Science.gov

Sample records for early plant growth

  1. Effects of Foliar Fertilizer and Mepiquat Penteborate on Early Planted Cotton Growth and Lint Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple growth regulators and foliar fertilizers are currently marketed for use in cotton (Gossypium hirsutum L.) with varying effectiveness in promoting yield improvement. This research addressed the effectiveness of these products in a cotton early planting production system with its higher yiel...

  2. Early vs. asymptotic growth responses of herbaceous plants to elevated CO[sub 2

    SciTech Connect

    Thomas, S.C.; Jasienski, M.; Bazzaz, F.A. . Dept. of Organismic and Evolutionary Biology)

    1999-07-01

    Although many studies have examined the effects of elevated carbon dioxide on plant growth,'' the dynamics of growth involve at least two parameters, namely, an early rate of exponential size increase and an asymptotic size reached late in plant ontogeny. The common practice of quantifying CO[sub 2] responses as a single response ratio thus obscures two qualitatively distinct kinds of effects. The present experiment examines effects of elevated CO[sub 2] on both early and asymptotic growth parameters in eight C[sub 3] herbaceous plant species (Abutilon theophrasti, Cassia obtusifolia, Plantago major, Rumex crispus, Taraxacum officinale, Dactylis glomerata, Lolium multiflorum, and Panicum dichotomoflorum). Plants were grown for 118--172 d in a factorial design of CO[sub 2] (350 and 700 [micro]L/L) and plant density (individually grown vs. high-density monocultures) under edaphic conditions approximating those of coastal areas in Massachusetts. For Abutilon theophrasti, intraspecific patterns of plant response were also assessed using eight genotypes randomly sampled from a natural population and propagated as inbred lines.

  3. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  4. Impact of starter fertilizer on cotton growth, development, lint yield, and fiber quality production for an early planted no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved yield potentials occur when planting cotton (Gossypium hirsutum L.) early, but cool conditions often associated with early planting can hamper early seedling growth. Starter fertilizers could be good source of P for seedling growth under cool conditions due to reduced soil P mineralizatio...

  5. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    PubMed

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy. PMID:25644367

  6. Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants.

    PubMed

    Macoustra, Gabriella K; King, Catherine K; Wasley, Jane; Robinson, Sharon A; Jolley, Dianne F

    2015-07-01

    Special Antarctic Blend (SAB) is a diesel fuel dominated by aliphatic hydrocarbons that is commonly used in Antarctic and subantarctic regions. The past and present use of SAB fuel at Australia's scientific research stations has resulted in multiple spills, contaminating soils in these pristine areas. Despite this, no soil quality guidelines or remediation targets have been developed for the region, primarily due to the lack of established indigenous test species and subsequent biological effects data. In this study, twelve plant species native to subantarctic regions were collected from Macquarie Island and evaluated to determine their suitably for use in laboratory-based toxicity testing, using germination success and seedling growth (shoot and root length) as endpoints. Two soil types (low and high organic carbon (OC)) were investigated to reflect the variable OC content found in soils on Macquarie Island. These soils were spiked with SAB fuel and aged for 14 days to generate a concentration series of SAB-contaminated soils. Exposure doses were quantified as the concentration of total petroleum hydrocarbons (TPH, nC9-nC18) on a soil dry mass basis. Seven species successfully germinated on control soils under laboratory conditions, and four of these species (Colobanthus muscoides Hook.f., Deschampsia chapmanii Petrie, Epilobium pendunculare A.Cunn. and Luzula crinita Hook.f.) showed a dose-dependent inhibition of germination when exposed to SAB-contaminated soils. Contaminated soils with low OC were generally more toxic to plants than high organic carbon soils. Increasing soil-TPH concentrations significantly inhibited shoot and root growth, and root length was identified as the most sensitive endpoint. Although the test species were tolerant to SAB-contaminated soils in germination assays, development of early life stages (up to 28 days) were generally more sensitive indicator of exposure effects, and may be more useful endpoints for future testing. PMID

  7. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.)

    PubMed Central

    Santos, Carla S.; Roriz, Mariana; Carvalho, Susana M. P.; Vasconcelos, Marta W.

    2015-01-01

    Iron (Fe) deficiency chlorosis (IDC) leads to leaf yellowing, stunted growth and drastic yield losses. Plants have been differentiated into ‘Fe-efficient’ (EF) if they resist to IDC and ‘Fe-inefficient’ (IN) if they do not, but the reasons for this contrasting efficiency remain elusive. We grew EF and IN soybean plants under Fe deficient and Fe sufficient conditions and evaluated if gene expression and the ability to partition Fe could be related to IDC efficiency. At an early growth stage, Fe-efficiency was associated with higher chlorophyll content, but Fe reductase activity was low under Fe-deficiency for EF and IN plants. The removal of the unifoliate leaves alleviated IDC symptoms, increased shoot:root ratio, and trifoliate leaf area. EF plants were able to translocate Fe to the aboveground plant organs, whereas the IN plants accumulated more Fe in the roots. FRO2-like gene expression was low in the roots; IRT1-like expression was higher in the shoots; and ferritin was highly expressed in the roots of the IN plants. The efficiency trait is linked to Fe partitioning and the up-regulation of Fe-storage related genes could interfere with this key process. This work provides new insights into the importance of mineral partitioning among different plant organs at an early growth stage. PMID:26029227

  8. Phosphoproteome Dynamics Upon Changes in Plant Water Status Reveal Early Events Associated With Rapid Growth Adjustment in Maize Leaves*

    PubMed Central

    Bonhomme, Ludovic; Valot, Benoît; Tardieu, François; Zivy, Michel

    2012-01-01

    Plant growth adjustment during water deficit is a crucial adaptive response. The rapid fine-tuned control achieved at the post-translational level is believed to be of considerable importance for regulating early changes in plant growth reprogramming. Aiming at a better understanding of early responses to contrasting plant water statuses, we carried out a survey of the protein phosphorylation events in the growing zone of maize leaves upon a range of water regimes. In this study, the impact of mild and severe water deficits were evaluated in comparison with constant optimal watering and with recovery periods lasting 5, 10, 20, 30, 45, and 60 min. Using four biological replicates per treatment and a robust quantitative phosphoproteomic methodology based on stable-isotope labeling, we identified 3664 unique phosphorylation sites on 2496 proteins. The abundance of nearly 1250 phosphorylated peptides was reproducibly quantified and profiled with high confidence among treatments. A total of 138 phosphopeptides displayed highly significant changes according to water regimes and enabled to identify specific patterns of response to changing plant water statuses. Further quantification of protein amounts emphasized that most phosphorylation changes did not reflect protein abundance variation. During water deficit and recovery, extensive changes in phosphorylation status occurred in critical regulators directly or indirectly involved in plant growth and development. These included proteins influencing epigenetic control, gene expression, cell cycle-dependent processes and phytohormone-mediated responses. Some of the changes depended on stress intensity whereas others depended on rehydration duration, including rapid recoveries that occurred as early as 5 or 10 mins after rewatering. By combining a physiological approach and a quantitative phosphoproteomic analysis, this work provides new insights into the in vivo early phosphorylation events triggered by rapid changes in

  9. Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants

    PubMed Central

    Yin, Liyan; Colman, Benjamin P.; McGill, Bonnie M.; Wright, Justin P.; Bernhardt, Emily S.

    2012-01-01

    The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs–20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)–to the effects of AgNO3 exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L−1). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L−1 GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L−1 AgNO3 enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO3 and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO3 and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO3 did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities. PMID:23091638

  10. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages

    PubMed Central

    Hardoim, Pablo R.; Hardoim, Cristiane C. P.; van Overbeek, Leonard S.; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed. PMID:22363438

  11. Dynamics of seed-borne rice endophytes on early plant growth stages.

    PubMed

    Hardoim, Pablo R; Hardoim, Cristiane C P; van Overbeek, Leonard S; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed. PMID:22363438

  12. How Does Your Garden Grow? Early Conceptualization of Seeds and Their Place in the Plant Growth Cycle.

    ERIC Educational Resources Information Center

    Hickling, Anne K.; Gelman, Susan A.

    1995-01-01

    Examined young children's understanding of seed origins and growth preconditions and the stages of plant growth. Found that, by 4.5 years, children realized that natural causal mechanisms underlie plant growth and appreciated the relationship of seeds to plants. Results suggest that preschoolers hold theory-like understandings of plants similar to…

  13. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  14. Weed management practices for organic production of trailing blackberry. I. Plant growth and early fruit production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management practices were evaluated in a new field of trailing blackberry established in western Oregon. The field was planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, ‘Marion’ and ‘Black Diamond’, grown in 1) non-weeded plots, where weeds were cut to th...

  15. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life. PMID:24954142

  16. Plant growth promoting rhizobacterium

    SciTech Connect

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  17. Microgravity Plant Growth Demonstration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Two visitors watch a TV monitor showing plant growth inside a growth chamber designed for operation aboard the Space Shuttle as part of NASA's Space Product Development program. The exhibit, featuring work by the Wisconsin Center for Space Automation and Robotics, was at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  18. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change

    PubMed Central

    Menand, Benoît

    2013-01-01

    The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 μM and <1 μM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants. PMID:23963679

  19. Increased Sedoheptulose-1,7-Bisphosphatase Activity in Transgenic Tobacco Plants Stimulates Photosynthesis and Growth from an Early Stage in Development1

    PubMed Central

    Lefebvre, Stephane; Lawson, Tracy; Zakhleniuk, Oksana V.; Lloyd, Julie C.; Raines, Christine A.

    2005-01-01

    Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of an Arabidopsis (Arabidopsis thaliana) cDNA in tobacco (Nicotiana tabacum) plants. In plants with increased SBPase activity, photosynthetic rates were increased, higher levels of Suc and starch accumulated during the photoperiod, and an increase in leaf area and biomass of up to 30% was also evident. Light saturated photosynthesis increased with increasing SBPase activity and analysis of CO2 response curves revealed that this increase in photosynthesis could be attributed to an increase in ribulose 1,5-bisphosphate regenerative capacity. Seedlings with increased SBPase activity had an increased leaf area at the 4 to 5 leaf stage when compared to wild-type plants, and chlorophyll fluorescence imaging of these young plants revealed a higher photosynthetic capacity at the whole plant level. Measurements of photosynthesis, made under growth conditions integrated over the day, showed that mature plants with increased SBPase activity fixed 6% to 12% more carbon than equivalent wild-type leaves, with the young leaves having the highest rates. In this paper, we have shown that photosynthetic capacity per unit area and plant yield can be increased by overexpressing a single native plant enzyme, SBPase, and that this gives an advantage to the growth of these plants from an early phase of vegetative growth. This work has also shown that it is not necessary to bypass the normal regulatory control of SBPase, exerted by conditions in the stroma, to achieve improvements in carbon fixation. PMID:15863701

  20. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    PubMed

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. PMID:27155482

  1. Plant Growth Facility (PGF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  2. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2001-02-15

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  3. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

    2001-05-17

    The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

  4. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Lalit S. Shah; William K. Davis

    2000-05-01

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal or coal in combination with some other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Test Plan (RD and T) for implementation in Phase II. The objective of Phase II is to conduct RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of Coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Belma Demirel; Ming He; Troy Raybold; Manuel E. Quintana; Lalit S. Shah; Kenneth A. Yackly

    2003-06-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  6. Early Entrance Coproduction Plant

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2004-01-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  7. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2003-12-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  8. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Ming He; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2003-09-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  9. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Fred Brent; Ming He; Jimmy O. Ong; Mike K. Porter; Randy Roberts; Charles H. Schrader; Lalit S. Shah; Kenneth A. Yackly

    2002-11-22

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  10. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2000-10-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John H. Anderson; William K. Davis; Thomas W. Sloop

    2001-03-21

    As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

  12. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important

  13. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Charles Schrader

    2004-01-26

    In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental

  14. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture

  15. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the

  16. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

    2003-08-21

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and

  17. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs

  19. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Randy Roberts

    2003-04-25

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In

  20. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

    2003-09-15

    The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making

  1. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  2. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    PubMed

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows. PMID:25628114

  3. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels

  4. Early stage of nanocrystal growth

    SciTech Connect

    2012-01-01

    Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals. This electron microscopy movie shows the early stage of nanocrystal growth. Nanoparticles make transient contact at many points and orientations until their lattices are perfectly matched. The particles then make a sudden jump-to-contact to form attached aggregates. (Movie courtesy of Jim DeYoreo)

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific

  6. Students' Ideas about Plants and Plant Growth

    ERIC Educational Resources Information Center

    Barman, Charles R.; Stein, Mary; McNair, Shannan; Barman, Natalie S.

    2006-01-01

    Because the National Science Education Standards (1996) outline specific things K-8 students should know about plants, and previous data indicated that elementary students had difficulty understanding some major ideas about plants and plant growth, the authors of this article thought it appropriate to initiate an investigation to determine the…

  7. Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results.

    PubMed

    Davies, M S

    1996-01-01

    In an attempt to replicate the findings of Smith et al., seeds of Raphanus sativus L. (radish), Sinapsis alba L. (mustard), and Hordeum vulgare L. (barley) were grown for between 9 and 21 days in continuous electromagnetic fields (EMFs) at "ion-cyclotron resonance" conditions for stimulation of Ca(2+) (B(H) = 78.3 mu T, B(HAC) = 40 mu T peak-peak at 60 Hz, B(V) = 0). On harvesting, radish showed results similar to those of Smith et al. Dry stem weight and plant height were both significantly greater (Mann-Whitney tests, Ps < 0.05) in EMF-exposed plants than in control plants in each EMF experiment. Wet root weight was significantly greater in EMF-exposed plants in two out of three experiments, as were dry leaf weight, dry whole weight, and stem diameter. Dry root weight, wet leaf weight, and wet whole weight were significantly greater in EMF-exposed plants in one of three experiments. All significant differences indicated an increase in weight or size in the EMF-exposed plants. In each of the sham experiments, no differences between exposed and control plants were evident. Mustard plants failed to respond to the EMFs in any of the plant parameters measured. In one experiment, barley similarly failed to respond; but in another showed significantly greater wet root weight and significantly smaller stem diameter and dry seed weight at the end of the experiment in exposed plants compared to control plants. Although these results give no clue about the underlying bioelectromagnetic mechanism, they demonstrate that, at least for one EMF-sensitive biosystem, results can be independently replicated in another laboratory. Such replication is crucial in establishing the validity of bioelectromagnetic science. PMID:8860733

  8. Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results

    SciTech Connect

    Davis, M.S.

    1996-05-01

    In an attempt to replicate the findings of Smith et al., seeds of Raphanus sativus L. (radish), Sinapsis alba L. (mustard), and Hordeum vulgare L. (barley) were grown for between 9 and 21 days in continuous electromagnetic fields (EMFs) at ion-cyclotron resonance conditions for stimulation of Ca{sup 2+} (B{sub H} = 78.3 {micro}T, B{sub HAC} = 40 {micro}T peak-peak at 60 Hz, B{sub v} = 0). On harvesting, radish showed results similar to those of Smith et al. Dry stem weight and plant height were both significantly greater (Mann-Whitney tests, Ps < 0.05) in EMF-exposed plants than in control plants in each EMF experiment. Wet root weight was significantly greater in EMF-exposed plants in two out of three experiments, as were dry leaf weight, dry whole weight, and stem diameter. Dry root weight, wet leaf weight, and wet whole weight were significantly greater in EMF-exposed plants in one of three experiments. All significant differences indicated an increase in weight or size in the EMF-exposed plants. In each of the sham experiments, no differences between exposed and control plants were evident. Mustard plants failed to respond to the EMFs in any of the plant parameters measured. In one experiment, barley similarly failed to respond; but in another showed significantly greater wet root weight and significantly smaller stem diameter and dry seed weight at the end of the experiment in exposed plants compared to control plants. Although these results give no clue about the underlying bioelectromagnetic mechanism, they demonstrate that, at least for one EMF-sensitive biosystem, results can be independently replicated in another laboratory. Such replication is crucial in establishing the validity of bioelectromagnetic science.

  9. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  10. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  11. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  12. [Early childhood growth and development].

    PubMed

    Arce, Melitón

    2015-01-01

    This article describes and discusses issues related to the process of childhood growth and development, with emphasis on the early years, a period in which this process reaches critical speed on major structures and functions of the human economy. We reaffirm that this can contribute to the social availability of a generation of increasingly better adults, which in turn will be able to contribute to building a better world and within it a society that enjoys greater prosperity. In the first chapter, we discuss the general considerations on the favorable evolution of human society based on quality of future adults, meaning the accomplishments that today’s children will gain. A second chapter mentions the basics of growth and development in the different fields and the various phenomena that occur in it. In the third we refer to lost opportunities and negative factors that can affect delaying the process and thereby result in not obtaining the expected accomplishments. In the fourth, conclusions and recommendations are presented confirming the initial conception that good early child care serves to build a better society and some recommendations are formulated to make it a good practice. PMID:26580942

  13. Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae)

    PubMed Central

    Li, Haiyan; Li, Xiaoshuang; Zhang, Daoyuan; Liu, Huiliang; Guan, Kaiyun

    2013-01-01

    Eremosparton songoricum (Litv.) Vass. is an endemic and extremely drought-resistant desert plant with populations that are gradually declining due to the failure of sexual recruitment. The effects of drought stress on the seed germination and physiological characteristics of seeds and seedlings were investigated. The results showed that the germination percentage decreased with an increase of polyethylene glycol 6000 (PEG) concentration: -0.3 MPa (5 % PEG) had a promoting effect on seed germination, -0.9 MPa (15 % PEG) dramatically reduced germination, and -1.8 MPa (30 % PEG) was the threshold for E. songoricum germination. However, the contents of proline and soluble sugars and the activity of CAT increased with increasing PEG concentrations. At the young seedling stage, the proline content and CAT, SOD and POD activities all increased at 2 h and then decreased; except for a decrease at 2 h, the MDA content also increased compared to the control (0 h). These results indicated that 2 h may be a key response time point for E. songoricum to resist drought stress. The above results demonstrate that drought stress can suppress and delay the germination of E. songoricum and that the seeds accumulate osmolytes and augment the activity of antioxidative enzymes to cope with drought injury. E. songoricum seedlings are sensitive to water stress and can quickly respond to drought but cannot tolerate drought for an extended period. Although such physiological and biochemical changes are important strategies for E. songoricum to adapt to a drought-prone environment, they may be, at least partially, responsible for the failure of sexual reproduction under natural conditions. PMID:26417219

  14. Bean Plants: A Growth Experience

    ERIC Educational Resources Information Center

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  15. A Simple Plant Growth Analysis.

    ERIC Educational Resources Information Center

    Oxlade, E.

    1985-01-01

    Describes the analysis of dandelion peduncle growth based on peduncle length, epidermal cell dimensions, and fresh/dry mass. Methods are simple and require no special apparatus or materials. Suggests that limited practical work in this area may contribute to students' lack of knowledge on plant growth. (Author/DH)

  16. INTERACTIONS BETWEEN SOIL TEMPERATURE AND PLANT GROWTH STAGE ON NITROGEN UPTAKE AND AMINO ACID CONTENT OF APPLE NURSERY STOCK DURING EARLY SPRING GROWTH

    EPA Science Inventory

    In the spring, nitrogen (N) uptake by apple roots is known to be delayed about three weeks after bud break. We used one-year-old 'Fuji' (Malus domestica Borkh) on M26 bare-root apple trees to determine whether timing of N uptake in the spring is dependant solely on the growth st...

  17. Plant growth strategies are remodeled by spaceflight

    PubMed Central

    2012-01-01

    Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting that other tropisms (such as

  18. Sequential Transphosphorylation of the BRI1/BAK1 Receptor Kinase Pair Regulates Early Events of the Brassinosteriod Signaling Pathway Promoting Plant Growth and Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) regulate multiple aspects of plant growth and development through a signal transduction pathway that is initiated by BR binding to the transmembrane receptor kinase BRI1. Activated BRI1 heterodimerizes with a second receptor kinase, BAK1, leading to enhanced signaling output. ...

  19. Early recognition of growth abnormalities permitting early intervention

    PubMed Central

    Haymond, Morey; Kappelgaard, Anne-Marie; Czernichow, Paul; Biller, Beverly MK; Takano, Koji; Kiess, Wieland

    2013-01-01

    Normal growth is a sign of good health. Monitoring for growth disturbances is fundamental to children's health care. Early detection and diagnosis of the causes of short stature allows management of underlying medical conditions, optimizing attainment of good health and normal adult height. Conclusion This review summarizes currently available information on monitoring for short stature in children and conditions usually associated with short stature and summarizes the authors’ conclusions on the early recognition of growth disorders. PMID:23586744

  20. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping.

    PubMed

    Rebolledo, M C; Dingkuhn, M; Courtois, B; Gibon, Y; Clément-Vidal, A; Cruz, D F; Duitama, J; Lorieux, M; Luquet, D

    2015-09-01

    Early vigour of rice, defined as seedling capacity to accumulate shoot dry weight (SDW) rapidly, is a complex trait. It depends on a genotype propensity to assimilate, store, and/or use non-structural carbohydrates (NSC) for producing large and/or numerous leaves, involving physiological trade-offs in the expression of component traits and, possibly, physiological and genetic linkages. This study explores a plant-model-assisted phenotyping approach to dissect the genetic architecture of rice early vigour, applying the Genome Wide Association Study (GWAS) to morphological and NSC measurements, as well as fitted parameters for the functional-structural plant model, Ecomeristem. Leaf size, number, SDW, and source-leaf NSC concentration were measured on a panel of 123 japonica accessions. The data were used to estimate Ecomeristem genotypic parameters driving organ appearance rate, size, and carbon dynamics. GWAS was performed based on 12 221 single-nucleotide polymorphisms (SNP). Twenty-three associations were detected at P <1×10(-4) and 64 at P <5×10(-4). Associations for NSC and model parameters revealed new regions related to early vigour that had greater significance than morphological traits, providing additional information on the genetic control of early vigour. Plant model parameters were used to characterize physiological and genetic trade-offs among component traits. Twelve associations were related to loci for cloned genes, with nine related to organogenesis, plant height, cell size or cell number. The potential use of these associations as markers for breeding is discussed. PMID:26022255

  1. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping

    PubMed Central

    Rebolledo, M. C.; Dingkuhn, M.; Courtois, B.; Gibon, Y.; Clément-Vidal, A.; Cruz, D. F.; Duitama, J.; Lorieux, M.; Luquet, D.

    2015-01-01

    Early vigour of rice, defined as seedling capacity to accumulate shoot dry weight (SDW) rapidly, is a complex trait. It depends on a genotype propensity to assimilate, store, and/or use non-structural carbohydrates (NSC) for producing large and/or numerous leaves, involving physiological trade-offs in the expression of component traits and, possibly, physiological and genetic linkages. This study explores a plant-model-assisted phenotyping approach to dissect the genetic architecture of rice early vigour, applying the Genome Wide Association Study (GWAS) to morphological and NSC measurements, as well as fitted parameters for the functional–structural plant model, Ecomeristem. Leaf size, number, SDW, and source-leaf NSC concentration were measured on a panel of 123 japonica accessions. The data were used to estimate Ecomeristem genotypic parameters driving organ appearance rate, size, and carbon dynamics. GWAS was performed based on 12 221 single-nucleotide polymorphisms (SNP). Twenty-three associations were detected at P <1×10–4 and 64 at P <5×10–4. Associations for NSC and model parameters revealed new regions related to early vigour that had greater significance than morphological traits, providing additional information on the genetic control of early vigour. Plant model parameters were used to characterize physiological and genetic trade-offs among component traits. Twelve associations were related to loci for cloned genes, with nine related to organogenesis, plant height, cell size or cell number. The potential use of these associations as markers for breeding is discussed. PMID:26022255

  2. Early recognition of growth abnormalities permitting early intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Normal growth is a sign of good health. Monitoring for growth disturbances is fundamental to children's health care. Early detection and diagnosis of the causes of short stature allows management of underlying medical conditions, optimizing attainment of good health and normal adult height. This rev...

  3. Water-Conserving Plant-Growth System

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  4. LED Systems Target Plant Growth

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  5. (Plant growth with limited water)

    SciTech Connect

    Not Available

    1991-01-01

    The work supported by DOE in the last year built on our earlier findings that stem growth in soybean subjected to limited water is inhibited first by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. With time, there is modest recovery in extensibility and a 28kD protein accumulates in the walls of the growth-affected cells. A 31kD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. Explorations of the mRNA for these proteins showed that the mRNA for the 28kD protein increased in the shoot in response to water deprivation but the mRNA for the 31kD protein did not accumulate. In contrast, the roots continued to grow and the mRNA for the 31kD protein accumulated but the mRNA for the 28kD protein was undetectable. We also explored how growth occurs in the absence of an external water supply. We found that, under these conditions, internal water is mobilized from surrounding nongrowing or slowly growing tissues and is used by rapidly growing cells. We showed that a low water potential is normally present in the enlarging tissues and is the likely force that extracts water from the surrounding tissues. We found that it involved a gradient in water potential that extended from the xylem to the outlying cells in the enlarging region and was not observed in the slowly growing basal tissue of the stems of the same plant. The gradient was measured directly with single cell determinations of turgor and osmotic potential in intact plants. The gradient may explain instances of growth inhibition with limited water when there is no change in the turgor of the enlarging cells. 17 refs.

  6. The microfossil record of early land plants.

    PubMed

    Wellman, C H; Gray, J

    2000-06-29

    Dispersed microfossils (spores and phytodebris) provide the earliest evidence for land plants. They are first reported from the Llanvirn (Mid-Ordovician). More or less identical assemblages occur from the Llanvirn (Mid-Ordovician) to the late Llandovery (Early Silurian), suggesting a period of relative stasis some 40 Myr in duration. Various lines of evidence suggest that these early dispersed microfossils derive from parent plants that were bryophyte-like if not in fact bryophytes. In the late Llandovery (late Early Silurian) there was a major change in the nature of dispersed spore assemblages as the separated products of dyads (hilate monads) and tetrads (trilete spores) became relatively abundant. The inception of trilete spores probably represents the appearance of vascular plants or their immediate progenitors. A little later in time, in the Wenlock (early Late Silurian), the earliest unequivocal land plant megafossils occur. They are represented by rhyniophytoids. It is only from the Late Silurian onwards that the microfossil/ megafossil record can be integrated and utilized in interpretation of the flora. Dispersed microfossils are preserved in vast numbers, in a variety of environments, and have a reasonable spatial and temporal fossil record. The fossil record of plant megafossils by comparison is poor and biased, with only a dozen or so known pre-Devonian assemblages. In this paper, the early land plant microfossil record, and its interpretation, are reviewed. New discoveries, novel techniques and fresh lines of inquiry are outlined and discussed. PMID:10905606

  7. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  8. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact. PMID:19121038

  9. Mycorrhizal response trades off with plant growth rate and increases with plant successional status.

    PubMed

    Koziol, Liz; Bever, James D

    2015-07-01

    Early-successional plant species invest in rapid growth and reproduction in contrast to slow growing late-successional species. We test the consistency of "trade-offs between plant life history and responsiveness on arbuscular mycorrhizal fungi. We selected four very early-, seven early-, 11 middle-, and eight late-successional plant species from six different families and functional groups and grew them with and without a mixed fungal inoculum and compared root architecture, mycorrhizal responsiveness, and plant growth rate. Our results indicate mycorrhizal responsiveness increases with plant successional stage and that this effect explains more variation in mycorrhizal response than is explained by phylogenetic relatedness. The mycorrhizal responsiveness of individual plant species was positively correlated with mycorrhizal root infection and negatively correlated with average plant mass and the number of root tips per unit mass, indicating that both plant growth rate and root architecture trade off with investment in mycorrhizal mutualisms. Because late-successional plants are very responsive to mycorrhizal fungi, our results suggest that fungal community dynamics may be an important driver of plant succession. PMID:26378299

  10. REVIEW OF "PLANT GROWTH AND CLIMATE CHANGE"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews a recent book on the topic entitled APlant Growth and Climate Change@ edited by James I.L. Morison and Michael D. Morecroft. The authors discuss effects of elevated CO2 and temperature on plant growth and development and on plant water relations. The book gives a generally good ov...

  11. Spiral Growth in Plants: Models and Simulations

    ERIC Educational Resources Information Center

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  12. Plant photomorphogenesis and canopy growth

    NASA Technical Reports Server (NTRS)

    Ballare, Carlos L.; Scopel, Ana L.

    1994-01-01

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2) designing lighting conditions to increase plant productivity in CE used for agronomic purposes (e.g. space farming in CE Life Support Systems). We concentrate on the visible (lambda between 400 and 700 nm) and far-infrared (FR; lambda greater than 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  13. Early influences of nutrition on postnatal growth.

    PubMed

    Koletzko, Berthold; Beyer, Jeanette; Brands, Brigitte; Demmelmair, Hans; Grote, Veit; Haile, Gudrun; Gruszfeld, Dariusz; Rzehak, Peter; Socha, Piotr; Weber, Martina

    2013-01-01

    Health and nutrition modulate postnatal growth. The availability of amino acids and energy, and insulin and insulin-like growth factor-I (IGF-I) regulates early growth through the mTOR pathway. Amino acids and glucose also stimulate the secretion of IGF-I and insulin. Postnatal growth induces lasting, programming effects on later body size and adiposity in animals and in human observational studies. Rapid weight gain in infancy and the first 2 years was shown to predict increased obesity risk in childhood and adulthood. Breastfeeding leads to lesser high weight gain in infancy and reduces obesity risk in later life by about 20%, presumably partly due to the lower protein supply with human milk than conventional infant formula. In a large randomized clinical trial, we tested the hypothesis that reduced infant formula protein contents lower insulin-releasing amino acid concentrations and thereby decrease circulating insulin and IGF-I levels, resulting in lesser early weight gain and reduced later obesity risk (the 'Early Protein Hypothesis'). The results demonstrate that lowered protein in infant formula induces similar - but not equal - metabolic and endocrine responses and normalizes weight and BMI relative to breastfed controls at the age of 2 years. The results available should lead to enhanced efforts to actively promote, protect and support breastfeeding. For infants that are not breastfed or not fully breastfed, the use of infant formulas with lower protein contents but high protein quality appears preferable. Cows' milk as a drink provides high protein intake and should be avoided in infancy. PMID:23502135

  14. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  15. How Plants Make Light Work of Growth.

