have a selection tool indicating that your gene of interest is in fact associated with proteinuria. Zebrafish (Danio rerio) is a rapid screening tool to study effects in glomerular filtration barrier integrity after genetic manipulation. We use either injection of high-molecular-weight dextrans or a transgenic fluorescent fish line [Tg(l-fabp:DBP:EGFP)] expressing a vitamin D-binding protein fused with eGFP for indirect detection of proteinuria. A loss of high-molecular-weight proteins from the circulation of the fish into the urine can be identified by monitoring fluorescence intensity in the zebrafish eye. Paired with an optimized analysis method, this assay provides an effective screening solution to detect filtration barrier damage with proteinuria before moving to a mammalian system. PMID:26125680

  2. Use of broad-spectrum antimicrobials in the eradication of unknown aquatic pathogens in a zebrafish larval rearing system.

    PubMed

    Russo, Robert; Dillehay, Dirck

    2005-03-01

    A zebrafish larval rearing system experienced a surge in mortality rates soon after the introduction of new stocks. A comprehensive water analysis of pH, nitrites, nitrates, ammonia, chlorine, carbonate hardness, general hardness, and conductivity identified no anomalies. Observations via light microscopy of affected fry revealed consistent signs of impaired mobility, blood clotting, and eventual heart hemorrhage resulting in the death of 90 to 100% of the fry by the age of 2 weeks. Collection of sufficient tissue samples for a histological investigation proved problematic due to the fry's diminutive size. Because a causal agent could not be isolated satisfactorily, the use of a broad-spectrum antibiotic was deemed necessary. After considering many broad-spectrum antibiotics for treatment, we implemented a two-tiered approach for treatment. The rearing system was treated with a nitrofurazone derivative, whereas the adult populations were treated using multi-antibiotic food pellets. The rearing system was treated for 3 weeks, and the adult population was treated for 2 weeks. After the completion of the antibiotic treatments, the biological filters of all of the medicated systems were seeded with nitrifying bacterial cultures. Upon the maturation of the rearing systems' biological filters, mortality rates returned to pre-outbreak levels. There have been no re-occurrences of the fish mortality since the completion of treatment. This epidemic provided some valuable lessons, lessons that if followed, will ensure faster response to unknown pathogens in the future. PMID:15773777

  3. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine.

    PubMed

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D; Prasad, G L; Di Giulio, Richard T

    2015-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  4. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine

    PubMed Central

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.; Prasad, G.L.; Di Giulio, Richard T.

    2016-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a ‘bridge model’; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2 h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  5. Neural control and modulation of swimming speed in the larval zebrafish

    PubMed Central

    Marques, João C.; O'Malley, Donald M.; Orger, Michael B.; Engert, Florian

    2014-01-01

    Summary Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics we build a better understanding of how the brain controls movement. PMID:25066084

  6. On the pathway of mineral deposition in larval zebrafish caudal fin bone.

    PubMed

    Akiva, Anat; Malkinson, Guy; Masic, Admir; Kerschnitzki, Michael; Bennet, Mathieu; Fratzl, Peter; Addadi, Lia; Weiner, Steve; Yaniv, Karina

    2015-06-01

    A poorly understood aspect of bone biomineralization concerns the mechanisms whereby ions are sequestered from the environment, concentrated, and deposited in the extracellular matrix. In this study, we follow mineral deposition in the caudal fin of the zebrafish larva in vivo. Using fluorescence and cryo-SEM-microscopy, in combination with Raman and XRF spectroscopy, we detect the presence of intracellular mineral particles located between bones, and in close association with blood vessels. Calcium-rich particles are also located away from the mineralized bone, and these are also in close association with blood vessels. These observations challenge the view that mineral formation is restricted to osteoblast cells juxtaposed to bone, or to the extracellular matrix. Our results, derived from observations performed in living animals, contribute a new perspective to the comprehensive mechanism of bone formation in vertebrates, from the blood to the bone. More broadly, these findings may shed light on bone mineralization processes in other vertebrates, including humans. PMID:25725266

  7. Effects of simulated microgravity on growth of Larval Zebrafish, Danio rerio

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yan; Wang, Gaohong; Liu, Yongding

    Fish has been proved to be a suitable vertebrate to study gravity effecting on body growth. When exposed to simulated microgravity, zebrafish embryos were found rapidly hatched with very small yolk-sac and pale color appearance from day 2. At hatch, the fish had larger body length (p¡0.001) and well developed swimming ability, it could floating freely or swimming elsewhere when tapping at one side of the bioreactor. After yolk-sac fully absorbed at day 5-6, somatic growth decreased to the same level as normogravity counterparter (p˜0.05). At this time, some fish laid on the bottom of the bioreactor. When tapping at one side, the fish moved slowly. After that, the fish grew slowly, body length were smaller than normogravity group (p¡0.01). When tapping at one side, most of them laid on the bottom without response, while some swam with rolling or head-down posture. At day 7-10, some of them died of starvation with wan and emaciated appearance. At the end of experiment at day 12, the recovery of somatic growth were observed and most of the fish swam normally. These results indicated simulated microgravity can influence fish growth. At the beginning, it may stimulate fish growth as an environmental stress factor, but long term of exposure may delay somatic and organic development, causing retared growth and abnormal movement. Furthermore, it suggest microgravity may cause damage to developing organism. Keywords: Simulated microgravity; Growth; Zebrafish

  8. The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity.

    PubMed

    Jin, Yuanxiang; Liu, Zhenzhen; Peng, Tao; Fu, Zhengwei

    2015-04-01

    Chlorpyrifos (CPF) is one of the most toxic pesticides in aquatic ecosystem, but its toxicity mechanisms to fish are still not fully understood. This study examined the toxicity targets of CPF in early life stage of zebrafish on the endpoints at developmental toxicity, neurotoxicity, oxidative stress and immunotoxicity. Firstly, CPF exposure decreased the body length, inhibited the hatchability and heart rate, and resulted in a number of morphological abnormalities, primarily spinal deformities (SD) and pericardial edema (PE), in larval zebrafish. Secondly, the free swimming activities and the swimming behaviors of the larvae in response to the stimulation of light-to-dark photoperiod transition were significantly influenced by the exposure to 100 and 300 μg/L CPF. In addition, the activity of acetylcholinesterase (AChE) and the transcription of some genes related to neurotoxicity were also influenced by CPF exposure. Thirdly, CPF exposure induced oxidative stress in the larval zebrafish. The malondialdehyde (MDA) levels increased and the glutathione (GSH) contents decreased significantly in a concentration-dependent manner after the exposure to CPF for 96 hours post fertilization (hpf). CPF affected not only the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione S-transferase (GST), but also the transcriptional levels of their respective genes. Finally, the mRNA levels of the main cytokines including tumor necrosis factor α (Tnfα), interferon (Ifn), interleukin-1 beta (Il-1β), interleukin 6 (Il6), complement factor 4 (C4) in the larvae increased significantly after the exposure to 100 or 300 μg/L CPF for 96 hpf, suggesting that the innate immune system disturbed by CPF in larvae. Taken together, our results suggested that CPF had the potential to cause developmental toxicity, behavior alterations, oxidative stress and immunotoxicity in the larval zebrafish. PMID:25634256

  9. Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish

    PubMed Central

    Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté

    2013-01-01

    Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899

  10. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  11. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to

  12. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not Their Response to Valproate-Induced Developmental Neurotoxicity*

    EPA Science Inventory

    Zebrafish (Danio rerio) are widely used in developmental research, but still not much is known about the role of the environment in their development. Zebrafish are a highly social organism; thus exposure to, or isolation from, social environments may have profound developmental ...

  13. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not their Response to Valproate-Induced Developmental Neurotoxicity

    EPA Science Inventory

    Zebrafish (Dania rerio) are widely used in developmental research, but little is known about the role environment may play in their development. Zebrafish are a highly social organism; thus exposure to or isolation from social environments may have profound effects. Details of re...

  14. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  15. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana.

    PubMed

    Mouro, Lucas D; Zatoń, Michał; Fernandes, Antonio C S; Waichel, Breno L

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261

  16. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    PubMed Central

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C.S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261

  17. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish

    PubMed Central

    Lee, Sang Joon; Choi, Woorak; Seo, Eunseok; Yeom, Eunseop

    2015-01-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis. PMID:26561854

  18. Optimisation of Embryonic and Larval ECG Measurement in Zebrafish for Quantifying the Effect of QT Prolonging Drugs

    PubMed Central

    Dhillon, Sundeep Singh; Dóró, Éva; Magyary, István; Egginton, Stuart; Sík, Attila; Müller, Ferenc

    2013-01-01

    Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation. PMID:23579446

  19. Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs.

    PubMed

    Dhillon, Sundeep Singh; Dóró, Eva; Magyary, István; Egginton, Stuart; Sík, Attila; Müller, Ferenc

    2013-01-01

    Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation. PMID:23579446

  20. Genotoxic effects and gene expression changes in larval zebrafish after exposure to ZnCl2 and ZnO nanoparticles.

    PubMed

    Boran, Halis; Ulutas, Gokay

    2016-01-13

    Engineered nanoparticles (NPs) can potentially generate adverse effects at the tissue, organ, cellular, subcellular, DNA, and protein levels due to their unique physico-chemical properties. Dissoluble NPs (e.g. nZnO) can be toxic in aquatic organisms. We compared effects of nZnO and corresponding concentrations of released Zn(II) by water-soluble ZnCl(2) on larval zebrafish Danio rerio (72 h post fertilization) by analyzing changes in expression levels of stress-related genes (p53, rad51, mt2) by qRT-PCR. Additionally, genotoxicity of nZnO and Zn(II) was assessed. The lethal concentrations for 50% mortality (LC(50)) in larval zebrafish exposed for 96 h to 0 to 70 mg l(-1) nZnO and Zn(II) were 21.37 ± 1.81 mg l(-1) (95% CI) and 4.66 ± 0.11 mg l(-1), respectively. A concentration-dependent increase in DNA strand breaks was detected in cells from larvae exposed (96 h) to nZnO and Zn(II). DNA damage was higher in Zn(II)- than nZnO-exposed larvae. Induction of stress-related genes in larvae was complex and was not directly related to nZnO and Zn(II) concentrations, although there was significant induction in the mt2 gene of larvae exposed to Zn(II) and nZnO relative to controls. mt2 induction of 20.5 ± 1.9-fold and 2.5 ± 0.8-fold change (mean ± SEM) was observed in larvae at the highest Zn(II) and nZnO concentrations (3 and 6 mg l(-1)), respectively. The results suggest that toxicity associated with nZnO is primarily due to the release of Zn(II). PMID:26758654

  1. Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model.

    PubMed

    García-Cambero, J P; García-Cortés, H; Valcárcel, Y; Catalá, M

    2015-12-30

    Several studies have found cocaine and its main active metabolite benzoylecgonine (BE) in the aquatic environment and drinking water, derived from its consumption by humans as well as the inability of water treatment processes to eliminate it. A few studies have already investigated the ecotoxicology of BE to aquatic invertebrates, but none has still addressed the effects of BE on aquatic vertebrates or vascular plants. The goal of this publication is to provide information on the toxicity of environmental concentrations of BE during animal and vascular plant development, in order to contribute to a better understanding of the potential risk of this substance for the environment. BE induced alterations in mitochondrial activity and DNA levels of fern spores at environmental concentrations (1 ng L(-1)), which could disrupt gametophyte germination. However, BE at concentrations ranging from 1 ng L(-1) to 1 mg L(-1) did not disturb morphogenesis, hatching, heartbeat rate or larval motility in a zebrafish embryo-larval model. Adverse effects on ferns agree with the allelophathic role described for alkaloids and their unspecific interference with plant germination. Therefore, the anthropogenic dispersion of alkaloid allelochemicals may pose a risk for biodiversity and irrigated food production that should be further investigated. PMID:26340554

  2. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  3. Sufficient Numbers of Early Germ Cells Are Essential for Female Sex Development in Zebrafish

    PubMed Central

    Dai, Xiangyan; Jin, Xia; Chen, Xiaowen; He, Jiangyan; Yin, Zhan

    2015-01-01

    The sex determination for zebrafish is controlled by a combination of genetic and environmental factors. The determination of sex in zebrafish has been suggested to rely on a mechanism that is affected by germ cell-derived signals. To begin our current study, a simplified and efficient germ cell-specific promoter of the dead end (dnd) gene was identified. Utilizing the metrodinazole (MTZ)/ bacterial nitroreductase (NTR) system for inducible germ cell ablation, several stable Tg (dnd:NTR-EGFP-3'UTR) and Tg (dnd:NTR-EGFP+3'UTR) zebrafish lines were then generated with the identified promoter. A thorough comparison of the expression patterns and tissue distributions of endogenous dnd and ntr-egfp transcripts in vivo revealed that the identified 2032-bp zebrafish dnd promoter can recapitulate dnd expression faithfully in stable transgenic zebrafish. The correlation between the levels of the germ cell-derived signals and requirement for maintaining the female fate has been also explored with different durations of the MTZ treatments. Our results revealed the decreasing ratios of female presented in the treated transgenic group are fairly associated with the reducing levels of the early germ cell-derived signals. After the juvenile transgenic fish treated with 5 mM MTZ for 20 days, all MTZ-treated transgenic fish exclusively developed into males with subfertilities. Taken together, our results identified here a simplified and efficient dnd promoter, and provide clear evidence indicating that it was not the presence but the sufficiency of signals derived from germ cells that is essential for female sex development in zebrafish. Our model also provides a unique system for sex control in zebrafish studies. PMID:25679390

  4. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish.

    PubMed

    Jin, Yuanxiang; Zhu, Zhihong; Wang, Yueyi; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei

    2016-06-01

    The fungicide imazalil (IMZ) is used extensively to protect vegetable fields, fruit plantations and post-harvest crops from rot. Likely due to its wide-spread use, IMZ is frequently detected in vegetable, fruit, soil and even surface water samples. Even though several previous studies have reported on the neurotoxicity of IMZ, its effects on the neurobehavior of zebrafish have received little attention to date. In this study, we show that the heartbeat and hatchability of zebrafish were significantly influenced by IMZ concentrations of 300 μg L(-1) or higher. Moreover, in zebrafish larvae, locomotor behaviors such as average swimming speed and swimming distance were significantly decreased after exposure to 300 μg L(-1) IMZ for 96 h, and acetylcholinesterase (AChE) expression and activity were consistently inhibited in IMZ-treated fish. Our results further suggest that IMZ could act as a neuroendocrine disruptor by decreasing the expression of neurotoxicity-related genes such as Glial fibrillary acidic protein (Gfap), Myelin basic protein (Mbp) and Sonic hedgehog a (Shha) during early developmental stages of zebrafish. In conclusion, we show that exposure to IMZ has the potential to induce developmental toxicity and locomotor behavior abnormalities during zebrafish development. PMID:27035382

  5. Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure.

    PubMed

    Tufi, Sara; Leonards, Pim; Lamoree, Marja; de Boer, Jacob; Legler, Juliette; Legradi, Jessica

    2016-03-15

    During early development, neurotransmitters are important stimulants for the development of the central nervous system. Although the development of different neuronal cell types during early zebrafish (Danio rerio) development is well-studied, little is known of the levels of neurotransmitters, their precursors and metabolites during development, and how these levels are affected by exposure to environmental contaminants. A method based on hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry has been applied for the first time to zebrafish embryos and larvae to study five neurotransmitter systems in parallel, including the dopaminergic-andrenergic, glutaminergic-GABAnergic, serotoninergic, histaminergic, and cholinergic systems. Our method enables the quantification of neurotransmitters and their precursors and metabolites in whole zebrafish from the period of zygote to free-swimming larvae 6 days postfertilization (dpf). We observed a developmental stage-dependent pattern with clear differences between the first 2 days of development and the following days. Whereas the neurotransmitter levels steadily increased, the precursors showed a peak at 3 dpf. After exposure to several pesticides, significant differences in concentrations of neurotransmitters and precursors were observed. Our study revealed new insights about neurotransmitter systems during early zebrafish development and showed the usefulness of our approach for environmental neurotoxicity studies. PMID:26866575

  6. Preliminary Evaluation on the Effects of Feeds on the Growth and Early Reproductive Performance of Zebrafish (Danio rerio)

    PubMed Central

    2012-01-01

    This study evaluated the effects of several commercially available feeds and different feeding regimes on the growth and early reproductive performance of zebrafish (Danio rerio). Juvenile zebrafish (n= 20; 5.06 ± 0.69 mg) were stocked into each of 24 tanks (volume, 2 L); 3 tanks were assigned to each of 8 feeding combinations for a period of 60 d. At the end of 60 d, 2 male and 2 female fish from each tank were pooled by dietary treatment (n = 6) and used to evaluate the effects of feeding combinations on early reproductive performance. Zebrafish fed dietary treatments 3 and 7 had significantly greater weight gain than zebrafish fed diet 5. Mean spawning success was significantly greater in zebrafish fed the control diet (Artemiaonly) than in those fed diet 1. Mean hatch rates were greater in zebrafish fed the control feed and diets 1, 2, 3, 5, and 6 than zebrafish fed diet 4. Additional results suggest that female zebrafish are sexually mature after 90 d post fertilization and that fertilization rates are the limiting factor in early reproduction. PMID:23043806

  7. Patterning the early zebrafish by the opposing actions of bozozok and vox/vent.

    PubMed

    Melby, A E; Beach, C; Mullins, M; Kimelman, D

    2000-08-15

    Fish and frog embryos are patterned along the dorsal-ventral axis during the gastrula stage by opposing gradients of Bmps and Bmp inhibitory proteins. Three transcriptional repressors with partially overlapping expression domains have been proposed to be important mediators of Bmp function in Xenopus. We find that two related factors are expressed in the early zebrafish embryo. Although these factors are considerably divergent from the related Xenopus genes, they are expressed in domains similar to those of their Xenopus relatives throughout embryogenesis. Both of the zebrafish genes, which we have named vox and vent, are potent ventralizing factors in both zebrafish and Xenopus embryos. Using mutants in the Bmp pathway, we find that there are Bmp-dependent and Bmp-independent domains of vox expression, whereas vent is mostly dependent upon Bmp signaling. We show that ectopic vox or vent negatively regulates expression of the early dorsal gene bozozok (boz) and that ectopic boz eliminates vox and vent expression. Moreover, the normal exclusion of vox and vent from the organizer region is lost in boz mutant embryos. Our results show that boz and vox/vent are mutually antagonistic and indicate that the early establishment of the size of the organizer domain is dependent on an interplay between these early expressed transcriptional repressors. PMID:10926766

  8. Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish (Danio rerio).

    PubMed

    Lindsey, Benjamin W; Dumbarton, Tristan C; Moorman, Stephen J; Smith, Frank M; Croll, Roger P

    2011-06-01

    The gas-filled swimbladder of teleost fishes provides hydrodynamic lift which counteracts the high density of other body tissues, and thereby allows the fish to achieve neutral buoyancy with minimal energy expenditure. In this study, we examined whether the absence of a constant direction gravitational vector affects the ontogeny of the swimbladder and buoyancy control in zebrafish (Danio rerio). We exposed fertilized eggs to simulated microgravity (SMG) in a closed rotating wall vessel with control eggs placed in a similar but nonrotating container. All eggs hatched in both groups. At 96 hr of postfertilization (hpf), all larvae were removed from the experimental and control vessels. At this point, 62% of the control larvae, but only 14% of SMG-exposed larvae, were observed to have inflated their swimbladder. In addition, the mean volume of the inflated swimbladders was significantly greater in the control larvae compared with larvae raised in SMG. After transfer to open stationary observation tanks, larvae with uninflated swimbladders in both groups swam to the surface to complete inflation, but this process was significantly delayed in larvae exposed to SMG. Initial differences in swimbladder inflation and volume between groups disappeared by 144 hpf. Furthermore, there were no apparent changes in patterns of development and maturation of swimbladder musculature, vasculature, or innervation resulting from SMG exposure at later stages of ontogeny. These data indicate that, despite a transient delay in swimbladder inflation in zebrafish larvae exposed to SMG, subsequent swimbladder development in these animals proceeded similarly to that in normal larvae. PMID:21394929

  9. Hearing Assessment in Zebrafish During the First Week Postfertilization.

    PubMed

    Yao, Qi; DeSmidt, Alexandra A; Tekin, Mustafa; Liu, Xuezhong; Lu, Zhongmin

    2016-04-01

    The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)(sqet4) zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording. PMID:26982161

  10. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio.

    PubMed

    Gagnaire, B; Cavalié, I; Pereira, S; Floriani, M; Dubourg, N; Camilleri, V; Adam-Guillermin, C

    2015-12-01

    In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish. PMID:26517177

  11. Toxicogenomic and Phenotypic Analyses of Bisphenol-A Early-Life Exposure Toxicity in Zebrafish

    PubMed Central

    Lam, Siew Hong; Hlaing, Mya Myintzu; Zhang, Xiaoyan; Yan, Chuan; Duan, Zhenghua; Zhu, Lin; Ung, Choong Yong; Mathavan, Sinnakaruppan; Ong, Choon Nam; Gong, Zhiyuan

    2011-01-01

    Bisphenol-A is an important environmental contaminant due to the increased early-life exposure that may pose significant health-risks to various organisms including humans. This study aimed to use zebrafish as a toxicogenomic model to capture transcriptomic and phenotypic changes for inference of signaling pathways, biological processes, physiological systems and identify potential biomarker genes that are affected by early-life exposure to bisphenol-A. Phenotypic analysis using wild-type zebrafish larvae revealed BPA early-life exposure toxicity caused cardiac edema, cranio-facial abnormality, failure of swimbladder inflation and poor tactile response. Fluorescent imaging analysis using three transgenic lines revealed suppressed neuron branching from the spinal cord, abnormal development of neuromast cells, and suppressed vascularization in the abdominal region. Using knowledge-based data mining algorithms, transcriptome analysis suggests that several signaling pathways involving ephrin receptor, clathrin-mediated endocytosis, synaptic long-term potentiation, axonal guidance, vascular endothelial growth factor, integrin and tight junction were deregulated. Physiological systems with related disorders associated with the nervous, cardiovascular, skeletal-muscular, blood and reproductive systems were implicated, hence corroborated with the phenotypic analysis. Further analysis identified a common set of BPA-targeted genes and revealed a plausible mechanism involving disruption of endocrine-regulated genes and processes in known susceptible tissue-organs. The expression of 28 genes were validated in a separate experiment using quantitative real-time PCR and 6 genes, ncl1, apoeb, mdm1, mycl1b, sp4, U1SNRNPBP homolog, were found to be sensitive and robust biomarkers for BPA early-life exposure toxicity. The susceptibility of sp4 to BPA perturbation suggests its role in altering brain development, function and subsequently behavior observed in laboratory animals exposed

  12. Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach.

    PubMed

    Perrichon, Prescilla; Le Menach, Karyn; Akcha, Farida; Cachot, Jérôme; Budzinski, Hélène; Bustamante, Paco

    2016-10-15

    Petroleum compounds from chronic discharges and oil spills represent an important source of environmental pollution. To better understand the deleterious effects of these compounds, the toxicity of water-accommodated fractions (WAF) from two different oils (brut Arabian Light and Erika heavy fuel oils) were used in this study. Zebrafish embryos (Danio rerio) were exposed during 96h at three WAF concentrations (1, 10 and 100% for Arabian Light and 10, 50 and 100% for Erika) in order to cover a wide range of polycyclic aromatic hydrocarbon (PAH) concentrations, representative of the levels found after environmental oil spills. Several endpoints were recorded at different levels of biological organization, including lethal endpoints, morphological abnormalities, photomotor behavioral responses, cardiac activity, DNA damage and exposure level measurements (EROD activity, cyp1a and PAH metabolites). Neither morphological nor behavioral or physiological alterations were observed after exposure to Arabian Light fractions. In contrast, the Erika fractions led a high degree of toxicity in early life stages of zebrafish. Despite of defense mechanisms induced by oil, acute toxic effects have been recorded including mortality, delayed hatching, high rates of developmental abnormalities, disrupted locomotor activity and cardiac failures at the highest PAH concentrations (∑TPAHs=257,029±47,231ng·L(-1)). Such differences in toxicity are likely related to the oil composition. The use of developing zebrafish is a good tool to identify wide range of detrimental effects and elucidate their underlying foundations. Our work highlights once more, the cardiotoxic action (and potentially neurotoxic) of petroleum-related PAHs. PMID:27312275

  13. Kcnh1 voltage-gated potassium channels are essential for early zebrafish development.

    PubMed

    Stengel, Rayk; Rivera-Milla, Eric; Sahoo, Nirakar; Ebert, Christina; Bollig, Frank; Heinemann, Stefan H; Schönherr, Roland; Englert, Christoph

    2012-10-12

    The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca(2+)/calmodulin and modulation of voltage-dependent gating by extracellular Mg(2+). Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning. PMID:22927438

  14. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  15. Molecular psychiatry of zebrafish.

    PubMed

    Stewart, A M; Ullmann, J F P; Norton, W H J; Parker, M O; Brennan, C H; Gerlai, R; Kalueff, A V

    2015-02-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research. PMID:25349164

  16. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. PMID:25965021

  17. Zebrafish as an appealing model for optogenetic studies.

    PubMed

    Simmich, Joshua; Staykov, Eric; Scott, Ethan

    2012-01-01

    Optogenetics, the use of light-based protein tools, has begun to revolutionize biological research. The approach has proven especially useful in the nervous system, where light has been used both to detect and to manipulate activity in targeted neurons. Optogenetic tools have been deployed in systems ranging from cultured cells to primates, with each offering a particular combination of advantages and drawbacks. In this chapter, we provide an overview of optogenetics in zebrafish. Two of the greatest attributes of the zebrafish model system are external fertilization and transparency in early life stages. Combined, these allow researchers to observe the internal structures of developing zebrafish embryos and larvae without dissections or other interference. This transparency, combined with the animals' small size, simple husbandry, and similarity to mammals in many structures and processes, has made zebrafish a particularly popular model system in developmental biology. The easy optical access also dovetails with optogenetic tools, allowing their use in intact, developing, and behaving animals. This means that optogenetic studies in embryonic and larval zebrafish can be carried out in a high-throughput fashion with relatively simple equipment. As a consequence, zebrafish have been an important proving ground for optogenetic tools and approaches and have already yielded important new knowledge about the neural circuits underlying behavior. Here, we provide a general introduction to zebrafish as a model system for optogenetics. Through descriptions and analyses of important optogenetic studies that have been done in zebrafish, we highlight the advantages and liabilities that the system brings to optogenetic experiments. PMID:22341325

  18. Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny

    PubMed Central

    Lange, Merlin; Neuzeret, Frederic; Fabreges, Benoit; Froc, Cynthia; Bedu, Sebastien; Bally-Cuif, Laure; Norton, William H. J.

    2013-01-01

    Zebrafish exhibit remarkable alterations in behaviour and morphology as they develop from early larval stages to mature adults. In this study we compare the locomotion parameters of six common zebrafish strains from two different laboratories to determine the stability and repeatability of these behaviours. Our results demonstrate large variability in locomotion and fast swim events between strains and between laboratories across time. These data highlight the necessity for careful, strain-specific controls when analysing locomotor phenotypes and open up the possibility of standardising the quantification of zebrafish behaviour at multiple life stages. PMID:23950910

  19. Cholecalciferol inhibits lipid accumulation by regulating early adipogenesis in cultured adipocytes and zebrafish.

    PubMed

    Kim, Joo Hyoun; Kang, Smee; Jung, Yu Na; Choi, Hyeon-Son

    2016-01-15

    Cholecalciferol (CCF) is a common dietary supplement as a precursor of active vitamin D. In the present study, the effect of CCF on lipid accumulation was investigated in adipocyte cells and zebrafish models. CCF effectively inhibited lipid accumulation in both experimental models; this effect was attributed to the CCF-mediated regulation of early adipogenic factors. CCF down-regulated the expressions of CCAAT-enhancer-binding protein-β (C/EBPβ), C/EBPδ, Krueppel-like factor (KLF) 4, and KLF5, while KLF2, a negative adipogenic regulator, was increased by CCF treatment. CCF inhibited cell cycle progression of adipocytes through down-regulation of cyclin A and cyclinD; p-Rb was suppressed by CCF, but p27 was up-regulated with CCF treatment. This CCF-mediated inhibition of cell cycle progression is highly correlated to the inhibitions of extracellular signal-regulated kinase (ERK), serine threonine-specific kinase (AKT), and mammalian target of rapamycin (mTOR). Furthermore, CCF-induced inactivation of acetyl-CoA carboxylase (ACC), a fatty acid synthetic enzyme, with the activation of AMP-activated protein kinase α (AMPKα) was also observed. Consistent with the observations in adipocytes, CCF effectively inhibited lipid accumulation with the down-regulation of adipogenic factors in zebrafish. The present study indicates that CCF showed anti-adipogenic effect in adipocytes and zebrafish, and its inhibitory effect was involved in the regulation of early adipogenic events including cell cycle arrest and activation of AMPKα signaling. PMID:26703207

  20. PCB126 Exposure Disrupts ZebraFish Ventricular and Branchial but Not Early Neural Crest Development

    PubMed Central

    Grimes, Adrian C.; Erwin, Kyle N.; Stadt, Harriett A.; Hunter, Ginger L.; Gefroh, Holly A.; Tsai, Huai-Jen; Kirby, Margaret L.

    2008-01-01

    We have used zebrafish and 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) to investigate the developmental toxicity of polychlorinated biphenyls (PCBs) that exert their effects through the aryl hydrocarbon receptor (AHR). We found that cardiac and neural crest (NC)–derived jaw and branchial cartilages are specifically targeted early in development. The suite of malformations, which ultimately leads to circulatory failure, includes a severely dysmorphic heart with a reduced bulbus arteriosus and abnormal atrioventricular and outflow valve formation. Early NC migration and patterning of the jaw and branchial cartilages was normal. However, the jaw and branchial cartilages failed to grow to normal size. In the heart, the ventricular myocardium showed a reduction in cell number and size. The heart and jaw/branchial phenotype could be rescued by pifithrin-α, a blocker of p53. However, the function of pifithrin-α in this model may act as a competitive inhibitor of PCB at the AHR and is likely independent of p53. Morpholinos against p53 did not rescue the phenotype, nor were zebrafish with a mutant p53-null allele resistant to PCB126 toxicity. Morpholino knockdown of cardiac troponin T, which blocks the onset of cardiac function, prevented the PCB126-induced cardiac dysmorphogenesis but not the jaw/branchial phenotype. The cardiovascular characteristics appear to be similar to hypoplastic left heart syndrome (HLHS) and introduce the potential of zebrafish as a model to study this environmentally induced cardiovascular malformation. HLHS is a severe congenital cardiovascular malformation that has previously been linked to industrial releases of dioxins and PCBs. PMID:18660518

  1. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Shamsudin, Mariana Nor; Amin, S. M. N.

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  2. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  3. Larval and early juvenile fish distribution and assemblage structure in the Canadian Beaufort Sea during July-August, 2005

    NASA Astrophysics Data System (ADS)

    Paulic, Joclyn E.; Papst, Michael H.

    2013-11-01

    The distribution and composition of marine larval and early juvenile fish were investigated during a multidisciplinary project conducted in the nearshore Canadian Beaufort Sea in July and August, 2005. Larvae were sampled using replicate bongo net (500 μm) tows within 50 m water depth. A total of 458 larval fish representing seven families were captured.Multivariate statistical analyses revealed two distinct larval assemblages that were closely correlated to water mass category. The two larval fish assemblages were defined as coastal and estuarine. The coastal assemblage was dominated by Pacific Herring (Clupea pallasii) and was found in the shallow intense plume water mass. This area is greatly influenced by the Mackenzie River outflow. The estuarine assemblage was dominated by Arctic Cod (Boreogadus saida) and was typically found within the diffuse plume and oceanic water masses. Other larval fish families that were represented in the estuarine assemblage were Cottidae, Stichaeidae, Liparidae and Agonidae. Species richness and abundance was greater along the Toker transect in Kugmallit Bay than the Paktoa transect northwest of Garry Island in the Mackenzie Bay.

  4. Redescription of the early larval stages of the pandalid shrimp Chlorotocus crassicornis (Decapoda: Caridea: Pandalidae).

