Science.gov

Sample records for early secondary forest

  1. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    PubMed Central

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  2. Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation.

    PubMed

    van Kuijk, Marijke; Anten, Niels P R; Oomen, Roelof J; Schieving, Feike

    2014-01-01

    Excessive growth of non-woody plants and shrubs on degraded lands can strongly hamper tree growth and thus secondary forest succession. A common method to accelerate succession, called liberation, involves opening up the vegetation canopy around young target trees. This can increase growth of target trees by reducing competition for light with neighboring plants. However, liberation has not always had the desired effect, likely due to differences in light requirement between tree species. Here we present a 3D-model, which calculates photosynthetic rate of individual trees in a vegetation stand. It enables us to examine how stature, crown structure, and physiological traits of target trees and characteristics of the surrounding vegetation together determine effects of light on tree growth. The model was applied to a liberation experiment conducted with three pioneer species in a young secondary forest in Vietnam. Species responded differently to the treatment depending on their height, crown structure and their shade-tolerance level. Model simulations revealed practical thresholds over which the tree growth response is heavily influenced by the height and density of surrounding vegetation and gap radius. There were strong correlations between calculated photosynthetic rates and observed growth: the model was well able to predict growth of trees in young forests and the effects of liberation there upon. Thus, our model serves as a useful tool to analyze light competition between young trees and surrounding vegetation and may help assess the potential effect of tree liberation. PMID:25101100

  3. Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation

    PubMed Central

    van Kuijk, Marijke; Anten, Niels P. R.; Oomen, Roelof J.; Schieving, Feike

    2014-01-01

    Excessive growth of non-woody plants and shrubs on degraded lands can strongly hamper tree growth and thus secondary forest succession. A common method to accelerate succession, called liberation, involves opening up the vegetation canopy around young target trees. This can increase growth of target trees by reducing competition for light with neighboring plants. However, liberation has not always had the desired effect, likely due to differences in light requirement between tree species. Here we present a 3D-model, which calculates photosynthetic rate of individual trees in a vegetation stand. It enables us to examine how stature, crown structure, and physiological traits of target trees and characteristics of the surrounding vegetation together determine effects of light on tree growth. The model was applied to a liberation experiment conducted with three pioneer species in a young secondary forest in Vietnam. Species responded differently to the treatment depending on their height, crown structure and their shade-tolerance level. Model simulations revealed practical thresholds over which the tree growth response is heavily influenced by the height and density of surrounding vegetation and gap radius. There were strong correlations between calculated photosynthetic rates and observed growth: the model was well able to predict growth of trees in young forests and the effects of liberation there upon. Thus, our model serves as a useful tool to analyze light competition between young trees and surrounding vegetation and may help assess the potential effect of tree liberation. PMID:25101100

  4. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  5. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico.

    PubMed

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029

  6. Tropical Secondary Forest Management Influences Frugivorous Bat Composition, Abundance and Fruit Consumption in Chiapas, Mexico

    PubMed Central

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029

  7. Hunting for sustainability in tropical secondary forests.

    PubMed

    Parry, Luke; Barlow, Jos; Peres, Carlos A

    2009-10-01

    The interaction between land-use change and the sustainability of hunting is poorly understood but is critical for sustaining hunted vertebrate populations and a protein supply for the rural poor. We investigated sustainability of hunting in an Amazonian landscape mosaic, where a small human population had access to large areas of both primary and secondary forest. Harvestable production of mammals and birds was calculated from density estimates. We compared production with offtake from three villages and used catch-per-unit-effort as an independent measure of prey abundance. Most species were hunted unsustainably in primary forest, leading to local depletion of the largest primates and birds. The estimated sustainable supply of wild meat was higher for primary (39 kg x km(-2) x yr(-1)) than secondary forest (22 kg x km(-2) x yr(-1)) because four species were absent and three species at low abundance in secondary forests. Production of three disturbance-tolerant mammal species was 3 times higher in secondary than in primary forest, but hunting led to overexploitation of one species. Our data suggest that an average Amazonian smallholder would require > or = 3.1 km2 of secondary regrowth to ensure a sustainable harvest of forest vertebrates. We conclude that secondary forests can sustainably provide only 2% of the required protein intake of Amazonian smallholders and are unlikely to be sufficient for sustainable hunting in other tropical forest regions. PMID:19765039

  8. Nutrient limitations to secondary forest regrowth

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Martinelli, Luiz A.

    The old, highly weathered soils of the lowland forest within the Amazon Basin generally exhibit conservative P cycles and leaky N cycles. This generalization applies to mature forests, but accelerating land use change is altering Amazonian landscapes. About 16% of the original forest area has been cleared, and about 160,000 km2 is in secondary forest cover. Secondary forests are common in agricultural regions, but few persist in one place for much more than 5 years. The nutrients within ephemeral forests are important for smallholder traditional slash-and-burn agriculture and in alternatives developed to conserve nutrients. Forest clearing causes an initial loss of nutrients through timber harvesting, fire, erosion, soil gaseous emissions, and hydrologic leaching, with N losses exceeding P losses. In contrast, the Ca, Mg, and K present in woody biomass are largely conserved as ash following fire, redistributing these nutrients to the soil. After the initial postclearing pulse of nutrient availability, rates of N cycling and loss consistently decline as cattle pastures age. Fertilization experiments have demonstrated that growth of young forests in abandoned agricultural land is nutrient limited. Several N cycling indicators in a secondary forest chronosequence study also demonstrated a conservative N cycle in young forests. Variable N limitation in young forests helps explain a negative relationship observed between the burn frequency during previous agricultural phases and the rate of forest regrowth. Recuperation of the N cycle gradually occurs during decades of secondary forest succession, such that mature lowland forests eventually recover abundant N relative to a conservative P cycle.

  9. Biomass resilience of Neotropical secondary forests

    NASA Astrophysics Data System (ADS)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  10. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience. PMID:26840632

  11. Secondary Forests from Agricultural Abandonment in Amazonia 2000-2009

    NASA Technical Reports Server (NTRS)

    Morton, Douglas

    2010-01-01

    Ongoing negotiations to include reducing emissions from tropical deforestation and forest degradation (REDD+) in a post-Kyoto climate agreement highlight the critical role of satellite data for accurate and transparent accounting of forest cover changes. In addition to deforestation and degradation, knowledge of secondary forest dynamics is essential for full carbon accounting under REDD+. Land abandonment to secondary forests also frames one of the key tradeoffs for agricultural production in tropical forest countries-whether to incentivize secondary forest growth (for carbon sequestration and biodiversity conservation) or low-carbon expansion of agriculture or biofuels production in areas of secondary forests. We examined patterns of land abandonment to secondary forest across the arc of deforestation in Brazil and Bolivia using time series of annual Landsat and MODIS data from 2000-2009. Rates of land abandonment to secondary forest during 2002-2006 were less than 5% of deforestation rates in these years. Small areas of new secondary forest were scattered across the entire arc of deforestation, rather than concentrated in any specific region of the basin. Taken together, our analysis of the satellite data record emphasizes the difficulties of addressing the pool of new secondary forests in the context of REDD+ in Amazonia. Due to the small total area of secondary forests, land sparing through agricultural intensification will be an important element of efforts to reduce deforestation rates under REDD+ while improving agricultural productivity in Amazonia.

  12. Modeling forest disturbance and recovery in secondary subtropical dry forests of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Shugart, H. H., Jr.; Van Bloem, S. J.

    2015-12-01

    Because of human pressures, the need to understand and predict the long-term dynamics of subtropical dry forests is urgent. Through modifications to the ZELIG vegetation demographic model, including the development of species- and site-specific parameters and internal modifications, the capability to predict forest change within the Guanica State Forest in Puerto Rico can now be accomplished. One objective was to test the capability of this new model (i.e. ZELIG-TROP) to predict successional patterns of secondary forests across a gradient of abandoned fields currently being reclaimed as forests. Model simulations found that abandoned fields that are on degraded lands have a delayed response to fully recover and reach a mature forest status during the simulated time period; 200 years. The forest recovery trends matched predictions published in other studies, such that attributes involving early resource acquisition (i.e. canopy height, canopy coverage, density) were the fastest to recover, but attributes used for structural development (i.e. biomass, basal area) were relatively slow in recovery. Biomass and basal area, two attributes that tend to increase during later successional stages, are significantly lower during the first 80-100 years of recovery compared to a mature forest, suggesting that the time scale of resilience in subtropical dry forests needs to be partially redefined. A second objective was to investigate the long and short-term effects of increasing hurricane disturbances on vegetation structure and dynamics, due to hurricanes playing an important role in maintaining dry forest structure in Puerto Rico. Hurricane disturbance simulations within ZELIG-TROP predicted that increasing hurricane intensity (i.e. up to 100% increase) did not lead to a large shift in long-term AGB or NPP. However, increased hurricane frequency did lead to a 5-40% decrease in AGB, and 32-50% increase in NPP, depending on the treatment. In addition, the modeling approach used

  13. Changes in rainfall interception along a secondary forest succession gradient in lowland Panama

    NASA Astrophysics Data System (ADS)

    Zimmermann, B.; Zimmermann, A.; Scheckenbach, H. L.; Schmid, T.; Hall, J. S.; van Breugel, M.

    2013-11-01

    Secondary forests are rapidly expanding in tropical regions. Yet, despite the importance of understanding the hydrological consequences of land-cover dynamics, the relationship between forest succession and canopy interception is poorly understood. This lack of knowledge is unfortunate because rainfall interception plays an important role in regional water cycles and needs to be quantified for many modeling purposes. To help close this knowledge gap, we designed a throughfall monitoring study along a secondary succession gradient in a tropical forest region of Panama. The investigated gradient comprised 20 forest patches 3 to 130 yr old. We sampled each patch with a minimum of 20 funnel-type throughfall collectors over a continuous 2-month period that had nearly 900 mm of rain. During the same period, we acquired forest inventory data and derived several forest structural attributes. We then applied simple and multiple regression models (Bayesian model averaging, BMA) and identified those vegetation parameters that had the strongest influence on the variation of canopy interception. Our analyses yielded three main findings. First, canopy interception changed rapidly during forest succession. After only a decade, throughfall volumes approached levels that are typical for mature forests. Second, a parsimonious (simple linear regression) model based on the ratio of the basal area of small stems to the total basal area outperformed more complex multivariate models (BMA approach). Third, based on complementary forest inventory data, we show that the influence of young secondary forests on interception in real-world fragmented landscapes might be detectable only in regions with a substantial fraction of young forests. Our results suggest that where entire catchments undergo forest regrowth, initial stages of succession may be associated with a substantial decrease of streamflow generation. Our results further highlight the need to study hydrological processes in all

  14. Structural effects of liana presence in secondary tropical dry forests using ground LiDAR

    NASA Astrophysics Data System (ADS)

    Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S. M.

    2015-10-01

    Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of the ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in tropical dry forests. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate (32-35 years old) and late stages (> 80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the vertical height of accumulated PAVD. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical forests due to liana presence.

  15. Trends in nitrogen and phosphorus cycling are consistent and constrained during tropical secondary forest succession: is secondary forest young primary forest from a nutrient perspective?

    NASA Astrophysics Data System (ADS)

    Sullivan, B. W.; Nasto, M.; Alvarez-Clare, S.; Cole, R. J.; Reed, S.; Chazdon, R.; Davidson, E. A.; Cleveland, C. C.

    2015-12-01

    Extensive deforestation of tropical rainforest often leads to agricultural abandonment and secondary forest regeneration. The land area of secondary rainforest is soon likely to exceed that of primary forest, highlighting the importance of secondary tropical rainforest in the global carbon (C) cycle. Secondary forests often grow rapidly, but the role soil nutrients play in regulating secondary forest productivity remains unsettled. Consistent with biogeochemical theory, a landmark study from a set of sites in the Amazon Basin showed that secondary forests had low nitrogen (N) availability and relatively higher phosphorus (P) availability immediately after abandonment, but that as succession proceeded, N availability "recuperated" and there was relatively less P available. To address whether such changes in N and P availability during secondary forest growth are common, we reviewed 38 studies in lowland tropical rainforest that reported changes in 23 different metrics of N and P cycling during secondary succession. We calculated slopes (rates of change) during secondary succession for each metric in each study, and analyzed patterns in these rates of change. Significant trends during secondary succession were more evident in soils than in plants, but in most cases, the variability among studies was surprisingly low. Both soil N and P availability increased through succession, at least in surface soil. Such consistent changes imply substantial biogeochemical resilience of tropical forest soils in spite of differing land use histories and species compositions among studies. In most cases, slopes were similar whether primary forest was included in, or excluded from, our analysis, suggesting that secondary succession eventually leads to similar biogeochemical conditions as those found in primary forest. Our results suggesting consistent changes in N and P availability during succession provide a biogeochemical rationale for the conservation and restoration value of

  16. Towards quantifying the increase of rainfall interception during secondary forest succession

    NASA Astrophysics Data System (ADS)

    Zimmermann, B.; Zimmermann, A.; Scheckenbach, H. L.; Schmid, T.; Hall, J. S.; van Breugel, M.

    2013-06-01

    Large scale forest regrowth is one aspect of modern land-cover change. Yet, despite the importance of understanding the hydrological consequences of land cover dynamics, the relation between forest succession and canopy interception is poorly understood. This lack of knowledge is unfortunate because rainfall interception plays an important role in regional water cycles and needs to be quantified for many modelling purposes. To help close this knowledge gap, we designed a throughfall monitoring study along a secondary succession gradient in a tropical forest region of Panama. The investigated gradient comprises 20 natural forest patches regrowing for 3 up to about 130 yr. We sampled each patch with a minimum of 20 funnel-type throughfall collectors over a continuous two-month period that had nearly 900 mm of rain. At the same time and locations, we acquired forest inventory data and derived several forest structural attributes. We then applied simple and multiple regression models (Bayesian Model Averaging, BMA) and identified those vegetation parameters that have the strongest influence on the variation of canopy interception. Our analyses provide three main findings. First, canopy interception changes rapidly during forest succession. After only a decade, throughfall volumes approach levels that are typical for mature forests. Second, a parsimonious (simple linear regression) model based on the ratio of the basal area of small stems to the total basal area outperformed more complex multivariate models (BMA approach). Third, based on complementary forest inventory data we show that the influence of young secondary forests on interception in real-world fragmented landscapes might be detectable only in regions with a substantial fraction of very young forests. In case entire catchments are subject to forest regrowth, initial stages may be associated with undesirable effects on streamflow generation. Our results further highlight the need to study all forest

  17. Early forest soils and their role in Devonian global change

    SciTech Connect

    Retallack, G.J.

    1997-04-25

    A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time. 14 refs., 3 figs.

  18. Rapid Shifts in Soil and Forest Floor Microbial Communities with Changes in Vegetation during Secondary Tropical Forest Succession

    NASA Astrophysics Data System (ADS)

    Smith, A.; Marin-Spiotta, E.; Balser, T. C.

    2012-12-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. In order to predict how disturbance affects belowground carbon storage, it is important to understand how the forest floor and soil microbial community respond to changes in land cover, and the consequences on SOM formation and stabilization. We are measuring microbial functional diversity and activity across a long-term successional chronosequence of secondary forests regrowing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Here we report intra- and interannual data on soil and litter microbial community composition (via phospholipid fatty acid analysis, PLFA) and microbial activity (via extracellular enzyme activity) from active pastures, secondary forests aged 20, 30, 40, 70, and 90-years, and primary forests. Microbial community composition and extracellular enzyme activity differed significantly by season in these wet subtropical ecosystems, even though differences in mean monthly precipitation between the middle of the dry season (January) and the wet season (July) is only 30mm. Despite seasonal differences, there was a persistent strong effect of land cover type and forest successional stage, or age, on overall microbial community PLFA structure. Using principal component analysis, we found differences in microbial community structure among active pastures, early, and late successional forests. The separation of soil microbes into early and late successional communities parallels the clustering of tree composition data. While the successional patterns held across seasons, the importance of different microbial groups driving these patterns differed seasonally. Biomarkers for gram-positive and actinobacteria (i15:0 and 16:0 10Me) were associated with early (20, 30 & 40 year old) secondary forests in the dry season. These younger forest communities were identified by the biomarker for

  19. Early forest fire detection using radio-acoustic sounding system.

    PubMed

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  20. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  1. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    NASA Astrophysics Data System (ADS)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  2. ECOSYSTEM SERVICES OF SECONDARY FORESTS IN THE MATA ATLÂNTICA OF BRAZIL

    EPA Science Inventory

    Land use history can be an important driver of many ecosystem services. Carbon storage and species richness of primary forests likely will exceed that of secondary forests. Productivity of secondary forests may be limited by nitrogen and/or phosphorus because of nutrient re...

  3. Neotropical dry forests of the Caribbean: Secondary forest dynamics and restoration in St. Croix, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Daley, Brian F.

    Neotropical dry forests exist today mainly as secondary forests heavily influenced by exotic plants. This project analyzes land-cover change and secondary dry forest dynamics in three distinct phases (land cover change, secondary forest succession and forest rehabilitation), using St. Croix, US Virgin Islands as an example. Using Landsat satellite images and other data layers, I created classified land cover maps of St. Croix for 1992 and 2002. Forest was the dominant (56%) cover type on both dates, followed by development, grassland/pastures and water. A land cover change analysis comparing the two images revealed that 15% of the study area experienced a change either to (8%) or from (7%) forest. Grassland was the cover most likely to change and decreased from 16% to 11%, converted primarily to development. The overall result is a landscape trending toward younger forests, and increased forest fragmentation and development. In a second study, vegetation data from a chronosequence of secondary forests was analyzed for changes to forest structure, species composition and presence of exotic species. The leguminous exotic tree Leucaena leucocephala was by far the most frequently observed tree and dominated all stands, except those over 50 years old. Species diversity was significantly ( p<0.001) higher for forests in the two oldest age classes and there was a strong trend toward increasing canopy complexity with increased age. However, age class accounted for only a small portion of variability in species diversity, indicating other influencing factors. Slope, elevation, aspect and soil were not significant and sites with long histories of intensive agricultural land-use remained low in species diversity and dominated by exotics >50 years after abandonment. In a third experiment, a 'gap planting' method for establishing four rare native tree species was tested on a site experiencing arrested succession. All four species successfully established at >69% survival in 3m

  4. An Evaluation of "Forests of the World," a Project Learning Tree Secondary Module

    ERIC Educational Resources Information Center

    Ghent, Cynthia; Parmer, Giavanna; Haines, Sarah

    2013-01-01

    This study sought to determine whether a secondary level curricular model based on enhancing knowledge and awareness of global forest issues would have an effect on students' self-perceived knowledge of forest issues, actual content knowledge of these issues, and pro-environmental attitudes. The study instrument is the secondary module…

  5. Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil.

    PubMed

    Zwiener, Victor P; Bihn, Jochen H; Marques, Márcia C M

    2012-06-01

    Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region). Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession. PMID:23894957

  6. Succession of Ephemeral Secondary Forests and Their Limited Role for the Conservation of Floristic Diversity in a Human-Modified Tropical Landscape

    PubMed Central

    van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan; Bailon, Mario; Hernandez, Andres; Abbene, Michele; van Breugel, Paulo

    2013-01-01

    Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes. PMID:24349283

  7. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape.

    PubMed

    van Breugel, Michiel; Hall, Jefferson S; Craven, Dylan; Bailon, Mario; Hernandez, Andres; Abbene, Michele; van Breugel, Paulo

    2013-01-01

    Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes. PMID:24349283

  8. Why are there more arboreal ant species in primary than in secondary tropical forests?

    PubMed

    Klimes, Petr; Idigel, Cliffson; Rimandai, Maling; Fayle, Tom M; Janda, Milan; Weiblen, George D; Novotny, Vojtech

    2012-09-01

    1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic

  9. Biomass Accumulation Rates of Amazonian Secondary Forest and Biomass of Old-Growth Forests from Landsat Time Series and GLAS

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Lefsky, M. A.; Roberts, D.

    2009-12-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover

  10. Contributions of Primary and Secondary Forests, and Nitrogen Dynamics to Terrestrial Carbon Uptake

    NASA Astrophysics Data System (ADS)

    Jain, Atul; El-Masri, Bassil; Shu, Shijie

    2014-05-01

    Historically, land use change (LUC), such as the conversion of forests to croplands and pasturelands, has generally released C to the atmosphere due to the burning of forest biomass and subsequent decomposition of the dead organic matter. In recent decades, C stocks in forest ecosystems have increased through reforestation, afforestation and forest regrowth on abandoned land. However, the accumulation of C in regrowing forests can be constrained if the regrowth of forest occurs in N limited regions or enhanced if the additional N is deposited in the forest regrowing regions. While the C sinks associated with regrowth of forest are commonly simulated within terrestrial C cycle models, the impacts of N limitations and N deposition on the C sink associated with regrowing primary and secondary forests have often not been considered. The objectives of this presentation are to use the Integrated Science Assessment Model (ISAM), which couples the terrestrial C and N cycles for global change assessments, to examine the nitrogen limitation in global primary and secondary forests from historical LUCs and the interactions between LUCs and N deposition. This study presents several crucial updates on multiple fronts, in particular, a use of fully coupled biogeophysical and carbon-nitrogen (C-N) cycle component of the ISAM, incorporating the impact of N limitation and N deposition on the GPP, NPP and associated with primary and secondary forest regrowth including the effects of wood harvest activities, a use of the most recent satellite data for LUC, and extending the estimates until the year 2012.

  11. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks

    PubMed Central

    Mukul, Sharif A.; Herbohn, John; Firn, Jennifer

    2016-01-01

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives. PMID:26951761

  12. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    PubMed

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-01-01

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives. PMID:26951761

  13. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks

    NASA Astrophysics Data System (ADS)

    Mukul, Sharif A.; Herbohn, John; Firn, Jennifer

    2016-03-01

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  14. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-04-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  15. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-10-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  16. Forests and Phenology: Designing the Early Warning System to Understand Forest Change

    NASA Astrophysics Data System (ADS)

    Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.

    2010-12-01

    Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology

  17. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  18. Measurement and modelling of rainfall interception by tropical secondary forests in upland Eastern Madagascar

    NASA Astrophysics Data System (ADS)

    Prasad Ghimire, Chandra; van Meerveld, Ilja H. J.; Zwartendijk, Bob W.; Ravelona, Maafaka; Lahitiana, Jaona; Lubczynski, Maciek W.; Bruijnzeel, L. Adrian

    2016-04-01

    Secondary forests occupy a larger area than old-growth forest in many tropical regions but their hydrological functioning is still poorly understood. As part of a larger venture investigating the "trade-off" between the possibly strongly enhanced water use of vigorously regenerating secondary forest versus likely improved infiltration compared to degraded grassland (baseline situation) in Eastern Madagascar, this presentation reports on a comparison of measured and modelled canopy interception losses for a mature (ca. 20 years; basal area BA 35.5 m2 ha-1, LAI 3.39) and a young (5-7 years; BA 6.3 m2 ha-1, LAI 1.83) secondary forest. Measurements of gross rainfall (P), throughfall (TF) and stemflow (SF) were made in both forests over a one-year period (October 2014-September 2015). Interception losses (I) from the two forests were also simulated using the revised analytical model of Gash et al. (1995), representing a first for tropical secondary forest. Overall measured TF, SF and derived I in the mature secondary forest were 71.0%, 1.7% and 27.3% of incident P, respectively. Corresponding values for the young secondary forest were 75.8%, 6.2% and 18.0%. The high SF found for the latter forest reflects the strongly upward thrusting habit of the branches of the dominant species (Psiadia altissima) which favours funneling of incident P. The presently found I for the mature forest is similar to that reported for other tropical montane rainforests not affected by fog but that for the younger forest is higher than reported for similarly aged lowland forests. These findings can be explained by the prevailing low rainfall intensities and frequent occurrence of small rainfall events (~70% < 5 mm). The Gash model was able to reproduce measured cumulative I at both sites accurately and succeeded in capturing the variability in I associated with seasonal variability in rainfall characteristics, provided the TF-based value for wet-canopy evaporation rate was used instead of that

  19. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests.

    PubMed

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2013-12-22

    Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests. PMID:24197410

  20. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests

    PubMed Central

    Martin, Philip A.; Newton, Adrian C.; Bullock, James M.

    2013-01-01

    Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests. PMID:24197410

  1. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence for secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64%) and α-pinene-derived SOA (> 57%). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene- and α-pinene-SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights

  2. Seasonal Variation in Seed Dispersal by Tamarins Alters Seed Rain in a Secondary Rain Forest

    PubMed Central

    Muñoz Lazo, Fernando Julio João; Huynen, Marie-Claude; Poncin, Pascal; Heymann, Eckhard W.

    2010-01-01

    Reduced dispersal of large seeds into degraded areas is one of the major factors limiting rain forest regeneration, as many seed dispersers capable of transporting large seeds avoid these sites with a limited forest cover. However, the small size of tamarins allows them to use small trees, and hence to disperse seeds into young secondary forests. Seasonal variations in diet and home range use might modify their contribution to forest regeneration through an impact on the seed rain. For a 2-yr period, we followed a mixed-species group of tamarins in Peru to determine how their role as seed dispersers in a 9-yr-old secondary-growth forest varied across seasons. These tamarins dispersed small to large seeds of 166 tree species, 63 of which were into a degraded area. Tamarins’ efficiency in dispersing seeds from primary to secondary forest varied across seasons. During the late wet season, high dietary diversity and long forays in secondary forest allowed them to disperse large seeds involved in later stages of regeneration. This occurred precisely when tamarins spent a more equal amount of time eating a high diversity of fruit species in primary forest and pioneer species in secondary forest. We hypothesized that well-balanced fruit availability induced the movement of seed dispersers between these 2 habitats. The noteworthy number of large-seeded plant species dispersed by such small primates suggests that tamarins play an important, but previously neglected, role in the regeneration and maintenance of forest structure. Electronic supplementary material The online version of this article (doi:10.1007/s10764-010-9413-7) contains supplementary material, which is available to authorized users. PMID:20651905

  3. Comparison of Nitrogen Cycling Between Old Growth Forests and Secondary Forests in the U.S. Mid-Atlantic

    NASA Astrophysics Data System (ADS)

    Walker, R. H.; Epstein, H. E.; McGarvey, J.; Thompson, J.; Mills, A. L.

    2014-12-01

    Throughout the eastern United States, forests are experiencing regrowth, and the sequestration of carbon (C) associated with this regrowth makes these forests a key component of greenhouse gas mitigation strategies (Albani et al., 2006). Through production and decomposition of plant biomass, the C and nitrogen (N) cycles are closely coupled, suggesting that N has a major impact on the cycling of C in N-limited Mid-Atlantic forest systems. The majority of C and N in a temperate forest system is located in the soil organic matter (Templer et al., 2012), so understanding soil N is important for estimating the potential for C sequestration in soils as Mid-Atlantic forests mature (Knicker, 2010). Due to the scarcity of old growth forest stands in the region, previous empirical studies of Mid-Atlantic forests in the old growth stage of succession are limited. I sampled soil C and N in twenty-five remnant old growth forests and matched secondary stands in the Mid-Atlantic to identify differences in soil organic C and N mass and concentrations of nitrate and ammonium. No significant differences were observed between the old growth and secondary growth concentrations of inorganic N species, N fraction, and C:N ratio. Rather, secondary growth values for these variables were found to have significant, positive linear relationships with old growth values, indicating that biotic and abiotic factors varying on a regional scale are driving variability seen in these N characteristics. Further, this suggests that as forest stands reach approximately 75 years in age, these N characteristics are largely established and not likely to change significantly as stands enter the old growth successional stage. Both N fraction and O-horizon depth were shown to have significant negative correlations with old growth stand age. These results indicate that old growth forest stands have a more efficient microbial decomposer community, which could have significant implications for both soil N and

  4. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession.

    PubMed

    Gao, Cheng; Zhang, Yu; Shi, Nan-Nan; Zheng, Yong; Chen, Liang; Wubet, Tesfaye; Bruelheide, Helge; Both, Sabine; Buscot, François; Ding, Qiong; Erfmeier, Alexandra; Kühn, Peter; Nadrowski, Karin; Scholten, Thomas; Guo, Liang-Dong

    2015-01-01

    Environmental selection and dispersal limitation are two of the primary processes structuring biotic communities in ecosystems, but little is known about these processes in shaping soil microbial communities during secondary forest succession. We examined the communities of ectomycorrhizal (EM) fungi in young, intermediate and old forests in a Chinese subtropical ecosystem, using 454 pyrosequencing. The EM fungal community consisted of 393 operational taxonomic units (OTUs), belonging to 21 EM fungal lineages, in which three EM fungal lineages and 11 EM fungal OTUs showed significantly biased occurrence among the young, intermediate and old forests. The EM fungal community was structured by environmental selection and dispersal limitation in old forest, but only by environmental selection in young, intermediate, and whole forests. Furthermore, the EM fungal community was affected by different factors in the different forest successional stages, and the importance of these factors in structuring EM fungal community dramatically decreased along the secondary forest succession series. This study suggests that different assembly mechanisms operate on the EM fungal community at different stages in secondary subtropical forest succession. PMID:25303438

  5. Belongingness in Early Secondary School: Key Factors that Primary and Secondary Schools Need to Consider.

    PubMed

    Vaz, Sharmila; Falkmer, Marita; Ciccarelli, Marina; Passmore, Anne; Parsons, Richard; Black, Melissa; Cuomo, Belinda; Tan, Tele; Falkmer, Torbjörn

    2015-01-01

    It is unknown if, and how, students redefine their sense of school belongingness after negotiating the transition to secondary school. The current study used longitudinal data from 266 students with, and without, disabilities who negotiated the transition from 52 primary schools to 152 secondary schools. The study presents the 13 most significant personal student and contextual factors associated with belongingness in the first year of secondary school. Student perception of school belongingness was found to be stable across the transition. No variability in school belongingness due to gender, disability or household-socio-economic status (SES) was noted. Primary school belongingness accounted for 22% of the variability in secondary school belongingness. Several personal student factors (competence, coping skills) and school factors (low-level classroom task-goal orientation), which influenced belongingness in primary school, continued to influence belongingness in secondary school. In secondary school, effort-goal orientation of the student and perception of their school's tolerance to disability were each associated with perception of school belongingness. Family factors did not influence belongingness in secondary school. Findings of the current study highlight the need for primary schools to foster belongingness among their students at an early age, and transfer students' belongingness profiles as part of the hand-over documentation. Most of the factors that influenced school belongingness before and after the transition to secondary are amenable to change. PMID:26372554

  6. Belongingness in Early Secondary School: Key Factors that Primary and Secondary Schools Need to Consider

    PubMed Central

    Vaz, Sharmila; Falkmer, Marita; Ciccarelli, Marina; Passmore, Anne; Parsons, Richard; Black, Melissa; Cuomo, Belinda; Tan, Tele; Falkmer, Torbjörn

    2015-01-01

    It is unknown if, and how, students redefine their sense of school belongingness after negotiating the transition to secondary school. The current study used longitudinal data from 266 students with, and without, disabilities who negotiated the transition from 52 primary schools to 152 secondary schools. The study presents the 13 most significant personal student and contextual factors associated with belongingness in the first year of secondary school. Student perception of school belongingness was found to be stable across the transition. No variability in school belongingness due to gender, disability or household-socio-economic status (SES) was noted. Primary school belongingness accounted for 22% of the variability in secondary school belongingness. Several personal student factors (competence, coping skills) and school factors (low-level classroom task-goal orientation), which influenced belongingness in primary school, continued to influence belongingness in secondary school. In secondary school, effort-goal orientation of the student and perception of their school’s tolerance to disability were each associated with perception of school belongingness. Family factors did not influence belongingness in secondary school. Findings of the current study highlight the need for primary schools to foster belongingness among their students at an early age, and transfer students’ belongingness profiles as part of the hand-over documentation. Most of the factors that influenced school belongingness before and after the transition to secondary are amenable to change. PMID:26372554

  7. Secondary circulations above a solitary forest surrounded by semi-arid shrubland

    NASA Astrophysics Data System (ADS)

    Eder, Fabian; De Roo, Frederik; Rotenberg, Eyal; Yakir, Dan; Schmid, Hans Peter; Mauder, Matthias

    2015-04-01

    The dynamics of the heterogeneous atmospheric boundary layer are complex and still not fully understood. In particular, it is not known to what extent surface heterogeneities can induce secondary circulations. For this purpose, Doppler lidar and eddy-covariance measurements and large-eddy simulations were conducted at the Yatir forest in Israel, a pine forest that is surrounded by semi arid shrubland, in August and September 2013. Due to the low albedo of the forest and the increased turbulence intensity, the surface buoyancy flux was 220-290 W m-2 higher at the forest site than in the surrounding desert during the measurement campaign. Moreover, the forest is about 6 x 10 km large which should be sufficient for affecting the whole atmospheric boundary layer. However, the large-eddy simulation suggested that under ambient background wind (≈ 6 m s-1), the forest induces only a weak secondary circulation which should appear downwind of the forest. Nevertheless, persistent updrafts above the forest were detected with the Doppler lidar on 5 of the 16 measurement days. Such a circulation might have an impact on the validity of eddy-covariance fluxes, because its flux contribution cannot be reliably captured with a point measurement. We found that the energy balance closure was 80% at the desert site, but it was closed at the forest site, because the large eddies were broken up into smaller eddies there and those are captured by the eddy-covariance system.

  8. Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations

    PubMed Central

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D.; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha−1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha−1 to an increase of 8 Mg C ha−1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes. PMID:23894456

  9. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations.

    PubMed

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha(-1) in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha(-1) to an increase of 8 Mg C ha(-1). In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes. PMID:23894456

  10. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip

    2011-01-01

    U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)

  11. Spatial analysis of early successional, temperate forest community structure

    NASA Astrophysics Data System (ADS)

    Walker, R. H.; Williams, C. A.; MacLean, R. G.; Epstein, H. E.; Vanderhoof, M. K.

    2013-12-01

    The global importance of sequestration of carbon by temperate forests makes characterizing the regrowth of these forests post-disturbance both ecologically and economically important. High intensity disturbances, such as logging, result in substantial alteration of community composition post-disturbance, creating the potential for alterations to the cycling of carbon, water, and nutrients in the ecosystem. Because logging pressure in New England continues to increase, understanding how forest ecosystems in this region respond to disturbance is crucial. This study aims to characterize interspecies interactions within New England forests by identifying synchronous and asynchronous colocation of species following a disturbance. To accomplish this, line-intercept surveys of vegetation were conducted in a clearcut forest stand located within the Harvard Forest LTER site. Survey data collected two (2010) and five (2013) years post-clearcut were analyzed using a one-dimensional Ripley's K. From 2010 to 2013, an increase in the number of interspecies relationships was observed, indicating the development of community structure. Additionally, the analysis found an increase in total vegetative cover from 2010 to 2013, and also found the majority of observed interspecies relationships to be asynchronous relationships. Together, these results imply an increase in resource competition that had the potential to drive the increase in community structure. Specifically, an increase in community structure led to the development of three distinct sub-communities: homogenous fern, tree seedling canopy over ground cover, and shrub dominated. This creates a patchy landscape in the early successional forest that allows for high species diversity (Shannon's H = 2.455). Based on the results of the Ripley's K analyses, species demonstrated definite patterns of synchronicity and asynchronicity based on both specific species interactions as well as functional group interactions. These

  12. Mapping Secondary Forest Succession on Abandoned Agricultural Land in the Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, Ch.; Psomas, A.