    ERIC Educational Resources Information Center

    Kendrick, R. E.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas in biology. Contained is information on how plants use light for growth, seed germination, and flowering. (PB)

  16. Enhancement in leaf photosynthesis and upregulation of rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain sorghum was grown at 350 and 700 (high) ppm CO2, and at daytime maximum/nighttime minimum temperatures of 30/20 and 36/26C. Gas exchange rates, activities of Rubisco and PEP carboxylase (PEPC), leaf area, and biomass of various plant components were determined at different stages of leaf and p...

  17. Sealed Plant-Growth Chamber For Clinostat

    NASA Technical Reports Server (NTRS)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  18. Rotary plant growth accelerating apparatus. [weightlessness

    NASA Technical Reports Server (NTRS)

    Dedolph, R. D. (Inventor)

    1975-01-01

    Rotary plant growth accelerating apparatus for increasing plant yields by effectively removing the growing plants from the constraints of gravity and increasing the plant yield per unit of space is described. The apparatus is comprised of cylindrical plant beds supported radially removed from a primary axis of rotation, with each plant bed being driven about its own secondary axis of rotation and simultaneously moved in a planetary path about the primary axis of rotation. Each plant bed is formed by an apertured outer cylinder, a perforated inner cylinder positioned coaxially, and rooting media disposed in the space between. A rotatable manifold distributes liquid nutrients and water to the rooting media through the perforations in the inner cylinders as the plant beds are continuously rotated by suitable drive means.

  19. Effect of microgravity on plant growth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    The overall goal of this research is to determine the effect of microgravity proper on plant growth (metabolism and cell wall formation). In addressing this goal, the work conducted during this grant period was divided into three components: analyses of various plant tissues previously grown in space aboard MIR Space Station; analyses of wheat tissues grown on Shuttle flight STS-51; and Phenylpropanoid metabolism and plant cell wall synthesis (earth-based investigations).

  20. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  1. Dissolved iron supply limits early growth of estuarine mangroves.

    PubMed

    Alongi, Daniel M

    2010-11-01

    Three mesocosm experiments were performed in an outdoor facility to quantify the responses of five mangrove species grown from seedling to sapling stage to increasing rates of dissolved iron supply. Stem extension and biomass of mangroves were measured in the first two experiments, and in the third experiment, rates of microbial iron reduction were measured in relation to stem extension of two mangrove species. In all experiments, mangrove growth was enhanced by increasing iron supply, although some species showed iron toxicity at the higher supply rates. In the first two experiments, stem extension rates of Rhizophora apiculata, Bruguiera gymnorrhiza, and Xylocarpus moluccensis best fit Gaussian curves with maximal growth at supply rates of 50-60 mmol Fe x m(-2) x d(-1), whereas growth of Avicennia marina and Ceriops tagal increased to the highest rate (100 mmol Fe x m(-2) x d(-1)) of iron supply. Changes in leaf chlorophyll concentrations and iron content of roots mirrored the growth responses. In the third experiment, rates of microbial iron reduction were greater with R. apiculata and A. marina than in controls without plants; for both species, there was a positive relationship between stem extension and iron reduction. The rates of iron reduction and rates of iron supplied to the plants were well within the range of interstitial iron concentrations and rates of iron reduction found in the natural mangrove soils from which the seedlings were obtained. The responses of these species show that mangroves growing from seedling to sapling stage have a strong nutritional requirement for iron, and that there is a close relationship between plant roots and the activities of iron-reducing bacteria. These results suggest that mangrove growth may be limited in some natural forests by the rate at which iron is solubilized by iron-reducing bacteria. Such biogeochemical conditions have significant implications for successful recruitment, establishment, and early growth of

  2. (Plant growth with limited water)

    SciTech Connect

    Not Available

    1992-01-01

    When water is in short supply, soybean stem growth is inhibited by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. The extensibility then becomes the main limitation. With time, there is a modest recovery in extensibility along with an accumulation of a 28kD protein in the walls of the growth-affected cells. A 3lkD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. In the stem, growth was inhibited and the mRNA for the 28kD protein increased in response to water deprivation but the mRNA for the 3 1 kD protein did not. The roots continued to grow and the mRNA for the 28kD protein did not accumulate but the mRNA for the 3lkD protein did. Thus, there was a tissuespecific response of gene expression that correlated with the contrasting growth response to low water potential in the same seedlings. Further work using immunogold labeling, fluorescence labeling, and western blotting gave evidence that the 28kD protein is located in the cell wall as well as several compartments in the cytoplasm. Preliminary experiments indicate that the 28kD protein is a phosphatase.

  3. Transgenic plants with enhanced growth characteristics

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  4. Stochasticity in plant cellular growth and patterning

    PubMed Central

    Meyer, Heather M.; Roeder, Adrienne H. K.

    2014-01-01

    Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development. PMID:25250034

  5. A nondestructive method for continuously monitoring plant growth

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1985-01-01

    In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.

  6. Early growth response-1 in the pathogenesis of cardiovascular disease.

    PubMed

    Khachigian, Levon M

    2016-07-01

    This article reviews the regulatory roles of the immediate-early gene product and prototypic zinc finger transcription factor, early growth response-1 in models of cardiovascular pathobiology, focusing on insights using microRNA, DNAzymes, small hairpin RNA, small interfering RNA, oligonucleotide decoy strategies and mice deficient in early growth response-1. PMID:27251707

  7. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  8. Dynamical scaling analysis of plant callus growth

    NASA Astrophysics Data System (ADS)

    Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.

    2003-07-01

    We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.

  9. Importance of Gravity for Plant Growth and Behavior

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1985-01-01

    Flight experiments on the importance of gravity to plant growth and behavior are reported. The following studies were undertaken: (1) hyperastic responses to incremental changes of an axially imposed centripetal force; (2) Spacelab-1 experiments, methods for preparing soil in flight hardware containers were impound, to ensure desired moisture content and minimal contamination probability; (3) mesocotyl growth patterns were established by Avena lore exposure to red light during early seedling outogency; (4) the development of flight hardware; (5) choice of member of seedlings in each cube; (6) data processing and reduction; (7) clinostat validation; circummutation in space was more vigorous than on Earth based clinostat.

  10. Ethylene production throughout growth and development of plants

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  11. Book Review: Plant Growth and Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Plant Growth and climate Change" (2006. James I.L. Morison and M.D. Morecroft, Eds. Blackwell Publishing. 213 pp.) was reviewed for the scientific readership of the peer-reviewed journal HortScience. The text is well organized into nine independently-authored chapters each of whi...

  12. Static Magnetic Field and Plant Growth

    NASA Astrophysics Data System (ADS)

    Maharramov, Akif A.

    2007-04-01

    In the conditions of stable existence of Static Magnetic Field (SMF) the growth processes of some plants' (chickpeas, beans and lentils) seeds have been investigated in different temperatures of microenvironment. It has been established that the rate of the plant growths is affected (speeded up) by SMF that is intimately related to environmental temperature, any other environmental parameters (humidity, illumination, soil chemical state, etc) being under control. At the same time, the highest rate of growth has been observed in beans at a range of 30, 0 +/- 2, 0 °C. Special experiments and analyses of the data obtained, testified that the plants roots occurred the main target for SMF to be affected to get increasing rate. In order to standardize experimental conditions, the SMF have been created by magnetic bars of the intensity of B, equal that of the Earth at a distance of 23 cm from a pole of a bar magnet on the line passing along the both of its poles. Taking as a basis the results, it may be concluded that SMF can affect plant growth process, being regarded as an environmental factor of ecological importance.

  13. Plant growth responses to polypropylene--biocontainers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  14. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  15. Plant growth promotion and Penicillium citrinum

    PubMed Central

    Khan, Sumera Afzal; Hamayun, Muhammad; Yoon, Hyeokjun; Kim, Ho-Youn; Suh, Seok-Jong; Hwang, Seon-Kap; Kim, Jong-Myeong; Lee, In-Jung; Choo, Yeon-Sik; Yoon, Ung-Han; Kong, Won-Sik; Lee, Byung-Moo; Kim, Jong-Guk

    2008-01-01

    Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L.) A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively) along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900) through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting enzymes like cellulase and

  16. Mechanical regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1984-01-01

    Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.

  17. Circularly Polarized Light and Growth of Plants

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel; Pergolizzi, Robert

    2011-03-01

    The influence of linearly polarized light on the direction of plants growth has been recently demonstrated. The state of circularly polarized (CP) light can also change when it is reflected from the surface of leaves and stems. However, the role of light handedness in the development of plants and CP light interaction with the complexes of chlorophyll molecules have still not been studied enough. In this work, the role of left CP light in the accelerated growth of lentil and pea plants is revealed and studied. The mechanism of such an enhancement is discussed in terms of the model considering transmission, absorption, and scattering of CP light on micro and macro levels of leaf organization. Theoretical modeling of light interaction with the interior of the leaf was conducted for a number of recently proposed models of organization of chlorophyll molecules and chloroplasts. All the calculations were performed by employing a 4x4 matrix method in solving Maxwell equations. It is shown that left-handed chiral organization of chlorophyll molecules can greatly enhance the absorption of light and therefore lead to the enhanced growth of the whole plant under CP light.

  18. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  19. 22-Oxocholestanes as plant growth promoters.

    PubMed

    Zeferino-Diaz, Reyna; Hilario-Martinez, J Ciciolil; Rodriguez-Acosta, Maricela; Sandoval-Ramirez, Jesus; Fernandez-Herrera, Maria A

    2015-06-01

    The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters. PMID:25795152

  20. Klebsiella pneumoniae inoculants for enhancing plant growth

    DOEpatents

    Triplett, Eric W.; Kaeppler, Shawn M.; Chelius, Marisa K.

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  1. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  2. Operational development of small plant growth systems

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  3. Plant growth promotion by phosphate solubilizing bacteria.

    PubMed

    Zaidi, A; Khan, M S; Ahemad, M; Oves, M

    2009-09-01

    Most agronomic soils contain large reserves of total phosphorus [P], but the fixation and precipitation of P cause P deficiency, and in turn, restrict the growth of crops severely. Phosphorus replenishment, especially in sustainable production systems, remains a major challenge as it is mainly fertilizer-dependent. Though the use of chemical P fertilizers is obviously the best means to circumvent P deficiency in different agro-ecosystems, their use is always limited due to its spiralling cost. A greater interest has, therefore, been generated to find an alternative yet inexpensive technology that could provide sufficient P to plants while reducing the dependence on expensive chemical P fertilizers. Among the heterogeneous and naturally abundant microbes inhabiting the rhizosphere, the phosphate solubilizing microorganisms (PSM) including bacteria have provided an alternative biotechnological solution in sustainable agriculture to meet the P demands of plants. These organisms in addition to providing P to plants also facilitate plant growth by other mechanisms. Despite their different ecological niches and multiple functional properties, P-solubilizing bacteria have yet to fulfil their promise as commercial bio-inoculants. Current developments in our understanding of the functional diversity, rhizosphere colonizing ability, mode of actions and judicious application are likely to facilitate their use as reliable components in the management of sustainable agricultural systems. PMID:19789141

  4. Mechanisms of the early phases of plant gravitropism

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.

    2000-01-01

    Gravitropism is directed growth of a plant or plant organ in response to gravity and can be divided into the following temporal sequence: perception, transduction, and response. This article is a review of the research on the early events of gravitropism (i.e., phenomena associated with the perception and transduction phases). The two major hypotheses for graviperception are the protoplast-pressure and starch-statolith models. While most researchers support the concept of statoliths, there are suggestions that plants have multiple mechanisms of perception. Evidence supports the hypothesis that the actin cytoskeleton is involved in graviperception/transduction, but the details of these mechanisms remain elusive. A number of recent developments, such as increased use of the molecular genetic approach, magnetophoresis, and laser ablation, have facilitated research in graviperception and have allowed for refinement of the current models. In addition, the entire continuum of acceleration forces from hypo- to hyper-gravity have been useful in studying perception mechanisms. Future interdisciplinary molecular approaches and the availability of sophisticated laboratories on the International Space Station should help to develop new insights into mechanisms of gravitropism in plants.

  5. The growth and form of plant shoots

    NASA Astrophysics Data System (ADS)

    Chelakkot, Raghunath; Mahadevan, L.

    2015-03-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. We provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the passive elastic deflection of the shoot due to its own weight, and (ii) the active controllable growth response of the shoot in response to its orientation relative to gravity, and (iii) proprioception, the shoot's growth response to its own observable shape, which is itself determined by its elasticity and weight. A morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag shows how a variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviors arise in a sentient growing filament naturally, without the need for ad-hoc complex spatio-temporal control strategies.

  6. How alpine plant growth is linked to snow cover and climate variability

    NASA Astrophysics Data System (ADS)

    Jonas, Tobias; Rixen, Christian; Sturm, Matthew; Stoeckli, Veronika

    2008-09-01

    Recent climate models predict future changes in temperature and precipitation in the Alps. To assess the potential response of alpine plant communities to climate change, we analyzed specific and combined effects of temperature, precipitation, and snow season timing on the growth of plants. This analysis is based on data from 17 snow meteorological stations and includes plant growth records from the same sites over 10 years. Using multiple regression and path analysis, we found that plant growth was primarily driven by climatic factors controlled by the timing of the snow season. Air temperature and precipitation before snow-up and after melt-out yielded the greatest direct impact on maximum plant height as well as growth rates. The variability of environmental drivers between sites versus between years had different effects on plant growth: e.g., sites with early melt-out dates hosted plant communities with tall, slow-growing vegetation. But interannual variations in melt-out dates at a given site did not produce measurable differences in plant growth performance. However, high temperatures after melt-out invariably resulted in a shortened growth period. We speculate that the plant growth patterns we observed in response to climate variation between sites are indicative of the long-term responses of alpine plant communities to persistent climate changes. With most climate models indicating shorter winters, we thus expect alpine grasslands in the Alps to display an enhanced biomass production in the future.

  7. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth.

    PubMed

    Livensperger, Carolyn; Steltzer, Heidi; Darrouzet-Nardi, Anthony; Sullivan, Patrick F; Wallenstein, Matthew; Weintraub, Michael N

    2016-01-01

    Climate change over the past ∼50 years has resulted in earlier occurrence of plant life-cycle events for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mechanism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production. Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground production among the graminoids, limited changes among deciduous shrubs and decreased production in one of the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early growing plant species, even those that do not shift the timing of leaf expansion. PMID:27075181

  8. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth

    PubMed Central

    Livensperger, Carolyn; Steltzer, Heidi; Darrouzet-Nardi, Anthony; Sullivan, Patrick F.; Wallenstein, Matthew; Weintraub, Michael N.

    2016-01-01

    Climate change over the past ∼50 years has resulted in earlier occurrence of plant life-cycle events for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mechanism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production. Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground production among the graminoids, limited changes among deciduous shrubs and decreased production in one of the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early growing plant species, even those that do not shift the timing of leaf expansion. PMID:27075181

  9. Early warning indicators for monitoring nuclear plant performance

    SciTech Connect

    Acosta, R.J.

    1997-12-01

    Florida Power & Light Company`s (FP&L`s) Nuclear Division has developed a set of early warning indicators that are used to provide precursor indications of future plant performance. These indicators are monitored by management and safety committees to enable early detection of negative performance so that corrective actions may be taken prior to experiencing a significant decline in plant performance.

  10. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  11. Plant growth conditions alter phytolith carbon

    PubMed Central

    Gallagher, Kimberley L.; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O.; Santos, Guaciara M.

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a “glass wastebasket.” Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  12. Plant growth conditions alter phytolith carbon.

    PubMed

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  13. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants.

    PubMed

    De Souza, A; Garcí, D; Sueiro, L; Gilart, F; Porras, E; Licea, L

    2006-05-01

    The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10 min and at 170 mT (rms) for 3 min. Non-treated seeds were considered as controls. Plants were grown in experimental plots (30.2 m(2)) and were cultivated according to standard agricultural practices. During the vegetative and generative growth stages, samples were collected at regular intervals for growth rate analyses, and the resistance of plants to geminivirus and early blight was evaluated. At physiological maturity, the plants were harvested from each plot and the yield and yield parameters were determined. In the vegetative stage, the treatments led to a significant increase in leaf area, leaf dry weight, and specific leaf area (SLA) per plant. Also, the leaf, stem, and root relative growth rates of plants derived from magnetically treated seeds were greater than those shown by the control plants. In the generative stage, leaf area per plant and relative growth rates of fruits from plants from magnetically exposed seeds were greater than those of the control plant fruits. At fruit maturity stage, all magnetic treatments increased significantly (P < .05) the mean fruit weight, the fruit yield per plant, the fruit yield per area, and the equatorial diameter of fruits in comparison with the controls. At the end of the experiment, total dry matter was significantly higher for plants from magnetically treated seeds than that of the controls. A significant delay in the appearance of first symptoms of geminivirus and early blight and a reduced infection rate of early blight were observed in the plants from exposed seeds to MFs. Pre-sowing magnetic treatments would enhance the growth and yield of tomato crop. PMID:16511881

  14. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture. PMID:23271460

  15. Studying Children's Early Literacy Development: Confirmatory Multidimensional Scaling Growth Modeling

    ERIC Educational Resources Information Center

    Ding, Cody

    2012-01-01

    There has been considerable debate over the ways in which children's early literacy skills develop over time. Using confirmatory multidimensional scaling (MDS) growth analysis, this paper directly tested the hypothesis of a cumulative trajectory versus a compensatory trajectory of development in early literacy skills among a group of 1233…

  16. Growth monitoring as an early detection tool: a systematic review.

    PubMed

    Scherdel, Pauline; Dunkel, Leo; van Dommelen, Paula; Goulet, Olivier; Salaün, Jean-François; Brauner, Raja; Heude, Barbara; Chalumeau, Martin

    2016-05-01

    Growth monitoring of apparently healthy children aims at early detection of serious underlying disorders. However, existing growth-monitoring practices are mainly based on suboptimal methods, which can result in delayed diagnosis of severe diseases and inappropriate referrals. We did a systematic review to address two key and interconnected questions underlying growth monitoring: which conditions should be targeted, and how should abnormal growth be defined? We systematically searched for studies reporting algorithms for growth monitoring in children and studies comparing the performance of new WHO growth charts with that of other growth charts. Among 1556 identified citations, 69 met the inclusion criteria. Six target conditions have mainly been studied: Turner syndrome, coeliac disease, cystic fibrosis, growth hormone deficiency, renal tubular acidosis, and small for gestational age with no catch-up after 2 or 3 years. Seven algorithms to define abnormal growth have been proposed in the past 20 years, but their level of validation is low, and their overall sensitivities and specificities vary substantially; however, the Grote and Saari clinical decision rules seem the most promising. Two studies reported that WHO growth charts had poorer performance compared with other existing growth charts for early detection of target conditions. Available data suggest a large gap between the widespread implementation of growth monitoring and its level of evidence or the clinical implications of early detection of serious disorders in children. Further investigations are needed to standardise the practice of growth monitoring, with a consensus on a few priority target conditions and with internationally validated clinical decision rules to define abnormal growth, including the selection of appropriate growth charts. PMID:26777129

  17. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive. PMID:11543164

  18. Mechanical forces in plant growth and development

    NASA Technical Reports Server (NTRS)

    Fisher, D. D.; Cyr, R. J.

    2000-01-01

    Plant cells perceive forces that arise from the environment and from the biophysics of plant growth. These forces provide meaningful cues that can affect the development of the plant. Seedlings of Arabidopsis thaliana were used to examine the cytoplasmic tensile character of cells that have been implicated in the gravitropic response. Laser-trapping technology revealed that the starch-containing statoliths of the central columella cells in root caps are held loosely within the cytoplasm. In contrast, the peripheral cells have starch granules that are relatively resistant to movement. The role of the actin cytoskeleton in affecting the tensile character of these cells is discussed. To explore the role that biophysical forces might play in generating developmental cues, we have developed an experimental model system in which protoplasts, embedded in a synthetic agarose matrix, are subjected to stretching or compression. We have found that protoplasts subjected to these forces from five minutes to two hours will subsequently elongate either at right angles or parallel to the tensive or compressive force vector. Moreover, the cortical microtubules are found to be organized either at right angles or parallel to the tensive or compressive force vector. We discuss these results in terms of an interplay of information between the extracellular matrix and the underlying cytoskeleton.

  19. Gravitational effects on plant growth hormone concentration

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  20. [Application of spectroscopy technique to obtain plant growth information].

    PubMed

    Jiang, Huan-yu; Ying, Yi-bin; Xie, Li-juan

    2008-06-01

    Detection of plant growth information can predict growth and health status of plant and realize intelligentized management, detection techniques of plant growth information include electrical properties, optical reflectance and machine vision, with the development of spectroscopy technique, near infrared spectroscopy technique, multispectral technique and hyperspectral technique are widely used in plant growth information measurement. Spectroscopy technique is extremely fast, high efficient, cheap to implement and no sample preparation, has been a rapid and non-destructive modern measuring technique. In this paper, the application of spectroscopy technique to measurement of plant growth information was briefly introduced. Some considerable aspects existing in the application were also discussed and it is pointed out that because of real time information obtain and intelligentized management of plant, automation analysis equipment should be developed to improve the speed of plant growth information measurement and cooperating with several other techniques, such as machine vision, thermal imaging technique and spectroscopy technique, is the research trend. PMID:18800709

  1. Ammonia And Ethylene Optrodes For Research On Plant Growth

    NASA Technical Reports Server (NTRS)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  2. Recent Advances in Plant Early Signaling in Response to Herbivory

    PubMed Central

    Arimura, Gen-Ichiro; Ozawa, Rika; Maffei, Massimo E.

    2011-01-01

    Plants are frequently attacked by herbivores and pathogens and therefore have acquired constitutive and induced defenses during the course of their evolution. Here we review recent progress in the study of the early signal transduction pathways in host plants in response to herbivory. The sophisticated signaling network for plant defense responses is elicited and driven by both herbivore-induced factors (e.g., elicitors, effectors, and wounding) and plant signaling (e.g., phytohormone and plant volatiles) in response to arthropod factors. We describe significant findings, illuminating the scenario by providing broad insights into plant signaling involved in several arthropod-host interactions. PMID:21747702

  3. Plant Growth Under Light Emitting Diode Irradiation.

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,<=af photosynthesis and ATP status were the same in LED as in white xenon arc light. In 35 Pa CO_2, photosynthesis was 10% lower in LED than in xenon arc light due to lowered stomatal conductance. The quantum efficiency of photosynthesis in pulsed light was equal to continuous light, even when pulses were twice as bright as sunlight. Xanthophyll pigments were not affected by these bright pulses. Photomorphogenesis of tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I

  4. Origin and early evolution of land plants

    PubMed Central

    2008-01-01

    The origin of the sporophyte in land plants represents a fundamental phase in plant evolution. Today this subject is controversial, and scarcely considered in textbooks and journals of botany, in spite of its importance. There are two conflicting theories concerning the origin of the alternating generations in land-plants: the “antithetic” theory and the “homologous” theory. These have never been fully resolved, although, on the ground of the evidences on the probable ancestors of land plants, the antithetic theory is considered more plausible than the homologous theory. However, additional phylogenetic dilemmas are the evolution of bryophytes from algae and the transition from these first land plants to the pteridophytes. All these very large evolutionary jumps are discussed on the basis of the phyletic gradualist neo-Darwinian theory and other genetic evolutionary mechanisms. PMID:19513262

  5. Martian Soil Plant Growth Experiment: The Effects of Adding Nitrogen, Bacteria, and Fungi to Enhance Plant Growth

    NASA Technical Reports Server (NTRS)

    Kliman, D. M.; Cooper, J. B.; Anderson, R. C.

    2000-01-01

    Plant growth is enhanced by the presence of symbiotic soil microbes. In order to better understand how plants might prosper on Mars, we set up an experiment to test whether symbiotic microbes function to enhance plant growth in a Martian soil simulant.

  6. Early intestinal growth and development in poultry.

    PubMed

    Lilburn, M S; Loeffler, S

    2015-07-01

    While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. PMID:25910905

  7. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.

    PubMed

    Majeed, Afshan; Abbasi, M Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  8. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    PubMed Central

    Majeed, Afshan; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  9. Demonstrating the Effects of Light Quality on Plant Growth.

    ERIC Educational Resources Information Center

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  10. New methods for early selection and development of plant genotypes for rapid biomass production

    SciTech Connect

    Anekonda, T.S.; Criddle, R.S.; Hansen, L.D.

    1994-12-31

    Calorespirometric investigation of respiratory metabolism and its temperature dependencies can be used to identify plants with superior growth characteristics. Measurements of the metabolic heat rate, rate of CO{sub 2} evolution and O{sub 2} uptake over a range of temperature are analyzed with a mechanistic model of plant growth to allow early selection of superior trees. This analysis provides information about indicies of genetic characteristics to use in breeding programs and guidelines for matching trees to appropriate climatic conditions. These procedures can enhance the rate of production of biomass by shortening the time to harvest and increase total economic returns.

  11. Capabilities of the Advanced Astroculture plant growth unit to support plant research conducted on the International Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Durst, S.; Meyers, R.; Tellez, G.; Demars, M.; Sandstrom, P.

    Since 1990, WCSAR has developed a number of technologies for plant-based space life support systems, with a goal of providing robust and capable facilities suitable for conducting quality plant research in microgravity environment. These technologies have been substantially validated using the Astroculture payload through a series of space shuttle flights. Advanced ASTROCULTURETM (ADVASC), a space-based plant growth unit, has been developed to take advantage of plant research opportunities during the early assembly phase of the International Space Station (ISS) when ISS resources and up/down mass availability are limited. ADVASC provides an enclosed, environmentally controlled plant growth chamber with controlled parameters of temperature, relative humidity, light intensity, fluid nutrient delivery, and CO2 and hydrocarbon (ethylene) concentrations. Auto-prime technology eliminates the need for electrical power during launch vehicle ascent/descent, and therefore greatly relieves the shortage of launch vehicle resources and ISS crew time. State-of-the-art control software combined with fault tolerance and recovery technology significantly increases overall system robustness and efficiency. Tele-science features allow engineers and scientists to remotely receive telemetry data and video images, send remote commands, monitor plant development status, and troubleshoot subsystems if any unexpected behavior occurs. ADVASC is configured as two single-Middeck-Locker inserts installed in a standard EXPRESS Rack, with one insert containing the support systems and the other containing a large plant growth chamber. Thus, the insert with the support systems can remain on the ISS and only the insert containing the plant chamber needs to be transported to and from the ISS to accommodate different experiments. ADVASC has been used to successfully conduct three plant life cycle studies on board the ISS, two for Arabidopsis seed-to-seed growth and one for soybean seed-to-seed growth

  12. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.)

    PubMed Central

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-01-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth. PMID:24575180

  13. Plant growth promotion rhizobacteria in onion production.

    PubMed

    Colo, Josip; Hajnal-Jafari, Timea I; Durić, Simonida; Stamenov, Dragana; Hamidović, Saud

    2014-01-01

    The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same. PMID:25033667

  14. Plant Growth Promoting Rhizobacteria and Mycorrhizal Fungi in Sustainable Agriculture and Forestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-growth promoting rhizobacteria (PGPR) encourage plant growth by producing growth regulators, facilitating nutrient uptake, accelerating mineralization, reducing plant stress, stimulating nodulation, providing nitrogen fixation, promoting mycorrhizal fungi, suppressing plant diseases, and funct...

  15. The research on Virtual Plants Growth Based on DLA Model

    NASA Astrophysics Data System (ADS)

    Zou, YunLan; Chai, Bencheng

    This article summarizes the separated Evolutionary Algorithm in fractal algorithm of Diffusion Limited Aggregation model (i.e. DLA model) and put forward the virtual plant growth realization in computer based on DLA model. The method is carried out in the VB6.0 environment to achieve and verify the plant growth based on DLA model.

  16. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  17. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  18. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  19. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  20. The early growth of the first black holes

    DOE PAGESBeta

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  1. Effects of root decomposition on plant-soil feedback of early- and mid-successional plant species.

    PubMed

    Zhang, Naili; Van der Putten, Wim H; Veen, G F Ciska

    2016-10-01

    Plant-soil feedback (PSF) is an important driver of plant community dynamics. Many studies have emphasized the role of pathogens and symbiotic mutualists in PSFs; however, less is known about the contribution of decomposing litter, especially that of roots. We conducted a PSF experiment, where soils were conditioned by living early- and mid-successional grasses and forbs with and without decomposing roots of conspecific species (conditioning phase). These soils were used to test growth responses of conspecific and heterospecific plant species (feedback phase). The addition of the roots of conspecifics decreased the biomass of both early- and mid-successional plant species in the conditioning phase. In the feedback phase, root addition had positive effects on the biomass of early-successional species and neutral effects on mid-successional species, except when mid-successional grasses were grown in soils conditioned by conspecifics, where effects were negative. Biomass of early- and mid-successional forbs was generally reduced in soils conditioned by conspecifics. We conclude that root decomposition may increase short-term negative PSF effects, but that the effects can become neutral to positive over time, thereby counteracting negative components of PSF. This implies that root decomposition is a key element of PSF and needs to be included in future studies. PMID:27214646

  2. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles.

    PubMed

    Andersen, Christian P; King, George; Plocher, Milt; Storm, Marjorie; Pokhrel, Lok R; Johnson, Mark G; Rygiewicz, Paul T

    2016-09-01

    Ten agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs. Eight of 10 species responded to nTiO2 , and 5 species responded to nCeO2 . Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain the developmental effects of these 2 ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, with unknown effects at later stages of the life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Environ Toxicol Chem 2016;35:2223-2229. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26773270

  3. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. PMID:24144612

  4. Mammalian Herbivores Alter the Population Growth and Spatial Establishment of an Early-Establishing Grassland Species.