    PubMed

    Landeira, Jose M; Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei; Gozález-Gordillo, J Ignacio

    2015-01-01

    The first four larval stages of the pandalid shrimp Chlorotocus crassicornis (A. Costa, 1871) are described and illustrated from laboratory-reared material obtained from ovigerous females collected in the southwestern Spain and south Taiwan. The second to fourth larval stages of this species are reported for the first time to science. Detailed examination of the first larval stages reveals that previous description misidentified some key larval characters which have prevented its identification in plankton samples. It is found that the zoeal morphology of Chlorotocus is not very different from other pandalid larvae, and in fact closely resembles Plesionika and Heterocarpus. PMID:26623885

  5. A novel role for Glucocorticoid-Induced TNF Receptor Ligand (Gitrl) in early embryonic zebrafish development.

    PubMed

    Poulton, Lynn D; Nolan, Kathleen F; Anastasaki, Corina; Waldmann, Herman; Patton, E Elizabeth

    2010-01-01

    Tumour necrosis factor ligand and receptor superfamily (TNFSF and TNFRSF) members have diverse and well-studied functions in the immune system. Additional, non-immunological roles, such as in the morphogenesis of bone, tooth, hair and skin have also been described for some members. GITRL and its receptor GITR are well-described as co-regulators of the mammalian immune response. Here, we describe the identification and cloning of their zebrafish homologues and demonstrate a novel role for the ligand, but not the receptor, in early vertebrate development. The assignment of zebrafish Gitrl and Gitr was supported by homology and phylogenetic analysis. The ligand exhibited an oscillating pattern of mRNA expression during the first 36 hours post fertilization, during which time gitr mRNA was not detected, and morpholino oligonucleotide-mediated knock-down of gitrl, but not of gitr, resulted in disruption of early embryogenesis, most clearly revealed during gastrulation, which corresponded to the earliest peak in gitrl mRNA expression (5.25-10 hpf). We found Stat3 signalling to be altered in the gitrl-morphants, suggesting that one possible role for Gitrl during embryogenesis may be modulation of Jak/Stat signalling. PMID:19598108

  6. Prion protein function and the disturbance of early embryonic development in zebrafish

    PubMed Central

    Nourizadeh-Lillabadi, Rasoul; Press, Charles McL; Alestrøm, Peter

    2011-01-01

    Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist's view of PrP functions might be clearer at a greater phylogenetic distance. PMID:21628994

  7. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages

    PubMed Central

    Zhu, Xiaoshan; Tian, Shengyan; Cai, Zhonghua

    2012-01-01

    Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on aquatic organisms, we used early life stages of the zebrafish (Danio rerio) to examine such effects on embryonic development in this species. The results showed that ≥10 mg/L of iron oxide nanoparticles instigated developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Moreover, an early life stage test using zebrafish embryos/larvae is also discussed and recommended in this study as an effective protocol for assessing the potential toxicity of nanoparticles. This study is one of the first on developmental toxicity in fish caused by iron oxide nanoparticles in aquatic environments. The results will contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and support the sustainable development of nanotechnology. PMID:23029464

  8. Early life-stage test in zebrafish versus a growth test in rainbow trout to evaluate toxic effects

    SciTech Connect

    Bresch, H. )

    1991-05-01

    The aim of the work presented in this paper was to compare toxic threshold concentrations of three substances obtained from growth test in rainbow trout (Salmo gairdneri) with data from early life-stages in zebrafish. The growth test was conducted over a period of 7 wk in case of 4-chloroaniline and 4 wk in case of 3,4-dichloroaniline and diazinon. The data from the experiment in zebrafish originate from life-cycle studies; here, only the results obtained within the first 6 wk of development after fertilization are considered. These time limits have been set, as in the FRG a growth test in rainbow trout extending over 4 wk and an early life-stage test in zebrafish extending over 6 wk are being discussed for the Chemical Act.

  9. Retinoic acid receptor subtype-specific transcriptotypes in the early zebrafish embryo.

    PubMed

    Samarut, Eric; Gaudin, Cyril; Hughes, Sandrine; Gillet, Benjamin; de Bernard, Simon; Jouve, Pierre-Emmanuel; Buffat, Laurent; Allot, Alexis; Lecompte, Odile; Berekelya, Liubov; Rochette-Egly, Cécile; Laudet, Vincent

    2014-02-01

    Retinoic acid (RA) controls many aspects of embryonic development by binding to specific receptors (retinoic acid receptors [RARs]) that regulate complex transcriptional networks. Three different RAR subtypes are present in vertebrates and play both common and specific roles in transducing RA signaling. Specific activities of each receptor subtype can be correlated with its exclusive expression pattern, whereas shared activities between different subtypes are generally assimilated to functional redundancy. However, the question remains whether some subtype-specific activity still exists in regions or organs coexpressing multiple RAR subtypes. We tackled this issue at the transcriptional level using early zebrafish embryo as a model. Using morpholino knockdown, we specifically invalidated the zebrafish endogenous RAR subtypes in an in vivo context. After building up a list of RA-responsive genes in the zebrafish gastrula through a whole-transcriptome analysis, we compared this panel of genes with those that still respond to RA in embryos lacking one or another RAR subtype. Our work reveals that RAR subtypes do not have fully redundant functions at the transcriptional level but can transduce RA signal in a subtype-specific fashion. As a result, we define RAR subtype-specific transcriptotypes that correspond to repertoires of genes activated by different RAR subtypes. Finally, we found genes of the RA pathway (cyp26a1, raraa) the regulation of which by RA is highly robust and can even resist the knockdown of all RARs. This suggests that RA-responsive genes are differentially sensitive to alterations in the RA pathway and, in particular, cyp26a1 and raraa are under a high pressure to maintain signaling integrity. PMID:24422634

  10. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    SciTech Connect

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described in some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.

  11. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution.

    PubMed

    McConnell, Sean C; Hernandez, Kyle M; Wcisel, Dustin J; Kettleborough, Ross N; Stemple, Derek L; Yoder, Jeffrey A; Andrade, Jorge; de Jong, Jill L O

    2016-08-23

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  12. Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma

    PubMed Central

    Noonan, Haley R.; Metelo, Ana M.; Kamei, Caramai N.; Peterson, Randall T.; Drummond, Iain A.

    2016-01-01

    ABSTRACT Patients with von Hippel–Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. ‘Clear cell’ tumors contain large, proliferating cells with ‘clear cytoplasm’, and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl−/−) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl−/− zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl−/− zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl−/− pronephros is reminiscent of clear cell histology, indicating that the vhl−/− mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl−/− zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC. PMID:27491085

  13. The Zebrafish G12 Gene is required for Nuclear Positioning and Cell Migrations during Early Development

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Conway, G. C.

    2003-01-01

    After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.

  14. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish.

    PubMed

    Wilson, K S; Tucker, C S; Al-Dujaili, E A S; Holmes, M C; Hadoke, P W F; Kenyon, C J; Denvir, M A

    2016-07-01

    Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head-trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared 'bolder' than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and

  15. Differential expression of CaMK-II genes during early zebrafish embryogenesis.

    PubMed

    Rothschild, Sarah C; Lister, James A; Tombes, Robert M

    2007-01-01

    CaMK-II is a highly conserved Ca(2+)/calmodulin-dependent protein kinase expressed throughout the lifespan of all vertebrates. During early development, CaMK-II regulates cell cycle progression and "non-canonical" Wnt-dependent convergent extension. In the zebrafish, Danio rerio, CaMK-II activity rises within 2 hr after fertilization. At the time of somite formation, zygotic expression from six genes (camk2a1, camk2b1, camk2g1, camk2g2, camk2d1, camk2d2) results in a second phase of increased activity. Zebrafish CaMK-II genes are 92-95% identical to their human counterparts in the non-variable regions. During the first three days of development, alternative splicing yields at least 20 splice variants, many of which are unique. Whole-mount in situ hybridization reveals that camk2g1 comprises the majority of maternal expression. All six genes are expressed strongly in ventral regions at the 18-somite stage. Later, camk2a1 is expressed in anterior somites, heart, and then forebrain. Camk2b1 is expressed in somites, mid- and forebrain, gut, retina, and pectoral fins. Camk2g1 appears strongly along the midline and then in brain, gut, and pectoral fins. Camk2g2 is expressed early in the midbrain and trunk and exhibits the earliest retinal expression. Camk2d1 is elevated early at somite boundaries, then epidermal tissue, while camk2d2 is expressed in discrete anterior locations, steadily increasing along either side of the dorsal midline and then throughout the brain, including the retina. These findings reveal a complex pattern of CaMK-II gene expression consistent with pleiotropic roles during development. PMID:17103413

  16. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.

    PubMed

    Formstone, Caroline J; Mason, Ivor

    2005-06-15

    The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence. PMID:15882862

  17. Exposure to Sodium Metam during Zebrafish Somitogenesis Results in Early Transcriptional Indicators of the Ensuing Neuronal and Muscular Dysfunction

    PubMed Central

    Tilton, Fred; Tanguay, Robert L.

    2008-01-01

    Exposures to sodium metam (NaM) within the developmental period of somitogenesis (10- to 18-h postfertilization [hpf]) results in easily detectable distortions of the notochord by 24 hpf in the developing zebrafish. We hypothesized that NaM-induced transcriptional changes during somitogenesis would reveal the major molecular targets in the zebrafish embryo. Embryos were exposed to NaM beginning at 4 hpf (1000 cells) and total RNA was isolated from embryos at the 3 somite (11 hpf), 10 somite (14 hpf), 18 somite (18 hpf), and larval (24 hpf) stages of development. Using the Affymetrix zebrafish gene array we observed relatively few mRNAs differentially regulated at least twofold at each time point (11 hpf, 101 genes; 14 hpf, 151; 18 hpf, 154; 24 hpf, 33). The transcriptional profiles reveal neurodevelopment and myogenesis as the two primary targets of NaM developmental exposure. Quantitative PCR of several muscle and neuronal genes confirmed the array response. We also followed the structural development of the peripheral nervous system under NaM exposure using antibodies against neuronal structural proteins. Although there was no change in the onset of antibody staining, profound alterations became apparent during the period in which the notochord becomes distorted (> 18 hpf). Motor neuron development observed with the Tg(NBT:MAPT-GFP)zc1 transgenic zebrafish and a primary motor neuron specific antibody showed similar timing in the structural alterations observed in these cell types. Further study of the interactions of dithiocarbamates with the regulatory elements of fast muscle development and neurodevelopment is warranted. PMID:18648088

  18. A comparison of spring larval fish assemblages in the Strait of Georgia (British Columbia, Canada) between the early 1980s and late 2000s

    NASA Astrophysics Data System (ADS)

    Guan, Lu; Dower, John F.; McKinnell, Skip M.; Pepin, Pierre; Pakhomov, Evgeny A.; Hunt, Brian P. V.

    2015-11-01

    The concentration and composition of the larval fish assemblage in the Strait of Georgia (British Columbia, Canada) has changed between the early 1980s (1980 and 1981) and the late 2000s (2007, 2009 and 2010). During both periods, the spring larval fish assemblages were dominated by pelagic species: Clupea pallasi (Pacific herring), Merluccius productus (Pacific hake), Leuroglossus schmidti (northern smoothtongue) and Theragra chalcogramma (walleye Pollock). The average concentration of Merluccius productus, Theragra chalcogramma, Leuroglossus schmidti, and Sebastes spp. declined between the early 1980s and the late 2000s; in contrast, the absolute concentration and proportion of Pleuronectidae and several demersal fish taxa increased in the spring larval assemblage. Examination of the associations between larval fish assemblages and environmental fluctuations suggests that large-scale climate processes are potential contributors to variations in overall larval concentrations of the dominant taxa and assemblage composition in the Strait of Georgia.

  19. Transparent things: cell fates and cell movements during early embryogenesis of zebrafish.

    PubMed

    Solnica-Krezel, L; Stemple, D L; Driever, W

    1995-11-01

    Development of an animal embryo involves the coordination of cell divisions, a variety of inductive interactions and extensive cellular rearrangements. One of the biggest challenges in developmental biology is to explain the relationships between these processes and the mechanisms that regulate them. Teleost embryos provide an ideal subject for the study of these issues. Their optical lucidity combined with modern techniques for the marking and observation of individual living cells allow high resolution investigations of specific morphogenetic movements and the construction of detailed fate maps. In this review we describe the patterns of cell divisions, cellular movements and other morphogenetic events during zebrafish early development and discuss how these events relate to the formation of restricted lineages. PMID:8526887

  20. Development of ramified microglia from early macrophages in the zebrafish optic tectum.

    PubMed

    Svahn, Adam J; Graeber, Manuel B; Ellett, Felix; Lieschke, Graham J; Rinkwitz, Silke; Bennett, Maxwell R; Becker, Thomas S

    2013-01-01

    Microglia, the resident macrophage precursors of the brain, are necessary for the maintenance of tissue homeostasis and activated by a wide range of pathological stimuli. They have a key role in immune and inflammatory responses. Early microglia stem from primitive macrophages, however the transition from early motile forms to the ramified mature resident microglia has not been assayed in real time. In order to provide such an assay, we used zebrafish transgenic lines in which fluorescent reporter expression is driven by the promoter of macrophage expressed gene 1 (mpeg1; Ellet et al. [2011]: Blood 117(4): e49-e56,). This enabled the investigation of the development of these cells in live, intact larvae. We show that microglia develop from highly motile amoeboid cells that are engaged in phagocytosis of apoptotic cell bodies into a microglial cell type that rapidly morphs back and forth between amoeboid and ramified morphologies. These morphing microglia eventually settle into a typical mature ramified morphology. Developing microglia frequently come into contact with blood capillaries in the brain, and also frequently contact each other. Up to 10 days postfertilization, microglia were observed to undergo symmetric division. In the adult optic tectum, the microglia are highly branched, resembling mammalian microglia. In addition, the mpeg1 transgene also labeled highly branched cells in the skin overlying the optic tectum from 8-9 days postfertilization, which likely represent Langerhans cells. Thus, the development of zebrafish microglia and their cellular interactions was studied in the intact developing brain in real time and at cellular resolution. PMID:22648905

  1. Transcriptional and morphological effects of tamoxifen on the early development of zebrafish (Danio rerio).

    PubMed

    Xia, Liang; Zheng, Liang; Zhou, Jun Liang

    2016-06-01

    Tamoxifen is a widely used anticancer drug with both an estrogen agonist and antagonist effect. This study focused on its endocrine disrupting effect, and overall environmental significance. Zebrafish embryos were exposed to different concentrations (0.5, 5, 50 and 500 µg l(-1) ) of tamoxifen for 96 h. The results showed a complex effect of tamoxifen on zebrafish embryo development. For the 500 µg l(-1) exposure group, the heart rate was decreased by 20% and mild defects in caudal fin and skin were observed. Expressions of a series of genes related to endocrine and morphological changes were subsequently tested through quantitative real-time polymerase chain reaction. Bisphenol A as a known estrogen was also tested as an endocrine-related comparison. Among the expression of endocrine-related genes, esr1, ar, cyp19a1b, hsd3b1 and ugt1a1 were all increased by tamoxifen exposure, similar to bisphenol A. The cyp19a1b is a key gene that controls estrogen synthesis. Exposure to 0.5, 5, 50 and 500 µg l(-1) of tamoxifen caused upregulation of cyp19a1b expression to 152%, 568%, 953% and 2024% compared to controls, higher than the effects from the same concentrations of bisphenol A treatment, yet vtg1 was suppressed by 24% from exposure to 500 µg l(-1) tamoxifen. The expression of metabolic-related genes such as cyp1a, cyp1c2, cyp3a65, gpx1a, gstp1, gsr and genes related to observed morphological changes such as krt17 were also found to be upregulated by high concentrations of tamoxifen. These findings indicated the potential environmental effect of tamoxifen on teleost early development. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26584595

  2. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas

    PubMed Central

    Won, Minho; Ro, Hyunju; Dawid, Igor B.

    2015-01-01

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use. PMID:26392552

  3. The fish embryo toxicity test as a replacement for the larval growth and survival test: A comparison of test sensitivity and identification of alternative endpoints in zebrafish and fathead minnows.

    PubMed

    Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Stephens, Dane A; Rawlings, Jane M; Belanger, Scott E; Oris, James T

    2015-06-01

    The fish embryo toxicity (FET) test has been proposed as an alternative to the larval growth and survival (LGS) test. The objectives of the present study were to evaluate the sensitivity of the FET and LGS tests in fathead minnows (Pimephales promelas) and zebrafish (Danio rerio) and to determine if the inclusion of sublethal metrics as test endpoints could enhance test utility. In both species, LGS and FET tests were conducted using 2 simulated effluents. A comparison of median lethal concentrations determined via each test revealed significant differences between test types; however, it could not be determined which test was the least and/or most sensitive. At the conclusion of each test, developmental abnormalities and the expression of genes related to growth and toxicity were evaluated. Fathead minnows and zebrafish exposed to mock municipal wastewater-treatment plant effluent in a FET test experienced an increased incidence of pericardial edema and significant alterations in the expression of genes including insulin-like growth factors 1 and 2, heat shock protein 70, and cytochrome P4501A, suggesting that the inclusion of these endpoints could enhance test utility. The results not only show the utility of the fathead minnow FET test as a replacement for the LGS test but also provide evidence that inclusion of additional endpoints could improve the predictive power of the FET test. PMID:25929752

  4. Developmental regulation of Tbx5 in zebrafish embryogenesis.

    PubMed

    Begemann, G; Ingham, P W

    2000-02-01

    T-box (tbx) genes constitute a large family of transcriptional regulators involved in developmental patterning processes. In tetrapods, tbx5 has been implicated in specifying forelimb type identity. Here, we report the cloning of the zebrafish tbx5.1 gene and characterise its expression during zebrafish embryogenesis and early larval development of wild type and mutant embryos that affect pectoral fin patterning. tbx5.1 is expressed during development of the heart, the pectoral fins and the eye. Notably, its expression in the lateral plate mesoderm defines a single and continuous region of heart and pectoral fin precursor cells, and constitutes the earliest specific marker for pectoral fin development in the zebrafish. PMID:10640716

  5. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  6. Using the Larval Zebrafish Locomotor Assay in Functional Neurotoxicity Screening: Light Intensity and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative test model for detecting neurotoxic chemicals. We use a behavioral testing paradigm that simultaneously tes...

  7. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  8. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model.

    PubMed

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B Ewa

    2016-02-01

    Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  9. Two classes of deleterious recessive alleles in a natural population of zebrafish, Danio rerio.

    PubMed Central

    McCune, Amy R.; Houle, David; McMillan, Kyle; Annable, Rebecca; Kondrashov, Alexey S.

    2004-01-01

    Natural populations carry deleterious recessive alleles which cause inbreeding depression. We compared mortality and growth of inbred and outbred zebrafish, Danio rerio, between 6 and 48 days of age. Grandparents of the studied fish were caught in the wild. Inbred fish were generated by brother-sister mating. Mortality was 9% in outbred fish, and 42% in inbred fish, which implies at least 3.6 lethal equivalents of deleterious recessive alleles per zygote. There was no significant inbreeding depression in the growth, perhaps because the surviving inbred fish lived under less crowded conditions. In contrast to alleles that cause embryonic and early larval mortality in the same population, alleles responsible for late larval and early juvenile mortality did not result in any gross morphological abnormalities. Thus, deleterious recessive alleles that segregate in a wild zebrafish population belong to two sharply distinct classes: early-acting, morphologically overt, unconditional lethals; and later-acting, morphologically cryptic, and presumably milder alleles. PMID:15451692

  10. The Impact of Seawater Saturation State on Early Skeletal Development in Larval Corals: Insights into Scleractinian Biomineralization

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; McCorkle, D. C.; de Putron, S.

    2007-12-01

    contrast to the fine, closed, densely packed spherulitic bundles accreted in the control system, larvae in the lower Omega treatments produced a disorganized conglomerate of large, highly faceted crystals, consistent with slow growth under low saturation state conditions. Our results suggest that the coral calcification response to changes in seawater saturation state is linked to a physiological limitation on the organism's ability to elevate the saturation state of seawater within the calcifying space. Further, our data indicate that ocean acidification due to fossil fuel CO2 emissions will likely have a strong negative effect on the recruitment and early skeletal development of larval corals over the next several decades.

  11. The Polycomb Group Protein Pcgf1 Is Dispensable in Zebrafish but Involved in Early Growth and Aging.

    PubMed

    Dupret, Barbara; Völkel, Pamela; Le Bourhis, Xuefen; Angrand, Pierre-Olivier

    2016-01-01

    Polycomb Repressive Complex (PRC) 1 regulates the control of gene expression programs via chromatin structure reorganization. Through mutual exclusion, different PCGF members generate a variety of PRC1 complexes with potentially distinct cellular functions. In this context, the molecular function of each of the PCGF family members remains elusive. The study of PCGF family member expression in zebrafish development and during caudal fin regeneration reveals that the zebrafish pcgf genes are subjected to different regulations and that all PRC1 complexes in terms of Pcgf subunit composition are not always present in the same tissues. To unveil the function of Pcgf1 in zebrafish, a mutant line was generated using the TALEN technology. Mutant pcgf1-/- fish are viable and fertile, but the growth rate at early developmental stages is reduced in absence of pcgf1 gene function and a significant number of pcgf1-/- fish show signs of premature aging. This first vertebrate model lacking Pcgf1 function shows that this Polycomb Group protein is involved in cell proliferation during early embryogenesis and establishes a link between epigenetics and aging. PMID:27442247

  12. The Polycomb Group Protein Pcgf1 Is Dispensable in Zebrafish but Involved in Early Growth and Aging

    PubMed Central

    Le Bourhis, Xuefen; Angrand, Pierre-Olivier

    2016-01-01

    Polycomb Repressive Complex (PRC) 1 regulates the control of gene expression programs via chromatin structure reorganization. Through mutual exclusion, different PCGF members generate a variety of PRC1 complexes with potentially distinct cellular functions. In this context, the molecular function of each of the PCGF family members remains elusive. The study of PCGF family member expression in zebrafish development and during caudal fin regeneration reveals that the zebrafish pcgf genes are subjected to different regulations and that all PRC1 complexes in terms of Pcgf subunit composition are not always present in the same tissues. To unveil the function of Pcgf1 in zebrafish, a mutant line was generated using the TALEN technology. Mutant pcgf1-/- fish are viable and fertile, but the growth rate at early developmental stages is reduced in absence of pcgf1 gene function and a significant number of pcgf1-/- fish show signs of premature aging. This first vertebrate model lacking Pcgf1 function shows that this Polycomb Group protein is involved in cell proliferation during early embryogenesis and establishes a link between epigenetics and aging. PMID:27442247

  13. Visualization of lipid metabolism in the larval zebrafish intestine reveals a relationship between NPC1L1 mediated cholesterol uptake and dietary fatty acids

    PubMed Central

    Walters, James W.; Anderson, Jennifer L.; Bittman, Robert; Pack, Michael; Farber, Steven A.

    2012-01-01

    SUMMARY The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid relocalization of NPC1L1 to intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology. PMID:22749558

  14. A Model of Excitotoxic Brain Injury in Larval Zebrafish: Potential Application for High-Throughput Drug Evaluation to Treat Traumatic Brain Injury.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Wang, Youdong; Wen, Xiao-Yan; Baker, Andrew J

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and morbidity with no effective therapeutic treatments for secondary injury. Preclinical drug evaluation in rodent models of TBI is a lengthy process. In this regard, the zebrafish has numerous advantages to address the technical and time-dependent obstacles associated with drug evaluation. We developed a reproducible brain injury using glutamate excitoxicity in zebrafish larvae, a known initiator of delayed cell death in TBI. Glutamate challenge resulted in dose-dependent lethality over an 84-h observation period. We report significant decrease in locomotion (p < 0.0001) and mean velocity (p < 0.001) with 10 μM glutamate application as measured through automated 96-well plate behavioral analysis. Application of the NMDA receptor antagonist MK-801 (400 nM) or the calpain inhibitor, MDL-28170 (20 μM), resulted in significant recovery of locomotor function. A secA5-YFP transgenic line was used to visualize the localization of cell death due to glutamate exposure in vivo using confocal fluorescence microscopy. Our results indicate that zebrafish larvae exhibit responses to excitotoxic injury and pharmacotherapeutic intervention with pathophysiological relevance to mammalian excitotoxic brain injury. This system has potential to be applied as a high-throughput drug screening model to quickly identify candidate lead compounds for further evaluation. PMID:27028704

  15. Zebrafish Lipid Metabolism: From Mediating Early Patterning to the Metabolism of Dietary Fat and Cholesterol

    PubMed Central

    Anderson, Jennifer L.; Carten, Juliana D.; Farber, Steven A.

    2013-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review studies that employ zebrafish to better understand lipid signaling and metabolism. PMID:21550441

  16. Early exposure of bay scallops (Argopecten irradians) to high CO₂ causes a decrease in larval shell growth.

    PubMed

    White, Meredith M; McCorkle, Daniel C; Mullineaux, Lauren S; Cohen, Anne L

    2013-01-01

    Ocean acidification, characterized by elevated pCO₂ and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO₂ exposure (resulting in pH = 7.39, Ω(ar) = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO₂ to ambient CO₂ conditions (pH = 7.93, Ω(ar) = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO₂ treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO₂ treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO₂ are still detectable after 7 d of larval development; the shells of larvae exposed to high CO₂ for the first 3 d of development and subsequently exposed to ambientCO₂ were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO₂ throughout the experiment. PMID:23596514

  17. Early Exposure of Bay Scallops (Argopecten irradians) to High CO2 Causes a Decrease in Larval Shell Growth

    PubMed Central

    White, Meredith M.; McCorkle, Daniel C.; Mullineaux, Lauren S.; Cohen, Anne L.

    2013-01-01

    Ocean acidification, characterized by elevated pCO2 and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO2 exposure (resulting in pH = 7.39, Ωar = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO2 to ambient CO2 conditions (pH = 7.93, Ωar = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO2 treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO2 treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO2 are still detectable after 7 d of larval development; the shells of larvae exposed to high CO2 for the first 3 d of development and subsequently exposed to ambient CO2 were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO2 throughout the experiment. PMID:23596514

  18. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism. PMID:26174858

  19. Sustained behavioral effects of lithium exposure during early development in zebrafish: involvement of the Wnt-β-catenin signaling pathway.

    PubMed

    Nery, Laura R; Eltz, Natália S; Martins, Lídia; Guerim, Laura D; Pereira, Talita C; Bogo, Maurício R; Vianna, Monica R M

    2014-12-01

    Lithium has been the paradigmatic treatment for bipolar disorder since 1950s, offering prophylactic and acute efficacy against maniac and depressive episodes. Its use during early pregnancy and the perinatal period remains controversial due to reports of negative consequences on the newborn including teratogenic and neurobehavioral effects generally referred as Floppy baby syndrome. The mechanisms underlying lithium therapeutic action are still elusive but exacerbation of Wnt signaling pathway due to GSK-3 inhibition is believed to represent its main effect. In this study we evaluated the impact of lithium exposure during zebrafish embryonic and early development including behavioral and molecular characterization of Wnt-β-catenin pathway components. Wild-type zebrafish embryos were individually treated for 72 hpf with LiCl at 0.05, 0.5 and 5mM. No significant teratogenic and embryotoxic effects were observed. At the end of treatment period western blot analysis of selected Wnt-β-catenin system components showed increased β-catenin and decreased N-cadherin protein levels, without significant changes in Wnt3a, supporting GSK-3 inhibition as lithium's main target. At 10 dpf 0.5 and 5mM lithium-treated larvae showed a dose-dependent decrease in locomotion among other exploratory parameters, resembling lithium-induced Floppy baby syndrome neurobehavioral symptoms in humans. At this later period previously altered proteins returned to control levels in treated groups, suggesting that the neurobehavioral effects are a lasting consequence of lithium exposure during early development. RT-qPCR analysis of β-catenin and N-cadherin gene expression showed no effects of lithium at 3 or 10 dpf, suggesting that protein fluctuations were likely due to post-transcriptional events. Other Wnt target genes were evaluated and only discrete alterations were observed. These results suggest that zebrafish may be a valuable model for investigation of early effects of lithium that may

  20. Toxicity Assessments of Near-infrared Upconversion Luminescent LaF3:Yb,Er in Early Development of Zebrafish Embryos

    PubMed Central

    Wang, Kan; Ma, Jiebing; He, Meng; Gao, Guo; Xu, Hao; Sang, Jie; Wang, Yuxia; Zhao, Baoquan; Cui, Daxiang

    2013-01-01

    This study reports the effects of upconversion nanoparticles (UCNPs) LaF3:Yb,Er on zebrafish, with the aim of investigating UCNPs toxicity. LaF3:Yb,Er were prepared by an oleic acid/ionic liquid two-phase system, and characterized by transmission electron microscope and X-ray powder diffraction. 140 zebrafish embryos were divided into six test groups and one control group, and respectively were injected into 5, 25, 50, 100, 200, 400 μg/mL LaF3:Yb,Er@SiO2 solution, and respectively were raised for 5 days. Each experiment was repeated ten times. Results showed that water-soluble LaF3:Yb,Er were successfully prepared, and did not exhibit obvious toxicity to zebrafish embryos under 100 μg/mL, but exhibited chronic toxicities 200 μg/mL in vivo, resulting in malformations and delayed hatching rate and embryonic and larval development. The excretion channels of LaF3:Yb,Er in adult zebrafish were mainly found in the intestine after being injected evenly for 24 h. In conclusion, the exploration of LaF3:Yb,Er for in vivo applications in animals and humans must consider UCNPs biocompatibility. PMID:23606912

  1. Interranual variability in horizontal patterns of larval fish assemblages in the northeastern Aegean Sea (eastern Mediterranean) during early summer

    NASA Astrophysics Data System (ADS)

    Isari, Stamatina; Fragopoulu, Nina; Somarakis, Stylianos

    2008-09-01

    Larval fish community structure was studied in the northeastern Aegean Sea (NEA) over an area influenced by the advection of Black Sea water (BSW). Sampling was carried out in early summer during a period of 4 years (2003-2006). Taxonomic composition and abundance presented high variability in space that remained relatively constant among years. Tow depth and indicators of trophic conditions in the upper water column (i.e., zooplankton displacement volume, fluorescence) explained significantly the structure of larval assemblages during all surveys. The northern continental shelf (Thracian and Strymonikos shelf), where a large amount of enriched, low salinity BSW is retained, was dominated by larvae of epipelagic species, mainly anchovy ( Engraulis encrasicolus). Interannual changes in horizontal extension of the BSW seemed to match closely observed changes in the distribution of anchovy larvae. Mesopelagic fish larvae were particularly abundant beyond the continental shelf (over the North Aegean Trough) where a strong frontal structure is created between the low salinity waters of BSW origin and the high salinity waters of the Aegean Sea. Larvae of certain mesopelagic species (e.g., Ceratoscopelus maderensis) may occasionally be transported inshore when the prevailing current meanders towards the coast or feeds anticyclonic gyres over the continental shelf.

  2. The effect of larval and early adult experience on behavioural plasticity of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae, Aphidiinae)

    NASA Astrophysics Data System (ADS)

    Villagra, Cristian A.; Pennacchio, Francesco; Niemeyer, Hermann M.

    2007-11-01

    The relevance of the integration of preimaginal and eclosion experiences on the subsequent habitat preferences and mate finding by the adult has been rarely tested in holometabolous insects. In this work, the effect of larval and early adult experiences on the behavioural responses of adult males of the aphid parasitoid, Aphidius ervi, towards volatiles from the host-plant complex (HPC) and from conspecific females were evaluated. Two experience factors were considered: host diet (normal diet=ND; artificial diet=AD), and eclosion, i.e. extraction or non-extraction of the parasitoid larva from the parasitised aphid (extracted=EX; non-extracted=NE). Thus, four treatments were set up: ND/NE, ND/EX, AD/NE and AD/EX. Glass Y-tube olfactometers were used to investigate the responses of adult A. ervi males to the odour sources used. Males from the ND/NE treatment showed a shorter latency to the first choice of olfactometer arms, displayed a marked preference towards the HPC olfactometer arm, and spent more time in the HPC arm than males from the other treatments. Only the interaction of host diet and eclosion experiences proved to be relevant in explaining the differences in latency to first choice, time spent in olfactometers arms, and behaviours displayed in the olfactometer arms. These results show the importance of the integration of larval and eclosion experiences in the development of stereotyped responses of the adults. This process may involve memory retention from the preimaginal and emergence period, but further research is needed to disentangle the contribution of each stage. The response to conspecific females was much less affected by the treatments in relation to first arm choice and times in olfactometer arms, suggesting a pheromone-mediated behaviour, even though a prompter and more intense wing fanning courtship behaviour was registered in the ND/NE males compared to males from the AD/NE treatment. These results show that sexual behaviours are less

  3. The effect of larval and early adult experience on behavioural plasticity of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae, Aphidiinae).

    PubMed

    Villagra, Cristian A; Pennacchio, Francesco; Niemeyer, Hermann M

    2007-11-01

    The relevance of the integration of preimaginal and eclosion experiences on the subsequent habitat preferences and mate finding by the adult has been rarely tested in holometabolous insects. In this work, the effect of larval and early adult experiences on the behavioural responses of adult males of the aphid parasitoid, Aphidius ervi, towards volatiles from the host-plant complex (HPC) and from conspecific females were evaluated. Two experience factors were considered: host diet (normal diet=ND; artificial diet=AD), and eclosion, i.e. extraction or non-extraction of the parasitoid larva from the parasitised aphid (extracted=EX; non-extracted=NE). Thus, four treatments were set up: ND/NE, ND/EX, AD/NE and AD/EX. Glass Y-tube olfactometers were used to investigate the responses of adult A. ervi males to the odour sources used. Males from the ND/NE treatment showed a shorter latency to the first choice of olfactometer arms, displayed a marked preference towards the HPC olfactometer arm, and spent more time in the HPC arm than males from the other treatments. Only the interaction of host diet and eclosion experiences proved to be relevant in explaining the differences in latency to first choice, time spent in olfactometers arms, and behaviours displayed in the olfactometer arms. These results show the importance of the integration of larval and eclosion experiences in the development of stereotyped responses of the adults. This process may involve memory retention from the preimaginal and emergence period, but further research is needed to disentangle the contribution of each stage. The response to conspecific females was much less affected by the treatments in relation to first arm choice and times in olfactometer arms, suggesting a pheromone-mediated behaviour, even though a prompter and more intense wing fanning courtship behaviour was registered in the ND/NE males compared to males from the AD/NE treatment. These results show that sexual behaviours are less

  4. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing.