    2016-06-01

    Land abandonment and secondary forest succession have played a significant role in land cover changes and forest cover increase in mountain areas in Europe over the past several decades. Land abandonment can be easily observed in the field over small areas, but it is difficult to map over the large areas, e.g., with remote sensing, due to its subtle and spatially dispersed character. Our previous paper presented how the LiDAR (Light Detection and Ranging) and topographic data were used to detect secondary forest succession on abandoned land in one commune located in the Polish Carpathians by means of object-based image analysis (OBIA) and GIS (Kolecka et al., 2015). This paper proposes how the method can be applied to efficiently map secondary forest succession over the entire Polish Carpathians, incorporating spatial sampling strategy supported by various ancillary data. Here we discuss the methods of spatial sampling, its limitations and results in the context of future secondary forest succession modelling.

  13. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    USGS Publications Warehouse

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  14. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. PMID:26687176

  15. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    PubMed Central

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention. PMID:25691978

  16. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor, with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence of secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64 %) and α-pinene-derived SOA (> 57 %). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene SOA and α-pinene SOA within the forest canopy even when the BVOC flux was relatively low. This study

  17. Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf forest at landscape scales

    USGS Publications Warehouse

    Betts, M.G.; Hagar, J.C.; Rivers, J.W.; Alexander, J.D.; McGarigal, K.; McComb, B.C.

    2010-01-01

    Recent declines in broadleaf-dominated, early-seral forest globally as a function of intensive forest management and/or fire suppression have raised concern about the viability of populations dependent on such forest types. However, quantitative information about the strength and direction of species associations with broadleaf cover at landscape scales are rare. Uncovering such habitat relationships is essential for understanding the demography of species and in developing sound conservation strategies. It is particularly important to detect points in habitat reduction where rates of population decline may accelerate or the likelihood of species occurrence drops rapidly (i.e., thresholds). Here, we use a large avian point-count data set (N = 4375) from southwestern and northwestern Oregon along with segmented logistic regression to test for thresholds in forest bird occurrence as a function of broadleaf forest and early-seral broadleaf forest at local (150-m radius) and landscape (500–2000-m radius) scales. All 12 bird species examined showed positive responses to either broadleaf forest in general, and/or early-seral broadleaf forest. However, regional variation in species response to these conditions was high. We found considerable evidence for landscape thresholds in bird species occurrence as a function of broadleaf cover; threshold models received substantially greater support than linear models for eight of 12 species. Landscape thresholds in broadleaf forest ranged broadly from 1.35% to 24.55% mean canopy cover. Early-seral broadleaf thresholds tended to be much lower (0.22–1.87%). We found a strong negative relationship between the strength of species association with early-seral broadleaf forest and 42-year bird population trends; species most associated with this forest type have declined at the greatest rates. Taken together, these results provide the first support for the hypothesis that reductions in broadleaf-dominated early-seral forest due to

  18. Isoprene and monoterpene emissions from secondary forest in northern Benin

    NASA Astrophysics Data System (ADS)

    Saxton, J. E.; Lewis, A. C.; Kettlewell, J. H.; Ozel, M. Z.; Gogus, F.; Boni, Y.; Korogone, S. O. U.; Serça, D.

    2007-04-01

    The biogenic volatile organic compound (BVOC) composition of ambient air at a rural field site near Djougou, Benin has been studied as part of the AMMA (African Monsoon Multidisciplinary Analysis) project. Ambient air was sampled during day and night during the period 2 June 2006 to 13 June 2006. Gas samples from within the forest canopy and from branch and cuvette enclosure systems for four vegetation species were also obtained and emissions flux estimates made. All samples were analysed for the presence of isoprene, monoterpenes and sesquiterpenes by either gas chromatography-time of flight mass spectrometry (GC-TOF/MS) or comprehensive gas chromatography-time of flight mass spectrometry (GCxGC-TOF/MS). Concentrations of isoprene ranged from a few tens of pptV to in excess of 3000 pptV. Similar concentration ranges for certain monoterpenes were also observed. Limonene was seen at a maximum concentration in ambient air of 5000 pptV. The combination of leaf-level observations and direct analysis of dried vegetation samples suggest that emissions of terpene species from indigenous species are unlikely to account for the unexpectedly high ambient concentrations of monoterpenes. Leaf scale emission measurements and biological sample analysis indicated that Anacardium occidentale, a non-native crop species found throughout the tropics, was the dominant source of monoterpenes at this location. These preliminary findings suggest that activities involving species replacement have potential implications for the chemistry of the African troposphere that have not been widely considered previously.

  19. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests

    PubMed Central

    Barlow, J.; Gardner, T. A.; Araujo, I. S.; Ávila-Pires, T. C.; Bonaldo, A. B.; Costa, J. E.; Esposito, M. C.; Ferreira, L. V.; Hawes, J.; Hernandez, M. I. M.; Hoogmoed, M. S.; Leite, R. N.; Lo-Man-Hung, N. F.; Malcolm, J. R.; Martins, M. B.; Mestre, L. A. M.; Miranda-Santos, R.; Nunes-Gutjahr, A. L.; Overal, W. L.; Parry, L.; Peters, S. L.; Ribeiro-Junior, M. A.; da Silva, M. N. F.; da Silva Motta, C.; Peres, C. A.

    2007-01-01

    Biodiversity loss from deforestation may be partly offset by the expansion of secondary forests and plantation forestry in the tropics. However, our current knowledge of the value of these habitats for biodiversity conservation is limited to very few taxa, and many studies are severely confounded by methodological shortcomings. We examined the conservation value of tropical primary, secondary, and plantation forests for 15 taxonomic groups using a robust and replicated sample design that minimized edge effects. Different taxa varied markedly in their response to patterns of land use in terms of species richness and the percentage of species restricted to primary forest (varying from 5% to 57%), yet almost all between-forest comparisons showed marked differences in community structure and composition. Cross-taxon congruence in response patterns was very weak when evaluated using abundance or species richness data, but much stronger when using metrics based upon community similarity. Our results show that, whereas the biodiversity indicator group concept may hold some validity for several taxa that are frequently sampled (such as birds and fruit-feeding butterflies), it fails for those exhibiting highly idiosyncratic responses to tropical land-use change (including highly vagile species groups such as bats and orchid bees), highlighting the problems associated with quantifying the biodiversity value of anthropogenic habitats. Finally, although we show that areas of native regeneration and exotic tree plantations can provide complementary conservation services, we also provide clear empirical evidence demonstrating the irreplaceable value of primary forests. PMID:18003934

  20. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve

    2013-01-01

    U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.

  1. Soil fungal communities of montane natural secondary forest types in China.

    PubMed

    Cheng, Fei; Wei, Xin; Hou, Lin; Shang, Zhengchun; Peng, Xiaobang; Zhao, Peng; Fei, Zhaoxue; Zhang, Shuoxin

    2015-06-01

    Distinctive plant communities may provide specific physical and chemical properties with soils by specific litters and root exudates to exert effects on soil microorganisms. Past logging activities in the Qinling Mountains induced diverse natural secondary forest types (NSFTs). How these recovered NSFTs regulate patterns of soil microbial communities remain limited. In the study, we used terminal-restriction fragment length polymorphism (T-RFLP) to precisely determine forest type-specific soil fungal diversity and composition in five NSFTs. Our results indicated that NSFTs had significant impacts on the soil fungal communities. The most diverse fungal species were found in the Armand pine (Pinus armandi) and Chinese pine (Pinus tabulaeformis) forest soils, followed by sharptooth oak (Quercus aliena var. acuteserrata) and Chinese pine-sharptooth oak forest soils, the wilson spruce (Picea wilsonii) forests had the lowest soil fungal diversity. The analyses of community composition suggested that the fungal communities of Armand pine forest soils were similar to those of Chinese pine forest soils, while other communities prominently differed from each other. Stepwise multiple regression analysis revealed that soil silt, clay, pH, and ammonium nitrogen had intimate linkages with soil fungal diversity. Furthermore, the patterns of soil fungal communities were strongly governed by the specific soil environments of the tested NSFTs, as described by canonical correspondence analysis (CCA). Finally, our study showed that soil fungal communities may be mediated by NSFTs via specific soil edaphic status. Hence, such a comparable study may provide fundamental information for fungal diversity and community structure of natural forests and assist with better prediction and understanding how soil fungal composition and function alter with forest type transformation. PMID:26025170

  2. [Temporal-spatial distribution characteristics of microclimate in tropical secondary forest canopy gap in Xishuangbanna].

    PubMed

    Zhang, Yiping; Dou, Junxia; Ma, Youxin; Liu, Yuhong; Guo, Ping

    2003-12-01

    Based on the data obtained from vertical gradient measurements of microclimatic elements of canopy gap in tropical secondary forest of Xishuangbanna in fog-cool and dry-hot season, the daytime characteristics of temporal-spatial distribution and variation of trunk surface temperature, air temperature, water vapor pressure and relative humidity in canopy gap were discussed. The data showed that gap edge had not only a remarkable thermal effect, but also a significant water vapor effect. These effects resulted in environmental heterogeneity in canopy gap. The results provided a basis for further studying heat and water vapor transport, microclimatic formation, biodiversity, and forest succession in canopy gap. PMID:15031901

  3. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Helmer, Eileen H.; Lefsky, Michael A.; Roberts, Dar A.

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover.

  4. Changing gears during succession: shifting functional strategies in young tropical secondary forests.

    PubMed

    Craven, Dylan; Hall, Jefferson S; Berlyn, Graeme P; Ashton, Mark S; van Breugel, Michiel

    2015-09-01

    Adaptations to resource availability strongly shape patterns of community composition along successional gradients in environmental conditions. In the present study, we examined the extent to which variation in functional composition explains shifts in trait-based functional strategies in young tropical secondary forests during the most dynamic stage of succession (0-20 years). Functional composition of two size classes in 51 secondary forest plots was determined using community-weighted means of seven functional traits, which were intensively measured on 55 woody plant species (n = 875-1,761 individuals). Along the successional gradient in forest structure, there was a significant and consistent shift in functional strategies from resource acquisition to resource conservation. Leaf toughness and adult plant size increased significantly, while net photosynthetic capacity (A(mass)) decreased significantly during succession. Shifts in functional strategies within size classes for A(mass) and wood density also support the hypothesis that changes in functional composition are shaped by environmental conditions along successional gradients. In general, 'hard' functional traits, e.g., A(mass) and leaf toughness, linked to different facets of plant performance exhibited greater sensitivity to successional changes in forest structure than 'soft' traits, such as leaf mass area and leaf dry matter content. Our results also suggested that stochastic processes related to previous land-use history, dispersal limitation, and abiotic factors explained variation in functional composition beyond that attributed to deterministic shifts in functional strategies. Further data on seed dispersal vectors and distance and landscape configuration are needed to improve current mechanistic models of succession in tropical secondary forests. PMID:25990298

  5. Early school leaving among immigrants in Toronto secondary schools.

    PubMed

    Anisef, Paul; Brown, Robert S; Phythian, Kelli; Sweet, Robert; Walters, David

    2010-05-01

    While education statistics confirm that there is little difference in the dropout rates of native-born and immigrant youth, analyses of Toronto District School Board (TDSB) data have revealed significant variation in school persistence within immigrant groups. Among newcomer youth, the decision to leave school early has been reported to be strongly influenced by socioeconomic status as well as such factors as country of origin, age at arrival, generational status, family structure, and academic performance. While living in low-income conditions is thought to place both foreign- and Canadian-born youth at risk of poor school performance and early school withdrawal, their substantially higher incidence of poverty suggests that today's immigrant youth are likely to face greater obstacles to academic success that may in turn have detrimental, long-term consequences. This paper uses TDSB data to investigate the extent to which living below the low-income cutoff affects the likelihood of dropping out of secondary school, while taking into account generational status as well as a variety risk factors, noted above. Policy implications are discussed. PMID:20853810

  6. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie–Ames–Stanford approach (CASA) model

    NASA Astrophysics Data System (ADS)

    Cao, S.; Sanchez-Azofeifa, GA; Duran, SM; Calvo-Rodriguez, S.

    2016-07-01

    Although tropical dry forests (TDFs) cover roughly 42% of all tropical ecosystems, extensive deforestation and habitat fragmentation pose important limitations for their conservation and restoration worldwide. In order to develop conservation policies for this endangered ecosystem, it is necessary to quantify their provision of ecosystems services such as carbon sequestration and primary production. In this paper we explore the potential of the Carnegie–Ames–Stanford approach (CASA) for estimating aboveground net primary productivity (ANPP) in a secondary TDF located at the Santa Rosa National Park (SRNP), Costa Rica. We calculated ANPP using the CASA model (ANPPCASA) in three successional stages (early, intermediate, and late). Each stage has a stand age of 21 years, 32 years, and 50+ years, respectively, estimated as the age since land abandonment. Our results showed that the ANPPCASA for early, intermediate, and late successional stages were 3.22 Mg C ha‑1 yr‑1, 8.90 Mg C ha‑1 yr‑1, and 7.59 Mg C ha‑1 yr‑1, respectively, which are comparable with rates of carbon uptake in other TDFs. Our results indicate that key variables that influence ANPP in our dry forest site were stand age and precipitation seasonality. Incident photosynthetically active radiation and temperature were not dominant in the ANPPCASA. The results of this study highlight the potential of the use of remote sensing techniques and the importance of incorporating successional stage in accurate regional TDF ANPP estimation.

  7. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    PubMed

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective. PMID:27349096

  8. [Precision of spatial interpolation for forest duff layer depth based on secondary variable].

    PubMed

    Liu, Zhi-hua; Chang, Yu; He, Hong-shi; Chen, Hong-wei

    2009-01-01

    Based on geostatistical method, three algorithms of spatial interpolation with elevation as a secondary variable, i.e., simple kriging with varying local means (SKlm), kriging with an external drift (KED), and cokriging (COK), were used to calculate the precision of spatial interpolation for the forest duff layer depth, and cross validation was conducted. The results showed that among the three algorithms, KED gave the highest precision because of its taking into account both the spatial variation among variables and the factors affecting local spatial change, SKlm did not yield expected precision because of the weaker correlation between elevation and forest duff layer depth, while COK directly used the variable elevation to estimate forest duff layer depth but many unexpected results yielded for the boundary area due to insufficient samplings. Comparing with the method of inverse distance weighting (IDW), only KED had a higher precision of interpolation, while for SKlm and COK, their interpolation precision was lower, suggesting that when a secondary variable was used for geostatistical interpolation, the correlation between primary and secondary variables was of significance in increasing the precision of interpolation. PMID:19449569

  9. Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    PubMed Central

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic

  10. Mapping Historic Gypsy Moth Defoliation with MODIS Satellite Data: Implications for Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spurce, Joseph P.; Hargrove, William; Ryan, Robert E.; Smooth, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George

    2008-01-01

    This viewgraph presentation reviews a project, the goal of which is to study the potential of MODIS data for monitoring historic gypsy moth defoliation. A NASA/USDA Forest Service (USFS) partnership was formed to perform the study. NASA is helping USFS to implement satellite data products into its emerging Forest Threat Early Warning System. The latter system is being developed by the USFS Eastern and Western Forest Threat Assessment Centers. The USFS Forest Threat Centers want to use MODIS time series data for regional monitoring of forest damage (e.g., defoliation) preferably in near real time. The study's methodology is described, and the results of the study are shown.

  11. Effects of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation

    NASA Astrophysics Data System (ADS)

    Sa, T. D.; Guild, L. S.; Carvalho, C. J.; Potter, C. S.; Wickel, A. J.; Brienza, S.; Kato, M. A.; Kato, O.

    2002-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Ni¤o events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through 1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and 2) greater rooting depth of trees planted for fallow improvement. This experimental practice (mechanized chop-and-mulch with fallow improvement) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira

  12. Quantitative classification and environmental interpretation of secondary forests 18 years after the invasion of pine forests by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in China.

    PubMed

    Wang, Zhuang; Luo, You-Qing; Shi, Juan; Gao, Ruihe; Wang, Guoming

    2014-01-01

    With growing concerns over the serious ecological problems in pine forests (Pinus massoniana, P. thunbergii) caused by the invasion of Bursaphelenchus xylophilus (the pine wood nematode), a particular challenge is to determine the succession and restoration of damaged pine forests in Asia. We used two-way indicator species analysis and canonical correlation analysis for the hierarchical classification of existing secondary forests that have been restored since the invasion of B. xylophilus 18 years ago. Biserial correlation analysis was used to relate the spatial distribution of species to environmental factors. After 18 years of natural recovery, the original pine forest had evolved into seven types of secondary forest. Seven environmental factors, namely soil depth, humus depth, soil pH, aspect, slope position, bare rock ratio, and distance to the sea, were significantly correlated with species distribution. Furthermore, we proposed specific reform measures and suggestions for the different types of secondary forest formed after the damage and identified the factors driving the various forms of restoration. These results suggest that it is possible to predict the restoration paths of damaged pine forests, which would reduce the negative impact of B. xylophilus invasions. PMID:25527600

  13. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    PubMed

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession. PMID:26048351

  14. Encouraging family forest owners to create early successional wildlife habitat in Southern New England.

    PubMed

    Buffum, Bill; Modisette, Christopher; McWilliams, Scott R

    2014-01-01

    Encouraging family forest owners to create early successional habitat is a high priority for wildlife conservation agencies in the northeastern USA, where most forest land is privately owned. Many studies have linked regional declines in wildlife populations to the loss of early successional habitat. The government provides financial incentives to create early successional habitat, but the number of family forest owners who actively manage their forests remains low. Several studies have analyzed participation of family forest owners in federal forestry programs, but no study to date has focused specifically on creation of wildlife habitat. The objective of our study was to analyze the experience of a group of wildlife-oriented family forest owners who were trained to create early successional habitat. This type of family forest owners represents a small portion of the total population of family forest owners, but we believe they can play an important role in creating wildlife habitat, so it is important to understand how outreach programs can best reach them. The respondents shared some characteristics but differed in terms of forest holdings, forestry experience and interest in earning forestry income. Despite their strong interest in wildlife, awareness about the importance of early successional habitat was low. Financial support from the federal government appeared to be important in motivating respondents to follow up after the training with activities on their own properties: 84% of respondents who had implemented activities received federal financial support and 47% would not have implemented the activities without financial assistance. In order to mobilize greater numbers of wildlife-oriented family forest owners to create early successional habitat we recommend focusing outreach efforts on increasing awareness about the importance of early successional habitat and the availability of technical and financial assistance. PMID:24587160

  15. Encouraging Family Forest Owners to Create Early Successional Wildlife Habitat in Southern New England

    PubMed Central

    Buffum, Bill; Modisette, Christopher; McWilliams, Scott R.

    2014-01-01

    Encouraging family forest owners to create early successional habitat is a high priority for wildlife conservation agencies in the northeastern USA, where most forest land is privately owned. Many studies have linked regional declines in wildlife populations to the loss of early successional habitat. The government provides financial incentives to create early successional habitat, but the number of family forest owners who actively manage their forests remains low. Several studies have analyzed participation of family forest owners in federal forestry programs, but no study to date has focused specifically on creation of wildlife habitat. The objective of our study was to analyze the experience of a group of wildlife-oriented family forest owners who were trained to create early successional habitat. This type of family forest owners represents a small portion of the total population of family forest owners, but we believe they can play an important role in creating wildlife habitat, so it is important to understand how outreach programs can best reach them. The respondents shared some characteristics but differed in terms of forest holdings, forestry experience and interest in earning forestry income. Despite their strong interest in wildlife, awareness about the importance of early successional habitat was low. Financial support from the federal government appeared to be important in motivating respondents to follow up after the training with activities on their own properties: 84% of respondents who had implemented activities received federal financial support and 47% would not have implemented the activities without financial assistance. In order to mobilize greater numbers of wildlife-oriented family forest owners to create early successional habitat we recommend focusing outreach efforts on increasing awareness about the importance of early successional habitat and the availability of technical and financial assistance. PMID:24587160

  16. Typhoon Haiyan's Effects on Interception Loss from a Secondary Tropical Forest near Tacloban, Leyte, the Philippines

    NASA Astrophysics Data System (ADS)

    Zhang, J.; van Meerveld, I. H. J.; Waterloo, M. J.; Bruijnzeel, L. A., Sr.

    2015-12-01

    Typhoon Haiyan made landfall in the central Philippines on November 8, 2013 as one of the strongest tropical cyclones ever recorded with maximum wind speed of 314 km h-1. It affected humans, infrastructure and forests, including the 22-year-old community-managed secondary forest at Manobo near Tacloban on Leyte island. As part of a larger investigation of the impacts of secondary forests on streamflow, gross rainfall (P), throughfall (TF) and stemflow (SF) were monitored between June 2013 and June 2014 using 2 tipping bucket rainfall gauges, 2 large (200 cm by 30 cm) throughfall gutters connected to tipping buckets, 24 roving throughfall gauges (491 cm2 each) and 12 stemflow collectors. Leaf Area Index (LAI) above each of the throughfall collectors was measured regularly using a Canopy Analyzer. Average throughfall, stemflow, and interception losses (I) were determined for three different periods:(i) pre-Haiyan (reference), (ii) damaged canopy post Haiyan, and (iii) recovered canopy. Before the forest was disturbed, cumulate TF/P, SF/P and I/P ratios and their standard error were 80.79 , 1.00 and 18.21 , respectively. During the period with the damaged canopy, the respective ratios were 90.89, 0.82 and 0.75, while 3 months after the passage of Haiyan the forest canopy had recovered more or less in terms of leaf surface area with cumulate TF/P, SF/P and I/P ratios of 87.86, 0.75,and 11.39, respectively. The respective trends reflected the changes in LAI, which dropped from 5.24 ± 0.79 to 3.80 ± 0.80 right after Haiyan, recuperating to 4.69 ± 0.62 after recovery. These changes in rainfall partitioning after typhoon Haiyan are less pronounced than those reported previously for hurricane-affected forests in the Caribbean and the Pacific, possibly because the Manobo forest was relatively sheltered topographically.

  17. Assessing Potential of VIIRS Data for Contribution to a Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    This viewgraph presentation reviews the contributions by the Rapid Prototyping Capability (RPC) towards using Visible Infrared Imager / Radiometer Suite (VIIRS) data in assessing the damage to forests. The Healthy Forest Restoration Act of 2003 mandates development of national Early Warning System (EWS) for forest threat monitoring and mitigation. NASA Stennis is working with the US Forest Service to develop needed components of this EWS. The use of MODIS data for monitoring forest disturbance at broad regional scales is a componet of this program. This RPC experiment was initiated to assess potential of the MODIS follow-on, VIIRS, for monitoring forest disturbance at broad scales and thereby contributing to the EWS. This presentation reviews the potential use of the VIIRS to examine the damage to forests caused by gyspy moths in the West Virginia and Virginia area.

  18. [Dynamic changes of soil ecological factors in Ziwuling secondary forest area under human disturbance].

    PubMed

    Zhou, Zhengchao; Shangguan, Zhouping

    2005-09-01

    As a widespread natural phenomenon, disturbance is considered as a discrete event occurred in natural ecosystems at various spatial and temporal scales. The occurrence of disturbance directly affects the structure, function and dynamics of ecosystems. Forest logging and forestland assart, the common human disturbances in forest area, have caused the dynamic changes of forest soil ecological factors in a relatively consistent environment. A study on the dynamics of soil bulk density, soil organic matter, soil microbes and other soil ecological factors under different human disturbance (logging and assart, logging but without assart, control) were conducted in the Ziwuling secondary forest area. The results indicated that human disturbance had a deep impact on the soil ecological factors, with soil physical and chemical properties become bad, soil organic matter decreased from 2.2% to 0.8%, and soil stable aggregates dropped more than 30%. The quantity of soil microbes decreased sharply with enhanced human disturbance. Soil organic matter and soil microbes decreased more than 50% and 90%, respectively, and soil bulk density increased from 0.9 to 1.21 g x cm(-3) with increasing soil depth. Ditch edge level also affected the dynamics of soil factors under the same disturbance, with a better soil ecological condition at low-than at high ditch edge level. PMID:16355766

  19. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  20. Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development.

    PubMed

    Mobley, Megan L; Lajtha, Kate; Kramer, Marc G; Bacon, Allan R; Heine, Paul R; Richter, Daniel Deb

    2015-02-01

    Reforestation of formerly cultivated land is widely understood to accumulate above- and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above- and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0-7.5 cm) were offset by significant SOM losses in subsoils (35-60 cm). Here, we extended the observation period in this long-term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light-fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay-sized particles. Isotopic signatures showed relatively large accumulations of forest-derived carbon in surface soils, and little to no accumulation of forest-derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long-term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long-term soil data deeper than 30 cm. PMID:25155991

  1. English in the Secondary School--Early Stages.

    ERIC Educational Resources Information Center

    Scottish Education Dept., Edinburgh.

    This bulletin contains the basic principles of an approach to English teaching at the beginning secondary school level. Following a statement of the basic philosophy of the program and a definition of the aims of English at the secondary level, sections are presented containing (1) the prerequisite skills taught at the primary school level, (2)…

  2. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests

    PubMed Central

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-01-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121

  3. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests.

    PubMed

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-01-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121

  4. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-07-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession.

  5. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2011-12-01

    This presentation discusses an effort to compute and post weekly MODIS forest change products for the conterminous US (CONUS), as part of a web-based national forest threat early warning system (EWS) known as the U.S. Forest Change Assessment Viewer (FCAV). The US Forest Service, NASA, USGS, and ORNL are working collaboratively to contribute weekly change products to this EWS. Large acreages of the nation's forests are being disturbed by a growing multitude of biotic and abiotic threats that can act either singularly or in combination. When common at regional scales, such disturbances can pose hazards and threats to floral and faunal bio-diversity, ecosystem sustainability, ecosystem services, and human settlements across the conterminous US. Regionally evident forest disturbances range from ephemeral periodic canopy defoliation to stand replacement mortality events due to insects, disease, fire, hurricanes, tornadoes, ice, hail, and drought. Mandated by the Healthy Forest Restoration Act of 2003, this forest threat EWS has been actively developed since 2006 and on-line since 2010. The FCAV system employs 250-meter MODIS NDVI-based forest change products as a key element of the system, providing regional and CONUS scale products in near real time every 8 days. Each of our forest change products in FCAV is based on current versus historical 24 day composites of NDVI data gridded at 231.66 meter resolution. Current NDVI is derived from USGS eMODIS expedited products. MOD13 NDVI is used for constructing historical baselines. CONUS change products are computed for all forests as % change in the current versus historical NDVI for a given 24 day period. Change products are computed according to previous year, previous 3 year and previous 8 year historical baselines. The use of multiple baselines enables apparent forest disturbance anomalies to be more fully assessed. CONUS forest change products are posted each week on the FCAV, a web mapping service constructed and

  6. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Abbatt, Jonathan P. D.; Leaitch, W. Richard; Li, Shao-Meng; Sjostedt, Steve J.; Wentzell, Jeremy J. B.; Liggio, John; Macdonald, Anne Marie

    2016-06-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  7. The long-term effects of planting and harvesting on secondary forest dynamics under climate change in northeastern China.

    PubMed

    Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong

    2016-01-01

    Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308

  8. The long-term effects of planting and harvesting on secondary forest dynamics under climate change in northeastern China

    PubMed Central

    Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J.; Yu, Lizhong

    2016-01-01

    Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308

  9. [Dynamics of soil properties under secondary succession forest communities in Mt. Jinyun].

    PubMed

    Liu, Hongyan; Huang, Jianguo

    2005-11-01

    Mt. Jinyun is located in the north suburb of Chongqing, 30 km away from the city center. It is rich in forest plants, an epitome of forests in north tropical areas of China. Under anthropocentric disturbance, there still exist large numbers of succession communities, and the process of successive development follows the way of shrub-grassland (X1)-->coniferous forest (X2)-->coniferous-broad leaved mixed forest (X3)-->evergreen broad-leaved forest (X4). By now, soil and water conservation is very important in the Three Gorges area of Yangtze River, and the investigation on the secondary succession of the forests could help to realize the changes of the forests and soils under anthropocentric disturbance, and supply information on the protection of natural forests and the artificial reforestation of this area. In this paper, some typical and representative plant communities in different succession stages were selected to study the plant composition and type and the soil properties, with species diversity indices and canopy density investigated in many standard squares and soil physical and chemical characteristics analyzed. The results showed that there were obvious variations of soil properties with time. As the plant community developed from primary stage to climax, the contents of soil organic matter, total N, and available N and K increased in order of X1 < X2 < X3 < X4, soil pH changed from 5.23 (X1) to 4.06 (X4), soil base saturation varied from 58.3% (X1) to 37.7% (X4), and soil CEC increased with the succession. It was suggested that an intense soil acid leaching was occurred in Mt. Jinyun. The contents of soil organic matter and total N in different layers showed a trend of A>B>C, e. g., soil total nitrogen in evergreen broad leaved forest was 2.31(A), 0.66(B) and 0.12(C)g x kg(-1). Gray analysis was used to study the relationships of soil properties between the climax community and other three succession communities. The relation coefficient was 0.461 0 (X3

  10. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Glasser, Jerry; Kuper, Philip D.

    2011-01-01

    This presentation discusses an effort to compute and post weekly MODIS forest change products for the conterminous US (CONUS), as part of national forest threat early warning system (EWS) known as the U.S. Forest Change Assessment Viewer (FCAV). The US Forest Service, NASA, USGS, and ORNL are working collaboratively to contribute weekly change products to this EWS. Large acreages of the nation's forests are being disturbed by a growing multitude of biotic and abiotic threats that can act either singularly or in combination. When common at regional scales, such disturbances can pose hazards and threats to floral and faunal bio-diversity, ecosystem sustainability, ecosystem services, and human settlements across the conterminous US. Regionally evident forest disturbances range from ephemeral periodic canopy defoliation to stand replacement mortality events due to insects, disease, fire, hurricanes, tornadoes, ice, hail, and drought. Mandated by the Healthy Forest Restoration Act of 2003, this forest threat EWS has been actively developed since 2006 and on-line since 2010. This FCAV system employs 250-meter MODIS NDVI-based forest change products as a key element of the system, providing regional and CONUS scale products in near real time every 8 days. Each forest change product in FCAV is based on current versus historical 24 day composite NDVI data gridded at 231.66 meter resolution. Current NDVI is derived from USGS eMODIS expedited products. MOD13 NDVI is used for constructing historical baselines. CONUS change products are computed for all forests as % change in the current versus historical NDVI. Change products are computed according to previous year, previous 3 years and previous 8 year historical baselines. The use of multiple baselines enables disturbance anomaly phenology to be more fully assessed. CONUS forest change products are posted each week on the FCAV, a web mapping service maintained by the National Environmental Modeling and Analysis Center. The

  11. Propagules of arbuscular mycorrhizal fungi in a secondary dry forest of Oaxaca, Mexico.

    PubMed

    Guadarrama, Patricia; Castillo-Argüero, Silvia; Ramos-Zapata, José A; Camargo-Ricalde, Sara L; Alvarez-Sánchez, Javier

    2008-03-01

    Plant cover loss due to changes in land use promotes a decrease in spore diversity of arbuscular mycorrhizal fungi (AMF), viable mycelium and, therefore, in AMF colonization, this has an influence in community diversity and, as a consequence, in its recovery. To evaluate different AMF propagules, nine plots in a tropical dry forest with secondary vegetation were selected: 0, 1, 7, 10, 14, 18, 22, 25, and 27 years after abandonment in Nizanda, Oaxaca, Mexico. The secondary vegetation with different stages of development is a consequence of slash and burn agriculture, and posterior abandonment. Soil samples (six per plot) were collected and percentage of AMF field colonization, extrarradical mycelium, viable spore density, infectivity and most probable number (MPN) ofAMF propagules were quantified through a bioassay. Means for field colonization ranged between 40% and 70%, mean of total mycelium length was 15.7 +/- 1.88 mg(-1) dry soil, with significant differences between plots; however, more than 40% of extracted mycelium was not viable, between 60 and 456 spores in 100 g of dry soil were recorded, but more than 64% showed some kind of damage. Infectivity values fluctuated between 20% and 50%, while MPN showed a mean value of 85.42 +/- 44.17 propagules (100 g dry soil). We conclude that secondary communities generated by elimination of vegetation with agricultural purposes in a dry forest in Nizanda do not show elimination of propagules, probably as a consequence of the low input agriculture practices in this area, which may encourage natural regeneration. PMID:18624242

  12. Radiative forcing by forest and subsequent feedbacks in the early Eocene climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.; Brovkin, V.

    2015-03-01

    Using the Max Planck Institute for Meteorology Earth System Model, we investigate the forcing of forests and the feedback triggered by forests in the pre-industrial climate and in the early Eocene climate (about 54 to 52 million years ago). Other than the interglacial, pre-industrial climate, the early Eocene climate was characterised by high temperatures which led to almost ice-free poles. We compare simulations in which all continents are covered either by dense forest or by bare soil. To isolate the effect of soil albedo, we choose either bright soils or dark soils, respectively. Considering bright soil, forests warm in both, the early Eocene climate and the current climate, but the warming differs due to differences in climate feedbacks. The lapse-rate and water-vapour feedback is stronger in early Eocene climate than in current climate, but strong and negative cloud feedbacks and cloud masking in the early Eocene climate outweigh the stronger positive lapse-rate and water-vapour feedback. In the sum, global mean warming is weaker in the early Eocene climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene leading to a weak polar amplification. Considering dark soil, our results change. Forests cools stronger in the early Eocene climate than in the current climate because the lapse-rate and water-vapour feedback is stronger in the early Eocene climate while cloud feedbacks and cloud masking are equally strong in both climates. The different temperature change by forest in both climates highlights the state-dependency of vegetation's impact on climate.

  13. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    NASA Astrophysics Data System (ADS)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  14. Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil

    PubMed Central

    Püttker, Thomas; Pardini, Renata; Meyer-Lucht, Yvonne; Sommer, Simone

    2008-01-01

    Background The Brazilian Atlantic Forest is highly endangered and only about 7% of the original forest remains, most of which consists of fragments of secondary forest. Small mammals in the Atlantic Forest have differential responses to this process of fragmentation and conversion of forest into anthropogenic habitats, and have varying abilities to occupy the surrounding altered habitats. We investigated the influence of vegetation structure on the micro-scale distribution of five small mammal species in six secondary forest remnants in a landscape of fragmented Atlantic Forest. We tested whether the occurrence of small mammal species is influenced by vegetation structure, aiming to ascertain whether species with different degrees of vulnerability to forest fragmentation (not vulnerable: A. montensis, O. nigripes and G. microtarsus; vulnerable: M. incanus and D. sublineatus; classification of vulnerability was based on the results of previous studies) are associated with distinct vegetation characteristics. Results Although vegetation structure differed among fragments, micro-scale distribution of most of the species was influenced by vegetation structure in a similar way in different fragments. Among the three species that were previously shown not to be vulnerable to forest fragmentation, A. montensis and G. microtarsus were present at locations with an open canopy and the occurrence of O. nigripes was associated to a low canopy and a dense understory. On the other hand, from the two species that were shown to be vulnerable to fragmentation, M. incanus was captured most often at locations with a closed canopy while the distribution of D. sublineatus was not clearly influenced by micro-scale variation in vegetation structure. Conclusion Results indicate the importance of micro-scale variation in vegetation structure for the distribution of small mammal species in secondary forest fragments. Species that are not vulnerable to fragmentation occurred at locations

  15. Carbon storage increases by major forest ecosystems in tropical South America since the Last Glacial Maximum and the early Holocene

    NASA Astrophysics Data System (ADS)

    Behling, Hermann

    2002-06-01

    To study the carbon storage increase of major forest ecosystems in tropical South America, such as Amazon rain forest, Atlantic rain forest, semideciduous forest, and Araucaria forest, the Last Glacial Maximum (LGM) and the early Holocene vegetation cover were reconstructed by pollen records. Marked forest expansion points to a significant total carbon storage increase by tropical forests in South America since the LGM and the early Holocene. The Amazon rain forest expansion, about 39% in area, had 28.3×10 9 tC (+20%), the highest carbon storage increase since the LGM. The expansion of the other much smaller forest areas also had a significant carbon storage increase since the LGM, the Atlantic rain forest with 4.9×10 9 tC (+55%), the semideciduous forest of eastern Brazil with 6.3×10 9 tC (+46%), the Araucaria forest with 3.4×10 9 tC (+108%). The estimated carbon storage increase of the four forest biomes since the early Holocene is also remarkable. The extensive deforestation in the last century strongly affected the carbon storage by tropical forests.