    PubMed

    Sullivan, Lauren L; Danielson, Brent J; Harpole, W Stanley

    2016-01-01

    Plant-herbivore interactions influence the establishment context of plant species, as herbivores alter the community context in which individual species establish, and the spatial relationship between individuals and their source population as plants invade. This relationship can be described using an establishment kernel, which takes into account movement through seed dispersal, and subsequent establishment of adults. Mammalian herbivores are hypothesized to influence plant population growth and establishment through a combination of consumption of seeds and seedlings, and movement of seeds. While the movement abilities of plants are well known, we have very few empirical mechanistic tests of how biotic factors like mammalian herbivores influence this spread potential. As herbivores of all sizes are abundant on the landscape, we asked the question, how do mammalian herbivores influence the population growth, spatial establishment, and the community establishment context of an early-recruiting native prairie legume, Chamaecrista fasciculata? We planted C. fasciculata in source populations within a four-acre tallgrass prairie restoration in plots with and without herbivores, and monitored its establishment with respect to distance from the source populations. We found that herbivores decreased population growth, and decreased the mean and range establishment distance. Additionally, C. fasciculata established more often without herbivores, and when surrounded by weedy, annual species. Our results provide insight into how the interactions between plants and herbivores can alter the spatial dynamics of developing plant communities, which is vital for colonization and range spread with fragmentation and climate change. Mammalian herbivores have the potential to both slow rates of establishment, but also determine the types of plant communities that surround invading species. Therefore, it is essential to consider the herbivore community when attempting to restore

  5. Mammalian Herbivores Alter the Population Growth and Spatial Establishment of an Early-Establishing Grassland Species

    PubMed Central

    Sullivan, Lauren L.; Danielson, Brent J.; Harpole, W. Stanley

    2016-01-01

    Plant-herbivore interactions influence the establishment context of plant species, as herbivores alter the community context in which individual species establish, and the spatial relationship between individuals and their source population as plants invade. This relationship can be described using an establishment kernel, which takes into account movement through seed dispersal, and subsequent establishment of adults. Mammalian herbivores are hypothesized to influence plant population growth and establishment through a combination of consumption of seeds and seedlings, and movement of seeds. While the movement abilities of plants are well known, we have very few empirical mechanistic tests of how biotic factors like mammalian herbivores influence this spread potential. As herbivores of all sizes are abundant on the landscape, we asked the question, how do mammalian herbivores influence the population growth, spatial establishment, and the community establishment context of an early-recruiting native prairie legume, Chamaecrista fasciculata? We planted C. fasciculata in source populations within a four-acre tallgrass prairie restoration in plots with and without herbivores, and monitored its establishment with respect to distance from the source populations. We found that herbivores decreased population growth, and decreased the mean and range establishment distance. Additionally, C. fasciculata established more often without herbivores, and when surrounded by weedy, annual species. Our results provide insight into how the interactions between plants and herbivores can alter the spatial dynamics of developing plant communities, which is vital for colonization and range spread with fragmentation and climate change. Mammalian herbivores have the potential to both slow rates of establishment, but also determine the types of plant communities that surround invading species. Therefore, it is essential to consider the herbivore community when attempting to restore

  6. Alkamides Isolated from Plants Promote Growth and Alter Root Development in Arabidopsis1

    PubMed Central

    Ramírez-Chávez, Enrique; López-Bucio, José; Herrera-Estrella, Luis; Molina-Torres, Jorge

    2004-01-01

    To date, several classes of hormones have been described that influence plant development, including auxins, cytokinins, ethylene, and, more recently, brassinosteroids. However, it is known that many fungal and bacterial species produce substances that alter plant growth that, if naturally present in plants, might represent novel classes of plant growth regulators. Alkamides are metabolites widely distributed in plants with a broad range of biological activities. In this work, we investigated the effects of affinin, an alkamide naturally occurring in plants, and its derivates, N-isobutyl-2E-decenamide and N-isobutyl-decanamide, on plant growth and early root development in Arabidopsis. We found that treatments with affinin in the range of 10-6 to 10-4 m alter shoot and root biomass production. This effect correlated with alteration on primary root growth, lateral root formation, and root hair elongation. Low concentrations of affinin (7 × 10-6–2.8 × 10-5 m) enhanced primary root growth and root hair elongation, whereas higher concentrations inhibited primary root growth that related with a reduction in cell proliferating activity and cell elongation. N-isobutyl-2E-decenamide and N-isobutyl-decanamide were found to stimulate root hair elongation at concentrations between 10-8 to 10-7 m. Although the effects of alkamides were similar to those produced by auxins on root growth and cell parameters, the ability of the root system to respond to affinin was found to be independent of auxin signaling. Our results suggest that alkamides may represent a new group of plant growth promoting substances with significant impact on root development and opens the possibility of using these compounds for improved plant production. PMID:14988477

  7. Early rapid growth, early birth: Accelerated fetal growth and spontaneous late preterm birth

    PubMed Central

    Kusanovic, Juan Pedro; Erez, Offer; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis; Hassan, Sonia; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2011-01-01

    The past two decades in the United States have seen a 24 % rise in spontaneous late preterm delivery (34 to 36 weeks) of unknown etiology. This study tested the hypothesis that fetal growth was identical prior to spontaneous preterm (n=221, median gestational age at birth 35.6 weeks) and term (n=3706) birth among pregnancies followed longitudinally in Santiago, Chile. The hypothesis was not supported: Preterm-delivered fetuses were significantly larger than their term-delivered peers by mid-second trimester in estimated fetal weight, head, limb and abdominal dimensions, and they followed different growth trajectories. Piecewise regression assessed time-specific differences in growth rates at 4-week intervals from 16 weeks. Estimated fetal weight and abdominal circumference growth rates faltered at 20 weeks among the preterm-delivered, only to match and/or exceed their term-delivered peers at 24–28 weeks. After an abrupt decline at 28 weeks attenuating growth rates in all dimensions, fetuses delivered preterm did so at greater population-specific sex and age-adjusted weight than their peers from uncomplicated pregnancies (p<0.01). Growth rates predicted birth timing: one standard score of estimated fetal weight increased the odds ratio for preterm birth from 2.8 prior to 23 weeks, to 3.6 (95% confidence interval, 1.82–7.11, p<0.05) between 23 and 27 weeks. After 27 weeks, increasing size was protective (OR: 0.56, 95% confidence interval, 0.38–0.82, p=0.003). These data document, for the first time, a distinctive fetal growth pattern across gestation preceding spontaneous late preterm birth, identify the importance of mid-gestation for alterations in fetal growth, and add perspective on human fetal biological variability. PMID:18988282

  8. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    PubMed

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  9. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    PubMed Central

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2009-01-01

    In the current study, we examined latent growth in 731 young children’s inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children’s inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk. PMID:20376201

  10. Plant growth-promoting oligosaccharides produced from tomato waste.

    PubMed

    Suzuki, Toshisada; Tomita-Yokotani, Kaori; Tsubura, Hirokazu; Yoshida, Shigeki; Kusakabe, Isao; Yamada, Kosumi; Miki, Yoichi; Hasegawa, Koji

    2002-01-01

    Tomato juice waste was hydrolyzed with acid. Tomato juice waste (500 g; wet weight) was heated with 0.5 N HCl (2.5 l) at 70 degrees C for 4 h. After neutralization, the growth-promoting extracts (300 g; dry weight) in the plants were produced from the tomato waste. The acid extract significantly promoted the growth of cockscomb (Celosia argentea L.) and tomato (Lycopersicon esculentum L.) seedlings. We have recognized potent plant growth-promoting substances in the acid extract from tomato waste. The most effective components in the active fraction were almost all oligogalacturonic acids (DP 6-12). This paper is the first report that plant growth-promoting oligosaccharides can be directly produced from tomato juice waste. It is possible that the substances from the tomato waste can become useful plant growth regulators in the agriculture field in the future. PMID:11762911

  11. Changes in alpine plant growth under future climate conditions

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Jonas, T.; Zimmermann, N. E.; Rixen, C.

    2010-06-01

    Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971-2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  12. Changes in alpine plant growth under future climate conditions

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Jonas, T.; Zimmermann, N. E.; Rixen, C.

    2009-11-01

    Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt-out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt-out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971-2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt-out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  13. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  14. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    PubMed Central

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W.; Ryu, Choong-Min

    2015-01-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  15. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    NASA Astrophysics Data System (ADS)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the

  16. Early Successional Microhabitats Allow the Persistence of Endangered Plants in Coastal Sand Dunes

    PubMed Central

    2015-01-01

    Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390

  17. Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes.

    PubMed

    Pardini, Eleanor A; Vickstrom, Kyle E; Knight, Tiffany M

    2015-01-01

    Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390

  18. Life history biology of early land plants: Deciphering the gametophyte phase

    PubMed Central

    Taylor, Thomas N.; Kerp, Hans; Hass, Hagen

    2005-01-01

    The ca. 400-million-year-old Rhynie chert biota represents a benchmark for studies of early terrestrial ecosystems. The exquisite preservation of the organisms documents an ancient biodiversity that also includes various levels of biological interaction. Absent from the picture until recently has been detailed information about the development of the gametophyte phase and the alternation of generations of the macroplants in this ecosystem. Here, we trace the development of the gametophyte phase of Aglaophyton, an early land plant with an unusual complement of structural and morphological characters. Mature gametophytes consist of a fleshy protocorm attached to the substrate by basal rhizoids; arising from the upper surface are one to several upright gametangiophores bearing multiple gametangia. Stomata are present on the upper surface of the protocorm and gametangiophore, and endomycorrhizal fungi extend throughout the gametophyte. Gametophytes are unisexual, producing either antheridiophores or archegoniophores. There is no evidence that gametophytes later become hermaphroditic. The sexual dimorphism of the Rhynie chert gametophytes is inconsistent with theoretical ideas about the haploid phase of early land plants. The gametophyte phase of early land plants can now be considered within an ecological and evolutionary framework that, in turn, can be used to develop hypotheses about some aspects of the population dynamics and growth of these early land plants. PMID:15809414

  19. Chemical Growth Regulators for Guayule Plants

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  20. Tubular Membrane Plant-Growth Unit

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Hydroponic system controls nutrient solution for growing crops in space. Pump draws nutrient solution along inside of tubular membrane in pipe from reservoir, maintaining negative pressure in pipe. Roots of plants in slot extract nutrient through membrane within pipe. Crop plants such as wheat, rice, lettuce, tomatoes, soybeans, and beans grown successfully with system.

  1. Plant growth and architectural modelling and its applications

    PubMed Central

    Guo, Yan; Fourcaud, Thierry; Jaeger, Marc; Zhang, Xiaopeng; Li, Baoguo

    2011-01-01

    Over the last decade, a growing number of scientists around the world have invested in research on plant growth and architectural modelling and applications (often abbreviated to plant modelling and applications, PMA). By combining physical and biological processes, spatially explicit models have shown their ability to help in understanding plant–environment interactions. This Special Issue on plant growth modelling presents new information within this topic, which are summarized in this preface. Research results for a variety of plant species growing in the field, in greenhouses and in natural environments are presented. Various models and simulation platforms are developed in this field of research, opening new features to a wider community of researchers and end users. New modelling technologies relating to the structure and function of plant shoots and root systems are explored from the cellular to the whole-plant and plant-community levels. PMID:21638797

  2. Expert System Control of Plant Growth in an Enclosed Space

    NASA Technical Reports Server (NTRS)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  3. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  4. Ventilation Homogeneity Improves with Growth Early in Life

    PubMed Central

    Chakr, Valentina C.; Llapur, Conrado J.; Sarria, Edgar E.; Mattiello, Rita; Kisling, Jeffrey; Tiller, Christina; Kimmel, Risa; Poindexter, Brenda; Tepper, Robert S.

    2011-01-01

    Some studies have suggested that lung clearance index (LCI) is age-independent among healthy subjects early in life, which implies that ventilation distribution does not vary with growth. However, other studies of older children and adolescents suggest that ventilation becomes more homogenous with somatic growth. We describe a new technique to obtain multiple breath washout (MBWO) in sedated infants and toddlers using slow augmented inflation breaths that yields an assessment of LCI and the slope of phase III, which is another index of ventilation inhomogeneity. We evaluated whether ventilation becomes more homogenous with increasing age early in life, and whether infants with chronic lung disease of infancy (CLDI) have increased ventilation inhomogeneity relative to full term controls. Fullterm controls (N = 28) and CLDI (N = 22) subjects between 3 and 28 months corrected-age were evaluated. LCI decreased with increasing age; however, there was no significant difference between the two groups (9.3 vs. 9.5; p = 0.56). Phase III slopes adjusted for expired volume (SND) increased with increasing breath number during the washout and decreased with increasing age. There was no significant difference in SND between fullterm and CLDI subjects (211 vs. 218; P = 0.77). Our findings indicate that ventilation becomes more homogenous with lung growth and maturation early in life; however, there is no evidence that ventilation inhomogeneity is a significant component of the pulmonary pathophysiology of CLDI. PMID:21901860

  5. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  6. PROPERTIES AND PLANT GROWTH POTENTIAL OF MINELAND OVERBURDEN

    EPA Science Inventory

    Overburden materials from surface coal mines in southwestern Indiana were analyzed for physical and chemical properties. Plant growth potential of selected materials, with and without sewage sludge and fertilizer amendments, was evaluated in greenhouse pot culture and outdoor con...

  7. Clinostat Delivers Power To Plant-Growth Cabinets

    NASA Technical Reports Server (NTRS)

    Bushong, Wilton E.; Fox, Ronald C.; Brown, Christopher S.; Biro, Ronald R.; Dreshel, Thomas W.

    1993-01-01

    Clinostat rotates coaxial pair of plant-growth cabinets about horizontal axis while supplying cabinets with electric power for built-in computers, lamps, fans, and auxiliary equipment, such as nutrient pumps. Each cabinet self-contained unit for growing plants in controlled environment. By rotating cabinets and contents about horizontal axis, scientists simulate and study some of effects of microgravity on growth of plants. Clinostat includes vertical aluminum mounting bracket on horizontal aluminum base. Bearings on bracket hold shaft with V-belt pulley. At each end of shaft, circular plate holds frame mount for cabinet. Mounting plates also used to hold transparent sealed growth chambers described in article, "Sealed Plant-Growth Chamber For Clinostat" (KSC-11538).

  8. Experiments with Corn To Demonstrate Plant Growth and Development.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Gray, Margarit S.

    2000-01-01

    Explores using corn seeds to demonstrate plant growth and development. This experiment allows students to formulate hypotheses, observe and record information, and practice mathematics. Presents background information, materials, procedures, and observations. (SAH)

  9. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  10. Early History of Arthropod and Vascular Plant Associations

    NASA Astrophysics Data System (ADS)

    Labandeira, Conrad C.

    Although research on modern plant-arthropod associations is one of the cornerstones of biodiversity studies, very little of that interest has percolated down to the fossil record. Much of this neglect is attributable to dismissal of Paleozoic plant-arthropod interactions as being dominated by detritivory, with substantive herbivory not emerging until the Mesozoic. Recent examination of associations from some of the earliest terrestrial communities indicates that herbivory probably extends to the Early Devonian, in the form of spore feeding and piercing-and-sucking. External feeding on pinnule margins and the intimate and intricate association of galling are documented from the Middle and Late Pennsylvanian, respectively. During the Early Permian, the range of external foliage feeding extended to hole feeding and skeletonization and was characterized by the preferential targeting of certain seed plants. At the close of the Paleozoic, surface fluid feeding was established, but there is inconclusive evidence for mutualistic relationships between insect pollinivores and seed plants. These data are gleaned from the largely separate trace-fossil records of gut contents, coprolites, and plant damage and the body-fossil records of plant reproductive and vegetative structures, insect mouthparts, and ovipositors. While these discoveries accentuate the potential for identifying particular associations, the greatest theoretical demand is to establish the spectrum and level of intensity for the emergence of insect herbivory in a range of environments during the Pennsylvanian and Permian.

  11. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  12. Magnetic field effects on plant growth, development, and evolution

    PubMed Central

    Maffei, Massimo E.

    2014-01-01

    The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317

  13. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    PubMed

    Hoson, Takayuki

    2014-01-01

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms. PMID:25370193

  14. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    PubMed

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-01-01

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

  15. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  16. Growth of Woody Plants in Clean Chip Residual Substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clean chip residual (CCR) is a potential replacement for pine bark (PB) in nursery crop substrates. It is a by-product of in-field forestry harvesting practices and has been shown to produce annual plants and perennials similar in size to plants grown in PB. This study evaluated growth of woody orna...

  17. Near-criticality underlies the behavior of early tumor growth.

    PubMed

    Remy, Guillaume; Cluzel, Philippe

    2016-01-01

    The controlling factors that underlie the growth of tumors have often been hard to identify because of the presence in this system of a large number of intracellular biochemical parameters. Here, we propose a simplifying framework to identify the key physical parameters that govern the early growth of tumors. We model growth by means of branching processes where cells of different types can divide and differentiate. First, using this process that has only one controlling parameter, we study a one cell type model and compute the probability for tumor survival and the time of tumor extinction. Second, we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase transition. We show, in this near-critical regime, that the time interval before tumor extinction is power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth data, the number of different cell types present in the observed tumor. PMID:27043180

  18. Near-criticality underlies the behavior of early tumor growth

    NASA Astrophysics Data System (ADS)

    Remy, Guillaume; Cluzel, Philippe

    2016-04-01

    The controlling factors that underlie the growth of tumors have often been hard to identify because of the presence in this system of a large number of intracellular biochemical parameters. Here, we propose a simplifying framework to identify the key physical parameters that govern the early growth of tumors. We model growth by means of branching processes where cells of different types can divide and differentiate. First, using this process that has only one controlling parameter, we study a one cell type model and compute the probability for tumor survival and the time of tumor extinction. Second, we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase transition. We show, in this near-critical regime, that the time interval before tumor extinction is power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth data, the number of different cell types present in the observed tumor.

  19. WHOLE-PLANT GROWTH STAGE ONTOLOGY FOR ANGIOSPERMS AND ITS APPLICATION IN PLANT BIOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth stages are identified as distinct morphological landmarks in a continuous developmental process. The terms describing these developmental stages record the morphological appearance of the plant at a specific point in its life cycle. The widely differing morphology of plant species conse...

  20. Atmosphere control for plant growth flight experiments

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.; Sudar, Martin; Timm, Marc; Yost, Bruce

    1989-01-01

    An atmosphere exchange system (AES) has been designed to provide a conditioned atmosphere supply to plant specimens in flight without incurring the large weight and volume associated with bottled gases. The paper examines the atmosphere filter cartridge (AFC) designed to remove trace organic atmosphere contaminants from the Space Shuttle cabin and to condition the cabin atmosphere prior to exposure to plant specimens. The AES and AFC are described and illustrated. The AFC design requirements are discussed and results are presented from tests on the performance of the AFC. Also, consideration is given to the potential applications of the AFC and future design concepts for atmosphere control.

  1. Detection of early plant stress responses in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Behmann, Jan; Steinrücken, Jörg; Plümer, Lutz

    2014-07-01

    Early stress detection in crop plants is highly relevant, but hard to achieve. We hypothesize that close range hyperspectral imaging is able to uncover stress related processes non-destructively in the early stages which are invisible to the human eye. We propose an approach which combines unsupervised and supervised methods in order to identify several stages of progressive stress development from series of hyperspectral images. Stress of an entire plant is detected by stress response levels at pixel scale. The focus is on drought stress in barley (Hordeum vulgare). Unsupervised learning is used to separate hyperspectral signatures into clusters related to different stages of stress response and progressive senescence. Whereas all such signatures may be found in both, well watered and drought stressed plants, their respective distributions differ. Ordinal classification with Support Vector Machines (SVM) is used to quantify and visualize the distribution of progressive stages of senescence and to separate well watered from drought stressed plants. For each senescence stage a distinctive set of most relevant Vegetation Indices (VIs) is identified. The method has been applied on two experiments involving potted barley plants under well watered and drought stress conditions in a greenhouse. Drought stress is detected up to ten days earlier than using NDVI. Furthermore, it is shown that some VIs have overall relevance, while others are specific to particular senescence stages. The transferability of the method to the field is illustrated by an experiment on maize (Zea mays).

  2. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. PMID:26307440

  3. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    PubMed Central

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M.; Bauer, Rudolf; Berg, Gabriele

    2013-01-01

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

  4. Material and methods to increase plant growth and yield

    SciTech Connect

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  5. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  6. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  7. Design and Construction of an Inexpensive Homemade Plant Growth Chamber

    PubMed Central

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  8. Understanding growth and development of forage plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the developmental morphology of forage plants is important for making good management decisions. Many such decisions involve timing the initiation or termination of a management practice to a particular stage of development in the life cycle of the forage. The life cycles of forage pl...

  9. Agroforestry planting design affects loblolly pine growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR on a silt loam soil with a fragipan. Loblolly pine trees were planted in 1994 in an east-west row orientation in three designs: ...

  10. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals. PMID:18409640

  11. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  12. The role of microbial signals in plant growth and development

    PubMed Central

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes

    2009-01-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals. PMID:19820333

  13. Manufactured soils for plant growth at a lunar base

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    1989-01-01

    Advantages and disadvantages of synthetic soils are discussed. It is pointed out that synthetic soils may provide the proper physical and chemical properties necessary to maximize plant growth, such as a toxic-free composition and cation exchange capacities. The importance of nutrient retention, aeration, moisture retention, and mechanical support as qualities for synthetic soils are stressed. Zeoponics, or the cultivation of plants in zeolite substrates that both contain essential plant-growth cations on their exchange sites and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth ions, is discussed. It is suggested that synthetic zeolites at lunar bases could provide adsorption media for separation of various gases, act as catalysts and as molecular sieves, and serve as cation exchangers in sewage-effluent treatment, radioactive-waste disposal, and pollution control. A flow chart of a potential zeoponics system illustrates this process.

  14. [Plant growth with limited water]. Performance report

    SciTech Connect

    Not Available

    1992-10-01

    When water is in short supply, soybean stem growth is inhibited by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. The extensibility then becomes the main limitation. With time, there is a modest recovery in extensibility along with an accumulation of a 28kD protein in the walls of the growth-affected cells. A 3lkD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. In the stem, growth was inhibited and the mRNA for the 28kD protein increased in response to water deprivation but the mRNA for the 3 1 kD protein did not. The roots continued to grow and the mRNA for the 28kD protein did not accumulate but the mRNA for the 3lkD protein did. Thus, there was a tissuespecific response of gene expression that correlated with the contrasting growth response to low water potential in the same seedlings. Further work using immunogold labeling, fluorescence labeling, and western blotting gave evidence that the 28kD protein is located in the cell wall as well as several compartments in the cytoplasm. Preliminary experiments indicate that the 28kD protein is a phosphatase.

  15. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  16. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  17. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  18. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  19. The Growth of Early Galaxies and Reionization of Hydrogen

    NASA Astrophysics Data System (ADS)

    Ram Chary, Ranga

    2012-07-01

    The reionization of the intergalactic medium about a billion years after the Big Bang was an important event which occurred due to the release of ionizing photons from the growth of stellar mass and black holes in the early Universe. By leveraging the benefits of field galaxy surveys, I will present some recent breakthroughs in our understanding of how the earliest galaxies in the Universe evolved. I will present evidence that unlike in the local Universe where galaxy growth occurs through intermittent cannibalism, star-formation in the distant Universe is a more continuous if violent process with an overabundance of massive stars. Implications for the reionization history of the Universe will also be discussed.

  20. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  1. Helical growth in plant organs: mechanisms and significance.

    PubMed

    Smyth, David R

    2016-09-15

    Many plants show some form of helical growth, such as the circular searching movements of growing stems and other organs (circumnutation), tendril coiling, leaf and bud reversal (resupination), petal arrangement (contortion) and leaf blade twisting. Recent genetic findings have revealed that such helical growth may be associated with helical arrays of cortical microtubules and of overlying cellulose microfibrils. An alternative mechanism of coiling that is based on differential contraction within a bilayer has also recently been identified and underlies at least some of these growth patterns. Here, I provide an overview of the genes and cellular processes that underlie helical patterning. I also discuss the diversity of helical growth patterns in plants, highlighting their potential adaptive significance and comparing them with helical growth patterns in animals. PMID:27624832

  2. Directional auxin transport mechanisms in early diverging land plants.

    PubMed

    Viaene, Tom; Landberg, Katarina; Thelander, Mattias; Medvecka, Eva; Pederson, Eric; Feraru, Elena; Cooper, Endymion D; Karimi, Mansour; Delwiche, Charles F; Ljung, Karin; Geisler, Markus; Sundberg, Eva; Friml, Jiří

    2014-12-01

    The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants. PMID:25448004

  3. Effect of site on growth of hybrid poplar clones planted on a commercial scale

    SciTech Connect

    Woods, R.F.

    1985-01-01

    Two-, four-, and five-year height growth of Populus hybrids were measured over a full range of USDA Soil Conservation Service natural and altered soil drainage and texture classes on fields planted by Packaging Corporation of America using intensive culture. Five clonal trials with 40 clones each were examined for 4-year height growth and were analyzed for effects of site, clone and site by clone interaction. Substantial soil variability became an important factor on the previously-planted sites and had to be considered in the statistical analysis. Ten clones with the best 4-year height growth were identified. Four- and five-year height growth of several of the most promising clones from the clonal trials were then examined over a range of soil/site conditions in commercial-size plantations using a tillage plus herbicide management system. Two-year growth was evaluated using a no-till system. Height growth under both management systems significantly decreased on sites other than those with the most optimum conditions for agricultural crops. Using the results from the clonal trials and the two tillage system studies, soil/site factors which affected establishment and early growth of hybrid popular plantings were summarized and outlined in detail, and a practical field guide was formulated for evaluating the potential of agricultural fields for the intensive culture of hybrid poplars.

  4. Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants.

    PubMed

    Lee, Eun-Hwa; Eom, Ahn-Heum

    2015-12-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level. PMID:26839504

  5. Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants

    PubMed Central

    Lee, Eun-Hwa

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level. PMID:26839504

  6. Root foraging influences plant growth responses to earthworm foraging.

    PubMed

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants. PMID:25268503

  7. Root Foraging Influences Plant Growth Responses to Earthworm Foraging

    PubMed Central

    Cameron, Erin K.; Cahill, James F.; Bayne, Erin M.

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants. PMID:25268503

  8. Activated carbon decreases invasive plant growth by mediating plant-microbe interactions.

    PubMed

    Nolan, Nicole E; Kulmatiski, Andrew; Beard, Karen H; Norton, Jeanette M

    2014-01-01

    There is growing appreciation for the idea that plant-soil interactions (e.g. allelopathy and plant-microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant-soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m(-2). Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant-microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  9. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    PubMed

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. PMID:24080397

  10. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.

    PubMed

    Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I

    2015-04-01

    After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance. PMID:25698140

  11. The Rapid Growth of Fibroids during Early Pregnancy

    PubMed Central

    Benaglia, Laura; Cardellicchio, Lucia; Filippi, Francesca; Paffoni, Alessio; Vercellini, Paolo; Somigliana, Edgardo; Fedele, Luigi

    2014-01-01

    Several studies aimed to disentangle whether pregnancy influences the growth of uterine fibroids but results were inconsistent. In this study, we speculated that fibroid enlargement during pregnancy may not be linear and we hypothesized that this phenomenon may mainly occur during initial pregnancy. To test this hypothesis, we set up a prospective cohort study of women with fibroids undergoing IVF. Cases were women achieving a viable pregnancy. Controls were the subsequent women with fibroids but failing to become pregnant. Twenty-five cases and 25 controls were recruited. The total number of fibroids in the two groups was 46 and 41, respectively. The mean ± SD diameter of the fibroids was 17±10 and 20±11 mm, respectively (p = 0.18). A statistically significant enlargement emerged exclusively in pregnant women. The median (Interquartile Range) modification of the diameter of the lesions in cases and controls was +34% (+6%/+65%) and +2% (−6%/+12%), respectively (p<0.001). The median (Interquartile Range) modification of the volume of the lesions was +140% (+23%/+357%) and 0% (−18%/+37%), respectively (p<0.001). In pregnant women, we failed to document any significant correlation between the magnitude of the growth and ovarian responsiveness to hyper-stimulation, suggesting that steroids hormones are not the unique factors involved. In conclusion, fibroids undergo a rapid and remarkable growth during initial pregnancy. Reasons behind this phenomenon remain to be clarified. The early rise in steroids hormones during early pregnancy may not be sufficient to explain the process. Other pregnancy-related hormones and proteins may play also key roles. PMID:24465797

  12. Early growth response 1 regulates glucose deprivation-induced necrosis

    PubMed Central

    JEON, HYUN MIN; LEE, SU YEON; JU, MIN KYUNG; KIM, CHO HEE; PARK, HYE GYEONG; KANG, HO SUNG

    2013-01-01

    Necrosis is commonly found in the core region of solid tumours due to metabolic stress such as hypoxia and glucose deprivation (GD) resulting from insufficient vascularization. Necrosis promotes tumour growth and development by releasing the tumour-promoting cytokine high mobility group box 1 (HMGB1); however, the molecular mechanism underlying necrotic cell death remains largely unknown. In this study, we show that early growth response 1 (Egr-1) is induced in a reactive oxygen species (ROS)-dependent manner by GD in several cell lines such as A549, MDA-MB-231 and HepG2 cells that exhibit necrosis upon GD. We found that Egr-1 short hairpin RNA (shRNA) prevented GD-induced necrosis and HMGB1 release. Necrosis-inhibiting activity of Egr-1 shRNA was also seen in multicellular tumour spheroids (MTSs), an in vitro tumour model system. In contrast, Egr-1 overexpression appeared to make tumour cells more susceptible to GD-induced necrosis. Finally, Egr-1 shRNA suppressed the growth of MTSs. These findings demonstrate that Egr-1 is implicated in GD-induced necrosis and tumour progression. PMID:23152075

  13. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    PubMed

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments. PMID:26905653

  14. Gravity related features of plant growth behavior studied with rotating machines

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1996-01-01

    Research in plant physiology consists mostly of studies on plant growth because almost everything a plant does is done by growing. Most aspects of plant growth are strongly influenced by the earth's gravity vector. Research on those phenomena address scientific questions specifically about how plants use gravity to guide their growth processes.