    PubMed

    Ducharme, Nicole A; Reif, David M; Gustafsson, Jan-Ake; Bondesson, Maria

    2015-08-01

    With the high cost and slow pace of toxicity testing in mammals, the vertebrate zebrafish has become a tractable model organism for high throughput toxicity testing. We present here a meta-analysis of 600 chemicals tested for toxicity in zebrafish embryos and larvae. Nineteen aggregated and 57 individual toxicity endpoints were recorded from published studies yielding 2695 unique data points. These data points were compared to lethality and reproductive toxicology endpoints analyzed in rodents and rabbits and to exposure values for humans. We show that although many zebrafish endpoints did not correlate to rodent or rabbit acute toxicity data, zebrafish could be used to accurately predict relative acute toxicity through the rat inhalation, rabbit dermal, and rat oral exposure routes. Ranking of the chemicals based on toxicity and teratogenicity in zebrafish, as well as human exposure levels, revealed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene, and chlorpyrifos ranked in the top nine of all chemicals for these three categories, and as such should be considered high priority chemicals for testing in higher vertebrates. PMID:25261610

  5. Upregulation of Leukemia Inhibitory Factor (LIF) during the Early Stage of Optic Nerve Regeneration in Zebrafish

    PubMed Central

    Ogai, Kazuhiro; Kuwana, Ayaka; Hisano, Suguru; Nagashima, Mikiko; Koriyama, Yoshiki; Sugitani, Kayo; Mawatari, Kazuhiro; Nakashima, Hiroshi; Kato, Satoru

    2014-01-01

    Fish retinal ganglion cells (RGCs) can regenerate their axons after optic nerve injury, whereas mammalian RGCs normally fail to do so. Interleukin 6 (IL-6)-type cytokines are involved in cell differentiation, proliferation, survival, and axon regrowth; thus, they may play a role in the regeneration of zebrafish RGCs after injury. In this study, we assessed the expression of IL-6-type cytokines and found that one of them, leukemia inhibitory factor (LIF), is upregulated in zebrafish RGCs at 3 days post-injury (dpi). We then demonstrated the activation of signal transducer and activator of transcription 3 (STAT3), a downstream target of LIF, at 3–5 dpi. To determine the function of LIF, we performed a LIF knockdown experiment using LIF-specific antisense morpholino oligonucleotides (LIF MOs). LIF MOs, which were introduced into zebrafish RGCs via a severed optic nerve, reduced the expression of LIF and abrogated the activation of STAT3 in RGCs after injury. These results suggest that upregulated LIF drives Janus kinase (Jak)/STAT3 signaling in zebrafish RGCs after nerve injury. In addition, the LIF knockdown impaired axon sprouting in retinal explant culture in vitro; reduced the expression of a regeneration-associated molecule, growth-associated protein 43 (GAP-43); and delayed functional recovery after optic nerve injury in vivo. In this study, we comprehensively demonstrate the beneficial role of LIF in optic nerve regeneration and functional recovery in adult zebrafish. PMID:25162623

  6. Live Imaging of Innate Immune and Preneoplastic Cell Interactions Using an Inducible Gal4/UAS Expression System in Larval Zebrafish Skin

    PubMed Central

    Ramezani, Thomas; Laux, Derek W.; Bravo, Isabel R.; Tada, Masazumi; Feng, Yi

    2015-01-01

    Here we describe a method to conditionally induce epithelial cell transformation by the use of the 4-Hydroxytamoxifen (4-OHT) inducible KalTA4-ERT2/UAS expression system1 in zebrafish larvae, and the subsequent live imaging of innate immune cell interaction with HRASG12V expressing skin cells. The KalTA4-ERT2/UAS system is both inducible and reversible which allows us to induce cell transformation with precise temporal/spatial resolution in vivo. This provides us with a unique opportunity to live image how individual preneoplastic cells interact with host tissues as soon as they emerge, then follow their progression as well as regression. Recent studies in zebrafish larvae have shown a trophic function of innate immunity in the earliest stages of tumorigenesis2,3. Our inducible system would allow us to live image the onset of cellular transformation and the subsequent host response, which may lead to important insights on the underlying mechanisms for the regulation of oncogenic trophic inflammatory responses. We also discuss how one might adapt our protocol to achieve temporal and spatial control of ectopic gene expression in any tissue of interest. PMID:25741625

  7. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish

    PubMed Central

    Grone, Brian P.; Marchese, Maria; Hamling, Kyla R.; Kumar, Maneesh G.; Krasniak, Christopher S.; Sicca, Federico; Santorelli, Filippo M.; Patel, Manisha; Baraban, Scott C.

    2016-01-01

    Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations. PMID:26963117

  8. Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction

    PubMed Central

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M.; Esguerra, Camila V.; Blust, Ronny; Darras, Veerle M.; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  9. Learning and memory in zebrafish larvae

    PubMed Central

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  10. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  11. Locomotor activity changes on zebrafish larvae with different 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes.

    PubMed

    Zhao, Jing; Xu, Ting; Yin, Da-Qiang

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants and are banned around the world as potent environmental contaminants. PBDE-47 is the most concerned PBDE with its environmental prevalence and various toxicity characteristics including neurotoxicity. In this paper, we studied larval zebrafish behavioral alterations caused by PBDE-47 neurotoxicity. The light-dark cycle stimulation was used to investigate the locomotor changes of zebrafish larvae at different ages (4-6 day post-fertilization, dpf) after PBDE-47 exposure (5, 50, 500 μg L(-1)). Three exposure modes, namely continuous exposure, early pulse exposure and interval exposure, were adopted to assess and compare the impacts of exposure modes on larval zebrafish locomotion. Our results showed that locomotor effects upon PBDE exposure depended on the specific exposure mode studied. In the early pulse exposure mode, the locomotion of zebrafish larvae did not change significantly at all PBDE-47 concentrations tested. In contrast, for both the continuous exposure and interval exposure modes, the highest dose of PBDE-47 (500 μg L(-1)) elicited pronounced hypoactivity at 5 dpf during dark periods except for the initial one. However, at 6 dpf, hypoactivity was only observed in the continuously exposed zebrafish larvae (to an even higher degree compared to 5 dpf), but not in the interval exposure treatment group. Our results suggested that the conventional, continuous exposure mode might not be enough to evaluate the toxicity of chemicals in the real environments. PMID:24080000

  12. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  13. Microgavage of zebrafish larvae.

    PubMed

    Cocchiaro, Jordan L; Rawls, John F

    2013-01-01

    The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be

  14. Early embryo and larval development of inviable intergeneric hybrids derived from Crassostrea angulata and Saccostrea cucullata

    NASA Astrophysics Data System (ADS)

    Su, Jiaqi; Wang, Zhaoping; Zhang, Yuehuan; Yan, Xiwu; Li, Qiongzhen; Yu, Ruihai

    2016-06-01

    To detect the intergeneric hybridization between the oyster Crassostrea angulata and Saccostrea cucullata coexisting along the southern coast of China, reciprocal crosses were conducted between the two species. Barriers for sperm recognizing, binding, penetrating the egg, and forming the pronucleus were detected by fluorescence staining. From the results, although fertilization success was observed in hybrid crosses, the overall fertilization rate was lower than that of intraspecific crosses. A large number of hybrid larvae died at 6-8 d after hatching, and those survived could not complete metamorphosis. C. angulata ♀× S. cucullata ♂ larvae had a growth rate similar to that of the maternal species, whereas S. cucullata ♀ × C. angulata ♂ larvae grew the slowest among all crosses. Molecular genetics analysis revealed that hybrid progeny were amphimixis hybrids. This study demonstrated that hybrid embryos generated by crossing C. angulata and S. cucullata could develop normally to the larval state, but could not complete metamorphosis and then develop to the spat stage. Thus, there is a post-reproductive isolation between C. angulata and S. cucullata.

  15. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    SciTech Connect

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current

  16. Early lens development in the zebrafish: a three-dimensional time-lapse analysis.

    PubMed

    Greiling, Teri M S; Clark, John I

    2009-09-01

    In vivo, high-resolution, time-lapse imaging characterized lens development in the zebrafish from 16 to 96 hr postfertilization (hpf). In zebrafish, the lens placode appeared in the head ectoderm, similar to mammals. Delamination of the surface ectoderm resulted in the formation of the lens mass, which progressed to a solid sphere of cells separating from the developing cornea at approximately 24 hpf. A lens vesicle was not observed and apoptosis was not a major factor in separation of the lens from the future cornea. Differentiation of primary fibers began in the lens mass followed by formation of the anterior epithelium after delamination was complete. Secondary fibers differentiated from elongating epithelial cells near the posterior pole. Quantification characterized three stages of lens growth. The study confirmed the advantages of live-cell imaging for three-dimensional quantitative structural characterization of the mechanism(s) responsible for cell differentiation in formation of a transparent, symmetric, and refractile lens. PMID:19504455

  17. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. PMID:27470972

  18. Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos

    PubMed Central

    Lee, Hyung Joo; Lowdon, Rebecca F; Maricque, Brett; Zhang, Bo; Stevens, Michael; Li, Daofeng; Johnson, Stephen L; Wang, Ting

    2015-01-01

    DNA methylation undergoes dynamic changes during development and cell differentiation. Recent genome-wide studies discovered that tissue-specific differentially methylated regions (DMRs) often overlap tissue-specific distal cis-regulatory elements. However, developmental DNA methylation dynamics of the majority of the genomic CpGs outside gene promoters and CpG islands has not been extensively characterized. Here we generate and compare comprehensive DNA methylome maps of zebrafish developing embryos. From these maps we identify thousands of developmental stage-specific DMRs (dsDMR) across zebrafish developmental stages. The dsDMRs contain evolutionarily conserved sequences, are associated with developmental genes, and are marked with active enhancer histone post-translational modifications. Their methylation pattern correlates much stronger than promoter methylation with expression of putative target genes. When tested in vivo using a transgenic zebrafish assay, 20 out of 20 selected candidate dsDMRs exhibit functional enhancer activities. Our data suggest that developmental enhancers are a major target of DNA methylation changes during embryogenesis. PMID:25697895

  19. Early Embryonic Gene Expression Profiling of Zebrafish Prion Protein (Prp2) Morphants

    PubMed Central

    Nourizadeh-Lillabadi, Rasoul; Seilø Torgersen, Jacob; Vestrheim, Olav; König, Melanie; Aleström, Peter; Syed, Mohasina

    2010-01-01

    Background The Prion protein (PRNP/Prp) plays a crucial role in transmissible spongiform encephalopathies (TSEs) like Creutzfeldt-Jakob disease (CJD), scrapie and mad cow disease. Notwithstanding the importance in human and animal disease, fundamental aspects of PRNP/Prp function and transmission remains unaccounted for. Methodology/Principal Findings The zebrafish (Danio rerio) genome contains three Prp encoding genes assigned prp1, prp2 and prp3. Currently, the second paralogue is believed to be the most similar to the mammalian PRNP gene in structure and function. Functional studies of the PRNP gene ortholog was addressed by prp2 morpholino (MO) knockdown experiments. Investigation of Prp2 depleted embryos revealed high mortality and apoptosis at 24 hours post fertilization (hpf) as well as impaired brain and neuronal development. In order to elucidate the underlying mechanisms, a genome-wide transcriptome analysis was carried out in viable 24 hpf morphants. The resulting changes in gene expression profiles revealed 249 differently expressed genes linked to biological processes like cell death, neurogenesis and embryonic development. Conclusions/Significance The current study contributes to the understanding of basic Prp functions and demonstrates that the zebrafish is an excellent model to address the role of Prp in vertebrates. The gene knockdown of prp2 indicates an essential biological function for the zebrafish ortholog with a morphant phenotype that suggests a neurodegenerative action and gene expression effects which are apoptosis related and effects gene networks controlling neurogenesis and embryo development. PMID:21042590

  20. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date. PMID:26197219

  1. Changes in Olfactory Receptor Expression Are Correlated With Odor Exposure During Early Development in the zebrafish (Danio rerio).

    PubMed

    Calfún, Cristian; Domínguez, Calixto; Pérez-Acle, Tomás; Whitlock, Kathleen E

    2016-05-01

    We have previously shown that exposure to phenyl ethyl alcohol (PEA) causes an increase in the expression of the transcription factor otx2 in the olfactory epithelium (OE) of juvenile zebrafish, and this change is correlated with the formation of an odor memory of PEA. Here, we show that the changes in otx2 expression are specific to βPEA: exposure to αPEA did not affect otx2 expression. We identified 34 olfactory receptors (ORs) representing 16 families on 4 different chromosomes as candidates for direct regulation of OR expression via Otx2. Subsequent in silico analysis uncovered Hnf3b binding sites closely associated with Otx2 binding sites in the regions flanking the ORs. Analysis by quantitative polymerase chain reaction and RNA-seq of OR expression in developing zebrafish exposed to different isoforms of PEA showed that a subset of ORs containing both Otx2/Hnf3b binding sites were downregulated only in βPEA-exposed juveniles and this change persisted through adult life. Localization of OR expression by in situ hybridization indicates the downregulation occurs at the level of RNA and not the number of cells expressing a given receptor. Finally, analysis of immediate early gene expression in the OE did not reveal changes in c-fos expression in response to either αPEA or βPEA. PMID:26892307

  2. Environmental conditions, early life stages distributions and larval feeding of patagonian sprat Sprattusfuegensis and common sardine Strangomerabentincki in fjords and channels of the northern Chilean patagonia

    NASA Astrophysics Data System (ADS)

    Contreras, Tabit; Castro, Leonardo R.; Montecinos, Sandra; Gonzalez, Humberto E.; Soto, Samuel; Muñoz, Maria I.; Palma, Sergio

    2014-12-01

    We assessed ontogenetic changes in distribution and feeding of the Patagonian sprat Sprattus fuegensis and common sardine Strangomera bentincki, and their association with environmental characteristics (hydrography, larval food, gelatinous zooplankton predators), and actual feeding from inshore to offshore areas of the Chilean Patagonia. During the springs of 2007 and 2008, S. bentincki egg and larvae were present north of the Taitao Peninsula (47°S) and S. fuegensis was found to the south of the peninsula. Along the inshore-offshore axis, distributions also differed: while eggs and early larval stages of S. bentincki occurred inshore and seawards, larger larvae occurred mostly seawards. The opposite was observed in S. fuegensis. However, distributions of both species followed the same rule, determined by the size of their prey: eggs and early larval stages occurred in areas of higher abundance of small prey sizes, and larger larvae coincided with the highest abundances of larger prey sizes. No relationship was detected between potential gelatinous predators and the egg and larval distributions of both fish species. Mean ingested prey sizes in both species increased as larvae grew, while maintaining the capacity to feed on small sized items. This ontogenetic feeding pattern and the distributions linked to prey seem to be beneficial in order to take advantage of short term food pulses and to overcome the strong changes in environmental conditions east to west from fjords to open waters.

  3. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio).

    PubMed

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou

    2015-09-01

    The broad spectrum applications of CoFe2O4 NPs have attracted much interest in medicine, environment and industry, resulting in exceedingly higher exposures to humans and environmental systems in succeeding days. Their health effects and potential biological impacts need to be determined for risk assessment. Zebrafish (Danio rerio) embryos were exposed to environmentally relevant doses of nano-CoFe2O4 (mean diameter of 40nm) with a concentration range of 10-500μM for 96h. Acute toxic end points were evaluated by survival rate, malformation, hatching delay, heart dysfunction and tail flexure of larvae. Dose and time dependent developmental toxicity with severe cardiac edema, down regulation of metabolism, hatching delay and tail/spinal cord flexure and apoptosis was observed. The biochemical changes were evaluated by ROS, Catalase (CAT), Lipid peroxidation (LPO), Acid phophatase (AP) and Glutatione s- transferase (GST). An Agglomeration of NPs and dissolution of ions induces severe mechanical damage to membranes and oxidative stress. Severe apoptosis of cells in the head, heart and tail region with inhibition of catalase confirms ROS induced acute toxicity with increasing concentration. Increased activity of GST and AP at lower concentrations of CoFe2O4 NPs demonstrates the severe oxidative stress. Circular dichroism (CD) spectra indicated the weak interactions of NPs with BSA and slight changes in α-helix structure. In addition, CoFe2O4 NPs at lower concentrations do not show any considerable interference with assay components and analytical instruments. The results are possible elucidation of pathways of toxicity induced by these particles, as well as contributing in defining the protocols for risk assessment of these nanoparticles. PMID:26197244

  4. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  5. Actions of Bisphenol A and Bisphenol S on the Reproductive Neuroendocrine System During Early Development in Zebrafish.

    PubMed

    Qiu, Wenhui; Zhao, Yali; Yang, Ming; Farajzadeh, Matthew; Pan, Chenyuan; Wayne, Nancy L

    2016-02-01

    Bisphenol A (BPA) is a well-known environmental, endocrine-disrupting chemical, and bisphenol S (BPS) has been considered a safer alternative for BPA-free products. The present study aims to evaluate the impact of BPA and BPS on the reproductive neuroendocrine system during zebrafish embryonic and larval development and to explore potential mechanisms of action associated with estrogen receptor (ER), thyroid hormone receptor (THR), and enzyme aromatase (AROM) pathways. Environmentally relevant, low levels of BPA exposure during development led to advanced hatching time, increased numbers of GnRH3 neurons in both terminal nerve and hypothalamus, increased expression of reproduction-related genes (kiss1, kiss1r, gnrh3, lhβ, fshβ, and erα), and a marker for synaptic transmission (sv2). Low levels of BPS exposure led to similar effects: increased numbers of hypothalamic GnRH3 neurons and increased expression of kiss1, gnrh3, and erα. Antagonists of ER, THRs, and AROM blocked many of the effects of BPA and BPS on reproduction-related gene expression, providing evidence that those three pathways mediate the actions of BPA and BPS on the reproductive neuroendocrine system. This study demonstrates that alternatives to BPA used in the manufacture of BPA-free products are not necessarily safer. Furthermore, this is the first study to describe the impact of low-level BPA and BPS exposure on the Kiss/Kiss receptor system during development. It is also the first report of multiple cellular pathways (ERα, THRs, and AROM) mediating the effects of BPA and BPS during embryonic development in any species. PMID:26653335

  6. Proteomic Analysis of Trichinella spiralis Muscle Larval Excretory-Secretory Proteins Recognized by Early Infection Sera

    PubMed Central

    Wang, Li; Wang, Zhong Quan; Hu, Dan Dan; Cui, Jing

    2013-01-01

    Although the excretory-secretory (ES) proteins of Trichinella spiralis muscle larvae are the most commonly used diagnostic antigens for trichinellosis, their main disadvantage is the false negative results during the early stage of infection and cross-reaction of their main components (43, 45, 49, and 53 kDa) with sera of patients with other helminthiasis. The aim of this study was to identify early specific diagnostic antigens in T. spiralis ES proteins with 30–40 kDa. The ES proteins were analyzed by two-dimensional electrophoresis (2-DE), and a total of approximately 150 proteins spots were detected with isoelectric point (pI) varying from 4 to 7 and molecular weight from 14 to 66 kDa. When probed with sera from infected mice at 18 days postinfection, ten protein spots with molecular weight of 30–40 kDa were recognized and identified by MALDI-TOF/TOF-MS. All of ten spots were successfully identified and characterized to correlate with five different proteins, including two potential serine proteases, one antigen targeted by protective antibodies, one deoxyribonuclease (DNase) II, and one conserved hypothetical protein. These proteins might be the early specific diagnostic antigens for trichinellosis. PMID:23844355

  7. amontillado, the Drosophila homolog of the prohormone processing protease PC2, is required during embryogenesis and early larval development.

    PubMed Central

    Rayburn, Lowell Y M; Gooding, Holly C; Choksi, Semil P; Maloney, Dhea; Kidd, Ambrose R; Siekhaus, Daria E; Bender, Michael

    2003-01-01

    Biosynthesis of most peptide hormones and neuropeptides requires proteolytic excision of the active peptide from inactive proprotein precursors, an activity carried out by subtilisin-like proprotein convertases (SPCs) in constitutive or regulated secretory pathways. The Drosophila amontillado (amon) gene encodes a homolog of the mammalian PC2 protein, an SPC that functions in the regulated secretory pathway in neuroendocrine tissues. We have identified amon mutants by isolating ethylmethanesulfonate (EMS)-induced lethal and visible mutations that define two complementation groups in the amon interval at 97D1 of the third chromosome. DNA sequencing identified the amon complementation group and the DNA sequence change for each of the nine amon alleles isolated. amon mutants display partial embryonic lethality, are defective in larval growth, and arrest during the first to second instar larval molt. Mutant larvae can be rescued by heat-shock-induced expression of the amon protein. Rescued larvae arrest at the subsequent larval molt, suggesting that amon is also required for the second to third instar larval molt. Our data indicate that the amon proprotein convertase is required during embryogenesis and larval development in Drosophila and support the hypothesis that AMON acts to proteolytically process peptide hormones that regulate hatching, larval growth, and larval ecdysis. PMID:12586710

  8. Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen

    SciTech Connect

    Westerlund, L.; Billsson, K.; Andersson, P.L.; Tysklind, M.; Olsson, P.E.

    2000-06-01

    In the present study, specific polychlorinated biphenyl (PCB) congeners were examined for embryo and early life stage mortality in zebrafish (Danio rerio). A set of eight PCBs and two hydroxylated PCBs and 17{beta}-estradiol were tested. Of the compounds tested, 4{prime}-OH-PCB30 (hydroxylated polychlorinated biphenyl) and PCB104 were found to be highly toxic to embryos following maternal exposure and transfer to the oocyte. It was also observed that 17{beta}-estradiol exposure resulted in a high incidence of embryo mortality. Analysis of estrogen receptor levels during embryonic development showed increased mRNA (ribonucleic acid) levels from the 1K stage to 50% epiboly. Following injection of the different compounds, the estrogen receptor mRNA levels were also analyzed in adult male fish to determine if there was a correlation between embryo mortality and estrogenicity of the studied PCBs. The two PCBs that were highly embryo toxic were observed to be estrogenic.

  9. Development of social behavior in young zebrafish

    PubMed Central

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R.; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish. PMID:26347614

  10. [External proprioceptors of locust locomotor organs and their changes during early larval ontogenesis].

    PubMed

    Kuznetsova, T V; Severina, I Iu

    2009-01-01

    This work studies topography and structure of such important insect external proprioceptors as campaniform sensillae (CS). These mechanoreceptors are essential components of insect posture and locomotion regulation and participate in control of various forms of insect motor behavior (walking, jump, flight). There are traced their quantitative changes as well as differences in distribution of groups of these leg receptors at consecutive stages (from the 1st to the 4th) of ontogenetic development of larva of the locust Locusta migratoria L. The presence of groups of CS in proximal parts of extremities has been noted as early as in the 1st instar larvae. The CS groups in the wing pads were revealed only in the 4th instar larvae. The presented data allow connecting changes in structure and distribution of these proprioceptors on central generators of the locomotion rhythms. PMID:19764639

  11. A Zebrafish Thrombosis Model for Assessing Antithrombotic Drugs.

    PubMed

    Zhu, Xiao-Yu; Liu, Hong-Cui; Guo, Sheng-Ya; Xia, Bo; Song, Ru-Shun; Lao, Qiao-Cong; Xuan, Yao-Xian; Li, Chun-Qi

    2016-08-01

    Thrombosis is a leading cause of death and the development of effective and safe therapeutic agents for thrombotic diseases has been proven challenging. In this study, taking advantage of the transparency of larval zebrafish, we developed a larval zebrafish thrombosis model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days post fertilization) were treated with phenylhydrazine (PHZ) and a testing drug for 24 h. Tested drugs were administered into the zebrafish either by direct soaking or circulation microinjection. Antithrombotic efficacy was quantitatively evaluated based on our previously patented technology characterized as an image analysis of the heart red blood cells stained with O-dianisidine staining. Zebrafish at 2 dpf treated with PHZ at a concentration of 1.5 μM for a time period of 24 h were determined as the optimum conditions for the zebrafish thrombosis model development. Induced thrombosis in zebrafish was visually confirmed under a dissecting stereomicroscope and quantified by the image assay. All 6 human antithrombotic drugs (aspirin, clopidogrel, diltiazem hydrochloride injection, xuanshuantong injection, salvianolate injection, and astragalus injection) showed significant preventive and therapeutic effects on zebrafish thrombosis (p < 0.05, p < 0.01, & p < 0.001) in this zebrafish thrombosis model. The larval zebrafish thrombosis model developed and validated in this study could be used for in vivo thrombosis studies and for rapid screening and efficacy assessment of antithrombotic drugs. PMID:27333081

  12. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  13. Global Identification of SMAD2 Target Genes Reveals a Role for Multiple Co-regulatory Factors in Zebrafish Early Gastrulas*

    PubMed Central

    Liu, Zhaoting; Lin, Xiwen; Cai, Zhaoping; Zhang, Zhuqiang; Han, Chunsheng; Jia, Shunji; Meng, Anming; Wang, Qiang

    2011-01-01

    Nodal and Smad2/3 signals play pivotal roles in mesendoderm induction and axis determination during late blastulation and early gastrulation in vertebrate embryos. However, Smad2/3 direct target genes during those critical developmental stages have not been systematically identified. Here, through ChIP-chip assay, we show that the promoter/enhancer regions of 679 genes are bound by Smad2 in the zebrafish early gastrulas. Expression analyses confirm that a significant proportion of Smad2 targets are indeed subjected to Nodal/Smad2 regulation at the onset of gastrulation. The co-existence of DNA-binding sites of other transcription factors in the Smad2-bound regions allows the identification of well known Smad2-binding partners, such as FoxH1 and Lef1/β-catenin, as well as many previously unknown Smad2 partners, including Oct1 and Gata6, during embryogenesis. We demonstrate that Oct1 physically associates with and enhances the transcription and mesendodermal induction activity of Smad2, whereas Gata6 exerts an inhibitory role in Smad2 signaling and mesendodermal induction. Thus, our study systemically uncovers a large number of Smad2 targets in early gastrulas and suggests cooperative roles of Smad2 and other transcription factors in controlling target gene transcription, which will be valuable for studying regulatory cascades during germ layer formation and patterning of vertebrate embryos. PMID:21669877

  14. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration. PMID:27387232

  15. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  16. Behavioral analysis of zebrafish larvae swimming in three dimensions

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    2015-03-01

    Behavioral biologists have a strong interest in studying the behavior of larval zebrafish because the limited number of locomotor neurons in larval zebrafish couples with the rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their movements. Most research also only considers the 2D movements of zebrafish, leaving out the vertical component of their locomotion. Our lab has developed a method to reduce the dimensionality of the locomotion of zebrafish and determine the behavioral space of 2D swimming. We are extending this work to capture 3D locomotion of zebrafish larvae. Here we present our preliminary analysis of the 3D locomotion of zebrafish.

  17. A Digital Framework to Build, Visualize and Analyze a Gene Expression Atlas with Cellular Resolution in Zebrafish Early Embryogenesis

    PubMed Central

    Castro-González, Carlos; Luengo-Oroz, Miguel A.; Duloquin, Louise; Savy, Thierry; Rizzi, Barbara; Desnoulez, Sophie; Doursat, René; Kergosien, Yannick L.; Ledesma-Carbayo, María J.; Bourgine, Paul

    2014-01-01

    A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages. PMID:24945246

  18. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish.

    PubMed

    Meijer, Annemarie H; van der Vaart, Michiel; Spaink, Herman P

    2014-01-01

    Many aspects of host interactions with microbes can only be studied in the context of a whole organism. The zebrafish as a model organism has shown to be highly successful for studies of infection biology and the interactions of commensal microbiota with their hosts. Zebrafish are transparent during embryo and larval development and these early life stages are optimally suited for high-resolution imaging of host-microbe interactions in a vertebrate organism. This is facilitated by the development of a variety of fluorescent reporter lines that mark different immune cell types or subcellular compartments where pathogens reside. The zebrafish is an excellent vertebrate model for forward genetic screening and efficient tools for gene knock-down and targeted mutagenesis add further to the strength of this model organism. The use of zebrafish larvae for studying microbial infections has recently led to important new insights in host defence mechanisms, which are highlighted in this review focused on bacterial pathogens. Considering the highly conserved nature of the processes involved, including innate immune recognition, immunometabolism and autophagy, it is to be expected that these recent findings in zebrafish will have great translational value for biomedical applications. PMID:24188444

  19. Identification, Modeling and Ligand Affinity of Early Deuterostome CYP51s, and Functional Characterization of Recombinant Zebrafish Sterol 14α-Demethylase

    PubMed Central

    Morrison, Ann Michelle Stanley; Goldstone, Jared V.; Lamb, David C.; Kubota, Akira; Lemaire, Benjamin; Stegeman, John. J.

    2014-01-01

    Background Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes. Methods PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC/MS. Results Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2 nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26 μM for ketoconazole and 0.64 μM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s. Conclusions Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. General Significance The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications. PMID:24361620

  20. Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish

    PubMed Central

    2010-01-01

    Background Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells. Results Through the combined use of transgenic fish, Fluorescence Activated Cell Sorting and microarray analysis we identified a repertoire of key genes expressed in the migrating primordium and in differentiated neuromasts. We validated the specific expression in the primordium of a subset of the identified sequences by quantitative RT-PCR, and by in situ hybridization. We also show that interfering with the function of two genes, f11r and cd9b, defects in primordium migration are induced. Finally, pathway construction revealed functional relationships among the genes enriched in the migrating cell population. Conclusions Our results demonstrate that this is a robust approach to globally analyze tissue-specific expression and we predict that many of the genes identified in this study will show critical functions in developmental events involving collective cell migration and possibly in pathological situations such as tumor metastasis. PMID:21144052

  1. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

    PubMed Central

    2013-01-01

    Background Nutritional symbioses play a central role in insects’ adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. Results We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are

  2. Preferred larval fish habitat in a frontal zone of the northern Gulf of California during the early cyclonic phase of the seasonal circulation (June 2008)

    NASA Astrophysics Data System (ADS)

    Sánchez-Velasco, L.; Lavín, M. F.; Jiménez-Rosenberg, S. P. A.; Godínez, V. M.

    2014-01-01

    We analyze the larval fish habitats in the northern Gulf of California during the early stages of the cyclonic phase of the seasonally-reversing circulation (June 2008). The geostrophic current was cyclonic (~ 5-9 cm/s), and the pycnocline was slightly convex, suggesting a cyclonic eddy. The fish larvae distribution gradients showed four contiguous larval fish habitats: (i) A habitat located in the vertically well-mixed and most saline area of the Upper Gulf, which was dominated by the costal demersal species Anchoa spp. and Gobulus crescentalis. (ii) A habitat situated in the tidal-mixing frontal area on the south rim of the Upper Gulf, where the highest species number (> 50% of the study) and the highest larval fish abundance were found. In addition to the dominant species in the former habitat, larvae of Opisthonema sp. 1, Anisotremus davidsoni and Eucinostomus dowii also dominated this habitat. Their distribution suggests retention associated with the front. (iii) A third habitat was defined in the deep area adjacent to the tidal mixing front, which was influenced by the incipient cyclonic eddy. Larvae of Opisthonema sp. 1 and Etropus crossotus were dominant, but with low abundance and frequency. (iv) A fourth habitat was observed in the southern, deeper portion of the northern Gulf, with the lowest fish larvae abundance, and characterized by the exclusive dominance of species like Shyraena sp. 1 and Benthosema panamense. These results suggest that the tidal-mixing frontal area is the preferred habitat for spawning and larval nursing of the fish species that inhabit the region. This contrasts with the unfavorable habitats in the deeper areas, which is an unexpected result in view of the presence of the cyclonic eddy, which potentially could be highly productive. This indicates that caution should be exercised in predicting an ecosystem organization of richness based on oceanographic mesoscale structures.

  3. Zebrafish learn to forage in the dark.

    PubMed

    Carrillo, Andres; McHenry, Matthew J

    2016-02-01

    A large diversity of fishes struggle early in life to forage on zooplankton while under the threat of predation. Some species, such as zebrafish (Danio rerio), acquire an ability to forage in the dark during growth as larvae, but it is unclear how this is achieved. We investigated the functional basis of this foraging by video-recording larval and juvenile zebrafish as they preyed on zooplankton (Artemia sp.) under infrared illumination. We found that foraging improved with age, to the extent that 1-month-old juveniles exhibited a capture rate that was an order of magnitude greater than that of hatchlings. At all ages, the ability to forage in the dark was diminished when we used a chemical treatment to compromise the cranial superficial neuromasts, which facilitate flow sensing. However, a morphological analysis showed no developmental changes in these receptors that could enhance sensitivity. We tested whether the improvement in foraging with age could instead be a consequence of learning by raising fish that were naïve to the flow of prey. After 1 month of growth, both groups foraged with a capture rate that was significantly less than that of fish that had the opportunity to learn and indistinguishable from that of fish with no ability to sense flow. This suggests that larval fish learn to use water flow to forage in the dark. This ability could enhance resource acquisition under reduced competition and predation. Furthermore, our findings offer an example of learning in a model system that offers promise for understanding its neurophysiological basis. PMID:26889003

  4. Uptake of platinum by zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis) and resulting effects on early embryogenesis.

    PubMed

    Osterauer, Raphaela; Haus, Nadine; Sures, Bernd; Köhler, Heinz-R

    2009-11-01

    Platinum group elements (PGEs), platinum, palladium and rhodium are widely used in automobile catalytic converters. PGEs are emitted into the environment and enter the aquatic ecosystem via runoff rainwater. The present study investigated the bioavailability of platinum chloride for the zebrafish (Danio rerio) and the ramshorn snail (Marisa cornuarietis) and determined the bioaccumulation rate of platinum. Applying the fish early life stage assay for D. rerio (DarT) and the Marisa embryo toxicity test ("Mariett") for M. cornuarietis, effects of platinum chloride on the embryonic development were investigated. Platinum concentrations tested in this study ranged from environmentally relevant concentrations of 38 ng L(-1) up to a concentration of 74.2 microg L(-1) for D. rerio and of 200 ngL(-1) up to 98.7 microg L(-1) for M. cornuarietis. Platinum was found to be accumulated in both organisms. Bioaccumulation factors (BAFs) were in the range of 5-55 for D. rerio and of 218.4-723.9 for M. cornuarietis, depending on the tested Pt concentrations. During the embryonic development, platinum was shown to alter the heart rate of both organisms already at the lowest tested concentration. At higher concentrations, platinum decelerated the hatching rate of the embryos of both species. Additionally, a retardation of the general development and a loss of weight due to platinum exposure was observed in M. cornuarietis. Results of this study contribute important data on the ecotoxicity of a rarely studied element. PMID:19796790

  5. Zebrafish Plzf transcription factors enhance early type I IFN response induced by two non-enveloped RNA viruses.

    PubMed

    Aleksejeva, E; Houel, A; Briolat, V; Levraud, J-P; Langevin, C; Boudinot, P

    2016-04-01

    The BTB-POZ transcription factor Promyelocytic Leukemia Zinc Finger (PLZF, or ZBTB16) has been recently identified as a major factor regulating the induction of a subset of Interferon stimulated genes in human and mouse. We show that the two co-orthologues of PLZF found in zebrafish show distinct expression patterns, especially in larvae. Although zbtb16a/plzfa and zbtb16b/plzfb are not modulated by IFN produced during viral infection, their over-expression increases the level of the early type I IFN response, at a critical phase in the race between the virus and the host response. The effect of Plzfb on IFN induction was also detectable after cell infection by different non-enveloped RNA viruses, but not after infection by the rhabdovirus SVCV. Our findings indicate that plzf implication in the regulation of type I IFN responses is conserved across vertebrates, but at multiple levels of the pathway and through different mechanisms. PMID:26719025

  6. Mayo Clinic Zebrafish Facility Overview.

    PubMed

    Leveque, Ryan E; Clark, Karl J; Ekker, Stephen C

    2016-07-01

    The zebrafish (Danio rerio) is a premier nonmammalian vertebrate model organism. This small aquatic fish is utilized in multiple disciplines in the Mayo Clinic community and by many laboratories around the world because of its biological similarity to humans, its advanced molecular genetics, the elucidation of its genome sequence, and the ever-expanding and outstanding new biological tools now available to the zebrafish researcher. The Mayo Clinic Zebrafish Facility (MCZF) houses ∼2,000 tanks annotated using an in-house, Internet cloud-based bar-coding system tied to our established zfishbook.org web infrastructure. Paramecia are the primary food source for larval fish rearing, using a simplified culture protocol described herein. The MCZF supports the specific ongoing research in a variety of laboratories, while also serving as a local hub for new scientists as they learn to tap into the potential of this model system for understanding normal development, disease, and as models of health. PMID:27023741

  7. The Zebrafish Annexin Gene Family

    PubMed Central

    Farber, Steven A.; De Rose, Robert A.; Olson, Eric S.; Halpern, Marnie E.