  16. Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; McKellip, Rodney

    2008-01-01

    The Healthy Forest Restoration Act of 2003 mandated that a national forest threat Early Warning System (EWS) be developed. The USFS (USDA Forest Service) is currently building this EWS. NASA is helping the USFS to integrate remotely sensed data into the EWS, including MODIS data for monitoring forest disturbance at broad regional scales. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for contribution to the EWS. In doing so, the RPC project employed multitemporal simulated VIIRS and MODIS data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria despar). Gypsy moth is an invasive species threatening eastern U.S. hardwood forests. It is one of eight major forest insect threats listed in the Healthy Forest Restoration Act of 2003. This RPC experiment is relevant to several nationally important mapping applications, including carbon management, ecological forecasting, coastal management, and disaster management

  17. Remnants of an ancient forest provide ecological context for Early Miocene fossil apes.

    PubMed

    Michel, Lauren A; Peppe, Daniel J; Lutz, James A; Driese, Steven G; Dunsworth, Holly M; Harcourt-Smith, William E H; Horner, William H; Lehmann, Thomas; Nightingale, Sheila; McNulty, Kieran P

    2014-01-01

    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes. PMID:24549336

  18. Cladophialophora inabaensis sp. nov., a New Species among the Dark Septate Endophytes from a Secondary Forest in Tottori, Japan

    PubMed Central

    Usui, Erika; Takashima, Yusuke; Narisawa, Kazuhiko

    2016-01-01

    A novel species of Cladophialophora is herein described from the natural environment of secondary forest soil in Japan, which was able to be colonized by the host plant root. Morphological observations indicated that the isolate is distinct from previously identified species, and, thus, is described as the new species, C. inabaensis sp. nov. PMID:27265343

  19. Using Land Surface Phenology as the Basis for a National Early Warning System for Forest Disturbances

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Spruce, J.; Norman, S. P.; Hoffman, F. M.

    2011-12-01

    The National Early Warning System (EWS) provides an 8-day coast-to-coast snapshot of potentially disturbed forests across the U.S.. A prototype system has produced national maps of potential forest disturbances every eight days since January 2010, identifying locations that may require further investigation. Through phenology, the system shows both early and delayed vegetation development and detects all types of unexpected forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, landslides, drought, flood, and climate change. The USDA Forest Service Eastern Forest Environmental Threat Assessment Center is collaborating with NASA Stennis Space Center and the Western Wildland Environmental Threat Assessment Center to develop the tool. The EWS uses differences in phenological responses between an expectation based on historical data and a current view to strategically identify potential forest disturbances and direct attention to locations where forest behavior seems unusual. Disturbance maps are available via the Forest Change Assessment Viewer (FCAV) (http://ews.forestthreats.org/gis), which allows resource managers and other users to see the most current national disturbance maps as soon as they are available. Phenology-based detections show not only vegetation disturbances in the classical sense, but all departures from normal seasonal vegetation behavior. In 2010, the EWS detected a repeated late-frost event at high elevations in North Carolina, USA, that resulted in delayed seasonal development, contrasting with an early spring development at lower elevations, all within close geographic proximity. Throughout 2011, there was a high degree of correspondence between the National Climatic Data Center's North American Drought Monitor maps and EWS maps of phenological drought disturbance in forests. Urban forests showed earlier and more severe phenological drought disturbance than

  20. Succession Influences Wild Bees in a Temperate Forest Landscape: The Value of Early Successional Stages in Naturally Regenerated and Planted Forests

    PubMed Central

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  1. Population Structure and Spatial Pattern of Main Tree Species in Secondary Betula platyphylla Forest in Ziwuling Mountains, China

    PubMed Central

    Kang, Di; Guo, Yaoxin; Ren, Chengjie; Zhao, Fazhu; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2014-01-01

    This study investigated a typical secondary Betula platyphylla forest in the Ziwuling Mountains, Loess Plateau, China. In the sample plot, the DBH (diameter at breast height) class structure of B. platyphylla was bimodal. Individuals with small and large DBH values were abundant. The DBH structures of Quercus wutaishanica and Pinus tabulaeformis were close to that of the logistic model, thus suggesting the increasing population of these species. B. platyphylla and Populus davidiana showed random spatial distributions at almost all scales. However, Q. wutaishanica and P. tabulaeformis were significantly clumped at small scales. B. platyphylla had a negative spatial relation with Q. wutaishanica at small spatial scales. P. tabulaeformis and Q. wutaishanica showed negative spatial correlations at small scales, but they had positive correlations at large scales. These results suggest that P. tabulaeformis and Q. wutaishanica shared habitat preferences at these scales. In the future, the secondary B. platyphylla forest in the Ziwuling Mountains in the Loess Plateau will probably change into a multi-species mixed forest (Quercus–Pinus mixed forest). Assisted restoration strategies must be employed to improve the regeneration dynamics of the forest in the long term. PMID:25362993

  2. Population structure and spatial pattern of main tree species in secondary Betula platyphylla forest in Ziwuling Mountains, China.

    PubMed

    Kang, Di; Guo, Yaoxin; Ren, Chengjie; Zhao, Fazhu; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2014-01-01

    This study investigated a typical secondary Betula platyphylla forest in the Ziwuling Mountains, Loess Plateau, China. In the sample plot, the DBH (diameter at breast height) class structure of B. platyphylla was bimodal. Individuals with small and large DBH values were abundant. The DBH structures of Quercus wutaishanica and Pinus tabulaeformis were close to that of the logistic model, thus suggesting the increasing population of these species. B. platyphylla and Populus davidiana showed random spatial distributions at almost all scales. However, Q. wutaishanica and P. tabulaeformis were significantly clumped at small scales. B. platyphylla had a negative spatial relation with Q. wutaishanica at small spatial scales. P. tabulaeformis and Q. wutaishanica showed negative spatial correlations at small scales, but they had positive correlations at large scales. These results suggest that P. tabulaeformis and Q. wutaishanica shared habitat preferences at these scales. In the future, the secondary B. platyphylla forest in the Ziwuling Mountains in the Loess Plateau will probably change into a multi-species mixed forest (Quercus-Pinus mixed forest). Assisted restoration strategies must be employed to improve the regeneration dynamics of the forest in the long term. PMID:25362993

  3. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; Kroll, J. H.; Peng, Z.; Brune, W. H.; Jimenez, J. L.

    2015-11-01

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected) compared to daytime (average 1 μg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than

  4. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  5. An Early Warning System for Identification and Monitoring of Disturbances to Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Marshall, A. A.; Hoffman, F. M.; Kumar, J.; Hargrove, W. W.; Spruce, J.; Mills, R. T.

    2011-12-01

    Forest ecosystems are susceptible to damage due to threat events like wildfires, insect and disease attacks, extreme weather events, land use change, and long-term climate change. Early identification of such events is desired to devise and implement a protective response. The mission of the USDA Forest Service is to sustain the health, diversity, and productivity of the nation's forests. However, limited resources for aerial surveys and ground-based inspections are insufficient for monitoring the large areas covered by the U.S. forests. The USDA Forest Service, Oak Ridge National Laboratory, and NASA Stennis Space Center are developing an early warning system for the continuous tracking and long-term monitoring of disturbances and responses in forest ecosystems using high resolution satellite remote sensing data. Geospatiotemporal data mining techniques were developed and applied to normalized difference vegetation index (NDVI) products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD 13 data at 250 m resolution on eight day intervals. Representative phenologically similar regions, or phenoregions, were developed for the conterminous United States (CONUS) by applying a k-means clustering algorithm to the NDVI data spanning the full eight years of the MODIS record. Annual changes in the phenoregions were quantitatively analyzed to identify the significant changes in phenological behavior. This methodology was successfully applied for identification of various forest disturbance events, including wildfire, tree mortality due to Mountain Pine Beetle, and other insect infestation and diseases, as well as extreme events like storms and hurricanes in the United States. Where possible, the results were validated and quantitatively compared with aerial and ground-based survey data available from different agencies. This system was able to identify most of the disturbances reported by aerial and ground-based surveys, and it also identified

  6. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.

    PubMed

    Kavouras, Ilias G; Stephanou, Euripides G

    2002-12-01

    Atmospheric aerosols play a central role in climate and atmospheric chemistry. Organic matter frequently composes aerosol major fraction over continental areas. Reactions of natural volatile organic compounds, with atmospheric oxidants, are a key formation pathway of fine particles. The gas and particle atmospheric concentration of organic compounds directly emitted from conifer leaf epicuticular wax and of those formed through the photooxidation of alpha- and beta-pinene were simultaneously collected and measured in a conifer forest by using elaborated sampling and GC/ MS techniques. The saturation concentrations of acidic and carbonyl photooxidation products were estimated, by taking into consideration primary gas- and particle-phase organic species. Primary organic aerosol components represented an important fraction of the atmospheric gas-phase organic content Consequently, saturation concentrations of photooxidation products have been lowered facilitating new particle formation between molecules of photooxidation products and semi-volatile organic compounds. From the measured concentrations of the above-mentioned compounds, saturation concentrations (Csat,i) of alpha- and beta-pinene photooxidation products were calculated for nonideal conditions using a previously developed absorptive model. The results of these calculations indicated that primarily emitted organic species and ambient temperature play a crucial role in secondary organic aerosol formation. PMID:12523424

  7. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-10-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was -97 ± 66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63 ± 40 mW m-2 K-1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  8. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest

    PubMed Central

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley’s L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  9. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    PubMed

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  10. Role of MODIS Vegetation Phenology Products in the U.S. for Warn Early Warning System for Forest Threats

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip

    2012-01-01

    U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).

  11. Toward a National Early Warning System for Forest Disturbances Using Remotely Sensed Land-Surface Phenology

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Spruce, J.

    2010-12-01

    A prototype National Early Warning System (EWS) for Forest Disturbances was established in 2010 by producing national maps showing potential forest disturbance across the conterminous United States at 231m resolution every 8 days. Each map is based on Land-Surface Phenology (LSP), calculated using temporally smoothed MODIS MOD13 imagery obtained over the preceding 24-day analysis window. Potential disturbance maps are generated by comparing a spatially and temporally specific historical expectation of normal NDVI "greenness" with NDVI "greenness" from a series of current satellite views. Three different disturbance products are produced using differing lengths of historical baseline periods to calculate the expected normal greenness. The short-term baseline products show only disturbances newer than one year ago, while the intermediate baseline products show disturbances since the prior three years, and the long-term baseline products show all disturbances over the MODIS historical period. A Forest Change Assessment Viewer website, http://ews.forestthreats.org/NPDE/NPDE.html, showcases the three most recent national disturbance maps in full spatial context. Although 2010 was a wet el Nino year without major forest problems, disturbances in 2010 in MI, NY, CO and LA will be highlighted. Forest disturbances caused by wildfire, hurricanes, tornadoes, hail, ice storms, and defoliating insects, including fall cankerworms, forest tent caterpillars, gypsy moths, baldcypress leafrollers and winter moths were successfully detected during the 2009 and 2010 field seasons. The EWS was used in 2010 to detect and alert Forest Health Monitoring (FHM) Aerial Disturbance Survey personnel to an otherwise-unknown outbreak of forest tent caterpillar and baldcypress leafroller in the Atchafalaya and Pearl River regions of southern Louisiana. A local FHM Program Coordinator verified these EWS-detected outbreaks. Many defoliator-induced disturbances were ephemeral, and were followed by

  12. Early vegetational changes on a forested wetland constructed for mitigation

    USGS Publications Warehouse

    Perry, M.C.; Osenton, P.C.; Sibrel, C.B.

    1997-01-01

    Changes in vegetation were studied on 15 acres of a 35 acre forested wetland created as a mitigation site in Anne Arundel County, Maryland during 1994-96. Meter-square sampling on four different hydrologic elevations determined that grasses initially dominated the area, but decreased from 59 percent in 1994 to 51 percent in 1995 and 30 percent in 1996. Herbaceous non-grass plants (forbs) increased from 19 percent to 56 percent in the three-year period. Area with no plant cover decreased from 21 percent in 1994 to 11 percent in 1995, and 10 percent in 1996. Woody plants comprised 2 percent of the cover in 1994, increased to 4 percent in 1995, and remained at 4 percent in 1996. The increase of woody plants was mainly from natural regeneration (pioneer) plants. Monitoring of the transplanted trees and shrubs indicated 35 percent mortality and little growth of surviving plants. The pioneer woody plant forming most of the cover was black willow (Salix nigra). Differences in the vegetation were observed among the four elevations, although no differences were observed for the major vegetation classes between plots that were planted and those that were not planted with woody plants. Dominant grass species was redtop (Agrostis stolonifera), which comprised 51 percent of the cover in 1994 and 42 percent cover in 1995 and 23 percent in 1996. Other species that were common were bush clover (Lespedeza cuneata), Japanese clover (Lespedeza striata) and flat pea (Lathyrus sylvestris). All four of these dominant species were part of the original seed mixtures that were seeded on the site. A total of 134 species of plants was recorded on the site indicating a fairly diverse community for a newly established habitat.

  13. Secondary forest succession and tree planting at the Laguna Cartagena and Cabo Rojo wildlife refuges in southwestern Puerto Rico.

    PubMed

    Weaver, Peter L; Schwagerl, Joseph J

    2008-12-01

    Secondary forest succession and tree planting are contributing to the recovery of the Cabo Rojo refuge (Headquarters and Salinas tracts) and Laguna Cartagena refuge (Lagoon and Tinaja tracts) of the Fish and Wildlife Service in southwestern Puerto Rico. About 80 species, mainly natives, have been planted on 44 ha during the past 25 y in an effort to reduce the threat of grass fires and to restore wildlife habitat. A 2007 survey of 9-y-old tree plantings on the Lagoon tract showed satisfactory growth rates for 16 native species. Multiple stems from individual trees at ground level were common. A sampling of secondary forest on the entire 109 ha Tinaja tract disclosed 141 native tree species, or 25% of Puerto Rico's native tree flora, along with 20 exotics. Five tree species made up about 58% of the total basal area, and seven species were island endemics. Between 1998 and 2003, tree numbers and basal area, as well as tree heights and diameter at breast height values (diameter at 1.4 m above the ground), increased on the lower 30 ha of the Tinaja tract. In this area, much of it subject to fires and grazing through 1996, exotic trees made up 25% of the species. Dry forest throughout the tropics is an endangered habitat, and its recovery (i.e., in biomass, structure, and species composition) at Tinaja may exceed 500 y. Future forests, however, will likely contain some exotics. PMID:19205183

  14. Evaluation of MODIS-LAI products in the tropical dry secondary forest of Mata Seca, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Yamarte Loreto, Payri Alejandra

    Leaf Area Index (LAI) advances scientific knowledge of the role of secondary forests in forest area conservation. MODIS-LAI products provide an alternative, efficient and cost-effective method for measuring LAI in Tropical Dry Forests (TDFs). The performance of MODIS-LAI satellite products in a TDF was studied as a function of successional stages by (1) estimating seasonal LAI variations compared to in situ LAI values (2) using dry season MODIS-LAI products to estimate Woody Area Index (WAI) (3) estimating phenology changes through comparisons to in situ data. The study demonstrates (1) MODIS-LAI product showed agreement with in situ values with increasing successional stage. (2) MODIS-LAI product showed best agreement to in situ WAI values in the intermediate successional stage. (3) TIMESAT analysis indicated that MODIS-LAI products detected start-of-season 1-2 weeks before in situ values and end-of-season 20-30 days after in situ values, indicating that MODIS-LAI product captures canopy leafing, but is not suitable for detecting senescence. Keywords: Leaf Area Index, Validation, MODIS, Woody Area Index, Phenology, Tropical Secondary Forest Succession, Hemispherical Photography, LAI-2000,.

  15. [Physical and chemical properties of throughfall in main forest types of secondary forest ecosystem in montane regions of eastern Liaoning Province, China].

    PubMed

    Xi, Xing-jun; Yan, Qiao-ling; Yu, Li-zhong; Zhu, Jiao-jun; Zhang, Cai-hong; Zhang, Jin-xin; Liu, Chang-xia

    2009-09-01

    From July to September 2008, a measurement was made on the physical and chemical properties of bulk precipitation and throughfall in five main forest types, i.e., larch plantation (LP), Fraxinus rhynchophylla stand (FR), mixed forest stand (MF), Korean pine plantation (KP), and Mongolian oak stand (MO), of secondary forest ecosystem in montane regions of eastern Liaoning Province, China. Comparing with bulk precipitation, the throughfall in the five forest types was significantly acidified (P < 0.05), and the acidification degree was in the order of KP > LP > MF > MO > FR. The conductivity and total dissolved solids of the throughfall increased significantly (P < 0.05), and were in the sequence of MO > FR > LP > MF > KP. The dissolved oxygen concentration of the throughfall lowered significantly (P < 0.05), with the rank of KP > MF > FR > MO > LP, while the Cl- concentration increased significantly, ranked as LP > MO > MF > FR > KP. The NO3-concentrations of the throughfall in FR, MO and MF were higher, while those in LP and KP were lower than that of the bulk precipitation. PMID:20030128

  16. Development of Preservice Teachers' Value Orientations during a Secondary Methods Course and Early Field Experience

    ERIC Educational Resources Information Center

    Sofo, Seidu; Curtner-Smith, Matthew D.

    2010-01-01

    Few studies have examined the value orientations of physical education preservice teachers (PTs). The purposes of this study were to: (1) describe the extent to which one cohort of PTs' value orientations changed and developed during a secondary methods course and early field experience (EFE); and (2) determine why PTs' value orientations changed…

  17. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  18. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  19. Conservation Thinning in Secondary Forest: Negative but Mild Effect on Land Molluscs in Closed-Canopy Mixed Oak Forest in Sweden

    PubMed Central

    Rancka, Birte; von Proschwitz, Ted; Hylander, Kristoffer; Götmark, Frank

    2015-01-01

    Secondary succession is changing the character of many temperate forests and often leads to closed-canopy stands. In such forests set aside for conservation, habitat management alternatives need to be tested experimentally, but this is rarely done. The Swedish Oak Project compares two often debated alternatives: minimal intervention and non-traditional active management (conservation thinning) on plots of each type replicated at 25 sites. We study responses of several taxa, and here report results for land molluscs. They are considered to be sensitive to more open, drier forest and we predicted a negative effect of the thinning (26% reduction of the basal area; mean value for 25 experimental forests). We sampled molluscs in the litter in ten 20 x 25 cm subplots, and by standardised visual search, in each plot. In total, we recorded 53 species of snails and slugs (24 369 individuals) and the mean species richness in plots was 17. Two seasons after thinning, mean (± SE) species richness had decreased by 1.4 (± 0.9) species in thinning plots, but increased by 0.7 (± 1.0) species in minimal intervention plots, a significant but small change with considerable variation among sites. In matched comparisons with minimal intervention, thinning reduced the overall abundance of molluscs. Most species responded negatively to thinning – but only five of the 53 species were significantly affected, and reproduction seemed to be negatively affected in only one species. An ordination analysis did not reveal any particular change in the species community due to thinning. Thus, the negative effect of conservation thinning on land molluscs was apparently mild – one reason was that many trees, shrubs and other forest structures remained after the treatment. Conservation thinning may be recommended, since other taxa are favoured, but minimal intervention is also a useful form of management for molluscs and saproxylic taxa. PMID:25803452

  20. Conservation thinning in secondary forest: negative but mild effect on land molluscs in closed-canopy mixed oak forest in Sweden.

    PubMed

    Rancka, Birte; von Proschwitz, Ted; Hylander, Kristoffer; Götmark, Frank

    2015-01-01

    Secondary succession is changing the character of many temperate forests and often leads to closed-canopy stands. In such forests set aside for conservation, habitat management alternatives need to be tested experimentally, but this is rarely done. The Swedish Oak Project compares two often debated alternatives: minimal intervention and non-traditional active management (conservation thinning) on plots of each type replicated at 25 sites. We study responses of several taxa, and here report results for land molluscs. They are considered to be sensitive to more open, drier forest and we predicted a negative effect of the thinning (26% reduction of the basal area; mean value for 25 experimental forests). We sampled molluscs in the litter in ten 20 x 25 cm subplots, and by standardised visual search, in each plot. In total, we recorded 53 species of snails and slugs (24 369 individuals) and the mean species richness in plots was 17. Two seasons after thinning, mean (± SE) species richness had decreased by 1.4 (± 0.9) species in thinning plots, but increased by 0.7 (± 1.0) species in minimal intervention plots, a significant but small change with considerable variation among sites. In matched comparisons with minimal intervention, thinning reduced the overall abundance of molluscs. Most species responded negatively to thinning - but only five of the 53 species were significantly affected, and reproduction seemed to be negatively affected in only one species. An ordination analysis did not reveal any particular change in the species community due to thinning. Thus, the negative effect of conservation thinning on land molluscs was apparently mild - one reason was that many trees, shrubs and other forest structures remained after the treatment. Conservation thinning may be recommended, since other taxa are favoured, but minimal intervention is also a useful form of management for molluscs and saproxylic taxa. PMID:25803452

  1. Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald

    2013-01-01

    Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are

  2. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    PubMed

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2. PMID:24037375

  3. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  4. Can You See the Difference? Early Impacts of the Primary National Literacy Strategy on Four Secondary English Departments.

    ERIC Educational Resources Information Center

    Beverton, Sue

    2003-01-01

    Examines early impact upon secondary English departments of the primary National Literacy Strategy (NLS). Examines shifts over time in departmental policy and practice across the primary/secondary transfer that may relate to the impact of the primary NLS. Reports findings from interviews in four secondary English departments. (BT)

  5. Understanding landowner intentions to create early successional forest habitat in the northeastern United States

    USGS Publications Warehouse

    Dayer, Ashley A.; Stedman, Richard C.; Allred, Shorna B.; Rosenberg, Kenneth V.; Fuller, Angela K.

    2016-01-01

    Early successional forest habitat (ESH) and associated wildlife species in the northeastern United States are in decline. One way to help create early successional forest conditions is engaging private forest landowners in even-aged forest management because their limited participation may have contributed to declines in ESH for wildlife species of high conservation concern. We applied the reasoned action approach from social psychology to predict intentions of landowners in the 13-county Southern Tier of New York State, USA, to conduct patch-cuts, which is a type of even-aged forest management. We tested the predictive ability of the model using data from a mail survey of landowners conducted from November 2010 to January 2011. Landowner intention to conduct patch-cuts was high (55% of respondents), with attitude being the strongest direct predictor of behavioral intention. Our results suggest that patch-cutting intentions are most likely expressed by landowners who think the behavior is good for their land and wildlife, believe in positive outcomes of land and wildlife management, belong to a game wildlife organization, and have conducted patch-cuts in the past. Strategies to engage more landowners in ESH management will have the highest likelihood of success if outreach efforts focus on influencing behavioral beliefs and subsequently attitudes, possibly working with game wildlife organizations to communicate a unified message for habitat conservation, including the importance of maintaining and creating ESH. Our results demonstrate the importance of social science research to increase the likelihood that conservation targets for declining wildlife species are met. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. Detection of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation Using Ikonos Data

    NASA Astrophysics Data System (ADS)

    Sa, T.; Guild, L.; Carvalho, C.; Wickel, A.; Brienza, S.; Kato, M.; Kato, O.; Leibs, C.

    2004-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. The principal goal of the research is to determine the extent to which capoeira and agricultural fields are susceptible to extreme climate events (drought) under contrasting landuse/clearing practices. In Igarape-Açu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention. This experimental practice (mechanized chop-and-mulch) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. This project aims to measure water availability and it's relation to secondary forest and crop productivity in the Brazilian Amazon. We have conducted field efforts during two dry seasons (August-December). Field data on water relations were collected during the dry season of 2001 and 2002 in capoeira and crops for both

  7. Simulating secondary succession of elk forage values in a managed forest landscape, western Washington

    USGS Publications Warehouse

    Jenkins, Kurt J.; Starkey, Edward E.

    1996-01-01

    Modern timber management practices often influence forage production for elk (Cervus elaphus) on broad temporal and spatial scales in forested landscapes. We incorporated site-specific information on postharvesting forest succession and forage characteristics in a simulation model to evaluate past and future influences of forest management practices on forage values for elk in a commercially managed Douglas fir (Pseudotsuga menziesii, PSME)-western hemlock (Tsuga heterophylla, TSHE) forest in western Washington. We evaluated future effects of: (1) clear-cut logging 0, 20, and 40% of harvestable stands every five years; (2) thinning 20-year-old Douglas fir forests; and (3) reducing the harvesting cycle from 60 to 45 years. Reconstruction of historical patterns of vegetation succession indicated that forage values peaked in the 1960s and declined from the 1970s to the present, but recent values still were higher than may have existed in the unmanaged landscape in 1945. Increased forest harvesting rates had little short-term influence on forage trends because harvestable stands were scarce. Simulations of forest thinning also produced negligible benefits because thinning did not improve forage productivity appreciably at the stand level. Simulations of reduced harvesting cycles shortened the duration of declining forage values from approximately 30 to 15 years. We concluded that simulation models are useful tools for examining landscape responses of forage production to forest management strategies, but the options examined provided little potential for improving elk forages in the immediate future.

  8. Primary and Secondary Controls on Measurements of Forest Height Using Large-Footprint Lidar at the Hubbard Brook LTER

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.; Blair, J. Bryan; Schwarz, Paul A.; Hofton, Michelle A.; Dubayah, Ralph; Smith, David E. (Technical Monitor)

    2000-01-01

    On September 26, 1999, we mapped canopy structure over 90% of the Hubbard Brook Experimental Forest in White Mountain National Forest, New Hampshire, using the Laser Vegetation Imaging Sensor (LVIS). This airborne instrument was configured to emulate data expected from the Vegetation Canopy Lidar (VCL) space mission. We compared above ground heights of the tallest surfaces detected by lidar with average forest canopy heights estimated from tree-based measurements in or near 346 0.05 ha plots (made in autumn of 1997 and 1998). Vegetation heights had by far the predominant influence on lidar top heights, but with this large data set we were able to measure two significant secondary effects: those of steepness or slope of the underlying terrain and of tree crown form. The size of the slope effect was intermediate between that expected from models of homogeneous canopy layers and for solitary tree crowns. The first detected surfaces were also proportionately taller for plots with more basal area in broad leaved northern hardwoods than for mostly coniferous plots. We expected this because of the contrast between the shapes of cumulative distributions of surface area for elliptical or hemi-elliptical tree crowns and those for conical crowns. Correcting for these secondary effects, when appropriate data are available for calibration, may improve vegetation structure estimates in regional studies using VCL or similar lidar data sources.

  9. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Norman, S. P.

    2013-12-01

    Forest threats across the US have become increasingly evident in recent years. These include regionally extensive disturbances (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and result in extensive forest mortality. In addition, forests can be subject to ephemeral, sometimes yearly defoliation from various insects and types of storm damage. After prolonged severe disturbance, signs of forest recovery can vary in terms of satellite-based Normalized Difference Vegetation Index (NDVI) values. The increased extent and threat of forest disturbances in part led to the enactment of the 2003 Healthy Forest Restoration Act, which mandated that a national forest threat Early Warning System (EWS) be deployed. In response, the US Forest Service collaborated with NASA, DOE Oak Ridge National Laboratory, and the USGS Eros Data Center to build the near real time ForWarn forest threat EWS for monitoring regionally evident forest disturbances, starting on-line operations in 2010. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines used with current NDVI to derive a suite of six nationwide 'weekly' forest change products. ForWarn uses daily 232 meter MODIS Aqua and Terra satellite NDVI data, including MOD13 products for deriving historical baseline NDVIs and eMODIS products for compiling current NDVI. Separately pre-processing the current and historical NDVIs, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally reduce noise, fuse, and aggregate MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of forest change products per year. The 24 day compositing interval typically enables new disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. ForWarn's three standard forest change products compare current NDVI to that from the previous year, previous 3 years, and

  10. Formation of secondary organic aerosols from biogenic precursors: A case study over an Isoprene emitting forest.

    NASA Astrophysics Data System (ADS)

    Freney, Evelyn; Sellegri, Karine; Borbon, Agnès; Colomb, Aurelie; Delon, Claire; Jambert, Corinne; Durand, Pierre; Bourianne, Thierry; Gaimoz, Cecile; Feron, Anais; Triquette, Sylvain; Beekmann, Matthias; Sartelet, Karine; Dulcac, Francois

    2015-04-01

    Characterising the sources and formation patterns of atmospheric aerosols is fundamental to understanding the impact of anthropogenic emissions on the composition and physical properties of the atmosphere. Although, the contribution of urban anthropogenic aerosol particles is important (10 Tg C yr-1), the contribution of biogenic aerosols has been estimated to be as much as 90 Tg C yr-1 (Hallquist et al., 2009.). This large difference highlights the importance of understanding the formation mechanisms and sources of the biogenic aerosol in the atmosphere. An increasing number of studies have shown that the submicron aerosol mass concentration is dominated by organic aerosols in both rural and urban environments. In addition, there have been several studies showing that the combined emissions of both biogenic and anthropogenic VOC emissions can result in a higher yield of secondary organic aerosol (SOA) formation. Biogenic SOA is formed from the oxidation of biogenic volatile organic compounds that are emitted naturally from terrestrial vegetation. The most commonly emitted BVOCs include isoprene and monoterpenes (Kesslmeier and Staudt, 1999, Arneth et al., 2008). Despite their importance, the characterisation of BSOA from laboratory and field experiments is still poor and it is only recently that advances in measurement techniques providing more detailed analysis of these species is being provided. One of the reasons for the difficulty in characterising the abundance of these species, is their high temporal and spatial scales. As part of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr) experiment (SOP2a/SAFMED+) in July 2014, a number of research flights were performed over two forested areas in the south of France. These forested areas had different characteristics where one has mainly isoprene emitting vegetation, and the other is known to have more monoterpene emitting vegetation. The aims of these research flights were

  11. A comparative analysis of infiltration rates below a pasture and a secondary forest on Santa Cruz Island, Galapagos

    NASA Astrophysics Data System (ADS)

    d'Ozouville, N.; Pryet, A.; Tournebize, J.; Chaumont, C.; Gonzáles, A.; Dominguez, C.; Fuente-Tomai, P.; Fernandez, J.; Violette, S.

    2011-12-01

    The potential effects of land use changes on groundwater recharge are being investigated on the windward side of Santa Cruz Island, Galapagos. Comparative studies allow the identification of the processes (evaporation, transpiration, soil water storage) at the vegetation/soil interface leading to contrasting recharge rates under different land covers. During one year, we monitored soil water dynamics under two adjacent study plots differing only by their vegetation cover: a pasture and a secondary forest. Climatic variables were monitored above the pasture and completed by throughfall monitoring under the forest. Tensiometers provide a direct measurement of the driving force of water dynamics in the soil: the hydraulic head gradient. In the two plots, tensiometers were set up in vertical profiles together with soil water content probes and connected to an automatic acquisition device. The forest stand has a higher canopy storage capacity and aerodynamic resistance, which causes evaporation losses to be higher. This is confirmed by throughfall measurements: only ca. 80% of gross precipitation reaches the ground. Expectedly, soil water tension profiles present clearly different behaviors in the pasture and in the forest. Despite high uncertainties on estimated recharge rates, we show that parallel monitoring of soil hydrodynamics in these two study plots provides valuable insights and may help to manage or anticipate the potential effect of deforestation or invasion by introduced plants on the hydrology of Santa Cruz Island, Galapagos.

  12. Spatial Simulation of the Dynamics of Establishment of Secondary Forest in Abandoned Pasture in the Central Amazon

    NASA Astrophysics Data System (ADS)

    Rebel, K. T.; Riha, S. J.; Rondon, M. A.; Feldpausch, T. R.; Fernandes, E. C.

    2001-05-01

    In the Amazon, approximately 35 million hectares of primary forest that was converted to pasture is now being abandoned. This represents about 70% of all pastureland that was previously established. The dynamics of reconversion of this land to secondary forest is of interest because the length of time required for pasture to convert to secondary forest will impact net primary productivity and the amount of carbon being stored on abandoned pastures. In addition, the length of time required for pasture to convert to secondary forest may depend on the size of the pasture, whether it is surrounded by primary or secondary forest, and on pasture productivity at the time of abandonment. Pasture productivity at the time of abandonment will depend primarily on the age structure of the pasture grasses and on weediness, which are influenced by grazing and fire history. Also, an understanding of the dynamics of conversion of pastureland to forest can serve as the basis for management strategies to inhibit pasture conversion. A spatial, dynamic model of the conversion of pasture to secondary forest was developed using the PCRaster Dynamic Modeling Package. This software provides a computer language specially developed for modeling temporal and spatial processes in a GIS, and is well suited for the development of ecological, dynamic models. The model of pasture conversion is implemented for the central Amazon. We assume that succession involves only three plant types: pasture grass, weeds and woody plants. The pasture grass is parameterized for Brachiaria (brizantha, humidicola), the weeds for Borreria and Rolandra, and the woody plants for Vismia spp. The model uses a 1m x 1m grid and 2-month time step. Each initial plant and each surviving propagule is referred to as a plant and only occupies one grid cell. A number of values are calculated for each grid cell for each time-step. These include whether vegetation is present and, if so, which species, the age of the species, the

  13. Early enteral feeding in severe acute pancreatitis: can it prevent secondary pancreatic (super) infection?

    PubMed

    Lehocky, P; Sarr, M G

    2000-01-01

    Sepsis continues to account for a second peak in mortality in patients with severe acute pancreatitis. The prevention of these septic complications and subsequent development of multiple organ dysfunction syndrome remains a major focus for investigators, yet despite considerable clinical and experimental work addressing its etiology, septic complications remain high. Several studies have been designed to demonstrate the mechanism of origin of these septic complications with an attempt to define strategies for their prevention to improve patient outcomes. There is clear evidence that the origin of this secondary bacterial infection arises from enteric bacterial translocation secondary to disruption of the gut mucosal barrier during acute pancreatitis. Strategies designed to prevent secondary pancreatic infection include aggressive fluid resuscitation to maximize organ perfusion, early systemic antibiotic treatment or selective gut decontamination, and recently attempts to block mediators of the systemic inflammatory response. This discussion will summarize our present understanding of the etiopathogenesis of secondary bacterial 'superinfection' of necrotizing pancreatitis and how the initiation of enteral feeding early in the course of acute pancreatitis may prove to be an effective means of preventing and/or reversing the breakdown of the gut mucosal defense barrier. PMID:11155001

  14. Succession stage variation in population size in an early-successional herb in a peri-urban forest

    NASA Astrophysics Data System (ADS)

    Van Rossum, Fabienne

    2009-03-01

    Urban and peri-urban forests incur high anthropogenic pressures (e.g. recreational activities, artificialization, and eutrophication). Plant species from early-successional, transient, forest habitats, often characterized by a short life span and a persistent seed bank in the soil may differ from late-successional species in key-factors for population persistence. This study investigated variation in population size and seedling recruitment for different forest succession stages and three consecutive years in Centaurium erythraea, an early-successional biennial herb, occurring in a peri-urban forest of Brussels urban zone (Belgium). Forest succession stage had a significant impact on C. erythraea population size and on its temporal fluctuation. Populations in closing vegetation (evolving to late-succession stages) showed small population sizes and a low number of recruits compared to populations from stable early-succession vegetation and clearcuts. The number of recruits was the highest after clearcutting, which can be related to the expression of the soil seed bank. Populations showed year-to-year variation in size (flowering individuals and recruits), even in stable (over three years) early-succession forest vegetation. In the absence of disturbance changing succession stage, population size is expected to depend on seed set of the previous years and subsequent seedling recruitment, which can be affected by environmental stochasticity. Opening gaps in the herbaceous vegetation may stimulate seedling recruitment, also in unoccupied patches where "cryptic" seed populations are present in the soil. Forest path and road verges, despite their potential negative impact on forests, can constitute refuge habitats for early-successional forest plant species. Their management should involve the preservation of these species.