  15. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    PubMed

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. PMID:27053756

  16. Symbiotic regulation of plant growth, development and reproduction

    USGS Publications Warehouse

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  17. Influence of Atmospheric Pressure Torch Plasma Irradiation on Plant Growth

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Yusuke; Hayashi, Nobuya; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-10-01

    Growth stimulation characteristics of plants seeds are investigated by an atmospheric discharge irradiation into plasma seeds. Atmospheric pressure plasma torch is consisted of alumina ceramics tube and the steel mesh electrodes wind inside and outside of the tube. When AC high voltage (8 kHz) is applied to the electrode gap, the barrier discharge plasma is produced inside the alumina ceramics tube. The barrier discharge plasma is blown outside with the gas flow in ceramics tube. Radish sprouts seeds locate at 1 cm from the torch edge. The growth stimulation was observed in the length of a stem and a root after the plasma irradiation. The stem length increases approximately 2.8 times at the cultivation time of 24 h. And the growth stimulation effect is found to be maintained for 40 h, after sowing seeds. The mechanism of the growth stimulation would be the redox reaction inside plant cells induced by oxygen radicals.

  18. Relationship between early growth and CVD risk factors in adolescents.

    PubMed

    Musa, M G; Kagura, J; Pisa, P T; Norris, S A

    2016-04-01

    Low birth weight and a rapid weight gain in early childhood may lead to an increased risk for developing cardiovascular disease later in life, such as hypertension and dyslipidaemia. In this study, we examined the associations between size at birth, relative weight gain in infancy and childhood with specific cardiovascular disease risk factors in early adulthood. Adolescents (n=1935) from the Birth to Twenty plus (BT20+) cohort were included in the analysis. The following were treated as exposure variables: weight at birth, and relative conditional weight gain (CW), independent of height, between ages 0-24 months and 24-48 months. Outcomes were serum lipids and body composition variables at age 18 years. After adjusting for sex and other confounders, early life exposures were not associated with adolescent lipid profile. Following adjustment for sex and height (body size), birth weight [β=0.704 (0.40, 1.01)], CW 0-24 [β=1.918 (1.56, 2.28)] and CW24-48 [β=1.485 (1.14, 1.82)] accounted for 48% of the variance in fat mass. However, birth weight [β=0.773 (0.54, 1.01)], CW 0-24 [β=1.523 (1.24, 1.80)] and CW24-48 [β=1.226 (0.97, 1.49)] were also positively predicted and accounted for 71% of the variance in fat mass in adolescence (P<0.05). Our data suggests that birth weight and weight gain during infancy and early childhood independent of linear growth are related to adolescent body composition but not blood lipid profiles in an urban African population. PMID:26810380

  19. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  20. Information Integration and Communication in Plant Growth Regulation.

    PubMed

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. PMID:26967291

  1. Use of lunar regolith as a substrate for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Henninger, D. L.

    1994-01-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (1) soils or solid-support substrates for plant growth, (2) sources for extraction of essential, plant-growth nutrients, (3) substrates for microbial populations in the degradation of wastes, (4) sources of O2 and H2, which may be used to manufacture water, (5) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (6) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.

  2. Use of lunar regolith as a substrate for plant growth.

    PubMed

    Ming, D W; Henninger, D L

    1994-01-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H2, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth. PMID:11538023

  3. Use of lunar regolith as a substrate for plant growth

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Henninger, D. L.

    1994-11-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H2, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganism from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.

  4. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    PubMed Central

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise. PMID:24278762

  5. Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2001-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  6. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  7. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  8. Growth protocols for model plants in developmental biology.

    PubMed

    Hennig, Lars

    2010-01-01

    Arabidopsis is the dominating model species for plant developmental biology, but other species serve as models for processes that cannot be studied in Arabidopsis, such as compound leaf or wood formation, or to test the universality of developmental mechanisms initially identified in Arabidopsis. Research in plant developmental biology depends critically on robust growth protocols that will support reproducible development. Here, protocols are given to grow Antirrhinum, Arabidopsis, Brachypodium, maize, Medicago, Petunia, rice, and tomato in the laboratory. PMID:20734250

  9. Effects of spring post-planting flooding on early soybean production systems in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    April planting of early-maturing soybean to avoid late-summer drought and to allow early harvest has become a common management practice in Mississippi. However, most of the early-planted soybeans on Sharkey clay soils in Mississippi are often exposed to waterlogged conditions during the early sprin...

  10. Magnetic fluids effect upon growth processes in plants

    NASA Astrophysics Data System (ADS)

    Sala, F.

    1999-07-01

    The metabolic processes of plants growth and development take place according to some organic rules which are specific to their genetic potential. These processes may exhibit modifications of intensity, rhythm, sense, under the influence of the environmental conditions of agricultural systems, through certain factors and bioregulators artificially introduced by man. The results of some investigations regarding effects of biocompatible magnetic fluids (LMW 100 G) on the vegetal organism's (growth, development, fructifying, the level and quality of the yield precocity) are presented.

  11. Myo-inositol hexakisphosphate, isolated from female gametophyte tissue of loblolly pine, inhibits growth of early-stage somatic embryos.

    PubMed

    Wu, Di; Sullards, M Cameron; Oldham, Charlie D; Gelbaum, Les; Lucrezi, Jacob; Pullman, Gerald S; May, Sheldon W

    2012-01-01

    • Myo-inositol hexakisphosphate (InsP(6)), abundant in animals and plants, is well known for its anticancer activity. However, many aspects of InsP(6) function in plants remain undefined. We now report the first evidence that InsP(6) can inhibit cellular proliferation in plants under growth conditions where phosphorus is not limited. • A highly anionic molecule inhibitory to early-stage somatic embryo growth of loblolly pine (LP) was purified chromatographically from late-stage LP female gametophytes (FGs), and then characterized structurally using mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. • Exact mass and mass spectrometry-mass spectrometry (MS-MS) fragmentation identified the bioactive molecule as an inositol hexakisphosphate. It was then identified as the myo-isomer (i.e. InsP(6)) on the basis of (1)H-, (31)P- and (13)C-NMR, (1)H-(1)H correlation spectroscopy (COSY), (1)H-(31)P heteronuclear single quantum correlation (HSQC) and (1)H-(13)C HSQC. Topical application of InsP(6) to early-stage somatic embryos indeed inhibits embryonic growth. • Recently evidence has begun to emerge that InsP(6) may also play a regulatory role in plant cells. We anticipate that our findings will help to stimulate additional investigations aimed at elucidating the roles of inositol phosphates in cellular growth and development in plants. PMID:22023391

  12. Effects of simulated oilfield produced water on early seedling growth after treatment in a pilot-scale constructed wetland system.

    PubMed

    Pardue, Michael J; Castle, James W; Rodgers, John H; Huddleston, George M

    2015-01-01

    Seed germination and early seedling growth bioassays were used to evaluate phytotoxicity of simulated oilfield produced water (OPW) before and after treatment in a subsurface-flow, pilot-scale constructed wetland treatment system (CWTS). Responses to untreated and treated OPW were compared among seven plant species, including three monocotyledons: corn (Zea mays), millet (Panicum miliaceum), and sorghum (Sorghum bicolor); and four dicotyledons: lettuce (Lactuca sativa), okra (Abelmoschus esculents), watermelon (Citrullus lanatus), and soybean (Glycine max). Phytotoxicity was greater in untreated OPW than in treated OPW. Exposures to untreated and treated OPW enhanced growth in some plant species (sorghum, millet, okra, and corn) relative to a negative control and reduced growth in other plant species (lettuce, soybean, and watermelon). Early seedling growth parameters indicated that dicotyledons were more sensitive to test waters compared to monocotyledons, suggesting that morphological differences between plant species affected phytotoxicity. Results indicated the following sensitivity scale for plant species: lettuce>soybean>watermelon>corn>okra≈millet>sorghum. Phytotoxicity of the treated OPW to lettuce and soybean, although concentrations of COCs were less than irrigation guideline concentrations, suggests that chemical characterization and comparison to guideline concentrations alone may not be sufficient to evaluate water for use in growing crops. PMID:25409245

  13. Providing controlled environments for plant growth in space.

    PubMed

    Bula, R J; Ignatius, R W

    1996-12-01

    Providing a controlled environment for growth of plants in a space environment involves development of unique technologies for the various subsystems of the plant growing facility. These subsystems must be capable of providing the desired environmental control within the operational constraints of currently available space vehicles, primarily the US Space Shuttle or the Russian Space Station, MIR. These constraints include available electrical power, limited total payload mass, and limited volume of the payload. In addition, the space hardware must meet safety requirements for a man-rated space vehicle. The ASTROCULTURE (TM) space-based plant growth unit provides control of temperature, humidity, and carbon dioxide concentration of the plant chamber air. A light emitting diode (LED) unit provides red and blue photons with a total intensity adjustable from 0 to 500 micromoles m-2 s-1. Ethylene released by the plant material is removed with a non-consumable ethylene removable unit. A porous tube and rooting matrix subsystem is used to supply water and nutrients to the plants. The ASTROCULTURE(TM) flight unit is sized to be accommodated in a single middeck locker of the US Space Shuttle, the SPACEHAB module, and with slight modification in the SPACELAB module. The environmental control capabilities of the subsystems used in the ASTROCULTURE(TM) flight unit have been validated in a microgravity environment during five US Space Shuttle missions, including two with plants. The unique environmental control technologies developed for the space-based plant growth facility can be used to enhance the environmental control capabilities of terrestrial controlled environment plant chambers. PMID:11541567

  14. Water, plants, and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa--Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water-lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C(4)-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm · y(-1) and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change. PMID:23267102

  15. Water, plants, and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa—Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water–lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C4-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm·y−1 and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change. PMID:23267102

  16. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  17. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  18. Early Site Permit Demonstration Program: Nuclear Power Plant Siting Database

    Energy Science and Technology Software Center (ESTSC)

    1994-01-28

    This database is a repository of comprehensive licensing and technical reviews of siting regulatory processes and acceptance criteria for advanced light water reactor (ALWR) nuclear power plants. The program is designed to be used by applicants for an early site permit or combined construction permit/operating license (10CFRR522, Subparts A and C) as input for the development of the application. The database is a complete, menu-driven, self-contained package that can search and sort the supplied datamore » by topic, keyword, or other input. The software is designed for operation on IBM compatible computers with DOS.« less

  19. The progress of early growth response factor 1 and leukemia

    PubMed Central

    Tian, Jing; Li, Ziwei; Han, Yang; Jiang, Tao; Song, Xiaoming; Jiang, Guosheng

    2016-01-01

    Summary Early growth response gene-1 (EGR1) widely exists in the cell nucleus of such as, zebrafish, mice, chimpanzees and humans, an it also can be observed in the cytoplasm of some tumors. EGR1 was named just after its brief and rapid expression of different stimuli. Accumulating studies have extensively demonstrated that the widespread dysregulation of EGR1 is involved in hematological malignancies such as human acute myeloid leukemia (AML), chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B cell lymphoma. With the deep research on EGR1, its expression, function and regulatory mechanism has been gradually elucidated, and provides more possibilities for treatment strategies of patients with leukemia. Herein, we summarize the roles of EGR1 in its biological function and relationship with leukemia. PMID:27195189

  20. The progress of early growth response factor 1 and leukemia.

    PubMed

    Tian, Jing; Li, Ziwei; Han, Yang; Jiang, Tao; Song, Xiaoming; Jiang, Guosheng

    2016-05-01

    Early growth response gene-1 (EGR1) widely exists in the cell nucleus of such as, zebrafish, mice, chimpanzees and humans, an it also can be observed in the cytoplasm of some tumors. EGR1 was named just after its brief and rapid expression of different stimuli. Accumulating studies have extensively demonstrated that the widespread dysregulation of EGR1 is involved in hematological malignancies such as human acute myeloid leukemia (AML), chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B cell lymphoma. With the deep research on EGR1, its expression, function and regulatory mechanism has been gradually elucidated, and provides more possibilities for treatment strategies of patients with leukemia. Herein, we summarize the roles of EGR1 in its biological function and relationship with leukemia. PMID:27195189

  1. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  2. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Wheeler, R. M.; Morrow, R. C.; Levine, H. G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED lighting, and those capabilities continue to expand. The 'Veggie' vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nm), blue, (455 nm) and green (530 nm) LEDs. Interfacing with the light cap is an extendable bellows/baseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  3. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  4. All about Plant Structure & Growth. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    How does a tiny seed sprout and grow into a towering tree? Join the kids from M.A.P.L.E as they learn about some of the incredible transformations that a plant goes through during its lifetime. In All About Plant Structure & Growth, uncover the secrets of roots, stems and leaves - structures that are vital to a plant's role as an energy producer.…

  5. Nondestructive methods for early detection of damage to living plants

    NASA Astrophysics Data System (ADS)

    Fateyeva, Natalya L.; Matvienko, Gennadii G.; Shul'gina, Lidia A.

    2004-10-01

    As a result of the accomplish experiments determine, that by a method of a laser-induced fluorescence of chlorophyll it is possible to spot for cedar an early stage of the stressful factor, bound with presence in ground <>. In our case the laboratory researches provided learning a quantitative contents chlorophyll for plants found in normal and stressful conditions on a basis spectrophotometrical of a method. Natural measurement the observations behind dynamics of a photosynthetic state means of wood plants in vivo enable. For an estimation of this state the fluorescence of chlorophyll on wavelength 685 and 740 nm was used. The optical model of a green leaf was developed for methods of a laser-induced fluorescence of chlorophyll. A experiments series on remote research of processes violation of mineral power supply and exchange in plants is carried spent. Was considered the change of the ratios of intensity of a fluorescence of chlorophyll and carotenoids at deficiency. Was designed technique for detection infringement processes of mineral nutrition and change surveyed acidity grounds on laser-induce fluorescent responses of deciduous plants.

  6. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    PubMed

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  7. Early detection of invasive plants: principles and practices

    USGS Publications Warehouse

    Welch, Bradley A.; Geissler, Paul H.; Latham, Penelope

    2014-01-01

    Invasive plants infest an estimated 2.6 million acres of the 83 million acres managed by the National Park Service (NPS) in the United States. The consequences of these invasions present a significant challenge for the NPS to manage the agency’s natural resources “unimpaired for the enjoyment of future generations.” More NPS lands are infested daily despite diligent efforts to curtail the problem. Impacts from invasive species have been realized in most parks, resulting in an expressed need to control existing infestations and restore affected ecosystems. There is a growing urgency in the NPS and other resource management organizations to be proactive. The NPS I&M Program, in collaboration with the U.S. Geological Survey (USGS) Status and Trends Program, compiled this document to provide guidance and insight to parks and other natural areas engaged in developing early-detection monitoring protocols for invasive plants. While several rapid response frameworks exist, there is no consistent or comprehensive guidance informing the active detection of nonnative plants early in the invasion process. Early-detection was selected as a primary focus for invasive-species monitoring because, along with rapid response, it is a key strategy for successful management of invasive species. Eradication efforts are most successful on small infestations (that is less than 1 hectare) and become less successful as infestation size increases, to the point that eradication is unlikely for large (that is greater than 1,000 hectares) populations of invasive plants. This document provides guidance for natural resource managers wishing to detect invasive plants early through an active, directed monitoring program. It has a Quick-Start Guide to direct readers to specific chapters and text relevant to their needs. Decision trees and flow charts assist the reader in deciding what methods to choose and when to use them. This document is written in a modular format to accommodate use of

  8. Single-plant, Sterile Microcosms for Nodulation and Growth of the Legume Plant Medicago truncatula with the Rhizobial Symbiont Sinorhizobium meliloti

    PubMed Central

    Jones, Kathryn M.

    2013-01-01

    Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required. PMID:24121837

  9. Cytokinin production by plant growth promoting rhizobacteria and selected mutants.

    PubMed

    García de Salamone, I E; Hynes, R K; Nelson, L M

    2001-05-01

    One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR. PMID:11400730

  10. Plant Classification by Growth Form for Field Use.

    ERIC Educational Resources Information Center

    Kemp, David M.

    1982-01-01

    A simple classification system for terrestrial plants is presented. The method is based on growth forms and avoids the need for identification to genus or species, although students could be encouraged to follow the work through to this level if appropriate. (Author/JN)

  11. Telerobotic Tending of Space Based Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Backes, P. G.; Long, M. K.; Das, H.

    1994-01-01

    The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.

  12. Developmental programming: variations in early growth and adult disease.

    PubMed

    Gallo, Linda A; Tran, Melanie; Moritz, Karen M; Wlodek, Mary E

    2013-11-01

    Suboptimal conditions in utero are associated with the development of adult-onset diseases in offspring. Uteroplacental insufficiency in rats is a well-established animal model used to mimic and study the effects of developmental insults relevant to countries of abundant nutrient supply. However, wide-ranging outcomes for the offspring are apparent between the different investigators that use this model and also between cohorts generated in our laboratory. We aimed to explore the reasons for variability in rat models of uteroplacental insufficiency between different investigators and also between our own animal cohorts. We suggest differences in growth and disease development reflect uniqueness in susceptibility and highlight the complexity of interactions between genetic potential and environmental exposures. The impact of adverse exposures in utero has been described as having far-reaching effects that extend well beyond the first, directly exposed generation. However, the resulting phenotypes are not consistent between generations. This suggests that programmed effects are established de novo in each generation and challenges the prediction of disease. Characterization of growth and disease in the numerous rat models has led to our understanding of the impact of early life experiences on adult health. In order to drive the development of preventative and/or treatment strategies, future studies should focus on identifying the initial cause(s) of uteroplacental insufficiency, including genetic origins and the influence of poor diets. PMID:23581813

  13. Early signaling dynamics of the epidermal growth factor receptor.

    PubMed

    Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J; Rothenberg, Daniel A; Curran, Timothy G; White, Forest M

    2016-03-15

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology. PMID:26929352

  14. Simulations of nucleation and early growth stages of protein crystals.

    PubMed Central

    Kierzek, A M; Wolf, W M; Zielenkiewicz, P

    1997-01-01

    Analysis of known protein crystal structures reveals that interaction energies between monomer pairs alone are not sufficient to overcome entropy loss related to fixing monomers in the crystal lattice. Interactions with several neighbors in the crystal are required for stabilization of monomers in the lattice. A microscopic model of nucleation and early growth stages of protein crystals, based on the above observations, is presented. Anisotropy of protein molecules is taken into account by assigning free energies of association (proportional to the buried surface area) to individual monomer-monomer contacts in the lattice. Lattice simulations of the tetragonal lysozyme crystal based on the model correctly reproduce structural features of the movement of dislocation on the (110) crystal face. The dislocation shifts with the speed equal to the one determined experimentally if the geometric probability of correct orientation is set to 10(-5), in agreement with previously published estimates. At this value of orientational probability, the first nuclei, the critical size of which for lysozyme is four monomers, appear in 1 ml of supersaturated solution on a time scale of microseconds. Formation of the ordered phase proceeds through the growth of nuclei (rather then their association) and requires nucleations on the surface at certain stages. Images FIGURE 2 PMID:9251778

  15. Sugar-induced plant growth is dependent on brassinosteroids

    PubMed Central

    Zhang, Yongqiang; He, Junxian

    2015-01-01

    Sugars, the end products of photosynthesis, not only fuel growth and development of plants as carbon and energy sources, but also function as signaling molecules to modulate a range of important processes during plant growth and development. We recently found that sugar can promote hypocotyl elongation in Arabidopsis in darkness and this is largely dependent on brassinosteroids (BRs), a group of essential phytohormones involved in mediation of plant cell elongation. Sugars not only positively regulate the transcription of BZR1, the gene encoding the BR-activated transcription factor BRASSINAZOLE RESISTANT1 (BRZ1), but also stabilize the BZR1 protein. Based on these results, we proposed that BZR1 may act as a converging node for crosstalk between BR and sugar signaling in regulating plant growth in darkness. In this short communication, we present some new data showing that HEXOKINASE1 (HXK1), the first identified glucose (Glc) sensor in plants, was positively involved in Glc promotion of hypocotyl elongation in Arabidopsis in the dark. It appears that the function of HXK1 is dependent on the presence of BR, suggesting that BR may act downstream of HXK1 to positively regulate Glc-induced hypocotyl elongation in Arabidopsis in darkness. PMID:26340221

  16. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  17. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    PubMed

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant. PMID:23749248

  18. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots. PMID:26873699

  19. Characterization of Minnesota lunar simulant for plant growth

    NASA Technical Reports Server (NTRS)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  20. Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis.

    PubMed

    Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V; Harvie, Barbra A

    2016-01-01

    The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compared the use of Pseudomonas brassicacearum, Rhizobium leguminosarum, and the metal tolerant leguminous plant Vicia sativa to promote the growth of Brassica juncea in soil contaminated with 400 mg Zn kg(-1), and used synchrotron based microfocus X-ray absorption spectroscopy to probe Zn speciation in plant roots. B. juncea grew better when planted with V. sativa than when inoculated with PGPB. By combining PGPB with mixed planting, B. juncea recovered full growth while also achieving soil remediation efficiency of >75%, the maximum ever demonstrated for B. juncea. μXANES analysis of V. sativa suggested possible root exudation of the Zn chelates histidine and cysteine were responsible for reducing Zn toxicity. We propose the exploration of a legume-assisted-phytoremediation system as a more effective alternative to PGPB for Zn bioremediation. PMID:26682469

  1. Phosphorus mobilizing consortium Mammoth P(™) enhances plant growth.

    PubMed

    Baas, Peter; Bell, Colin; Mancini, Lauren M; Lee, Melanie N; Conant, Richard T; Wallenstein, Matthew D

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity. PMID:27326379

  2. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    PubMed Central

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  3. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    PubMed Central

    He, Tianhua; Fowler, William M.; Causley, Casey L.

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493

  4. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae).

    PubMed

    He, Tianhua; Fowler, William M; Causley, Casey L

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493

  5. Herbivory: effects on plant abundance, distribution and population growth

    PubMed Central

    Maron, John L; Crone, Elizabeth

    2006-01-01

    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plant–consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics. PMID:17002942

  6. Peat soil composition as indicator of plants growth environment

    NASA Astrophysics Data System (ADS)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  7. Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill.

    PubMed

    Bell, Terrence H; Cloutier-Hurteau, Benoît; Al-Otaibi, Fahad; Turmel, Marie-Claude; Yergeau, Etienne; Courchesne, François; St-Arnaud, Marc

    2015-08-01

    Although plants introduced for site restoration are pre-selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post-planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post-planting than 16 months post-planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post-planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant-fungus specificity may be essential. PMID:25970820

  8. 15. international conference on plant growth substances: Program -- Abstracts

    SciTech Connect

    1995-12-31

    Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose work focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.

  9. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  10. The effect of ultradian and orbital cycles on plant growth

    NASA Technical Reports Server (NTRS)

    Berry, W.; Hoshizaki, T.; Ulrich, A.

    1986-01-01

    In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.

  11. Copper oxychloride fungicide and its effect on growth and oxidative stress of potato plants.

    PubMed

    Ferreira, Leonardo Cesar; Scavroni, Joseane; da Silva, João Renato Vaz; Cataneo, Ana Catarina; Martins, Dagoberto; Boaro, Carmen Sílvia Fernandes

    2014-06-01

    Excess copper in plants causes physiological alterations that lead to crop productivity losses. However, cupric fungicides have been utilized in the control of Alternaria solani and Phytophthora infestans fungi, which cause early blight and late blight in potato, respectively. Thus, this study aimed to investigate the effect of different copper oxychloride levels on potato plants through some biochemical and physiological parameters. The fungicide was applied at the recommended level (2.50gL(-1)), at a reduced level (1.25gL(-1)), and at 5.00gL(-1), to simulate spraying in the field twice during the same period with the recommended level. The results revealed that superoxide dismutase (SOD, EC 1.15.1.1) protected plants against oxidative stress at the beginning of the cycle since lipoperoxide levels were low in that period. In addition, increased SOD activity positively correlated with increased usable leaf area for photosynthesis (leaf area ratio, LAR), photosynthetic effectiveness (net assimilation rate, NAR), and growth relative to pre-existing dry matter (relative growth rate, RGR). Concomitantly, there was a negative correlation between lipoperoxide levels and LAR and RGR. Plants randomly sprayed twice in the same period with the level recommended for potato crop protection in the field do not present damage regarding their development. However, additional studies are needed in order to reduce the use of copper fungicides in the control of early and late blight in potato crop production, then decreasing the release of copper in the environment. PMID:24974119

  12. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  13. Adult consequences of growth failure in early childhood123

    PubMed Central

    Hoddinott, John; Behrman, Jere R; Maluccio, John A; Melgar, Paul; Quisumbing, Agnes R; Ramirez-Zea, Manuel; Stein, Aryeh D; Yount, Kathryn M

    2013-01-01

    Background: Growth failure is associated with adverse consequences, but studies need to control adequately for confounding. Objective: We related height-for-age z scores (HAZs) and stunting at age 24 mo to adult human capital, marriage, fertility, health, and economic outcomes. Design: In 2002–2004, we collected data from 1338 Guatemalan adults (aged 25–42 y) who were studied as children in 1969–1977. We used instrumental variable regression to correct for estimation bias and adjusted for potentially confounding factors. Results: A 1-SD increase in HAZ was associated with more schooling (0.78 grades) and higher test scores for reading and nonverbal cognitive skills (0.28 and 0.25 SDs, respectively), characteristics of marriage partners (1.39 y older, 1.02 grade more schooling, and 1.01 cm taller) and, for women, a higher age at first birth (0.77 y) and fewer number of pregnancies and children (0.63 and 0.43, respectively). A 1-SD increase in HAZ was associated with increased household per capita expenditure (21%) and a lower probability of living in poverty (10 percentage points). Conversely, being stunted at 2 y was associated with less schooling, a lower test performance, a lower household per capita expenditure, and an increased probability of living in poverty. For women, stunting was associated with a lower age at first birth and higher number of pregnancies and children. There was little relation between either HAZ or stunting and adult health. Conclusion: Growth failure in early life has profound adverse consequences over the life course on human, social, and economic capital. PMID:24004889

  14. Use of reflectance spectroscopy for early detection of calcium deficiency in plants

    NASA Astrophysics Data System (ADS)

    Li, Bingqing; Wah, Liew Oi; Asundi, Anand K.

    2005-04-01

    This article investigates calcium deficiency symptoms of the plants grown under hydroponics conditions. Leaf reflectance data were collected from plants, and then transformed to L*, a*, b* values, which provide color information of the leaves. After comparing the color information of deficient plants to control plants, a set of deficiency criterion was established for early detection of calcium deficiency in the plants. Calcium deficiency could be detected as early as two days from the onset of stress in mature plants when optical data were collected from terminal young leaves. Young plants subjected to calcium stress for 9 days could not be distinguished from nutrient sufficient plants.

  15. Simulation model for plant growth in controlled environment systems

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  16. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  17. Disentangling direct and growth-mediated influences on early survival: a mechanistic approach.

    PubMed

    Plard, Floriane; Yoccoz, Nigel G; Bonenfant, Christophe; Klein, François; Warnant, Claude; Gaillard, Jean-Michel

    2015-09-01

    1. Early survival is a key life-history trait that often accounts for a large part of the variation in individual fitness and shapes population dynamics. The factors influencing early survival are multiple in large herbivores, including malnutrition, predation, cohort variation or maternal effects. However, the mechanistic pathways connecting these drivers to variation in early survival are much less studied. Indeed, whether these factors influence early survival directly or indirectly through early growth remains to be disentangled. 2. In this study, we used a path analysis to separate the direct and indirect (i.e. mediated by early growth) pathways through which sex, birth date, cohort and family effects influence early survival. We used a large data set of marked roe deer newborns collected from 1985 to 2010 in the intensively monitored population of Trois Fontaines (France). 3. We found that most drivers have indirect influences on early survival through early growth. Indeed, cohort effects influenced early survival through the indirect effect of precipitation around birth on early growth. Precipitation also had direct effects on early survival. Family effects indirectly influenced early survival. Twins from the same litter grew at about the same rate, so they had the same fate. Moreover, some factors, such as birth date, had both direct and indirect effects on roe deer early survival, with fawns born early in the season benefiting from high early survival both because they have more time to grow before the harsh season and because they grow faster during their first days of life than late-born fawns. 4. These findings suggest that most drivers of early survival previously identified in large mammalian herbivores may affect early survival primarily through their influence on early growth. Disentangling the direct and indirect pathways by which different factors influence early survival is of crucial importance to understand the mechanisms shaping this key

  18. Modeling Gas Exchange in a Closed Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.

    1994-01-01

    Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant a growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.

  19. Modeling gas exchange in a closed plant growth chamber

    NASA Technical Reports Server (NTRS)

    Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.

    1994-01-01

    Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.

  20. Growth-promotion of plants with depolymerized alginates by irradiation

    NASA Astrophysics Data System (ADS)

    Hien, Nguyen Quoc; Nagasawa, Naotsugu; Tham, Le Xuan; Yoshii, Fumio; Dang, Vo Huy; Mitomo, Hiroshi; Makuuchi, Keizo; Kume, Tamikazu

    2000-07-01

    Alginate has been degraded by gamma-ray irradiation from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). The irradiated alginate with a molecular weight less than 10 4 shows a strong effect on the growth-promotion of rice and peanut. Low concentration of degraded alginate from 4% solution irradiated at 100 kGy is effective for the growth-promotion of plants and the suitable concentrations are ca 50 ppm for rice and ca 100 ppm for peanut.

  1. Plant Growth/Plant Phototropism - Skylab Student Experiment ED-61/62

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  2. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  3. (Metabolic mechanisms of plant growth at low water potentials)

    SciTech Connect

    Not Available

    1990-01-01

    The work supported by DOE showed that water-limitation inhibits plant growth first by imposing a physical limitation that is followed in a few h by metabolic changes leading to reduced wall extensibility in the enlarging cells. After the wall extensibility decreased, a 28kD protein accumulated particularly in the walls of the growth-affected cells. Antibodies were used to identify cDNA for the protein. The base sequence of the cDNA was typical of an enzyme rather than known structural components of walls. The sequence was identical to one published by another laboratory at the same time and encoding a protein that accumulates in vacuoles of depodded soybean plants.

  4. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina.