    2003-01-01

    The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes. PMID:12799347

  8. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  9. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  10. Quantification of vestibular-induced eye movements in zebrafish larvae

    PubMed Central

    2010-01-01

    Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR), a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf), which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs. PMID:20815905

  11. The Zebrafish Homologue of the Human DYT1 Dystonia Gene Is Widely Expressed in CNS Neurons but Non-Essential for Early Motor System Development

    PubMed Central

    Sager, Jonathan J.; Torres, Gonzalo E.; Burton, Edward A.

    2012-01-01

    DYT1 dystonia is caused by mutation of the TOR1A gene, resulting in the loss of a single glutamic acid residue near the carboxyl terminal of TorsinA. The neuronal functions perturbed by TorsinA[ΔE] are a major unresolved issue in understanding the pathophysiology of dystonia, presenting a critical roadblock to developing effective treatments. We identified and characterized the zebrafish homologue of TOR1A, as a first step towards elucidating the functions of TorsinA in neurons, in vivo, using the genetically-manipulable zebrafish model. The zebrafish genome was found to contain a single alternatively-spliced tor1 gene, derived from a common ancestral locus shared with the dual TOR1A and TOR1B paralogues found in tertrapods. tor1 was expressed ubiquitously during early embryonic development and in multiple adult tissues, including the CNS. The 2.1 kb tor1 mRNA encodes Torsin1, which is 59% identical and 78% homologous to human TorsinA. Torsin1 was expressed as major 45 kDa and minor 47 kDa glycoproteins, within the cytoplasm of neurons and neuropil throughout the CNS. Similar to previous findings relating to human TorsinA, mutations of the ATP hydrolysis domain of Torsin1 resulted in relocalization of the protein in cultured cells from the endoplasmic reticulum to the nuclear envelope. Zebrafish embryos lacking tor1 during early development did not show impaired viability, overt morphological abnormalities, alterations in motor behavior, or developmental defects in the dopaminergic system. Torsin1 is thus non-essential for early development of the motor system, suggesting that important CNS functions may occur later in development, consistent with the critical time window in late childhood when dystonia symptoms usually emerge in DYT1 patients. The similarities between Torsin1 and human TorsinA in domain organization, expression pattern, and cellular localization suggest that the zebrafish will provide a useful model to understand the neuronal functions of Torsins

  12. Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2016-01-01

    In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish. PMID:26940285

  13. Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva.

    PubMed

    Tseng, Hua-Pin; Hseu, Tzong-Hsiung; Buhler, Donald R; Wang, Wen-Der; Hu, Chin-Hwa

    2005-06-15

    In mammals, CYP3A isozymes collectively comprise the largest portion of the liver and small intestinal CYP protein. They are involved in the metabolism of an extensive range of endogenous substrates and xenobiotics and make a significant contribution to the termination of the action of steroid hormones. A full-length cDNA of CYP3A gene, named CYP3A65, was cloned from zebrafish by RT-PCR. The CYP3A65 mRNA was initially transcribed only in the liver and intestine upon hatching of the zebrafish embryos. Like the human CYP3A genes, CYP3A65 transcription in the foregut region was enhanced by treatment of the zebrafish larvae with the steroid dexamethasone and the macrocyclic antibiotic rifampicin. Differing from mammalian CYP3A genes, CYP3A65 transcription was also elicited by 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) during early larval stages. Repression of AHR2 translation by antisense morpholino oligonucleotides abrogated both of constitutive and TCDD-stimulated CYP3A65 transcription in larval intestine. These findings suggested that the AHR2 signaling pathway plays an essential role in CYP3A65 transcription. PMID:15922010

  14. Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva

    SciTech Connect

    Tseng, H.-P.; Hseu, Tzong-Hsiung; Buhler, Donald R.; Wang, W.-D.; Hu, C.-H. . E-mail: chhu@mail.ntou.edu.tw

    2005-06-15

    In mammals, CYP3A isozymes collectively comprise the largest portion of the liver and small intestinal CYP protein. They are involved in the metabolism of an extensive range of endogenous substrates and xenobiotics and make a significant contribution to the termination of the action of steroid hormones. A full-length cDNA of CYP3A gene, named CYP3A65, was cloned from zebrafish by RT-PCR. The CYP3A65 mRNA was initially transcribed only in the liver and intestine upon hatching of the zebrafish embryos. Like the human CYP3A genes, CYP3A65 transcription in the foregut region was enhanced by treatment of the zebrafish larvae with the steroid dexamethasone and the macrocyclic antibiotic rifampicin. Differing from mammalian CYP3A genes, CYP3A65 transcription was also elicited by 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) during early larval stages. Repression of AHR2 translation by antisense morpholino oligonucleotides abrogated both of constitutive and TCDD-stimulated CYP3A65 transcription in larval intestine. These findings suggested that the AHR2 signaling pathway plays an essential role in CYP3A65 transcription.

  15. Protein Arginine Methyltransferase 6 (Prmt6) Is Essential for Early Zebrafish Development through the Direct Suppression of gadd45αa Stress Sensor Gene.

    PubMed

    Zhao, Xin-Xi; Zhang, Yun-Bin; Ni, Pei-Li; Wu, Zhi-Li; Yan, Yuan-Chang; Li, Yi-Ping

    2016-01-01

    Histone lysine methylation is important in early zebrafish development; however, the role of histone arginine methylation in this process remains unclear. H3R2me2a, generated by protein arginine methyltransferase 6 (Prmt6), is a repressive mark. To explore the role of Prmt6 and H3R2me2a during zebrafish embryogenesis, we identified the maternal characteristic of prmt6 and designed two prmt6-specific morpholino-oligos (MOs) to study its importance in early development, application of which led to early epiboly defects and significantly reduced the level of H3R2me2a marks. prmt6 mRNA could rescue the epiboly defects and the H3R2me2a reduction in the prmt6 morphants. Functionally, microarray data demonstrated that growth arrest and DNA damage-inducible, α, a (gadd45αa) was a significantly up-regulated gene in MO-treated embryos, the activity of which was linked to the activation of the p38/JNK pathway and apoptosis. Importantly, gadd45αa MO and p38/JNK inhibitors could partially rescue the defect of prmt6 morphants, the downstream targets of Prmt6, and the apoptosis ratios of the prmt6 morphants. Moreover, the results of ChIP quantitative real time PCR and luciferase reporter assay indicated that gadd45αa is a repressive target of Prmt6. Taken together, these results suggest that maternal Prmt6 is essential to early zebrafish development by directly repressing gadd45αa. PMID:26487724

  16. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull

    PubMed Central

    McCarthy, Neil; Sidik, Alfire; Bertrand, Julien Y.; Eberhart, Johann K.

    2016-01-01

    The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure. PMID:27060628

  17. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull.

    PubMed

    McCarthy, Neil; Sidik, Alfire; Bertrand, Julien Y; Eberhart, Johann K

    2016-07-15

    The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure. PMID:27060628

  18. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  19. CHRONIC ZEBRAFISH PFOS EXPOSURE ALTERS SEX RATIO AND MATERNAL RELATED EFFECTS IN F1 OFFSPRING

    PubMed Central

    Wang, Mingyong; Chen, Jiangfei; Lin, Kuanfei; Chen, Yuanhong; Hu, Wei; Tanguay, Robert L.; Huang, Changjiang; Dong, Qiaoxiang

    2012-01-01

    Perfluorooctanesulfonic acid (PFOS) is an organic contaminant ubiquitous in the environment, wildlife, and humans. Few studies have assessed its chronic toxicity on aquatic organisms. The present study defined the effects of long-term exposure to PFOS on zebrafish development and reproduction. Specifically, zebrafish at 8 h postfertilization (hpf) were exposed to PFOS at 0, 5, 50, and 250 μg/L for five months. Growth suppression was observed in the 250 μg/L PFOS-treated group. The sex ratio was altered, with a significant female dominance in the high-dose PFOS group. Male gonad development was also impaired in a dose-dependent manner by PFOS exposure. Although female fecundity was not impacted, the F1 embryos derived from high-dose exposed females paired with males without PFOS exposure developed severe deformity at early development stages and resulted in 100% larval mortality at 7 d postfertilization (dpf). Perfluorooctanesulfonic acid quantification in embryos indicated that decreased larval survival in F1 offspring was directly correlated to the PFOS body burden, and larval lethality was attributable to maternal transfer of PFOS to the eggs. Lower-dose parental PFOS exposure did not result in decreased F1 survival; however, the offspring displayed hyperactivity of basal swimming speed in a light-to-dark behavior assessment test. These findings demonstrate that chronic exposure to PFOS adversely impacts embryonic growth, reproduction, and subsequent offspring development. Environ. PMID:21671259

  20. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.

    PubMed

    Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-04-01

    The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. PMID:26178322

  1. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  2. Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Patino, R.

    2007-01-01

    The objectives of this study were to determine the effects of prolonged exposure to perchlorate on (1) thyroid status and reproductive performance of adult zebrafish (Danio rerio) and (2) F1 embryo survival and early larval development. Using a static-renewal procedure, mixed sex populations of adult zebrafish were exposed to 0, 10, and 100 mg/l nominal concentrations of waterborne perchlorate for 10 weeks. Thyroid histology was qualitatively assessed, and females and males were separated and further exposed to their respective treatments for six additional weeks. Eight females in each tank replicate (n = 3) were paired weekly with four males from the same respective treatment, and packed-egg (spawn) volume (PEV) was measured each of the last five weeks. At least once during weeks 14-16 of exposure, other end points measured included fertilization rate, fertilized egg diameter, hatching rate, standard length, and craniofacial development of 4-day-postfertilization larvae and thyroid hormone content of 3.5-h embryos and of exposed mothers. At 10 weeks of exposure, perchlorate at both concentrations caused thyroidal hypertrophy and colloid depletion. A marked reduction in PEV was observed toward the end of the 6-week spawning period, but fertilization and embryo hatching rates were unaffected. Fertilized egg diameter and larval length were increased by parental exposure to perchlorate. Larval head depth was unaffected but the forward protrusion of the lower jaw-associated cartilage complexes, Meckel's and ceratohyal, was decreased. Exposure to both concentrations of perchlorate inhibited whole-body thyroxine content in mothers and embryos, but triiodothyronine content was unchanged. In conclusion, prolonged exposure of adult zebrafish to perchlorate not only disrupts their thyroid endocrine system but also impairs reproduction and influences early F1 development. ?? 2007 Oxford University Press.

  3. Embryonic and Larval Development and Early Behavior in Grass Carp, Ctenopharyngodon idella: Implications for Recruitment in Rivers

    PubMed Central

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one “cold” and one “warm”, and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi’s (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers. PMID:25822837

  4. Embryonic and larval development and early behavior in grass carp, Ctenopharyngodon idella: implications for recruitment in rivers

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2015-01-01

    With recent findings of grass carp Ctenopharyngodon idella in tributaries of the Great Lakes, information on developmental rate and larval behavior is critical to efforts to assess the potential for establishment within the tributaries of that region. In laboratory experiments, grass carp were spawned and eggs and larvae reared at two temperature treatments, one "cold" and one "warm", and tracked for developmental rate, egg size, and behavior. Developmental rate was quantified using Yi's (1988) developmental stages and the cumulative thermal units method. Grass carp had a thermal minimum of 13.5°C for embryonic stages and 13.3°C for larval stages. Egg size was related to temperature and maternal size, with the largest eggs coming from the largest females, and eggs were generally larger in warmer treatments. Young grass carp larvae exhibited upward and downward swimming interspersed with long periods of lying on the bottom. Swimming capacity increased with ontogeny, and larvae were capable of horizontal swimming and position holding with gas bladder emergence. Developmental rates, behavior, and egg attributes can be used in combination with physical parameters of a river to assess the risk that grass carp are capable of reproduction and recruitment in rivers.

  5. A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death.

    PubMed

    Huttner, Inken G; Trivedi, Gunjan; Jacoby, Arie; Mann, Stefan A; Vandenberg, Jamie I; Fatkin, Diane

    2013-08-01

    The recent exponential increase in human genetic studies due to the advances of next generation sequencing has generated unprecedented numbers of new gene variants. Determining which of these are causative of human disease is a major challenge. In-vitro studies and murine models have been used to study inherited cardiac arrhythmias but have several limitations. Zebrafish models provide an attractive alternative for modeling human heart disease due to similarities in cardiac electrophysiology and contraction, together with ease of genetic manipulation, external development and optical transparency. Although zebrafish cardiac mutants and morphants have been widely used to study loss and knockdown of zebrafish gene function, the phenotypic effects of human dominant-negative gene mutations expressed in transgenic zebrafish have not been evaluated. The aim of this study was to generate and characterize a transgenic zebrafish arrhythmia model harboring the pathogenic human cardiac sodium channel mutation SCN5A-D1275N, that has been robustly associated with a range of cardiac phenotypes, including conduction disease, sinus node dysfunction, atrial and ventricular arrhythmias, and dilated cardiomyopathy in humans and in mice. Stable transgenic fish with cardiac expression of human SCN5A were generated using Tol2-mediated transgenesis and cardiac phenotypes were analyzed using video microscopy and ECG. Here we show that transgenic zebrafish expressing the SCN5A-D1275N mutation, but not wild-type SCN5A, exhibit bradycardia, conduction-system abnormalities and premature death. We furthermore show that SCN5A-WT, and to a lesser degree SCN5A-D1275N, are able to compensate the loss of endogenous zebrafish cardiac sodium channels, indicating that the basic pathways, through which SCN5A acts, are conserved in teleosts. This proof-of-principle study suggests that zebrafish may be highly useful in vivo models to differentiate functional from benign human genetic variants in cardiac

  6. On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae

    PubMed Central

    Richendrfer, H.; Pelkowski, S.D.; Colwill, R.M.; Creton, R.

    2011-01-01

    Zebrafish larvae are ideally suited for high-throughput analyses of vertebrate behavior. The larvae can be examined in multiwell plates and display a range of behaviors during early development. Previous studies have shown that zebrafish larvae display a preference for the edge of the well and several lines of evidence suggest this edge preference (thigmotaxis) may be a measure of anxiety. In the present study, we further examined the relation between edge preference and anxiety by imaging zebrafish larvae exposed to three psychoactive drugs diazepam (Valium), fluoxetine (Prozac), and caffeine. The edge preference was first examined in a five-fish assay, with and without visual stimuli. Diazepam, a benzodiazepine that binds to GABA receptors, reduced the larval edge preference, with or without visual stimuli. In contrast, fluoxetine, a selective serotonin reuptake inhibitor, did not affect the edge preference. Caffeine increased the preference for the edge in response to visual stimuli. Similar effects were observed in a two-fish assay; diazepam-exposed larvae showed a reduced edge preference and caffeine exposed larvae showed an increased edge preference. These results suggest that the edge preference in zebrafish larvae is a measure of anxiety and further illustrate that the pharmaceuticals used in the study have different mechanisms of action. Although there are substantial differences between zebrafish and human brains, our results indicate that the signals that regulate anxiety are similar on a molecular level. We propose that high-throughput assays in zebrafish may be used to uncover genetic or environmental factors that cause anxiety disorders and may contribute to the development of novel strategies to prevent or treat such disorders. PMID:22155488

  7. Development of oxygen sensing in the gills of zebrafish.

    PubMed

    Jonz, Michael G; Nurse, Colin A

    2005-04-01

    Previous studies have described the morphology, innervation and O(2)-chemoreceptive properties of neuroepithelial cells (NECs) of the zebrafish gill filaments. The present work describes the ontogenesis of these cells, and the formation of functional O(2)-sensing pathways in developing zebrafish. Confocal immunofluorescence was performed on whole-mount gill preparations using antibodies against serotonin (5-HT) and a zebrafish-derived neuronal marker (zn-12) to identify the appearance and innervation of gill NECs during larval stages. NECs were first expressed in gill filament primordia of larvae at 5 days postfertilization (d.p.f.) and were fully innervated by 7 d.p.f. In vivo ventilation frequency analysis revealed that a behavioural response to hypoxia (11.2+/-2.8 min(-1)) developed in embryos as early as 2 d.p.f., and a significant increase (P<0.05) in the ventilatory response to hypoxia (200.8+/-23.0 min(-1)) coincided with innervation of NECs of the filaments. In addition, exogenous application of quinidine, a blocker of O(2)-sensitive background K(+) channels in NECs, induced hyperventilation in adults in a dose-dependent manner and revealed the development of a quinidine-sensitive ventilatory response in 7 d.p.f. larvae. This study shows that NEC innervation in the gill filaments may account for the development of a functional O(2)-sensing pathway and the hyperventilatory response to hypoxia in zebrafish larvae. At earlier stages, however, O(2)-sensing must occur through another pathway. The possibility that a new type of 5-HT-positive NEC of the gill arches may account for this earlier hypoxic response is discussed. PMID:15802677

  8. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.

    PubMed

    Sumbre, Germán; Poo, Mu-Ming

    2013-09-01

    To understand how visuomotor behaviors are controlled by the nervous system, it is necessary to monitor the activity of large populations of neurons with single-cell resolution over a large area of the brain in a relatively simple, behaving organism. The zebrafish larva, a small lower vertebrate with transparent skin, serves as an excellent model for this purpose. Immediately after the larva hatches, it needs to catch prey and avoid predators. This strong evolutionary pressure leads to the rapid development of functional sensory systems, particularly vision. By 5 d postfertilization (dpf), tectal cells show distinct visually evoked patterns of activation, and the larvae are able to perform a variety of visuomotor behaviors. During the early larval stage, zebrafish breathe mainly through the skin and can be restrained under the microscope using a drop of low-melting-point agarose, without the use of anesthetics. Moreover, the transparency of the skin, the small diameter of the neurons (4-5 µm), and the high-neuronal density enable the use of in vivo noninvasive imaging techniques to monitor neuronal activities of up to ∼500 cells within the central nervous system, still with single-cell resolution. This article describes a method for simultaneously monitoring spontaneous and visually evoked activities of large populations of neurons in the optic tectum of the zebrafish larva, using a synthetic calcium dye (Oregon Green BAPTA-1 AM) and a conventional confocal or two-photon scanning fluorescence microscope, together with a method for measuring the tail motor behavior of the head-immobilized zebrafish larva. PMID:24003199

  9. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  10. Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration.

    PubMed

    Vickery, M C; Vickery, M S; McClintock, J B; Amsler, C D

    2001-01-10

    Sea stars share many characteristics with vertebrates, including deuterostome type development. We previously reported that sea star larvae are capable of complete regeneration (with organogenesis) of missing body parts. Here we report the first application of whole-body cDNA subtractive hybridization for the identification of regeneration-specific gene expression in a deuterostome. We identified nine novel cDNAs from genes differentially expressed during early larval sea star regeneration, including a serine protease which may have a function similar to that of trypsin/plasmin-like proteases during vertebrate wound repair and regeneration. This study demonstrates that sea star larvae can provide a valuable new deuterostome model for the study of regeneration genetics, with potential applications in vertebrate regeneration. PMID:11179669

  11. An Apo-14 Promoter-Driven Transgenic Zebrafish That Marks Liver Organogenesis

    PubMed Central

    Wang, Rui; Li, Zhi; Wang, Yang; Gui, Jian-Fang

    2011-01-01

    Several transgenic zebrafish lines for liver development studies had been obtained in the first decade of this century, but not any transgenic GFP zebrafish lines that mark the through liver development and organogenesis were reported. In this study, we analyzed expression pattern of endogenous Apo-14 in zebrafish embryogenesis by whole-mount in situ hybridization, and revealed its expression in liver primordium and in the following liver development. Subsequently, we isolated zebrafish Apo-14 promoter of 1763 bp 5′-flanking sequence, and developed an Apo-14 promoter-driven transgenic zebrafish Tg(Apo14: GFP). And, maternal expression and post-fertilization translocation of Apo-14 promoter-driven GFP were observed in the transgenic zebrafish line. Moreover, we traced onset expression of Apo-14 promoter-driven GFP and developmental behavior of the expressed cells in early heterozygous embryos by out-crossing the Tg(Apo14: GFP) male to the wild type female. Significantly, the Apo-14 promoter-driven GFP is initially expressed around YSL beneath the embryo body at 10 hpf when the embryos develop to tail bud prominence. In about 14-somite embryos at 16–17 hpf, a typical “salt-and-pepper” expression pattern is clearly observed in YSL around the yolk sac. Then, a green fluorescence dot begins to appear between the notochord and the yolk sac adjacent to otic vesicle at about 20 hpf, which is later demonstrated to be liver primordium that gives rise to liver. Furthermore, we investigated dynamic progression of liver organogenesis in the Tg(Apo14: GFP) zebrafish, because the Apo-14 promoter-driven GFP is sustainably expressed from hepatoblasts and liver progenitor cells in liver primordium to hepatocytes in the larval and adult liver. Additionally, we observed similar morphology between the liver progenitor cells and the GFP-positive nuclei on the YSL, suggesting that they might originate from the same progenitor cells in early embryos. Overall, the current study

  12. Environmental forcing and the larval fish community associated to the Atlantic bluefin tuna spawning habitat of the Balearic region (Western Mediterranean), in early summer 2005

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. M.; Alvarez, I.; Lopez-Jurado, J. L.; Garcia, A.; Balbin, R.; Alvarez-Berastegui, D.; Torres, A. P.; Alemany, F.

    2013-07-01

    The Balearic region is a highly dynamic area located in the Western Mediterranean, straddling the transition between the Algerian and Provencal basins and constitutes one of the main spawning grounds for the large, migratory Atlantic bluefin (Thunnus thynnus) and other medium and small tuna species (Thunnus alalunga, Auxis rochei, Euthynnus alleteratus and Katsuwonus pelamis). In summer, despite been considered an oligotrophic region as the whole Mediterranean Sea, it harbors a relatively abundant and diverse larval fish community (LFC). In this study, we analyze the composition, abundance and the influence of abiotic and biotic factors on the horizontal structure of the LFC in the Balearic region, in early summer 2005, during the spawning season of Atlantic bluefin tuna. Hydrographically, 2005 was an unusual year with a summer situation of relatively lack of mesoscale features, weak surface currents and a general situation of high stability. A total of 128 taxa of fish larvae, belonging to 52 families, were identified. The average abundance was 1770 larvae 1000 m-3. Multivariate statistical analysis revealed LFC to have a strong horizontal structure. Cluster analysis and non-metric multidimensional scaling ordination identified two larval fish assemblages. These assemblages were mainly delineated by depth and, therefore, by the spawning location of adult fish. Our results also suggest that anticyclonic eddy boundaries constitute favourable habitats for fish larvae. Also, the scenario of higher than unusual hydrographic stability found during the cruise would be responsible for the relatively lack of mesoscale features and, consequently, for the lack of influence of these features on the horizontal distribution of fish larvae and on the horizontal structure of the LFC.

  13. Molecular cloning and expression of a novel CYP26 gene (cyp26d1) during zebrafish early development.

    PubMed

    Gu, Xingxing; Xu, Fang; Wang, Xiaolin; Gao, Xiang; Zhao, Qingshun

    2005-08-01

    Proper restriction of retinoid signaling by Cyp26s is essential for development of vertebrate embryos while inappropriate retinoid signaling can cause teratogenesis. Here, we report cloning and expression analysis of a novel cyp26 gene (cyp26d1) isolated from zebrafish. The predicted protein encoded by cyp26d1 consists of 554 amino acids. It exhibits 54% amino acid identity with human Cyp26C1, 50% with zebrafish Cyp26B1 and 38% with zebrafish Cyp26A1. Whole-mount in situ hybridization shows that cyp26d1 is first expressed in sphere stage, then disappears at 50% epiboly and resumes its expression at 75% epiboly. During segmentation period, cyp26d1 message is found at presumptive hindbrain. Double in situ hybridization with krox20 and cyp26d1 reveals that cyp26d1 is expressed in presumptive rhombomere 2-4 (r2-r4) at 2-somite stage. At 3-somite stage, cyp26d1 gene is expressed in r6 and pharyngeal arch (pa) one in addition to its expression at r2 and r4. At 6-somite stage, cyp26d1 message is present in continuous bands at r2-r6 and in pa1. This expression pattern is maintained from 10-somite stage through 21-somite stage except that the expression level is greatly reduced at r2 and r4. At 21-somite stage, cyp26d1 is also found in a group of cells in telencephalon and diencephalons. At 25-31h post-fertilization (hpf), the zebrafish cyp26d1 expression domain is extended to eyes, otic vesicles and midbrain in addition to its expression in hindbrain, telencephalon, diencephalons, and pharyngeal arches. At 35-48hpf, the expression of cyp26d1 is mainly restricted to otic vesicles, pharyngeal arches and pectoral fins and the expression level is greatly reduced. PMID:15979416

  14. Sensitivity to dioxin decreases as zebrafish mature.

    PubMed

    Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2012-06-01

    The embryos of teleost fish are exquisitely sensitive to the toxic effects of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, several lines of evidence suggest that adults are less sensitive to TCDD. To better understand and characterize this difference between early life stage and adults, we exposed zebrafish (Danio rerio) to graded TCDD concentrations at different ages. The LD(50) for embryos exposed at 1 day post-fertilization (dpf) was more than an order of magnitude lower than it was for juveniles exposed at 30 dpf. The latency between exposure and response also increased with age. Embryo toxicity was characterized by marked cardiovascular collapse and heart malformation, whereas juveniles exposed at 30 dpf had no detectable cardiovascular toxicity. In juveniles, the effects of TCDD exposure included stunted growth, altered pigmentation, and skeletal malformations. Furthermore, the transcriptional profile produced in hearts exposed to TCDD as embryos had very little overlap with the transcriptional changes induced by TCDD at 30 dpf. The early cardiotoxic response was associated with fish exposed prior to metamorphosis from the larval to the adult body plan at approximately 14 dpf. Our results show conclusively that the developmental stage at the time of exposure controls the toxic response to TCDD. PMID:22403156

  15. Identification of Novel Reference Genes Suitable for qRT-PCR Normalization with Respect to the Zebrafish Developmental Stage

    PubMed Central

    Hu, Yu; Xie, Shuying; Yao, Jihua

    2016-01-01

    Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages. PMID:26891128

  16. Identification of Novel Reference Genes Suitable for qRT-PCR Normalization with Respect to the Zebrafish Developmental Stage.

    PubMed

    Hu, Yu; Xie, Shuying; Yao, Jihua

    2016-01-01

    Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages. PMID:26891128

  17. Histological and Transcriptomic Changes in Male Zebrafish Testes Due to Early Life Exposure to Low Level 2,3,7,8-Tetrachlorodibenzo-p-Dioxin.

    PubMed

    Baker, Bridget B; Yee, Jeremiah S; Meyer, Danielle N; Yang, Doris; Baker, Tracie R

    2016-10-01

    We have shown that zebrafish (Danio rerio) are an excellent model for evaluating the link between early life stage exposure to environmental chemicals and disease in adulthood and subsequent unexposed generations. Previously, we used this model to identify transgenerational effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) on skeletal development, sex ratio, and reproductive capacity. Transgenerational inheritance of TCDD toxicity, notably decreased reproductive capacity, appears to be mediated through the male germ line. Thus, we examine testicular tissue for structural and gene expression changes using histology, microarray, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Histological analysis revealed decreased spermatozoa with concurrent increase in spermatogonia, and decreased germinal epithelium thickness in TCDD-exposed males compared with controls. We also identified altered expression of genes associated with testis development, steroidogenesis, spermatogenesis, hormone metabolism, and xenobiotic response. Altered genes are in pathways involving lipid metabolism, molecular transport, small molecule biochemistry, cell morphology, and metabolism of vitamins and minerals. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational infertility due to TCDD exposure in zebrafish. PMID:27618130

  18. Zebrafish Rhabdomyosarcoma.

    PubMed

    Phelps, Michael; Chen, Eleanor

    2016-01-01

    In vivo models of Rhabdomyosarcoma (RMS) have proven instrumental in understanding the development and progression of this devastating pediatric sarcoma. Both vertebrate and invertebrate model systems have been developed to study the tumor biology of both embryonal (ERMS) and alveolar (ARMS) RMS subtypes. Zebrafish RMS models have been particularly amenable for high-throughput studies to identify drug targetable pathways because of their short tumor latency, ease of ex vivo manipulation and conserved tumor biology. The transgenic KRASG12D-induced ERMS model allows for molecular and cellular characterization of distinct tumor cell subpopulations including the tumor propagating cells. Comparative genomic approaches have also been utilized in zebrafish ERMS to identify conserved candidate driver genes. Recent advances in zebrafish genome engineering have further enabled the ability to probe the functional significance of potential driver genes. Using the unique strengths of the zebrafish model organisms with the wealth of cellular and molecular tools currently available, zebrafish RMS models provide a powerful in vivo system for which to study RMS tumorigenesis. PMID:27165362

  19. Time-dependent expression and activity of cytochrome P450 1s in early life-stages of the zebrafish (Danio rerio).

    PubMed

    Bräunig, Jennifer; Schiwy, Sabrina; Broedel, Oliver; Müller, Yvonne; Frohme, Marcus; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    Zebrafish embryos are being increasingly used as model organisms for the assessment of single substances and complex environmental samples for regulatory purposes. Thus, it is essential to fully understand the xenobiotic metabolism during the different life-stages of early development. The aim of the present study was to determine arylhydrocarbon receptor (AhR)-mediated activity during selected times of early development using qPCR, enzymatic activity through measurement of 7-ethoxyresorufin-O-deethylase (EROD) activity, and protein expression analysis. In the present study, gene expression of cyp1a, cyp1b1, cyp1c1, cyp1c2, and ahr2 as well as EROD activity were investigated up to 120 h postfertilization (hpf) after exposure to either β-naphthoflavone (BNF) or a polycyclic aromatic hydrocarbons (PAH)-contaminated sediment extract from Vering Kanal in Hamburg (VK). Protein expression was measured at 72 hpf after exposure to 20 μg/L BNF. Altered proteins were identified by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) peptide mass fingerprinting. Distinct patterns of basal messenger RNA (mRNA) expression were found for each of the cyp1 genes, suggesting specific roles during embryonic development. All transcripts were induced by BNF and VK. ahr2 mRNA expression was significantly upregulated after exposure to VK. All cyp1 genes investigated showed a temporal decline in expression at 72 hpf. The significant decline of Hsp 90β protein at 72 hpf after exposure to BNF may suggest an explanation for the decline of cyp1 genes at this time point as Hsp 90β is of major importance for the functioning of the Ah-receptor. EROD activity measured in embryos was significantly induced after 96 hpf of exposure to BNF or VK. Together, these results demonstrate distinct temporal patterns of cyp1 genes and protein activities in zebrafish embryos as well as show a need to investigate further the xenobiotic biotransformation system during early development of

  20. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology. PMID:27165365

  1. Effects of tris (2-butoxyethyl) phosphate (TBOEP) on endocrine axes during development of early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Tang, Song; Su, Guanyong; Miao, Yueqiu; Liu, Hongling; Xie, Yuwei; Giesy, John P; Saunders, David M V; Hecker, Markus; Yu, Hongxia

    2016-02-01

    Due to phasing out of additive flame retardants such as polybrominated diphenyl ethers (PBDEs), Tris (2-butoxyethyl) phosphate (TBOEP) is widely used as a substitute. TBOEP is ubiquitous in the environment and has been measured at concentrations of micrograms per liter (μg L(-1)) in surface waters and wastewater. Information on potential adverse effects on development of aquatic organisms caused by exposure to environmentally relevant concentrations of TBOEP is limited, especially for effects that may be caused through impairment of endocrine-modulated homeostasis. Therefore, this study was conducted to determine effects of TBOEP on ontogeny and transcription profiles of genes along the hypothalamus-pituitary-thyroidal (HPT), hypothalamus-pituitary-adrenal (HPA), and hypothalamus-pituitary-gonadal (HPG) axes in embryos/larvae of zebrafish (Danio rerio). Exposure to TBOEP (2-5,000 μg L(-1)) from 3 h post-fertilization (hpf) to 120 hpf induced developmental malformations in zebrafish with a LC50 of 288.54 μg L(-1) at both 96 hpf and 120 hpf. The predicted no observed effect concentration (PNOEC) was 2.40 μg L(-1). Exposure to 2, 20, or 200 μg TBOEP L(-1) altered expression of genes involved in three major molecular pathways in a concentration-dependent manner after 120 hpf. TBOEP caused lesser expression of some genes involved in synthesis of hormones, such as (pomc and fshβ) as well as upregulating expression of some genes coding for receptors (thr, tshr, gr, mr, er and ar) in zebrafish larvae. These changes at the molecular level could result in alterations of endocrine function, which could result in edema or deformity and ultimately death. PMID:26547027

  2. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development

    PubMed Central

    Parker, Matthew O.; Annan, Leonette V.; Kanellopoulos, Alexandros H.; Brock, Alistair J.; Combe, Fraser J.; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H.