  15. Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management.

    SciTech Connect

    Aubrey, Doug, P.; Coyle, David, R. Coleman, Mark, D.

    2011-08-26

    Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources. We constructed N budgets by measuring N concentration ([N]) and N content (N{sub C}) of above- and belowground perennial and ephemeral tissues, determined N uptake (N{sub UP}), and calculated N use efficiency (NUE). Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N{sub C} and N{sub UP} increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N{sub UP}. Inclusion of above- and belowground ephemeral tissue turnover in N{sub UP} calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200 kg N ha{sup -1} year{sup -1} while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent. Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.

  16. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, J.; Smoot, J.; Kuper, P.

    2010-01-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009,. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were

  17. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2010-12-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were

  18. Early augmented language intervention for children with developmental delays: potential secondary motor outcomes.

    PubMed

    Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A

    2014-09-01

    This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices. PMID:25109299

  19. Biomass of Secondary Evergreen and Deciduous Broadleaved Mixed Forest in Plateau-type Karst Terrain of Guizhou Province, SW China

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2014-12-01

    Using allometric functions, harvest and soil column methods, we investigated the biomass of a secondary evergreen and deciduous broadleaved mixed forest in Tianlongshan permanent monitoring plot (a horizontally-projected area of 2 hectares) of Puding Karst Ecosystem Research Station, Guizhou Province, southwestern China. Results showed that the total biomass of the forest is 165.4 Mg·hm-2. The aboveground biomass and root biomass are 137.7 Mg·hm-2 and 27.7 Mg·hm-2, respectively. Among the aboveground biomass, the tree layer accounts for 97.76%, which is obviously greater than the shrub layer and herb layer. Larger trees (the diameter at breast height, DBH is between 5 cm and 20 cm) occupies 76.85% of the aboveground biomass, especially the five dominant species(Lithocarpus confinis, Platycarya longipes, Itea yunnanensis, Machilus cavaleriei and Carpinus pubescens). Shrubs and lianas (DBH = 1 cm) account for more than 30% of total shrub and liana biomass, although their individuals are less than 2% of total shrub individuals and 1% of total liana individuals, respectively. The root biomass differs in root diameters, i.e. coarse root > medium root > fine root. Root biomass decreases with the increase of soil depth. Within soil depth of 20 cm, the root biomass is 20.1 Mg·hm-2, which is more than 70% of total root biomass. Within soil depth of 50 cm, the root biomass is 26.7 Mg·hm-2, which is 96.39% of total root biomass. Compared with non-karst forests in the same climate zone, karst forest has lower biomass and carbon stock, but it further has greater potential of carbon sink.

  20. Collaborative Leadership Practices among Ohio's Early College High School Principals and Their Post-Secondary Partners

    ERIC Educational Resources Information Center

    Carter, Allia L.

    2012-01-01

    This constructivist multiple-case study examined the collaborative leadership practices of seven secondary and seven post-secondary leaders who participate in Ohio's Early College High School Initiative (ECHSI). The 14 educational leaders in this study partnered in an effort to respond to the access and success of traditionally…

  1. Detection of smoke plume for a land-based early forest fire detection system

    NASA Astrophysics Data System (ADS)

    Saghri, John; Jacobs, John; Davenport, Tim; Garges, David

    2015-09-01

    A promising daytime smoke plume detection for a land-based early forest fire detection system is proposed. The visible video imagery from a land-based monitoring camera is processed to detect the smoke which likely rises in an early stage of a forest fire. Unlike the fire core and its surrounding heat which are detected via day/night infrared imaging, the relatively cold smoke plume can only be captured in the visible spectrum of light. The smoke plume is detected via exploitation of its temporal signature. This is accomplished via Principal Component Transformation (PCT) operations on consecutive sequences of visible video frames followed by spatial filtering of one of the resulting low-order Principal Component (PC) images. It is shown that the blue channel of the Red, Green, Blue (RGB) color camera is most effective in detecting the smoke plume. Smoke plume is clearly detected and isolated via simple blurring, thresholding, and median filtering of one of the resulting low-order principle component (PC) images. The robustness of this PCA-based method relative to simple temporal frame differencing and use of color, i.e., visible spectral signature of smoke, are discussed. Various parameters of the system including the required observation time and number of frames to retain for PCT, selection of which low-order PC to use, and types and sizes of the filters applied to the selected PC image to detect and isolate the smoke plume, are discussed.

  2. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    PubMed

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest. PMID:11057665

  3. Overwinter survival of neotropical migratory birds in early successional and mature tropical forests

    USGS Publications Warehouse

    Conway, C.J.; Powell, G.V.N.; Nichols, J.D.

    1995-01-01

    Many Neotropical migratory species inhabit both mature and early successional forest on their wintering grounds, yet comparisons of survival rates between habitats are lacking. Consequently, the factors affecting habitat suitability for Neotropical migrants and the potential effects of tropical deforestation on migrants are not well understood. We estimated over-winter survival and capture probabilities of Wood Thrush (Hylocichla mustelina), Ovenbird (Seiurus aurocapillus), Hooded Warbler (Wilsonia citrina), and Kentucky Warbler (Oporomis formosus) inhabiting two common tropical habitat types, mature and early-successional forest. Our results suggest that large differences (for example, ratio of survival rates (gamma) < 0.85) in overwinter survival between these habitats do not exist for any of these species. Age ratios did not differ between habitats, but males were more common in forest habitats and females more common in successional habitats for Hooded Warblers and Kentucky Warblers. Future research on overwinter survival should address the need for age- and sex-specific survival estimates before we can draw strong conclusions regarding winter habitat suitability. Our estimates of over-winter survival extrapolated to annual survival rates that were generally lower than previous estimates of annual survival of migratory birds. Capture probability differed between habitats for Kentucky Warblers, but our results provide strong evidence against large differences in capture probability between habitats for Wood Thrush, Hooded Warblers, and Ovenbirds. We found no temporal or among site differences in survival or capture probability for any of the four species. Additional research is needed to examine the effects of winter habitat use on survival during migration and between-winter survival.

  4. Testimony of Gina Adams, Senior Fellow, Urban Institute. Before the Early Childhood, Elementary, and Secondary Education Subcommittee Hearing on "Improving Early Childhood Development Policies and Practices"

    ERIC Educational Resources Information Center

    Adams, Gina

    2009-01-01

    This paper presents the testimony of Gina Adams before the Early Childhood, Elementary, and Secondary Education Subcommittee Hearing on "Improving Early Childhood Development Policies and Practices." This testimony was presented to the House Committee on Education and Labor, U.S. House of Representatives last March 19, 2009. She talks about how…

  5. Toward a National Early Warning System for Forest Disturbances Using Remotely Sensed Canopy Phenology

    SciTech Connect

    HargroveJr., William Walter; Spruce, Joe; Gasser, Gerry; Hoffman, Forrest M

    2009-01-01

    Imagine a national system with the ability to quickly identify forested areas under attack from insects or disease. Such an early warning system might minimize surprises such as the explosion of caterpillars referred to in the quotation to the left. Moderate resolution (ca. 500m) remote sensing repeated at frequent (ca. weekly) intervals could power such a monitoring system that would respond in near real-time. An ideal warning system would be national in scope, automated, able to improve its prognostic ability with experience, and would provide regular map updates online in familiar and accessible formats. Such a goal is quite ambitious - analyzing vegetation change weekly at a national scale with moderate resolution is a daunting task. The foremost challenge is discerning unusual or unexpected disturbances from the normal backdrop of seasonal and annual changes in vegetation conditions. A historical perspective is needed to define a 'baseline' for expected, normal behavior against which detected changes can be correctly interpreted. It would be necessary to combine temperature, precipitation, soils, and topographic information with the remotely sensed data to discriminate and interpret the changing vegetation conditions on the ground. Conterminous national coverage implies huge data volumes, even at a moderate resolution (250-500m), and likely requires a supercomputing capability. Finally, such a national warning system must carefully balance the rate of successful threat detection with false positives. Since 2005, the USDA Forest Service has partnered with the NASA Stennis Space Center and Oak Ridge National Laboratory to develop methods for monitoring environmental threats, including native insects and diseases, wildfire, invasive pests and pathogens, tornados, hurricanes, and hail. These tools will be instrumental in helping the Forest Service's two Environmental Threat Assessment Centers better meet their Congressional mandate to help track the health of the

  6. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    PubMed

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  7. Promoting Pedagogical Content Knowledge Development for Early Career Secondary Teachers in Science and Technology Using Content Representations

    ERIC Educational Resources Information Center

    Williams, John; Eames, Chris; Hume, Anne; Lockley, John

    2012-01-01

    Background: This research addressed the key area of early career teacher education and aimed to explore the use of a "content representation" (CoRe) as a mediational tool to develop early career secondary teacher pedagogical content knowledge (PCK). This study was situated in the subject areas of science and technology, where sound teacher…

  8. Losing All Interest in School: Social Participation as a Predictor of the Intention to Leave Upper Secondary School Early

    ERIC Educational Resources Information Center

    Frostad, Per; Pijl, Sip Jan; Mjaavatn, Per Egil

    2015-01-01

    Early school leaving in upper secondary education is a serious problem for both students and society. Several reviews have shown that there is no simple cause of early school leaving, but it seems to relate to demographic variables, social factors, academic achievement, and school factors. In this study, data from 2,045 students aged 16 from upper…

  9. Diminishing soil carbon stocks caused by the land-use change from secondary forests to terraced rubber plantations

    NASA Astrophysics Data System (ADS)

    de Blecourt, Marleen; Brumme, Rainer; Haensel, Maria V.; Corre, Marife D.; Xu, Jianchu; Veldkamp, Edzo

    2013-04-01

    Conversion from forest to rubber plantations (Hevea Brasiliensis) is an important recent land-use change in the Upper Mekong Region in Southeast Asia, for which the impacts on soil carbon stocks have hardly been studied. Due to the mountainous topography most of the established rubber plantations include narrow terraces. Terrace bench construction involves redistribution of the soil within the plantations. The objectives of our study in Xishuangbanna prefecture, Yunnan province, China were: to quantify the changes in soil carbon stocks (1) upon the conversion from secondary forest to rubber plantations, and (2) induced by terrace bench construction. We selected seven randomly selected clusters. Each cluster contained between one and three rubber plantations and one secondary forest which was the immediate reference land-use type. In total, there were 11 rubber plantations ranging in age from 5 to 46 years. In each land-use type, we measured soil carbon stock from a 20-m x 20-m plot down to 1.2-m depth. To gain insight into the effects of terracing, we additionally sampled the terrace benches in three rubber plantations aged 5, 29 and 44 years. In each plantation, six transect were positioned perpendicularly to terrace benches. Each transect consisted of 4 sampling points on the terrace bench and one sampling point on the undisturbed terrace riser, the latter is our reference position. All rubber plantations had lower soil carbon stocks than the forests with a mean difference of 37.4 Mg C ha-1 in the entire 1.2-m depth, which equals a 19% loss of the initial soil carbon stock. Strongest decrease was found in the top 0.15-m of the soil, exhibiting a mean loss of 27%. In the topsoil the soil carbon stock declined exponentially with years since land-use conversion and reached a steady state after ~20 years. The soil carbon losses observed in this study are much larger than published estimates on changes in aboveground carbon stocks. Results from the terracing case

  10. Toward A National Early Warning System for Forest Disturbances Using Remotely Sensed Land Surface Phenology

    SciTech Connect

    HargroveJr., William Walter; Spruce, Joe; Gasser, Gerry; Hoffman, Forrest M

    2009-12-01

    We are using a statistical clustering method for delineating homogeneous ecoregions as a basis for identifying disturbances in forests through time over large areas, up to national and global extents. Such changes can be shown relative to past conditions, or can be predicted relative to present conditions, as with forecasts of future climatic change. This quantitative ecoregion approach can be used to predict destinations for populations whose local environments are forecast to become unsuitable and are forced to migrate as their habitat shifts, and is also useful for predicting the susceptibility of new locations to invasive species like Sudden Oak Death. EFETAC and our sister western center WWETAC, along with our NASA and ORNL collaborators, are designing a new national-scale early warning system for forest threats, called FIRST. Envisioned as a change-detection system, FIRST will identify all land surface cover changes at the MODIS observational scale, and then try to discriminate normal, expected seasonal changes from locations having unusual activity that may represent potential forest threats. As a start, we have developed new national data sets every 16 days from 2002 through 2008, based on land surface phenology, or timing of leaf-out in the spring and brown-down in the fall. Changes in such phenological maps will be shown to contain important information about vegetation health status across the United States. The standard deviation of the duration of fall can be mapped, showing places where length of fall is relatively constant or is variable in length from year to year.

  11. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  12. Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  13. Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K

    2008-05-01

    Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually "sun" individuals in the spring prior to their longer period in the summer shade. PMID:18347817

  14. Ozone effects on productivity and diversity of an early successional forest community

    SciTech Connect

    Barbo, D.N.; Chappelka, A.H.; Stolte, K.W.

    1995-06-01

    There has been little research on the effects of tropospheric ozone on diversity and productivity of native understory vegetation and tree species growing in competition. Loblolly pine and an associated early successional forest community was exposed to 4 treatments of ozone. The treatments were: CF=carbon-filtered air, NF=non-filtered 1X air, AA=ambient air and 2X=twice AA air. Pine height and diameter, number of understory species, and percent-cover were measured. First-year results show the number of species were significantly reduced in 2X compared to CF. Blackberry, although severely injured (visible), dominated the 2X treatments. Bahia grass increased in abundance and cover with decreasing ozone, panicum grass increased in abundance and cover with increasing ozone, and andropogon was unaffected. Pine height and diameter was significantly reduced in the CF treatment. This study will continue for at least one more growing season.

  15. Geospatiotemporal Data Mining in an Early Warning System for Forest Threats in the United States

    SciTech Connect

    Hoffman, Forrest M; Mills, Richard T; Kumar, Jitendra; Vulli, Srinivasa S; HargroveJr., William Walter

    2010-01-01

    We investigate the potential of geospatiotemporal data mining of multi-year land surface phenology data (250~m Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) in this study) for the conterminous United States as part of an early warning system to identify threats to forest ecosystems. Cluster analysis of this massive data set, using high-performance computing, provides a basis for several possible approaches to defining the bounds of ``normal'' phenological patterns, indicating healthy vegetation in a given geographic location. We demonstrate the applicability of such an approach, using it to identify areas in Colorado, USA, where an ongoing mountain pine beetle outbreak has caused significant tree mortality.

  16. Archeological treasures protection based on early forest wildfire multi-band imaging detection system

    NASA Astrophysics Data System (ADS)

    Gouverneur, B.; Verstockt, S.; Pauwels, E.; Han, J.; de Zeeuw, P. M.; Vermeiren, J.

    2012-10-01

    Various visible and infrared cameras have been tested for the early detection of wildfires to protect archeological treasures. This analysis was possible thanks to the EU Firesense project (FP7-244088). Although visible cameras are low cost and give good results during daytime for smoke detection, they fall short under bad visibility conditions. In order to improve the fire detection probability and reduce the false alarms, several infrared bands are tested ranging from the NIR to the LWIR. The SWIR and the LWIR band are helpful to locate the fire through smoke if there is a direct Line Of Sight. The Emphasis is also put on the physical and the electro-optical system modeling for forest fire detection at short and longer ranges. The fusion in three bands (Visible, SWIR, LWIR) is discussed at the pixel level for image enhancement and for fire detection.

  17. Characterizing Growth Patterns of Early-successional Forests Using Phenological Parameters Derived from Near-daily Satellite Data

    NASA Astrophysics Data System (ADS)

    Briggs, K. M.; Cohen, W. B.; Gao, F.

    2011-12-01

    Satellite-based remote sensing data has proven to be useful for monitoring regrowth trajectories of early-successional forest stands after disturbance. Traditionally, forest recovery has been monitored with annual images acquired during the peak of the growing season. Our research will expand upon these previous research efforts through the use of near-daily imagery to track regrowth trajectories in young stands (disturbed between 1985 and 1990) in the Blue River watershed in Oregon's western Cascade mountains. To monitor forest regrowth with high temporal frequency at the fine scales required of the fragmented and heterogeneous landscape of the study region, the STARFM fusion algorithm will be used to blend frequent, coarse-scale MODIS images (near-daily at 500m) with infrequent, fine-scale Landsat images (16-day interval at 30m) to produce near-daily, 30m resolution images. Our goal is to determine how the additional information provided by high frequency synthetic Landsat data can improve the monitoring of changes in vegetation type and forest structure during forest regrowth. The changes in the annual spectral signatures of forest stands, due to phenology, will provide a basis for which variability in vegetation type and structure will be analyzed. Furthermore, this research will also allow us to evaluate the effectiveness of using STARFM in the heterogeneous forests and complex topography of Oregon's western Cascades.

  18. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    EPA Science Inventory

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  19. [Trap-nests used by Centris (Heterocentris) terminata Smith (Hymenoptera: Apidae, Centridini) at secondary Atlantic Forest fragments, in Salvador, Bahia State].

    PubMed

    Drummont, Patrícia; Silva, Fabiana O da; Viana, Blandina F

    2008-01-01

    Ninety-five nests of Centris (Heterocentris) terminata Smith were collected in trap-nests, during November/2001 and January/2003, at two fragments (PZGV e CFO-UFBA) of secondary Atlantic Forest, in Salvador, Bahia State (13 degrees 01' W e 38 degrees 30' S). The highest nest frequencies occurred from December to February (summer), with no nests foundations from August to October (winter - early spring). Two-hundred eight adults emerged from 347 brood cells, being 164 males and 116 females (1: 0.42). During the study period sex ratio was male biased (chi2 = 9.342; gl = 10; P < 0.05). C. terminata nested in holes with diameters 6, 8, 10 mm, but 84,2% were constructed in 8 and 10 mm. nests had one to seven cells arranged in a linear series with the cells partitions built with a mixture of sand and resin or oil. Male is significantly smaller than female, which emerges from the first cells constructed. Immature mortality occurred in 14.1% of brood cells (n = 49), of which 13.0% were due fail in development and 1.2% due to parasitism of Coelioxys sp. (Hymenoptera: Megachilidae) e Tetraonyx sp. (Coleoptera: Meloidae). In the study site, weather, mainly pluviosity, rather than natural enemies influenced seasonal population abundance. The long period of nesting activity, local abundance and usage of trap nests, suggest the potential of C. terminata for management aiming at pollination of native and cultivated plants. PMID:18641893

  20. Sap flow based transpiration estimates in species-rich secondary forests of different ages in central Panama during a wet-season drought

    NASA Astrophysics Data System (ADS)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.

    2015-12-01

    Many landscapes that were previously covered by mature tropical forests in central Panama today comprise of a mosaic of mature forest fragments, pastures and agricultural land, and regrowing secondary forests. An increasing demand for water due to urbanization and the expansion of the Panama Canal, along with a predicted transition into a dryer climatic period necessitate a better understanding regarding the effects of land use and land use history on hydrological processes. Such knowledge, including water storage, residence times, and fluxes is essential to develop effective land management strategies and propose incentives to alter land use practices to enhance hydrological services. To quantify transpiration rates at different stages of secondary forest succession, we measured sap flow in forests growing for 8, ~25, and 80+ years since last known land use in the 15 km2 "Agua Salud" study area, located in central Panama. In each forest, we selected a subset of at least 15 individuals, representing the local tree size distribution, and recorded data from heat-ratio sap flow sensors every 30 minutes starting in February 2015. All instrumented trees were identified to species and compared to local species distributions. Basal area in the three forest types was 9.1, 10.8, and 50.2 m2 ha-1 for 8, ~25, and 80+ year old forests, respectively. Average daily transpiration was highly correlated to forest age, with highest rates in the oldest forest (3.0 to 18.2 mm ha-1 day-1), followed by intermediate (1.2 to 6.7 mm ha-1 day-1) and youngest forests (0.2 to 2.7 mm ha-1 day-1), suggesting roughly a doubling in transpiration from 8 to ~25 year old forests, despite similar basal area, and again from ~25 to 80+ year old forests. Flow rates in individual trees generally reflected the dry-to-wet season transition but behaved differently in response to the unprecedentedly dry conditions during the first half of 2015 in central Panama.

  1. Modelling the climatic drivers determining secondary growth in Mediterranean forests using a process-based model and multiproxy data

    NASA Astrophysics Data System (ADS)

    Gea-Izquierdo, Guillermo; Guibal, Frederic; Joffre, Richard; Ourcival, Jean-Marc; Simioni, Guillaume; Guiot, Joel

    2015-04-01

    Different physiological processes determine gross primary productivity (GPP) and carbon allocation in relation to environmental forcing. Climatic variability limits these two processes differently and this needs to be properly addressed in process-based forest models. Generally, empirical models have been preferentially used in dendrochronological studies. However, it is necessary to better address the interaction between climate and other factors such as CO2 to properly assess the instability in the climate-growth response expressed by trees and increase the accuracy of the modelled relationships both in forward and inverse models. In this study we evolved an existing mechanistic model originally developed with dendrochronological data. The model was calibrated to fit a combination of eddy covariance CO2 flux data, dendrochronological time series of secondary growth and forest inventory data at two Mediterranean evergreen forests. Among other differences with the original formulation, the model was modified to be climate explicit in the key processes addressing acclimation of photosynthesis and allocation. It succeeded to fit both the high- and the low-frequency response of stand GPP and carbon allocation to the stem as calculated from tree-rings. Simulations suggest a decrease in mean stomatal conductance in response to environmental changes and an increase in mean annual intrinsic water use efficiency in both species during the last 50 years. However, this was not translated on a parallel simulated increase in ecosystem water use efficiency. A long-term decrease in annual GPP matched the local trend in precipitation since the 1970s observed in one site. In contrast, GPP did not show a negative trend and the trees buffered the climatic variability observed at the site where long-term precipitation remained stable. Long-term trends in GPP did not match those in growth, in agreement with the C-sink hypothesis. There is a great potential to use the model with

  2. Late Mesolithic and early Neolithic forest disturbance: a high resolution palaeoecological test of human impact hypotheses

    NASA Astrophysics Data System (ADS)

    Innes, James B.; Blackford, Jeffrey J.; Rowley-Conwy, Peter A.

    2013-10-01

    The transition in north-west Europe from the hunter-gatherer societies of the Late Mesolithic to the pioneer farming societies of the early Neolithic is not well understood, either culturally or palaeoecologically. In Britain the final transition was rapid but it is unclear whether novel Neolithic attributes were introduced by immigrants who supplanted the native hunter-gatherers, or whether the latest Mesolithic foragers gradually adopted elements of the Neolithic economic package. In this study, relatively coarse- (10 mm interval) and fine-resolution (2 mm), multi-proxy palaeoecological data including pollen, charcoal and NPPs including fungi, have been used to investigate two phases of vegetation disturbance of (a) distinctly Late Mesolithic and (b) early Neolithic age, at an upland site in northern England in a region with both a Neolithic and a Late Mesolithic archaeological presence. We identify and define the palaeoecological characteristics of these two disturbance phases, about a millennium apart, in order to investigate whether differing land-use techniques can be identified and categorised as of either foraging or early farming cultures. The Late Mesolithic phase is defined by the repetitive application of fire to the woodland to encourage a mosaic of productive vegetation regeneration patches, consistent with the promotion of Corylus and to aid hunting. In this phase, weed species including Plantago lanceolata, Rumex and Chenopodiaceae are frequent, taxa which are normally associated with the first farmers. The early Neolithic phase, including an Ulmus decline, has characteristics consistent with 'forest farming', possibly mainly for domestic livestock, with an inferred succession of tree girdling, fire-prepared cultivation, and coppice-woodland management. Such fine-resolution, potentially diagnostic land-use signatures may in future be used to recognise the cultural complexion of otherwise enigmatic woodland disturbance phases during the centuries of

  3. Iatrogenic Femoral Pseudoaneurysm and Secondary Ipsilateral Deep Vein Thrombosis: An Indication for Early Surgical Exploration.

    PubMed

    Papadakis, Marios; Zirngibl, Hubert; Floros, Nikolaos

    2016-07-01

    Pseudoaneurysm formation often complicates transfemoral interventional procedures. Nonsurgical treatment consists of femoral compression and thrombin injection under ultrasound guidance. We report a 74-year-old man who was diagnosed with a pseudoaneurysm, following coronary angiography. Duplex ultrasound revealed deep vein thrombosis of the ipsilateral common femoral vein. Ultrasound-guided thrombin injection was unsuccessfully performed, and the patient subsequently underwent surgical exploration for repair of the pseudoaneurysm and release of the venous compression. The increased local inflammation, because of the thrombosis, added in surgical difficulties. We conclude that early surgical intervention should be considered as a primary strategy in patients with femoral pseudoaneurysms and deep vein thrombosis secondary to femoral compression. PMID:27174354

  4. The RAISE Connection Program for Early Psychosis: Secondary Outcomes and Mediators and Moderators of Improvement

    PubMed Central

    Marino, Leslie; Nossel, Ilana; Choi, Jean C.; Nuechterlein, Keith; Wang, Yuanjia; Essock, Susan; Bennett, Melanie; McNamara, Karen; Mendon, Sapna; Dixon, Lisa

    2015-01-01

    The aims of this study were to explore secondary outcomes of a coordinated specialty care program for persons with early psychosis, including quality of life and recovery, as well as to explore mediators and moderators of improvement in occupational and social functioning and symptoms. Sixty-five individuals across two sites were enrolled and received services for up to two years. Trajectories for individuals’ outcomes, over time were examined using linear and quadratic mixed-effects models with repeated measures. In addition, baseline prognostic factors of participant improvement in social and occupational functioning were explored based on previous literature and expert opinion of the analytic team. Results demonstrate that the program was effective in improving quality of life and recovery, over time. Furthermore, processing speed was identified as a significant moderator of improvement in occupational GAF, and treatment fidelity, engagement, and family involvement were identified as mediators of improvement in social and occupational functioning. PMID:25900546

  5. Principled Improvement in Science: Forces and proportional relations in early secondary-school teaching

    NASA Astrophysics Data System (ADS)

    Howe, Christine; Ilie, Sonia; Guardia, Paula; Hofmann, Riikka; Mercer, Neil; Riga, Fran

    2015-01-01

    In response to continuing concerns about student attainment and participation in science and mathematics, the epiSTEMe project took a novel approach to pedagogy in these two disciplines. Using principles identified as effective in the research literature (and combining these in a fashion not previously attempted), the project developed topic modules for early secondary-school teaching in the UK, arranged for their implementation in classrooms, and evaluated the results. This paper reports the development, implementation, and evaluation of one of the epiSTEMe science modules. Entitled Forces and Proportional Relations, the module covers standard curricular material in the domain of forces, while paying particular attention to the proportional nature of many key constructs. It was developed in collaboration with a small group of teachers; implemented subsequently in 16 classrooms, in all cases involving students from the first year of secondary school; and evaluated through comparison with first-year students in 13 control classrooms who were studying the topic using established methods. Evaluation addressed topic mastery and opinions about the topic and the manner in which it was taught. While further research is required before definite conclusions are warranted, results relating to topic mastery provide grounds for optimism about the epiSTEMe approach. Furthermore, student opinions about the module were positive.

  6. [Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in Changbai Mountains of Northeast].

    PubMed

    Hu, Song; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Hui; Xu, Hui

    2013-02-01

    By the method of space-for-time Substitution, and taking the matured (>200 years old) and over-matured (>200 years old) primary broadleaved-Pinus koraiensis forests and, their secondary forests at different succession stages (20-, 30-, 50-, 80-, and 100 years old Betula platphylla forests) in Changbai Mountains of Northeast China as test objects, this paper studied the temporal variations of soil organic carbon, soil microbial biomass, and soil enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in the Mountains. Under the 20- and 80 years old B. platphylla forests, the soil organic carbon content in humus layer was the highest (154.8 and 154.3 g.kg-1, respectively); while under the matured and over-matured primary broad-leaved-Pinus koraiensis forests, this organic carbon content was relatively low, being 141. 8 and 133. 4 g.kg , respectively. The soil microbial biomass carbon and microbial quotient and the activities of soil cellulase, peroxidase, acid phosphatase, and cellobiase under the 50- and 80 years old B. platphylla forests were the highest, but the activity of soil polyphenol oxidase was the lowest, which revealed that under middle-aged and matured B. platphylla forests, soil organic carbon had a faster turnover rate, and was probably in a stronger accumulation phase. Statistical analysis showed that the soil microbial biomass carbon had significant positive correlations with the soil organic carbon, total nitrogen, and available phosphorus (r = 0.943, 0. 963, and 0.953, respectively; PMID:23705380

  7. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  8. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGESBeta

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m–3 when LVOC fate corrected) compared to daytime (average 0.9 µg m–3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small

  9. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGESBeta

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  10. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    SciTech Connect

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-01-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the

  11. Isoprene and monoterpene measurements in a secondary forest in northern Benin

    NASA Astrophysics Data System (ADS)

    Saxton, J. E.; Lewis, A. C.; Kettlewell, J. H.; Ozel, M. Z.; Gogus, F.; Boni, Y.; Korogone, S. O. U.; Serça, D.

    2007-08-01

    The biogenic volatile organic compound (BVOC) composition of ambient air at a rural field site near Djougou, Benin has been studied as part of the AMMA (African Monsoon Multidisciplinary Analysis) project. Ambient air was sampled during day and night during the period 2 June 2006 to 13 June 2006. Gas samples from within the forest canopy and from branch and cuvette enclosure systems for four vegetation species were also obtained and emissions flux estimates made. All samples were analysed for the presence of isoprene, monoterpenes and sesquiterpenes by either gas chromatography-time of flight mass spectrometry (GC-TOF/MS) or comprehensive gas chromatography-time of flight mass spectrometry (GCxGC-TOF/MS). Concentrations of isoprene ranged from a few tens of pptV to in excess of 3000 pptV. Similar concentration ranges for certain monoterpenes were also observed. Limonene was seen at a maximum concentration in ambient air of 5000 pptV. The combination of leaf-level observations and direct analysis of dried vegetation samples suggests that emissions of terpene species from indigenous species are unlikely to account for the unexpectedly high ambient concentrations of monoterpenes. Leaf scale emission measurements and biological sample analysis indicated that textit{Anacardium occidentale}, a non-native crop species found throughout the tropics, was the dominant source of monoterpenes at this location. These preliminary findings suggest that activities involving species replacement have potential implications for the chemistry of the African troposphere that have not been widely considered previously.

  12. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day and night time chemistry

    NASA Astrophysics Data System (ADS)

    Lee, A. K. Y.; Abbatt, J. P. D.; Leaitch, W. R.; Li, S.-M.; Sjostedt, S. J.; Wentzell, J. J. B.; Liggio, J.; Macdonald, A. M.

    2015-10-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 will arise from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by the OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol, and so f91 is used as an indicator of BSOA formation pathways. A comparison between laboratory studies in the literature and our field observations highlights the potential importance of gas-phase formation chemistry of BSOA-2 type materials that may not be captured in smog chamber experiments, perhaps due to the wall loss of gas-phase intermediate products.

  13. [Effects of light quality on the seed germination of main tree species in a secondary forest ecosystem of Northeast China].

    PubMed

    Zhang, Min; Zhu, Jiao-Jun; Yan, Qiao-Ling

    2012-10-01

    This paper explored the effects of light quality on the seed germination of five dominant tree species (Larix kaempferi, Phellodendron amurense, Acer mono, Fraxinus mandshurica, and Pinus koraiensis) in a secondary forest ecosystem of Northeast China, based on the experiments with the seeds of the five tree species in laboratory and those of the P. koraiensis and L. kaempferi in the field. Four treatments of different light quality were designed in laboratory (taking dark as the control), and three treatments of R/FR (the ratio of red light and far red light intensity) were installed in the field. The laboratory experiment showed that light quality had less effect on the seed germination of L. kaempferi, but the seed germination rates of the other four tree species were significantly different under the treatments of different light quality. P. amurense had the highest seed germination rate under white light, whereas A. mono, F. mandshurica, and P. koraiensis had the highest one under the alternative irradiation with red light and far red light (R-FR-R). In consistence with the results in laboratory, the seed germination rate of P. koraiensis in the field decreased with decreasing R/FR ratio, while that of L. kaempferi was less affected. Under natural condition, the R-FR-R fluctuated with the activity of sun-fleck, and the seed germination patterns of A. mono, F. mandshurica, and P. koraiensis could be the adaptation to the sun-fleck environment in forest stand. The germination of large seeds was significantly affected by light quality. PMID:23359919

  14. [Effects of harvest disturbance on soil CH4 flux in a secondary hardwood forest in Northeast china].

    PubMed

    Hai-Long, Sun

    2013-10-01

    From June, 2007 to October, 2009, a measurement with static chamber/gas chromatograph techniques was conducted on the soil CH4 flux in a typical secondary hardwood forest in Northeast China under the effects of different harvest disturbances, i.e., uncut (control), clear cutting (including both farming and reforestation after clear cutting), 50% stand volume removed, and 25% stand volume removed. In all of the four treatments, the soil was the sink of atmospheric CH4, but cutting decreased the soil CH4 uptake flux, with the order of uncut (-85.03 microg CH4 x m;(-2) x h(-1)) > 50% stand volume removed (-80.31 microg CH4 x m(-2) x h(-1)) > 25% stand volume removed (-70.97 microg CH4 x m(-2)h(-1)) > farming after clear cutting (-65.57 microg CH4 x m(-2) x h(-1)) > reforestation after clear cutting (-62.02 miocrog CH4 x m(-2) x h(-1)). During the study period, the seasonal patterns of the soil CH4 uptake flux in all treatments were similar, with a higher value in growth season and a lower one in winter. After the harvest disturbance, the soil temperature, humidity, and NO(3-)-N, and NH(4+)-N contents were all increased, and the soil CH4 flux had a significant quadratic correlation with soil temperature, and a negative linear correlation with soil moisture content. It was suggested that the increase of the soil moisture, NO(3-)-N, and NHa(4+)-N contents after the forest harvest was the main cause of the decrease of the soil CH4 uptake flux. PMID:24483065

  15. Structure and dynamics of the taxocenoses of Pimplinae, Poemeniinae, Rhyssinae, Anomaloninae and Metopiinae in an urban secondary semideciduous montane forest.