    PubMed

    Viruel, Emilce; Lucca, María E; Siñeriz, Faustino

    2011-07-01

    The ability of soil microorganisms to solubilize phosphate is an important trait of plant growth-promoting bacteria leading to increased yields and smaller use of fertilizers. This study presents the isolation and characterization of phosphobacteria from Puna, northwestern Argentina and the ability to produce phosphate solubilization, alkaline phosphatase, siderophores, and indole acetic acid. The P-solubilizing activity was coincidental with a decrease in pH values of the tricalcium phosphate medium for all strains after 72 h of incubation. All the isolates showed the capacity to produce siderophores and indoles. Identification by 16S rDNA sequencing and phylogenetic analysis revealed that these strains belong to the genera Pantoea, Serratia, Enterobacter, and Pseudomonas. These isolates appear attractive for exploring their plant growth-promoting activity and potential field application. PMID:21442320

  5. Plant development in space: Observations on root formation and growth

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  6. Restoring directional growth sense to plants in space

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    Introduction of new plant classification: electrotropic (Et) and non-electrotropic (nEt) plants gives us a criterion which plants need electric field to grow "normally" in space. The electric field: E is measured in V/m (volt per meter). Do not confuse "electrotropism" understood by some as the response to current flow transversely through the plant's root. This effect was previously described in biological textbooks. I suggest to call it as (Ct) (here C stands for current and t for tropism). In the laboratory we have in the plant growth chamber two transparent to light (wire mesh) conducting sheets separated by m(meters) and V volts potential difference. It has been shown in laboratory that Et is a very important factor in electrotropic plant development. Space experiments with plants grown in orbit from seed to seed have been fully successful only (in my very best knowledge) with nEt plants. The most common nEt plants are grasses (more than 50% of all plants). The nEt plants in space use phototropism as their sensor of direction. In space (and most greenhouses) we have to provide the electric field at least for the Et plants. It has been shown that the electric field is also beneficial to nEt plants which also acquire the sense of direction imposed by stronger than the normal 130V/m E field (vector). The stronger horizontal E field of 1.6kV/m (slightly more than 12 times stronger than 130V/m) does not influence the rate of growth of maize (which is nEt) in 130V/m vertical field or even in the Faraday cage 0V/m. Yet when the maize gets its leaves, they all lean in the horizontal field (1.6kV/m) towards the anode. The direction of the E vector is defined by the E field lines running from the positive to the negative charges. Because the electric forces are a factor of 1038 times stronger than the gravitational forces, it is not important for the E field whether it acts on ions in the gravity or in weightlessness. We have to recall that on the Earth and in space Et

  7. EBP1 regulates organ size through cell growth and proliferation in plants

    PubMed Central

    Horváth, Beatrix M; Magyar, Zoltán; Zhang, Yuexing; Hamburger, Anne W; Bakó, László; Visser, Richard G F; Bachem, Christian W B; Bögre, László

    2006-01-01

    Plant organ size shows remarkable uniformity within species indicating strong endogenous control. We have identified a plant growth regulatory gene, functionally and structurally homologous to human EBP1. Plant EBP1 levels are tightly regulated; gene expression is highest in developing organs and correlates with genes involved in ribosome biogenesis and function. EBP1 protein is stabilised by auxin. Elevating or decreasing EBP1 levels in transgenic plants results in a dose-dependent increase or reduction in organ growth, respectively. During early stages of organ development, EBP1 promotes cell proliferation, influences cell-size threshold for division and shortens the period of meristematic activity. In postmitotic cells, it enhances cell expansion. EBP1 is required for expression of cell cycle genes; CyclinD3;1, ribonucleotide reductase 2 and the cyclin-dependent kinase B1;1. The regulation of these genes by EBP1 is dose and auxin dependent and might rely on the effect of EBP1 to reduce RBR1 protein level. We argue that EBP1 is a conserved, dose-dependent regulator of cell growth that is connected to meristematic competence and cell proliferation via regulation of RBR1 level. PMID:17024182

  8. Overview: early history of crop growth and photosynthesis modeling.

    PubMed

    El-Sharkawy, Mabrouk A

    2011-02-01

    As in industrial and engineering systems, there is a need to quantitatively study and analyze the many constituents of complex natural biological systems as well as agro-ecosystems via research-based mechanistic modeling. This objective is normally addressed by developing mathematically built descriptions of multilevel biological processes to provide biologists a means to integrate quantitatively experimental research findings that might lead to a better understanding of the whole systems and their interactions with surrounding environments. Aided with the power of computational capacities associated with computer technology then available, pioneering cropping systems simulations took place in the second half of the 20th century by several research groups across continents. This overview summarizes that initial pioneering effort made to simulate plant growth and photosynthesis of crop canopies, focusing on the discovery of gaps that exist in the current scientific knowledge. Examples are given for those gaps where experimental research was needed to improve the validity and application of the constructed models, so that their benefit to mankind was enhanced. Such research necessitates close collaboration among experimentalists and model builders while adopting a multidisciplinary/inter-institutional approach. PMID:20826195

  9. Technology for subsystems of space-based plant growth facilities

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.

    1990-01-01

    Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.

  10. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    USGS Publications Warehouse

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  11. Increasing plant growth by modulating omega-amidase expression in plants

    SciTech Connect

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  12. A Novel Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes Growth

    PubMed Central

    Sun, Tie-Jun; Lu, Yun; Narusaka, Mari; Shi, Chao; Yang, Yu-Bing; Wu, Jian-Xin; Zeng, Hong-Yun; Narusaka, Yoshihiro; Yao, Nan

    2015-01-01

    Plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations. In addition, PPA also promoted lateral root development. Microarray data and real-time PCR revealed that PPA-treated leaves not challenged with pathogen showed up-regulation of genes related to reactive oxygen species (ROS), defenses and SA. During bacterial infection, Arabidopsis plants pretreated with PPA showed dramatically decreased disease symptoms and an earlier and stronger ROS burst, compared with plants pretreated with BTH. Microscopy revealed that H2O2 accumulated in the cytosol, plasma membrane and cell wall around intracellular bacteria, and also on the bacterial cell wall, indicating that H2O2 was directly involved in killing bacteria. The increase in ROS-related gene expression also supported this observation. Our results indicate that PPA enhances plant defenses against pathogen invasion through the plant redox system, and as a water-soluble compound that can promote plant growth, has broad potential applications in agriculture. PMID:25849038

  13. Instrumentation for plant health and growth in space

    NASA Astrophysics Data System (ADS)

    Berkovitch, Y. A.

    The present-day plant growth facilities (``greenhouses'') for space should be equipped with monitors and controllers of ambient parameters within the chamber because spacecraft environmental variations can be unfavorable to plants. Moreover, little is known about the effects of spaceflight on the greenhouse and rooting media. Lack of information about spaceflight effects on plants necessitates supplying space greenhouses with automatic, non-invasive monitors of, e.g., gas exchange rate, water and nutrient ion uptake, plant mass, temperature and water content of leaves. However, introduction of an environmental or plant sensor into the monitoring system may be reasonable only if it is justified by quantitative evaluation of the influence of a measured parameter on productivity, efficacy of illumination, or some other index of greenhouse efficiency. The multivariate adaptive optimization in terrestrial phytotrons appears to be one of the best methods to assess environmental impacts on crops. Two modifications of greenhouses with the three-dimensional adaptive optimization of crop photosynthetic characteristics include: (1) irradiation, air temperature and carbon dioxide using a modified simplex algorithm; and (2) using irradiation, air temperature, and humidity with sensitivity algorithms with varying frequency of test exposures that have been experimentally developed. As a result, during some stages of plant ontogensis, the photosynthetic productivity of wheat, tomatoes, and Chinese cabbage in these systems was found to increase by a factor of 2-3.

  14. Instrumentation for plant health and growth in space.

    PubMed

    Berkovitch, Y A

    1996-01-01

    The present-day plant growth facilities ("greenhouses") for space should be equipped with monitors and controllers of ambient parameters within the chamber because spacecraft environmental variations can be unfavorable to plants. Moreover, little is known about the effects of spaceflight on the greenhouse and rooting media. Lack of information about spaceflight effects on plants necessitates supplying space greenhouses with automatic, non-invasive monitors of, e.g., gas exchange rate, water and nutrient ion uptake, plant mass, temperature and water content of leaves. However, introduction of an environmental or plant sensor into the monitoring system may be reasonable only if it is justified by quantitative evaluation of the influence of a measured parameter on productivity, efficacy of illumination, or some other index of greenhouse efficiency. The multivariate adaptive optimization in terrestrial phytotrons appears to be one of the best methods to assess environmental impacts on crops. Two modifications of greenhouses with the three-dimensional adaptive optimization of crop photosynthetic characteristics include: (1) irradiation, air temperature and carbon dioxide using a modified simplex algorithm; and (2) using irradiation, air temperature, and humidity with sensitivity algorithms with varying frequency of test exposures that have been experimentally developed. As a result, during some stages of plant ontogensis, the photosynthetic productivity of wheat, tomatoes, and Chinese cabbage in these systems was found to increase by a factor of 2-3. PMID:11538792

  15. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  16. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  17. Sargassum as a Natural Solution to Enhance Dune Plant Growth

    NASA Astrophysics Data System (ADS)

    Williams, Amy; Feagin, Rusty

    2010-11-01

    Many beach management practices focus on creating an attractive environment for tourists, but can detrimentally affect long-term dune integrity. One such practice is mechanical beach raking in which the wrack line is removed from the beach front. In Texas, Sargassum fluitans and natans, types of brown alga, are the main components of wrack and may provide a subsidy to the ecosystem. In this study, we used greenhouse studies to test the hypothesis that the addition of sargassum can increase soil nutrients and produce increased growth in dune plants. We also conducted an analysis of the nutrients in the sargassum to determine the mechanisms responsible for any growth enhancement. Panicum amarum showed significant enhancement of growth with the addition of sargassum, and while Helianthus debilis, Ipomoea stolonifera, Sporobolus virginicus, and Uniola paniculata responded slightly differently to the specific treatments, none were impaired by the addition of sargassum. In general, plants seemed to respond well to unwashed sargassum and multiple additions of sargassum, indicating that plants may have adapted to capitalize on the subsidy in its natural state directly from the ocean. For coastal managers, the use of sargassum as a fertilizer could be a positive, natural, and efficient method of dealing with the accumulation of wrack on the beach.

  18. Simulating unstressed crop development and growth using the Unified Plant Growth Model (UPGM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since development of the EPIC model in 1989, many versions of the plant growth component have been incorporated into other erosion and crop management models and subsequently modified to meet model objectives (e.g., WEPS, WEPP, SWAT, ALMANAC, GPFARM). This has resulted in different versions of the ...

  19. Influence of growth regulators on plant growth, yield, and skin color of specialty potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2,4-D has been used since the 1950’s to enhance color in red-skinned potatoes, but there is little research on the potential use of other plant growth regulators to improve tuber skin color in the wide range of specialty potatoes now available on the market. Field trials conducted at Parma, ID in 20...

  20. Effects of Red Light Night Break Treatment on Growth and Flowering of Tomato Plants

    PubMed Central

    Cao, Kai; Cui, Lirong; Ye, Lin; Zhou, Xiaoting; Bao, Encai; Zhao, Hailiang; Zou, Zhirong

    2016-01-01

    Compact and healthy young plants increase crop production and improve vegetable quality. Adverse climatic conditions and shading can cause young plants to become elongated and spindly. We investigated the effects of night break (NB) treatments on tomato plants using red light (RL) with an intensity of 20 μmol·m2·s−1. Tomato plants were subjected to NB treatments with different frequencies ranging from every 1, 2, 3, and 4 h, and plant growth, flowering, and yield were monitored. The results showed that with the increase of RL NB frequency, plant height decreased, stem diameter increased, and flower initiation delayed, the content of indole-3-acetic acid (IAA) and gibberellin 3 (GA3) in the leaf and stem declined. When the RL NB frequency was every 1 h, the heights of tomato plant decreased by 32.73% compared with the control, the diameter of tomato plants increased by 27.09% compared with the control, the number of leaves produced before flowering increased to 11, compared with 8 in the control, the contents of IAA and GA3 in the leaf decreased by 33.3 and 41.29% respectively compared with the control, the contents of IAA and GA3 in the stem decreased by 56.04 and 57.14% respectively compared with the control. After RL NB treatments, tomato plants were transplanted into a solar greenhouse to evaluate tomato yield. When tomato plants pre-treated with RL NB, per tomato fresh weight of the first spica increased with the increase of RL NB frequencies. These results indicate that more compact and healthier tomato plants could be gotten by RL NB treatments and improve tomato early yield. PMID:27148344

  1. Effects of Red Light Night Break Treatment on Growth and Flowering of Tomato Plants.

    PubMed

    Cao, Kai; Cui, Lirong; Ye, Lin; Zhou, Xiaoting; Bao, Encai; Zhao, Hailiang; Zou, Zhirong

    2016-01-01

    Compact and healthy young plants increase crop production and improve vegetable quality. Adverse climatic conditions and shading can cause young plants to become elongated and spindly. We investigated the effects of night break (NB) treatments on tomato plants using red light (RL) with an intensity of 20 μmol·m(2)·s(-1). Tomato plants were subjected to NB treatments with different frequencies ranging from every 1, 2, 3, and 4 h, and plant growth, flowering, and yield were monitored. The results showed that with the increase of RL NB frequency, plant height decreased, stem diameter increased, and flower initiation delayed, the content of indole-3-acetic acid (IAA) and gibberellin 3 (GA3) in the leaf and stem declined. When the RL NB frequency was every 1 h, the heights of tomato plant decreased by 32.73% compared with the control, the diameter of tomato plants increased by 27.09% compared with the control, the number of leaves produced before flowering increased to 11, compared with 8 in the control, the contents of IAA and GA3 in the leaf decreased by 33.3 and 41.29% respectively compared with the control, the contents of IAA and GA3 in the stem decreased by 56.04 and 57.14% respectively compared with the control. After RL NB treatments, tomato plants were transplanted into a solar greenhouse to evaluate tomato yield. When tomato plants pre-treated with RL NB, per tomato fresh weight of the first spica increased with the increase of RL NB frequencies. These results indicate that more compact and healthier tomato plants could be gotten by RL NB treatments and improve tomato early yield. PMID:27148344

  2. Plant growth chamber based on space proven controlled environment technology

    SciTech Connect

    Ignatius, R.W.; Ignatius, M.H.; Imberti, H.J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE{trademark} flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber. {copyright} {ital 1997 American Institute of Physics.}

  3. A hydroponic method for plant growth in microgravity

    NASA Technical Reports Server (NTRS)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  4. Enzyme-Less Growth in Chara and Terrestrial Plants

    PubMed Central

    Boyer, John S.

    2016-01-01

    Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wall features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Therefore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion. PMID:27446106

  5. Review and analysis of over 40 years of space plant growth systems

    NASA Astrophysics Data System (ADS)

    Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M.

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system.

  6. Embryological Features of Tofieldia glutinosa and Their Bearing on the Early Diversification of Monocotyledonous Plants

    PubMed Central

    Holloway, Samuel J.; Friedman, William E.

    2008-01-01

    Background and Aims Although much is known about the vegetative traits associated with early monocot evolution, less is known about the reproductive features of early monocotyledonous lineages. A study was made of the embryology of Tofieldia glutinosa, a member of an early divergent monocot clade (Tofieldiaceae), and aspects of its development were compared with the development of other early divergent monocots in order to gain insight into defining reproductive features of early monocots. Methods Field-collected developing gynoecial tissues of Tofieldia glutinosa were prepared for histological examination. Over 600 ovules were sectioned and studied using brightfield, differential interference contrast, and fluorescence microscopy. High-resolution digital imaging was used to document important stages of megasporogenesis, megagametogenesis and early endosperm development. Key Results Development of the female gametophyte in T. glutinosa is of a modified Polygonum-type. At maturity the female gametophyte is seven-celled and 11-nucleate with a standard three-celled egg apparatus, a binucleate central cell (where ultimately, the two polar nuclei will fuse into a diploid secondary nucleus) and three binucleate antipodal cells. The antipodal nuclei persist past fertilization, and the process of double fertilization appears to yield a diploid zygote and triploid primary endosperm cell, as is characteristic of plants with Polygonum-type female gametophytes. Endosperm development is helobial, and free-nuclear growth initially proceeds at equal rates in both the micropylar and chalazal endosperm chambers. Conclusions The analysis suggests that the shared common ancestor of monocots possessed persistent and proliferating antipodals similar to those found in T. glutinosa and other early-divergent monocots (e.g. Acorus and members of the Araceae). Helobial endosperm among monocots evolved once in the common ancestor of all monocots excluding Acorus. Thus, the analysis further

  7. Index selection in terminal sires improves early lamb growth.

    PubMed

    Márquez, G C; Haresign, W; Davies, M H; Emmans, G C; Roehe, R; Bünger, L; Simm, G; Lewis, R M

    2012-01-01

    The use of terminal sires (TS) for crossbreeding is integral to the UK sheep industry where approximately 71% of market lambs are sired by TS rams. Early growth of these crossbred lambs affects profitability. The objectives of this study were i) to evaluate the effectiveness of index selection among TS on BW and ADG of their crossbred offspring; and ii) to compare the efficacy of that selection within TS breeds. The most widely used TS breeds in the United Kingdom are Charollais, Suffolk, and Texel. These participated in sire referencing schemes in which they were evaluated on a lean growth index designed to increase carcass lean weight at a given age. From 1999 to 2002, approximately 15 high and 15 low lean growth index rams per breed (93 in total, differing in index on average by 4.6 SD) were selected from within their sire referencing schemes and mated to Welsh and Scottish Mule ewes. Their crossbred offspring were reared commercially on 3 experimental farms in England, Scotland, and Wales. A total of 6,515 lambs were born between 2000 and 2003. Lambs were weighed at birth (BWT), 5 wk (5WT), and 10 wk (10WT), and their ADG from birth to 10 wk was calculated. Lambs sired by high index rams were on average, across breeds, heavier at all ages (P < 0.01) with 0.07 ± 0.03, 0.3 ± 0.1, and 0.4 ± 0.1 kg greater BWT, 5WT, and 10WT, respectively. Their ADG was 5.1 ± 1.9 g/d greater than low-index-sired lambs (P < 0.01). Suffolk-sired lambs were on average heavier at all ages, with greater ADG, whereas Charollais-sired lambs were lightest with smallest ADG. Overall, there was no significant interaction between sire index and sire breed (P > 0.10). Within Suffolk-sired lambs, there was little difference between high and low index sires for the traits studied (P > 0.3). High and low index Charollais-sired lambs differed in BWT (0.09 ± 0.04 kg) and 5WT (0.3 ± 0.1 kg), and Texel-sired lambs differed in 5WT (0.5 ± 0.1 kg), 10WT (0.9 ± 0.2 kg), and ADG (10.2 ± 3.3 g

  8. PHYSIOLOGICAL CONSEQUENCES OF EARLY NEONATAL GROWTH RETARDATION: EFFECTS OF A-DIFLUOROMETHYLORNITHINE ON RENAL GROWTH AND FUNCTION IN THE RAT

    EPA Science Inventory

    The physiological consequences of early neonatal growth retardation in the kidney are investigated using DFMO (a-difluoromethylornithine), a specific irreversible inhibitor of ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines. e administered 500 eg/kg/...

  9. Evolution of plant growth and defense in a continental introduction.

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor

    2015-07-01

    Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction. PMID:26098351

  10. Evaluating and optimizing horticultural regimes in space plant growth facilities

    NASA Technical Reports Server (NTRS)

    Berkovich, Y. A.; Chetirkin, P. V.; Wheeler, R. M.; Sager, J. C.

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  12. Plant hydraulic traits govern forest water use and growth

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  13. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria. PMID:23239372

  14. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting

    PubMed Central

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  15. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting.

    PubMed

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  16. An approach for the conquest of the sugi pollinosis using plant growth regulation.

    PubMed

    Honma, Tamaki

    2003-06-01

    The sugi (Cryptomeria japonica) pollinosis becomes representative allergic disease in early spring in Japan. However, effective treatment for the sugi pollinosis and countermeasure against pollen of C. japonica at its source have not been developed in a practical sense. In this paper, the research aiming to prevent dispersion of pollen of the C. japonica is introduced on application and practical application to the field from the laboratory using the growth regulation of the plant. We found that formation of male flower bud in C. japonica could be suppressed by TNE, since the 3 beta-hydroxylase is inhibited by the action of Trinexysapacethyl, TNE. PMID:12897460

  17. Early Acceleration of Students in Mathematics: Does It Promote Growth and Stability of Growth in Achievement across Mathematical Areas?

    ERIC Educational Resources Information Center

    Ma, Xin

    2005-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), the present study examined whether early acceleration of students into formal algebra at the beginning of middle school promoted evident growth in different mathematical areas (basic skills, algebra, geometry, and quantitative literacy) and stable growth across these mathematical…

  18. Achieving and documenting closure in plant growth facilities

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Sager, John C.; Wheeler, Ray

    1992-01-01

    As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

  19. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    PubMed

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area. PMID:25303855

  20. Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    NASA Technical Reports Server (NTRS)

    Bula, R. J.

    1997-01-01

    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.

  1. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    ERIC Educational Resources Information Center

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  2. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes

    PubMed Central

    Duan, T.; Chapman, S.C.; Holland, E.; Rebetzke, G.J.; Guo, Y.; Zheng, B.

    2016-01-01

    Early vigour is an important physiological trait to improve establishment, water-use efficiency, and grain yield for wheat. Phenotyping large numbers of lines is challenging due to the fast growth and development of wheat seedlings. Here we developed a new photo-based workflow to monitor dynamically the growth and development of the wheat canopy of two wheat lines with a contrasting early vigour trait. Multiview images were taken using a ‘vegetation stress’ camera at 2 d intervals from emergence to the sixth leaf stage. Point clouds were extracted using the Multi-View Stereo and Structure From Motion (MVS-SFM) algorithm, and segmented into individual organs using the Octree method, with leaf midribs fitted using local polynomial function. Finally, phenotypic parameters were calculated from the reconstructed point cloud including: tiller and leaf number, plant height, Haun index, phyllochron, leaf length, angle, and leaf elongation rate. There was good agreement between the observed and estimated leaf length (RMSE=8.6mm, R 2=0.98, n=322) across both lines. Significant contrasts of phenotyping parameters were observed between the two lines and were consistent with manual observations. The early vigour line had fewer tillers (2.4±0.6) and larger leaves (308.0±38.4mm and 17.1±2.7mm for leaf length and width, respectively). While the phyllochron of both lines was quite similar, the non-vigorous line had a greater Haun index (more leaves on the main stem) on any date, as the vigorous line had slower development of its first two leaves. The workflow presented in this study provides an efficient method to phenotype individual plants using a low-cost camera (an RGB camera is also suitable) and could be applied in phenotyping for applications in both simulation modelling and breeding. The rapidity and accuracy of this novel method can characterize the results of specific selection criteria (e.g. width of leaf three, number of tillers, rate of leaf appearance) that

  3. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.

    PubMed

    Duan, T; Chapman, S C; Holland, E; Rebetzke, G J; Guo, Y; Zheng, B

    2016-08-01

    Early vigour is an important physiological trait to improve establishment, water-use efficiency, and grain yield for wheat. Phenotyping large numbers of lines is challenging due to the fast growth and development of wheat seedlings. Here we developed a new photo-based workflow to monitor dynamically the growth and development of the wheat canopy of two wheat lines with a contrasting early vigour trait. Multiview images were taken using a 'vegetation stress' camera at 2 d intervals from emergence to the sixth leaf stage. Point clouds were extracted using the Multi-View Stereo and Structure From Motion (MVS-SFM) algorithm, and segmented into individual organs using the Octree method, with leaf midribs fitted using local polynomial function. Finally, phenotypic parameters were calculated from the reconstructed point cloud including: tiller and leaf number, plant height, Haun index, phyllochron, leaf length, angle, and leaf elongation rate. There was good agreement between the observed and estimated leaf length (RMSE=8.6mm, R (2)=0.98, n=322) across both lines. Significant contrasts of phenotyping parameters were observed between the two lines and were consistent with manual observations. The early vigour line had fewer tillers (2.4±0.6) and larger leaves (308.0±38.4mm and 17.1±2.7mm for leaf length and width, respectively). While the phyllochron of both lines was quite similar, the non-vigorous line had a greater Haun index (more leaves on the main stem) on any date, as the vigorous line had slower development of its first two leaves. The workflow presented in this study provides an efficient method to phenotype individual plants using a low-cost camera (an RGB camera is also suitable) and could be applied in phenotyping for applications in both simulation modelling and breeding. The rapidity and accuracy of this novel method can characterize the results of specific selection criteria (e.g. width of leaf three, number of tillers, rate of leaf appearance) that have

  4. Surveillance of the plant growth using the camera image

    NASA Astrophysics Data System (ADS)

    Fujiwara, Nobuyuki; Terada, Kenji

    2005-12-01

    In this paper, we propose a method of surveillance of the plant growth using the camera image. This method is able to observe the condition of raising the plant in the greenhouse. The plate which is known as HORIBA is prepared for extracting harmful insect. The image of HORIBA is obtained by the camera and used for processing. The resolution of the image is 1280×960. In first process, region of the harmful insect (fly) is extracted from HORIBA by using color information. In next process the template matching is performed to examine the correlation of shape in four different angles. 16 kinds of results are obtained by four different templates. The sum logical of the results is calculated for estimation. In addition, the experimental results are shown in this paper.

  5. Experimental determination of magnesium isotope fractionation during higher plant growth

    NASA Astrophysics Data System (ADS)

    Bolou-Bi, Emile B.; Poszwa, Anne; Leyval, Corinne; Vigier, Nathalie

    2010-05-01

    Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ 26Mg plant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ˜0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ 26Mg (by ˜0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ 26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ 26Mg leaf-root = -0.65‰ and -0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ 26Mg leaf-root of -0.06‰ and -0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ 26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ 26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of

  6. Weijia Zhou Inspects the Advanced Astroculture plant growth unit

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Weijia Zhou, director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects the Advanced Astroculture(tm) plant growth unit before its first flight last spring. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Product Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  7. DNA from soil mirrors plant taxonomic and growth form diversity.

    PubMed

    Yoccoz, N G; Bråthen, K A; Gielly, L; Haile, J; Edwards, M E; Goslar, T; Von Stedingk, H; Brysting, A K; Coissac, E; Pompanon, F; Sønstebø, J H; Miquel, C; Valentini, A; De Bello, F; Chave, J; Thuiller, W; Wincker, P; Cruaud, C; Gavory, F; Rasmussen, M; Gilbert, M T P; Orlando, L; Brochmann, C; Willerslev, E; Taberlet, P

    2012-08-01

    Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually <100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant taxonomic and growth form diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that the number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site were efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches. PMID:22507540

  8. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  9. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.).

    PubMed

    Kang, Seung Hoon; Cho, Hyun-Soo; Cheong, Hoon; Ryu, Choong-Min; Kim, Jihyun F; Park, Seung-Hwan

    2007-01-01

    Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of 10(6)-10(7) CFU/g tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria. PMID:18051359

  10. Hierarchical Helical Order in the Twisted Growth of Plant Organs

    NASA Astrophysics Data System (ADS)

    Wada, Hirofumi

    2012-09-01

    The molecular and cellular basis of left-right asymmetry in plant morphogenesis is a fundamental issue in biology. A rapidly elongating root or hypocotyl of twisting mutants of Arabidopsis thaliana exhibits a helical growth with a handedness opposite to that of the underlying cortical microtubule arrays in epidermal cells. However, how such a hierarchical helical order emerges is currently unknown. We propose a model for investigating macroscopic chiral asymmetry in Arabidopsis mutants. Our elastic model suggests that the helical pattern observed is a direct consequence of the simultaneous presence of anisotropic growth and tilting of cortical microtubule arrays. We predict that the root helical pitch angle is a function of the microtubule helical angle and elastic moduli of the tissues. The proposed model is versatile and is potentially important for other biological systems ranging from protein fibrous structures to tree trunks.

  11. Effects of fertilization, tillage, and phorate on thrips and TSWV incidence in early planted peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thrips feeding is usually more prevalent in early planted peanuts (Arachis hypogaea L.), which often directly results in higher incidence of tomato spotted wilt virus (TSWV). Several management tools are available to reduce thrips feeding and/or the threat of TSWV in early planted peanuts, includin...

  12. Early East Antarctic Ice Sheet growth recorded in the landscape of the Gamburtsev Subglacial Mountains

    NASA Astrophysics Data System (ADS)

    Rose, Kathryn C.; Ferraccioli, Fausto; Jamieson, Stewart S. R.; Bell, Robin E.; Corr, Hugh; Creyts, Timothy T.; Braaten, David; Jordan, Tom A.; Fretwell, Peter T.; Damaske, Detlef

    2013-08-01

    The Gamburtsev Subglacial Mountains are regarded as a key nucleation site for the Antarctic Ice Sheet and they retain a unique long-term record of pre-glacial and early glacial landscape evolution. Here, we use a range of morphometric analyses to constrain the nature of early glaciation and subsequent ice sheet evolution in the interior of East Antarctica, using a new digital elevation model of the Gamburtsev Subglacial Mountains, derived from an extensive airborne radar survey. We find that an inherited fluvial landscape confirms the existence of the Gamburtsev Subglacial Mountains prior to the onset of glaciation at the Eocene-Oligocene climate boundary (ca. 34 Ma). Features characteristic of glaciation, at a range of scales, are evident across the mountains. High elevation alpine valley heads, akin to cirques, identified throughout the mountains, are interpreted as evidence for early phases of glaciation in East Antarctica. The equilibrium line altitudes associated with these features, combined with information from fossil plant assemblages, suggest that they formed at, or prior to, 34 Ma. It cannot be ruled out that they may have been eroded by ephemeral ice between the Late Cretaceous and the Eocene (100-34 Ma). Hanging valleys, overdeepenings, truncated spurs and steep-sided, linear valley networks are indicative of a more widespread alpine glaciation in this region. These features represent ice growth at, or before, 33.7 Ma and provide a minimum estimate for the scale of the East Antarctic Ice Sheet between ca. 34 and 14 Ma, when dynamic fluctuations in ice extent are recorded at the coast of Antarctica. The implications are that the early East Antarctic Ice Sheet grew rapidly and developed a cold-based core that preserved the alpine landscape. The patterns of landscape evolution identified provide the earliest evidence for the development of the East Antarctic Ice Sheet and can be used to test coupled ice-climate evolution models.