    2014-01-01

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20 mM ethanol for seven days (48hpfs–9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. PMID:24690524

  3. Host-microbe interactions in the developing zebrafish

    PubMed Central

    Kanther, Michelle; Rawls, John F.

    2010-01-01

    Summary of recent advances The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts. PMID:20153622

  4. Intravenous microinjections of zebrafish larvae to study acute kidney injury.

    PubMed

    Cianciolo Cosentino, Chiara; Roman, Beth L; Drummond, Iain A; Hukriede, Neil A

    2010-01-01

    In this video article we describe a zebrafish model of AKI using gentamicin as the nephrotoxicant. The technique consists of intravenous microinjections on 2 dpf zebrafish. This technique represents an efficient and rapid method to deliver soluble substances into the bloodstream of zebrafish larvae, allowing for the injection of 15-20 fish per hour. In addition to AKI studies, this microinjection technique can also be used for other types of experimental studies such as angiography. We provide a detailed protocol of the technique from equipment required to visual measures of decreased kidney function. In addition, we also demonstrate the process of fixation, whole mount immunohistochemistry with a kidney tubule marker, plastic embedding and sectioning of the larval zebrafish. We demonstrate that zebrafish larvae injected with gentamicin show morphological features consistent with AKI: edema, loss of cell polarity in proximal tubular epithelial cells, and morphological disruption of the tubule. PMID:20729805

  5. Electroretinogram analysis of the visual response in zebrafish larvae.

    PubMed

    Chrispell, Jared D; Rebrik, Tatiana I; Weiss, Ellen R

    2015-01-01

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals. PMID

  6. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    SciTech Connect

    Blechinger, Scott R.; Kusch, Robin C.; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P.; Krone, Patrick H.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  7. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae).

    PubMed

    Ituarte, Romina Belén; Lignot, Jehan-Hervé; Charmantier, Guy; Spivak, Eduardo; Lorin-Nebel, Catherine

    2016-06-01

    The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp. PMID:26796205

  8. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGESBeta

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  9. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior.

    PubMed

    Glazer, Lilah; Hahn, Mark E; Aluru, Neelakanteswar

    2016-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant. PMID:26616910

  10. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. PMID:22004968

  11. Stressing Zebrafish for Behavioral Genetics

    PubMed Central

    Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

    2012-01-01

    Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

  12. Identification of Larval Pacific Lampreys (Lampetra Tridentata), River Lampreys (L. Ayresi) and Western Brook Lampreys (L. Richardson) and Thermal Requirements of Early Life History Stages of Lampreys : Annual Report 2002.

    SciTech Connect

    Meeuwig, Michael H.

    2003-02-01

    Two fundamental aspects of lamprey biology were examined to provide tools for population assessment and determination of critical habitat needs of Columbia River Basin lampreys (the Pacific lamprey, Lampetra tridentata, and the western brook lamprey, L. richardsoni). In particular: (1) we examined the usefulness of current diagnostic characteristics in identification of larval lampreys, specifically pigmentation patterns, and collected material for development of meristic and morphometric descriptions of early life stages of lampreys, and (2) we examined the effects of temperature on survival and development of early life stages of Columbia River Basin lampreys.

  13. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  14. Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23.

    PubMed

    Qin, Chubin; Xu, Li; Yang, Yalin; He, Suxu; Dai, Yingying; Zhao, Huiying; Zhou, Zhigang

    2014-01-01

    To increase the knowledge of probiotic effects on zebrafish (Danio rerio), we compare the effects of two probiotic strains, Lactobacillus rhamnosus CICC 6141 (a highly adhesive strain) and Lactobacillus casei BL23 (a weakly adhesive strain), on zebrafish reproduction and their offsprings' innate level of immunity to water-borne pathogens. During probiotics treatments from 7 to 28 days, both the Lactobacillus strains, and especially L. casei BL23, significantly increased fecundity in zebrafish: higher rates of egg ovulation, fertilization, and hatching were observed. Increased densities of both small and large vitellogenic follicles, seen in specimens fed either Lactobacillus strain, demonstrated accelerated oocyte maturation. Feeding either strain of Lactobacillus upregulated gene expression of leptin, kiss2, gnrh3, fsh, lh, lhcgr, and paqr8, which were regarded to enhance fecundity and encourage oocyte maturation. Concomitantly, the gene expression of bmp15 and tgfb1 was inhibited, which code for local factors that prevent oocyte maturation. The beneficial effects of the Lactobacillus strains on fecundity diminished after feeding of the probiotics was discontinued, even for the highly adhesive gut Lactobacillus strain. Administering L. rhamnosus CICC 6141 for 28 days was found to affect the innate immunity of offspring derived from their parents, as evinced by a lower level of alkaline phosphatase activity in early larval stages. This study highlights the effects of probiotics both upon the reproductive process and upon the offsprings' immunity during early developmental stages. PMID:24129154

  15. Developmental toxicity screening in zebrafish.

    PubMed

    McCollum, Catherine W; Ducharme, Nicole A; Bondesson, Maria; Gustafsson, Jan-Ake

    2011-06-01

    Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies. PMID:21671351

  16. Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shahidul; Hibino, Manabu; Nakayama, Kouji; Tanaka, Masaru

    2006-02-01

    The present study investigates feeding and condition of larval and juvenile Japanese temperate bass Lateolabrax japonicus in relation to spatial distribution in the Chikugo estuary (Japan). Larvae were collected in a wide area covering the nursery grounds of the species in 2002 and 2003. Food habits of the fish were analysed by examining their gut contents. Fish condition was evaluated by using morphometric (the length-weight relationship and condition factor) and biochemical (the RNA:DNA ratio and other nucleic acid based parameters) indices and growth rates. The nucleic-acid contents in individually frozen larvae and juveniles were quantified by standard fluorometric methods. Two distinct feeding patterns, determined by the distribution of prey copepods, were identified. The first pattern showed dependence on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low-saline upper river areas. The second pattern involved a multi-specific dietary habit mainly dominated by Acartia omorii, Oithona davisae, and Paracalanus parvus. As in the gut contents analyses, two different sets of values were observed for RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices: one for the high-saline downstream areas and a second for the low-saline upstream areas, which was significantly higher than the first. The proportion of starving fish was lower upstream than downstream. Values of the allometric coefficient ( b) and the condition factor ( K) obtained from the length-weight relationships increased gradually from the sea to the upper river. Clearly, fish in the upper river had a better condition than those in the lower estuary. RNA:DNA ratios correlated positively with temperature and negatively with salinity. We hypothesise that by migration to the better foraging grounds of the upper estuary (with higher prey biomass, elevated temperature and reduced salinity), the fish reduce early mortality and attain a better condition

  17. RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish

    PubMed Central

    2012-01-01

    Background Zebrafish (Danio rerio) is a prominent vertebrate model of human development and pathogenic disease and has recently been utilized to study teleost immune responses to infectious agents threatening the aquaculture industry. In this work, to clarify the host immune mechanisms underlying the protective effects of a putative vaccine and improve its immunogenicity in the future efforts, high-throughput RNA sequencing technology was used to investigate the immunization-related gene expression patterns of zebrafish immunized with Edwardsiella tarda live attenuated vaccine. Results Average reads of 18.13 million and 14.27 million were obtained from livers of zebrafish immunized with phosphate buffered saline (mock) and E. tarda vaccine (WED), respectively. The reads were annotated with the Ensembl zebrafish database before differential expressed genes sequencing (DESeq) comparative analysis, which identified 4565 significantly differentially expressed genes (2186 up-regulated and 2379 down-regulated in WED; p<0.05). Among those, functional classifications were found in the Gene Ontology database for 3891 and in the Kyoto Encyclopedia of Genes and Genomes database for 3467. Several pathways involved in acute phase response, complement activation, immune/defense response, and antigen processing and presentation were remarkably affected at the early stage of WED immunization. Further qPCR analysis confirmed that the genes encoding the factors involved in major histocompatibility complex (MHC)-I processing pathway were up-regulated, while those involved in MHC-II pathway were down-regulated. Conclusion These data provided insights into the molecular mechanisms underlying zebrafish immune response to WED immunization and might aid future studies to develop a highly immunogenic vaccine against gram-negative bacteria in teleosts. PMID:22805612

  18. Short-term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish

    PubMed Central

    Zajitschek, Susanne; Hotzy, Cosima; Zajitschek, Felix; Immler, Simone

    2014-01-01

    The inheritance of non-genetic factors is increasingly seen to play a major role in ecology and evolution. While the causes and consequences of epigenetic effects transmitted from the mother to the offspring have received ample attention, much less is known about how variation in the condition of the father affects the offspring. Here, we manipulated the intensity of sperm competition experienced by male zebrafish Danio rerio to investigate the potential for sperm-mediated epigenetic effects over a relatively short period of time. We found that the rapid responses of males to varying intensity of sperm competition not only affected sperm traits as shown previously, but also the performance of the resulting offspring. We observed that males exposed to high intensity of sperm competition produced faster swimming and more motile sperm, and sired offspring that hatched over a narrower time frame but exhibited a lower survival rate than males exposed to low intensity of sperm competition. Our results provide striking evidence for short-term paternal effects and the possible fitness consequences of such sperm-mediated non-genetic factors not only for the resulting offspring but also for the female. PMID:24789902

  19. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    PubMed Central

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field. PMID:26495320

  20. moz regulates Hox expression and pharyngeal segmental identity in zebrafish.

    PubMed

    Miller, Craig T; Maves, Lisa; Kimmel, Charles B

    2004-05-01

    In vertebrate embryos, streams of cranial neural crest (CNC) cells migrate to form segmental pharyngeal arches and differentiate into segment-specific parts of the facial skeleton. To identify genes involved in specifying segmental identity in the vertebrate head, we screened for mutations affecting cartilage patterning in the zebrafish larval pharynx. We present the positional cloning and initial phenotypic characterization of a homeotic locus discovered in this screen. We show that a zebrafish ortholog of the human oncogenic histone acetyltransferase MOZ (monocytic leukemia zinc finger) is required for specifying segmental identity in the second through fourth pharyngeal arches. In moz mutant zebrafish, the second pharyngeal arch is dramatically transformed into a mirror-image duplicated jaw. This phenotype resembles a similar but stronger transformation than that seen in hox2 morpholino oligo (hox2-MO) injected animals. In addition, mild anterior homeotic transformations are seen in the third and fourth pharyngeal arches of moz mutants. moz is required for maintenance of most hox1-4 expression domains and this requirement probably at least partially accounts for the moz mutant homeotic phenotypes. Homeosis and defective Hox gene expression in moz mutants is rescued by inhibiting histone deacetylase activity with Trichostatin A. Although we find early patterning of the moz mutant hindbrain to be normal, we find a late defect in facial motoneuron migration in moz mutants. Pharyngeal musculature is transformed late, but not early, in moz mutants. We detect relatively minor defects in arch epithelia of moz mutants. Vital labeling of arch development reveals no detectable changes in CNC generation in moz mutants, but later prechondrogenic condensations are mispositioned and misshapen. Mirror-image hox2-dependent gene expression changes in postmigratory CNC prefigure the homeotic phenotype in moz mutants. Early second arch ventral expression of goosecoid (gsc) in moz

  1. Essential roles of zebrafish rtn4/Nogo paralogues in embryonic development

    PubMed Central

    2014-01-01

    Background As a consequence of gene/genome duplication, the RTN4/Nogo gene has two counterparts in zebrafish: rtn4a and rtn4b. The shared presence of four specific amino acid motifs—M1 to M4—in the N-terminal region of mammalian RTN4, and zebrafish Rtn4b suggests that Rtn4b is the closest homologue of mammalian Nogo-A. Results To explore their combined roles in zebrafish development, we characterized the expression patterns of rtn4a and rtn4b in a comparative manner and performed morpholino-mediated knockdowns. Although both genes were coexpressed in the neural tube and developing brain at early stages, they progressively acquired distinct expression domains such as the spinal cord (rtn4b) and somites (rtn4a). Downregulation of rtn4a and rtn4b caused severe brain abnormalities, with rtn4b knockdown severely affecting the spinal cord and leading to immobility. In addition, the retinotectal projection was severely affected in both morphants, as the retina and optic tectum appeared smaller and only few retinal axons reached the abnormally reduced tectal neuropil. The neuronal defects were more persistent in rtn4b morphants. Moreover, the latter often lacked pectoral fins and lower jaws and had malformed branchial arches. Notably, these defects led to larval death in rtn4b, but not in rtn4a morphants. Conclusions In contrast to mammalian Nogo-A, its zebrafish homologues, rtn4a and particularly rtn4b, are essential for embryonic development and patterning of the nervous system. PMID:24755266

  2. Microbead Implantation in the Zebrafish Embryo

    PubMed Central

    Gerlach, Gary F.; Morales, Elvin E.; Wingert, Rebecca A.

    2015-01-01

    The zebrafish has emerged as a valuable genetic model system for the study of developmental biology and disease. Zebrafish share a high degree of genomic conservation, as well as similarities in cellular, molecular, and physiological processes, with other vertebrates including humans. During early ontogeny, zebrafish embryos are optically transparent, allowing researchers to visualize the dynamics of organogenesis using a simple stereomicroscope. Microbead implantation is a method that enables tissue manipulation through the alteration of factors in local environments. This allows researchers to assay the effects of any number of signaling molecules of interest, such as secreted peptides, at specific spatial and temporal points within the developing embryo. Here, we detail a protocol for how to manipulate and implant beads during early zebrafish development. PMID:26274386

  3. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos

    PubMed Central

    Chung, Eunah; Genco, Maria C.; Megrelis, Laura; Ruderman, Joan V.

    2011-01-01

    Estrogen regulates numerous developmental and physiological processes. Most effects are mediated by estrogen receptors (ERs), which function as ligand-regulated transcription factors. Estrogen also regulates the activity of GPR30, a membrane-associated G protein-coupled receptor. Many different types of environmental contaminants can activate ERs; some can bind GPR30 as well. There is growing concern that exposure to some of these compounds, termed xenoestrogens, is interfering with the behavior and reproductive potential of numerous wildlife species, as well as affecting human health. Here, we investigated how two common, environmentally pervasive chemicals affect the in vivo expression of a known estrogen target gene in the brain of developing zebrafish embryos, aromatase AroB, which converts androgens to estrogens. We confirm that, like estrogen, the well-studied xenoestrogen bisphenol A (BPA, a plastics monomer), induces strong brain-specific overexpression of aromatase. Experiments using ER- and GPR30-selective modulators argue that this induction is largely through nuclear ERs. BPA induces dramatic overexpression of AroB RNA in the same subregions of the developing brain as estrogen. The antibacterial triclocarban (TCC) by itself stimulates AroB expression only slightly, but TCC strongly enhances the overexpression of AroB that is induced by exogenous estrogen. Thus, both BPA and TCC have the potential to elevate levels of aromatase and, thereby, levels of endogenous estrogens in the developing brain. In contrast to estrogen, BPA-induced AroB overexpression was suppressed by TCC. These results indicate that exposures to combinations of certain hormonally active pollutants can have outcomes that are not easily predicted from their individual effects. PMID:22006313

  4. EFFECTS OF PHENOL, 2,4-DIMETHYLPHENOL, 2,4-DICHLOROPHENOL, AND PENTACHLOROPHENOL ON EMBRYO, LARVAL, AND EARLY-JUVENILE FATHEAD MINNOWS ('PIMEPHALES PROMELAS')

    EPA Science Inventory

    Embryos of fathead minnows were more resistant to phenol, 2,4-dimethylphenol (2,4-DMP), 2,4-dichlorophenol (2,4-DCP), and pentachlorophenol (PCP) than were larval or juvenile life stages. Growth of 28-day-old fish was the most sensitive indicator of stress during exposures to phe...

  5. Streptococcus agalactiae infection in zebrafish larvae

    PubMed Central

    Kim, Brandon J; Hancock, Bryan M; Cid, Natasha Del; Bermudez, Andres; Traver, David; Doran, Kelly S

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1β il1b and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis. PMID:25617657

  6. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-01-01

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required. PMID:24747778

  7. Zebrafish needle EMG: a new tool for high-throughput drug screens.

    PubMed

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu; Kim, Sohee

    2015-09-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics. PMID:26180124

  8. Zebrafish needle EMG: a new tool for high-throughput drug screens

    PubMed Central

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu

    2015-01-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics. PMID:26180124

  9. The Zebrafish Orthologue of the Dyslexia Candidate Gene DYX1C1 Is Essential for Cilia Growth and Function

    PubMed Central

    Chandrasekar, Gayathri; Vesterlund, Liselotte; Hultenby, Kjell; Tapia-Páez, Isabel; Kere, Juha

    2013-01-01

    DYX1C1, a susceptibility gene for dyslexia, encodes a tetratricopeptide repeat domain containing protein that has been implicated in neuronal migration in rodent models. The developmental role of this gene remains unexplored. To understand the biological function(s) of zebrafish dyx1c1 during embryonic development, we cloned the zebrafish dyx1c1 and used morpholino-based knockdown strategy. Quantitative real-time PCR analysis revealed the presence of dyx1c1 transcripts in embryos, early larval stages and in a wide range of adult tissues. Using mRNA in situ hybridization, we show here that dyx1c1 is expressed in many ciliated tissues in zebrafish. Inhibition of dyx1c1 produced pleiotropic phenotypes characteristically associated with cilia defects such as body curvature, hydrocephalus, situs inversus and kidney cysts. We also demonstrate that in dyx1c1 morphants, cilia length is reduced in several organs including Kupffer’s vesicle, pronephros, spinal canal and olfactory placode. Furthermore, electron microscopic analysis of cilia in dyx1c1 morphants revealed loss of both outer (ODA) and inner dynein arms (IDA) that have been shown to be required for cilia motility. Considering all these results, we propose an essential role for dyx1c1 in cilia growth and function. PMID:23650548

  10. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    SciTech Connect

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.

  11. A gene trap transposon eliminates haematopoietic expression of zebrafish Gfi1aa, but does not interfere with haematopoiesis.

    PubMed

    Thambyrajah, Roshana; Ucanok, Deniz; Jalali, Maryam; Hough, Yasmin; Wilkinson, Robert Neil; McMahon, Kathryn; Moore, Chris; Gering, Martin

    2016-09-01

    A transposon-mediated gene trap screen identified the zebrafish line qmc551 that expresses a GFP reporter in primitive erythrocytes and also in haemogenic endothelial cells, which give rise to haematopoietic stem and progenitor cells (HSPCs) that seed sites of larval and adult haematopoiesis. The transposon that mediates this GFP expression is located in intron 1 of the gfi1aa gene, one of three zebrafish paralogs that encode transcriptional repressors homologous to mammalian Gfi1 and Gfi1b proteins. In qmc551 transgenics, GFP expression is under the control of the endogenous gfi1aa promoter, recapitulates early gfi1aa expression and allows live observation of gfi1aa promoter activity. While the transposon integration interferes with the expression of gfi1aa mRNA in haematopoietic cells, homozygous qmc551 fish are viable and fertile, and display normal primitive and definitive haematopoiesis. Retained expression of Gfi1b in primitive erythrocytes and up-regulation of Gfi1ab at the onset of definitive haematopoiesis in homozygous qmc551 carriers, are sufficient to allow normal haematopoiesis. This finding contradicts previously published morpholino data that suggested an essential role for zebrafish Gfi1aa in primitive erythropoiesis. PMID:27432513

  12. In Vivo Whole-Cell Patch-Clamp Recording in the Zebrafish Brain.

    PubMed

    Zhang, Rong-Wei; Du, Jiu-Lin

    2016-01-01

    Zebrafish (Danio rerio) is a newly emerged vertebrate animal model with a conserved gross architecture of the brain and a rich repertoire of behaviors. Due to the optical transparency and structural simplicity of its brain, larval zebrafish has become an ideal in vivo model for dissecting neural mechanisms of brain functions at a whole-brain scale based on a strategy that spans scales from synapses, neurons, and circuits to behaviors. Whole-cell patch-clamp recording is an indispensable approach for studying synaptic and circuit mechanisms of brain functions. Due to the small size of neurons in the zebrafish brain, it is challenging to get whole-cell recordings from these cells. Here, we describe a protocol for obtaining in vivo whole-cell patch-clamp recordings from neurons in larval zebrafish. PMID:27464815

  13. Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond

    PubMed Central

    Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M.; Brimmer, Mallorie; Chawla, Jonathan S.; Craddock, Cassandra; Kyzar, Evan J.; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P.; Pittman, Julian; Rosemberg, Denis B.; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C.F.; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-01-01

    Abstract Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish ‘do’, and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species. PMID:23590400

  14. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

    PubMed

    Kalueff, Allan V; Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M; Brimmer, Mallorie; Chawla, Jonathan S; Craddock, Cassandra; Kyzar, Evan J; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P; Pittman, Julian; Rosemberg, Denis B; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C F; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-03-01

    Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species. PMID:23590400

  15. The role of hydrogen sulphide in the control of breathing in hypoxic zebrafish (Danio rerio)

    PubMed Central

    Porteus, Cosima S; Abdallah, Sara J; Pollack, Jacob; Kumai, Yusuke; Kwong, Raymond W M; Yew, Hong M; Milsom, William K; Perry, Steve F

    2014-01-01

    The current study investigated the role of hydrogen sulphide (H2S) in oxygen sensing, intracellular signalling and promotion of ventilatory responses to hypoxia in adult and larval zebrafish (Danio rerio). Both larval and adult zebrafish exhibited a dose-dependent increase in ventilation to sodium sulphide (Na2S), an H2S donor. In vertebrates, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are enzymes that catalyse the endogenous production of H2S. In adult zebrafish, inhibition of both CBS and CSE with aminooxyacetate (AOA) and propargyl glycine (PPG) blunted or abolished the hypoxic hyperventilation, and the addition of Na2S to the water partially rescued the effects of inhibiting endogenous H2S production. In zebrafish larvae (4 days post-fertilization), gene knockdown of either CBS or CSE using morpholinos attenuated the hypoxic ventilatory response. Furthermore, the intracellular calcium concentration of isolated neuroepithelial cells (NECs), which are putative oxygen chemoreceptors, increased significantly when these cells were exposed to 50 μm Na2S, supporting a role for H2S in Ca2+-evoked neurotransmitter release in these cells. Finally, immunohistochemical labelling showed that NECs dissociated from adult gill contained CBS and CSE, whereas cutaneous NECs in larval zebrafish expressed only CSE. Taken together, these data show that H2S can be produced in the putative oxygen-sensing cells of zebrafish, the NECs, in which it appears to play a pivotal role in promoting the hypoxic ventilatory response. PMID:24756639

  16. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis

    PubMed Central

    2012-01-01

    Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil

  17. Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish

    SciTech Connect

    Raldua, Demetrio; Andre, Michele; Babin, Patrick J.

    2008-05-01

    Nutrient availability is one of the major non-genetic factors determining embryonic growth and larval or fetal size. Due to the high human consumption of blood lipid regulators, fibrates have recently been reported as pollutants in rivers. Our study investigated the developmental toxicity of fibrates in zebrafish. Treatment with micromolar concentrations of clofibrate or gemfibrozil induced an embryonic malabsorption syndrome (EMS) with very little yolk consumption, resulting in small-sized larvae. This effect was reversible on removing the drug from the water. Clofibrate delayed hatching time and decreased the amount of oil red O lipid staining in the vasculature. It also induced higher density, round-shaped neuromuscular junctions associated with disorganization and less striation of muscular fibers, and pericardial edema, as well as impairing thyroid gland morphogenesis. acox1, apoa1 and mtp hybridization transcript signals were not affected in the yolk syncytial layer (YSL) after clofibrate exposure. Di-(2-ethylhexyl)-phthalate did not slow down yolk resorption, whereas brefeldin A induced EMS. These findings suggest that the inhibition of yolk sac resorption on exposure to fibrate is not at a pre-translational level or peroxisome proliferator-activated receptor alpha dependent and may be due to an inhibition of the YSL constitutive cell secretion. The effects of fibrates and the potential bioconcentration in eggs as well as the additive action of structurally related toxicants warrant an evaluation of the developmental impact of these compounds after long-term exposure at environmentally relevant concentrations. Fibrate-induced EMS in zebrafish seems useful for studying the morphogenetic consequences of impaired nutrient availability during the early stages of vertebrate development.

  18. The effect of tramadol hydrochloride on early life stages of fish.

    PubMed

    Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Berankova, Petra; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Vecerek, Vladimir; Svobodova, Zdenka

    2016-06-01

    The aim of this study was to perform the fish embryo acute toxicity test (FET) on zebrafish (Danio rerio) and the early-life stage toxicity test on common carp (Cyprinus carpio) with tramadol hydrochloride. The FET was performed using the method inspired by the OECD guideline 236. Newly fertilized zebrafish eggs were exposed to tramadol hydrochloride at concentrations of 10; 50; 100 and 200μg/l for a period of 144h. An embryo-larval toxicity test on C. carpio was performed according to OECD guideline 210 also with tramadol hydrochloride at concentrations 10; 50; 100 and 200μg/l for a period of 32 days. Hatching was significantly influenced in both acute and subchronic toxicity assays. Subchronic exposure also influenced early ontogeny, both morphometric and condition characteristics and caused changes in antioxidant enzyme activity. The LOEC value was found to be 10μg/l tramadol hydrochloride. PMID:27208654

  19. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  20. The zebrafish lens proteome during development and aging

    PubMed Central

    Greiling, Teri M.S.; Houck, Scott A.

    2009-01-01

    Purpose Changes in lens protein expression during zebrafish development results in a smooth gradient of refractive index necessary for excellent optical function. Age-related changes in crystallin expression have been well documented in mammals but are poorly understood in the zebrafish. Methods In the zebrafish lens, a systematic analysis of protein content with age was performed using size exclusion chromatography (SEC) combined with linear trap quadrupole Fourier transform tandem mass spectrometry (LTQ-FT LC-MS/MS; rank-order shotgun) proteomics in lenses of larval, juvenile, and adult zebrafish. Results α-Crystallins, previously shown to have low abundance in the zebrafish lens, were found to increase dramatically with maturation and aging. SEC determined that β-crystallin was predominant at 4.5 days. With age, the α- and γ-crystallins increased, and a high molecular weight fraction appeared between six weeks and six months to become the dominant component by 2.5 years. Similarly, shotgun proteomics determined that β-crystallins were the predominant proteins in the young lens. With age, the proportion of α- and γ-crystallins increased dramatically. After crystallins, calpain 3, membrane, and cytoskeletal proteins were most abundant. Five new β-crystallins and 13 new γ-crystallins were identified. Conclusions As expected, SEC and proteomics demonstrated changing levels of protein expression with age, especially among the crystallins. The results also confirmed the existence of novel crystallins in the zebrafish genome. PMID:19936306

  1. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    SciTech Connect

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  2. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds.

    PubMed

    Bruni, Giancarlo; Rennekamp, Andrew J; Velenich, Andrea; McCarroll, Matthew; Gendelev, Leo; Fertsch, Ethan; Taylor, Jack; Lakhani, Parth; Lensen, Dennis; Evron, Tama; Lorello, Paul J; Huang, Xi-Ping; Kolczewski, Sabine; Carey, Galen; Caldarone, Barbara J; Prinssen, Eric; Roth, Bryan L; Keiser, Michael J; Peterson, Randall T; Kokel, David

    2016-07-01

    Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics. Here we developed a battery of behavioral assays in larval zebrafish to determine whether behavioral profiles can provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated zebrafish could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multitarget mechanisms of action. PMID:27239787

  3. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. PMID:26477613

  4. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish

    PubMed Central

    deCarvalho, Tagide N.; Subedi, Abhignya; Rock, Jason; Harfe, Brian D.; Thisse, Christine; Thisse, Bernard; Halpern, Marnie E.; Hong, Elim

    2014-01-01

    The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. While many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions. PMID:24753112

  5. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish.

    PubMed

    Michel, Maximilian; Page-McCaw, Patrick S; Chen, Wenbiao; Cone, Roger D

    2016-03-15

    Leptin is the primary adipostatic factor in mammals. Produced largely by adipocytes in proportion to total adipose mass, the hormone informs the brain regarding total energy stored as triglycerides in fat cells. The hormone acts on multiple circuits in the brain to regulate food intake, autonomic outflow, and endocrine function to maintain energy balance. In addition to regulating adipose mass, mammalian leptin also plays a role in the regulation of glucose homeostasis and as a gating factor in reproductive competence. Leptin-deficient mice and people exhibit early onset profound hyperphagia and obesity, diabetes, and infertility. Although leptin and the leptin receptor are found in fish, the hormone is not expressed in adipose tissue, but is found in liver and other tissues. Here, we show that adult zebrafish lacking a functional leptin receptor do not exhibit hyperphagia or increased adiposity, and exhibit normal fertility. However, leptin receptor-deficient larvae have increased numbers of β-cells and increased levels of insulin mRNA. Furthermore, larval zebrafish have been shown to exhibit β-cell hyperplasia in response to high fat feeding or peripheral insulin resistance, and we show here that leptin receptor is required for this response. Adult zebrafish also have increased levels of insulin mRNA and other alterations in glucose homeostasis. Thus, a role for leptin in the regulation of β-cell mass and glucose homeostasis appears to be conserved across vertebrates, whereas its role as an adipostatic factor is likely to be a secondary role acquired during the evolution of mammals. PMID:26903647

  6. Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals.

    PubMed

    Long, Yong; Li, Qing; Zhong, Shan; Wang, Youhui; Cui, Zongbin

    2011-05-01

    Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5μM mercury or 5μM lead. Moreover, exposure to 0.125-1μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals. PMID:21266201

  7. Enzyme-specific differences in mannose phosphorylation between GlcNAc-1-phosphotransferase αβ and γ subunit deficient zebrafish support cathepsin proteases as early mediators of mucolipidosis pathology.

    PubMed

    Flanagan-Steet, Heather; Matheny, Courtney; Petrey, Aaron; Parker, Joshua; Steet, Richard

    2016-09-01

    Targeting soluble acid hydrolases to lysosomes requires the addition of mannose 6-phosphate residues on their N-glycans. This process is initiated by GlcNAc-1-phosphotransferase, a multi-subunit enzyme encoded by the GNPTAB and GNPTG genes. The GNPTAB gene products (the α and ß subunits) are responsible for recognition and catalysis of hydrolases whereas the GNPTG gene product (the γ subunit) enhances mannose phosphorylation of a subset of hydrolases. Here we identify and characterize a zebrafish gnptg insertional mutant and show that loss of the gamma subunit reduces mannose phosphorylation on a subset glycosidases but does not affect modification of several cathepsin proteases. We further show that glycosidases, but not cathepsins, are hypersecreted from gnptg(-/-) embryonic cells, as evidenced by reduced intracellular activity and increased circulating serum activity. The gnptg(-/-) embryos lack the gross morphological or craniofacial phenotypes shown in gnptab-deficient morphant embryos to result from altered cathepsin activity. Despite the lack of overt phenotypes, decreased fertilization and embryo survival were noted in mutants, suggesting that gnptg associated deposition of mannose 6-phosphate modified hydrolases into oocytes is important for early embryonic development. Collectively, these findings demonstrate that loss of the zebrafish GlcNAc-1-phosphotransferase γ subunit causes enzyme-specific effects on mannose phosphorylation. The finding that cathepsins are normally modified in gnptg(-/-) embryos is consistent with data from gnptab-deficient zebrafish suggesting these proteases are the key mediators of acute pathogenesis. This work also establishes a valuable new model that can be used to probe the functional relevance of GNPTG mutations in the context of a whole animal. PMID:27241848

  8. The Dynamics of Successive Induction in Larval Zebrafish

    ERIC Educational Resources Information Center

    Staddon, J. E. R.; MacPhail, R. C.; Padilla, S.

    2010-01-01

    Charles Sherrington identified the properties of the synapse by purely behavioral means--the study of reflexes--more than 100 years ago. They were subsequently confirmed neurophysiologically. Studying reflex interaction, he also showed that activating one reflex often facilitates another, antagonistic one: "successive induction," which has since…

  9. In vivo imaging of zebrafish embryogenesis

    PubMed Central

    Keller, Philipp J.

    2013-01-01

    The zebrafish Danio rerio has emerged as a powerful vertebrate model system that lends itself particularly well to quantitative investigations with live imaging approaches, owing to its exceptionally high optical clarity in embryonic and larval stages. Recent advances in light microscopy technology enable comprehensive analyses of cellular dynamics during zebrafish embryonic development, systematic mapping of gene expression dynamics, quantitative reconstruction of mutant phenotypes and the system-level biophysical study of morphogenesis. Despite these technical breakthroughs, it remains challenging to design and implement experiments for in vivo long-term imaging at high spatio-temporal resolution. This article discusses the fundamental challenges in zebrafish long-term live imaging, provides experimental protocols and highlights key prop1erties and capabilities of advanced fluorescence microscopes. The article focuses in particular on experimental assays based on light sheet-based fluorescence microscopy, an emerging imaging technology that achieves exceptionally high imaging speeds and excellent signal-to-noise ratios, while minimizing light-induced damage to the specimen. This unique combination of capabilities makes light sheet microscopy an indispensable tool for the in vivo long-term imaging of large developing organisms. PMID:23523701

  10. Studying the immune response to human viral infections using zebrafish

    PubMed Central

    Goody, Michelle F.; Sullivan, Con; Kim, Carol H.