    PubMed

    Tanque, R L; Kumagai, A F; Souza, B; Korasaki, V

    2015-06-01

    Ichneumonidae (Hymenoptera) is one of the largest families of Insecta, but information on family diversity and distribution in Brazil is limited. The aim of the study was to assess the abundance, richness and seasonal distribution of Ichneumonidae in an urban secondary semideciduous montane forest. Insect specimens were captured in a Malaise trap placed within a restored sub-evergreen forest and sampling was performed every week during three non-consecutive 12-month periods. Of the 507 specimens collected, 338 were captured between May 1991 and May 1992, 95 between May 2000 and May 2001, and 74 between May 2007 and May 2008. Specimens were distributed among the subfamilies Pimplinae (n = 444), Anomaloninae (n = 42), Metopiinae (n = 16), Poemeniinae (n = 3) and Rhyssinae (n = 2). Species richness was highest in 1991-1992 with 33 rare and eight common species captured, followed by 2000-2001 with 31 rare and one common species captured, and 2007-2008 with 24 rare and one common species captured. The Shannon-Wiener diversity index (H') and Jackknife 1 species richness (S) values for the respective periods were 2.75/59.6, 3.15/35.8 and 2.83/35.8. In the 1991-1992 and 2000-2001 periods, parasitoid abundance was higher during the rainy season, while in 2007-2008 abundance was higher during the dry season. Colpotrochia mexicana (Cresson), Colpotrochia neblina Gauld & Sithole and Exochus izbus Gauld & Sithole were recorded for the first time in Brazil. PMID:26013266

  16. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management

    USGS Publications Warehouse

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W.; Rovai, Andre S; Beever, James W.; Flynn, Laura L

    2016-01-01

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for “mangrove forest heart attack prevention”, and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring.

  17. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management.

    PubMed

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W; Rovai, André S; Beever, James W; Flynn, Laura L

    2016-08-30

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for "mangrove forest heart attack prevention", and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring. PMID:26971817

  18. Open Experimentation on Phenomena of Chemical Reactions via the Learning Company Approach in Early Secondary Chemistry Education

    ERIC Educational Resources Information Center

    Beck, Katharina; Witteck, Torsten; Eilks, Ingo

    2010-01-01

    Presented is a case study on the implementation of open and inquiry-type experimentation in early German secondary chemistry education. The teaching strategy discussed follows the learning company approach. Originally adopted from vocational education, the learning company method is used to redirect lab-oriented classroom practice towards a more…

  19. Investigating the Stress Levels of Early Childhood, Primary and Secondary Pre-Service Teachers during Teaching Practicum

    ERIC Educational Resources Information Center

    Geng, Gretchen; Midford, Richard; Buckworth, Jenny

    2015-01-01

    This study investigated stress levels of pre-service teachers (PSTs) across three categories of teaching context: early childhood, primary and secondary. This paper focused on exploring the stressors in the completion of tasks in teaching practicum in the three categories of teaching context and an awareness of and access to support systems. The…

  20. [Short-term death dynamics of trees in natural secondary poplar-birch forest in Changbai Mountains of Northeast China].

    PubMed

    Zhang, Zhao-Chen; Hao, Zhan-Qing; Ye, Ji; Lin, Fei; Yuan, Zuo-Qiang; Xing, Ding-Liang; Shi, Shuai; Wang, Xu-gao

    2013-02-01

    Taking the 5 hm2 sampling plot in the natural secondary poplar-birch forest in Changbai Mountains as test object, and based on the two census data in 2005 and 2010, an analysis was made on the main tree species composition and quantity, size class distribution of dead individuals, and regeneration characteristics of the main tree species in different habitat types of the plot in 2005-2010. In the five years, the species number of the individuals with DBH> or = 1 cm increased from 46 to 47, among which, 3 species were newly appeared, and 2 species were disappeared. The number of the individuals changed from 16509 to 15027, among which, 2150 individuals died, accounting for 13% of the whole individuals in 2005, and 668 individuals were newly increased. The basal area of the trees increased from 28.79 m2.m-2 to 30.55 m2.m-2, with that of 41 species increased while that of 6 species decreased. The decrease of the basal area of Betula platyphylla and Populus davidiana accounted for 72.3% of the total decrease. Small individuals had higher mortality, as compared with large ones, and the mortality of the individuals with DBH<5 cm occupied 65% of the total. B. platyphylla and P. davidiana contributed most in the dead individuals with large DBH. No difference was observed in the tree mortality among different habitat types, but the mortality of the individuals with different size classes showed greater variation. PMID:23705371

  1. Do natural disturbances or the forestry practices that follow them convert forests to early-successional communities?

    PubMed

    Brewer, J Stephen; Bertz, Christine A; Cannon, Jeffery B; Chesser, Jason D; Maynard, Erynn E

    2012-03-01

    Stand-replacing natural disturbances in mature forests are traditionally seen as events that cause forests to revert to early stages of succession and maintain species diversity. In some cases, however, such transitions could be an artifact of salvage logging and may increase biotic homogenization. We present initial (two-year) results of a study of the effects of tornado damage and the combined effects of tornado damage and salvage logging on environmental conditions and ground cover plant communities in mixed oak-pine forests in north central Mississippi. Plots were established in salvage-logged areas, adjacent to plots established before the storm in unlogged areas, spanning a gradient of storm damage intensity. Vegetation change directly attributable to tornado damage was driven primarily by a reduction in canopy cover but was not consistent with a transition to an early stage of succession. Although we observed post-storm increases of several disturbance indicators (ruderals), we also observed significant increases in the abundance of a few species indicative of upland forests. Increases in flowering were just as likely to occur in species indicative of forests as in species indicative of open woodlands. Few species declined as a result of the tornado, resulting in a net increase in species richness. Ruderals were very abundant in salvage-logged areas, which contained significantly higher amounts of bare ground and greater variance in soil penetrability than did damaged areas that were not logged. In contrast to unlogged areas severely damaged by the tornado, most upland forest indicators were not abundant in logged areas. Several of the forest and open-woodland indicators that showed increased flowering in damaged areas were absent or sparse in logged areas. Species richness was lower in salvage-logged areas than in adjacent damaged areas but similar to that in undamaged areas. These results suggest that salvage logging prevented positive responses of several

  2. Litter manipulation and associated invertebrate fauna in secondary forest, central Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Santos, Evanira M. R.; Franklin, Elizabeth; Luizão, Flávio J.

    2008-11-01

    Plant litter from selected tree species has been used for improving soil productivity in low-input systems of secondary vegetation in Central Amazon, leading to different conditions for invertebrates. Soil invertebrate assemblages were monitored to test the effects of adding litter types of contrasting nutritional quality and periods of exposure on the development of the community. We established four second growth plots with 80 subplots of 3 m 2 from which the original litter was removed and replaced in 60 subplots. Twenty subplots received Hevea brasiliensis leaves, 20 others Carapa guianensis leaves, and another 20 an equal mixture of H. brasiliensis, C. guianensis and Vismia guianensis. Twenty subplots were left with the original litter. Litter and mineral soil (5 cm deep) sub-horizons were collected after 45, 100, 160, 240 and 300 days of exposure. The invertebrates were extracted using Kempson apparatus. At the day 210, the litter was replenished to match the surrounding litter. Regression analyses showed no significant effect of litter type, but the period of exposure did affect the community in both sub-horizons. Only after the litter replenishment, the type of litter and periods of exposure affected the community in the litter sub-horizon. Because we tried to isolate the effects of litter composition from other large-scale phenomena, several factors interfered in the experiment and potential problems were identified to optimize the investigation. The sampling design must be improved by using a larger number of subsamples for each kind of litter within each plot. Coarse parameters of Order and Family were suited to detect major environmental patterns on soil invertebrates, but taxonomic resolution to species and/or morphospecies is required to detect more subtle effects. Future manipulations should also be done on a longer time scale, and the replicates need to be spread over larger areas to capture the natural variations within the ecosystems.

  3. Early forest fire detection using principal component analysis of infrared video

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Radjabi, Ryan; Jacobs, John T.

    2011-09-01

    A land-based early forest fire detection scheme which exploits the infrared (IR) temporal signature of fire plume is described. Unlike common land-based and/or satellite-based techniques which rely on measurement and discrimination of fire plume directly from its infrared and/or visible reflectance imagery, this scheme is based on exploitation of fire plume temporal signature, i.e., temperature fluctuations over the observation period. The method is simple and relatively inexpensive to implement. The false alarm rate is expected to be lower that of the existing methods. Land-based infrared (IR) cameras are installed in a step-stare-mode configuration in potential fire-prone areas. The sequence of IR video frames from each camera is digitally processed to determine if there is a fire within camera's field of view (FOV). The process involves applying a principal component transformation (PCT) to each nonoverlapping sequence of video frames from the camera to produce a corresponding sequence of temporally-uncorrelated principal component (PC) images. Since pixels that form a fire plume exhibit statistically similar temporal variation (i.e., have a unique temporal signature), PCT conveniently renders the footprint/trace of the fire plume in low-order PC images. The PC image which best reveals the trace of the fire plume is then selected and spatially filtered via simple threshold and median filter operations to remove the background clutter, such as traces of moving tree branches due to wind.

  4. The Hydrologic Response of Forestry Plantations and Secondary Succession in Comparison to Tropical Mature Forest and Pasture in the Panama Canal Watershed

    NASA Astrophysics Data System (ADS)

    Litt, G.; Briceno, J. C.; Crouch, T. D.; Ogden, F. L.

    2012-12-01

    Land use change in the Panama Canal Watershed may have far reaching effects on water quality and water quantity. Dry season water quantity is of particular interest for sustaining and expanding canal operations, therefore an increased understanding of tropical hydrological processes and their relationship to land use may improve management practices by the Panama Canal Authority. The long term Agua Salud Project in the Panama Canal Watershed monitors a number of hydrological factors across various tropical land use types. We hypothesize that the plantations and the secondary succession plot more closely resemble the mature forest's runoff characteristics. In this study we investigate the differences in runoff ratios between the following experimental plots: a teak (tectona grandis) plantation, a native-species plantation and a native secondary succession plot. Results are compared to past analyses on mature forest and pasture control plots while utilizing three years of continuously monitored hydrologic data.

  5. Photosynthesis of seedlings of Otoba novogranatensis (Myristicaceae) and Ruagea glabra (Meliaceae) in abandoned pasture, secondary forest and plantation habitats in Costa Rica.

    PubMed

    Loik, Michael E; Cole, Rebecca J; Holl, Karen D; Sady, Gabriel C

    2013-09-01

    Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra) in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species). We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content), and photosynthesis (e.g. quantum yield and electron transport rate) were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vxmax and Jmax) and Photosystem II efficiency (e.g. thermal energy dissipation) occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species) enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands. PMID:24027938

  6. Relative importance of early-successional forests and shrubland habitats to mammals in the northeastern United States

    USGS Publications Warehouse

    Fuller, T.K.; DeStefano, S.

    2003-01-01

    The majority of the 60 native terrestrial mammal species that reside in the northeastern United States (US) utilize resources from several habitats on a seasonal basis. However, as many as 20 species demonstrate some preference for early-successional forests, shrublands, or old-field habitats. A few of these (e.g. lagomorphs) can be considered obligate users of these habitats, and the specialist carnivores (e.g. felids) that prey on them may consequently also prefer such habitats. Other mammal species that prefer these habitats certainly depend on them to lesser and varying degrees; thus, the consequences of reducing or eliminating early-successional forests, shrublands, or old-field habitats across the landscape will likely have varying demographic consequences, and thus importance, to those species. ?? 2003 Elsevier B.V. All rights reserved.

  7. Urban-rural interactions in a South Korean forest: uncertainties in isoprene-OH interactions limit understanding of ozone and secondary organic aerosols production

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, S.-Y.; Lee, M.; Shim, H.; Wolfe, G. M.; Guenther, A. B.; He, A.; Hong, Y.; Han, J.

    2014-06-01

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Gangzhou, and Beijing are surrounded by densely forested areas and recent research has consistently demonstrated the importance of biogenic volatile organic compounds from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical concentrations, undermine our ability to assess regional photochemical air pollution problems. We present an observational dataset of CO, NOx, SO2, ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa Research Forest (TRF) near the Seoul Metropolitan Area (SMA) in early June 2012. The data show that TRF is influenced both by aged pollution and fresh BVOC emissions. With the dataset, we diagnose HOx (OH, HO2, and RO2) distributions calculated with the University of Washington Chemical Box Model (UWCM v 2.1). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HOx distributions especially OH levels (up to 2.5 times) and (2) radical destruction (HO2+HO2 or HO2+RO2) could be more efficient than radical recycling (HO2+NO) especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOx sensitivity and oxidation product formation rates. Overall, the VOC limited regime in ozone photochemistry is predicted but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO2 levels are positively correlated with OVOCs production that is not routinely

  8. Avian Diversity and Feeding Guilds in a Secondary Forest, an Oil Palm Plantation and a Paddy Field in Riparian Areas of the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-01-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon’s diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds. PMID:24575217

  9. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2011-08-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from

  10. Accuracy of early stand exam age estimates in the Swan Valley of Western Montana. Forest Service research note

    SciTech Connect

    Hart, M.; Lesica, P.

    1994-04-01

    The stand exams conducted in western Montana over 50 years ago provide a valuable source of information on prefire suppression and preharvest condition of the region's forests. Of the early exam estimates of stand origin, 52 percent were within 20 years of estimates taken from stand exams conducted in the 1980's, and 73 percent were within 60 years. There was no significant bias toward either higher or lower age estimates. The early stand exam data can give an accurate estimate of stand age distributions over large areas.

  11. Understanding the Danish Forest School Approach: Early Years Education in Practice. Understanding the... Approach

    ERIC Educational Resources Information Center

    Williams-Siegfredsen, Jane

    2011-01-01

    "Understanding the Danish Forest School Approach" is a much needed source of information for those wishing to extend and consolidate their understanding of the Forest School Approach in Denmark and how it is used in the teaching and learning of young children. It will enable the reader to analyse the essential elements of this Approach to early…

  12. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    NASA Technical Reports Server (NTRS)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  13. Daily MODIS data trends of hurricane-induced forest impact and early recovery

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near pre-hurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  14. Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests

    NASA Astrophysics Data System (ADS)

    Song, M.; Liu, P. F.; Hanna, S. J.; Li, Y. J.; Martin, S. T.; Bertram, A. K.

    2015-05-01

    Oxidation of isoprene is an important source of secondary organic material (SOM) in atmospheric particles, especially in areas such as the Amazon Basin. Information on the viscosities, diffusion rates, and mixing times within isoprene-derived SOM is needed for accurate predictions of air quality, visibility, and climate. Currently, however, this information is not available. Using a bead-mobility technique and a poke-flow technique combined with fluid simulations, the relative humidity (RH)-dependent viscosities of SOM produced from isoprene photo-oxidation were quantified for 20-60 μm particles at 295 ± 1 K. From 84.5 to 0% RH, the viscosities for isoprene-derived SOM varied from ~ 2 × 10-1 to ~ 3 × 105 Pa s, implying that isoprene-derived SOM ranges from a liquid to a semisolid over this RH range. These viscosities correspond to diffusion coefficients of ~ 2 × 10-8 to ~ 2 × 10-14 cm2 s-1 for large organic molecules that follow the Stokes-Einstein relation. Based on the diffusion coefficients, the mixing time of large organic molecules within 200 nm isoprene-derived SOM particles ranges from approximately 0.1 h to less than 1 s. To illustrate the atmospheric implications of this study's results, the Amazon Basin is used as a case study for an isoprene-dominant forest. Considering the RH and temperature range observed in the Amazon Basin and with some assumptions about the dominant chemical compositions of SOM particles in the region, it is likely that SOM particles in this area are liquid and reach equilibrium with large gas-phase organic molecules on short time scales, less than or equal to approximately 0.1 h.

  15. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  16. Potential of VIIRS Data for Regional Monitoring of Gypsy Moth Defoliation: Implications for Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J. P.; Ryan, R. E.; Smoot, J. C.; Prados, D. L.; McKellip, R. D.; Sader, S. A.; Gasser, G.; May, G.; Hargrove, W.

    2007-12-01

    A NASA RPC (Rapid Prototyping Capability) experiment was conducted to assess the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) data for monitoring non-native gypsy moth (Lymantria dispar) defoliation of forests. This experiment compares defoliation detection products computed from simulated VIIRS and from MODIS (Moderate Resolution Imaging Spectroradiometer) time series products as potential inputs to a forest threat EWS (Early Warning System) being developed for the USFS (USDA Forest Service). Gypsy moth causes extensive defoliation of broadleaved forests in the United States and is specifically identified in the Healthy Forest Restoration Act (HFRA) of 2003. The HFRA mandates development of a national forest threat EWS. This system is being built by the USFS, and NASA is aiding integration of needed satellite data products into this system, including MODIS products. This RPC experiment enabled the MODIS follow-on, VIIRS, to be evaluated as a data source for EWS forest monitoring products. The experiment included 1) assessment of MODIS-simulated VIIRS NDVI products, and 2) evaluation of gypsy moth defoliation mapping products from MODIS-simulated VIIRS and from MODIS NDVI time series data. This experiment employed MODIS data collected over the approx. 15 million acre mid-Appalachian Highlands during the annual peak defoliation time frame (June 10 through July 27) during 2000-2006. NASA Stennis Application Research Toolbox software was used to produce MODIS-simulated VIIRS data and NASA Stennis Time Series Product Tool software was employed to process MODIS and MODIS-simulated VIIRS time series data scaled to planetary reflectance. MODIS-simulated VIIRS data was assessed through comparison to Hyperion-simulated VIIRS data using data collected during gypsy moth defoliation. Hyperion- simulated MODIS data showed a high correlation with actual MODIS data. MODIS-simulated VIIRS data for the same date showed moderately high correlation with Hyperion

  17. Fungal and Bacterial Communities in the Rhizosphere of Pinus tabulaeformis Related to the Restoration of Plantations and Natural Secondary Forests in the Loess Plateau, Northwest China

    PubMed Central

    Yu, Hong-Xia; Wang, Chun-Yan; Tang, Ming

    2013-01-01

    Chinese pine (Pinus tabulaeformis Carr.) is widely planted for restoration in destroyed ecosystems of the Loess Plateau in China. Although soil microbial communities are important subsurface components of the terrestrial ecosystems, little is known about fungal and bacterial communities in the rhizosphere of planted and natural P. tabulaeformis forests in the region. In this study, fungal and bacterial communities in the rhizosphere of P. tabulaeformis were analyzed by nested PCR-DGGE (denaturing gradient gel electrophoresis). Diversity analysis revealed that the values of the Shannon-Wiener index (H) and the Simpson index (D) of fungal communities were higher in natural secondary forests than in plantations except for the 3-year-old site. Moreover, the values of species richness, H, and D of the bacterial communities were also higher in the former. Totally, 18 fungal and 19 bacterial DGGE band types were successfully retrieved and sequenced. The dominant fungi in the rhizosphere of P. tabulaeformis belonged to the phylum of Basidiomycota, while the dominant bacteria belonged to the phylum of Proteobacteria. Principal component analysis indicated that fungal and bacterial species were more unitary in plantations than in natural secondary forests, and the majority of them were more likely to appear in the latter. Correlation analysis showed no significant correlation between the fungal and bacterial community diversities. PMID:24459438

  18. [Seasonal fluctuation of soil microbial biomass carbon in secondary oak forest and Pinus taeda plantation in north subtropical area of China].

    PubMed

    Wang, Guo-bing; Ruan, Hong-hua; Tang, Yan-fei; Luan, Yi-ling; Chen, Yue-qin; Tao, Zhong-fang

    2008-01-01

    With random block experimental design, the soil microbial biomass carbon, soil temperature, soil moisture, and litterfall input in secondary oak forest and Pinus taeda plantation were measured in successive two years at the Xiashu Experimental Forest of Nanjing Forestry University. The results showed that in the two stands, soil microbial biomass carbon had an obvious seasonal fluctuation, being lower in plant vigorous growth season but higher during plant dormancy. The microbial biomass carbon in 0-10 cm soil layer ranged from 267.8 mg x kg(-1) to 459.8 mg x kg(-1) in P. taeda plantation and from 278.6 mg x kg(-1) to 467.8 mg x kg(-1) in secondary oak forest. Soil microbial biomass carbon had a significant negative correlation with soil temperature, but no significant correlations with soil moisture and litterfall input. It was suggested that the seasonal fluctuation of soil microbial biomass carbon in test stands could be more related to the availability of soil carbon and other nutrients, competition of plant roots for soil nutrients, and plant growth rhythm. PMID:18419069

  19. Comparison of throughfall chemistry in a mature hemlock forest and an early-successional deciduous forest resulting from salvage logging in Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Zukswert, J. M.; Rhodes, A. L.; Dwyer, C. H.; Sweezy, T.

    2012-12-01

    Removal of foundation species as a result of disturbance events such as exotic species invasions can alter community composition and ecosystem function. The current hemlock woolly adelgid (Adelges tsugae) infestation in eastern North America that threatens the eastern hemlock (Tsuga canadensis), a foundation species, has motivated salvage logging efforts. Ecological succession resulting from salvage logging of hemlock would eventually produce a deciduous hardwood forest. The chemistry of throughfall beneath a mature hemlock forest canopy is expected to be more acidic than throughfall from a mature deciduous forest canopy because hemlock foliage releases more organic acids and fewer base cations. The chemical composition of throughfall during the early successional transition from hemlock to deciduous is less understood. We hypothesize that throughfall chemistry in a deciduous forest consisting primarily of juvenile trees may be more similar to direct precipitation because leaf area index is smaller. Differences between hemlock throughfall and direct precipitation may be larger due to the denser canopy of these mature trees. We compared the chemical composition of precipitation, hemlock throughfall, and black birch throughfall for 26 precipitation events from 4 March to 30 July 2012. The black birch (Betula lenta) forest patch resulted from salvage logging of hemlocks twenty years ago at the MacLeish Field Station in Whately, MA. From the three plots we measured the volume of water collected and pH, acid neutralizing capacity, dissolved organic carbon (DOC), and concentrations of cations (Ca2+, K+, Na+, Mg2+, NH4+), anions (Cl-, NO3-, SO42-), and dissolved silica. Precipitation totaled 405 mm during the course of the study. Throughfall totaled 347 mm in the black birch plot and 315 mm in the hemlock plot. The proportion of precipitation passing through the forest canopy was smaller in hemlock throughfall than black birch throughfall during small precipitation events

  20. Reduced deep soil water uptake through forest conversion to pasture in Amazonia

    SciTech Connect

    Jipp, P.H.; Nepstad, D.C. Woods Hole Research Center, MA )

    1993-06-01

    Forests of eastern Amazonia are being replaced by pastures and secondary forests. We measured soil water storage and flux in adjacent forest and pasture ecosystems using Time Domain Reflectometry sensors installed in the walls of deep (9-m) shafts. The forest withdrew 597+/-25 mm of soil water stored below 1 m depth during the 1991 dry season (Jun-Dec), 1.7 times more than the pasture. Uptake from the bottom of the forest soil profile continued even after rainfall resumed in early 1992. The hydrologic impacts of tropical deforestation may be most severe for evergreen forests with deep rooting zones in areas of seasonal drought.

  1. Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; Smoot, James; Kuper, Phillip; Prados, Donald; Russell, Jeffrey; Ross, Kenton; Gasser, Gerald; Sader, Steven; McKellip, Rodney

    2007-01-01

    This report details one of three experiments performed during FY 2007 for the NASA RPC (Rapid Prototyping Capability) at Stennis Space Center. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria dispar). The intent of the RPC experiment was to assess the degree to which VIIRS data can provide forest disturbance monitoring information as an input to a forest threat EWS (Early Warning System) as compared to the level of information that can be obtained from MODIS data. The USDA Forest Service (USFS) plans to use MODIS products for generating broad-scaled, regional monitoring products as input to an EWS for forest health threat assessment. NASA SSC is helping the USFS to evaluate and integrate currently available satellite remote sensing technologies and data products for the EWS, including the use of MODIS products for regional monitoring of forest disturbance. Gypsy moth defoliation of the mid-Appalachian highland region was selected as a case study. Gypsy moth is one of eight major forest insect threats listed in the Healthy Forest Restoration Act (HFRA) of 2003; the gypsy moth threatens eastern U.S. hardwood forests, which are also a concern highlighted in the HFRA of 2003. This region was selected for the project because extensive gypsy moth defoliation occurred there over multiple years during the MODIS operational period. This RPC experiment is relevant to several nationally important mapping applications, including agricultural efficiency, coastal management, ecological forecasting, disaster management, and carbon management. In this experiment, MODIS data and VIIRS data simulated from MODIS were assessed for their ability to contribute broad, regional geospatial information on gypsy moth defoliation. Landsat and ASTER (Advanced Spaceborne Thermal Emission

  2. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural

  3. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  4. Activity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils.

    PubMed

    Lima, Amanda B; Muniz, Aleksander W; Dumont, Marc G

    2014-01-01

    The oxidation of atmospheric CH4 in upland soils is mostly mediated by uncultivated groups of microorganisms that have been identified solely by molecular markers, such as the sequence of the pmoA gene encoding the β-subunit of the particulate methane monooxygenase enzyme. The objective of this work was to compare the activity and diversity of methanotrophs in Amazonian Dark Earth soil (ADE, Hortic Anthrosol) and their adjacent non-anthropic soil. Secondly, the effect of land use in the form of manioc cultivation was examined by comparing secondary forest and plantation soils. CH4 oxidation potentials were measured and the structure of the methanotroph communities assessed by quantitative PCR (qPCR) and amplicon pyrosequencing of pmoA genes. The oxidation potentials at low CH4 concentrations (10 ppm of volume) were relatively high in all the secondary forest sites of both ADE and adjacent soils. CH4 oxidation by the ADE soil only recently converted to a manioc plantation was also relatively high. In contrast, both the adjacent soils used for manioc cultivation and the ADE soil with a long history of agriculture displayed lower CH4 uptake rates. Amplicon pyrosequencing of pmoA genes indicated that USCα, Methylocystis and the tropical upland soil cluster (TUSC) were the dominant groups depending on the site. By qPCR analysis it was found that USCα pmoA genes, which are believed to belong to atmospheric CH4 oxidizers, were more abundant in ADE than adjacent soil. USCα pmoA genes were abundant in both forested and cultivated ADE soil, but were below the qPCR detection limit in manioc plantations of adjacent soil. The results indicate that ADE soils can harbor high abundances of atmospheric CH4 oxidizers and are potential CH4 sinks, but as in other upland soils this activity can be inhibited by the conversion of forest to agricultural plantations. PMID:25374565

  5. Activity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils

    PubMed Central

    Lima, Amanda B.; Muniz, Aleksander W.; Dumont, Marc G.

    2014-01-01

    The oxidation of atmospheric CH4 in upland soils is mostly mediated by uncultivated groups of microorganisms that have been identified solely by molecular markers, such as the sequence of the pmoA gene encoding the β-subunit of the particulate methane monooxygenase enzyme. The objective of this work was to compare the activity and diversity of methanotrophs in Amazonian Dark Earth soil (ADE, Hortic Anthrosol) and their adjacent non-anthropic soil. Secondly, the effect of land use in the form of manioc cultivation was examined by comparing secondary forest and plantation soils. CH4 oxidation potentials were measured and the structure of the methanotroph communities assessed by quantitative PCR (qPCR) and amplicon pyrosequencing of pmoA genes. The oxidation potentials at low CH4 concentrations (10 ppm of volume) were relatively high in all the secondary forest sites of both ADE and adjacent soils. CH4 oxidation by the ADE soil only recently converted to a manioc plantation was also relatively high. In contrast, both the adjacent soils used for manioc cultivation and the ADE soil with a long history of agriculture displayed lower CH4 uptake rates. Amplicon pyrosequencing of pmoA genes indicated that USCα, Methylocystis and the tropical upland soil cluster (TUSC) were the dominant groups depending on the site. By qPCR analysis it was found that USCα pmoA genes, which are believed to belong to atmospheric CH4 oxidizers, were more abundant in ADE than adjacent soil. USCα pmoA genes were abundant in both forested and cultivated ADE soil, but were below the qPCR detection limit in manioc plantations of adjacent soil. The results indicate that ADE soils can harbor high abundances of atmospheric CH4 oxidizers and are potential CH4 sinks, but as in other upland soils this activity can be inhibited by the conversion of forest to agricultural plantations. PMID:25374565

  6. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  7. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol

  8. Changes in soil carbon stocks after a conversion from secondary forest to rubber - a case study for Xishuangbanna prefecture, Southwest China

    NASA Astrophysics Data System (ADS)

    de Blecourt, M.; Brumme, R.; Veldkamp, E.

    2012-04-01

    Since the 1950's rapid deforestation is taking place in Xishuangbanna prefecture, a border region in Southwest China. Deforestation is mainly related to the increase of rubber plantations, the forest area was decreased by 28% (370,494 ha) while the area in rubber plantations increased by 194,151 ha (increase of 90%) between 1976 and 2003. Besides rubber plantations forest areas have mainly been replaced by shrublands, and shifting cultivation. The aim of this study is to quantify changes in soil carbon stocks after a conversion from secondary forest to rubber. The study site has a size of 3600 ha and was located in Xishuangbanna prefecture, Southwest China. We selected 11 rubber plantation sites with ages ranging from 5 to 46 years old and paired each rubber plantation site with a secondary forest site. The sites have a size of 20 x 20m and were carefully selected to ensure that the paired sites have similar topographic and soil characteristics and only differ in the recent land use history. At each site we measured soil carbon concentration and stocks up to 120 cm's depth, furthermore we measured soil characteristics (soil pH, bulk density, exchangeable cations), biophysical parameters (slope, aspect, altitude, estimates of aboveground biomass and forest floor) and recorded management related parameters (land use age, harvesting, burning history). The specific questions addressed in this study are: i) What is the amount of change in soil carbon concentration and stocks after a conversion from forest to rubber for respectively the cumulative soil pedon and the individual soil depth intervals? ii) Which predictor variables considering soil characteristics, biophysical factors and management related parameters can be used to predict the changes in soil carbon stocks following this land use conversion? Preliminary results show that soil carbon stocks up to 120 cm depth were significantly lower in rubber plantations compared to their reference site (P = 0.009), with a

  9. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Shuman, Bryan; Bartlein, Patrick J.

    2009-04-01

    The prairie-forest transition in midcontinental North America is a major physiognomic boundary, and its shifts during the Holocene are a classic example of climate-driven ecotonal dynamics. Recent work suggests asymmetrical Holocene behavior, with a relatively rapid early Holocene deforestation and more gradual reforestation later in the Holocene. This paper presents a new synthesis of the Holocene history of the Great Plains prairie-forest ecotone in the north-central US and central Canada that updates prior mapping efforts and systematically assesses rates of change. Changes in percent woody cover (%WC) are inferred from fossil pollen records, using the modern analog technique and surface-sediment pollen samples cross-referenced against remotely sensed observations. For contemporary pollen samples from the Great Plains, %WC linearly correlates to percent arboreal pollen (%AP), but regression parameters vary interregionally. At present, %AP is consistently higher than %WC, because of high background levels of arboreal pollen. Holocene maps of the eastern prairie-forest ecotone agree with prior maps, showing a rapid decrease in %WC and eastward prairie advance between 10,000 and 8000 ka (1 ka = 1000 calibrated years before present), a maximum eastward position of the ecotone from 7 to 6 ka, and increased %WC and westward prairie retreat after 6 ka. Ecotone position is ambiguous in Iowa and southeastern Minnesota, due to a scarcity of modern analogs for early-Holocene samples with high Ulmus abundances and for samples from alluvial sediments. The northern prairie-forest ecotone was positioned in central Saskatchewan between 12 and 10 ka, stabilized from 10 to 6 ka despite decreases in %WC at some sites, then moved south after 6 ka. In both east and north, ecotonal movements are consistent with a dry early Holocene and increasing moisture availability after 6 ka. Sites near the ecotone consistently show an asymmetric pattern of abrupt early Holocene deforestation

  10. Potential of VIIRS Data for Regional Monitoring of Gypsy Moth Defoliation: Implications for Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; Smoot, James C.; Prados, Donald; McKellip, Rodney; Sader. Steven A.; Gasser, Jerry; May, George; Hargrove, William

    2007-01-01

    A NASA RPC (Rapid Prototyping Capability) experiment was conducted to assess the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) data for monitoring non-native gypsy moth (Lymantria dispar) defoliation of forests. This experiment compares defoliation detection products computed from simulated VIIRS and from MODIS (Moderate Resolution Imaging Spectroradiometer) time series products as potential inputs to a forest threat EWS (Early Warning System) being developed for the USFS (USDA Forest Service). Gypsy moth causes extensive defoliation of broadleaved forests in the United States and is specifically identified in the Healthy Forest Restoration Act (HFRA) of 2003. The HFRA mandates development of a national forest threat EWS. This system is being built by the USFS and NASA is aiding integration of needed satellite data products into this system, including MODIS products. This RPC experiment enabled the MODIS follow-on, VIIRS, to be evaluated as a data source for EWS forest monitoring products. The experiment included 1) assessment of MODIS-simulated VIIRS NDVI products, and 2) evaluation of gypsy moth defoliation mapping products from MODIS-simulated VIIRS and from MODIS NDVI time series data. This experiment employed MODIS data collected over the approximately 15 million acre mid-Appalachian Highlands during the annual peak defoliation time frame (approximately June 10 through July 27) during 2000-2006. NASA Stennis Application Research Toolbox software was used to produce MODIS-simulated VIIRS data and NASA Stennis Time Series Product Tool software was employed to process MODIS and MODIS-simulated VIIRS time series data scaled to planetary reflectance. MODIS-simulated VIIRS data was assessed through comparison to Hyperion-simulated VIIRS data using data collected during gypsy moth defoliation. Hyperion-simulated MODIS data showed a high correlation with actual MODIS data (NDVI R2 of 0.877 and RMSE of 0.023). MODIS-simulated VIIRS data for the same

  11. Early Childhood Education: A Model for 21st Century Secondary Education

    ERIC Educational Resources Information Center

    Berndt, Rene

    2012-01-01

    As the designer of primary and secondary educational facilities, the author has become familiar with educational thinkers such as Sir Kenneth Robinson, Peter Senge, Ewan McIntosh, Daniel Pink and Howard Gardner--each promoting an approach based on system-thinking, self-directed exploration and multidimensional, interactive learning. In 2009, he…

  12. Guidelines for Implementing Career Exploration in the Early Secondary School Years.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Career and Vocational Education Section.

    Career education at the elementary level in Oregon focuses on career awareness and career exploration. At the secondary level a higher degree of experiences is developed in career exploration, which is concerned with self-understanding, occupational exploration, and career information. Career exploration provides experiences in career decision…

  13. Progress in the development of a S-RETGEM-based detector for an early forest fire warning system

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.

    2009-12-01

    We present a prototype of a Strip Resistive Thick GEM (S-RETGEM) photosensitive gaseous detector filled with Ne and ethylferrocene (EF) vapours at a total pressure of 1 atm for an early forest fire detection system. Measurements show that it is one hundred times more sensitive than the best commercial ultraviolet (UV) flame detectors; and therefore, it is able to reliably detect a flame of ~ 1.5 × 1.5 × 1.5 m3 at a distance of about 1 km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms rate when operating in an automatic mode. Preliminary results conducted with air-filled photosensitive gaseous detectors are also presented. The main advantages of this approach include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air-filled detectors at certain conditions may be as high as those filled with Ne and EF. Long-term tests of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the capability to detect forest fire at a very early stage of development. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.