  13. Regulation of early human growth: impact on long-term health.

    PubMed

    Koletzko, Berthold; Chourdakis, Michael; Grote, Veit; Hellmuth, Christian; Prell, Christine; Rzehak, Peter; Uhl, Olaf; Weber, Martina

    2014-01-01

    Growth and development are central characteristics of childhood. Deviations from normal growth can indicate serious health challenges. The adverse impact of early growth faltering and malnutrition on later health has long been known. In contrast, the impact of rapid early weight and body fat gain on programming of later disease risk have only recently received increased attention. Numerous observational studies related diet in early childhood and rapid early growth to the risk of later obesity and associated disorders. Causality was confirmed in a large, double-blind randomised trial testing the 'Early Protein Hypothesis'. In this trial we found that attenuation of protein supply in infancy normalized early growth and markedly reduced obesity prevalence in early school age. These results indicate the need to describe and analyse growth patterns and their regulation through diet in more detail and to characterize the underlying metabolic and epigenetic mechanisms, given the potential major relevance for public health and policy. Better understanding of growth patterns and their regulation could have major benefits for the promotion of public health, consumer-orientated nutrition recommendations, and the development of improved food products for specific target populations. PMID:25413647

  14. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  15. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Astrophysics Data System (ADS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-06-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  16. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    ERIC Educational Resources Information Center

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2010-01-01

    In the current study, we examined latent growth in 731 young children's inhibitory control from the ages of two to four years, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the family check-up, children's inhibitory…

  17. Contrasting Strategies of Alfalfa Stem Elongation in Response to Fall Dormancy in Early Growth Stage: The Tradeoff between Internode Length and Internode Number

    PubMed Central

    Wang, Zongli; Sun, Qizhong

    2015-01-01

    Fall dormancy (FD) in alfalfa (Medicago sativa L.) can be described using 11 FD ratings, is widely used as an important indicator of stress resistance, productive performance and spring growth. However, the contrasting growth strategies in internode length and internode number in alfalfa cultivars with different FD rating are poorly understood. Here, a growth chamber study was conducted to investigate the effect of FD on plant height, aboveground biomass, internode length, and internode number in alfalfa individuals in the early growth stages. In order to simulate the alfalfa growth environment in the early stage, 11 alfalfa cultivars with FD ratings from one to 11 were chosen and seeded at the greenhouse, and then were transplanted into an artificial growth chamber. The experimental design was a randomized complete block in a split-plot arrangement with three replicates. Plant height, above-ground biomass, internode length, and internode number were measured in early growth stage in all individuals. Our findings showed that plant height and the aboveground biomass of alfalfa did not significantly differ among 11 different FD rated cultivars. Also, internode length and internode number positively affected plant height and the aboveground biomass of alfalfa individuals and the average internode length significantly increased with increasing FD rating. However, internode number tended to sharply decline when the FD rating increased. Moreover, there were no correlations, slightly negative correlations, and strongly negative correlations between internode length and internode number in alfalfa individuals among the three scales, including within-FD ratings, within-FD categories and inter-FD ratings, respectively. Therefore, our results highlighted that contrasting growth strategies in stem elongation were adopted by alfalfa with different FD ratings in the early growth stage. Alfalfa cultivars with a high FD rating have longer internodes, whereas more dormant alfalfa

  18. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones

    PubMed Central

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-01-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as ‘S limitation’ and ‘early S deficiency’. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5′-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at ‘early S deficiency’, expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at ‘early S deficiency’ only. Thus, S depletion affects S and plant hormone metabolism of poplar during ‘S limitation’ and ‘early S deficiency’ in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp. PMID:22162873

  19. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (lepidoptera: plutellidae).

    PubMed

    Indiragandhi, P; Anandham, R; Madhaiyan, M; Sa, T M

    2008-04-01

    Eight bacterial isolates from the larval guts of Diamondback moths (Plutella xylostella) were tested for their plant growth-promoting (PGP) traits and effects on early plant growth. All of the strains tested positive for nitrogen fixation and indole 3-acetic acid (IAA) and salicylic acid production but negative for hydrogen cyanide and pectinase production. In addition, five of the isolates exhibited significant levels of tricalcium phosphate and zinc oxide solubilization; six isolates were able to oxidize sulfur in growth media; and four isolates tested positive for chitinase and beta-1,3-glucanase activities. Based on their IAA production, six strains including four that were 1-aminocyclopropane-1-carboxylate (ACC) deaminase positive and two that were ACC deaminase negative were tested for PGP activity on the early growth of canola and tomato seeds under gnotobiotic conditions. Acinetobacter sp. PSGB04 significantly increased root length (41%), seedling vigor, and dry biomass (30%) of the canola test plants, whereas Pseudomonas sp. PRGB06 inhibited the mycelial growth of Botrytis cinerea, Colletotrichum coccodes, C. gleospoiroides, Rhizoctonia solani, and Sclerotia sclerotiorum under in vitro conditions. A significant increase, greater than that of the control, was also noted for growth parameters of the tomato test plants when the seeds were treated with PRGB06. Therefore, the results of the present study suggest that bacteria associated with insect larval guts possess PGP traits and positively influence plant growth. Therefore, insect gut bacteria as effective PGP agents represent an unexplored niche and may broaden the spectrum of beneficial bacteria available for crop production. PMID:18172718

  20. The Breadboard Project - A functioning CELSS plant growth system

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1992-01-01

    The primary objective of the Breadboard Project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one-person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed.

  1. The Breadboard Project: a functioning CELSS plant growth system.

    PubMed

    Knott, W M

    1992-01-01

    The primary objective of the Breadboard project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed. Future plans for the BPC will be presented along with future goals for the project as the other modules become active. PMID:11537077

  2. Implementation of Autonomous Control Technology for Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.; Sager, John C.; Krumins, Valdis; Wheeler, Raymond M.

    2002-01-01

    The Kennedy Space Center has significant infrastructure for research using controlled environment plant growth chambers. Such research supports development of bioregenerative life support technology for long-term space missions. Most of the existing chambers in Hangar L and Little L will be moved to the new Space Experiment Research and Processing Laboratory (SERPL) in the summer of 2003. The impending move has created an opportunity to update the control system technologies to allow for greater flexibility, less labor for set-up and maintenance, better diagnostics, better reliability and easier data retrieval. Part of these improvements can be realized using hardware which communicates through an ethernet connection to a central computer for supervisory control but can be operated independently of the computer during routine run-time. Both the hardware and software functionality of an envisioned system were tested on a prototype plant growth chamber (CEC-4) in Hangar L. Based upon these tests, recommendations for hardware and software selection and system design for implementation in SERPL are included.

  3. Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants

    PubMed Central

    Chang, Ying; Wang, Sishuo; Sekimoto, Satoshi; Aerts, Andrea L.; Choi, Cindy; Clum, Alicia; LaButti, Kurt M.; Lindquist, Erika A.; Yee Ngan, Chew; Ohm, Robin A.; Salamov, Asaf A.; Grigoriev, Igor V.; Spatafora, Joseph W.; Berbee, Mary L.

    2015-01-01

    As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant–fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya. PMID:25977457

  4. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    PubMed

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing

  5. Variations in growth of roseate tern (Sterna dougallii) chicks: II. Early growth as an index of parental quality

    USGS Publications Warehouse

    Nisbet, I.C.T.; Spendelow, J.A.; Hatfield, J.S.; Zingo, J.M.; Gough, G.A.

    1998-01-01

    We measured growth of Roseate Tern (Sterna dougallii) chicks at a colony in Connecticut in 10 successive years. Data on body mass during the first three to four days of life were fitted to a quadratic regression model, yielding three parameters of early growth for each of 1,551 chicks: mass at hatching (Mo), linear growth (a) and quadratic growth (b). First chicks in each brood (A-chicks) exceeded second chicks (B-chicks) in each of the three growth parameters; A-chicks from broods of two grew faster than single chicks during the first three days. Mo depended on egg mass, hatch order, hatch date, and year. The linear coefficient (a) depended on hatch date, hatch order, and year, but not on egg mass or Mo. The quadratic coefficient (b) depended on a, hatch date, Mo, and hatch order. Subsequent growth and survival of chicks were predicted well by these parameters of early growth, with b contributing more to these predictions than Mo or a. After controlling for effects of early growth, none of the other variables measured (hatch date, egg mass, parental age, hatch interval between chicks, mass difference between chicks, female-female pairing, or trapping) contributed significantly to explaining later growth and survival. Year effects were substantial in only two of the 10 years of study. Individual pairs were consistent in performance (as indexed by chick growth) in successive years. These results suggest that growth and survival of Roseate Tern chicks are determined primarily by parental quality; much of the information about parental quality is expressed by the time the eggs are laid, and most of it is expressed by the time the chicks are three days old.

  6. Early growth, dominance acquisition and lifetime reproductive success in male and female cooperative meerkats.

    PubMed

    English, Sinead; Huchard, Elise; Nielsen, Johanna F; Clutton-Brock, Tim H

    2013-11-01

    In polygynous species, variance in reproductive success is higher in males than females. There is consequently stronger selection for competitive traits in males and early growth can have a greater influence on later fitness in males than in females. As yet, little is known about sex differences in the effect of early growth on subsequent breeding success in species where variance in reproductive success is higher in females than males, and competitive traits are under stronger selection in females. Greater variance in reproductive success has been documented in several singular cooperative breeders. Here, we investigated consequences of early growth for later reproductive success in wild meerkats. We found that, despite the absence of dimorphism, females who exhibited faster growth until nutritional independence were more likely to become dominant, whereas early growth did not affect dominance acquisition in males. Among those individuals who attained dominance, there was no further influence of early growth on dominance tenure or lifetime reproductive success in males or females. These findings suggest that early growth effects on competitive abilities and fitness may reflect the intensity of intrasexual competition even in sexually monomorphic species. PMID:24340181

  7. Mechanical Stress Regulation of Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1985-01-01

    Growth dynamics analysis was used to determine to what extent the seismic stress induced reduction in photosynthetic productivity in shaken soybeans was due to less photosynthetic surface, and to what extent to lower efficiency of assimulation. Seismic stress reduces shoot transpiration rate 17% and 15% during the first and second 45 minute periods following a given treatment. Shaken plants also had a 36% greater leaf water potential 30 minutes after treatment. Continuous measurement of whole plant photosynthetic rate shows that a decline in CO2 fixation began within seconds after the onset of shaking treatment and continued to decline to 16% less than that of controls 20 minutes after shaking, after which gradual recovery of photosynthesis begins. Photosynthetic assimilation recovered completely before the next treatment 5 hours later. The transitory decrease in photosynthetic rate was due entirely to a two fold increase in stomatal resistance to CO2 by the abaxial leaf surface. Mesophyll resistance was not significantly affected by periodic seismic treatment. Temporary stomatal aperture reduction and decreased CO2 fixation are responsible for the lower dry weight of seismic stressed plants growing in a controlled environment.

  8. Seed biopriming with plant growth promoting rhizobacteria: a review.

    PubMed

    Mahmood, Ahmad; Turgay, Oğuz Can; Farooq, Muhammad; Hayat, Rifat

    2016-08-01

    Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds. PMID:27222220

  9. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    PubMed

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file. PMID:23819298

  10. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd_Allah, Elsayed F.; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  11. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd Allah, Elsayed F; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  12. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  13. Dredged Illinois River Sediments: Plant Growth and Metal Uptake

    USGS Publications Warehouse

    Darmody, R.G.; Marlin, J.C.; Talbott, J.; Green, R.A.; Brewer, E.F.; Stohr, C.

    2004-01-01

    Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.

  14. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006.

    PubMed

    Gamez, Rocío M; Rodríguez, Fernando; Bernal, Johan F; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2015-01-01

    Bacillus amyloliquefaciens is an important plant growth-promoting rhizobacterium (PGPR). We report the first whole-genome sequence of PGPR Bacillus amyloliquefaciens evaluated in Colombian banana plants. The genome sequences encode genes involved in plant growth and defense, including bacteriocins, ribosomally synthesized antibacterial peptides, in addition to genes that provide resistance to toxic compounds. PMID:26607897

  15. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well ...

  16. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this study was to evaluate effects of PGPR (Plant Growth Promoting Rhizobacteria) isolated from rainforest on different plants under limited nitrogen conditions. Methods and Results: Bacterial isolates from a Peruvian rainforest soil were screened for plant growth promoting effects...

  17. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006

    PubMed Central

    Gamez, Rocío M.; Rodríguez, Fernando; Bernal, Johan F.; Agarwala, Richa; Landsman, David

    2015-01-01

    Bacillus amyloliquefaciens is an important plant growth-promoting rhizobacterium (PGPR). We report the first whole-genome sequence of PGPR Bacillus amyloliquefaciens evaluated in Colombian banana plants. The genome sequences encode genes involved in plant growth and defense, including bacteriocins, ribosomally synthesized antibacterial peptides, in addition to genes that provide resistance to toxic compounds. PMID:26607897

  18. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006

    PubMed Central

    Gamez, Rocío M.; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  19. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    PubMed

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  20. Gestational weight gain and offspring longitudinal growth in early life

    PubMed Central

    Diesel, Jill C.; Eckhardt, Cara L.; Day, Nancy L.; Brooks, Maria M.; Arslanian, Silva A.; Bodnar, Lisa M.

    2015-01-01

    Background Excessive gestational weight gain (GWG) increases the risk of childhood obesity, but little is known about its association with infant growth patterns. Aim To examine the GWG-infant growth association. Methods Pregnant women (n=743) self-reported GWG at delivery, which we classified as inadequate, adequate, or excessive based on current guidelines. Offspring weight-for-age z-scores (WAZ), length-for-age z-scores (LAZ (with height-for-age (HAZ) in place of length at 36 months)), and body mass index z-scores (BMIZ) were calculated at birth, 8, 18, and 36 months using the 2006 WHO growth standards. Linear mixed models estimated the change in z-scores from birth to 36 months by GWG. Results The mean (SD) WAZ was −0.22 (1.20) at birth. Overall, WAZ and BMIZ increased from birth to approximately 24 months and decreased from 24 to 36 months, while LAZ/HAZ decreased from birth through 36 months. Excessive GWG was associated with higher offspring WAZ and BMIZ at birth, 8, and 36 months, and higher HAZ at 36 months, compared with adequate GWG. Compared with the same referent, inadequate GWG was associated with smaller WAZ and BMIZ at birth and 8 months. Conclusion Excessive GWG may predispose infants to obesogenic growth patterns while inadequate GWG may not have a lasting impact on infant growth. PMID:26279171

  1. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere : Keratin degradation and growth promotion.

    PubMed

    Anwar, Mohmmad Shahbaz; Siddique, Mohammad Tahir; Verma, Amit; Rao, Yalaga Rama; Nailwal, Tapan; Ansari, Mohammad; Pande, Veena

    2014-01-01

    Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry. PMID:24778758

  2. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    NASA Technical Reports Server (NTRS)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  3. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    PubMed

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-05-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil. PMID:26587767

  4. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    NASA Technical Reports Server (NTRS)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  5. Growth factors in the treatment of early osteoarthritis

    PubMed Central

    Civinini, Roberto; Nistri, Lorenzo; Martini, Caterina; Redl, Birgit; Ristori, Gabriele; Innocenti, Massimo

    2013-01-01

    Summary Regenerative medicine is the science that studies the regeneration of biological tissues obtained through use of cells, with the aid of support structures and with biomolecules such as growth factors. As regards the growth factors the PRP, or the platelet-rich plasma, obtained from a withdrawal of autologous blood, concentrating the platelets, represents a safe, economical, easy to prepare and easy to apply source of growth factors. Numerous growth factors are in fact within the platelets and in particular a large number of them have a specific activity on neo-proliferation, on cartilage regeneration and in particular also an antiapoptotic effect on chondroblasts: - The PDGF which regulates the secretion and synthesis of collagen;- The EGF that causes cellular proliferation, endothelial chemotaxis and angiogenesis;- The VEGF that increases angiogenesis and vascular permeability;- The TGF-beta that stimulates the proliferation of undifferentiated MSC, stimulates chemotaxis of endothelial cells and angiogenesis;- The bFGF that promotes the growth and differentiation of chondrocytes and osteoblasts stimulates mitogenesis of mesenchymal cells, chondrocytes and osteoblasts. These properties have led to the development of studies that evaluated the efficacy of treatment of infiltrations in the knee and hip with platelet-derived growth factors. Regarding the knee it was demonstrated that in patients with moderate degree of gonarthrosis, the PRP is able to significantly reduce the pain and improve joint function, both on placebo and towards infiltrations with hyaluronic acid. The success of the treatment was proportional to the age of and inversely proportional to the severity of osteoarthritis according to Kellgren and Lawrence classification. The possibility of infiltrations guided with ultrasound into the hip led us to extend the indications also to hip arthrosis, as already showed by Sanchez. Even in coxarthrosis preliminary results at 6 and 12 months show that

  6. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper.

    PubMed

    Islam, Md Rashedul; Sultana, Tahera; Joe, M Melvin; Yim, Woojong; Cho, Jang-Cheon; Sa, Tongmin

    2013-12-01

    As a suitable alternative to chemical fertilizers, the application of plant growth-promoting rhizobacteria has been increasing in recent years due to their potential to be used as biofertilizers. In the present work, 13 nitrogen-fixing bacterial strains belonging to 11 different genera were tested for their PGP attributes. All of the strains were positive for 1-aminocyclopropane-1-carboxylate deaminase (ACCD), indole-3-acetic acid (IAA), salicylic acid, and ammonia production while negative for cellulase, pectinase, and hydrocyanic acid production. The strains Pseudomonas sp. RFNB3 and Serratia sp. RFNB14 were the most effective in solubilizing both tri-calcium phosphate and zinc oxide. In addition, all strains except Pseudomonas sp. RFNB3 were able to oxidize sulfur, and six strains were positive for siderophore synthesis. Each strain tested in this study possesses at least four PGP properties in addition to nitrogen fixation. Nine strains were selected based on their multiple PGP potential, particularly ACCD and IAA production, and evaluated for their effects on early growth of tomato and red pepper under gnotobiotic conditions. Bacterial inoculation considerably influenced root and shoot length, seedling vigor, and dry biomass of the two crop plants. Three strains that demonstrated substantial effects on plant performance were further selected for greenhouse trials with red pepper, and among them Pseudomonas sp. RFNB3 resulted in significantly higher plant height (26%) and dry biomass (28%) compared to control. The highest rate of nitrogen fixation, as determined by acetylene reduction assay, occurred in Novosphingobium sp. RFNB21 inoculated red pepper root (49.6 nM of ethylene/h/g of dry root) and rhizosphere soil (41.3 nM of ethylene/h/g of dry soil). Inoculation with nitrogen-fixing bacteria significantly increased chlorophyll content, and the uptake of different macro- and micro-nutrient contents enhancing also in red pepper shoots, in comparison with

  7. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant.

    PubMed

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F; Hao, Shougang

    2016-08-23

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated. PMID:27503883

  8. Mental development and growth in children with chronic liver disease of early and late onset.

    PubMed

    Stewart, S M; Uauy, R; Kennard, B D; Waller, D A; Benser, M; Andrews, W S

    1988-08-01

    Comparison was made of the mental function and physical growth of 21 children in whom liver disease occurred in the first year of life with 15 patients with late (17 months of age to 12 years of age) manifestation of liver disease. Ages (mean +/- SD) at testing for the two groups was 8 +/- 3 years for the early group and 11 +/- 5 years for the late group. Wechsler verbal, performance, and full-scale IQ scores were lower for the early group (range of mean scores: early, 85 to 86 v late, 96 to 103). Growth measures were significantly different in the two groups. Means +/- SD (percentage of standard) were: length for early group, 92 +/- 9; for late, 99 +/- 7; and head circumference for early, 98 +/- 4; for late, 101 +/- 2. The groups were similar in severity of liver disease and acute nutritional status, however. Patients with intellectual impairment had a longer duration of illness, poor nutritional status, and vitamin E deficiency; 82% of impaired patients were in the early group. The data suggest that liver disease during early life has pernicious effects on intellectual function and linear growth. Careful monitoring of nutritional status of children with early-onset liver disease and aggressive nutritional support beginning at the time of diagnosis may help reduce delays in growth and mental development. PMID:3399290

  9. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  10. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment

    PubMed Central

    Kröber, Wenzel; Li, Ying; Härdtle, Werner; Ma, Keping; Schmid, Bernhard; Schmidt, Karsten; Scholten, Thomas; Seidler, Gunnar; von Oheimb, Goddert; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2015-01-01

    While functional diversity (FD) has been shown to be positively related to a number of ecosystem functions including biomass production, it may have a much less pronounced effect than that of environmental factors or species-specific properties. Leaf and wood traits can be considered particularly relevant to tree growth, as they reflect a trade-off between resources invested into growth and persistence. Our study focussed on the degree to which early forest growth was driven by FD, the environment (11 variables characterizing abiotic habitat conditions), and community-weighted mean (CWM) values of species traits in the context of a large-scale tree diversity experiment (BEF-China). Growth rates of trees with respect to crown diameter were aggregated across 231 plots (hosting between one and 23 tree species) and related to environmental variables, FD, and CWM, the latter two of which were based on 41 plant functional traits. The effects of each of the three predictor groups were analyzed separately by mixed model optimization and jointly by variance partitioning. Numerous single traits predicted plot-level tree growth, both in the models based on CWMs and FD, but none of the environmental variables was able to predict tree growth. In the best models, environment and FD explained only 4 and 31% of variation in crown growth rates, respectively, while CWM trait values explained 42%. In total, the best models accounted for 51% of crown growth. The marginal role of the selected environmental variables was unexpected, given the high topographic heterogeneity and large size of the experiment, as was the significant impact of FD, demonstrating that positive diversity effects already occur during the early stages in tree plantations. PMID:26380685

  11. The Early Communication Indicator for Infants and Toddlers: Early Head Start Growth Norms from Two States

    ERIC Educational Resources Information Center

    Greenwood, Charles R.; Walker, Dale; Buzhardt, Jay

    2010-01-01

    The Early Communication Indicator (ECI) is a measure relevant to intervention decision making and progress monitoring for infants and toddlers. With increasing recognition of the importance of quality early childhood education and intervention for all children, measurement plays an important role in documenting children's progress and outcomes of…

  12. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials. PMID:25832181

  13. The effects of solar radiation on plant growth

    NASA Technical Reports Server (NTRS)

    Agard, Joslyn

    1995-01-01

    This phase of this continuing project was completed in April, 1994, using Dahlgren #855 hybrid sunflower seeds and Park Seeds #0950 non-hybrid sunflower seeds in both the control groups and the tests groups. The control groups (1, 2, 3, 4, 5, and 6) were grown under normal, un-radiated, conditions. The tests groups (1a, 2a, 3a, 4a, 5a, and 6a) were grown onboard the Space Shuttle Discovery on the STS-60 flight in February 1994. All data from this experiment (both control and test groups) will be taken and recorded in a data log and compared against each other to determine the radiation effects of solar radiation on plant germination and growth.

  14. The effects of solar radiation on plant growth

    SciTech Connect

    Agard, J.

    1995-09-01

    This phase of this continuing project was completed in April, 1994, using Dahlgren No. 855 hybrid sunflower seeds and Park Seeds No. 0950 non-hybrid sunflower seeds in both the control groups and the tests groups. The control groups (1, 2, 3, 4, 5, and 6) were grown under normal, un-radiated, conditions. The tests groups (1a, 2a, 3a, 4a, 5a, and 6a) were grown onboard the Space Shuttle Discovery on the STS-60 flight in February 1994. All data from this experiment (both control and test groups) will be taken and recorded in a data log and compared against each other to determine the radiation effects of solar radiation on plant germination and growth.

  15. A soil irrigation method for experimental plant growth

    NASA Astrophysics Data System (ADS)

    Pop, M. N.; Soran, M. L.

    2015-12-01

    An irrigation method developed in order to ensure periodic wetting of several batches of soil, for experimental plant growth, is proposed. An experimental irrigation installation, intended to perform real-time soil moisturizing, by adding known quantities (preset for a certain batch of soil) of aqueous solutions has been built and tested. The prototype installation comprises six miniature pumps for water dosage, each meant to moisturize a batch of soil. Each pump is actuated from the mains power supply, with zero-crossing synchronization. The administrated quantity of aqueous solution is a multiple of the minimum volume, 0.2±0.01 ml of fluid. Due to its structure, the system allows the administration of different aqueous solutions for each batch of soil. Due to its modular construction the experimental installation can be expanded in order to ensure water disposal over an increased number of soil batches and the method may be suited also for micro irrigation systems.

  16. Temporal Control of Plant Organ Growth by TCP Transcription Factors.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2015-06-29

    The Arabidopsis petal is a simple laminar organ whose development is largely impervious to environmental effects, making it an excellent model for dissecting the regulation of cell-cycle progression and post-mitotic cell expansion that together sculpt organ form. Arabidopsis petals grow via basipetal waves of cell division, followed by a phase of cell expansion. RABBIT EARS (RBE) encodes a C2H2 zinc finger transcriptional repressor and is required for petal development. During the early phase of petal initiation, RBE regulates a microRNA164-dependent pathway that controls cell proliferation at the petal primordium boundaries. The effects of rbe mutations on petal lamina growth suggest that RBE is also required to regulate later developmental events during petal organogenesis. Here, we demonstrate that, early in petal development, RBE represses the transcription of a suite of CIN-TCP genes that in turn act to inhibit the number and duration of cell divisions; the temporal alleviation of that repression results in the transition from cell division to post-mitotic cell expansion and concomitant petal maturation. PMID:26073137

  17. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.

    PubMed

    Berg, Gabriele

    2009-08-01

    Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant-microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant-microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide. PMID:19568745

  18. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China.

    PubMed

    Zhuang, W W; Serpe, M; Zhang, Y M

    2015-11-01

    Biocrusts (biological soil crusts) cover open spaces between vascular plants in most arid and semi-arid areas. Information on effects of biocrusts on seedling growth is controversial, and there is little information on their effects on plant growth and physiology. We examined impacts of biocrusts on growth and physiological characteristics of three habitat-typical plants, Erodium oxyrhynchum, Alyssum linifolium and Hyalea pulchella, growing in the Gurbantunggut Desert, northwest China. The influence of biocrusts on plant biomass, leaf area, leaf relative water content, photosynthesis, maximum quantum efficiency of PSII (F(v)/F(m)), chlorophyll, osmotic solutes (soluble sugars, protein, proline) and antioxidant enzymes (superoxide dismutase, catalase, peroxidase) was investigated on sites with or without biocrust cover. Biomass, leaf area, leaf water content, photosynthesis, F(v)/F(m) and chlorophyll content in crusted soils were higher than in uncrusted soils during early growth and lower later in the growth period. Soluble sugars, proline and antioxidant enzyme activity were always higher in crusted than in uncrusted soils, while soluble protein content was always lower. These findings indicate that biocrusts have different effects on these three ephemeral species during growth in this desert, primarily via effects on soil moisture, and possibly on soil nutrients. The influence of biocrusts changes during plant development: in early plant growth, biocrusts had either positive or no effect on growth and physiological parameters. However, biocrusts tended to negatively influence plants during later growth. Our results provide insights to explain why previous studies have found different effects of biocrusts on vascular plant growth. PMID:26084731

  19. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence.

    PubMed

    Roger, Aurélien; Colard, Alexandre; Angelard, Caroline; Sanders, Ian R

    2013-11-01

    Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts. PMID:23823490

  20. Early growth and devlopment response to corn to canola competition and shade stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn-weed competition studies indicate that resource limitation slows normal corn growth and development and often results in lower yields. However there is minimal information on the physiological basis of crop competition, especially at the early growth stages when resources would be expected to b...

  1. Early corn growth and development in response to weed, nitrogen, and shade stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early season crop-weed interactions during a critical weed-free period (CWFP) influence corn growth that commonly results in reduced yield. Yield loss is not mitigated by weed removal after the CWFP, hence, weeds cause an irreversible negative impact on growth and development during the CWFP. Howeve...

  2. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum. PMID:25023078

  3. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants

    PubMed Central

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J.; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-01-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin’s function in soybeans and other crops. PMID:25297548

  4. DETERMINATION OF EARLY STAGE CORN PLANT HEIGHT USING STEREO VISION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to map crop height and changes in crop height over time in agricultural fields would be a useful diagnostic tool to identify where and when crop stress is occurring. Additionally, plant height or rate of plant height change could be used to evaluate spatial crop response to inputs of fe...