    2014-01-01

    Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish. PMID:24718256

  11. A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus)

    PubMed Central

    Aoyama, Yuta; Moriya, Natsumi; Tanaka, Shingo; Taniguchi, Tomoko; Hosokawa, Hiroshi

    2015-01-01

    Abstract The zebrafish (Danio rerio) has become a powerful model organism for studying developmental processes and genetic diseases. However, there remain several problems in previous rearing methods. In this study, we demonstrate a novel method for rearing zebrafish larvae by using a new first food, freshwater rotifers (Brachionus calyciflorus). Feeding experiments indicated that freshwater rotifers are suitable as the first food for newly hatched larval fish. In addition, we revisited and improved a feeding schedule from 5 to 40 days postfertilization. Our feeding method using freshwater rotifers accelerated larval growth. At 49 dpf, one pair out of 10 pairs successfully produced six fertilized eggs. At 56, 63, and 71 dpf, 6 out of the 10 pairs constantly produced normal embryos. Our method will improve the husbandry of the zebrafish. PMID:25938499

  12. Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen

    PubMed Central

    Ordas, Anita; Raterink, Robert-Jan; Cunningham, Fraser; Jansen, Hans J.; Wiweger, Malgorzata I.; Jong-Raadsen, Susanne; Bos, Sabine; Bates, Robert H.; Barros, David; Meijer, Annemarie H.; Vreeken, Rob J.; Ballell-Pages, Lluís; Dirks, Ron P.

    2014-01-01

    The translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data from Mycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models of in vivo Mycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans. PMID:25385118

  13. Dynamic focusing in the zebrafish beating heart

    NASA Astrophysics Data System (ADS)

    Andrés-Delgado, L.; Peralta, M.; Mercader, N.; Ripoll, J.

    2016-03-01

    Of the large amount of the animal models available for cardiac research, the zebrafish is extremely valuable due to its transparency during early stages of development. In this work a dual illumination laser sheet microscope with simultaneous dual camera imaging is used to image the beating heart at 200 fps, dynamically and selectively focusing inside the beating heart through the use of a tunable lens. This dual color dynamic focusing enables imaging with cellular resolution at unprecedented high frame rates, allowing 3D imaging of the whole beating heart of embryonic zebrafish.

  14. Early post-larval development of the endoparasitic platyhelminth Mesocestoides corti: trypsin provokes reversible tegumental damage leading to serum-induced cell proliferation and growth.

    PubMed

    Espinoza, I; Galindo, M; Bizarro, C V; Ferreira, H B; Zaha, A; Galanti, N

    2005-11-01

    Mesocestoides corti is a suitable in vitro model for studying the development of human endoparasitic platyhelminthes. Treatment with trypsin, supplemented with fetal bovine serum (FBS), induces M. corti development from larvae (tetrathyridia) to segmented adult worm; however, the role of this protease and of FBS in post-larval development induction remains unknown. To characterize the participation of trypsin enzymatic activity and of FBS in the induction of tetrathyridia growth and development, both stimuli were added to the larvae either together or sequentially. Additionally, specific inhibition of trypsin activity was also monitored. Finally, the effect of the enzyme on the parasite tegument as well as the proliferative activity and location of proliferating cells after induction of tetrathyridia development were also studied. We conclude that trypsin-induced tetrathyridia development to adult worm is FBS-dependent and that the effect of serum factors is dependent upon a previous trypsin-induced reversible damage to the larva tegument. In dividing and non-dividing tetrathyridia, proliferative activity of cells is mainly located within the apical massif in the anterior region and nerve cords of larvae, respectively. In tetrathyridia stimulated to develop to adult worms, an intense proliferative activity is evident along the nerve cords. Our results suggest that in natural infections the tetrathyridia tegument is temporally made permeable to growth factors by proteolytic enzyme activity in the intestine juice of the definitive host, thus leading to development to adult worms. PMID:15887242

  15. Identification of Larval Pacific Lampreys (Lampetra tridentata), River Lampreys (L. ayresi), and Western Brook Lampreys (L. richardsoni) and Thermal Requirements of Early Life History Stages of Lampreys, Annual Report 2002-2003.

    SciTech Connect

    Meeuwig, Michael

    2004-01-01

    Two fundamental aspects of lamprey biology were examined to provide tools for population assessment and determination of critical habitat needs of Columbia River Basin (CRB) lampreys (the Pacific lamprey, Lampetra tridentata, and the western brook lamprey, L. richardsoni). We evaluated the usefulness of current diagnostic characteristics for identification of larval lampreys (i.e., pigment patterns) and collected material for development of meristic and morphometric descriptions of early life stage CRB lampreys, and we determined the effects of temperature on survival and development of early life stage CRB lampreys. Thirty-one larval lampreys were collected from locations throughout the CRB and transported to the Columbia River Research Laboratory. Lampreys were sampled at six-week intervals at which time they were identified to the species level based on current diagnostic characteristics. Sampling was repeated until lampreys metamorphosed, at which time species identification was validated based on dentition, or until they died, at which time they were preserved for genetic examination. These lampreys were sampled 30 times with two individuals metamorphosing, both of which were consistently identified, and subsequently validated, as Pacific lampreys. Of the remaining lampreys, only one was inconsistently identified (Pacific lamprey in 83% of the sampling events and western brook lamprey in 17% of the sampling events). These data suggest that pigmentation patterns do not change appreciably through time. In 2001 and 2002 we artificially spawned Pacific and western brook lampreys in the laboratory to provide material for meristic and morphometric descriptions. We collected, digitized, preserved, and measured the mean chorion diameter of Pacific and western brook lamprey embryos. Embryos ranged in development from 1 d post fertilization to just prior to hatch, and were incubated at 14 C. Mean chorion diameter was greater and more variable for Pacific lampreys (mean

  16. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    PubMed Central

    Kishi, Shuji

    2014-01-01

    Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other

  17. Zebrafish models of Tauopathy

    PubMed Central

    Bai, Qing; Burton, Edward A.

    2016-01-01

    Tauopathies are a group of incurable neurodegenerative diseases, in which loss of neurons is accompanied by intracellular deposition of fibrillar material composed of hyper phosphorylated forms of the microtubule associated protein Tau. A zebrafish model of Tauopathy could complement existing murine models by providing a platform for genetic and chemical screens, in order to identify novel therapeutic targets and compounds with disease-modifying potential. In addition, Tauopathy zebrafish would be useful for hypothesis-driven experiments, especially those exploiting the potential to deploy in vivo imaging modalities. Several considerations, including conservation of specialized neuronal and other cellular populations, and biochemical pathways implicated in disease pathogenesis, suggest that the zebrafish brain is an appropriate setting in which to model these complex disorders. Novel transgenic zebrafish lines expressing wild-type and mutant forms of human Tau inCNS neurons have recently been reported. These studies show evidence that human Tau undergoes disease-relevant changes in zebrafish neurons, including somato-dendritic relocalization, hyper phosphorylation and aggregation. In addition, preliminary evidence suggests that Tau transgene expression can precipitate neuronal dysfunction and death. These initial studies are encouraging that the zebrafish holds considerable promise as a model in which to study Tauopathies. Further studies are necessary to clarify the phenotypes of transgenic lines and to develop assays and models suitable for unbiased high-throughput screening approaches. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. PMID:20849952

  18. A Rotifer-Based Technique to Rear Zebrafish Larvae in Small Academic Settings.

    PubMed

    Allen, Raymond L; Wallace, Robert L; Sisson, Barbara E

    2016-08-01

    Raising zebrafish from larvae to juveniles can be laborious, requiring frequent water exchanges and continuous culturing of live feed. This task becomes even more difficult for small institutions that do not have access to the necessary funding, equipment, or personnel to maintain large-scale systems usually employed in zebrafish husbandry. To open this opportunity to smaller institutions, a cost-efficient protocol was developed to culture Nannochloropsis to feed the halophilic, planktonic rotifer Brachionus plicatilis; the rotifers were then used to raise larval zebrafish to juveniles. By using these methods, small institutions can easily raise zebrafish embryos in a cost-efficient manner without the need to establish an extensive fish-raising facility. In addition, culturing rotifers provides a micrometazoan that serves as a model organism for teaching and undergraduate research studies for a variety of topics, including aging, toxicology, and predator-prey dynamics. PMID:26886557

  19. 16S rRNA amplicon sequencing dataset for conventionalized and conventionally raised zebrafish larvae.

    PubMed

    Davis, Daniel J; Bryda, Elizabeth C; Gillespie, Catherine H; Ericsson, Aaron C

    2016-09-01

    Data presented here contains metagenomic analysis regarding the sequential conventionalization of germ-free zebrafish embryos. Zebrafish embryos that underwent a germ-free sterilization process immediately after fertilization were promptly exposed to and raised to larval stage in conventional fish water. At 6 days postfertilization (dpf), these "conventionalized" larvae were compared to zebrafish larvae that were raised in conventional fish water never undergoing the initial sterilization process. Bacterial 16S rRNA amplicon sequencing was performed on DNA isolated from homogenates of the larvae revealing distinct microbiota variations between the two groups. The dataset described here is also related to the research article entitled "Microbial modulation of behavior and stress responses in zebrafish larvae" (Davis et al., 2016) [1]. PMID:27508247

  20. Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion

    PubMed Central

    Graciarena, Mariana; Dambly-Chaudière, Christine; Ghysen, Alain

    2014-01-01

    Axonal regeneration is a major issue in the maintenance of adult nervous systems, both after nerve injuries and in neurodegenerative diseases. However, studying this process in vivo is difficult or even impossible in most vertebrates. Here we show that the posterior lateral line (PLL) of zebrafish is a suitable system to study axonal regeneration in vivo because of both the superficial location and reproducible spatial arrangement of neurons and targets, and the possibility of following reinnervation in live fish on a daily basis. Axonal regeneration after nerve cut has been demonstrated in this system during the first few days of life, leading to complete regeneration within 24 h. However, the potential for PLL nerve regeneration has not been tested yet beyond the early larval stage. We explore the regeneration potential and dynamics of the PLL nerve in adult zebrafish and report that regeneration occurs throughout adulthood. We observed that irregularities in the original branching pattern are faithfully reproduced after regeneration, suggesting that regenerating axons follow the path laid down by the original nerve branches. We quantified the extent of target reinnervation after a nerve cut and found that the latency before the nerve regenerates increases with age. This latency is reduced after a second nerve cut at all ages, suggesting that a regeneration-promoting factor induced by the first cut facilitates regeneration on a second cut. We provide evidence that this factor remains present at the site of the first lesion for several days and is intrinsic to the neurons. PMID:24474787

  1. Innate Immune Response to Streptococcus iniae Infection in Zebrafish Larvae

    PubMed Central

    Harvie, Elizabeth A.; Green, Julie M.; Neely, Melody N.

    2013-01-01

    Streptococcus iniae causes systemic infection characterized by meningitis and sepsis. Here, we report a larval zebrafish model of S. iniae infection. Injection of wild-type S. iniae into the otic vesicle induced a lethal infection by 24 h postinfection. In contrast, an S. iniae mutant deficient in polysaccharide capsule (cpsA mutant) was not lethal, with greater than 90% survival at 24 h postinfection. Live imaging demonstrated that both neutrophils and macrophages were recruited to localized otic infection with mutant and wild-type S. iniae and were able to phagocytose bacteria. Depletion of neutrophils and macrophages impaired host survival following infection with wild-type S. iniae and the cpsA mutant, suggesting that leukocytes are critical for host survival in the presence of both the wild-type and mutant bacteria. However, zebrafish larvae with impaired neutrophil function but normal macrophage function had increased susceptibility to wild-type bacteria but not the cpsA mutant. Taking these findings together, we have developed a larval zebrafish model of S. iniae infection and have found that although neutrophils are important for controlling infection with wild-type S. iniae, neutrophils are not necessary for host defense against the cpsA mutant. PMID:23090960

  2. Characterization of zebrafish dysferlin by morpholino knockdown

    SciTech Connect

    Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.; Alexander, Matthew S.; Kunkel, Louis M.

    2011-09-23

    Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafish dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.

  3. Angiogenesis in zebrafish.

    PubMed

    Schuermann, Annika; Helker, Christian S M; Herzog, Wiebke

    2014-07-01

    The vasculature consists of an extensively branched network of blood and lymphatic vessels that ensures the efficient circulation and thereby the supply of all tissues with oxygen and nutrients. Research within the last decade has tremendously advanced our understanding of how this complex network is formed, how angiogenic growth is controlled and how differences between individual endothelial cells contribute to achieving this complex pattern. The small size and the optical clarity of the zebrafish embryo in combination with the advancements in imaging technologies cleared the way for the zebrafish as an important in vivo model for elucidating the mechanisms of angiogenesis. In this review we discuss the recent contributions of the analysis of zebrafish vascular development on how vessels establish their characteristic morphology and become patent. We focus on the morphogenetic cellular behaviors as well as the molecular mechanisms that drive these processes in the developing zebrafish embryo. PMID:24813365

  4. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2012-01-01

    Vertebrates form a progressive series of up to three kidney organs during development—the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways. PMID:24014448

  5. Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development.

    PubMed

    Hill, Adrian; Mesens, Natalie; Steemans, Margino; Xu, Jinghai James; Aleo, Michael D

    2012-02-01

    Drug-induced liver injury (DILI) is a major cause of attrition during both the early and later stages of the drug development and marketing process. Reducing or eliminating drug-induced severe liver injury, especially those that lead to liver transplants or death, would be tremendously beneficial for patients. Therefore, developing new pharmaceuticals that have the highest margins and attributes of hepatic safety would be a great accomplishment. Given the current low productivity of pharmaceutical companies and the high costs of bringing new medicines to market, any early screening assay(s) to identify and eliminate pharmaceuticals with the potential to cause severe liver injury in humans would be of economic value as well. The present review discusses the background, proof-of-concept, and validation studies associated with high-content screening (HCS) by two major pharmaceutical companies (Pfizer Inc and Jansen Pharmaceutical Companies of Johnson & Johnson) for detecting compounds with the potential to cause human DILI. These HCS assays use fluorescent-based markers of cell injury in either human hepatocytes or HepG2 cells. In collaboration with Evotec, an independent contract lab, these two companies also independently evaluated larval zebrafish as an early-stage in vivo screen for hepatotoxicity in independently conducted, blinded assessments. Details about this model species, the need for bioanalysis, and, specifically, the outcome of the phenotypic-based zebrafish screens are presented. Comparing outcomes in zebrafish against both HCS assays suggests an enhanced detection for hepatotoxicants of most DILI concern when used in combination with each other, based on the U.S. Food and Drug Administration DILI classification list. PMID:22242931

  6. Small zebrafish in a big chemical pond.

    PubMed

    Helenius, I Taneli; Yeh, J-R Joanna

    2012-07-01

    The number of possible small organic molecules of different structure is virtually limitless. One of the main goals of chemical biologists is to identify, from this "chemical space", entities that affect biological processes or systems in a specific manner. This can lead to a better understanding of the regulation and components of various biological machineries, as well as provide insights into efficacious therapeutic targets and drug candidates. However, the challenges confronting chemical biologists are multiple. How do we efficiently identify compounds that possess desirable activities without unwanted off-target effects? Once a candidate compound has been found, how do we determine its mode of action? In this Prospects piece, we call attention to recent studies using embryonic and larval zebrafish to illustrate the breadth and depth of questions in chemical biology that may be addressed using this model, and hope that they can serve as catalysts for future investigational ideas. PMID:22396148

  7. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    PubMed

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  8. Annual Zebrafish Husbandry Workshop USA: A Resource for All Zebrafish Users.

    PubMed

    Baur, Bobbi M

    2016-07-01

    Understandably, in the early years of the growth of the zebrafish model, husbandry parameters varied widely from laboratory to laboratory. But with the explosion in the number of investigators opting to utilize zebrafish in their research, the standardization of husbandry parameters is not only practical but also absolutely critical to ensure the reliability and reproducibility of experimental results. For more than 13 years, technicians, veterinarians, laboratory managers, regulatory officers, and investigators have joined together for an annual workshop on zebrafish husbandry. The meeting is held in conjunction with the World Aquaculture Society's annual conference, a congeries of fish experts and aquatic species enthusiasts. From a lineup of five speakers and perhaps 25 attendees, the workshop has grown to a one and a half day event with more than 20 speakers and ∼90 attendees. PMID:27267407

  9. Reverse Genetic Morpholino Approach Using Cardiac Ventricular Injection to Transfect Multiple Difficult-to-target Tissues in the Zebrafish Larva

    PubMed Central

    Konantz, Judith; Antos, Christopher L.

    2014-01-01

    The zebrafish is an important model to understand the cell and molecular biology of organ and appendage regeneration. However, molecular strategies to employ reverse genetics have not yet been adequately developed to assess gene function in regeneration or tissue homeostasis during larval stages after zebrafish embryogenesis, and several tissues within the zebrafish larva are difficult to target. Intraventricular injections of gene-specific morpholinos offer an alternative method for the current inability to genomically target zebrafish genes in a temporally controlled manner at these stages. This method allows for complete dispersion and subsequent incorporation of the morpholino into various tissues throughout the body, including structures that were formerly impossible to reach such as those in the larval caudal fin, a structure often used to noninvasively research tissue regeneration. Several genes activated during larval finfold regeneration are also present in regenerating adult vertebrate tissues, so the larva is a useful model to understand regeneration in adults. This morpholino dispersion method allows for the quick and easy identification of genes required for the regeneration of larval tissues as well as other physiological phenomena regulating tissue homeostasis after embryogenesis. Therefore, this delivery method provides a currently needed strategy for temporal control to the evaluation of gene function after embryogenesis.  PMID:24961304

  10. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    PubMed

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-01-01

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics. PMID:27078038

  11. Approaches to measuring calcium in zebrafish: focus on neuronal development.

    PubMed

    Ashworth, Rachel

    2004-05-01

    Calcium ions are known to act as important cellular signals during nervous system development. In vitro studies have provided significant information on the role of calcium signals during neuronal development; however, the function of this messenger in nervous system maturation in vivo remains to be established. The zebrafish has emerged as a valuable model for the study of vertebrate embryogenesis. Fertilisation is external and the rapid growth of the transparent embryo, including development of internal organs, can be observed easily making it well suited for imaging studies. The developing nervous system is relatively simple and has been well characterised, allowing individual neurons to be identified. Using the zebrafish model, both intracellular and intercellular calcium signals throughout embryonic development have been characterised. This review summarises technical approaches to measure calcium signals in developing embryonic and larval zebrafish, and includes recent developments that will facilitate the study of calcium signalling in vivo. The application of calcium imaging techniques to investigate the action of this messenger during embryogenesis in intact zebrafish is illustrated by discussion of their contribution to our understanding of neuronal development in vivo. PMID:15003849

  12. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

  13. Think Small: Zebrafish as a Model System of Human Pathology

    PubMed Central

    Goldsmith, J. R.; Jobin, Christian

    2012-01-01

    Although human pathologies have mostly been modeled using higher mammal systems such as mice, the lower vertebrate zebrafish has gained tremendous attention as a model system. The advantages of zebrafish over classical vertebrate models are multifactorial and include high genetic and organ system homology to humans, high fecundity, external fertilization, ease of genetic manipulation, and transparency through early adulthood that enables powerful imaging modalities. This paper focuses on four areas of human pathology that were developed and/or advanced significantly in zebrafish in the last decade. These areas are (1) wound healing/restitution, (2) gastrointestinal diseases, (3) microbe-host interactions, and (4) genetic diseases and drug screens. Important biological processes and pathologies explored include wound-healing responses, pancreatic cancer, inflammatory bowel diseases, nonalcoholic fatty liver disease, and mycobacterium infection. The utility of zebrafish in screening for novel genes important in various pathologies such as polycystic kidney disease is also discussed. PMID:22701308

  14. Bioenergetic Profiling of Zebrafish Embryonic Development

    PubMed Central

    Stackley, Krista D.; Beeson, Craig C.; Rahn, Jennifer J.; Chan, Sherine S. L.

    2011-01-01

    Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility. PMID:21980518

  15. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  16. Learning and memory in zebrafish (Danio rerio).

    PubMed

    Gerlai, R

    2016-01-01

    Learning and memory are defining features of our own species inherently important to our daily lives and to who we are. Without our memories we cease to exist as a person. Without our ability to learn individuals and collectively our society would cease to function. Diseases of the mind still remain incurable. The interest in understanding of the mechanisms of learning and memory is thus well founded. Given the complexity of such mechanisms, concerted efforts have been made to study them under controlled laboratory conditions, ie, with laboratory model organisms. The zebrafish, although new in this field, is one such model organism. The rapidly developing forward- and reverse genetic methods designed for the zebrafish and the increasing use of pharmacological tools along with numerous neurobiology techniques make this species perhaps the best model for the analysis of the mechanisms of complex central nervous system characteristics. The fact that it is an evolutionarily ancient and simpler vertebrate, but at the same time it possesses numerous conserved features across multiple levels of biological organization makes this species an excellent tool for the analysis of the mechanisms of learning and memory. The bottleneck lies in our understanding of its cognitive and mnemonic features, the topic of this chapter. The current paper builds on a chapter published in the previous edition and continues to focus on associative learning, but now it extends the discussion to other forms of learning and to recent discoveries on memory-related features and findings obtained both in adults and larval zebrafish. PMID:27312505

  17. Morphofunctional transformations of the yolk syncytial layer during zebrafish development.

    PubMed

    Kondakova, Ekaterina Alexandrovna A; Efremov, Vladimir Ivanovich I

    2014-02-01

    The yolk syncytial layer (YSL) is a provisory extraembryonic structure of teleost fishes and representatives of some other taxa with meroblastic cleavage. The YSL of teleosts is a symplast with polymorphous polyploid nuclei. It is known to perform nutritional, morphogenetic, immune, and, probably, other functions. Data about the YSL organization, functioning and regulation is fragmentary. Although gene expression patterns and other aspects of YSL functioning have been studied in Danio rerio, the morphology of its YSL has not been described in detail. The study of zebrafish YSL structure on sequential developmental stages is necessary to recognize specific features of this important polyfunctional system in this model organism and to extend our knowledge about provisory systems. The thickness of the YSL and the distribution of its nuclei are not uniform on each stage and change during development. During oblong and sphere stages the internal YSL (I-YSL) is filled with yolk inclusions; interphase yolk syncytial nuclei (YSN) and mitotic asters can be seen. During doming and epiboly the external YSL (E-YSL) is thicker than I-YSL. On the subsequent stages the YSL is thickened caudally. The dorsal YSL part is thickened during early segmentation stages and becomes the thinnest YSL region later. The anterior part of the YSL is thin, but enlarges during larval period. The YSN of different size and diverse forms, from regular to lobed, are present and form clusters. The number of irregular-shaped nuclei increases during development. The YSL thickens in the end of endotrophic and in the course of endo-exotrophic period, and its cytoplasm contains numerous yolk inclusions. After yolk exhaustion the YSL is flat. As the YSL degrades, the YSN become pycnotic, and the YSL remnant probably is cleared by phagocytes. PMID:24122838

  18. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish.

    PubMed

    Zhu, Jun-Jing; Xu, Yi-Qiao; He, Jian-Hui; Yu, Hang-Ping; Huang, Chang-Jiang; Gao, Ji-Min; Dong, Qiao-Xiang; Xuan, Yao-Xian; Li, Chun-Qi

    2014-02-01

    Cardiovascular toxicity is a major challenge for the pharmaceutical industry and predictive screening models to identify and eliminate pharmaceuticals with the potential to cause cardiovascular toxicity in humans are urgently needed. In this study, taking advantage of the transparency of larval zebrafish, Danio rerio, we assessed cardiovascular toxicity of seven known human cardiotoxic drugs (aspirin, clomipramine hydrochloride, cyclophosphamide, nimodipine, quinidine, terfenadine and verapamil hydrochloride) and two non-cardiovascular toxicity drugs (gentamicin sulphate and tetracycline hydrochloride) in zebrafish using six specific phenotypic endpoints: heart rate, heart rhythm, pericardial edema, circulation, hemorrhage and thrombosis. All the tested drugs were delivered into zebrafish by direct soaking and yolk sac microinjection, respectively, and cardiovascular toxicity was quantitatively or qualitatively assessed at 4 and 24 h post drug treatment. The results showed that aspirin accelerated the zebrafish heart rate (tachycardia), whereas clomipramine hydrochloride, cyclophosphamide, nimodipine, quinidine, terfenadine and verapamil hydrochloride induced bradycardia. Quinidine and terfenadine also caused atrioventricular (AV) block. Nimodipine treatment resulted in atrial arrest with much slower but regular ventricular heart beating. All the tested human cardiotoxic drugs also induced pericardial edema and circulatory disturbance in zebrafish. There was no sign of cardiovascular toxicity in zebrafish treated with non-cardiotoxic drugs gentamicin sulphate and tetracycline hydrochloride. The overall prediction success rate for cardiotoxic drugs and non-cardiotoxic drugs in zebrafish were 100% (9/9) as compared with human results, suggesting that zebrafish is an excellent animal model for rapid in vivo cardiovascular toxicity screening. The procedures we developed in this report for assessing cardiovascular toxicity in zebrafish were suitable for drugs delivered

  19. Zebrafish (Danio rerio) bioassay for visceral toxicosis of catfish and botulinum neurotoxin serotype E.

    PubMed

    Chatla, Kamalakar; Gaunt, Patricia; Petrie-Hanson, Lora; Hohn, Claudia; Ford, Lorelei; Hanson, Larry

    2014-03-01

    Visceral toxicosis of catfish (VTC), a sporadic disease of cultured channel catfish (Ictalurus punctatus) often with high mortality, is caused by botulinum neurotoxin serotype E (BoNT/E). Presumptive diagnosis of VTC is based on characteristic clinical signs and lesions, and the production of these signs and mortality after sera from affected fish is administered to sentinel catfish. The diagnosis is confirmed if the toxicity is neutralized with BoNT/E antitoxin. Because small catfish are often unavailable, the utility of adult zebrafish (Danio rerio) was evaluated in BoNT/E and VTC bioassays. Channel catfish and zebrafish susceptibilities were compared using trypsin-activated BoNT/E in a 96-hr trial by intracoelomically administering 0, 1.87, 3.7, 7.5, 15, or 30 pg of toxin per gram of body weight (g-bw) of fish. All of the zebrafish died at the 7.5 pg/g-bw and higher, while the catfish died at the 15 pg/g-bw dose and higher. To test the bioassay, sera from VTC-affected fish or control sera were intracoelomically injected at a dose of 10 µl per zebrafish and 20 µl/g-bw for channel catfish. At 96 hr post-injection, 78% of the zebrafish and 50% of the catfish receiving VTC sera died, while no control fish died. When the VTC sera were preincubated with BoNT/E antitoxin, they became nontoxic to zebrafish. Histology of zebrafish injected with either VTC serum or BoNT/E demonstrated renal necrosis. Normal catfish serum was toxic to larval zebrafish in immersion exposures, abrogating their utility in VTC bioassays. The results demonstrate bioassays using adult zebrafish for detecting BoNT/E and VTC are sensitive and practical. PMID:24518279

  20. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  1. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    PubMed

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  2. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae

    PubMed Central

    Pelkowski, Sean D.; Kapoor, Mrinal; Richendrfer, Holly A.; Wang, Xingyue; Colwill, Ruth M.; Creton, Robbert

    2011-01-01

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image twelve multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red ‘bouncing ball’ stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. PMID:21549762

  3. Using the local immune response from the natural buffalo host to generate an antibody fragment library that binds the early larval stages of Schistosoma japonicum.

    PubMed

    Hosking, Christopher G; Driguez, Patrick; McWilliam, Hamish E G; Ilag, Leodevico L; Gladman, Simon; Li, Yuesheng; Piedrafita, David; McManus, Donald P; Meeusen, Els N T; de Veer, Michael J

    2015-09-01

    Antibodies isolated from the local draining inguinal lymph node of field exposed-water buffaloes following challenge with Schistosoma japonicum cercariae showed high reactivity towards S. japonicum antigen preparations and bound specifically to formaldehyde-fixed S. japonicum schistosomules. Using this specific local immune response we produced a series of single-chain antibody Fv domain libraries from the same lymph nodes. Removal of phage that cross reacted with epitopes on adult parasites yielded a single-chain antibody Fv domain-phage library that specifically bound to whole formaldehyde-fixed and live S. japonicum schistosomules. DNA sequencing indicated clear enrichment of the single-chain antibody Fv domain library for buffalo B-cell complementarity determining regions post-selection for schistosomule binding. This study also revealed that long heavy chain complementarity determining regions appear to be an important factor when selecting for antibody binding fragments against schistosomule proteins. The selected single-chain antibody Fv domain-phage were used to probe a schistosome-specific protein microarray, which resulted in the recognition of many proteins expressed across all schistosome life-cycle stages. Following absorption to adult worms, the single-chain antibody Fv domain-phage library showed significantly reduced binding to most proteins, whilst two proteins (NCBI GenBank accession numbers AY915878 and AY815196) showed increased binding. We have thus developed a unique set of host derived single-chain antibody Fv domains comprising buffalo B-cell variable regions that specifically bind to early S. japonicum life-stages. PMID:26116907

  4. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  5. Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.

    PubMed

    Song, Jing E; Si, Jing; Zhou, Rong; Liu, Hua Peng; Wang, Zhen Guo; Gan, Lu; Gui, Fang; Liu, Bin; Zhang, Hong

    2016-06-01

    The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity. PMID:27470107

  6. A larval Devonian lungfish.

    PubMed

    Thomson, Keith S; Sutton, Mark; Thomas, Bethia

    2003-12-18

    Perhaps the most enduring of puzzles in palaeontology has been the identity of Palaeospondylus gunni Traquair, a tiny (5-60-mm) vertebrate fossil from the Middle Devonian period (approximately 385 Myr ago) of Scotland, first discovered in 1890 (refs 1-3). It is known principally from a single site (Achanarras Quarry, Caithness) where, paradoxically, it is extremely abundant, preserved in varved lacustrine deposits along with 13 other genera of fishes. Here we show that Palaeospondylus is the larval stage of a lungfish, most probably Dipterus valenciennesi Sedgwick and Murchison 1828 (ref. 5), and that development of the adult form requires a distinct metamorphosis. Palaeospondylus is the oldest known true larva of a vertebrate. PMID:14685237

  7. Zeb1 Regulates E-cadherin and Epcam (Epithelial Cell Adhesion Molecule) Expression to Control Cell Behavior in Early Zebrafish Development*

    PubMed Central

    Vannier, Corinne; Mock, Kerstin; Brabletz, Thomas; Driever, Wolfgang

    2013-01-01

    The ZEB1 transcription factor is best known as an inducer of epithelial-mesenchymal transitions (EMT) in cancer metastasis, acting through transcriptional repression of CDH1 (encoding E-cadherin) and the EMT-suppressing microRNA-200s (miR-200s). Here we analyze roles of the ZEB1 zebrafish orthologs, Zeb1a and Zeb1b, and of miR-200s in control of cell adhesion and morphogenesis during gastrulation and segmentation stages. Loss and gain of function analyses revealed that Zeb1 represses cdh1 expression to fine-tune adhesiveness of migrating deep blastodermal cells. Furthermore, Zeb1 acts as a repressor of epcam in the deep cells of the blastoderm and may contribute to control of epithelial integrity of enveloping layer cells, the outermost cells of the blastoderm. We found a similar ZEB1-dependent repression of EPCAM expression in human pancreatic and breast cancer cell lines, mediated through direct binding of ZEB1 to the EPCAM promoter. Thus, Zeb1 proteins employ several evolutionary conserved mechanisms to regulate cell-cell adhesion during development and cancer. PMID:23667256

  8. Ecological Support of Larval Fish During Multigenerational Studies on Space Station

    NASA Technical Reports Server (NTRS)

    Taub, Frieda B.

    1998-01-01

    Live, microscopic food is required by larval Zebrafish, Danio rerio, which are candidates for the Aquatic Habitat of the Space Station Biological Research Project (SSBRP). Zebrafish have proven to be convenient research animals, and their embryology and genetics are extensively documented. Their ability to mature at 3 months of age, and the transparent eggs which hatches in 2 days, are attractive attributes for space research. Among the goals of the SSBRP Aquatic Habitat is the ability to study three generations, with the objective of maintaining adults, their offspring, and the maintaining of these offspring through maturity and spawning. For Zebrafish, it is anticipated that sexually mature fish (PI) would be delivered to Space Station and spawned in space. The challenge would be it to provide appropriate microscopic foods for the offspring (FI), and 3 months later for the next generation (F2); if these were raised to maturity and bred, live foods would be required at approximately 6 months. In laboratories where Zebrafish are traditionally reared, the larval foods are the protozoan Parameciwn micromultinucleatwn and later brine shrimp Artemia nauplii. Under normal laboratory conditions, the rearing of these foods are relatively easy, although time consuming because of the food organisms must be separated from their rearing medium which is discarded. A freshwater food chain that would ensur-e healthy on- orbit research animals is needed. ne food chain should (a) be reared in conditions that are compatible with the larval fish (water chemistry, pH, temperature and light), (b) assist in maintaining water quality (by removing ammonia, nitrate, phosphate, carbon dioxide, and bacteria) and (c) be convenient for the space crew (minimize handling and waste production).

  9. A Rapid Screenable Assay for Compounds That Protect Against Intestinal Injury in Zebrafish Larva.

    PubMed

    Goldsmith, Jason R; Tomkovich, Sarah; Jobin, Christian

    2016-01-01

    This chapter describes a method to assay compounds modulating NSAID-induced intestinal injury in zebrafish larvae. The assay employs the NSAID glafenine, which causes intestinal epithelial cell damage and death by inducing organelle stress responses (endoplasmic reticulum and mitochondrial) and blocking the unfolded protein response pathway. This epithelial damage includes sloughing of intestinal cells into the lumen and out the cloaca of the zebrafish larvae. Exposing larvae to acridine orange highlights this injury when visualized under fluorescence microscope; injured fish develop intensely red-staining intestines, as well as a "tube" or cord of red color extending through the intestine and out the cloaca. Using this rapid visually screenable method, various candidate compounds were successfully tested for their ability to prevent glafenine-induced intestinal injury. Because this assay involves examination of larval zebrafish intestinal pathology, we have also included our protocol for preparation and analysis of zebrafish histology. The protocol includes numerous steps to generate high-quality zebrafish histology slides, as well as protocols to establish accurate anatomic localization of any given tissue cross-section-processes that are made technically difficult by the small size of zebrafish larvae. PMID:27246041

  10. Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury

    PubMed Central

    Kossack, Mandy; Juergensen, Lonny; Fuchs, Dieter; Katus, Hugo A.; Hassel, David

    2015-01-01

    Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage. PMID:25853735

  11. Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line

    PubMed Central

    Behra, Martine; Bradsher, John; Sougrat, Rachid; Gallardo, Viviana; Allende, Miguel L.; Burgess, Shawn M.