  14. Role of Sarcoplasmic Reticulum Calcium in Development of Secondary Calcium Rise and Early Afterdepolarizations in Long QT Syndrome Rabbit Model

    PubMed Central

    Chang, Po-Cheng; Wo, Hung-Ta; Lee, Hui-Ling; Lin, Shien-Fong; Wen, Ming-Shien; Chu, Yen; Yeh, San-Jou; Chou, Chung-Chuan

    2015-01-01

    Background L-type calcium current reactivation plays an important role in development of early afterdepolarizations (EADs) and torsades de pointes (TdP). Secondary intracellular calcium (Cai) rise is associated with initiation of EADs. Objective To test whether inhibition of sarcoplasmic reticulum (SR) Ca2+ cycling suppresses secondary Cai rise and genesis of EADs. Methods Langendorff perfusion and dual voltage and Cai optical mapping were conducted in 10 rabbit hearts. Atrioventricular block (AVB) was created by radiofrequency ablation. After baseline studies, E4031, SR Ca2+ cycling inhibitors (ryanodine plus thapsigargin) and nifedipine were then administrated subsequently, and the protocols were repeated. Results At baseline, there was no spontaneous or pacing-induced TdP. After E4031 administration, action potential duration (APD) was significantly prolonged and the amplitude of secondary Cai rise was enhanced, and 7 (70%) rabbits developed spontaneous or pacing-induced TdP. In the presence of ryanodine plus thapsigargin, TdP inducibility was significantly reduced (2 hearts, 20%, p = 0.03). Although APD was significantly prolonged (from 298 ± 30 ms to 457 ± 75 ms at pacing cycle length of 1000 m, p = 0.007) by ryanodine plus thapsigargin, the secondary Cai rise was suppressed (from 8.8 ± 2.6% to 1.2 ± 0.9%, p = 0.02). Nifedipine inhibited TdP inducibility in all rabbit hearts. Conclusion In this AVB and long QT rabbit model, inhibition of SR Ca2+ cycyling reduces the inducibility of TdP. The mechanism might be suppression of secondary Cai rise and genesis of EADs. PMID:25875599

  15. [Comparison on concentrations and quality of dissolved organic matter in throughfall and stemflow in a secondary forest of Castanopsis carlesii and Cunninghamia lanceolata plantation].

    PubMed

    Lü, Mao-Kui; Xie, Jin-Sheng; Jiang, Miao-Hua; Luo, Shui-Jin; Zeng, Shao-Juan; Ji, Shu-Rong; Wan, Jing-Juan; Yang, Yu-Sheng

    2014-08-01

    In this paper, monthly variation of dissolved organic matter (DOM) concentrations as well as humification and aromaticity indices in throughfall and stemflow from secondary broadleaved Castanopsis carlesii (BF) forest and Cunninghamia lanceolata plantation (CP) were measured. The DOC concentrations in throughfall were significantly higher with greater variation in BF than in CP. The concentrations of DOC in throughfall were averagely 7.2 and 3.2 times of those in rainfall in BF and CP forests, respectively. The DOC concentrations of stemflow in CP were averagely 2.5 times as much as those in BF, and the DOC concentrations in stemflow tended to be greater in dry season than in rain season for the two forests. A significantly negative relationship was' found between the DOC concentrations in stemflow and the amounts of stemflow for both BF and CP. Moreover, the humification and aromaticity indices of DOM in throughfall in BF was significantly greater than in CP. In contrast, the humification and aromaticity indices of DOM from stemflow of CP were significantly greater than those of BF. This result indicated that the structure of DOM from throughfall was more complex in BF than in CP, and the structure of DOM from stemflow was vice versa. These results indicated that DOM in stemflow and throughfall showed significant variations in quantity and quality between BF and CP and may greatly impact the accumulation of soil organic carbon. PMID:25509068

  16. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  17. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  18. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica

    SciTech Connect

    Keller, M.; Reiners, W.A.

    1994-12-01

    We investigated changes in soil-atmosphere flux of CH{sub 4}, N{sub 2}O, and NO resulting from the succession of pasture to forest in the Atlantic lowlands of Costa Rica. We studied a dozen sites intensively for over one year in order to measure rates and to understand controlling mechanisms for gas exchange. CH{sub 4} flux was controlled primarily by soil moisture content. Soil consumption of atmospheric CH{sub 4} was greatest when soils were relatively dry. Forest soils consumed CH{sub 4} while pasture soils which had poor drainage generally produced CH{sub 4}. The seasonal pattern of N{sub 2}O emissions from forest soils was related exponentially to soil water-filled pore space. Annual average N{sub 2}O emissions correlated with soil exchangeable NO{sub 3}{sup -} concentrations. Soil-atmosphere NO flux was greatest when soils were relatively dry. We found the largest NO emissions from abandoned pasture sites. Combining these data with those from another study in the Atlantic lowlands of Costa Rica that focused on deforestation, we present a 50-year chronosequence of trace gas emissions that extends from natural conditions, through disturbance and natural recovery. The soil-atmosphere fluxes of CH{sub 4} and N{sub 2}O and NO may be restored to predisturbance rates during secondary succession. The changes in trace gas emissions following deforestation, through pasture use and secondary succession, may be explained conceptually through reference to two major controlling factors, nitrogen availability and soil-atmosphere diffusive exchange of gases as it is influenced by soil moisture content and soil compaction. 59 refs., 6 figs., 3 tabs.

  19. The Influence of Anthropogenic Sources on Fluxes of Secondary Organic Aerosol Precursors From a Deciduous Forest in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Saylor, R. D.; Stein, A. F.

    2012-12-01

    The dynamic, bi-directional exchange of trace chemical species between forests and the atmosphere has important impacts on both the forest ecosystem and atmospheric composition, with potentially profound consequences on air quality, climate and global ecosystem functioning. Forests are a dominant source of biogenic volatile organic compound (BVOC) emissions into the earth's atmosphere and thus play an important role in the formation of secondary organic aerosol (SOA). To arrive at a better scientific understanding of the complex chemical and physical processes of forest-atmosphere exchange and provide a platform for robust analysis of field measurements of these processes, a process-level, multiphase model of the atmospheric chemistry and physics of forest canopies is being developed. This model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS) is being used to investigate various aspects of forest-atmosphere exchange and chemistry including gas, aqueous and aerosol phases. ACCESS currently includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer, detailed chemical reactions, mixing with the background atmosphere and bi-directional exchange between the atmosphere and the canopy and the forest floor. The Walker Branch Watershed (WBW) is a dedicated ecosystem research area on the U. S. Department of Energy's Oak Ridge Reservation in eastern Tennessee. The 97.5 ha watershed has been the site of long-term ecosystem and atmospheric research activities since the mid-1960's. A flux tower located within the watershed (35°57'30"N, 84°17'15"W; 365 m above mean sea level) and 10 km southwest of Oak Ridge, Tennessee, has served as a focal point for previous atmospheric turbulence and chemical flux measurements and the canopy morphology of the forest surrounding the flux tower has been extensively documented. The forest is

  20. Supporting Optimal Child Development through Early Head Start and Head Start Programs: Reflections on Secondary Data Analyses of FACES and EHSREP

    ERIC Educational Resources Information Center

    Chazan-Cohen, Rachel; Halle, Tamara G.; Barton, Lauren R.; Winsler, Adam

    2012-01-01

    We are delighted to reflect on the 10 papers highlighted in this important special issue of "Early Childhood Research Quarterly" devoted to recent secondary data analyses of the FACES and EHSREP datasets. First, we provide some background on Head Start research and give an overview of the large-scale Head Start and Early Head Start datasets that…

  1. A Step towards Clerical Preferment: Secondary School Teachers' Careers in Early Modern Sweden

    ERIC Educational Resources Information Center

    Lindmark, Daniel

    2004-01-01

    This article investigates the function served by embarking on a teaching career in the Latin school system for recruitment to the clergy in early modern Sweden. The study is restricted to the eighty-nine teachers serving at Pitea Grammar School in Northern Sweden in the period from 1650 to 1849. The investigation pays considerable attention to the…

  2. A Mutation in Syne2 Causes Early Retinal Defects in Photoreceptors, Secondary Neurons, and Müller Glia

    PubMed Central

    Maddox, Dennis M.; Collin, Gayle B.; Ikeda, Akihiro; Pratt, C. Herbert; Ikeda, Sakae; Johnson, Britt A.; Hurd, Ron E.; Shopland, Lindsay S.; Naggert, Jürgen K.; Chang, Bo; Krebs, Mark P.; Nishina, Patsy M.

    2015-01-01

    Purpose. The purpose of this study was to identify the molecular basis and characterize the pathological consequences of a spontaneous mutation named cone photoreceptor function loss 8 (cpfl8) in a mouse model with a significantly reduced cone electroretinography (ERG) response. Methods. The chromosomal position for the recessive cpfl8 mutation was determined by DNA pooling and by subsequent genotyping with simple sequence length polymorphic markers in an F2 intercross phenotyped by ERG. Genes within the candidate region of both mutants and controls were directly sequenced and compared. The effects of the mutation were examined in longitudinal studies by light microscopy, marker analysis, transmission electron microscopy, and ERG. Results. The cpfl8 mutation was mapped to Chromosome 12, and a premature stop codon was identified in the spectrin repeat containing nuclear envelope 2 (Syne2) gene. The reduced cone ERG response was due to a significant reduction in cone photoreceptors. Longitudinal studies of the early postnatal retina indicated that the cone photoreceptors fail to develop properly, rod photoreceptors mislocalize to the inner nuclear layer, and both rods and cones undergo apoptosis prematurely. Moreover, we observed migration defects of secondary neurons and ectopic Müller cell bodies in the outer nuclear layer in early postnatal development. Conclusions. SYNE2 is important for normal retinal development. We have determined that not only is photoreceptor nuclear migration affected, but also the positions of Müller glia and secondary neurons are disturbed early in retinal development. The cpfl8 mouse model will serve as an important resource for further examining the role of nuclear scaffolding and migration in the developing retina. PMID:26066746

  3. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    NASA Astrophysics Data System (ADS)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  4. Indigenous knowledge informing management of tropical forests: the link between rhythms in plant secondary chemistry and lunar cycles.

    PubMed

    Vogt, Kristiina A; Beard, Karen H; Hammann, Shira; Palmiotto, Jennifer O'Hara; Vogt, Daniel J; Scatena, Frederick N; Hecht, Brooke P

    2002-09-01

    This research used knowledge of the indigenous practice of timing nontimber forest product harvest with the full moon to demonstrate that chemicals controlling the decomposition rate of foliage fluctuate with the lunar cycle and may have developed as a result of plant-herbivore interactions. Indigenous knowledge suggests that leaves harvested during the full moon are more durable. Palm leaves harvested during the full moon had higher total C, hemicellulose, complex C and lower Ca concentrations. These chemical changes should make palm leaves less susceptible to herbivory and more durable when harvested during the full moon. This study proposes a mechanism by which plants in the tropics minimize foliage herbivory and influence the decomposition rates of senesced leaves and their durability, especially during the full moon. This research supports the need to use natural life cycles in managing forests and provides a scientific basis for an indigenous community's harvesting practice. PMID:12436848

  5. Being in a safe and thus secure place, the core of early labour: A secondary analysis in a Swedish context

    PubMed Central

    Carlsson, Ing-Marie

    2016-01-01

    Background Early labour is the very first phase of the labour process and is considered to be a period of time when no professional attendance is needed. However there is a high frequency of women who seek care at the delivery wards during this phase. When a woman is admitted to the delivery ward, one role for midwives is to determine whether the woman is in established labour or not. If the woman is assessed as being in early labour she will probably then be advised to return home. This recommendation is made due to past research that found that the longer a woman is in hospital the higher the risk for complications for her and her child. Women have described how this situation leaves them in a vulnerable situation where their preferences are not always met and where they are not always included in the decision-making process. Aim The aim of this study was to generate a theory based on where a woman chooses to be during the early labour process and to increase our understanding about how experiences can differ from place to place. Methods The method was a secondary analysis with grounded theory. The data used in the analysis was from two qualitative interview studies and 37 transcripts. Conclusion The findings revealed a substantive theory that women needed to be in a safe and thus secure place during early labour. This theory also describes the interplay between how women ascribed their meaning of childbirth as either a natural live event or a medical one, how this influenced where they wanted to be during early labour, and how that chosen place influenced their experiences of labour and birth. PMID:27172510

  6. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China

    PubMed Central

    Wang, Faming; Li, Jian; Wang, Xiaoli; Zhang, Wei; Zou, Bi; Neher, Deborah A.; Li, Zhian

    2014-01-01

    Nutrient availability greatly regulates ecosystem processes and functions of tropical forests. However, few studies have explored impacts of N addition (aN), P addition (aP) and N×P interaction on tropical forests N2O fluxes. We established an N and P addition experiment in a tropical forest to test whether: (1) N addition would increase N2O emission and nitrification, and (2) P addition would increase N2O emission and N transformations. Nitrogen and P addition had no effect on N mineralization and nitrification. Soil microbial biomass was increased following P addition in wet seasons. aN increased 39% N2O emission as compared to control (43.3 μgN2O-N m−2h−1). aP did not increase N2O emission. Overall, N2O emission was 60% greater for aNP relative to the control, but significant difference was observed only in wet seasons, when N2O emission was 78% greater for aNP relative to the control. Our results suggested that increasing N deposition will enhance soil N2O emission, and there would be N×P interaction on N2O emission in wet seasons. Given elevated N deposition in future, P addition in this tropical soil will stimulate soil microbial activities in wet seasons, which will further enhance soil N2O emission. PMID:25001013

  7. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling

    PubMed Central

    Schwebs, David J.; Hadwiger, Jeffrey A.

    2014-01-01

    Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1− and gα4− cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5− mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5− cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1. PMID:25451080

  8. Early Seizure Detection Algorithm Based on Intracranial EEG and Random Forest Classification.

    PubMed

    Donos, Cristian; Dümpelmann, Matthias; Schulze-Bonhage, Andreas

    2015-08-01

    The goal of this study is to provide a seizure detection algorithm that is relatively simple to implement on a microcontroller, so it can be used for an implantable closed loop stimulation device. We propose a set of 11 simple time domain and power bands features, computed from one intracranial EEG contact located in the seizure onset zone. The classification of the features is performed using a random forest classifier. Depending on the training datasets and the optimization preferences, the performance of the algorithm were: 93.84% mean sensitivity (100% median sensitivity), 3.03 s mean (1.75 s median) detection delays and 0.33/h mean (0.07/h median) false detections per hour. PMID:26022388

  9. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska

    NASA Technical Reports Server (NTRS)

    Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

    2011-01-01

    There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence

  10. Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation

    NASA Astrophysics Data System (ADS)

    Baker, Brad; Bai, Jian-Hui; Johnson, Curtis; Cai, Zhong-Tao; Li, Qing-Jun; Wang, Yong-Feng; Guenther, Alex; Greenberg, Jim; Klinger, Lee; Geron, Chris; Rasmussen, Rei

    2005-01-01

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment. The eddy covariance measurement technique was used to measure isoprene fluxes, while monoterpene fluxes were modeled based on leaf level emission measurements. Maximum observed isoprene fluxes occurred during the wet season and daytime average fluxes were about 1 mg C m-2 h-1. Dry season fluxes were much lower with a daytime average of 0.15 mg C m-2 h-1. Wet season isoprene fluxes compare quite well with isoprene fluxes observed from other tropical forests. Monoterpene fluxes came, almost entirely, from Hevea brasiliensis, which is a light-dependent monoterpene emitter. Modeled wet season total monoterpene fluxes were about 2 mg C m-2 h-1 (average for the daytime), and in the dry season were undetectable. Extreme drought conditions, and the drought deciduous nature of Hevea brasiliensis may be the cause of the low dry season fluxes.

  11. Fanconi Syndrome Secondary to Deferasirox in Diamond-Blackfan Anemia: Case Series and Recommendations for Early Diagnosis.

    PubMed

    Papneja, Koyelle; Bhatt, Mihir D; Kirby-Allen, Melanie; Arora, Steven; Wiernikowski, John T; Athale, Uma H

    2016-08-01

    Deferasirox is an oral iron chelator used to treat patients with transfusion-related iron overload. We report, from two institutions, two children with Diamond-Blackfan anemia who developed Fanconi syndrome secondary to deferasirox administration, along with a review of the literature. The current recommendation for the laboratory monitoring of patients receiving deferasirox does not include serum electrolytes or urine analysis. Thus, despite routine clinic visits and bloodwork, these two patients presented with life-threatening electrolyte abnormalities requiring hospitalization. Hence, we propose the inclusion of serum electrolytes and urine analysis as part of routine monitoring to facilitate the early diagnosis of Fanconi syndrome in the context of high doses of deferasirox therapy. PMID:27082377

  12. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    PubMed Central

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  13. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex.

    PubMed

    Billeh, Yazan N; Rodriguez, Alexander V; Bellesi, Michele; Bernard, Amy; de Vivo, Luisa; Funk, Chadd M; Harris, Julie; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof; Cirelli, Chiara; Tononi, Giulio

    2016-01-01

    Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25-P30, ≥ 50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  14. Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession.

    PubMed

    Barba, Josep; Curiel Yuste, Jorge; Poyatos, Rafael; Janssens, Ivan A; Lloret, Francisco

    2016-09-01

    How forests cope with drought-induced perturbations and how the dependence of soil respiration on environmental and biological drivers is affected in a warming and drying context are becoming key questions. The aims of this study were to determine whether drought-induced die-off and forest succession were reflected in soil respiration and its components and to determine the influence of climate on the soil respiration components. We used the mesh exclusion method to study seasonal variations in soil respiration (R S) and its components: heterotrophic (R H) and autotrophic (R A) [further split into fine root (R R) and mycorrhizal respiration (R M)] in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) is undergoing a drought-induced die-off and is being replaced by holm oak (Quercus ilex L.). Drought-induced pine die-off was not reflected in R S nor in its components, which denotes a high functional resilience of the plant and soil system to pine die-off. However, the succession from Scots pine to holm oak resulted in a reduction of R H and thus in an important decrease of total respiration (R S was 36 % lower in holm oaks than in non-defoliated pines). Furthermore, R S and all its components were strongly regulated by soil water content-and-temperature interaction. Since Scots pine die-off and Quercus species colonization seems to be widely occurring at the driest limit of the Scots pine distribution, the functional resilience of the soil system over die-off and the decrease of R S from Scots pine to holm oak could have direct consequences for the C balance of these ecosystems. PMID:26879544

  15. Early assessment of implementing evidence-based brief therapy interventions among secondary service psychiatric therapists.

    PubMed

    Lindholm, Lars H; Koivukangas, Antti; Lassila, Antero; Kampman, Olli

    2015-10-01

    This implementation study was part of the Ostrobothnia Depression Study, in Finland, which covered implementation of motivational interviewing (MI) and behavioral activation (BA) within regional public psychiatric secondary care. It aimed to evaluate the mid-term progress of implementation and related factors. Altogether, 80 therapists had been educated through the implementation program by the point of the mid-term evaluation. Eligible information for evaluation was gathered using two questionnaires (q1, q2) with a one-year interval. A total of 45 of the 80 therapists completed q1, 30 completed q2, and 24 completed both questionnaires. Professional education was the only background factor associated with adopting the interventions (q1: p=0.059, q2: p=0.023), with higher education indicating greater activity. On the basis of trends such as changes in overall usefulness score from q1 to q2, the most involved therapists were slightly more likely to adopt MI/BA. Our experience so far suggests that encouraging staff to begin using new interventions during education is very important. The Consolidated Framework for Implementation Research was found to be a useful tool for constructing the evaluation. PMID:26113263

  16. QLF monitoring of therapies for early secondary caries arrestment and remineralization

    NASA Astrophysics Data System (ADS)

    Fontana, Margherita; Gonzalez-Cabezas, Carlos; Stookey, George K.

    2000-03-01

    Secondary caries (SC) is the most common reason for restoration failure. The purpose of this study was to evaluate the Quantitative Light-Induced Fluorescence (QLF) method for monitoring therapies to inhibit SC progression. Forty-eight human teeth with resin restorations were demineralized for 4 days in a microbial caries model. Half of each specimen was then covered with an acid-resistant varnish to maintain the baseline lesion, and treated (group 1: non-treated control; group 2: chlorhexidine varnish for 24 h; group 3: fluoride varnish for 24 h; group 4: APF topical fluoride gel for 4 min), prior to being demineralized for 4 more days. Specimens were analyzed by QLF, sectioned, stained with Rhodamine B, and analyzed with a confocal microscope (CLSM) for lesion depth. The QLF results indicated that the control group was significantly (p less than 0.05) different (i.e., lesions progressed) from groups treated with fluoride (groups 3 and 4; lesions remineralized). All other group comparisons were not significantly different. Results obtained from CLSM analysis were similar to the ones obtained with QLF, except that lesions in group 2 were significantly deeper than the ones in the fluoride groups. Results suggest that the QLF method has a clear potential for monitoring remineralizing therapies for SC.

  17. Spatial distribution patterns of ammonia-oxidizing archaea abundance in subtropical forests at early and late successional stages

    PubMed Central

    Chen, Jie; Zhang, Hui; Liu, Wei; Lian, Juyu; Ye, Wanhui; Shen, Weijun

    2015-01-01

    Characterizing the spatial distribution patterns of soil microorganisms is helpful in understanding the biogeochemical processes they perform, but has been less studied relative to those of macroorganisms. In this study, we investigated and compared the spatially explicit distribution patterns of ammonia-oxidizing archaea (AOA) abundance and the influential factors between an early (ES) and a late successional (LS) subtropical forest stand. The average AOA abundance, vegetational attributes, and soil nutrient contents were mostly greater in the LS than the ES stand (P = 0.085 or smaller), but their spatial variations were more pronounced in the ES than the LS stand. The spatial distribution patches of AOA abundance were smaller and more irregular in the ES stand (patch size <50 m) than in the LS stand (patch size about 120 m). Edaphic and vegetational variables contributed more to the spatial variations of AOA abundance for the ES (9.3%) stand than for LS stand, whereas spatial variables (MEMs) were the main contributors (62%) for the LS stand. These results suggest that environmental filtering likely influence the spatial distribution of AOA abundance at early successional stage more than that at late successional stage, while spatial dispersal is dominant at late successional stage. PMID:26565069

  18. Spatial distribution patterns of ammonia-oxidizing archaea abundance in subtropical forests at early and late successional stages

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Zhang, Hui; Liu, Wei; Lian, Juyu; Ye, Wanhui; Shen, Weijun

    2015-11-01

    Characterizing the spatial distribution patterns of soil microorganisms is helpful in understanding the biogeochemical processes they perform, but has been less studied relative to those of macroorganisms. In this study, we investigated and compared the spatially explicit distribution patterns of ammonia-oxidizing archaea (AOA) abundance and the influential factors between an early (ES) and a late successional (LS) subtropical forest stand. The average AOA abundance, vegetational attributes, and soil nutrient contents were mostly greater in the LS than the ES stand (P = 0.085 or smaller), but their spatial variations were more pronounced in the ES than the LS stand. The spatial distribution patches of AOA abundance were smaller and more irregular in the ES stand (patch size <50 m) than in the LS stand (patch size about 120 m). Edaphic and vegetational variables contributed more to the spatial variations of AOA abundance for the ES (9.3%) stand than for LS stand, whereas spatial variables (MEMs) were the main contributors (62%) for the LS stand. These results suggest that environmental filtering likely influence the spatial distribution of AOA abundance at early successional stage more than that at late successional stage, while spatial dispersal is dominant at late successional stage.

  19. Biological soil crusts reduce soil erosion in early successional subtropical forests in PR China

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Käppeler, Kathrin; Nebel, Martin; Webber, Carla; Scholten, Thomas

    2016-04-01

    Biological soil crusts (BSCs) have major influences on terrestrial ecosystems and play significant functional roles in soil systems, such as accelerating soil formation, changing water flows or enhancing soil stability. By that, they have the potential to protect soil surfaces against erosive forces by wind or water. However, the effect of BSCs on erosion processes is rarely mentioned in literature and most of the work done focused on arid and semi-arid environments. Furthermore, compared to the structure and function of BSCs, less attention was paid to their temporal and topographical distribution. This study aims to investigate the influence of BSCs on initial soil erosion, and their topographical development over time in initial subtropical forest ecosystems. Therefore, measurements have been conducted within a biodiversity and ecosystem functioning experiment (BEF China) near Xingangshan, Jiangxi Province, PR China. Interrill erosion was measured on 220 microscale run-off plots (ROPs, 0.4 m × 0.4 m) and the occurrence, distribution and development of BSCs within the measuring setup were recorded. BSC cover in each ROP was determined photogrammetrically in four time steps (autumn 2011, summer 2012, summer 2013 and summer 2014). BSC species were identified by morphological characteristics and classified to higher taxonomic levels. Higher BSC cover led to reduced sediment discharge and runoff volume due to its protection against splash energy, the adherence of soil particles and enhanced infiltration. Canopy ground cover and leaf area index had a positive effect on the development of BSC cover at this initial stage of the forest ecosystem. Moreover, BSC cover decreased with increasing slope, as we presume that developing BSCs are washed away more easily at steep gradients. Elevation and aspect did not show an influence. BSCs in this study were moss-dominated and 26 different moos species were found. Mean BSC cover on ROPs was 14 % in the 3rd year of the tree

  20. A comparison of species composition and community assemblage of secondary forests between the birch and pine-oak belts in the mid-altitude zone of the Qinling Mountains, China

    PubMed Central

    Chai, Zongzheng

    2016-01-01

    The mid-altitude zone of the Qinling Mountains in China was once dominated by birch and pine-oak belts but are now mainly covered by secondary growth following large-scale deforestation. Assessing the recovery and sustainability of these forests is essential for their management and restoration. We investigated and compared the tree species composition and community assemblages of secondary forests of the birch and pine-oak belts in the Huoditang forest region of the Qinling Mountains after identical natural recoveries. Both types of belts had rich species compositions and similar floristic components but clearly different community structures. Tree diversity was significantly higher for the birch than the pine-oak belt. Niche and neutral processes simultaneously influenced the species distribution and community dynamics of the belts, and these forests were able to maintain stable development during natural recoveries. The conservation and management of these forests should receive more attention to protect biodiversity and the forest resources in the Qinling Mountains. PMID:27123377

  1. [Response of photosynthesis traits of dominant plant species to different light regimes in the secondary forest in the area of Qiandao Lake, Zhejiang, China].

    PubMed

    Guan, Ming; Jin, Ze-Xin; Wang, Qiang; Li, Yue-Lin; Zuo, Wei

    2014-06-01

    To understand the mechanisms driving community succession in the secondary forest surrounding Qiandao Lake, Zhejiang, China, we investigated seasonal dynamics of the diurnal variations of net photosynthetic rates, their responses to both light and CO2, and chlorophyll fluorescence parameters of four dominant plant species, i. e., Pinus massoniana, Castanopsis sclerophylla, Lithocarpus glaber and Cyclobalanopsis glauca in three natural light habitats, i. e., gap, edge and understory. In the three different light regimes, the daily mean values of the net photosynthetic rate (Pn) of P. massoniana and C. sclerophylla were significantly higher in summer than in the other seasons, while Pn of L. glaber and C. glauca was significantly higher in autumn than in the other seasons. In the forest gap and edge habitats, the annual mean values of the maximum net photosynthetic rate (Amax), the light saturation point (LSP), light compensation point (LCP) and dark respiration rate (Rd) of P. massoniana were the highest, followed by C. sclerophylla, and those of L. glaber and C. glauca were the lowest. In the understory habitat, the annual mean values of Amax and the apparent quantum yield (AQY) of C. glauca were the highest, followed by L. glaber and C. sclerophylla, and those of P. massoniana were the lowest. The annual mean values of the maximum rate of carboxylation (Vc max), maximum rate of electron transport (Jmax) and triose phosphate use rate (TPU) of P. massoniana were significantly higher than those of the other three plant species in the three different light regimes. During the four seasons, the photochemical maximum efficiency of PSII (Fv/Fm) of P. massoniana and C. sclerophylla in the forest gap habitat was significantly higher, while those of L. glaber and C. glauca in the understory habitat were significantly higher than in the other light regimes. The maximum values of Fv/Fm of P. massoniana and C. sclerophylla were the highest in summer, and those of L. glaber and

  2. γδ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration

    PubMed Central

    Gelderblom, Mathias; Arunachalam, Priyadharshini; Magnus, Tim

    2014-01-01

    Spontaneous or medically induced reperfusion occurs in up to 70% of patients within 24 h after cerebral ischemia. Reperfusion of ischemic brain tissue can augment the inflammatory response that causes additional injury. Recently, T cells have been shown to be an essential part of the post-ischemic tissue damage, and especially IL-17 secreting T cells have been implicated in the pathogenesis of a variety of inflammatory reactions in the brain. After stroke, it seems that the innate γδ T cells are the main IL-17 producing cells and that the γδ T cell activation constitutes an early and mainly damaging immune response in stroke. Effector mechanism of γδ T cell derived IL-17 in the ischemic brain include the induction of metalloproteinases, proinflammatory cytokines and neutrophil attracting chemokines, leading to a further amplification of the detrimental inflammatory response. In this review, we will give an overview on the concepts of γδ T cells and IL-17 in stroke pathophysiology and on their potential importance for human disease conditions. PMID:25414640

  3. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Yufang; Randerson, James T.; Goetz, Scott J.; Beck, Pieter S. A.; Loranty, Michael M.; Goulden, Michael L.

    2012-03-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Database. We used the MODIS-derived difference Normalized Burn Ratio (dNBR) and initial changes in spring albedo as measures of burn severity. We found that the most severe burns had the greatest reduction in summer MODIS Enhanced Vegetation Index (EVI) in the first year after fire, indicating greater loss of vegetation cover. By 5-8 years after fire, summer EVI for all severity classes had recovered to within 90%-108% of prefire levels. Spring and summer albedo progressively increased during the first 7 years after fire, with more severely burned areas showing considerably larger postfire albedo increases during spring and more rapid increases during summer as compared with moderate- and low-severity burns. After 5-7 years, increases in spring albedo above prefire levels were considerably larger in high-severity burns (0.20 ± 0.06; defined by dNBR percentiles greater than 75%) as compared to changes observed in moderate- (0.16 ± 0.06; for dNBR percentiles between 45% and 75%) or low-severity burns (0.13 ± 0.06; for dNBR percentiles between 20% and 45%). The sensitivity of spring albedo to dNBR was similar in all ecozones and for all vegetation types along gradients of burn severity. These results suggest carbon losses associated with increases in burn severity observed in some areas of boreal forests may be at least partly offset, in terms of climate impacts, by increases in negative forcing associated with changes in surface albedo.

  4. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents.

    PubMed

    Calmon, P; Gonze, M-A; Mourlon, Ch

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. PMID:26005747

  5. Primary and secondary effects of climate variability on carbon and water exchange in a managed subalpine Eucalyptus forest.

    NASA Astrophysics Data System (ADS)

    van Gorsel, Eva; Berni, Jose. A. J.; Briggs, Peter; Cabello-Leblic, Arancha; Chasmer, Laura; Cleugh, Helen A.; Hacker, Joerg; Hantson, Stijn; Haverd, Vanessa; Hughes, Dale; Hopkinson, Chris; Keith, Heather; Kljun, Natascha; Leuning, Ray; Yebra, Marta; Zegelin, Steve

    2013-04-01

    Climate variability and change, ecosystem disturbance and land management operate over a large range of temporal and spatial scales and lead to variability in carbon and water fluxes. Diagnosing the climate controls over these fluxes is not simple but key to improving prediction and understanding of water and carbon cycle-climate interactions. We use a novel technique to investigate the variability of the fluxes from daily to multiannual timescales. We rank direct controlling factors of climate on water use and carbon uptake (changes in radiation, temperature, humidity) and indirect factors (disturbance triggered by changes in climate conditions). Direct climate impacts depend on the time scale under consideration but are generally strongest on the annual time scale. To investigate the spatio-temporal variability caused by disturbance we use NDVI and albedo. They provide information on status and dynamics of the vegetation and we find that the whole area within Bago State Forest that was classified as native Eucalyptus forest (305.05 km2) was affected by a disturbance by insect attack. This disturbance affected tree species differently, led to a reduced photosynthetically active leaf area, reduced canopy conductance and hence photosynthetic capacity. The reduced net carbon uptake of the trees was evident as reduced biomass increment and increased mortality was observed. Net ecosystem exchange measurements at the Tumbarumba flux tower indicate that the ecosystem turned from a generally strong carbon sink to a source. We further find that the coherence between albedo and carbon and water exchange is strong on annual and multi-annual time scales. At a multi-annual time scale, carbon and water fluxes are coherent with the multivariate El Niño index.

  6. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    SciTech Connect

    Bosche, Bert; Schäfer, Matthias; Graf, Rudolf; Härtel, Frauke V.; Schäfer, Ute; Noll, Thomas

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  7. An early defect in primary and secondary T cell responses in asymptomatic cats during acute feline immunodeficiency virus (FIV) infection.

    PubMed Central

    Bishop, S A; Williams, N A; Gruffydd-Jones, T J; Harbour, D A; Stokes, C R

    1992-01-01

    As in HIV infection of humans, cats infected with FIV are particularly susceptible to secondary infection by opportunistic pathogens, suggesting an impaired ability to elicit an effective immune response against foreign antigens. In order to investigate the development of immunity in FIV-infected cats, we have used an autologous culture system to directly measure priming of naive CD4+ T cells to soluble protein antigen, in vitro. Using this assay, we showed previously that cats infected with FIV for several months had significantly reduced primary proliferative responses. We have now examined cats before infection, and at varying times after infection with FIV, to determine how soon after infection this defect in T cell priming was evident, compared with other quantitative and qualitative measurements of lymphocyte function. Our results showed a progressive decline in immune function in asymptomatic cats during the acute stage of infection with FIV. Primary T cell responses were most sensitive and a significant reduction in proliferation of naive T cells to foreign antigen occurred 5 weeks after infection, despite normal blastogenesis to T cell mitogens and normal CD4+/CD8+ ratios at these times. Whilst lymphocyte proliferation to T cell mitogens was unaffected throughout, a significant reduction in proliferation to a B cell mitogen occurred from week 8 onwards. CD4+/CD8+ ratios fell significantly from week 13 onwards, and proliferation of the memory T cell population to a recall antigen was significantly impaired later, from week 19 onwards. The defect in the priming of naive T cells to foreign antigen early after infection may be important in determining susceptibility to secondary infections. PMID:1458687

  8. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by

  9. Feeding behavior and nutrient intake in spiny forest-dwelling ring-tailed lemurs (Lemur catta) during early gestation and early to mid-lactation periods: compensating in a harsh environment.