  5. Using cellzilla for plant growth simulations at the cellular level

    PubMed Central

    Shapiro, Bruce E.; Meyerowitz, Elliot M.; Mjolsness, Eric

    2013-01-01

    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction. PMID:24137172

  6. Computational insight into the chemical space of plant growth regulators.

    PubMed

    Bushkov, Nikolay A; Veselov, Mark S; Chuprov-Netochin, Roman N; Marusich, Elena I; Majouga, Alexander G; Volynchuk, Polina B; Shumilina, Daria V; Leonov, Sergey V; Ivanenkov, Yan A

    2016-02-01

    An enormous technological progress has resulted in an explosive growth in the amount of biological and chemical data that is typically multivariate and tangled in structure. Therefore, several computational approaches have mainly focused on dimensionality reduction and convenient representation of high-dimensional datasets to elucidate the relationships between the observed activity (or effect) and calculated parameters commonly expressed in terms of molecular descriptors. We have collected the experimental data available in patent and scientific publications as well as specific databases for various agrochemicals. The resulting dataset was then thoroughly analyzed using Kohonen-based self-organizing technique. The overall aim of the presented study is to investigate whether the developed in silico model can be applied to predict the agrochemical activity of small molecule compounds and, at the same time, to offer further insights into the distinctive features of different agrochemical categories. The preliminary external validation with several plant growth regulators demonstrated a relatively high prediction power (67%) of the constructed model. This study is, actually, the first example of a large-scale modeling in the field of agrochemistry. PMID:26723884

  7. Bioprospecting glacial ice for plant growth promoting bacteria.

    PubMed

    Balcazar, Wilvis; Rondón, Johnma; Rengifo, Marcos; Ball, María M; Melfo, Alejandra; Gómez, Wileidy; Yarzábal, Luis Andrés

    2015-08-01

    Glaciers harbor a wide diversity of microorganisms, metabolically versatile, highly tolerant to multiple environmental stresses and potentially useful for biotechnological purposes. Among these, we hypothesized the presence of bacteria able to exhibit well-known plant growth promoting traits (PGP). These kinds of bacteria have been employed for the development of commercial biofertilizers; unfortunately, these biotechnological products have proven ineffective in colder climates, like the ones prevailing in mountainous ecosystems. In the present work, we prospected glacial ice collected from two small tropical glaciers, located above 4.900 m in the Venezuelan Andes, for cold-active PGP bacteria. The initial screening strategy allowed us to detect the best inorganic-P solubilizers at low temperatures, from a sub-sample of 50 bacterial isolates. Solubilization of tricalcium phosphate, aluminum- and iron-phosphate, occurred in liquid cultures at low temperatures and was dependent on medium acidification by gluconic acid production, when bacteria were supplied with an appropriate source of carbon. Besides, the isolates were psychrophilic and in some cases exhibited a broad range of growth-temperatures, from 4 °C to 30 °C. Additional PGP abilities, including phytohormone- and HCN production, siderophore excretion and inhibition of phytopathogens, were confirmed in vitro. Nucleotidic sequence analysis of 16S rRNA genes allowed us to place the isolates within the Pseudomonas genus. Our results support the possible use of these strains to develop cold-active biofertilizers to be used in mountainous agriculture. PMID:26211959

  8. Early Literacy Individual Growth and Development Indicators (EL-IGDIs): Growth Trajectories Using a Large, Internet-Based Sample

    ERIC Educational Resources Information Center

    Roseth, Cary J.; Missall, Kristen N.; McConnell, Scott R.

    2012-01-01

    Early literacy individual growth and development indicators (EL-IGDIs) assess preschoolers' expressive vocabulary development and phonological awareness. This study investigated longitudinal change in EL-IGDIs using a large (N=7355), internet-based sample of 36- to 60-month-old United States preschoolers without identified risks for later…

  9. PRODUCTION OF PLANT GROWTH PROMOTING SUBSTANCES IN BACTERIAL ISOLATES FROM THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Plants and rhizosphere bacteria have evolved chemical signals that enable their mutual growth. These relationships have been well investigated with agriculturally important plants, but not in seagrasses, which are important to the stability of estuaries. Seagrasses are rooted in ...

  10. Microflora inside closed modules with plant growth facility

    NASA Astrophysics Data System (ADS)

    Zyablova, Natalya V.; Berkovich, Yuliy A.; Shanturin, Nikolai; Deshevaya, Elena; Smolyanina, Svetlana O.

    Currently, plant growth facility (PGF) is included in the LSS in many scenarios of Martian expedition. A number of investigators assume growing of crops can accelerate microflora re-production in closed ecological system. To estimate experimentally the change of density of microbiological community in the isolated module, Chinese cabbage Brassica hinensis L., cv. Vesnyanka, has been grown in the closed climatic chambers in volume 0.07 m3, 3 m3 and 250 m3 under continuous illumination in the range of values of temperature and relative humidity of air 23 -270 and 30 -60%, respectively. There were no differences in growth and develop-ment of plants grown during 30 days on the test-beds in the laboratory room (control) and in the closed chamber by 0.07 m3 volume (test). The microbiological analysis of root zone has revealed the presence of exclusively saprophytic species -the typical representatives of the soil microbiota. Then the plants were growing during 45 days in the prototype of the conveyor space PGF "Phytocycle LED" placed inside the chamber of 3 m3 volume. Every 3 days 50 -60 cm3 of liquid imitator of air condensate (IAC) from inhabited module had been injected to the chamber to simulate air pollution. The content of colony-forming units of the micromycetes in the air of the chamber, on the inner surfaces of the climate chamber, internal and external surfaces of the PGF and the leaves did not exceed the permissible values. When the PGF has been installed during 14 days inside the inhabited module with volume of 250 m3, the representatives of saprophytic and conditioned-pathogenic species of micromycetes (Trichethe-cium rozeum, Trichoderma sp., Fuzarrium sp., Mucor sp., Penicillium sp.) have been found out exclusively on the open surfaces of artificial soil and water-saturated porous passage. The obtained data shows that PGF inside closed modules can assure microbiological safety when all wet surfaces are isolated from the gas environment.

  11. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    PubMed

    De La Torre-Ruiz, Neyser; Ruiz-Valdiviezo, Víctor Manuel; Rincón-Molina, Clara Ivette; Rodríguez-Mendiola, Martha; Arias-Castro, Carlos; Gutiérrez-Miceli, Federico Antonio; Palomeque-Dominguez, Héctor; Rincón-Rosales, Reiner

    2016-01-01

    The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA), solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p<0.05) on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species. PMID:27268113

  12. Growth and population dynamics during early stages of the mangrove Kandelia candel in Halong Bay, North Viet Nam

    NASA Astrophysics Data System (ADS)

    Thi Ha, Hoang; Duarte, Carlos M.; Tri, Nguyen Hoang; Terrados, Jorge; Borum, Jens

    2003-11-01

    Quantifying the dynamics of the early stages in the life cycle of mangroves is essential to predict the distribution, species composition and structure of mangrove forests, and their maintenance and recovery from perturbations. The growth and population dynamics of two stands of the mangrove Kandelia candel in Halong Bay (Viet Nam) were examined for 1 year. Growth was highly seasonal, with high growth rates and fast internode formation in the summer, dropping to extremely low growth during January-February, the coldest and driest months in the year. In addition, growth and internode formation rates showed important inter-annual variability during the last decade. The complete reproductive period required 7-8 months. Flower initiation was maximal in June and peak propagule maturity occurred in December-January. Only one mature propagule developed for every 67 and 127 inflorescence buds formed at Site 1 and Site 2, respectively. Kandelia candel propagules begun to sink 10 days after being released, and after 18 days all propagules had negative buoyancy. The propagules developed roots within 19-68 days, depending on whether they were held on the water or sediment, and were capable of long range dispersal, for 15-20% of them dispersed more than 100 m within 1 day. The median age of K. candel plants ranged between 8.7 and 5.6 years, with a density of 1900 and 470 plants ha -1, in Sites 1 and 2. Plant mortality was high, with 64 and 74% of the plants surviving after a year at Sites 1 and 2. Life expectancy (i.e. median age-at-death) of only 2.2 and 2.7 years at Sites 1 and 2, respectively, indicates that mortality of young K. candel plants was specially high. Recruitment occurred in early spring, and did not suffice to balance the mortality within the annual period examined. These results suggest that the K. candel stands in Halong Bay might be maintained by a few years of high recruitment which would compensate for generally high mortality rates.

  13. Growth and hemodynamics after early embryonic aortic arch occlusion*

    PubMed Central

    Lindsey, Stephanie E.; Menon, Prahlad G.; Kowalski, William J.; Shekhar, Akshay; Yalcin, Huseyin C.; Nishimura, Nozomi; Schaffer, Chris B.; Butcher, Jonathan T.; Pekkan, Kerem

    2015-01-01

    The majority of severe clinically significant forms of congenital heart disease (CHD) is associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unknown. We here combine computational fluid dynamics (CFD) simulations with in vivo experiments to test how individual pharyngeal arch artery hemodynamics alters as a result of local interventions to obstruct individual arch artery flow. Simulated isolated occlusions within each pharyngeal arch artery were created with image derived three-dimensional (3D) reconstructions of normal chick pharyngeal arch anatomy at Hamburger-Hamilton (HH) developmental stages HH18 and HH24. Acute flow redistributions were then computed using in vivo measured subject-specific aortic sinus inflow velocity profiles. A kinematic vascular growth-rendering algorithm was then developed and implemented to test the role of changing local wall shear stress patterns in downstream 3D morphogenesis of arch arteries. CFD simulations predicted that altered pressure gradients and flow redistributions were most sensitive to occlusion of the IVth arches. To evaluate these simulations experimentally, a novel in vivo experimental model of pharyngeal arch occlusion was developed and implemented using two-photon microscopy guided femtosecond laser based photodisruption surgery. The right IVth arch was occluded at HH18, and resulting diameter changes were followed for up to 24 hours. Pharyngeal arch diameter responses to acute hemodynamic changes were predicted qualitatively but poorly quantitatively. Chronic growth and adaptation to hemodynamic changes however were predicted in a subset of arches. Our findings suggest that this complex biodynamic process is governed through more complex forms of mechanobiological

  14. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  15. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  16. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness.

    PubMed

    Pashalidou, Foteini G; Frago, Enric; Griese, Eddie; Poelman, Erik H; van Loon, Joop J A; Dicke, Marcel; Fatouros, Nina E

    2015-09-01

    Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This could be resolved if plants could respond to early cues, such as egg deposition, that reliably indicate future herbivory. We tested this hypothesis in a field experiment and found that egg deposition by the butterfly Pieris brassicae on black mustard (Brassica nigra) induced a plant response that negatively affected feeding caterpillars. The effect cascaded up to the third and fourth trophic levels (larval parasitoids and hyperparasitoids) by affecting the parasitisation rate and parasitoid performance. Overall, the defences induced by egg deposition had a positive effect on plant seed production and may therefore play an important role in the evolution of plant resistance to herbivores. PMID:26147078

  17. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants

    PubMed Central

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets’ growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  18. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants.

    PubMed

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets' growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  19. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production

    PubMed Central

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-01-01

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0–5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus. PMID:26204839

  20. Perinatal programming of childhood asthma: early fetal size, growth trajectory during infancy, and childhood asthma outcomes.

    PubMed

    Turner, Steve

    2012-01-01

    The "fetal origins hypothesis" or concept of "developmental programming" suggests that faltering fetal growth and subsequent catch-up growth are implicated in the aetiology of cardiovascular disease. Associations between reduced birth weight, rapid postnatal weight gain, and asthma suggest that there are fetal origins to respiratory disease. The present paper first summarises the literature relating birth weight and post natal growth trajectories to asthma outcomes. Second, issues regarding the interpretation of antenatal fetal ultrasound measurements are discussed. Finally, recent reports linking antenatal measurement and growth trajectory to early childhood asthma outcomes are discussed. Understanding the nature and timing of factors which influence antenatal growth may give important insight into the antecedents of early-onset asthma with implications for interventions. PMID:22400043

  1. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  2. Soybean Photosynthetic Rate and Carbon Fixation at Early and Late Planting Dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early planting (late April to early May) is recommended for increasing soybean yield but a full understanding of the physiological response is lacking. This study was conducted to determine whether carbon dioxide exchange rate (CER) could explain this yield difference. A study with five (2007) and s...

  3. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    PubMed

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. PMID:25592941

  4. A stoichiometric model of early plant primary succession.

    PubMed

    Marleau, Justin N; Jin, Yu; Bishop, John G; Fagan, William F; Lewis, Mark A

    2011-02-01

    The relative importance of plant facilitation and competition during primary succession depends on the development of ecosystem nutrient pools, yet the interaction of these processes remains poorly understood. To explore how these mechanisms interact to drive successional dynamics, we devised a stoichiometric ecosystem-level model that considers the role of nitrogen and phosphorus limitation in plant primary succession. We applied this model to the primary plant community on Mount St. Helens, Washington State, to check the validity of the proposed mechanisms. Our results show that the plant community is colimited by nitrogen and phosphorus, and they confirm previous suggestions that the presence of a nitrogen-fixing legume, Lupinus lepidus, can enhance community biomass. In addition, the observed nutrient supply rates may promote alternative successional trajectories that depend on the initial plant abundances, which may explain the observed heterogeneity in community development. The model further indicates the importance of mineralization rates and other ecosystem parameters to successional rates. We conclude that a model framework based on ecological stoichiometry allows integration of key biotic processes that interact nonlinearly with biogeochemical aspects of succession. Extension of this approach will improve the understanding of the process of primary succession and its application to ecosystem rehabilitation. PMID:21460559

  5. In Vitro plant cell growth in microgravity and on clinostat

    NASA Astrophysics Data System (ADS)

    Laurinavicius, R.; Kenstaviciene, P.; Rupainiene, O.; Necitailo, G.

    1994-08-01

    For the study of gravity's role in the processes of plant cell differentiation in vitro, a model ``seed-seedling-callus'' has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cells, a nuclei and of mitochondria are smaller and the vacuole area - bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.

  6. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

  7. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa.

    PubMed

    Panuccio, M R; Jacobsen, S E; Akhtar, S S; Muscolo, A

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  8. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa

    PubMed Central

    Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  9. Identification of Water Use Strategies at Early Growth Stages in Durum Wheat from Shoot Phenotyping and Physiological Measurements

    PubMed Central

    Nakhforoosh, Alireza; Bodewein, Thomas; Fiorani, Fabio; Bodner, Gernot

    2016-01-01

    Modern imaging technology provides new approaches to plant phenotyping for traits relevant to crop yield and resource efficiency. Our objective was to investigate water use strategies at early growth stages in durum wheat genetic resources using shoot imaging at the ScreenHouse phenotyping facility combined with physiological measurements. Twelve durum landraces from different pedoclimatic backgrounds were compared to three modern check cultivars in a greenhouse pot experiment under well-watered (75% plant available water, PAW) and drought (25% PAW) conditions. Transpiration rate was analyzed for the underlying main morphological (leaf area duration) and physiological (stomata conductance) factors. Combining both morphological and physiological regulation of transpiration, four distinct water use types were identified. Most landraces had high transpiration rates either due to extensive leaf area (area types) or both large leaf areas together with high stomata conductance (spender types). All modern cultivars were distinguished by high stomata conductance with comparatively compact canopies (conductance types). Only few landraces were water saver types with both small canopy and low stomata conductance. During early growth, genotypes with large leaf area had high dry-matter accumulation under both well-watered and drought conditions compared to genotypes with compact stature. However, high stomata conductance was the basis to achieve high dry matter per unit leaf area, indicating high assimilation capacity as a key for productivity in modern cultivars. We conclude that the identified water use strategies based on early growth shoot phenotyping combined with stomata conductance provide an appropriate framework for targeted selection of distinct pre-breeding material adapted to different types of water limited environments. PMID:27547208

  10. Identification of Water Use Strategies at Early Growth Stages in Durum Wheat from Shoot Phenotyping and Physiological Measurements.

    PubMed

    Nakhforoosh, Alireza; Bodewein, Thomas; Fiorani, Fabio; Bodner, Gernot

    2016-01-01

    Modern imaging technology provides new approaches to plant phenotyping for traits relevant to crop yield and resource efficiency. Our objective was to investigate water use strategies at early growth stages in durum wheat genetic resources using shoot imaging at the ScreenHouse phenotyping facility combined with physiological measurements. Twelve durum landraces from different pedoclimatic backgrounds were compared to three modern check cultivars in a greenhouse pot experiment under well-watered (75% plant available water, PAW) and drought (25% PAW) conditions. Transpiration rate was analyzed for the underlying main morphological (leaf area duration) and physiological (stomata conductance) factors. Combining both morphological and physiological regulation of transpiration, four distinct water use types were identified. Most landraces had high transpiration rates either due to extensive leaf area (area types) or both large leaf areas together with high stomata conductance (spender types). All modern cultivars were distinguished by high stomata conductance with comparatively compact canopies (conductance types). Only few landraces were water saver types with both small canopy and low stomata conductance. During early growth, genotypes with large leaf area had high dry-matter accumulation under both well-watered and drought conditions compared to genotypes with compact stature. However, high stomata conductance was the basis to achieve high dry matter per unit leaf area, indicating high assimilation capacity as a key for productivity in modern cultivars. We conclude that the identified water use strategies based on early growth shoot phenotyping combined with stomata conductance provide an appropriate framework for targeted selection of distinct pre-breeding material adapted to different types of water limited environments. PMID:27547208

  11. Early detection of plant disease using infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu

    2006-10-01

    By using imaging techniques, plant physiological parameters can be assessed without contact with the plant and in a non-destructive way. During plant-pathogen infection, the physiological state of the infected tissue is altered, such as changes in photosynthesis, transpiration, stomatal conductance, accumulation of Salicylic acid (SA) and even cell death. In this study, the different temperature distribution between the leaves infected by tobacco mosaic virus strain-TMV-U1 and the noninfected leaves was visualized by digital infrared thermal imaging with the microscopic observations of the different structure within different species tomatoes. Results show a presymptomatic decrease in leaf temperature about 0.5-1.3 °C lower than the healthy leaves. The temperature difference allowed the discrimination between the infected and healthy leaves before the appearance of visible necrosis on leaves.

  12. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-01

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues. PMID:14534583

  13. Arabidopsis Fatty Acid Desaturase FAD2 Is Required for Salt Tolerance during Seed Germination and Early Seedling Growth

    PubMed Central

    Sun, Jian; Li, Bei; Zhu, Qiang; Chen, Shaoliang; Zhang, Hongxia

    2012-01-01

    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis. PMID:22279586

  14. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    PubMed

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware. PMID:24433330

  15. Reactive oxygen species mediate growth and death in submerged plants

    PubMed Central

    Steffens, Bianka; Steffen-Heins, Anja; Sauter, Margret

    2013-01-01

    Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS. PMID:23761805

  16. Sensing the light environment in plants: photoreceptors and early signaling steps.

    PubMed

    Galvão, Vinicius Costa; Fankhauser, Christian

    2015-10-01

    Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle. PMID:25638281

  17. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    PubMed Central

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity. PMID:22965092

  18. Complete Genome of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida BIRD-1

    SciTech Connect

    Matilla, M.A.; van der Lelie, D.; Pizarro-Tobias, P.; Roca, A.; Fernandez, M.; Duque, E.; Molina, L.; Wu, X.; Gomez, M. J.; Segura, A.; Ramos, J.-L.

    2011-03-01

    We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.

  19. Preschool Children's Explanations of Plant Growth and Rain Formation: A Comparative Analysis

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Hatzinikita, Vassilia

    2006-01-01

    This paper explores the different types and characteristics of preschool children's explanations of plant growth and rain formation. The children's explanations were categorized as naturalistic, non-naturalistic, or synthetic, i.e., explanations containing both naturalistic and non-naturalistic parts. In regards to plant growth the children…

  20. Krüppel-Like Factor 12 Promotes Colorectal Cancer Growth through Early Growth Response Protein 1

    PubMed Central

    Kim, Sun-Hee; Park, Yun-Yong; Cho, Sung-Nam; Margalit, Ofer; Wang, Dingzhi; DuBois, Raymond N.

    2016-01-01

    Krüppel-like factor 12 (KLF12) is a transcription factor that plays a role in normal kidney development and repression of decidualization. KLF12 is frequently elevated in esophageal adenocarcinoma and has been reported to promote gastric cancer progression. Here, we examined the role of KLF12 in colorectal cancer (CRC). Indeed, KLF12 promotes tumor growth by directly activating early growth response protein 1 (EGR1). The levels of KLF12 and EGR1 correlate synergistically with a poor prognosis. These results indicate that KLF12 likely plays an important role in CRC and could serve as a potential prognostic marker and therapeutic target. PMID:27442508

  1. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  2. Constraining the role of early land plants in Palaeozoic weathering and global cooling.

    PubMed

    Quirk, Joe; Leake, Jonathan R; Johnson, David A; Taylor, Lyla L; Saccone, Loredana; Beerling, David J

    2015-08-22

    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9-13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. PMID:26246550

  3. Constraining the role of early land plants in Palaeozoic weathering and global cooling

    PubMed Central

    Quirk, Joe; Leake, Jonathan R.; Johnson, David A.; Taylor, Lyla L.; Saccone, Loredana; Beerling, David J.

    2015-01-01

    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9–13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. PMID:26246550

  4. Oxidative burst: an early plant response to pathogen infection.

    PubMed Central

    Wojtaszek, P

    1997-01-01

    As plants are confined to the place where they grow, they have to develop a broad range of defence responses to cope with pathogenic infections. The oxidative burst, a rapid, transient, production of huge amounts of reactive oxygen species (ROS), is one of the earliest observable aspects of a plant's defence strategy. First this Review describes the chemistry of ROS (superoxide radical, hydrogen peroxide and hydroxyl radical). Secondly, the role of ROS in defence responses is demonstrated, and some important issues are considered, such as: (1) which of the ROS is a major building element of the oxidative burst; (2) the spatial and temporal regulation of the oxidative burst; and (3) differences in the plant's responses to biotic and abiotic elicitation. Thirdly, the relationships between the oxidative burst and other plant defence responses are indicated. These include: (1) an oxygen consumption, (2) the production of phytoalexins, (3) systemic acquired resistance, (4) immobilization of plant cell wall proteins, (5) changes in membrane permeability and ion fluxes and (6) a putative role in hypersensitive cell death. Wherever possible, the comparisons with models applicable to animal systems are presented. Finally, the question of the origin of ROS in the oxidative burst is considered, and two major hypotheses, (1) the action of NADPH oxidase system analogous to that of animal phagocytes, and (2) the pH-dependent generation of hydrogen peroxide by a cell wall peroxidase, are presented. On the basis of this material, a third 'unifying' hypothesis is presented, where transient changes in the pH of the cell wall compartment are indicated as a core phenomenon in evoking ROS production. Additionally, a germin/oxalate oxidase system which generates H2O2 in response to pathogenic infection is also described. PMID:9148737

  5. Controlled ecological life support systems: Development of a plant growth module

    NASA Technical Reports Server (NTRS)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  6. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  7. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex.

    PubMed

    Nieto, Cristina; López-Salmerón, Vadir; Davière, Jean-Michel; Prat, Salomé

    2015-01-19

    The circadian clock plays a pivotal role in the control of Arabidopsis hypocotyl elongation by regulating rhythmic expression of the bHLH factors PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and 5). Coincidence of increased PIF4/PIF5 transcript levels with the dark period allows nuclear accumulation of these factors, and in short days it phases maximal hypocotyl growth at dawn. During early night, PIF4 and PIF5 transcription is repressed by the Evening Complex (EC) proteins EARLY FLOWERING3 (ELF3), EARLY FLOWERING4 (ELF4), and LUX ARRHYTHMO (LUX). While ELF3 has an essential role in EC complex assembly, several lines of evidence indicate that this protein controls plant growth via other mechanisms that are presently unknown. Here, we show that the ELF3 and PIF4 proteins interact in an EC-independent manner, and that this interaction prevents PIF4 from activating its transcriptional targets. We also show that PIF4 overexpression leads to ELF3 protein destabilization, and that this effect is mediated indirectly by negative feedback regulation of photoactive PHYTOCHROME B (phyB). Physical interaction of the phyB photoreceptor with ELF3 has been reported, but its functional relevance remains poorly understood. Our findings establish that phyB is needed for ELF3 accumulation in the light, most likely by competing for CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-mediated ubiquitination and the proteasomal degradation of ELF3. Our results explain the short hypocotyl phenotype of ELF3 overexpressors, despite their normal clock function, and provide a molecular framework for understanding how warm temperatures promote hypocotyl elongation and affect the endogenous clock. PMID:25557667

  8. Effects of microgravity on growth hormone concentration and distribution in plants

    NASA Technical Reports Server (NTRS)

    Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Bandurski, Robert S.

    1989-01-01

    On earth, gravity affects the distribution of the plant growth hormone, indole-3-acetic acid (IAA), in a manner such that the plant grows into a normal vertical orientation (shoots up, roots down). How the plant controls the amount and distribution of IAA is only partially understood and is currently under investigation in this laboratory. The question to be answered in the flight experiment concerns the effect of gravity on the concentration, turn over, and distribution of the growth hormone. The answer to this question will aid in understanding the mechanism by which plants control the amount and distribution of growth hormone. Such knowledge of a plant's hormonal metabolism may aid in the growth of plants in space and will lead to agronomic advances.

  9. Involvement of Plant Growth Substances in the Alteration of Leaf Gas Exchange of Flooded Tomato Plants 1

    PubMed Central

    Bradford, Kent J.

    1983-01-01

    Ethylene, abscisic acid, and cytokinins were tested for their ability to either induce or prevent the changes which occur in gas exchange characteristics of tomato (Lycopersicon esculentum Mill. cv. Rheinlands Ruhm) leaves during short-term soil flooding. Ethylene, which increases in the shoots of flooded plants, had no effect on stomatal conductance or photosynthetic capacity of drained plants. Abscisic acid, which also accumulates in the shoots of flooded plants, could reproduce the stomatal behavior of flooded plants when sprayed on the leaves of drained plants. However, photosynthetic capacity of drained plants was unaffected by abscisic acid sprays. Cytokinin export from the roots to the shoots declines in flooded plants. Spray applications of benzyladenine increased stomatal conductance in both flooded and drained plants. In addition, the decline in photosynthetic capacity during flooding was largely prevented by supplementary cytokinin applications. The possible involvement of these growth substances in modifying leaf gas exchange during flooding is discussed. PMID:16663243

  10. Visualization of early stress responses in plant leaves

    NASA Astrophysics Data System (ADS)

    Chaerle, Laury; vandeVen, Martin J.; Valcke, Roland L.; Van Der Straeten, Dominique

    2002-03-01

    Plant leaves possess microscopic valves, called stomata, that enable control of transpirational water loss. In case of water shortage, stomata close, resulting in decreased transpirational cooling. The ensuing temperature increase is readily visualized by thermography. Salicylic acid, a central compound in the defense of plants against pathogens, also closes stomata in several species. In previous work, thermography permitted to monitor an increase in temperature after infection of resistant tobacco by tobacco mosaic virus, before visual symptoms appeared. Furthermore, cell death was visualized with high contrast in both tobacco and Arabidopsis. In addition to transpiration, photosynthetic assimilation is a key physiological parameter. If the amount of light absorbed by chlorophyll exceeds the capacity of the photosynthetic chain, the surplus is dissipated as light of longer wavelength. This phenomenon is known as chlorophyll fluorescence. If a plant leaf is affected by stress, photosynthesis is impaired resulting in a bigger share of non-utilized light energy emitted as fluorescence. The potential of an automated imaging setup combining thermal and fluorescence imaging was shown by monitoring spontaneous cell death in tobacco. This represents a first step to multispectral characterization of a wide range of emerging stresses, which likely affect one or both key physiological parameters.

  11. Early genome duplications in conifers and other seed plants

    PubMed Central

    Li, Zheng; Baniaga, Anthony E.; Sessa, Emily B.; Scascitelli, Moira; Graham, Sean W.; Rieseberg, Loren H.; Barker, Michael S.

    2015-01-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity. PMID:26702445

  12. Early genome duplications in conifers and other seed plants.

    PubMed

    Li, Zheng; Baniaga, Anthony E; Sessa, Emily B; Scascitelli, Moira; Graham, Sean W; Rieseberg, Loren H; Barker, Michael S

    2015-11-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity. PMID:26702445

  13. Food, growth and time: Elsie Widdowson's and Robert McCance's research into prenatal and early postnatal growth.

    PubMed

    Buklijas, Tatjana

    2014-09-01

    Cambridge scientists Robert McCance and Elsie Widdowson are best known for their work on the British food tables and wartime food rations, but it is their research on prenatal and early postnatal growth that is today seen as a foundation of the fields studying the impact of environment upon prenatal development and, consequently, adult disease. In this essay I situate McCance's and Widdowson's 1940s human and 1950s experimental studies in the context of pre-war concerns with fetal growth and development, especially within biochemistry, physiology and agriculture; and the Second World War and post-war focus on the effects of undernutrition during pregnancy upon the fetus. I relate Widdowson's and McCance's research on the long-term effects of early undernutrition to the concern with recovery from early trauma so pertinent in post-war Europe and with sensitive (critical) periods, a concept of high importance across different fields. Finally I discuss how, following a hiatus in which fetal physiology engaged with different questions and stressed fetal autonomy, interest in the impact of environment upon prenatal growth and development revived towards the end of the twentieth century. The new field of "developmental origins of health and disease", I suggest, has provided a context in which Widdowson's and McCance's work has regained importance. PMID:24378592

  14. Early growth response of container-grown selected woody boreal seedlings in amended composite tailings and tailings sand.

    PubMed

    Khasa, D P; Fung, M; Logan, B

    2005-05-01

    Successful reclamation of saline-alkaline sites may be enhanced by revegetating with species that are tolerant to factors that limit normal plant growth. Boreal woody plants tested in this study have shown promise for use in saline habitats. This study was conducted to assess the effects of amendment treatments (peat, pulp waste, agriboost, a combination of pulp waste and fly ash, and mineral fertilizer) on the early growth of three hybrid poplar clones and three coniferous species. Twelve-week and 18-week container-grown hybrid poplar clones and coniferous species, respectively, were monitored for 12 weeks in pot culture in both composite tailings (CTs) and tailings sand (TS) materials obtained from the oil sands plant, Syncrude Canada Ltd., Ft. McMurray, Alberta. These substrates with low nutrients, organic matter, and water-holding capacities, were amended with different organic materials at different rates. Growth, as assessed by the volume increment in both substrates, was generally better for the first 6 weeks than for the last 6 weeks. Growth was reduced during the last 6 weeks due to nutrient depletion over time in these impoverished substrates. Overall, for both substrates, the mineral fertilizer, 20%, 40% and 60% peat were the best amendments treatments for poplar clones with NM-6 being the most productive clone. For coniferous species, 20% and 40% pulp or peat appear to be the best amendment treatments, with lodgepole pine being the most productive species. The inflexion point of the regression functions were found around 30% rate of the amendment materials. The results also indicated that peat and pulp waste were the best amendment treatments for both hybrid poplars and coniferous species whereas the agriboost and mix (combination of pulp waste and fly ash) were the worst. PMID:15607200

  15. [The effect of soil inoculation with microbial pesticide destructors on plant growth and development].