    2009-01-01

    In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration. PMID:19381250

  12. The zebrafish as a model to study intestinal inflammation.

    PubMed

    Brugman, Sylvia

    2016-11-01

    Starting out as a model for developmental biology, during the last decade, zebrafish have also gained the attention of the immunologists and oncologists. Due to its small size, high fecundity and full annotation of its genome, the zebrafish is an attractive model system. The fact that fish are transparent early in life combined with the growing list of immune cell reporter fish, enables in vivo tracking of immune responses in a complete organism. Since zebrafish develop ex utero from a fertilized egg, immune development can be monitored from the start of life. Given that several gut functions and immune genes are conserved between zebrafish and mammals, the zebrafish is an interesting model organism to investigate fundamental processes underlying intestinal inflammation and injury. This review will first provide some background on zebrafish intestinal development, bacterial colonization and immunity, showing the similarities and differences compared to mammals. This will be followed by an overview of the existing models for intestinal disease, and concluded by future perspectives in light of the newest technologies and insights. PMID:26902932

  13. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling

    PubMed Central

    Kenyon, Emma J.; Campos, Isabel; Bull, James C.; Williams, P. Huw; Stemple, Derek L.; Clark, Matthew D.

    2015-01-01

    The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. PMID:25478908

  14. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis

    PubMed Central

    Kozol, Robert A.; Cukier, Holly N.; Zou, Bing; Mayo, Vera; De Rubeis, Silvia; Cai, Guiqing; Griswold, Anthony J.; Whitehead, Patrice L.; Haines, Jonathan L.; Gilbert, John R.; Cuccaro, Michael L.; Martin, Eden R.; Baker, James D.; Buxbaum, Joseph D.; Pericak-Vance, Margaret A.; Dallman, Julia E.

    2015-01-01

    Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1–2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes. PMID:25882707

  15. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis.

    PubMed

    Kozol, Robert A; Cukier, Holly N; Zou, Bing; Mayo, Vera; De Rubeis, Silvia; Cai, Guiqing; Griswold, Anthony J; Whitehead, Patrice L; Haines, Jonathan L; Gilbert, John R; Cuccaro, Michael L; Martin, Eden R; Baker, James D; Buxbaum, Joseph D; Pericak-Vance, Margaret A; Dallman, Julia E

    2015-07-15

    Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1-2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes. PMID:25882707

  16. LPS response and tolerance in the zebrafish (Danio rerio)

    PubMed Central

    Novoa, B.; Bowman, TV.; Zon, L.; Figueras, A

    2009-01-01

    Zebrafish (Danio rerio) has been used in the present work to study the fish response to bacterial lipopolysaccharide (LPS) exposure and LPS tolerance. These mechanisms are not completely understood in mammals and, presently, are totally unknown in fish. Zebrafish larval survival was assessed following treatment with various types of LPS at a variety of concentrations to determine the sensitivity of zebrafish to LPS-induced immune activation. In addition, fish pre-treated with a sublethal concentration of LPS did not die after exposure to a lethal concentration of LPS demonstrating, for the first time, that LPS tolerance also happens in fish. The time interval between pretreatment and secondary exposure as well as the type of pretreatment dictated the strength of protection. Since zebrafish are in intimate contact with microorganisms, the high resistance of fish to LPS suggests that there must be a tight control of the LPS receptor cluster in order to avoid an excess of inflammation. One of these components is CXCR4, which has previously been shown to regulate the signal transduced by TLR4. Treating fish with AMD 3100, a specific inhibitor of CXCR4, increased LPS treatment associated mortality. Blocking CXCR4 via chemical or genetic inhibition resulted in a reversion of LPS tolerance, thus further supporting the negative regulatory role of CXCR4 in this inflammatory response. In support of an inhibitory role for CXCR4 in the inflammatory cascade, IL1 transcript levels were elevated in both unstimulated and LPS stimulated zebrafish Odysseus (CXCR4 deficient mutant) larvae. PMID:19110060

  17. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia

    2015-12-01

    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  18. Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development.

    PubMed

    Yuen, Michael Y F; Webb, Sarah E; Chan, Ching Man; Thisse, Bernard; Thisse, Christine; Miller, Andrew L

    2013-07-01

    Preferential loading of the complementary bioluminescent (f-aequorin) and fluorescent (Calcium Green-1 dextran) Ca(2+) reporters into the yolk syncytial layer (YSL) of zebrafish embryos, revealed the generation of stochastic patterns of fast, short-range, and slow, long-range Ca(2+) waves that propagate exclusively through the external YSL (E-YSL). Starting abruptly just after doming (~4.5h post-fertilization: hpf), and ending at the shield stage (~6.0hpf) these distinct classes of waves propagated at mean velocities of ~50 and ~4μm/s, respectively. Although the number and pattern of these waves varied between embryos, their initiation site and arcs of propagation displayed a distinct dorsal bias, suggesting an association with the formation and maintenance of the nascent dorsal-ventral axis. Wave initiation coincided with a characteristic clustering of YSL nuclei (YSN), and their associated perinuclear ER, in the E-YSL. Furthermore, the inter-YSN distance (IND) appeared to be critical such that Ca(2+) wave propagation occurred only when this was <~8μm; an IND >~8μm was coincidental with wave termination at shield stage. Treatment with the IP3R antagonist, 2-APB, the Ca(2+) buffer, 5,5'-dibromo BAPTA, and the SERCA-pump inhibitor, thapsigargin, resulted in a significant disruption of the E-YSL Ca(2+) waves, whereas exposure to the RyR antagonists, ryanodine and dantrolene, had no significant effect. These findings led us to propose that the E-YSL Ca(2+) waves are generated mainly via Ca(2+) release from IP3Rs located in the perinuclear ER, and that the clustering of the YSN is an essential step in providing a CICR pathway required for wave propagation. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. PMID:23142640

  19. Video-tracking of zebrafish (Danio rerio) as a biological early warning system using two distinct artificial neural networks: Probabilistic neural network (PNN) and self-organizing map (SOM).

    PubMed

    Oliva Teles, Luis; Fernandes, Miguel; Amorim, João; Vasconcelos, Vitor

    2015-08-01

    Biological early warning systems (BEWS) are becoming very important tools in ecotoxicological studies because they can detect changes in the behavior of organisms exposed to toxic substances. In this work, a video tracking system was fully developed to detect the presence of commercial bleach (NaOCl) in water in three different concentrations (0.0005%; 0.0010% and 0.0020% (v/v)) during one hour of exposure. Zebrafish was selected as the test organism because it is widely used in many different areas and studies. Two distinct statistical models were developed, using probabilistic neural network (PNN) and correspondence analysis associated with self-organizing map (SOM-CA). The diagnosis was based only in the analysis of a few behavioral components of the fish, namely: mean angular velocity, mean linear velocity, spatial dispersion, mean value of the X coordinate and mean value of the Y coordinate. Both models showed good results in their diagnosis capabilities. However, the overall performance (accuracy) was always superior in the PNN model. The worst result was with the SOM-CA model, at the lowest concentration (0.0005% v/v), achieving only 65% of correct diagnosis. The best result was with the PNN model, at the highest concentration (0.0020% v/v), achieving 94% of correct diagnosis. PMID:26122721

  20. CERKL Knockdown Causes Retinal Degeneration in Zebrafish

    PubMed Central

    Riera, Marina; Burguera, Demian; Garcia-Fernàndez, Jordi; Gonzàlez-Duarte, Roser

    2013-01-01

    The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration. PMID:23671706

  1. Optogenetic activation of zebrafish somatosensory neurons using ChEF-tdTomato.

    PubMed

    Palanca, Ana Marie S; Sagasti, Alvaro

    2013-01-01

    Larval zebrafish are emerging as a model for describing the development and function of simple neural circuits. Due to their external fertilization, rapid development, and translucency, zebrafish are particularly well suited for optogenetic approaches to investigate neural circuit function. In this approach, light-sensitive ion channels are expressed in specific neurons, enabling the experimenter to activate or inhibit them at will and thus assess their contribution to specific behaviors. Applying these methods in larval zebrafish is conceptually simple but requires the optimization of technical details. Here we demonstrate a procedure for expressing a channelrhodopsin variant in larval zebrafish somatosensory neurons, photo-activating single cells, and recording the resulting behaviors. By introducing a few modifications to previously established methods, this approach could be used to elicit behavioral responses from single neurons activated up to at least 4 days post-fertilization (dpf). Specifically, we created a transgene using a somatosensory neuron enhancer, CREST3, to drive the expression of the tagged channelrhodopsin variant, ChEF-tdTomato. Injecting this transgene into 1-cell stage embryos results in mosaic expression in somatosensory neurons, which can be imaged with confocal microscopy. Illuminating identified cells in these animals with light from a 473 nm DPSS laser, guided through a fiber optic cable, elicits behaviors that can be recorded with a high-speed video camera and analyzed quantitatively. This technique could be adapted to study behaviors elicited by activating any zebrafish neuron. Combining this approach with genetic or pharmacological perturbations will be a powerful way to investigate circuit formation and function. PMID:23407374

  2. Identification of Larval Pacific Lampreys (Lampetra Tridentata), River Lampreys (L. Ayresi) and Western Brook Lampreys (L. Richardsoni) and Thermal Requirements of Early Life History Stages of Lampreys : Annual Report 2001.

    SciTech Connect

    Meeuwig, Michael H.

    2002-01-01

    Lampreys inhabit temperate regions in both the northern and southern hemispheres. Typically, lampreys spawn in fresh water streams where, after hatching, larval lampreys (ammocoetes) burrow into soft substrate and spend an extended larval period filtering particulate matter from the water column. During this larval period, lampreys are characterized by greatly reduced subcutaneous eyes, reduced fins, unidirectional flow of water from the mouth through the gill pores for filter feeding, and the absence of tooth-like keratin plates (the structure most often used to differentiate lamprey species). After approximately three to seven years (Hardisty and Potter 1971a) lampreys go through a metamorphosis marked by drastic physiological and morphological changes. The resulting juvenile lampreys exhibit fully developed eyes, fins, and characteristic dentition patterns.

  3. Detection of Smad Signaling in Zebrafish Embryos.

    PubMed

    Liu, Xingfeng; Wang, Qiang; Meng, Anming

    2016-01-01

    Nodal and BMPs play critical roles in germ layer induction and patterning in early zebrafish embryos. Smad2/3 and Smad1/5/8 are intracellular effectors of Nodal and BMPs, respectively. These Smads regulate, in cooperation with other factors, transcription of hundreds of target genes in the nucleus. The activity and stability of Smads are regulated by phosphorylation modifications. To better understand the regulatory network of Smads-mediated signaling and its biological implications, it is necessary to monitor the signaling activity in an in vivo model system. In this chapter, we describe the methods used in zebrafish embryos for dissecting Smads signaling, including TGF-β/Nodal- and BMP-responsive luciferase reporter assays, Western blotting for Smads, co-immunoprecipitation for Smads and their interacting proteins, chromatin-immunoprecipitation for identification of Smad2-binding sites, and immunostaining for detection of active Smad1/5/8. PMID:26520131

  4. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

    SciTech Connect

    Shi Xiongjie; Du Yongbing; Lam, Paul K.S.; Wu, Rudolf S.S.; Zhou Bingsheng

    2008-07-01

    Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential

  5. A new model system swims into focus: using the zebrafish to visualize intestinal metabolism in vivo

    PubMed Central

    Carten, Juliana D; Farber, Steven A

    2009-01-01

    Many fundamental questions remain regarding the cellular and molecular mechanisms of digestive lipid metabolism. One major impediment to answering important questions in the field has been the lack of a tractable and sufficiently complex model system. Until recently, most studies of lipid metabolism have been performed in vitro or in mice, yet each approach possesses certain limitations. The zebrafish (Danio rerio) offers an excellent model system in which to study lipid metabolism in vivo, owing to its small size, genetic tractability and optical clarity. Fluorescent lipid dyes and optical reporters of lipid-modifying enzymes are now being used in live zebrafish to generate visible readouts of digestive physiology. Here we review recent advances in visualizing intestinal lipid metabolism in live larval zebrafish. PMID:20174460

  6. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

    PubMed

    Anderson, J L; Carten, J D; Farber, S A

    2016-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. PMID:27263413

  7. Channeling of red and green cone inputs to the zebrafish optomotor response.

    PubMed

    Orger, Michael B; Baier, Herwig

    2005-01-01

    Visual systems break scenes down into individual features, processed in distinct channels, and then selectively recombine those features according to the demands of particular behavioral tasks. In primates, for example, there are distinct pathways for motion and form processing. While form vision utilizes color information, motion pathways receive input from only a subset of cone photoreceptors and are generally colorblind. To explore the link between early channeling of visual information and behavioral output across vertebrate species, we measured the chromatic inputs to the optomotor response of larval zebrafish. Using cone-isolating gratings, we found that there is a strong input from both red and green cones but not short-wavelength cones, which nevertheless do contribute to another behavior, phototaxis. Using a motion-nulling method, we measured precisely the input strength of gratings that stimulated cones in combination. The fish do not respond to gratings that stimulate different cone types out of phase, but have an enhanced response when the cones are stimulated together. This shows that red and green cone signals are pooled at a stage before motion detection. Since the two cone inputs are combined into a single 'luminance' channel, the response to sinusoidal gratings is colorblind. However, we also find that the relative contributions of the two cones at isoluminance varies with spatial frequency. Therefore, natural stimuli, which contain a mixture of spatial frequencies, are likely to be visible regardless of their chromatic composition. PMID:16079003

  8. Characterization of zebrafish larvae suction feeding flow using μPIV and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Chang, Brian; Uslu, Fazil; Mani, Karthick; Chen, Chia-Yuan; Holzman, Roi

    2016-07-01

    The hydrodynamics of suction feeding is critical for the survival of fish larvae; failure to capture food during the onset of autonomous feeding can rapidly lead to starvation and mortality. Fluid mechanics experiments that investigate the suction feeding of suspended particles are limited to adult fishes, which operate at large Reynolds numbers. This manuscript presents the first literature results in which the external velocity fields generated during suction feeding of early zebrafish larvae (2500-20,000 μm total length) are reported using time-resolved microscopic particle image velocimetry. For the larval stages studied, the maximum peak suction velocity of the inflow bolus is measured at a finite distance from the mouth tip and ranges from 1 to 8 mm/s. The average pressure gradient and the velocity profile proximal to the buccal (mouth) cavity are calculated, and two distinct trends are identified. External recirculation regions and reverse flow feeding cycles are also observed and quantified. One of the unresolved questions in fish suction feeding is the shape and dynamics of the buccal cavity during suction feeding; optical coherence tomography imaging is found to be useful for reconstructing the mouth kinematics. The projected area of the mouth cavity during the feeding cycle varies up to 160 and 22 % for the transverse and mid-sagittal planes, respectively. These findings can inspire novel hydrodynamically efficient biomedical and microfluidic devices.

  9. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  10. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms.

    PubMed

    Dolgova, N V; Hackett, M J; MacDonald, T C; Nehzati, S; James, A K; Krone, P H; George, G N; Pickering, I J

    2016-03-01

    Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported. A possible contributing factor may be that different chemical forms of selenium were used in different studies. Using larval stage zebrafish (Danio rerio) as a model organism, we report a comparison of the toxicities and tissue selenium distributions of four different chemical forms of selenium. We find that the organic forms of selenium tested (Se-methyl-l-selenocysteine and l-selenomethionine) show considerably more toxicity than inorganic forms (selenite and selenate), and that this appears to be correlated with the level of bioaccumulation. Despite differences in concentrations, the tissue specific pattern of selenium accumulation was similar for the chemical forms tested; selenium was found to be highly concentrated in pigment (melanin) containing tissues especially for the organic selenium treatments, with lower concentrations in eye lens, yolk sac and heart. These results suggest that pigmented tissues might serve as a storage reservoir for selenium. PMID:26781816

  11. New records of larval stages of the eel cod genus Muraenolepis Günther 1880 (Gadiformes: Muraenolepididae) from the western Antarctic Peninsula.

    PubMed

    Konstantinidis, P; Hilton, E J; Matarese, A C

    2016-08-01

    Three newly discovered larval specimens of the genus Muraenolepis collected from the waters of the western Antarctic Peninsula are described. Knowledge of their natural history is sparse and information about their early life history is based on only a few larval stages. Here, the available literature on larval eel cods is reviewed, and the specimens placed in context. PMID:27354338

  12. Therapeutic effect of deferoxamine on iron overload-induced inhibition of osteogenesis in a zebrafish model.

    PubMed

    Chen, Bin; Yan, Yi-Lin; Liu, Chen; Bo, Lin; Li, Guang-Fei; Wang, Han; Xu, You-Jia

    2014-03-01

    Osteoporosis results from an imbalance in bone remodeling, in which osteoclastic bone resorption exceeds osteoblastic bone formation. Iron has recently been recognized as an independent risk factor for osteoporosis. Reportedly, excess iron could promote osteoclast differentiation and bone resorption through the production of reactive oxygen species (ROS). We evaluated the effect of iron on osteoblast differentiation and bone formation in zebrafish and further investigated the potential benefits of deferoxamine (DFO), a powerful iron chelator, in iron-overloaded zebrafish. The zebrafish model of iron overload described in this study demonstrated an apparent inhibition of bone formation, accompanied by decreased expression of osteoblast-specific genes (runx2a, runx2b, osteocalcin, osteopontin, ALP, and collagen type I). The negative effect of iron on osteoblastic activity and bone formation could be attributed to increased ROS generation and oxidative stress. Most importantly, we revealed that DFO was capable of removing whole-body iron and attenuating oxidative stress in iron-overloaded larval zebrafish, which facilitated larval recovery from the reductions in bone formation and osteogenesis induced by iron overload. PMID:24414856

  13. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    PubMed Central

    Jeong, Yun-Mi; Ryu, Jeong-Im; Choi, Tae-Young; Bae, Myung-Ae; Son, Woo-Chan

    2016-01-01

    MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM) and cell death in larval liver (5 μM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish. PMID:27563662

  14. Larval fish dynamics in spring pools in middle Tennessee

    USGS Publications Warehouse

    Bettoli, Phillip William; Goldsworthy, C.A.

    2011-01-01

    We used lighted larval traps to assess reproduction by fishes inhabiting nine spring pools in the Barrens Plateau region of middle Tennessee between May and September 2004. The traps (n = 162 deployments) captured the larval or juvenile forms of Etheostoma crossopterum (Fringed Darter) (n = 188), Gambusia affinis (Western Mosquitofish) (n = 139), Hemitremia flammea (Flame Chub) (n = 55), the imperiled Fundulus julisia (Barrens Topminnow) (n = 10), and Forbesichthys agassizii (Spring Cavefish) (n = 1). The larval forms of four other species (Families Centrarchidae, Cyprinidae, and Cottidae) were not collected, despite the presence of adults. Larval Barrens Topminnow hatched over a protracted period (early June through late September); in contrast, hatching intervals were much shorter for Fringed Darter (mid-May through early June). Flame Chub hatching began before our first samples in early May and concluded by late-May. Juvenile Western Mosquitofish were collected between early June and late August. Our sampling revealed that at least two species (Flame Chub and Fringed Darter) were able to reproduce and recruit in habitats harboring the invasive Western Mosquitofish, while Barrens Topminnow could not.

  15. Phenology of larval fish in the St. Louis River estuary

    EPA Science Inventory

    Little work has been done on the phenology of fish larvae in Great Lakes coastal wetlands. As part of an aquatic invasive species early detection study, we conducted larval fish surveys in the St. Louis River estuary (SLRE) in 2012 and 2013. Using multiple gears in a spatially ba...

  16. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio).

    PubMed

    Liu, Hongling; Tang, Song; Zheng, Xinmei; Zhu, Yuting; Ma, Zhiyuan; Liu, Chunsheng; Hecker, Markus; Saunders, David M V; Giesy, John P; Zhang, Xiaowei; Yu, Hongxia

    2015-02-01

    2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), 6-hydroxy-tetrabromodiphenyl ether (6-OH-BDE-47), and 6-methoxy-tetrabromodiphenyl ether (6-MeO-BDE-47) are the most detected congeners of polybrominated diphenyl ethers (PBDEs), OH-BDEs, and MeO-BDEs, respectively, in aquatic organisms. Although it has been demonstrated that BDE-47 can interfere with certain endocrine functions that are mediated through several nuclear hormone receptors (NRs), most of these findings were from mammalian cell lines exposed in vitro. In the present study, embryos and larvae of zebrafish were exposed to BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to compare their accumulation, biotransformation, and bioconcentration factors (BCF) from 4 to 120 hpf. In addition, effects on expression of genes associated with eight different pathways regulated by NRs were investigated at 120 hpf. 6-MeO-BDE-47 was most bioaccumulated and 6-OH-BDE-47, which was the most potent BDE, was least bioaccumulated. Moreover, the amount of 6-MeO-BDE-47, but not BDE-47, transformed to 6-OH-BDE-47 increased in a time-dependent manner, approximately 0.01%, 0.04%, and 0.08% at 48, 96, and 120 hpf, respectively. Expression of genes regulated by the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and mineralocorticoid receptor (MR) was affected in larvae exposed to 6-OH-BDE-47, whereas genes regulated by AhR, ER, and the glucocorticoid receptor (GR) were altered in larvae exposed to BDE-47. The greatest effect on expression of genes was observed in larvae exposed to 6-MeO-BDE-47. Specifically, 6-MeO-BDE-47 affected the expression of genes regulated by AhR, ER, AR, GR, and thyroid hormone receptor alpha (TRα). These pathways were mostly down-regulated at 2.5 μM. Taken together, these results demonstrate the importance of usage of an internal dose to assess the toxic effects of PBDEs. BDE-47 and its analogs elicited distinct effects on expression of genes of different hormone receptor-mediated pathways, which have expanded

  17. Zebrafish for modeling skin disorders.

    PubMed

    Cline, Abigail; Feldman, Steven R

    2016-01-01

    The experimental advantages of zebrafish make this model system highly amenable to the field of dermatology. Zebrafish skin development is similar to humans and its genome is ~70% orthologous to the human genome. Its external developmental process allows for genetic manipulation and analysis of embryogenesis within a short time frame with all important internal organs and skin compartments formed within 6 days. Zebrafish models of cutaneous human diseases offer insight into pathogenesis and a unique platform for testing of potential therapies. This review details the specific advantages of zebrafish and highlights its use in dermatological research. PMID:27617951

  18. Characterisation of Culex quinquefasciatus (Diptera: Culicidae) larval habitats at ground level and temporal fluctuations of larval abundance in Córdoba, Argentina.

    PubMed

    Grech, Marta; Sartor, Paolo; Estallo, Elizabet; Ludueña-Almeida, Francisco; Almirón, Walter

    2013-09-01

    The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase. PMID:24037200

  19. Characterisation of Culex quinquefasciatus (Diptera: Culicidae) larval habitats at ground level and temporal fluctuations of larval abundance in Córdoba, Argentina

    PubMed Central

    Grech, Marta; Sartor, Paolo; Estallo, Elizabet; Ludueña-Almeida, Francisco; Almirón, Walter

    2013-01-01

    The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase. PMID:24037200

  20. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Ruff, Nicole; Battaglene, Stephen C

    2015-06-01

    Cardiorespiratory function is vital to an organism's ability to respond to environmental stress and analysis of cardiorespiratory capacity of species or life stages can elucidate vulnerability to climate change. Spiny lobsters have one of the most complex pelagic larval life cycles of any invertebrate and recently there has been an unexplained decline in post-larval recruitment for a number of species. We conducted the first analysis of the larval ontogeny of oxygen consumption, heart rate, maxilla 2 ventilation rate and oxyregulatory capacity of the spiny lobster, Sagmariasus verreauxi, to gain insight into their vulnerability to ocean change and to investigate life stage specific sensitivity to temperature-dependent oxygen limitation. In normoxia, heart and maxilla 2 ventilation rates increased in early larval development before declining, which we hypothesise is related to the transition from myogenic to neurogenic cardiac control. Maxilla 2 ventilation rate was sensitive to hypoxia at all larval stages, while heart rate was only sensitive to hypoxia in the late phyllosoma stages. Oxygen consumption conformed to environmental hypoxia at all larval stages. Spiny lobster larvae have limited respiratory control due to immature gas exchange physiology, compounded by their exceptionally large size. The lack of oxyregulatory ability suggests that all development stages are vulnerable to changes in sea temperature and oxygen availability. The synergetic stressors of increased temperature and reduced dissolved oxygen in the marine environment will diminish spiny lobster larval performance, increasing the challenge to achieve their extended larval life cycle, which may contribute to declines in post-larval recruitment. PMID:25683612

  1. Endogenous Dopamine Suppresses Initiation of Swimming in Prefeeding Zebrafish Larvae

    PubMed Central

    Thirumalai, Vatsala; Cline, Hollis T.

    2008-01-01

    Dopamine is a key neuromodulator of locomotory circuits, yet the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days postfertilization (dpf) and 5dpf. We found that swim episodes were fewer and of longer durations at 3 than at 5dpf. At 3dpf, application of dopamine as well as bupropion, a dopamine reuptake blocker, abolished spontaneous fictive swim episodes. Blocking D2 receptors increased frequency of occurrence of episodes and activation of adenylyl cyclase, a downstream target inhibited by D2-receptor signaling, blocked the inhibitory effect of dopamine. Dopamine had no effect on motor neuron firing properties, input impedance, resting membrane potential, or the amplitude of spike afterhyperpolarization. Application of dopamine either to the isolated spinal cord or locally within the cord does not decrease episode frequency, whereas dopamine application to the brain silences episodes, suggesting a supraspinal locus of dopaminergic action. Treating larvae with 10 μM MPTP reduced catecholaminergic innervation in the brain and increased episode frequency. These data indicate that dopamine inhibits the initiation of fictive swimming episodes at 3dpf. We found that at 5dpf, exogenously applied dopamine inhibits swim episodes, yet the dopamine reuptake blocker or the D2-receptor antagonist have no effect on episode frequency. These results led us to propose that endogenous dopamine release transiently suppresses swim circuits in developing zebrafish. PMID:18562547

  2. A crystal-clear zebrafish for in vivo imaging

    PubMed Central

    Antinucci, Paride; Hindges, Robert

    2016-01-01

    The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes. PMID:27381182

  3. A crystal-clear zebrafish for in vivo imaging.

    PubMed

    Antinucci, Paride; Hindges, Robert

    2016-01-01

    The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes. PMID:27381182

  4. Electrophysiological recording in the brain of intact adult zebrafish.

    PubMed

    Johnston, Lindsey; Ball, Rebecca E; Acuff, Seth; Gaudet, John; Sornborger, Andrew; Lauderdale, James D

    2013-01-01

    Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages. PMID:24300281

  5. Analyzing the structure and function of neuronal circuits in zebrafish

    PubMed Central

    Friedrich, Rainer W.; Genoud, Christel; Wanner, Adrian A.

    2013-01-01

    The clever choice of animal models has been instrumental for many breakthrough discoveries in life sciences. One of the outstanding challenges in neuroscience is the in-depth analysis of neuronal circuits to understand how interactions between large numbers of neurons give rise to the computational power of the brain. A promising model organism to address this challenge is the zebrafish, not only because it is cheap, transparent and accessible to sophisticated genetic manipulations but also because it offers unique advantages for quantitative analyses of circuit structure and function. One of the most important advantages of zebrafish is its small brain size, both at larval and adult stages. Small brains enable exhaustive measurements of neuronal activity patterns by optical imaging and facilitate large-scale reconstructions of wiring diagrams by electron microscopic approaches. Such information is important, and probably essential, to obtain mechanistic insights into neuronal computations underlying higher brain functions and dysfunctions. This review provides a brief overview over current methods and motivations for dense reconstructions of neuronal activity and connectivity patterns. It then discusses selective advantages of zebrafish and provides examples how these advantages are exploited to study neuronal computations in the olfactory bulb. PMID:23630467

  6. Morphological features to distinguish the larval stage of invasive Ruffe (Gymnocephalus cernuus) from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  7. Morphological features to distinguish the larval stage of invasive Ruffe from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  8. Numerical simulations of barnacle larval dispersion coupled with field observations on larval abundance, settlement and recruitment in a tropical monsoon influenced coastal marine environment

    NASA Astrophysics Data System (ADS)

    Gaonkar, Chetan A.; Samiksha, S. V.; George, Grinson; Aboobacker, V. M.; Vethamony, P.; Anil, Arga Chandrashekar

    2012-06-01

    Larval abundance in an area depends on various factors which operate over different spatial and temporal scales. Identifying the factors responsible for variations in larval supply and abundance is important to understand the settlement and recruitment variability of their population in a particular area. In view of this, observations were carried out to monitor the larval abundance, settlement and recruitment of barnacles on a regular basis for a period of two years. The results were then compared with the numerical modelling studies carried out along the west coast of India. Field observations of larval abundance showed temporal variations. The least abundance of larvae was mostly observed during the monsoon season and the peak in abundance was mostly observed during the pre-monsoon season. Numerical simulations also showed a seasonal change in larval dispersion and retention patterns. During pre-monsoon season the larval movement was mostly found towards south and the larvae released from the northern release sites contributed to larval abundance within the estuaries, whereas during the monsoon season the larval movement was mostly found towards north and the larvae released from southern release sites contributed to larval abundance within the estuary. During post-monsoon season, the larval movement was found towards the north in the beginning of the season and is shifted towards the south at the end of the season, but the movement was mostly restricted near to the release sites. Larval supply from the adjacent rocky sites to the estuaries was higher during the pre-monsoon season and the retention of larvae released from different sites within the estuaries was found to be highest during the late post-monsoon and early pre-monsoon season. Maximum larval supply and retention during the pre-monsoon season coincided with maximum larval abundance, settlement and recruitment of barnacles observed in the field studies. These observations showed that the pattern of

  9. Automated analysis of behavior in zebrafish larvae.

    PubMed

    Creton, Robbert

    2009-10-12

    Zebrafish larvae have become a popular model system to examine genetic and environmental factors that affect behavior. However, studying complex behavior in large numbers of fish larvae can be challenging. The present study describes a novel high-resolution imaging system that is unique in its ability to automatically analyze the location and orientation of zebrafish larvae in multiwell plates. The system revealed behaviors in zebrafish larvae that would have been missed by more manual approaches, including a preference to face a threatening stimulus from a distance and a clockwise orientation in a two-fish assay. The clockwise orientation of the larvae correlates with a clockwise orientation of molecular structures during early development. Larvae with reversed embryonic asymmetries display a counter-clockwise orientation in the two-fish assay, suggesting that embryonic asymmetry and chiral behavior are regulated by the same developmental mechanisms. The developed imaging techniques may be used in large-scale screens to identify genes, pharmaceuticals, and environmental toxicants that influence complex behaviors. PMID:19409932

  10. Manipulating Galectin Expression in Zebrafish (Danio rerio)

    PubMed Central

    Feng, Chiguang; Nita-Lazar, Mihai; González-Montalbán, Nuria; Wang, Jingyu; Mancini, Justin; Ravindran, Chinnarajan; Ahmed, Hafiz; Vasta, Gerardo R.

    2015-01-01

    Techniques for disrupting gene expression are invaluable tools for the analysis of the biological role of a gene product. Because of its genetic tractability and multiple advantages over conventional mammalian models, the zebrafish (Danio rerio) is recognized as a powerful system for gaining new insight into diverse aspects of human health and disease. Among the multiple mammalian gene families for which the zebrafish has shown promise as an invaluable model for functional studies, the galectins have attracted great interest due to their participation in early development, regulation of immune hoemostasis, and recognition of microbial pahtogens. Galectins are β-galactosyl-binding lectins with a characteristic sequence motif in their carbohydrate recognition domains (CRDs), that constitute an evolutionary conserved family ubiquitous in eukaryotic taxa. Galectins are emerging as key players in the modulation of many important pathological processes, which include acute and chronic inflammatory diseases, autoimmunity and cancer, thus making them potential molecular targets for innovative drug discovery. Here, we provide a review of the current methods available for the manipulation of gene expression in the zebrafish, with a focus on gene knockdown [morpholino (MO)-derived antisense oligonucleotides] and knockout (CRISPR-Cas) technologies. PMID:25253151

  11. On the diabetic menu: Zebrafish as a model for pancreas development and function

    PubMed Central

    Kinkel, Mary D.; Prince, Victoria E.

    2009-01-01

    Summary Development of the vertebrate pancreas is a complex stepwise process comprising regionalization, cell differentiation, and morphogenesis. Studies in zebrafish are contributing to an emerging picture of pancreas development in which extrinsic signaling molecules influence intrinsic transcriptional programs to allow ultimate differentiation of specific pancreatic cell types. Zebrafish experiments have revealed roles for several signaling molecules in aspects of this process; for example our own work has shown that Retinoic Acid signals specify the pre-pancreatic endoderm. Time-lapse imaging of live zebrafish embryos has started to provide detailed information about early pancreas morphogenesis. In addition to modeling embryonic development, the zebrafish has recently begun to be used as a model for pancreas regeneration studies. Here we review the significant progress in these areas and consider the future potential of zebrafish as a diabetes research model. PMID:19204986

  12. Capturing Tissue Repair in Zebrafish Larvae with Time-lapse Brightfield Stereomicroscopy

    PubMed Central

    Lisse, Thomas S.; Brochu, Elizabeth A.; Rieger, Sandra

    2015-01-01

    The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities. PMID:25742070

  13. Analysis of axon tract formation in the zebrafish brain: the role of territories of gene expression and their boundaries.