    PubMed

    Gould, Lisa; Power, Michael L; Ellwanger, Nicholas; Rambeloarivony, Hajamanitra

    2011-07-01

    Strong resource seasonality in Madagascar has led to the evolution of female feeding priority and weaning synchrony in most lemur species. For these taxa, pregnancy/early lactation periods coincide with low food availability, and weaning of infants is timed with increased resources at the onset of the rainy season. Reproductive females experience high metabolic requirements, which they must accommodate, particularly when food resources are scarce. Female ring-tailed lemurs (Lemur catta) residing in spiny forest habitat must deal with resource scarcity, high temperatures (∼36-40°C) and little shade in early to mid-lactation periods. Considered "income breeders," these females must use resources obtained from the environment instead of relying on fat stores; thus, we expected they would differ from same-sized males in time spent on feeding and in the intake of food and nutrients. We investigated these variables in two groups (N = 11 and 12) of Lemur catta residing in spiny forest habitat during early gestation and early to mid-lactation periods. Focal animal data and food plant samples were collected, and plants were analyzed for protein, kcal, and fiber. We found no sex differences for any feeding or nutrient intake variable for the top five food species consumed. Females in early gestation spent more time feeding compared with early/mid-lactation. Physiological compensation for spiny forest-dwelling females may be tied to greater time spent resting compared with gallery forest conspecifics, consuming foods high in protein, calories, and water, reduced home range defense in a sparsely populated habitat, and for Lemur catta females in general, production of relatively dilute milk compared with many strepsirrhines. PMID:21541932

  10. Secondary stem anatomy and uses of four drought-deciduous species of a tropical dry forest in México.

    PubMed

    Isaias, Alejandra Quintanar; Velázquez Núñez, Mariana; Solares Arenas, Fortunato; de la Paz Pérez Olvera, Carmen; Torre-Blanco, Alfonso

    2005-01-01

    Wood and bark anatomy and histochemistry of Acacia bilimekii Humb. & Bonpl., Acacia cochliacantha Mcbride, Conzatia nultiflora (Rob) Stand. and Guazuma ulmifolia Lam. are described from stem samples collected in a tropical dry forest (Morelos, Mexico). Enzyme activities were tested in tangential, radial and transverse cuts of fresh material. Histochemistry and stem anatomy were studied on similar cuts previously softened in a solution of water-glicerol-PEG. Our results show that the anatomical patterns of bark and wood, as well as the histochemical patterns and specific gravity, are influenced by water accessibility and climate; these patterns could guarantee mechanical and anti-infection strategies to support extreme conditions. Enzyme cytochemistry reveals biochemical activities probably related to lipid utilization routes for the lignification processes and for synthesis of extractives; these results suggest that the formation and maturation of woody tissue is very active at the beginning of the rainy season. These species are widely used by the local population. Traditional uses include firewood, dead and live fences, fodder, construction, supporting stakes, handcrafts, farming tools, extraction of tanning products, and medicine. There is no relationship between use and abundance. Alternative uses are proposed according to a density index. PMID:17354418

  11. Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests of NW Argentina

    NASA Astrophysics Data System (ADS)

    Aragón, Roxana; Montti, Lia; Ayup, María Marta; Fernández, Romina

    2014-01-01

    Invasions of exotic tree species can cause profound changes in community composition and structure, and may even cause legacy effect on nutrient cycling via litter production. In this study, we compared leaf litter decomposition of two invasive exotic trees (Ligustrum lucidum and Morus sp.) and two dominant native trees (Cinnamomum porphyria and Cupania vernalis) in native and invaded (Ligustrum-dominated) forest stands in NW Argentina. We measured leaf attributes and environmental characteristics in invaded and native stands to isolate the effects of litter quality and habitat characteristics. Species differed in their decomposition rates and, as predicted by the different species colonization status (pioneer vs. late successional), exotic species decayed more rapidly than native ones. Invasion by L. lucidum modified environmental attributes by reducing soil humidity. Decomposition constants (k) tended to be slightly lower (-5%) for all species in invaded stands. High SLA, low tensile strength, and low C:N of Morus sp. distinguish this species from the native ones and explain its higher decomposition rate. Contrary to our expectations, L. lucidum leaf attributes were similar to those of native species. Decomposition rates also differed between the two exotic species (35% higher in Morus sp.), presumably due to leaf attributes and colonization status. Given the high decomposition rate of L. lucidum litter (more than 6 times that of natives) we expect an acceleration of nutrient circulation at ecosystem level in Ligustrum-dominated stands. This may occur in spite of the modified environmental conditions that are associated with L. lucidum invasion.

  12. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment

    PubMed Central

    Kröber, Wenzel; Li, Ying; Härdtle, Werner; Ma, Keping; Schmid, Bernhard; Schmidt, Karsten; Scholten, Thomas; Seidler, Gunnar; von Oheimb, Goddert; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2015-01-01

    While functional diversity (FD) has been shown to be positively related to a number of ecosystem functions including biomass production, it may have a much less pronounced effect than that of environmental factors or species-specific properties. Leaf and wood traits can be considered particularly relevant to tree growth, as they reflect a trade-off between resources invested into growth and persistence. Our study focussed on the degree to which early forest growth was driven by FD, the environment (11 variables characterizing abiotic habitat conditions), and community-weighted mean (CWM) values of species traits in the context of a large-scale tree diversity experiment (BEF-China). Growth rates of trees with respect to crown diameter were aggregated across 231 plots (hosting between one and 23 tree species) and related to environmental variables, FD, and CWM, the latter two of which were based on 41 plant functional traits. The effects of each of the three predictor groups were analyzed separately by mixed model optimization and jointly by variance partitioning. Numerous single traits predicted plot-level tree growth, both in the models based on CWMs and FD, but none of the environmental variables was able to predict tree growth. In the best models, environment and FD explained only 4 and 31% of variation in crown growth rates, respectively, while CWM trait values explained 42%. In total, the best models accounted for 51% of crown growth. The marginal role of the selected environmental variables was unexpected, given the high topographic heterogeneity and large size of the experiment, as was the significant impact of FD, demonstrating that positive diversity effects already occur during the early stages in tree plantations. PMID:26380685

  13. A Survey of Student Teachers' Views on Selected Aspects of the Teacher Education Program in Early Childhood Education, Intermediate Education, and Secondary Education.

    ERIC Educational Resources Information Center

    Brown, Robert M.

    Three surveys covering early childhood education, intermediate education (grades 4-9), and secondary education are summarized in this paper. The surveys cover professional courses required within the respective majors. Questions concerning specific courses are open-ended and divided into two categories: important aspects of the particular course…

  14. Comparing the Understanding of the Nature of Science by Preservice Secondary Science Teachers in the Mid-1960s and the Early 1990s.

    ERIC Educational Resources Information Center

    Boone, William J.; Andersen, Hans O.

    1996-01-01

    Presents a study comparing the understanding of the nature of science by preservice secondary science teachers in the mid-1960s and the early 1990s. Uses the Nature of Science Scale (NOSS) to determine teachers' understanding. Concludes with an evaluation of most items for which the responses changed dramatically in those 25 years. Contains 19…

  15. Organosulfates and Carboxylic Acids in Secondary Organic Aerosols in Coniferous Forests in Rocky Mountains (USA), Sierra Nevada Mountains (USA) and Northern Europe (Finland and Denmark)

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Hansen, A. M. K.; Kristensen, K.; Kristensen, T. B.; Mccubbin, I. B.; Hallar, A. G.; Petäjä, T.; Surratt, J. D.; Worton, D. R.; Bilde, M.; Kulmala, M. T.; Goldstein, A. H.

    2014-12-01

    Levels and chemical composition of secondary organic aerosols affect their climate effects and properties. Organosulfates (OS) are formed through heterogeneous reactions involving oxidized sulfur compounds, primarily originating from anthropogenic sources. Availability of authentic standards have until now been an obstacle to quantitative investigations of OS in atmospheric aerosols. We have developed a new, facile method for synthesis and purification of OS standards. Here we have used 7 standards to quantify OS and nitrooxy organosulfates (NOS) observed in aerosols collected at four sites in coniferous forests in USA and Europe during spring or summer. The two American sites were Storm Peak Laboratory, Colorado (Rocky Mountains, elevation 3220 m a.s.l) and Sierra Nevada Mountains, California (as part of BEARPEX 2007 and 2009). The European sites were Hyytiälä Forest Station, Finland (in the boreal zone) and Silkeborg, Denmark (temperate forest). Aerosol filter samples were extracted and analyzed using a high performance liquid chromatograph coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (HPLC-QTOF-MS). We identified 11 carboxylic acids using authentic standards, while 16 different OS and 8 NOS were identified based on their molecular mass and MS fragmentation patterns, as well as comparison with available standards. OS were ubiquitous in the atmospheric aerosol samples, even at the high elevation mountain station. Levels of carboxylic acids from oxidation of monoterpenes were 8-25 ng m-3 at Silkeborg and Storm Peak Laboratory, while concentrations at the sites with strong regional monoterpene emissions (Sierra Nevada Mountains and Hyytiälä) were much higher (10-200 ng m-3). At all sites, the dominant group of OS were derived from isoprene (IEPOX) and related compounds, while OS of monoterpenes showed lower concentrations, except at Hyytiälä during periods of north-westerly winds when monoterpene OS were at similar or

  16. Climate Change Impacts on Forest Succession and Future Productivity

    NASA Astrophysics Data System (ADS)

    Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.

    2012-12-01

    Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the

  17. The Effect of Local and Landscape-Level Characteristics on the Abundance of Forest Birds in Early-Successional Habitats during the Post-Fledging Season in Western Massachusetts

    PubMed Central

    Labbe, Michelle A.; King, David I.

    2014-01-01

    Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to

  18. [Secondary diabetes].

    PubMed

    Nomiyama, Takashi; Yanase, Toshihiko

    2015-12-01

    Secondary diabetes is diabetes that results as a consequence of another medication, endocrine disease or hereditary disease. Secondary diabetes is very broad and diverted category among diabetes. Clinically, pancreatic diabetes is one of the most popular secondary diabetes, which provides insulin deficiency following pancreatic diseases, such as pancreatitis and pancreatic cancer. Among endocrine diseases, Cushing's syndrome and acromegaly are typical endocrine disorders causing secondary diabetes. They mainly induce insulin resistance in early stage, however, insulin deficiency is also observed in advanced stage. Steroid is the most popular drug-induced secondary diabetes. Importantly, not only oral administered steroid but also cutaneous and inhalation steroid could induce hyperglycemia. Major hereditary diabetes are MODY and mitochondrial diabetes. Concerning secondary diabetes, careful medical examination is required. PMID:26666145

  19. Reduced availability of large seeds constrains Atlantic forest regeneration

    NASA Astrophysics Data System (ADS)

    Costa, Janaina B. P.; Melo, Felipe P. L.; Santos, Bráulio A.; Tabarelli, Marcelo

    2012-02-01

    Secondary forests are expanding in defaunated fragmented tropical landscapes, but their resilience potential remains poorly understood. In this study we used a chronosequence of advancing (19-62-yr old) Atlantic forest regeneration following slash-and-burn agriculture to infer successional shifts in seed rain in terms of seed density, species richness, taxonomic and functional composition, and local spatial distribution. After monitoring seed rain during 12 months in 60 1-m2 seed traps, we recorded over 400,000 seeds belonging to 180 morphospecies. From early to late-successional stage, seed rain decreased in density, increased in per capita species richness, gradually changed in species composition, and became less aggregated spatially. Regardless the age of forest stand, vertebrate-dispersed seeds accounted for 67-75% of all species recorded. Large-seeded species typical of old-growth forests, on the other hand, accounted for only 5-8% of the species recorded in the seed rain, a proportion around five times smaller than that reported for the old-growth forests of the same study site (31%). Our results suggest that the secondary forests considered, which are embedded in one of the largest (3500 ha) and best preserved remnant of the severely fragmented Atlantic forest of Northeast Brazil, may fail attaining older successional stages due to the reduced availability of large-seeded late-successional species. This regeneration constraint may be even stronger in smaller, more isolated forest remnants of the region, potentially reducing their ability to provide ecosystem services.

  20. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    PubMed Central

    2008-01-01

    Background The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU r

  1. A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests

    NASA Astrophysics Data System (ADS)

    Li, Hui; Mausel, Paul; Brondizio, Eduardo; Deardorff, David

    Uncertainties remain in the use of remote sensing technologies to provide validated model-derived estimates of the biomass of the secondary succession (SS) forests in the Amazon Basin. The objectives of this study were to develop a modeling framework for creating a valid spectrum-biomass model to estimate the SS biomass, to assess the utility of the framework and the accuracy and validity of the model, and to identify the model's determinants. Data sources for this study include 1992-1993 vegetation inventory data and 1991 Landsat Thematic Mapper (TM) data on the Altamira region of Para, Brazil, and 1994-1995 vegetation inventory data and 1994 Landsat TM data on the nearby Bragantina region. The allometric approach was used to estimate the biomass of the sampled sites based on the vegetation inventory data. A framework for the spectrum-biomass regression model was developed based on the estimated biomass of the sampled sites and the Landsat data. The framework includes (1) the pooling of data from Bragantina and the use of ANCOVA to justify this approach; (2) image calibration; (3) biomass data age-adjustment, (4) selection of independent variables, (5) regression model development, and (6) model assessment and validation. The cubic regression model with TM Band5-related predictors was found to best fit the data as evidenced by an adjusted R-squared value of 0.865, mean square error (MSE) of the model, and the analysis of residuals. Residual analysis showed that the model might yield a better estimation on a lower biomass values than on higher biomass values. In addition, further analyses identified several determinants that can impact the accuracy of the spectrum-biomass model. ANCOVA confirmed that the relationship between the biomass and the spectrum is independent of the Altamira and Bragantina regions, and that it was appropriate to pool sampled data from both regions in the proposed model. The model development methodology and the model produced from this

  2. The emergence of modern type rain forests and mangroves and their traces in the palaeobotanical record during the Late Cretaceous and early Tertiary

    NASA Astrophysics Data System (ADS)

    Mohr, Barbara; Coiffard, Clément

    2014-05-01

    The origin of modern rain forests is still very poorly known. This ecosystem could have potentially fully evolved only after the development of relatively high numbers of flowering plant families adapted to rain forest conditions. During the early phase of angiosperm evolution in the early Cretaceous the palaeo-equatorial region was located in a seasonally dry climatic belt, so that during this phase, flowering plants often show adaptations to drought, rather than to continuously wet climate conditions. Therefore it is not surprising that except for the Nymphaeales, the most basal members of extant angiosperm families have members that do not necessarily occur in the continuously wet tropics today. However, during the late Early Cretaceous several clades emerged that later would give rise to families that are typically found today mostly in (shady) moist places in warmer regions. This is especially seen among the monocotyledons, a group of the mesangiosperms, that developed in many cases large leaves often with very specific venation patterns that make these leaves very unique and well recognizable. Especially members of three groups are here of interest: the arum family (Araceae), the palms (Arecaceae) and the Ginger and allies (Zingiberales). The earliest fossil of Araceae are restricted to low latitudes during the lower Cretaceous. Arecaceae and Zingiberales do not appear in the fossil record before the early late Cretaceous and occur at mid latitudes. During the Late Cretaceous, Araceae are represented at mid latitudes by non-tropical early diverging members and at low latitudes by derived rainforest members. Palms became widespread during the Late Cretataceous and also Nypa, a typical element of tropical to subtropical mangrove environments evolved during this time period. During the Paleocene Arecaceae appear to be restricted to lower latitudes as well as Zingiberales. All three groups are again widespread during the Eocene, reaching higher latitudes and

  3. Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia.

    PubMed

    Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa

    2016-05-01

    Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar. PMID:26921564

  4. RISK OF SECONDARY MILIGNANT NEOPLASMS FROM PROTON THERAPY AND INTENSITY-MODULATED X-RAY THERAPY FOR EARLY-STAGE PROSTATE CANCER

    PubMed Central

    Fontenot, Jonas D.; Lee, Andrew K.; Newhauser, Wayne D.

    2014-01-01

    Purpose To assess the risk of a secondary malignant neoplasm (SMN) from proton therapy relative to intensity-modulated radiation therapy (IMRT) using X-rays, taking into account contributions from both primary and secondary sources of radiation, for prostate cancer. Methods and Materials A proton therapy plan and a 6-MV IMRT plan were constructed for 3 patients with early-stage adenocarcinoma of the prostate. Doses from the primary fields delivered to organs at risk of developing an SMN were determined from treatment plans. Secondary doses from the proton therapy and IMRT were determined from Monte Carlo simulations and available measured data, respectively. The risk of an SMN was estimated from primary and secondary doses on an organ-by-organ basis by use of risk models from the Committee on the Biological Effects of Ionizing Radiation. Results Proton therapy reduced the risk of an SMN by 26% to 39% compared with IMRT. The risk of an SMN for both modalities was greatest in the in-field organs. However, the risks from the in-field organs were considerably lower with the proton therapy plan than with the IMRT plan. This reduction was attributed to the substantial sparing of the rectum and bladder from exposure to the therapeutic beam by the proton therapy plan. Conclusions When considering exposure to primary and secondary radiation, proton therapy can reduce the risk of an SMN in prostate patients compared with contemporary IMRT. PMID:19427561

  5. Risk of Secondary Malignant Neoplasms From Proton Therapy and Intensity-Modulated X-Ray Therapy for Early-Stage Prostate Cancer

    SciTech Connect

    Fontenot, Jonas D.; Lee, Andrew K.; Newhauser, Wayne D.

    2009-06-01

    Purpose: To assess the risk of a secondary malignant neoplasm (SMN) from proton therapy relative to intensity-modulated radiation therapy (IMRT) using X-rays, taking into account contributions from both primary and secondary sources of radiation, for prostate cancer. Methods and Materials: A proton therapy plan and a 6-MV IMRT plan were constructed for 3 patients with early-stage adenocarcinoma of the prostate. Doses from the primary fields delivered to organs at risk of developing an SMN were determined from treatment plans. Secondary doses from the proton therapy and IMRT were determined from Monte Carlo simulations and available measured data, respectively. The risk of an SMN was estimated from primary and secondary doses on an organ-by-organ basis by use of risk models from the Committee on the Biological Effects of Ionizing Radiation. Results: Proton therapy reduced the risk of an SMN by 26% to 39% compared with IMRT. The risk of an SMN for both modalities was greatest in the in-field organs. However, the risks from the in-field organs were considerably lower with the proton therapy plan than with the IMRT plan. This reduction was attributed to the substantial sparing of the rectum and bladder from exposure to the therapeutic beam by the proton therapy plan. Conclusions: When considering exposure to primary and secondary radiation, proton therapy can reduce the risk of an SMN in prostate patients compared with contemporary IMRT.

  6. Modeling the impacts of organic layer depth on forest stand recovery from disturbance in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Medvigy, D.; Fenton, N.; Bergeron, Y.

    2014-12-01

    The boreal forest contains over 30 percent of Earth's terrestrial carbon, stored mainly as organic matter in soils. Warming temperatures have decreased the fire return interval at many locations, potentially opening more boreal forest space to early-successional deciduous species. However, previous observational studies have shown that the residual forest organic layer depth after a fire can be directly related to fire severity and that this organic layer depth plays a critical role in determining post-fire secondary succession in the North American boreal forest. In this study, we use a numerical model constrained by field data to evaluate: (1) the extent to which the organic layer inhibits deciduous seedling establishment; (2) whether differences in seedling establishment after mild and severe burns affect mature forest structure and composition on decadal to century time scales. Our modeling experiments were carried out with the Ecosystem Demography model version 2 (ED2) terrestrial biosphere model. ED2 is designed to explicitly track the growth and mortality of individual trees, which compete for light, water, and nutrients using an open nitrogen cycle. Our simulations feature parameterizations for aspen and black spruce species-types as well as a new dynamic soil organic layer module with species-specific litter decay rates. The updated boreal forest model is validated using several datasets across the North American boreal forest that range from daily carbon and energy fluxes to multi-century basal area chronosequences including: (1) sub-daily to monthly eddy covariance measurements taken in Delta Junction, Alaska and Manitoba, Canada; (2) decade-long forest inventory data from the Cooperative Alaska Forest Inventory taken throughout the Alaskan boreal forest; and (3) multi-century basal area chronosequences measured in Manitoba and Quebec. We then use the model to identify the controls that the soil organic layer exerts on secondary succession between aspen

  7. Influence of Forest Management Regimes on Forest Dynamics in the Upstream Region of the Hun River in Northeastern China

    PubMed Central

    Yao, Jing; He, Xingyuan; Wang, Anzhi; Chen, Wei; Li, Xiaoyu; Lewis, Bernard J.; Lv, Xiaotao

    2012-01-01

    Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China. These management initiatives included a wide range of planting and harvest intensities for Pinus koraiensis, the historically dominant tree species in the region. Multivariate analysis of variance, Shannon's Diversity Index, and planting efficiency (which indicates how many cells of the target species at the final year benefit from per-cell of the planting trees) estimates were used as indicators to analyze the effects of planting and harvesting regimes on forests in the region. The results showed that the following: (1) Increased planting intensity, although augmenting the coverage of P. koraiensis, was accompanied by decreases in planting efficiency and forest diversity. (2) While selective harvesting could increase forest diversity, the abrupt increase of early succession species accompanying this method merits attention. (3) Stimulating rapid forest succession may not be a good management strategy, since the climax species would crowd out other species which are likely more adapted to future climatic conditions in the long run. In light of the above, we suggest a combination of 30% planting intensity with selective harvesting of 50% and 70% of primary and secondary timber species, respectively, as the most effective management regime in this area. In the long run this would accelerate the ultimate dominance of P. koraiensis in the forest via a more effective rate of planting, while maintaining a higher degree of forest diversity. These results are particularly useful for forest managers constrained by limited financial and labor resources who must deal with conflicts between forest harvesting and restoration. PMID:22723930

  8. Influence of forest management regimes on forest dynamics in the upstream region of the Hun River in northeastern China.

    PubMed

    Yao, Jing; He, Xingyuan; Wang, Anzhi; Chen, Wei; Li, Xiaoyu; Lewis, Bernard J; Lv, Xiaotao

    2012-01-01

    Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China. These management initiatives included a wide range of planting and harvest intensities for Pinus koraiensis, the historically dominant tree species in the region. Multivariate analysis of variance, Shannon's Diversity Index, and planting efficiency (which indicates how many cells of the target species at the final year benefit from per-cell of the planting trees) estimates were used as indicators to analyze the effects of planting and harvesting regimes on forests in the region. The results showed that the following: (1) Increased planting intensity, although augmenting the coverage of P. koraiensis, was accompanied by decreases in planting efficiency and forest diversity. (2) While selective harvesting could increase forest diversity, the abrupt increase of early succession species accompanying this method merits attention. (3) Stimulating rapid forest succession may not be a good management strategy, since the climax species would crowd out other species which are likely more adapted to future climatic conditions in the long run. In light of the above, we suggest a combination of 30% planting intensity with selective harvesting of 50% and 70% of primary and secondary timber species, respectively, as the most effective management regime in this area. In the long run this would accelerate the ultimate dominance of P. koraiensis in the forest via a more effective rate of planting, while maintaining a higher degree of forest diversity. These results are particularly useful for forest managers constrained by limited financial and labor resources who must deal with conflicts between forest harvesting and restoration. PMID:22723930

  9. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation

    PubMed Central

    Li, Shuaifeng; Su, Jianrong; Liu, Wande; Lang, Xuedong; Huang, Xiaobo; Jia, Chengxinzhuo; Zhang, Zhijun; Tong, Qing

    2015-01-01

    The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0–1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0–0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded. PMID:26397366

  10. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    PubMed

    Li, Shuaifeng; Su, Jianrong; Liu, Wande; Lang, Xuedong; Huang, Xiaobo; Jia, Chengxinzhuo; Zhang, Zhijun; Tong, Qing

    2015-01-01

    The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded. PMID:26397366

  11. The empty forest revisited.

    PubMed

    Wilkie, David S; Bennett, Elizabeth L; Peres, Carlos A; Cunningham, Andrew A

    2011-03-01

    Tropical forests are among the most species-rich ecosystems on the planet. Some authors argue that predictions of a tropical forest extinction crisis based on analyses of deforestation rates are overly pessimistic since they do not take account of future agricultural abandonment as a result of rural-urban migration and subsequent secondary regrowth. Even if such regrowth occurs, it is crucial to consider threats to species that are not directly correlated with area of forest cover. Hunting is an insidious but significant driver of tropical forest defaunation, risking cascading changes in forest plant and animal composition. Ineffective legislation and enforcement along with a failure of decision makers to address the threats of hunting is fanning the fire of a tropical forest extinction crisis. If tropical forest ecosystems are to survive, the threat of unsustainable hunting must be adequately addressed now. PMID:21449969

  12. Analysis of Early Forest Regrowth in the Eastern US using IceSAT/GLAS-LiDAR and Landsat- spectral data.

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Masek, J. G.; Collatz, J. G.; Huang, C.

    2007-12-01

    Forest-cover conversion, disturbance, and recovery have been proposed as key mechanisms for transferring carbon between the land surface and the atmosphere, yet the area and timing of these processes are still poorly quantified. Combining remote sensing products such as LiDAR and Landsat data can help quantify the amount, area and timing of forest disturbance along with estimated rate of recovery. This study examines the use of NASA's Geoscience Laser Altimeter System (GLAS) for assessing post-disturbance forest re-growth rates via "space for time" substitution -GLAS observations from a single year combined with 20+ year Landsat disturbance record. Landsat image time series from three locations in the Eastern US (Maine, Virginia, Mississippi) were analyzed to obtain the timing and magnitude of major disturbance events for the 1984-2003 period. GLAS waveforms from 2003 were extracted for these patches and heights were determined via visual inspection of the waveform. Only "high magnitude" (stand clearing) disturbance events were selected, and only from regions of low topographic relief (< 5 degrees). Height Measurements of forest stands undisturbed over the last 20 years were also obtained along the latitudinal transect. Results show a progression in stand height from youngest to oldest stand. Regrowth rates vary with ecoregion and climate, from 0.6 m/yr (Maine) to 1.0-1.2 m/yr (Virginia - Mississippi). The latter rates compare favorably with known values for southeastern loblolly pine. Although the precision of an individual GLAS-derived height is relatively low, this study demonstrates that by combining multiple space-for-time observations, we can measure landscape-scale growth rates on order of ~1 m/yr. Decreasing the diameter of the lidar footprint in future land missions may help to increase the accuracy of forest structure measurements.

  13. Their Story, Our Story, History: An Authentic Assessment Project for Early Secondary U.S. History Classes.

    ERIC Educational Resources Information Center

    Pierce, Preston E.

    This year-long assessment project grew out of a need to establish an authentic assessment program (intermediate and terminal, formative and summative) as students entered the secondary grades. The project provided a framework for skill lessons correlated to the state (New York) curriculum and the textbook, which continued throughout the year,…

  14. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.

    PubMed

    Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-04-01

    The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. PMID:26178322

  15. Model Early Childhood Learning Program, Baltimore, Maryland. Model Programs, Title III--Elementary and Secondary Education Act.

    ERIC Educational Resources Information Center

    National Center for Educational Communication (DHEW/NIE), Washington, DC.

    The purpose of the Model Early Childhood Learning Program of Baltimore, Md., City Schools is to provide experiences for disadvantaged children which will constitute the prerequisite developmental history needed to undertake first grade concepts and skills. The project's stated objectives are: (1) to improve the measured aptitude or readiness for…

  16. The Impact of Early French Immersion Education on Language Use Patterns and Language Attitude of Post-Secondary Students

    ERIC Educational Resources Information Center

    Nix-Victorian, Janice M.

    2010-01-01

    Even though there are increasing numbers of Early Partial Immersion (EPI) programs in Louisiana, there was no data available on the long-term impact of these programs. The purpose of this study is to delve into the experiences of 10 former immersion students in order to reveal their accounts and perceptions of their bilingual abilities, their…

  17. Recruitment of Early STEM Majors into Possible Secondary Science Teaching Careers: The Role of Science Education Summer Internships

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.

    2015-01-01

    A shortage of highly qualified math and science teachers pervades the U.S. public school system. Clearly, recruitment of talented STEM educators is critical. Previous literature offers many suggestions for how STEM teacher recruitment programs and participant selection should occur. This study investigates how early STEM majors who are not already…

  18. Carrion Beetles Visiting Pig Carcasses during Early Spring in Urban, Forest and Agricultural Biotopes of Western Europe

    PubMed Central

    Dekeirsschieter, Jessica; Verheggen, François J.; Haubruge, Eric; Brostaux, Yves

    2011-01-01

    Carrion beetles are important in terrestrial ecosystems, consuming dead mammals and promoting the recycling of organic matter into ecosystems. Most forensic studies are focused on succession of Diptera while neglecting Coleoptera. So far, little information is available on carrion beetles postmortem colonization and decomposition process in temperate biogeoclimatic countries. These beetles are however part of the entomofaunal colonization of a dead body. Forensic entomologists need databases concerning the distribution, ecology and phenology of necrophagous insects, including silphids. Forensic entomology uses pig carcasses to surrogate human decomposition and to investigate entomofaunal succession. However, few studies have been conducted in Europe on large carcasses. The work reported here monitored the presence of the carrion beetles (Coleoptera: Silphidae) on decaying pig carcasses in three selected biotopes (forest, crop field, urban site) at the beginning of spring. Seven species of Silphidae were recorded: Nicrophorus humator (Gleditsch), Nicrophorus vespillo (L.), Nicrophorus vespilloides (Herbst), Necrodes littoralis L., Oiceoptoma thoracica L., Thanatophilus sinuatus (Fabricius), Thanatophilus rugosus (L.). All of these species were caught in the forest biotope, and all but O. thoracica were caught in the agricultural biotope. No silphids were caught in the urban site. PMID:21867439

  19. Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla var. japonica, an early-successional birch species, in cool-temperate forests.

    PubMed

    Murata, Hitoshi; Yamada, Akiyoshi; Maruyama, Tsuyoshi; Neda, Hitoshi

    2015-04-01

    Tricholoma matsutake is an ectomycorrhizal basidiomycete that associates with Pinaceae in the Northern Hemisphere and produces prized "matsutake" mushrooms. We questioned whether the symbiont could associate with a birch that is an early-successional species in boreal, cool-temperate, or subalpine forests. In the present study, we demonstrated that T. matsutake can form typical ectomycorrhizas with Betula platyphylla var. japonica; the associations included a Hartig net and a thin but distinct fungal sheath, as well as the rhizospheric mycelial aggregate "shiro" that is required for fruiting in nature. The in vitro shiro also emitted a characteristic aroma. This is the first report of an ectomycorrhizal formation between T. matsutake and a deciduous broad-leaved tree in the boreal or cool-temperate zones that T. matsutake naturally inhabits. PMID:25236465

  20. Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon.

    PubMed

    Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Lopes, Luis Otávio do Canto; Paquet, Serge

    2009-07-15

    In the Brazilian Amazon, forest conversion to agricultural lands (slash-and-burn cultivation) contributes to soil mercury (Hg) release and to aquatic ecosystem contamination. Recent studies have shown that soil Hg loss occurs rapidly after deforestation, suggesting that Hg mobility could be related to the massive cation input resulting from biomass burning. The objective of this research was to determine the effects of the first year of slash-and-burn agriculture on soil Hg levels at the regional scale of the Tapajós River, in the state of Pará, Brazilian Amazon. A total of 429 soil samples were collected in 26 farms of five riparian communities of the Tapajós basin. In September 2004, soil samples were collected from primary forest sites planned for slash-and-burn cultivation. In August 2005, one year after the initial burning, a second campaign was held and the exact same sites were re-sampled. Our results showed that total Hg levels in soils did not change significantly during the first year following slash-and-burn, suggesting no immediate release of soil Hg at that point in time. However, an early Hg mobility was detected near the surface (0-5 cm), reflected by a significant shift in Hg distribution in soil fractions. Indeed, a transfer of Hg from fine to coarser soil particles was observed, indicating that chemical bonds between Hg and fine particles could have been altered. A correspondence analysis (CA) showed that this process could be linked to a chemical competition caused by cation enrichment. The regional dimension of the study highlighted the prevailing importance of soil types in Hg dynamics, as shown by differentiated soil responses following deforestation according to soil texture. Confirming an early Hg mobility and indicating an eventual Hg release out of the soil, our results reinforce the call for the development of more sustainable agricultural practices in the Amazon. PMID:19428050

  1. Soil organic matter dynamics and mechanisms of carbon stabilization in soils with conversion from secondary forest to grassland in central Philippines

    NASA Astrophysics Data System (ADS)

    Navarrete, Ian; Lina, Suzette; Corre, Marife; Veldkamp, Edzo; Asio, Victor

    2013-04-01

    Large portions of the deforested areas in Southeast Asia in general and in the Philippines in particular have been replaced by grassland, but the dynamics between the soil organic carbon (OC) inputs after forest conversion into grassland and the original OC are poorly understood. Also, quantitative data on the C stabilization is important to understand, assess and predict the long term effect of land-use change, but soil C stabilization mechanisms are not fully considered important when studying land-use change. We measured the soil OC content to depths of 100 cm in paired forest and grassland plots across soil types (i.e., Ferralsols, Andosols, Alisols) in Leyte, Philippines. The natural 13C abundance of the soil organic matter was also analyzed to distinguish between forest- and grassland-derived OC in the grassland soils. Oxalate- and pyrophosphate extractable iron and aluminum oxide concentrations were also analyzed and the relationships between soil mineral phase variables and the forest- and grassland-derived OC were examined. Forest-derived OC in the grassland soil accounted for 89-99% of the total OC in Ferralsols, 63-79% of the OC total in Andosols and 56-73% of the total OC in Alfisols. The loss of forest-derived soil OC and the accumulation of newly derived OC were higher in Alfisols that was under grassland for long period compared to the other soils. The decrease in the original OC was higher in the surface soil compared to the lower depths regardless of soil types. Oxalate and pyrophosphate extractable iron and aluminum were found to be the best predictors of OC concentrations in the bulk soil, SOC-derived from forest and SOC-derived from grassland in Andosols, whereas a positive relationship between pyrophosphate-extractable iron and aluminum and soil OC was observed in Ferralsols and Alisols. This result suggests that the accumulation of newly derived OC and the subsequent loss of the original OC were driven by the changes in the mineral

  2. Early risk factors for being a bully, victim, or bully/victim in late elementary and early secondary education. The longitudinal TRAILS study

    PubMed Central

    2011-01-01

    Background Data regarding the impact of early risk factors on later involvement in bullying are scarce. We investigated the impact of preschool behaviors, family characteristics (socio-economic status, family breakup) and parental mental health on bullying and victimization at age 11 (T1) and age 13.5 (T2). Methods longitudinal data from a subsample of the TRacking Adolescents' Individual Lives Survey (TRAILS) (T1: N = 982; T2: N = 977). TRAILS is a prospective study of adolescent mental health in a mixed urban and rural region of the Netherlands. At T1 parents reported on family characteristics, parental mental health and retrospectively on children's preschool behavior at age 4-5. Schoolmates reported involvement of adolescents in bullying or victimization at T1 and T2. Results Children with preschool anxiety were less likely to be bully/victim at T1. Children with preschool aggressiveness were more likely to be bully (T1), bully/victim (T1 and T2) and victim (T2) and children with good preschool motor functioning were more likely to be bully (T1) and less likely to be victim (T1 and T2). Children from low socioeconomic status families were more likely be to be bully, victim, or bully/victim and less likely to be uninvolved both at T1 and T2. Finally, children from intact two parent families were more likely to be uninvolved at T2. Conclusion Preschool behavioral, emotional and motor problems, socioeconomic status, and family breakup are related to involvement in bullying at a later age. Prevention of bullying and its consequences can be enhanced by focusing on risk groups in early life. PMID:21645403

  3. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  4. Forest Management.

    ERIC Educational Resources Information Center

    Weicherding, Patrick J.; And Others

    This bulletin deals with forest management and provides an overview of forestry for the non-professional. The bulletin is divided into six sections: (1) What Is Forestry Management?; (2) How Is the Forest Measured?; (3) What Is Forest Protection?; (4) How Is the Forest Harvested?; (5) What Is Forest Regeneration?; and (6) What Is Forest…

  5. Exploring Old Growth Forests: A Teacher's Manual.

    ERIC Educational Resources Information Center

    Lemieux, Chris; Powers, Jennene; Quinby, Peter; Schultz, Caroline; Stabb, Mark

    "Exploring Old Growth Forests" is an Ontario (Canada) program that provides secondary students with hands-on experiences in old growth forests. Activity-based and student-centered, the program aims to develop student awareness of the importance of old growth forests and the need to conserve them. This manual provides teachers with background…

  6. Early treatment of acute submacular haemorrhage secondary to wet AMD using intravitreal tissue plasminogen activator, C3F8, and an anti-VEGF agent.