    PubMed

    Lisina, T O; Garan'kina, N G; Kruglov, Iu V

    2001-01-01

    Soil inoculation with liquid cultures of Bacillus megaterium 501 and Exophiala nigrum A-29 capable of degrading several organophosphorus pesticides accelerated growth and development of experimental plants, formation of their generative organs, and improved their productivity. This was particularly observed under stress plant growth conditions on phytotoxic peach substrates. The microorganisms inoculated can probably degrade phytotoxins present in soils, thereby favoring the plant development. PMID:11443911

  16. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4

    PubMed Central

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma, Deepak

    2013-01-01

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores. PMID:24309733

  17. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  18. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN.

    PubMed

    Weilharter, Alexandra; Mitter, Birgit; Shin, Maria V; Chain, Patrick S G; Nowak, Jerzy; Sessitsch, Angela

    2011-07-01

    Burkholderia phytofirmans PsJN(T) is able to efficiently colonize the rhizosphere, root, and above-ground plant tissues of a wide variety of genetically unrelated plants, such as potatoes, canola, maize, and grapevines. Strain PsJN shows strong plant growth-promoting effects and was reported to enhance plant vigor and resistance to biotic and abiotic stresses. Here, we report the genome sequence of this strain, which indicates the presence of multiple traits relevant for endophytic colonization and plant growth promotion. PMID:21551308

  19. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  20. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds.

    PubMed

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok

    2015-05-29

    Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication. PMID:25892516

  1. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    1982-01-01

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  2. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    NASA Astrophysics Data System (ADS)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  3. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants

    NASA Astrophysics Data System (ADS)

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-11-01

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool--a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL-1 of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  4. Visualized modeling platform for virtual plant growth and monitoring on the internet

    NASA Astrophysics Data System (ADS)

    Zhou, De-fu; Tian, Feng-qui; Ren, Ping

    2009-07-01

    Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.

  5. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  6. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acquisition of plant sterols, mediated via elicitins, is required for growth and sporulation of Phytophthora spp. In this paper, we looked at the interaction between elicitins, sterols, and tannins. When ground leaf tissue was added to growth media, P. ramorum growth and sporulation was greates...

  7. Parametric study of prospective early commercial OCMHD power plants /PSPEC/

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Bender, D. J.; Hnat, J. G.; Dellinger, T. C.

    1980-01-01

    The paper presents a parametric study conducted to obtain the performance, economics, natural resource requirements, and environmental impact of moderate technology MHD/steam power plants that do not require development of direct-fired high-temperature air heaters. The study was divided into three base cases, each with a reference case and parametric variations. The case using recuperative air preheat in the range of 1000 F to 1300 F, combined with O2 enrichment to 42% by volume has been selected for conceptual design.

  8. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea).

    PubMed

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  9. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  10. Monitoring of cadmium influence on ultra short-term growth dynamics of plants using a highly sensitive interferometric technique, SIT

    NASA Astrophysics Data System (ADS)

    De Silva, Kokge T. K. M.; Kadono, Hirofumi

    2015-08-01

    Cadmium(Cd) is an environmental contaminant heavy metal having high toxicity. The aim of this study is to investigate the effect of Cd on growth dynamics of plants in the order of sub-nanometers, using a novel optical interference technique, named as Statistical Interferometry Technique(SIT). In this study, a special attention is paid to the short-term growth fluctuation in measurements of the in-plane displacement of the leaf. In the experiments, Chinese chives(Allium Tuberosum) were used as samples, and the growth and its nanometric growth fluctuations were measured for Cd exposure. This nanometric fluctuation that was found in our previous study, is an intrinsic property of the plant and is referred to as nanometric intrinsic fluctuations(NIF). The effect of Cd on plant growth fluctuation, i.e., NIF of growth rate was observed for three days continuously by exposing their roots to four CdCl2 concentrations 0, 0.001, 0.01, and 0.1mM. The standard deviation(SD) of NIF of healthy leaf was 4.0nm/mm sec, and it reduced to 3.1nm/mm sec and 1.8nm/mm sec after 6 hours and 54 hours after exposing to 0.1mM Cd, respectively. For smaller concentration of 0.01mM, less reduction in SD of NIF was confirmed compared to those for 0.1mM. In addition, under 0.001mM, a significant recovery could be observed after a rapid reduction in the first 6 hours. The results imply that NIF can be a measure for heavy metal stress and is sensitive enough to detect the influence of smaller amount of Cd(from 0.001mM to 0.1mM) on plants in a very early stage.

  11. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  12. How do plants enlarge? A balancing act. Workship on plant growth: Final report

    SciTech Connect

    Boyer, J.S.

    1996-12-31

    There are signals that coordinate the development of various plant parts and thus the rates of enlargement of various plant parts and these were explored during the workshop. The participants tried to systematize their knowledge and identify over-arching concepts that need more investigation. It was generally agreed that the cell wall cannot be viewed as a passive plastic material. Synthesis and deposition take place and cause changes in the molecular architecture of the wall. Questions arise from the fact that the wall is not a constant or uniform structure but undergoes highly organized changes during enlargement while bearing a considerable load. Recent advances in signaling, biochemical analysis and ultrastructure visualization are beginning to relate to the molecular load-bearing and enzymatic activities in the wall. The participants agreed that there probably is enough information to begin developing a comprehensive model that would balance wall effects with the limitation of growth by transport, especially for water, and this could help clarify events occurring at different time scales and places. Beyond that, there seems to be a need to resolve problems of solute transport and wall behavior that are poorly understood in growing regions, leaving many promising areas for future experiments. Understanding each balancing act seems to be just the beginning.

  13. Early experience with individual plant evaluations at Davis-Besse

    SciTech Connect

    Darby, J.L.; Deng, S.F.; Flaherty, M.D.

    1989-01-01

    A level 1 probability risk assessment (PRA), including internal floods, is being completed for Toledo Edison's Davis-Besse plant. This effort will be finished by December 1989. A combination of in-house and contractor support has been used in this study. Contractor support focused on transfer of methodology and review of results, while in-house support focused on applications of the methodology. The PRA will form the basis for performing an individual plant examination (IPE) at Davis-Besse. The goals of the IPE must be clearly established before the program is instituted. If the IPE results are to be used for more than meeting the minimum U.S. Nuclear Regulatory Commission requirements, then the complexity of the program increases. For example, use of the IPE results to support changes to technical specifications or emergency operation procedures mandates a more sophisticated approach. Toledo Edison is evaluating how to extend the level 1 PRA to fulfill IPE requirements. Containment analysis is less familiar to in-house staff than is analysis of core cooling systems; contractor support will be required to understand the methods to analyze containment performance and to properly consider uncertainties. An ultimate containment failure analysis is a prerequisite for completing the IPE. Also, the containment analysis must be integrated with, not merely appended to, the core damage analysis.

  14. Effects of Ambient Humidity on Plant Growth Enhancement by Atmospheric Air Plasma Irradiation to Plant Seeds

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Amano, Takaaki; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Humidity is an important factor for plasma-bio applications because composition of species generated by atmospheric pressure plasmas significantly depends on the humidity. Here we have examined effects of humidity on the growth enhancement to study the mechanism. Experiments were carried out with a scalable DBD device. 10 seeds of Raphanus sativus L. were set for x = 5 mm and y = 3 mm below the electrodes. The humidity Hair was 10 - 90 %Rh. The ratio of length of plants with plasma irradiation to that of control increases from 1.2 for Hair = 10 %Rh to 2.5 for Hair = 50 %Rh. The ratio is 2.5 for Hair = 50-90 %Rh. This humidity dependence is similar to the humidity dependence of O2+-H2O,H3O*, NO2--H2Oand NO3--H2Odensities, whereas it is different from that of other species such as O3, NO, and so on. The similarity gives information on key species for the growth enhancement.

  15. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

    PubMed

    Besseau, Sébastien; Hoffmann, Laurent; Geoffroy, Pierrette; Lapierre, Catherine; Pollet, Brigitte; Legrand, Michel

    2007-01-01

    In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation. PMID:17237352

  16. Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny.

    PubMed Central

    Renzaglia, K S; Duff RJT; Nickrent, D L; Garbary, D J

    2000-01-01

    As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid

  17. Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny.

    PubMed

    Renzaglia, K S; Duff RJT; Nickrent, D L; Garbary, D J

    2000-06-29

    As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid

  18. Early Childhood Memory and Attention as Predictors of Academic Growth Trajectories

    ERIC Educational Resources Information Center

    Stipek, Deborah; Valentino, Rachel A.

    2015-01-01

    Longitudinal data from the children of the National Longitudinal Survey of Youth (NLSY) were used to assess how well measures of short-term and working memory and attention in early childhood predicted longitudinal growth trajectories in mathematics and reading comprehension. Analyses also examined whether changes in memory and attention were more…

  19. Ultrastructure of Pseudomonas saccharophila at early and late log phase of growth.

    NASA Technical Reports Server (NTRS)

    Young, H. L.; Chao, F.-C.; Turnbill, C.; Philpott, D. E.

    1972-01-01

    Description of the fine structure of Pseudomonas saccarophila at the early log phase and the late log phase of growth, such as shown by electron microscopy with the aid of various techniques of preparation. The observations reported suggested that, under the experimental conditions applied, P. saccharophila multiplies by the method of constrictive division.

  20. The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement

    ERIC Educational Resources Information Center

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…

  1. Insect herbivory, plant defense, and early Cenozoic climate change.

    PubMed

    Wilf, P; Labandeira, C C; Johnson, K R; Coley, P D; Cutter, A D

    2001-05-22

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased. PMID:11353840

  2. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  3. Evaluation of Phytase Producing Bacteria for Their Plant Growth Promoting Activities

    PubMed Central

    Singh, Prashant; Agrawal, Sanjeev

    2014-01-01

    Bacterial inoculants are known to possess plant growth promoting abilities and have potential as liquid biofertilizer application. Four phytase producing bacterial isolates (phytase activity in the range of 0.076–0.174 U/mL), identified as Advenella species (PB-05, PB-06, and PB-10) and Cellulosimicrobium sp. PB-09, were analyzed for their plant growth promoting activities like siderophore production, IAA production, HCN production, ammonia production, phosphate solubilization, and antifungal activity. All isolates were positive for the above characteristics except for HCN production. The solubilization index for phosphorus on Pikovskaya agar plates was in the range of 2–4. Significant amount of IAA (7.19 to 35.03 μg/mL) production and solubilized phosphate (189.53 to 746.84 μg/mL) was noticed by these isolates at different time intervals. Besides that, a greenhouse study was also conducted with Indian mustard to evaluate the potential of these isolates to promote plant growth. Effect of seed bacterization on various plant growth parameters and P uptake by plant were used as indicators. The plant growth promoting ability of bacterial isolates in pot experiments was correlated to IAA production, phosphate solubilization, and other in vitro tests. On the basis of present findings, isolate PB-06 was most promising in plant growth promotion with multiple growth promoting characteristics. PMID:24669222

  4. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    PubMed

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. PMID:25280241

  5. Comparison of toxicity to terrestrial plants with algal growth inhibition by herbicides

    SciTech Connect

    Garten, C.T. Jr.; Frank, M.L.

    1984-10-01

    The toxicities of 21 different herbicides to algae (Selenastrum capricornutum and Chlorella vulgaris) and to terrestrial plants (radishes, barley, and bush beans or soybeans) were compared to order to determine the feasibility of using a short-term (96-h) algal growth inhibition test for identifying chemicals having potential toxicity in a 4-week terrestrial plant bioassay. The toxicity of each test chemical, usually in combination with a commercial formulation, was evaluated at six nominal concentrations, between 0 and 100 mg/L growth medium in the algal bioassay or between 0 and 100 mg/kg substate in the terrestrial plant bioassay, in terms of both (1) the no-observed-effect concentration (NOEC), i.e., the highest concentration tested at which no significant (P < 0.05, one-sided test) reduction in algal growth rate or in terrestrial plant yield, relative to controls, was observed; and (2) the concentration at which algal growth rate or terrestrial plant yield was reduced by 50% or more relative to controls. There was generally poor agreement between results from the two types of bioassays; results from algal growth inhibition tests were not significantly correlated with results from the terrestrial plant bioassays. Overall, there was an approximately 50% chance of an algal bioassay, using Selenastrum capricornutum, successfully screening (detecting) herbicide levels that reduced terrestrial plant yield. The results indicated that algal growth inhibition tests cannot be used generically to predict phytotoxicity of herbicides to terrestrial plant species. 7 references, 14 tables.

  6. Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.

    It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against

  7. Germination and early growth of Brassica juncea in copper mine tailings amended with technosol and compost.

    PubMed

    Novo, Luís A B; González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  8. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    PubMed Central

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  9. Developmental plasticity of growth and digestive efficiency in dependence of early-life food availability

    PubMed Central

    Kotrschal, Alexander; Szidat, Sönke; Taborsky, Barbara

    2014-01-01

    Nutrition is a potent mediator of developmental plasticity. If food is scarce, developing organisms may invest into growth to outgrow size-dependent mortality (short-term benefit) and/or into an efficient digestion system (long-term benefit). We investigated this potential trade-off, by determining the influence of food availability on juvenile body and organ growth, and on adult digestive efficiency in the cichlid fish Simochromis pleurospilus. We reared two groups of fish at constant high or low food rations, and we switched four other groups between these two rations at an early and late juvenile period. We measured juvenile growth and organ sizes at different developmental stages and determined adult digestive efficiency. Fish kept at constant, high rations grew considerably faster than low-food fish. Nevertheless, S. pleurospilus partly buffered the negative effects of low food availability by developing heavier digestive organs, and they were therefore more efficient in digesting their food as adults. Results of fish exposed to a ration switch during either the early or late juvenile period suggest (i) that the ability to show compensatory growth after early exposure to low food availability persists during the juvenile period, (ii) that digestive efficiency is influenced by varying juvenile food availability during the late juvenile phase and (iii) that the efficiency of the adult digestive system is correlated with the growth rate during a narrow time window of juvenile period. PMID:25866430

  10. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility

    PubMed Central

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann; Magid, Jakob

    2016-01-01

    A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration and content of macro- and micronutrients were identified. A significant genetic variability in root and root hair traits as well as nutrient uptake was found. Fast and early root proliferation and long and dense root hairs enhanced uptake of macro- and micronutrients under low soil nutrient availability. Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient concentrations in the shoots, which is assumed to be important for later plant development. PMID:27379145

  11. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    PubMed

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes. PMID:24375470

  12. A new balancing act: The many roles of melatonin and serotonin in plant growth and development

    PubMed Central

    Erland, Lauren A E; Murch, Susan J; Reiter, Russel J; Saxena, Praveen K

    2015-01-01

    Melatonin and serotonin are indoleamines first identified as neurotransmitters in vertebrates; they have now been found to be ubiquitously present across all forms of life. Both melatonin and serotonin were discovered in plants several years after their discovery in mammals, but their presence has now been confirmed in almost all plant families. The mechanisms of action of melatonin and serotonin are still poorly defined. Melatonin and serotonin possess important roles in plant growth and development, including functions in chronoregulation and modulation of reproductive development, control of root and shoot organogenesis, maintenance of plant tissues, delay of senescence, and responses to biotic and abiotic stresses. This review focuses on the roles of melatonin and serotonin as a novel class of plant growth regulators. Their roles in reproductive and vegetative plant growth will be examined including an overview of current hypotheses and knowledge regarding their mechanisms of action in specific responses. PMID:26418957

  13. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    PubMed Central

    Tajul, M. I.; Alam, M. M.; Hossain, S. M. M.; Naher, K.; Rafii, M. Y.; Latif, M. A.

    2013-01-01

    Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.). Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha−1) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1) and the maximum harvest index (HI) compared to the plants in other treatments. PMID:24163615

  14. Review: Wind impacts on plant growth, mechanics and damage.

    PubMed

    Gardiner, Barry; Berry, Peter; Moulia, Bruno

    2016-04-01

    Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage. PMID:26940495

  15. Response of Late Carboniferous and Early Permian Plant Communities to Climate Change

    NASA Astrophysics Data System (ADS)

    Dimichele, William A.; Pfefferkorn, Hermann W.; Gastaldo, Robert A.

    Late Carboniferous and Early Permian strata record the transition from a cold interval in Earth history, characterized by the repeated periods of glaciation and deglaciation of the southern pole, to a warm-climate interval. Consequently, this time period is the best available analogue to the Recent in which to study patterns of vegetational response, both to glacial-interglacial oscillation and to the appearance of warm climate. Carboniferous wetland ecosystems were dominated by spore-producing plants and early gymnospermous seed plants. Global climate changes, largely drying, forced vegetational changes, resulting in a change to a seed plant-dominated world, beginning first at high latitudes during the Carboniferous, reaching the tropics near the Permo-Carboniferous boundary. For most of this time plant assemblages were very conservative in their composition. Change in the dominant vegetation was generally a rapid process, which suggests that environmental thresholds were crossed, and involved little mixing of elements from the wet and dry floras.

  16. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    SciTech Connect

    Not Available

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  17. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  18. Polyethylene mulch stimulates early root growth and nutrient uptake of transplanted tomatoes

    SciTech Connect

    Wien, H.C.; Minotti, P.L.; Grubinger, V.P. . Dept. of Fruit and Vegetable Science)

    1993-03-01

    Tomato (Lycopersicon esculentum Mill.) plants grown on polyethylene (PE) mulch in New York State frequently have more branches and increased mineral nutrient uptake and yield than plants not mulched. In four field experiments conducted on a silt loam soil, clear PE mulch stimulated root extension shortly after transplanting. One week after transplanting, roots were significantly longer for mulched than for unmulched plants in all four experiments, whereas above ground dry matter differences did not become significant until 14 days after transplanting in two of four trials. Mulching increased branching, hastened flowering on basal branches, and increased concentration of major nutrients in the above ground parts. In the field, stimulation of above ground growth due to mulch might be brought about by warming of the stem by air escaping from the planting hole in the mulch. However, an experiment with black, white, or clear mulch, in which the planting hole was either left uncovered or covered with soil, showed no effect of hole closure on branching even though air temperature near the stem was increased when holes were left uncovered. The results taken together imply that the increased above ground growth observed with mulching is a consequence of enhanced root growth and nutrient uptake.

  19. Multi-trophic consequences of plant genetic variation in sex and growth.

    PubMed

    Abdala-Roberts, Luis; Pratt, Jessica D; Pratt, Riley; Schreck, Tadj K; Hanna, Victoria; Mooney, Kailen A

    2016-03-01

    There is growing evidence for the influence of plant intraspecific variation on associated multi-trophic communities, but the traits driving such effects are largely unknown. We conducted a field experiment with selected genetic lines of the dioecious shrub Baceharis salicifolia to investigate the effects of plant growth rate (two-fold variation) and gender (males vs. females of the same growth rate) on above- and belowground insect and fungal associates. We documented variation in associate density to test for effects occurring through plant-based habitat quality (controlling for effects of plant size) as well as variation in associate abundance to test for effects occurring through both habitat quality and abundance (including effects of plant size). Whereas the dietary specialist aphid Uroleucon macaolai was unaffected by plant sex and growth rate, the generalist aphid Aphis gossypii and its tending ants (Linepithema humile) had higher abundances and densities on male (vs. female) plants, suggesting males provide greater habitat quality. In contrast, Aphis and ant abundance and density were unaffected by plant growth rate, while Aphis parasitoids were unaffected by either plant sex or growth rate. Arbuscular mycorrhizal fungi had higher abundance and density (both marginally significant) on females (vs. males), suggesting females provide greater habitat quality, but lower abundances (marginally significant) and higher densities on slow- (vs. fast-) growing genotypes, suggesting slow-growing genotypes provided lower resource abundance but greater habitat quality. Overall, plant sex and growth rate effects on associates acted independently (i.e., no interactive effects), and these effects were of a greater magnitude than those coming from other axes of plant genetic variation. These findings thus demonstrate that plant genetic effects on associated communities may be driven by a small number of trait-specific mechanisms. PMID:27197400

  20. The Relationship between Early Growth and Survival of Hatchling Saltwater Crocodiles (Crocodylus porosus) in Captivity

    PubMed Central

    Brien, Matthew L.; Webb, Grahame J.; McGuinness, Keith; Christian, Keith A.

    2014-01-01

    Hatchling fitness in crocodilians is affected by “runtism” or failure to thrive syndrome (FTT) in captivity. In this study, 300 hatchling C. porosus, artificially incubated at 32°C for most of their embryonic development, were raised in semi-controlled conditions, with growth criteria derived for the early detection of FTT (within 24 days). Body mass, four days after hatching (BM4d), was correlated with egg size and was highly clutch specific, while snout-vent length (SVL4d) was much more variable within and between clutches. For the majority of hatchlings growth trajectories within the first 24 days continued to 90 days and could be used to predict FTT affliction up to 300 days, highlighting the importance of early growth. Growth and survival of hatchling C. porosus in captivity was not influenced by initial size (BM4d), with a slight tendency for smaller hatchlings to grow faster in the immediate post-hatching period. Strong clutch effects (12 clutches) on affliction with FTT were apparent, but could not be explained by measured clutch variables or other factors. Among individuals not afflicted by FTT (N = 245), mean growth was highly clutch specific, and the variation could be explained by an interaction between clutch and season. FTT affliction was 2.5 times higher among clutches (N = 7) that hatched later in the year when mean minimum air temperatures were lower, compared with those clutches (N = 5) that hatched early in the year. The results of this study highlight the importance of early growth in hatchling C. porosus, which has implications for the captive management of this species. PMID:24960026

  1. The relationship between early growth and survival of hatchling saltwater crocodiles (Crocodylus porosus) in captivity.

    PubMed

    Brien, Matthew L; Webb, Grahame J; McGuinness, Keith; Christian, Keith A

    2014-01-01

    Hatchling fitness in crocodilians is affected by "runtism" or failure to thrive syndrome (FTT) in captivity. In this study, 300 hatchling C. porosus, artificially incubated at 32°C for most of their embryonic development, were raised in semi-controlled conditions, with growth criteria derived for the early detection of FTT (within 24 days). Body mass, four days after hatching (BM4d), was correlated with egg size and was highly clutch specific, while snout-vent length (SVL4d) was much more variable within and between clutches. For the majority of hatchlings growth trajectories within the first 24 days continued to 90 days and could be used to predict FTT affliction up to 300 days, highlighting the importance of early growth. Growth and survival of hatchling C. porosus in captivity was not influenced by initial size (BM4d), with a slight tendency for smaller hatchlings to grow faster in the immediate post-hatching period. Strong clutch effects (12 clutches) on affliction with FTT were apparent, but could not be explained by measured clutch variables or other factors. Among individuals not afflicted by FTT (N = 245), mean growth was highly clutch specific, and the variation could be explained by an interaction between clutch and season. FTT affliction was 2.5 times higher among clutches (N = 7) that hatched later in the year when mean minimum air temperatures were lower, compared with those clutches (N = 5) that hatched early in the year. The results of this study highlight the importance of early growth in hatchling C. porosus, which has implications for the captive management of this species. PMID:24960026

  2. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR.

    PubMed

    Tank, Neelam; Saraf, Meenu

    2009-04-01

    Phytoremediation i.e. the use of plants to adsorb, accumulate or detoxify contaminants is an emerging area of interest. A viable technology needs optimum biomass production in metal contaminated soil. Five strains of microbes were selected after testing their potential as plant growth promoters, on the basis of their phosphate solubilization ability, IAA, siderophore and HCN production and biocontrol potentials. They were examined for growth in synthetic medium supplemented with nickel and their MIC (2 mM) was determined. These isolates were also able to grow and produce siderophores in presence of heavy metals like Ni, Zn and Cd. A positive response of bacterial inoculants was observed in chickpea plants towards toxic effect of nickel present in soil at different concentration (0, 1 and 2 mM). Bacterial inoculants enhanced fresh and dry weight of plants even at 2 mM nickel concentration. Pot experiments indicated that presence of nickel at upto 1 mM enhanced plant growth compared to uninoculated nickel free plants. The accumulation of nickel/plant was just 50% in Pseudomonas inoculated plants as compared to uninoculated plants with 2 mM nickel concentration along with increased biomass. The results suggest the use of these PGPR to enhance plant growth in nickel-spiked land and remediate nickel from contaminated sites. PMID:18798171

  3. Diversity Dynamics of Silurian–Early Carboniferous Land Plants in South China

    PubMed Central

    Xiong, Conghui; Wang, Deming; Wang, Qi; Benton, Michael J.; Xue, Jinzhuang; Meng, Meicen; Zhao, Qi; Zhang, Jing

    2013-01-01

    New megafossil and microfossil data indicate four episodes in the diversification of Silurian–Early Carboniferous land plants of South China, a relatively continuous regional record. Plant diversity increased throughout, but the rising curve was punctuated by three major falls. There were peaks of origination in the Ludlow–Pragian, Givetian, late Famennian and Visean and peaks of extinction in the Pragian–Emsian, Givetian and early Tournaisian. Speciation and extinction rates were highest in the Lochkovian–Pragian and became progressively lower in subsequent stages. High correlation coefficients indicate that these events are associated with the availability of land habitat contingent on eustatic variations and increasing numbers of cosmopolitan genera. Meanwhile, proportions of endemic genera declined gradually. Due to less endemism and more migrations, both speciation and species extinction rates reduced. The changes of diversity and the timing of the three extinctions of land plants in South China are similar to those known already from Laurussia. However, the largest events in the Lochkovian–Pragian and subsequent smaller ones have not been seen in the global pattern of plant evolution. These land plant events do not correspond well temporally with those affecting land vertebrates or marine invertebrates. In South China, the diversity curve of land plants is generally opposite to that of marine faunas, showing a strong effect of eustatic variations. The increasing diversity of both land vertebrates and plants was punctuated above the Devonian–Carboniferous boundary, known as Romer's Gap, implying common underlying constraints on macroevolution of land animals and plants. PMID:24073276

  4. Diversity dynamics of silurian-early carboniferous land plants in South china.

    PubMed

    Xiong, Conghui; Wang, Deming; Wang, Qi; Benton, Michael J; Xue, Jinzhuang; Meng, Meicen; Zhao, Qi; Zhang, Jing

    2013-01-01

    New megafossil and microfossil data indicate four episodes in the diversification of Silurian-Early Carboniferous land plants of South China, a relatively continuous regional record. Plant diversity increased throughout, but the rising curve was punctuated by three major falls. There were peaks of origination in the Ludlow-Pragian, Givetian, late Famennian and Visean and peaks of extinction in the Pragian-Emsian, Givetian and early Tournaisian. Speciation and extinction rates were highest in the Lochkovian-Pragian and became progressively lower in subsequent stages. High correlation coefficients indicate that these events are associated with the availability of land habitat contingent on eustatic variations and increasing numbers of cosmopolitan genera. Meanwhile, proportions of endemic genera declined gradually. Due to less endemism and more migrations, both speciation and species extinction rates reduced. The changes of diversity and the timing of the three extinctions of land plants in South China are similar to those known already from Laurussia. However, the largest events in the Lochkovian-Pragian and subsequent smaller ones have not been seen in the global pattern of plant evolution. These land plant events do not correspond well temporally with those affecting land vertebrates or marine invertebrates. In South China, the diversity curve of land plants is generally opposite to that of marine faunas, showing a strong effect of eustatic variations. The increasing diversity of both land vertebrates and plants was punctuated above the Devonian-Carboniferous boundary, known as Romer's Gap, implying common underlying constraints on macroevolution of land animals and plants. PMID:24073276

  5. Oxygen scrubbing and sensing in plant growth chambers using solid oxide electrolyzers

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; MacElroy, Robert D.

    1997-01-01

    The maintenance of optimal levels of oxygen in the gaseous environment of a plant growth chamber during light and dark periods is an essential criterion for the correct growth of plants. The use of solid oxide electrolyzers to control the oxygen levels by removing the excess gaseous oxygen during periods of illumination and full-scale photosynthesis is described. A part of the oxygen removed can be stored and supplied back to the plants during dark periods. The excess oxygen can be used by the crew. The electrolizer can be additionally used in its open circuit mode, to sense the oxygen concentrations in the plant chamber. The solid oxide electrolysis process is described.

  6. Gravitropism in plants: Hydraulics and wall growth properties of responding cells

    NASA Technical Reports Server (NTRS)

    Cosgrove, Daniel J.

    1989-01-01

    Gravitropism is the asymmetrical alteration of plant growth in response to a change in the gravity vector, with the typical result that stems grow up and roots grow down. The gravity response is important for plants because it enables them to grow their aerial parts in a mechanically stable (upright) position and to develop their roots and leaves to make efficient use of soil nutrients and sunlight. The elucidation of gravitropic responses will tell much about how gravity exerts its morphogenetic effects on plants and how plants regulate their growth at the cellular and molecular levels.

  7. Impacts of Parasites in Early Life: Contrasting Effects on Juvenile Growth for Different Family Members

    PubMed Central

    Reed, Thomas E.; Daunt, Francis; Kiploks, Adam J.; Burthe, Sarah J.; Granroth-Wilding, Hanna M. V.; Takahashi, Emi A.; Newell, Mark; Wanless, Sarah; Cunningham, Emma J. A.

    2012-01-01

    Parasitism experienced early in ontogeny can have a major impact on host growth, development and future fitness, but whether siblings are affected equally by parasitism is poorly understood. In birds, hatching asynchrony induced by hormonal or behavioural mechanisms largely under parental control might predispose young to respond to infection in different ways. Here we show that parasites can have different consequences for offspring depending on their position in the family hierarchy. We experimentally treated European Shag (Phalacrocorax aristoteli) nestlings with the broad-spectrum anti-parasite drug ivermectin and compared their growth rates with nestlings from control broods. Average growth rates measured over the period of linear growth (10 days to 30 days of age) and survival did not differ for nestlings from treated and control broods. However, when considering individuals within broods, parasite treatment reversed the patterns of growth for individual family members: last-hatched nestlings grew significantly slower than their siblings in control nests but grew faster in treated nests. This was at the expense of their earlier-hatched brood-mates, who showed an overall growth rate reduction relative to last-hatched nestlings in treated nests. These results highlight the importance of exploring individual variation in the costs of infection and suggest that parasites could be a key factor modulating within-family dynamics, sibling competition and developmental trajectories from an early age. PMID:22384190

  8. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physi