    PubMed

    Wilson, S W; Brennan, C; Macdonald, R; Brand, M; Holder, N

    1997-11-01

    Mutant analysis in the zebrafish is revealing the genes that are expressed in the early neuroepithelium and that regulate factors responsible for the guidance of commissural axons. We review work on the developing zebrafish brain illustrating the way in which territories of regulatory gene expression influence the formation and positioning of axon pathways. PMID:9321679

  14. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish

    PubMed Central

    Lisse, Thomas S.; Middleton, Leah J.; Pellegrini, Adriana D.; Martin, Paige B.; Spaulding, Emily L.; Lopes, Olivia; Brochu, Elizabeth A.; Carter, Erin V.; Waldron, Ashley; Rieger, Sandra

    2016-01-01

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions. PMID:27035978

  15. E2F4 Promotes Neuronal Regeneration and Functional Recovery after Spinal Cord Injury in Zebrafish

    PubMed Central

    Sasagawa, Shota; Nishimura, Yuhei; Hayakawa, Yuka; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Okabe, Shiko; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Mammals exhibit poor recovery after spinal cord injury (SCI), whereas non-mammalian vertebrates exhibit significant spontaneous recovery after SCI. The mechanisms underlying this difference have not been fully elucidated; therefore, the purpose of this study was to investigate these mechanisms. Using comparative transcriptome analysis, we demonstrated that genes related to cell cycle were significantly enriched in the genes specifically dysregulated in zebrafish SCI. Most of the cell cycle-related genes dysregulated in zebrafish SCI were down-regulated, possibly through activation of e2f4. Using a larval zebrafish model of SCI, we demonstrated that the recovery of locomotive function and neuronal regeneration after SCI were significantly inhibited in zebrafish treated with an E2F4 inhibitor. These results suggest that activation of e2f4 after SCI may be responsible, at least in part, for the significant recovery in zebrafish. This provides novel insight into the lack of recovery after SCI in mammals and informs potential therapeutic strategies. PMID:27242526

  16. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish.

    PubMed

    Lisse, Thomas S; Middleton, Leah J; Pellegrini, Adriana D; Martin, Paige B; Spaulding, Emily L; Lopes, Olivia; Brochu, Elizabeth A; Carter, Erin V; Waldron, Ashley; Rieger, Sandra

    2016-04-12

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions. PMID:27035978

  17. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation. PMID:26745549

  18. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea. PMID:16418895

  19. In vivo Analysis of White Adipose Tissue in Zebrafish

    PubMed Central

    Minchin, James E.N.; Rawls, John F.

    2016-01-01

    White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT. PMID:21951526

  20. The Transcriptomics of Glucocorticoid Receptor Signaling in Developing Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2013-01-01

    Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR), a ligand-bound transcription factor. In developing zebrafish (Danio rerio) embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf), respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development. PMID:24348914

  1. Development of inter-family nuclear transplant embryos by transplanting the nuclei from the loach blastulae into the non-enucleated zebrafish eggs

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Shicui; Yuan, Jinduo; Li, Hongyan

    2003-03-01

    The developmental fate of the pronuclei in recombined embryos obtained by transplanting the donor nuclei into the non-enucleated eggs remains controversial in the case of fish. In the present study, the nuclei from the loach blastulae were transplanted into non-enucleated zebrafish eggs, the resulting 9 inter-family nuclear transplant embryos developed to larval stages. Although the development timing of the nuclear transplants resembled that of zebrafish, chromosome examination revealed that most of the recombined embryos were diploids with karyotype characteristic of loach, which was also proved by RAPD analysis. Moreover, 3 out of the 9 larval fish formed barb rudiments specific to loach. It was therefore concluded that the nuclear transplant larval fish were inter-family nucleo-cytoplasmic hybrids; and that only the donor nuclei were involved in the development of the nuclear transplant embryos, while the pronuclei in the non-enucleated eggs were likely automatically eliminated during the development.

  2. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  3. Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples

    PubMed Central

    Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to

  4. Early Stages of Zebrafish Eye Formation Require the Coordinated Activity of Wnt11, Fz5, and the Wnt/β-Catenin Pathway

    PubMed Central

    Cavodeassi, Florencia; Carreira-Barbosa, Filipa; Young, Rodrigo M.; Concha, Miguel L.; Allende, Miguel L.; Houart, Corinne; Tada, Masazumi; Wilson, Stephen W.

    2009-01-01

    Summary During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with cell behavior during eye field formation. Wnt/β-catenin signaling antagonizes eye specification through the activity of Wnt8b and Fz8a. In contrast, Wnt11 and Fz5 promote eye field development, at least in part, through local antagonism of Wnt/β-catenin signaling. Additionally, Wnt11 regulates the behavior of eye field cells, promoting their cohesion. Together, these results allow us to postulate a model in which Wnt11 and Fz5 signaling promotes early eye development through the coordinated antagonism of signals that suppress retinal identity and promotion of coherence of eye field cells. PMID:15996547

  5. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements.

    PubMed

    Square, Tyler; Jandzik, David; Cattell, Maria; Coe, Alex; Doherty, Jacob; Medeiros, Daniel Meulemans

    2015-01-15

    The morphology of the vertebrate head skeleton is highly plastic, with the number, size, shape, and position of its components varying dramatically between groups. While this evolutionary flexibility has been key to vertebrate success, its developmental and genetic bases are poorly understood. The larval head skeleton of the frog Xenopus laevis possesses a unique combination of ancestral tetrapod features and anuran-specific novelties. We built a detailed gene expression map of the head mesenchyme in X. laevis during early larval development, focusing on transcription factor families with known functions in vertebrate head skeleton development. This map was then compared to homologous gene expression in zebrafish, mouse, and shark embryos to identify conserved and evolutionarily flexible aspects of vertebrate head skeleton development. While we observed broad conservation of gene expression between X. laevis and other gnathostomes, we also identified several divergent features that correlate to lineage-specific novelties. We noted a conspicuous change in dlx1/2 and emx2 expression in the second pharyngeal arch, presaging the differentiation of the reduced dorsal hyoid arch skeletal element typical of modern anamniote tetrapods. In the first pharyngeal arch we observed a shift in the expression of the joint inhibitor barx1, and new expression of the joint marker gdf5, shortly before skeletal differentiation. This suggests that the anuran-specific infrarostral cartilage evolved by partitioning of Meckel's cartilage with a new paired joint. Taken together, these comparisons support a model in which early patterning mechanisms divide the vertebrate head mesenchyme into a highly conserved set of skeletal precursor populations. While subtle changes in this early patterning system can affect skeletal element size, they do not appear to underlie the evolution of new joints or cartilages. In contrast, later expression of the genes that regulate skeletal element

  6. Effects of climate change on the survival of larval cod

    NASA Astrophysics Data System (ADS)

    Kristiansen, T.; Stock, C. A.; Drinkwater, K. F.; Curchitser, E. N.

    2011-12-01

    Understanding how climate change may impact important commercial fisheries is critical for developing sustainable fisheries management strategies. In this study, we used simulations from an Earth System Model (NOAA GFDL ESM2.1) coupled with an individual-based model (IBM) for larval fish to provide a first assessment of the potential importance of climate-change driven changes in primary productivity and temperature on cod recruitment in the North Atlantic to the year 2100. ESM model output was averaged for 5 regions, each with an area of 5x5 on a latitude-longitude grid, and representing the geographic boundaries of the current cod range. The physical and environmental data were incorporated into a mechanistic IBM used to simulate the critical early phases in the life of larval fish (e.g. cod) in a changing environment. Large phytoplankton production was predicted to decrease in most regions, thereby lowering the number of meso-zooplankton in the water column. Meso-zooplankton is the most important prey item for larval cod and a reduction in their numbers have strong impacts on larval cod survival. The combination of lowered prey abundance with increased energy requirement for growth and metabolism through increased temperature had a negative impact on cod recruitment in all modeled regions of the North Atlantic. The probability of survival past the larval stages was reduced with 20-30% at all five spawning grounds by the year 2100. Together, these results suggest climate change could have significant impacts on the survival of larval cod in the North Atlantic.

  7. Visuomotor Transformations Underlying Hunting Behavior in Zebrafish

    PubMed Central

    Bianco, Isaac H.; Engert, Florian

    2015-01-01

    Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638

  8. Active microrheology of fluids inside developing zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Mike; Parthasarathy, Raghuveer

    2014-03-01

    Biological fluids are a source of diverse and interesting behavior for the soft matter physicist. Since their mechanical properties must be tuned to fulfill functional roles important to the development and health of living things, they often display complex behavior on length and time scales spanning many orders of magnitude. For microbes colonizing an animal host, for example, the mechanical properties of the host environment are of great importance, affecting mobility and hence the ability to establish a stable population. Indeed, some species possess the ability to affect the fluidity of their environment, both directly by chemically modifying it, and indirectly by influencing the host cells' secretion of mucus. Driving magnetically doped micron-scale probes which have been orally micro-gavaged into the intestinal bulb of a larval zebrafish allows the rheology of the mucosal layer within the fish to be measured over three decades of frequency, complementing ecological data on microbial colonization with physical information about the gut environment. Here, we describe the technique, provide the first measurement of mucosal viscosity in a developing animal, and explore the technique's applicability to other small-volume or spatially inhomogeneous fluid samples.

  9. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure. PMID:26773362

  10. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages – comparative study

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena; Wimmerová, Soňa

    2013-01-01

    At present, nanoparticles are beginning to influence our lives in many ways and understanding the environmental health and safety aspect of nanomaterials has become a crucial issue. The aim of the work was to assess and compare the acute toxicity of 31 different nanomaterials to fish mature individuals Danio rerio with that to fish early life stages on using evaluation of the 48- and 96- hour LC50 values. A further aim was to evaluate teratogenicity of the nanoparticles tested to fish eggs. The nanoparticles tested were: 8 pure metals, 10 metal oxides, 5 other metal compounds and their mixtures, 2 silicon compounds, 3 calcium compounds, and 3 carbon compounds. Using 48-h and 96-h tests of acute toxicity (according to OECD 203), we evaluated mortality data, LC50 values, occurrence of malformations, as well as hatching time. In our study, 6 kinds of nanoparticles – calcium oxide, copper, copper in the form of oxide and CuZnFe4O4, magnesium oxide, and nickel – caused cumulative mortality. Two kinds of nanoparticles – copper and silver – were toxic for fish with LC50 values of approximately 3 mg/L. We did not observe marked differences between the 48-hour and 96-hour acute toxicity LC50 values, yet the possibility to evaluate hatching time in the 96-h acute fish toxicity test seems to be an advantage against that of the 48-hour toxicity. PMID:24179431

  11. Kisspeptins modulate the biology of multiple populations of gonadotropin-releasing hormone neurons during embryogenesis and adulthood in zebrafish (Danio rerio).

    PubMed

    Zhao, Yali; Lin, Meng-Chin A; Mock, Allan; Yang, Ming; Wayne, Nancy L

    2014-01-01

    Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an

  12. Two Zebrafish hsd3b Genes Are Distinct in Function, Expression, and Evolution.

    PubMed

    Lin, Jen-Chieh; Hu, Shing; Ho, Pei-Hung; Hsu, Hwei-Jan; Postlethwait, John H; Chung, Bon-chu

    2015-08-01

    HSD3B catalyzes the synthesis of δ4 steroids such as progesterone in the adrenals and gonads. Individuals lacking HSD3B2 activity experience congenital adrenal hyperplasia with imbalanced steroid synthesis. To develop a zebrafish model of HSD3B deficiency, we characterized 2 zebrafish hsd3b genes. Our phylogenetic and conserved synteny analyses showed that the tandemly duplicated human HSD3B1 and HSD3B2 genes are coorthologs of zebrafish hsd3b1 on chromosome 9 (Dre9), whereas the gene called hsd3b2 resides on Dre20 in an ancestral chromosome segment, from which its ortholog was lost in the tetrapod lineage. Zebrafish hsd3b1(Dre 9) was expressed in adult gonads and headkidney, which contains interrenal glands, the zebrafish counterpart of the tetrapod adrenal. Knockdown of hsd3b1(Dre 9) caused the interrenal and anterior pituitary to expand and pigmentation to increase, resembling human HSD3B2 deficiency. The zebrafish hsd3b2(Dre 20) gene was expressed in zebrafish early embryos as maternal transcripts that disappeared 1 day after fertilization. Morpholino inactivation of hsd3b2(Dre 20) led to embryo elongation, which was rescued by the injection of hsd3b2 mRNA. Thus, zebrafish hsd3b2(Dre 20) evolved independently of hsd3b1(Dre 9) with a morphogenetic function during early embryogenesis. Zebrafish hsd3b1(Dre 9), on the contrary, functions like mammalian HSD3B2, whose deficiency leads to congenital adrenal hyperplasia. PMID:25974401

  13. Growth and Maturation in the Zebrafish, Danio Rerio: A Staging Tool for Teaching and Research

    PubMed Central

    Singleman, Corinna

    2014-01-01

    Abstract Zebrafish have been increasingly used as a teaching tool to enhance the learning of many biological concepts from genetics, development, and behavior to the understanding of the local watershed. Traditionally, in both research and teaching, zebrafish work has focused on embryonic stages; however, later stages, from larval through adulthood, are increasingly being examined. Defining developmental stages based on age is a problematic way to assess maturity, because many environmental factors, such as temperature, population density, and water quality, impact growth and maturation. Fish length and characterization of key external morphological traits are considered better markers for maturation state. While a number of staging series exist for zebrafish, here we present a simplified normalization table of post-embryonic maturation well suited to both educational and research use. Specifically, we utilize fish size and four easily identified external morphological traits (pigment pattern, tail fin, anal fin, and dorsal fin morphology) to describe three larval stages, a juvenile stage, and an adult stage. These simplified maturation standards will be a useful tool for both educational and research protocols. PMID:24979389

  14. Effects of perfluorinated compounds on development of zebrafish embryos.

    PubMed

    Zheng, Xin-Mei; Liu, Hong-Ling; Shi, Wei; Wei, Si; Giesy, John P; Yu, Hong-Xia

    2011-08-01

    Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC(50). Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups. PMID:22828880

  15. Chemical screening with zebrafish embryos.

    PubMed

    Zhong, Hanbing; Lin, Shuo

    2011-01-01

    Functional chemicals are very useful tools for molecular biology studies. Due to its small size, large progeny clutch, and embryonic transparency, zebrafish serves as a superb in vivo animal model for chemical compound screens and characterization. During zebrafish embryogenesis, multiple developmental phenotypes can be easily examined under the microscope, therefore allowing a more comprehensive evaluation for identifying novel functional chemicals than cell-based assays. Ever since the first zebrafish-based chemical screen was conducted in the year 2000, many functional chemicals have been discovered using this strategy. In this chapter, we describe how to perform a typical zebrafish-based chemical screen and discuss the details of the protocol by using the example of the identification and characterization of two new Smo inhibitors with a Gli:GFP transgenic line. PMID:21318908

  16. Thrombin Generation in Zebrafish Blood

    PubMed Central

    Hemker, Coenraad; Lindhout, Theo; Kelchtermans, Hilde; de Laat, Bas

    2016-01-01

    To better understand hypercoagulability as an underlying cause for thrombosis, the leading cause of death in the Western world, new assays to study ex vivo coagulation are essential. The zebrafish is generally accepted as a good model for human hemostasis and thrombosis, as the hemostatic system proved to be similar to that in man. Their small size however, has been a hurdle for more widespread use in hemostasis related research. In this study we developed a method that enables the measurement of thrombin generation in a single drop of non-anticoagulated zebrafish blood. Pre-treatment of the fish with inhibitors of FXa and thrombin, resulted in a dose dependent diminishing of thrombin generation, demonstrating the validity of the assay. In order to establish the relationship between whole blood thrombin generation and fibrin formation, we visualized the resulting fibrin network by scanning electron microscopy. Taken together, in this study we developed a fast and reliable method to measure thrombin generation in whole blood collected from a single zebrafish. Given the similarities between coagulation pathways of zebrafish and mammals, zebrafish may be an ideal animal model to determine the effect of novel therapeutics on thrombin generation. Additionally, because of the ease with which gene functions can be silenced, zebrafish may serve as a model organism for mechanistical research in thrombosis and hemostasis. PMID:26872266

  17. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae

    PubMed Central

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  18. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae.

    PubMed

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS)], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO)] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  19. 'Peer pressure' in larval Drosophila?

    PubMed

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  20. Neuroepithelial oxygen chemoreceptors of the zebrafish gill

    PubMed Central

    Jonz, Michael G; Fearon, Ian M; Nurse, Colin A

    2004-01-01

    In aquatic vertebrates, hypoxia induces physiological changes that arise principally from O2 chemoreceptors of the gill. Neuroepithelial cells (NECs) of the zebrafish gill are morphologically similar to mammalian O2 chemoreceptors (e.g. carotid body), suggesting that they may play a role in initiating the hypoxia response in fish. We describe morphological changes of zebrafish gill NECs following in vivo exposure to chronic hypoxia, and characterize the cellular mechanisms of O2 sensing in isolated NECs using patch-clamp electrophysiology. Confocal immunofluorescence studies indicated that chronic hypoxia (PO2 = 35 mmHg, 60 days) induced hypertrophy, proliferation and process extension in NECs immunoreactive for serotonin or synaptic vesicle protein (SV2). Under voltage clamp, NECs responded to hypoxia (PO2 = 25–140 mmHg) with a dose-dependent decrease in K+ current. The current–voltage relationship of the O2-sensitive current (IKO2) reversed near EK and displayed open rectification. Pharmacological characterization indicated that IKO2 was resistant to 20 mm tetraethylammonium (TEA) and 5 mm 4-aminopyridine (4-AP), but was sensitive to 1 mm quinidine. In current-clamp recordings, hypoxia produced membrane depolarization associated with a conductance decrease; this depolarization was blocked by quinidine, but was insensitive to TEA and 4-AP. These biophysical and pharmacological characteristics suggest that hypoxia sensing in zebrafish gill NECs is mediated by inhibition of a background K+ conductance, which generates a receptor potential necessary for neurosecretion and activation of sensory pathways in the gill. This appears to be a fundamental mechanism of O2 sensing that arose early in vertebrate evolution, and was adopted later in mammalian O2 chemoreceptors. PMID:15331683

  1. Subdivisions of the adult zebrafish pallium based on molecular marker analysis

    PubMed Central

    Ganz, Julia; Kroehne, Volker; Freudenreich, Dorian; Machate, Anja; Geffarth, Michaela; Braasch, Ingo; Kaslin, Jan; Brand, Michael

    2015-01-01

    Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. Results: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. Conclusions: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model

  2. Larval development of Evermannia zosterura (Perciformes: Gobiidae).

    PubMed

    González-Navarro, Enrique; Saldierna-Martínez, Ricardo Javier; Aceves-Medina, Gerardo

    2014-06-01

    Gobiidae is the most specious fish family in the world with almost 2 000 species, however only 11% of them have been described for their larval stages. The entire life cycle information is essential to understand the biology and ecology of this important fish group. Previous studies on zooplankton samples from Ensenada de La Paz, México, have shown the presence of several Gobiidae larvae and juveniles which were identified as Evermania zosterura. The main objective of this work was to describe the larval stages of this species, widely distributed in the Eastern tropical Pacific. The development of E. zosterura larvae was described based on 66 specimens. A total of 53 specimens were used to describe morphometrics and pigmentation patterns, while 13 specimens were cleared and stained, to obtain meristic characteristics. Cleared specimens had 30 to 31 total vertebrae; dorsal-fin elements: IV; 1, 13-14, anal-fin elements: 1, 13-14, and most had pterygiophore formula 4-111100. The combination of these characteristics confirmed these specimens as E. zosterura. The pigment pattern is similar throughout ontogeny. Larvae are characterized by having three to five dendritic melanophores along the post-anal ventral margin, four to nine smaller melanophores along the ventral margin between the isthmus and anus, and one on the midpoint of the dorsal margin of the tail. There is one small pigment spot on the angle of the jaw, and other on the tip of lower lip. There is an elongated internal pigment under the notochord, between the head and gas bladder. Notochord flexion starts near 3.5mm BL and ends at 4.6mm BL; transformalion to the juvenile stage is at about 13.6mm BL. Our conclusion is that the most useful characters to distinguish this species early-larval stages from those of similar species in the area, are the number of myomeres, the large melanophores (approximately uniformly in size) on the post anal ventral margin, and the elongate internal pigment under the notochord

  3. Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish

    PubMed Central

    van Eekelen, Mark; Overvoorde, John; van Rooijen, Carina; den Hertog, Jeroen

    2010-01-01

    Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs. PMID:20838449

  4. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain

    PubMed Central

    Cano-Nicolau, Joel; Vaillant, Colette; Pellegrini, Elisabeth; Charlier, Thierry D.; Kah, Olivier; Coumailleau, Pascal

    2016-01-01

    Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model. PMID:27047331

  5. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.

    PubMed

    Pereira, Talita Carneiro Brandão; Campos, Maria Martha; Bogo, Maurício Reis

    2016-07-01

    Copper is an essential micronutrient and a key catalytic cofactor in a wide range of enzymes. As a trace element, copper levels are tightly regulated and both its deficit and excess are deleterious to the organism. Under inflammatory conditions, serum copper levels are increased and trigger oxidative stress responses that activate inflammatory responses. Interestingly, copper dyshomeostasis, oxidative stress and inflammation are commonly present in several chronic diseases. Copper exposure can be easily modeled in zebrafish; a consolidated model in toxicology with increasing interest in immunity-related research. As a result of developmental, economical and genetic advantages, this freshwater teleost is uniquely suitable for chemical and genetic large-scale screenings, representing a powerful experimental tool for a whole-organism approach, mechanistic studies, disease modeling and beyond. Copper toxicological and more recently pro-inflammatory effects have been investigated in both larval and adult zebrafish with breakthrough findings. Here, we provide an overview of copper metabolism in health and disease and its effects on oxidative stress and inflammation responses in zebrafish models. Copper-induced inflammation is highlighted owing to its potential to easily mimic pro-oxidative and pro-inflammatory features that combined with zebrafish genetic tractability could help further in the understanding of copper metabolism, inflammatory responses and related diseases. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26888422

  6. Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis

    PubMed Central

    Fehr, Alexander; Eshwar, Athmanya K; Neuhauss, Stephan CF; Ruetten, Maja; Lehner, Angelika; Vaughan, Lloyd

    2015-01-01

    Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827T, a clinical isolate responsible for two fatal sepsis cases in neonates. Here, the microinjection of approximately 50 colony forming units (CFUs) into the yolk sac resulted in the rapid multiplication of bacteria and dissemination into the blood stream at 24 h post infection (hpi), followed by the development of a severe bacteremia and larval death within 3 days. In contrast, the innate immune response of the embryos was sufficiently developed to control infection after the intravenous injection of up to 104 CFUs of bacteria. Infection studies using an isogenic mutant devoid of surviving and replicating in human macrophages (ΔfkpA) showed that this strain was highly attenuated in its ability to kill the larvae. In addition, the suitability of the zebrafish model system to study the effectiveness of antibiotics to treat Cronobacter infections in zebrafish embryos was examined. Our data indicate that the zebrafish model represents an excellent vertebrate model to study virulence-related aspects of this opportunistic pathogen in vivo. PMID:26060602

  7. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain.

    PubMed

    Cano-Nicolau, Joel; Vaillant, Colette; Pellegrini, Elisabeth; Charlier, Thierry D; Kah, Olivier; Coumailleau, Pascal

    2016-01-01

    Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model. PMID:27047331

  8. The Complete and Updated "Rotifer Polyculture Method" for Rearing First Feeding Zebrafish.

    PubMed

    Lawrence, Christian; Best, Jason; Cockington, Jason; Henry, Eric C; Hurley, Shane; James, Althea; Lapointe, Christopher; Maloney, Kara; Sanders, Erik

    2016-01-01

    The zebrafish (Danio rerio) is a model organism of increasing importance in many fields of science. One of the most demanding technical aspects of culture of this species in the laboratory is rearing first-feeding larvae to the juvenile stage with high rates of growth and survival. The central management challenge of this developmental period revolves around delivering highly nutritious feed items to the fish on a nearly continuous basis without compromising water quality. Because larval zebrafish are well-adapted to feed on small zooplankton in the water column, live prey items such as brachionid rotifers, Artemia, and Paramecium are widely recognized as the feeds of choice, at least until the fish reach the juvenile stage and are able to efficiently feed on processed diets. This protocol describes a method whereby newly hatched zebrafish larvae are cultured together with live saltwater rotifers (Brachionus plicatilis) in the same system. This polyculture approach provides fish with an "on-demand", nutrient-rich live food source without producing chemical waste at levels that would otherwise limit performance. Importantly, because the system harnesses both the natural high productivity of the rotifers and the behavioral preferences of the fish, the labor involved with maintenance is low. The following protocol details an updated, step-by-step procedure that incorporates rotifer production (scalable to any desired level) for use in a polyculture of zebrafish larvae and rotifers that promotes maximal performance during the first 5 days of exogenous feeding. PMID:26863035

  9. Whole-animal Imaging, Gene Function, and the Zebrafish Phenome Project

    PubMed Central

    Cheng, Keith C.; Xin, Xuying; Clark, Darin; La Riviere, Patrick

    2011-01-01

    Imaging can potentially make a major contribution to the zebrafish phenome project, which will probe the functions of vertebrate genes through the generation and phenotyping of mutants. Imaging of whole animals at different developmental stages through adulthood will be used to infer biological function. Cell resolutions will be required to identify cellular mechanism and to detect a full range of organ effects. Light-based imaging of live zebrafish embryos is practical only up to ~2 days of development, due to increasing pigmentation and diminishing tissue lucency with age. The small size of the zebrafish makes possible whole-animal imaging at cell resolutions by histology and micron-scale tomography (microCT). The histological study of larvae is facilitated by the use of arrays, and histology’s standard use in the study of human disease enhances its translational value. Synchrotron microCT with X-rays of moderate energy (10-25 keV) is unimpeded by pigmentation or the tissue thicknesses encountered in zebrafish of larval stages and beyond, and is well-suited to detecting phenotypes that may require 3D modeling. The throughput required for this project will require robotic sample preparation and loading, increases in the dimensions and sensitivity of scintillator and CCD chips, increases in computer power, and the development of new approaches to image processing, segmentation, and quantification. PMID:21963132

  10. INDUCED AND SPONTANEOUS NEOPLASIA IN ZEBRAFISH.

    EPA Science Inventory

    To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors, and to compare zebrafish tumors with human tumors. To determine whether the commonly-used germ line mutagen, ethylnitrosourea (ENU) induces tumors, we ...

  11. Zebrafish as a cancer model.

    PubMed

    Feitsma, Harma; Cuppen, Edwin

    2008-05-01

    The zebrafish has developed into an important model organism for biomedical research over the last decades. Although the main focus of zebrafish research has traditionally been on developmental biology, keeping and observing zebrafish in the lab led to the identification of diseases similar to humans, such as cancer, which subsequently became a subject for study. As a result, about 50 articles have been published since 2000 in which zebrafish were used as a cancer model. Strategies used include carcinogenic treatments, transplantation of mammalian cancer cells, forward genetic screens for proliferation or genomic instability, reverse genetic target-selected mutagenesis to inactivate known tumor suppressor genes, and the generation of transgenics to express human oncogenes. Zebrafish have been found to develop almost any tumor type known from human, with similar morphology and, according to gene expression array studies, comparable signaling pathways. However, tumor incidences are relatively low, albeit highly comparable between different mutants, and tumors develop late in life. In addition, tumor spectra are sometimes different when compared with mice and humans. Nevertheless, the zebrafish model has created its own niche in cancer research, complementing existing models with its specific experimental advantages and characteristics. Examples of these are imaging of tumor progression in living fish by fluorescence, treatment with chemical compounds, and screening possibilities not only for chemical modifiers but also for genetic enhancers and suppressors. This review aims to provide a comprehensive overview of the state of the art of zebrafish as a model in cancer research. (Mol Cancer Res 2008;6(5):685-94). PMID:18505914

  12. A model 450 million years in the making: zebrafish and vertebrate immunity

    PubMed Central

    Renshaw, Stephen A.; Trede, Nikolaus S.

    2012-01-01

    Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis. PMID:22228790

  13. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States.

    PubMed

    Chiu, Cindy N; Rihel, Jason; Lee, Daniel A; Singh, Chanpreet; Mosser, Eric A; Chen, Shijia; Sapin, Viveca; Pham, Uyen; Engle, Jae; Niles, Brett J; Montz, Christin J; Chakravarthy, Sridhara; Zimmerman, Steven; Salehi-Ashtiani, Kourosh; Vidal, Marc; Schier, Alexander F; Prober, David A

    2016-02-17

    Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway. PMID:26889812

  14. DeltaA mRNA and protein distribution in the zebrafish nervous system.

    PubMed

    Tallafuss, Alexandra; Trepman, Alissa; Eisen, Judith S

    2009-12-01

    Physical interaction between the transmembrane proteins Delta and Notch allows only a subset of neural precursors to become neurons, as well as regulating other aspects of neural development. To examine the localization of Delta protein during neural development, we generated an antibody specific to zebrafish Delta A (Dla). Here, we describe for the first time the subcellular localization of Dla protein in distinct puncta at cell cortex and/or membrane, supporting the function of Dla in direct cell-cell communication. In situ RNA hybridization and immunohistochemistry revealed dynamic, coordinated expression patterns of dla mRNA and Dla protein in the developing and adult zebrafish nervous system. Dla expression is mostly excluded from differentiated neurons and is maintained in putative precursor cells at least until larval stages. In the adult brain, dla mRNA and Dla protein are expressed in proliferative zones normally associated with stem cells. PMID:19924821

  15. Zebrafish as a Model for the Study of Chaperonopathies.

    PubMed

    Bellipanni, Gianfranco; Cappello, Francesco; Scalia, Federica; Conway de Macario, Everly; Macario, Alberto J L; Giordano, Antonio

    2016-10-01

    There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies. Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone genes during development, starting with fertilization and proceeding throughout the entire ontogenetic process. Zebrafish is amenable to such developmental analysis as well as studies during adulthood. In addition, the zebrafish genome contains a wide range of genes encoding proteins similar to those that form the chaperoning system of humans. This, together with the availability of techniques for genetic manipulations and for examination of all stages of development, makes zebrafish the organism of choice for the analysis of the molecular features and pathogenic mechanisms pertaining to human chaperonopathies. J. Cell. Physiol. 231: 2107-2114, 2016. © 2016 Wiley Periodicals, Inc. PMID:26812965

  16. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  17. Trim69 regulates zebrafish brain development by ap-1 pathway

    PubMed Central

    Han, Ruiqin; Wang, Renxian; Zhao, Qing; Han, Yongqing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-01-01

    Proteins belonging to the TRIM family have been implicated in a variety of cellular processes such as apoptosis, differentiation, neurogenesis, muscular physiology and innate immune responses. Trim69, previously identified as a novel gene cloned from a human testis cDNA library, has a homologous gene in zebrafish and this study focused on investigating the function of trim69 in zebrafish neurogenesis. Trim69 was found to be expressed in zebrafish embryo brain at the early stages. Knockdown of trim69 led to deformed brain development, obvious signs of apoptosis present in the head, and decreased expression of neuronal differentiation and stem cell markers. This phenotype was rescued upon co-injection of human mRNA together along with the trim69 knockdown. Results of this study also showed an interaction between TRIM69 and c-Jun in human cells, and upon TRIM69 knock down c-Jun expression subsequently increased, whereas the over-expression of TRIM69 led to the down-regulation of c-Jun. Additionally, knockdown both c-Jun and trim69 can rescue the deformed brain, evident cellular apoptosis in the head and decreased expression of neuronal differentiation and stem cell markers. Overall, our results support a role for trim69 in the development of the zebrafish brain through ap-1 pathway. PMID:27050765

  18. Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis

    PubMed Central

    Riedel, Dietmar; Schomburg, Christoph; Cerdà, Joan; Vollack, Nadine; Dosch, Roland

    2014-01-01

    During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research. PMID:24967841

  19. Comparative Metal Oxide Nanoparticle Toxicity Using Embryonic Zebrafish

    PubMed Central

    Wehmas, Leah C.; Anders, Catherine; Chess, Jordan; Punnoose, Alex; Pereira, Cliff B.; Greenwood, Juliet A.; Tanguay, Robert L.

    2015-01-01

    Engineered metal oxide nanoparticles (MO NPs) are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO), titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration = 3.5–9.1 mg/L). This toxicity was life stage dependent. The 24 h toxicity increased greatly (~22.7 fold) when zebrafish exposures started at the larval life stage compared to the 24 hour toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40–89% of total sample) were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity. PMID:26029632

  20. Developmental role of acetylcholinesterase in impulse control in zebrafish

    PubMed Central

    Parker, Matthew O.; Brock, Alistair J.; Sudwarts, Ari; Teh, Muy-Teck; Combe, Fraser J.; Brennan, Caroline H.

    2015-01-01

    Cellular and molecular processes that mediate individual variability in impulsivity, a key behavioral component of many neuropsychiatric disorders, are poorly understood. Zebrafish heterozygous for a nonsense mutation in ache (achesb55/+) showed lower levels of impulsivity in a 5-choice serial reaction time task (5-CSRTT) than wild type and ache+∕+. Assessment of expression of cholinergic (nAChR), serotonergic (5-HT), and dopamine (DR) receptor mRNA in both adult and larval (9 dpf) achesb55/+ revealed significant downregulation of chrna2, chrna5, and drd2 mRNA in achesb55/+ larvae, but no differences in adults. Acute exposure to cholinergic agonist/antagonists had no effect on impulsivity, supporting the hypothesis that behavioral effects observed in adults were due to lasting impact of developmental alterations in cholinergic and dopaminergic signaling. This shows the cross-species role of cholinergic signaling during brain development in impulsivity, and suggests zebrafish may be a useful model for the role of cholinergic pathways as a target for therapeutic advances in addiction medicine. PMID:26528153