    PubMed

    de Silva, S R; Bindra, M S

    2016-07-01

    PurposeAcute submacular haemorrhage secondary to wet age-related macular degeneration (AMD) has a poor prognosis for which there is currently no 'gold standard' treatment. We evaluated the efficacy of early treatment using intravitreal triple therapy of tissue plasminogen activator (tPA), expansile gas, and an anti-VEGF agent.MethodsThis retrospective case series included eight patients presenting with acute submacular haemorrhage involving the fovea. All patients received treatment with 50 μg (0.05 ml) tPA, 0.3 ml 100% perfluoropropane (C3F8), and an anti-VEGF agent (0.05 mg Ranibizumab or 1.25 mg Bevacizumab in 0.05 ml) administered via intravitreal injection. An anterior chamber paracentesis post injection or vitreous tap was performed before injection to prevent retinal vascular occlusion secondary to raised intra-ocular pressure. Outcomes assessed were visual acuity, change in macular morphology, and complications.ResultsPatients presented promptly with delay between symptom onset and clinic review being 1.9±0.6 days (mean±SD). Treatment was delivered quickly with interval from presentation to treatment being 1.1±1.2 days. Symptom onset to treatment was 3.0±1.0 days. Subfoveal haemorrhage was effectively displaced in all patients. LogMAR visual acuity improved from 1.67±0.47 at presentation to 0.63±0.33 at final follow-up (P<0.0001), a mean of 7.9±4.8 months after treatment. Central retinal thickness improved from 658.1±174.2 μm at presentation to 316.6±142.4 μm at final follow-up (P=0.0028).ConclusionsEarly treatment of submacular haemorrhage using intravitreal tPA, C3F8, and anti-VEGF was effective in significantly improving visual acuity in this series of patients who presented soon after symptom onset. Treatment was well tolerated in this group of elderly and potentially frail patients. PMID:27080482

  7. The early stage of soil formation and weathering of mantle loam components under impact of forest and meadow communities

    NASA Astrophysics Data System (ADS)

    Chizhikova, Nataliya; Verkhovets, Irina

    2013-04-01

    Mineralogical composition of clay fraction from the less developed soils of the model large lysimeters have been studied after 30-year period of soil formation. The parent material for experiment is mantle non-calcareous silty clay loams that are widespread in the center of the Russian Plain. X-ray diffraction and term gravimetric methods for determination clay minerals and organic matter are used. The mineralogical composition of clay fraction sampled from mantle loams is represented the paragenetic association of follow minerals: smectite phase (40-60%), hydromicas (30-50%), kaolinite, chlorite (sum 7-16%) and traces of clay-sized quartz. The smectite phase consist of complex irregular interstratified mica-smectite with high and low contents of the smectite layers, chlorite-smectite with different ratios between chlorite and smectite layers, chlorite-vermiculite and individual smectites. The hydromicas comprises tri- and dioctahedral subgroups. At the early stage of soil formation during 30-year period, the accumulation of humus and the weakly pronounced eluvial-illuvial redistribution of clay fraction appears in the upper 0-10 cm layer. There is a trend of partially destruction of smectite phase, and relative accumulation of hydromicas and kaolinite in the upper layer. Intensity of soil profile differentiation depends on plant community. Spruce stands produce acid reaction of soil solution, therefore podzolic process starts. Mixed oak and maple stands don't change reaction of soil solution and promote the depletion of smectite phase from the upper horizons due to lessivage.

  8. Late Pleistocene to early Holocene aeolian and flash-flood sedimentation and soil formation in a small hilly catchment in SW-Germany (Palatinate forest)

    NASA Astrophysics Data System (ADS)

    Dotterweich, M.; Kühn, P.; Tolksdorf, J. F.; Müller, S.; Nelle, O.

    2012-04-01

    . The layers are overlain by very clear visible wavy and frequently distributed clay-illuviation bands typical for a Luvisol. The upper meter looks duller and more homogenous which is typical for a Bv-horizion of a Cambisol. The embedded deposition shows structures in this sediment package that are typical for a flash-flood event. Records of soil erosion during this time period are sparse and it is generally assumed that sediments were fixed by forest vegetation. In contrast, these presented results indicate that the manipulation of forest vegetation by fire by sedentary Mesolithic hunter-gatherers created an open area and enabled soil erosion with a high geomorphological impact on a local scale. This geoarchive provides first time high resolution data on a natural (and anthropogenic) soil-sediment formation during the Late Pleistocene and Early Holocene in SW-Germany.

  9. Stronger influence of litter quality on decomposition rates than microbial home field advantage in novel subtropical dry forests

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Atkinson, E. E.

    2015-12-01

    Litter decomposition is one of the most studied ecosystem processes, given its role in carbon cycling and nutrient availability, yet our knowledge of how decomposition is influenced by novel species assemblages in tropical forests emerging on post-agricultural landscapes is limited. This is especially true in tropical dry forests, which are some of the most fragmented forests worldwide due to human pressures and sensitive to changes in rainfall and fire regimes. Here we tested for the effects of litter quality, site conditions, and microbial "home-field advantage" on decomposition rates in subtropical dry forests in St. Croix, U.S. Virgin Islands. We conducted a 22-month in situ and reciprocal transplant field decomposition experiment of aboveground litter and fine roots in 10-year old sites dominated by an early successional N-fixing tree and 40-year old mixed-species secondary forests. Total annual litterfall mass did not differ between the two forest types, but monthly amounts did, with more litter accumulating in the 40-year old secondary forests during the dry season and in the 10-year old secondary forests during the wet season. Litter chemistry differed between the two forest types and showed divergent patterns over the two-year field incubation. To test for the effects of litter quality on decomposition rates, we compared mass loss rates for aboveground and root litter from each forest decomposed in situ and transplanted to the other forest type. Litter in the 10-year old forests decomposed faster in situ (k= 1.07 ± 0.04) than when it was transplanted (k=0.86 ± 0.04). Litter from the 40-year old forests showed the opposite pattern. In situ root decomposition in both forests occurred at the same rate compared to roots that were transplanted there from the other forest type, suggesting that site conditions were equally important as litter quality. Our results were not consistent with a microbial home-field advantage for litter and root decomposition, that

  10. Depositional history of the Late Triassic Chinle fluvial system at the Petrified Forest National Park: U-Pb geochronology, regional correlation and insights into early dinosaur evolution

    NASA Astrophysics Data System (ADS)

    Ramezani, J.; Fastovsky, D. E.; Bowring, S. A.; Hoke, G. D.

    2010-12-01

    Understanding patterns of biotic evolution and climate change in deep time requires a reliable temporal framework. The Colorado Plateau contains a rich record of both, but is lacking in reliable age data. High-precision U-Pb geochronology has the power to resolve subtle differences among mixed populations of volcanic zircon contained in tuffaceous sedimentary rocks. We report maximum depositional ages for interbedded tuffaceous rocks collected within a highly refined stratigraphic context from the Late Triassic Chinle Formation as exposed in the Petrified Forest National Park, AZ, USA. The results provide unprecedented insights into the depositional history of the Chinle fluvial system, as well as key data on the biostratigraphy of Late Triassic land vertebrate faunas. Our geochronological results indicate that the Blue Mesa, Sonsela and Petrified Forest Members of Chinle Formation, with a cumulative thickness of ca. 293 meters, were deposited during a period in excess of 17 m.y. that spans nearly the entire Norian stage of the Late Triassic. The underlying Mesa Redondo Member may extend into Carnian and the overlying Owl Rock Member into Rhaetian. Different stratigraphic intervals within the section are characterized by drastically different average sediment accumulation rates; the highest rates are found in the Sonsela Member and most likely reflect missing time due to erosion associated with extensive channeling preserved in this unit. The new Chinle geochronology demonstrates that the common practice of basin-wide correlation of fluvial strata based on lithostratigraphic criteria is prone to serious errors. A mid-Norian age for the Adamanian to Revueltian land vertebrate faunachron boundary, as suggested by the revised Late Triassic timescale, is no longer compatible with the idea that the faunachron boundary is coincident with the Carnian-Norian Stage boundary. Our new temporal constraints for the Chinle along with limited available age data from the South

  11. Living near the edge: Being close to mature forest increases the rate of succession in beetle communities.

    PubMed

    Fountain-Jones, Nicholas M; Jordan, Gregory J; Baker, Thomas P; Balmer, Jayne M; Wardlaw, Tim; Baker, Susan C

    2015-04-01

    In increasingly fragmented landscapes, it is important to understand how mature forest affects adjacent secondary forest (forest influence). Forest influence on ecological succession of beetle communities is largely unknown. We investigated succession and forest influence using 235 m long transects across boundaries between mature and secondary forest at 15 sites, sampling a chronosequence of three forest age classes (5-10, 23- 29, and 42-46 years since clear-cutting) in tall eucalypt forest in Tasmania, Australia. Our results showed that ground-dwelling beetle communities showed strong successional changes, and in the oldest secondary forests, species considered indicators of mature forest had recolonized to abundance levels similar to those observed within adjacent mature forest stands. However, species composition also showed forest influence gradients in all age classes. Forest influence was estimated to extend 13 m and 20 m in the youngest and intermediate-aged secondary forests, respectively. However, the estimated effect extended to at least 176 m in the oldest secondary forest. Our environmental modeling suggests that leaf litter, microclimate, and soil variables were all important in explaining the spatial variation in beetle assemblages, and the relative importance of factors varied between secondary forest age classes. Mature-forest beetle communities can recolonize successfully from the edge, and our results provide a basis for land managers to build mature habitat connectivity into forest mosaics typical of production forests. Our results also indicate the importance of forest influence in determining potential conservation value of older secondary forest for beetles. PMID:26214924

  12. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    PubMed

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  13. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession

    PubMed Central

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans

    2015-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  14. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica.

    PubMed

    Rozendaal, Danae M A; Chazdon, Robin L

    2015-03-01

    Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists. We monitored six second-growth tropical forests that varied in stand age and two old-growth forests in northeastern Costa Rica. We monitored these over a period of 8 to 16 years. To assess rates of biomass change during secondary succession, we compared standing biomass and biomass dynamics between second-growth forest stages and old-growth forest, and evaluated the effect of stand age on standing biomass and biomass dynamics in second-growth forests. Standing tree biomass increased with stand age during succession, whereas the rate of biomass change decreased. Biomass change was largely driven by tree diameter increment and mortality, with a minor contribution from recruitment. The relative importance of these demographic drivers shifted over succession. Biomass gain due to tree diameter increment decreased with stand age, whereas biomass loss due to mortality increased. In the age range of our second-growth forests, 10-41 years, SG specialists dominated tree biomass in second-growth forests. SG specialists, and to a lesser extent generalists, also dominated stand-level biomass increase due to tree diameter increment, whereas SG specialists largely accounted for decreases in biomass due to mortality. Our results indicate that tree growth is largely driving biomass dynamics early in succession, whereas both growth and mortality are important later in succession. Biomass dynamics are largely accounted for by a few SG specialists and one

  15. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images

    NASA Astrophysics Data System (ADS)

    Fujiki, Shogoro; Okada, Kei-ichi; Nishio, Shogo; Kitayama, Kanehiro

    2016-09-01

    We developed a new method to estimate stand ages of secondary vegetation in the Bornean montane zone, where local people conduct traditional shifting cultivation and protected areas are surrounded by patches of recovering secondary vegetation of various ages. Identifying stand ages at the landscape level is critical to improve conservation policies. We combined a high-resolution satellite image (WorldView-2) with time-series Landsat images. We extracted stand ages (the time elapsed since the most recent slash and burn) from a change-detection analysis with Landsat time-series images and superimposed the derived stand ages on the segments classified by object-based image analysis using WorldView-2. We regarded stand ages as a response variable, and object-based metrics as independent variables, to develop regression models that explain stand ages. Subsequently, we classified the vegetation of the target area into six age units and one rubber plantation unit (1-3 yr, 3-5 yr, 5-7 yr, 7-30 yr, 30-50 yr, >50 yr and 'rubber plantation') using regression models and linear discriminant analyses. Validation demonstrated an accuracy of 84.3%. Our approach is particularly effective in classifying highly dynamic pioneer vegetation younger than 7 years into 2-yr intervals, suggesting that rapid changes in vegetation canopies can be detected with high accuracy. The combination of a spectral time-series analysis and object-based metrics based on high-resolution imagery enabled the classification of dynamic vegetation under intensive shifting cultivation and yielded an informative land cover map based on stand ages.

  16. Report on Articulated Programs Coordinating Secondary and Post Secondary Institutions.

    ERIC Educational Resources Information Center

    Lieberman, Janet E.

    This report reviews secondary school/college articulated programs at 13 schools. Articulated programs are those which typically offer flexible enrollment opportunities in college level curricula for students who may be simultaneously enrolled in secondary institutions or who may leave secondary school early to pursue a higher education. Five…

  17. In Vitro Culture of Early Secondary Preantral Follicles in Hanging Drop of Ovarian Cell-Conditioned Medium to Obtain MII Oocytes from Outbred Deer Mice

    PubMed Central

    Choi, Jung Kyu; Agarwal, Pranay

    2013-01-01

    The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle

  18. Basic Education from Early Childhood: Impacts of Free Primary Education and Subsidized Secondary Education on Public ECDE Centers in Nyahururu District, Kenya

    ERIC Educational Resources Information Center

    Mwangi, Peter Murage; Serem, T. D. K.

    2013-01-01

    Kenya must invest more in education to realize her vision 2030. The government commitment to Education for All's goal has been expressed through provision of basic education in pre-primary, primary and secondary school levels. To this end, the government introduced two kitties; Free Primary Education in 2003 and Subsidized Secondary Education in…

  19. Detection of early stage large scale landslides in forested areas by 2 m LiDAR DEM analysis. The example of Portainé (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Guinau, Marta; Ortuño, Maria; Calvet, Jaume; Furdada, Glòria; Bordonau, Jaume; Ruiz, Antonio; Camafort, Miquel

    2016-04-01

    Mass movements have been classically detected by field inspection and air-photo interpretation. However, airborne LiDAR has significant potential for generating high-resolution digital terrain models, which provide considerable advantages over conventional surveying techniques. In this work, we present the identification and characterization of six slope failures previously undetected in the Orri massif, at the core of the Pyrenean range. The landforms had not been previously detected and were identified by the analysis of high resolution 2 m LiDAR derived bared earth topography. Most of the scarps within these failures are not detectable by photo interpretation or the analysis of 5 m resolution topographic maps owing to their small heights (ranging between 0.5 and 2 m) and their location within forest areas. 2D and 3D visualization of hillshade maps with different sun azimuths, allowed to obtain the overall picture of the scarp assemblage and to analyze the geometry and location of the scarps with respect to the slope and the structural fabric. Near 120 scarps were mapped and interpreted as part of slow gravitational deformation, incipient slow flow affecting a colluvium, rotational rock-sliding and slope creep. Landforms interpreted as incipient slow flow affecting a colluvium have headscarps with horse-shoe shape and superficial (< 20 m) basal planes whereas sackung features have open headscarps and basal planes that are likely located at 200-250 m maximum depth. Other distinctive features are toppling or extensive scarps, double ridges and rock rotational landslides. The sharpness of the scarps suggests their recent activity, which may pose a potential risk for the Port-Ainé sky resort users and facilities. These results suggest that the systematic analysis of 2 m LIDAR derived bared earth topography would significantly help in the rapid detection and mapping of early stage slope deformations in high mountain areas, which could contribute to 1) a better

  20. [Structural recovering in Andean successional forests from Porce (Antioquia, Colombia)].

    PubMed

    Yepes, Adriana P; del Valle, Jorge I; Jaramillo, Sandra L; Orrego, Sergio A

    2010-03-01

    Places subjected to natural or human disturbance can recover forest through an ecological process called secondary succession. Tropical succession is affected by factors such as disturbances, distance from original forest, surface configuration and local climate. These factors determine the composition of species and the time trend of the succession itself. We studied succession in soils used for cattle ranching over various decades in the Porce Region of Colombia (Andean Colombian forests). A set of twenty five permanent plots was measured, including nine plots (20 x 50 m) in primary forests and sixteen (20 x 25 m) in secondary forests. All trees with diameter > or =1.0 cm were measured. We analyzed stem density, basal area, above-ground biomass and species richness, in a successional process of ca. 43 years, and in primary forests. The secondary forests' age was estimated in previous studies, using radiocarbon dating, aerial photographs and a high-resolution satellite image analysis (7 to >43 years). In total, 1,143 and 1,766 stems were measured in primary and secondary forests, respectively. Basal area (5.7 to 85.4 m2 ha(-1)), above-ground biomass (19.1 to 1,011.5 t ha(-1)) and species richness (4 to 69) directly increased with site age, while steam density decreased (3,180 to 590). Diametric distributions were "J-inverted" for primary forests and even-aged size-class structures for secondary forests. Three species of palms were abundant and exclusive in old secondary forests and primary forests: Oenocarpus mapora, Euterpe precatoria and Oenocarpus bataua. These palms happened in cohorts after forest disturbances. Secondary forest structure was 40% in more than 43 years of forest succession and indicate that many factors are interacting and affecting the forests succession in the area (e.g. agriculture, cattle ranching, mining, etc.). PMID:20411733

  1. Imaging secondary ion mass spectrometry of a paint cross section taken from an early Netherlandish painting by Rogier van der Weyden.

    PubMed

    Keune, Katrien; Boon, Jaap J

    2004-03-01

    Static secondary ion mass spectrometry (SIMS) is introduced as an analytical technique for the examination of paint cross sections to obtain simultaneous information about the nature and distribution of pigments and the binding medium from a single sample. A sample taken from the virgin's blue robe in the panel painting The Descent from the Cross (Museo del Prado, Madrid) of the Early Netherlandish painter Rogier van der Weyden (1399/1400-1464) was selected for investigation. Data were compared with reference compounds and reference lead white linseed oil paint and egg tempera paint. The static SIMS technique gave position-sensitive mass spectra that were used to image the elemental distribution of pigments and the molecular signature of components of the oleaginous binding medium. SIMS ion images of sodium and aluminum superimposed with the blue pigment ultramarine and those of copper, lead, and calcium with the position of the mineral pigments of azurite, lead white, and chalk, respectively. Preserved monocarboxylic acids of palmitic and stearic acids present as fatty acids and fatty acid lead soaps pointed to the use of linseed oil as a binding medium. Images from the oleaginous binding medium fatty acids show a correlation with the three main paint layers. The observed palmitic/stearic acid ratios for the two ultramarine layers and azurite layers are 1.3, 1.4, and 1.8, respectively. Fatty acids and fatty acid soaps show highest ion yields near lead white, a mineral pigment that serves as a natural chemical drier and is proposed to act as a template for the initial grafting of the polyunsaturated triglycerides of the linseed oil. Almost no fatty acids were detected in other layers visible by light microscopy. The fatty acid lead soaps point toward a mature ionomeric oil paint system that developed over centuries. SIMS evidence for egg tempera, still used in the 15th century, is not detected in the paint cross section. SIMS images correlate well with SEM/EDX, FT

  2. Early trends in landcover change and forest fragmentation due to shale-gas development in Pennsylvania: a potential outcome for the Northcentral Appalachians.

    PubMed

    Drohan, P J; Brittingham, M; Bishop, J; Yoder, K

    2012-05-01

    Worldwide shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S., specifically the Allegheny Plateau in Pennsylvania, West Virginia, Ohio, and Kentucky, is experiencing rapid exploration. Using Pennsylvania as a proxy for regional development across the Plateau, we examine land cover change due to shale-gas exploration, with emphasis on forest fragmentation. Pennsylvania's shale-gas development is greatest on private land, and is dominated by pads with 1-2 wells; less than 10 % of pads have five wells or more. Approximately 45-62 % of pads occur on agricultural land and 38-54 % in forest land (many in core forest on private land). Development of permits granted as of June 3, 2011, would convert at least 644-1072 ha of agricultural land and 536-894 ha of forest land. Agricultural land conversion suggests that drilling is somewhat competing with food production. Accounting for existing pads and development of all permits would result in at least 649 km of new road, which, along with pipelines, would fragment forest cover. The Susquehanna River basin (feeding the Chesapeake Bay), is most developed, with 885 pads (26 % in core forest); permit data suggests the basin will experience continued heavy development. The intensity of core forest disturbance, where many headwater streams occur, suggests that such streams should become a focus of aquatic monitoring. Given the intense development on private lands, we believe a regional strategy is needed to help guide infrastructure development, so that habitat loss, farmland conversion, and the risk to waterways are better managed. PMID:22447181

  3. Early Trends in Landcover Change and Forest Fragmentation Due to Shale-Gas Development in Pennsylvania: A Potential Outcome for the Northcentral Appalachians

    NASA Astrophysics Data System (ADS)

    Drohan, P. J.; Brittingham, M.; Bishop, J.; Yoder, K.

    2012-05-01

    Worldwide shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S., specifically the Allegheny Plateau in Pennsylvania, West Virginia, Ohio, and Kentucky, is experiencing rapid exploration. Using Pennsylvania as a proxy for regional development across the Plateau, we examine land cover change due to shale-gas exploration, with emphasis on forest fragmentation. Pennsylvania's shale-gas development is greatest on private land, and is dominated by pads with 1-2 wells; less than 10 % of pads have five wells or more. Approximately 45-62 % of pads occur on agricultural land and 38-54 % in forest land (many in core forest on private land). Development of permits granted as of June 3, 2011, would convert at least 644-1072 ha of agricultural land and 536-894 ha of forest land. Agricultural land conversion suggests that drilling is somewhat competing with food production. Accounting for existing pads and development of all permits would result in at least 649 km of new road, which, along with pipelines, would fragment forest cover. The Susquehanna River basin (feeding the Chesapeake Bay), is most developed, with 885 pads (26 % in core forest); permit data suggests the basin will experience continued heavy development. The intensity of core forest disturbance, where many headwater streams occur, suggests that such streams should become a focus of aquatic monitoring. Given the intense development on private lands, we believe a regional strategy is needed to help guide infrastructure development, so that habitat loss, farmland conversion, and the risk to waterways are better managed.

  4. Satellite Data Aid Monitoring of Nation's Forests

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The USDA Forest Service’s Asheville, North Carolina-based Eastern Forest Environmental Threat Assessment Center and Prineville, Oregon-based Western Wildlands Environmental Threat Assessment Center partnered with Stennis Space Center and other agencies to create an early warning system to identify, characterize, and track disturbances from potential forest threats. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.

  5. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    PubMed

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  6. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. ...

  7. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. Brain ...

  8. Fernbank Science Center Forest Teacher's Guide-1967.

    ERIC Educational Resources Information Center

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  9. World's forests

    SciTech Connect

    Sedjo, R.A.; Clawson, M.

    1982-10-01

    An appropriate rate of deforestation is complicated because forests are associated with many problems involving local economic and social needs, the global need for wood, and the environmental impact on climates and the biological genetic pool. Stable forest land exists in the developed regions of North America, Europe, the USSR, Oceania, and China in the Temperate Zone. Tropical deforestation, however, is estimated at 0.58% per year, with the pressure lowest on virgin forests. While these data omit plantation forests, the level of replacement does not offset the decline. There is some disagreement over the rate and definition of deforestation, but studies showing that the world is in little danger of running out of forests should not discourage tropical areas where forests are declining from making appropriate responses to the problem. 3 references. (DCK)

  10. Student Engagement in the Teaching and Learning of Grammar: A Case Study of an Early-Career Secondary School English Teacher

    ERIC Educational Resources Information Center

    Smagorinsky, Peter; Wright, Laura; Augustine, Sharon Murphy; O'Donnell-Allen, Cindy; Konopak, Bonnie

    2007-01-01

    This article reports a study of coauthor Laura Wright as she learned to teach secondary school grammar in four settings: university teacher education program, student teaching, her first job, and second job. Data for her university program came from Laura's journals and projects from her course work. Data from student teaching and her first job…

  11. Re-Imaging Reader-Response in Middle and Secondary Schools: Early Adolescent Girls' Critical and Communal Reader Responses to the Young Adult Novel "Speak"

    ERIC Educational Resources Information Center

    Park, Jie Y.

    2012-01-01

    Reader-response has become one of the most influential literary theories to inform the pedagogies of middle and secondary English classrooms. However, many English and literacy educators have begun to advocate for more critical and culturally responsive versions of reader-response pedagogies, arguing that teachers move beyond valuing students'…

  12. Social Adjustment of Deaf Early Adolescents at the Start of Secondary School: The Divergent Role of Withdrawn Behavior in Peer Status

    ERIC Educational Resources Information Center

    Wolters, Nina; Knoors, Harry; Cillessen, Antonius H. N.; Verhoeven, Ludo

    2014-01-01

    This study examined the peer relationships and social behaviors of deaf adolescents in the first 2 years of secondary school. Peer nominations and ratings of peer status and behavior were collected longitudinally with 74 deaf and 271 hearing adolescents from Grade 7 to Grade 8. The predictions of deaf adolescents' peer status in Grade 8 from…

  13. Forest Technician. 2+2 Articulated Curriculum in Agricultural Technology.

    ERIC Educational Resources Information Center

    York, Walter

    This 2+2 articulated curriculum for the occupation of forest technician includes the following: program results and benefits; job description--forest technician; curriculum objective; duty and task listings for forest technician; recommended secondary and postsecondary course options flowchart; recommended student prerequisites; basic outlines for…

  14. [Forest degradation/decline: research and practice].

    PubMed

    Zhu, Jiao-Jun; Li, Feng-Qin

    2007-07-01

    As one of the most critical environmental problems in the 21st century, forest degradation has been facing worldwide. There are many definitions about forest degradation, but its common features are the permanent loss of forests, stand structure destructed, forest quality decreased, and forest functions lowered. Forest decline or tree decline in fact is one of the causes of forest degradation, which includes the general reduction of trees in vigor, low level growth of trees in productivity, death of trees, and even, decline of soil fertility. Many researches indicated that deforestation is the permanent loss of forests in area, which is shifted to other land uses. Deforestation is the product of the interactions between environmental, social, economic, cultural, and political forces at work in any given country/region, and thus, more and more attention is focused on the negative socioeconomic and environmental effects after forest degradation, especially on the reduction of forest area induced by deforestation. The effects of any decisions or policies in national and international levels on forest degradation induced by deforestation have been paid attention as well. How to make efforts and strengthen the worldwide cooperation to combat the forest degradation induced by deforestation must be challenged to find appropriate solutions. There are many researches on forest decline, because of its complexity and uncertainties. The major causes of forest decline include: 1) pollution from both industry and agriculture, 2) stress factors, e.g., desiccation, 3) changes in stand dynamics, 4) decline disease of forest or diseases of complex etiology, 5) degradation of productivity and/or soil fertility in pure plantation forests. Forest degradation in China is similar to that all over the world, but with the characteristics in forest components, i.e., 1) secondary forests are the major forest resources, 2) China has the most plantation forests in the world, some of which have

  15. Secondary School Innovation Fund Act

    THOMAS, 111th Congress

    Rep. Loebsack, David [D-IA-2

    2009-05-04

    06/04/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. [Secondary hypertension].

    PubMed

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice. PMID:26619670

  17. Forest Fragmentation

    EPA Science Inventory

    This indicator describes forest fragmentation in the contiguous United States circa 2001. This information provides a broad, recent picture of the spatial pattern of the nation’s forests and the extent to which they are being broken into smaller patches and pierced or interspe...

  18. Early Childhood Education Program--Grades Pre-K-K, FY '80. Elementary and Secondary Education Act, Title I. Evaluation Report, 1979-80.

    ERIC Educational Resources Information Center

    Baltimore City Public Schools, MD.

    Evaluation results of 1979-80 compensatory education programs for pre-kindergarten and kindergarten children in 75 Baltimore, Maryland public and private schools are presented in this report. The program provided early learning experiences in reading, mathematics, and language for educationally disadvantaged 3-, 4-, and 5-year olds to enhance…

  19. Early Childhood Education Program--Grades Pre-K-K, FY '81. Elementary and Secondary Education Act, Title I. Evaluation Report, 1980-81.

    ERIC Educational Resources Information Center

    Baltimore City Public Schools, MD.

    Evaluation results of 1980-81 compensatory education programs for pre-kindergarten and kindergarten children in 73 Baltimore, Maryland public and private schools are presented in this report. The program provided early learning experiences in reading, mathematics, and language for educationally disadvantaged 3-, 4-, and 5-year olds to enhance…

  20. Tech Prep Early Childhood Professions Advanced Specialty Curriculum Guide for Postsecondary Colleges. Part of an Articulated Program for Secondary & Postsecondary Students.

    ERIC Educational Resources Information Center

    Harriman, Marilyn Williams

    The Tech Prep Early Childhood Professions Program is designed to provide high school and community college students in Texas with the necessary training and skills to find employment in the child care and education professions as teachers, directors, or special needs paraprofessionals. This Advanced Speciality Curriculum Guide is designed for…

  1. Attracting High-Achieving Secondary Students through Early Admission Call-Up in an American-Style College in Lebanon: A Comparison with American Colleges

    ERIC Educational Resources Information Center

    Naimy, Viviane; Nasser, Ramzi; Romanowski, Michael H.

    2009-01-01

    An early admission call-up was used to attract high-achieving students to a private university in Lebanon. The call-up, which is essentially an offer of admission before the student takes any formal steps, was administered to the top 25th percentile ranked students of main feeder schools at a private university in Lebanon. Data were accrued for…

  2. 2 + 2 Tech Prep Early Childhood Professions I and II Curriculum Guide: A Four Year Articulated Program for Secondary and Postsecondary Students.

    ERIC Educational Resources Information Center

    Patton, Mary Martin; Harriman, Marilyn Williams

    The 2 + 2 Tech Prep Early Childhood Professions I and II curriculum guides, developed through funding from the Carl D. Perkins Education Act, are designed for students entering the first and second years of the program. They are the first and second in a series of courses that systematically expand students' knowledge, skills application, and…

  3. The future of tropical forests.

    PubMed

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms. PMID:20536814

  4. [Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China].

    PubMed

    Zhang, Meng-tao; Zhang, Qing; Kang, Xin-gang; Yang, Ying-jun; Xu, Guang; Zhang, Li-xin

    2015-06-01

    Based on the analysis of three forest communities (polar-birch secondary forest, spruce-fir mixed forest, spruce-fir near pristine forest) in Changbai Mountains, a total of 22 factors of 5 indices, including the population regeneration, soil fertility (soil moisture and soli nutrient), woodland productivity and species diversity that reflected community characteristics were used to evaluate the stability of forest community succession at different stages by calculating subordinate function values of a model based on fuzzy mathematics. The results that the indices of population regeneration, soli nutrient, woodland productivity and species diversity were the highest in the spruce-fir mixed forest, and the indices of soil moisture were the highest in the spruce-fir near-pristine forest. The stability of three forest communities was in order of natural spruce-fir mixed forest > spruce-fir near pristine forest > polar-birch secondary forest. PMID:26572010

  5. Doppler-derived acceleration rate of right ventricular early filling as a measurement of right atrial pressure in chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.

    PubMed

    Scapellato, F; Eleuteri, E; Temporelli, P L; Imparato, A; Corrà, U; Giannuzzi, P

    1998-02-15

    This study demonstrates that a Doppler-derived tricuspid flow velocity pattern provides an accurate, feasible, and noninvasive method of estimating and monitoring mean right atrial pressure in patients with heart failure due to left ventricular systolic dysfunction, and who are both in sinus rhythm and atrial fibrillation. In particular, the acceleration rate of early right ventricular filling is a powerful and independent predictor of mean right atrial pressure. PMID:9485149

  6. Regional framework of early growth response for loblolly pine relative to herbaceous, woody, and complete competition control: The comproject. Forest Service general technical report

    SciTech Connect

    Miller, J.H.; Zutter, B.R.; Zedaker, S.M.; Edwards, M.B.; Newbold, R.A.

    1995-09-01

    A common study design has been installed at 13 locations throughout the Southeastern United States to track the growth of loblolly pine (Pinus taeda L.) plantations established with four different competition control treatments: no control (only chopping-burning), woody control for 5 years, herbaceous control for 4 years, and total control after site preparation. This regionwide investigation is known as the competition Omission Monitoring Project, a coordinated study with the Auburn University Silvicultural Herbicide Cooperative (Study HB-4F). Data summaries for each location are presented for loblolly pine growth and competition intensities for the first 8 years. Approximately 10,000 loblolly pine seedlings have been measured annually. Responses from this network of studies should be useful in assessing and reporting relative growth of loblolly pines for other studies and operational plantings. These data sets should also be useful for the future forest growth modeling efforts.

  7. Early survival and height growth of douglas-fir and lodgepole pine seedling and variations in site factors following treatment of logging residues. Forest Service research paper

    SciTech Connect

    Lopushinsky, W.; Zabowski, D.; Anderson, T.D.

    1992-06-01

    Logging residues were (1) broadcast burned, (2) piled and burned, (3) removed, or (4) left in place after clearcutting in a high elevation subalpine fir/lodgepole pine forest in north-central Washington. Survival, height growth, and nutrient content of foliage of planted Douglas-fir and lodgepole pine seedlings, and variations in soil factors (nutrients, temperature, moisture, and compaction) and air temperature were compared for the four treatments. Little height growth occurred the first year, and it was similar for all treatments, probably due to transplant shock. Height growth the second year increased the most in the burned treatments, and the least in the slash-left treatment. Levels of nutrients in foliage were similar for all treatments and above threshold-deficiency levels except for sulfur. Extractable soil nutrients increased with burn treatments but returned to levels in other treatments within 3 years, best performance of seedlings during the first 2 years was in burn treatments.

  8. Tropical forests in a changing environment.

    PubMed

    Wright, S Joseph

    2005-10-01

    Understanding and mitigating the impact of an ever-increasing population and global economic activity on tropical forests is one of the great challenges currently facing biologists, conservationists and policy makers. Tropical forests currently face obvious regional changes, both negative and positive, and uncertain global changes. Although deforestation rates have increased to unprecedented levels, natural secondary succession has reclaimed approximately 15% of the area deforested during the 1990s. Governments have also protected 18% of the remaining tropical moist forest; however, unsustainable hunting continues to threaten many keystone mammal and bird species. The structure and dynamics of old-growth forests appear to be rapidly changing, suggesting that there is a pantropical response to global anthropogenic forcing, although the evidence comes almost exclusively from censuses of tree plots and is controversial. Here, I address ongoing anthropogenic change in tropical forests and suggest how these forests might respond to increasing anthropogenic pressure. PMID:16701434

  9. Environmental change and the carbon balance of Amazonian forests.

    PubMed

    Aragão, Luiz E O C; Poulter, Benjamin; Barlow, Jos B; Anderson, Liana O; Malhi, Yadvinder; Saatchi, Sassan; Phillips, Oliver L; Gloor, Emanuel

    2014-11-01

    Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year(-1) in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land-use change for 2008, can be negated or reversed during drought years [NBP = -0.06 (-0.31 to +0.01) Pg C year(-1) ]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land-use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency. PMID:25324039

  10. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China.

    PubMed

    Zhang, Yuzhen; Liang, Shunlin

    2014-08-01

    The forests of northeastern China store nearly half of the country's total biomass carbon stocks. In this study, we investigated the changes in forest biomass by using satellite observations and found that a significant increase in forest biomass took place between 2001 and 2010. To determine the possible reasons for this change, several statistical methods were used to analyze the correlations between forest biomass dynamics and forest disturbances (i.e. fires, insect damage, logging, and afforestation and reforestation), climatic factors, and forest development. Results showed that forest development was the most important contributor to the increasing trend of forest biomass from 2001 to 2010, and climate controls were the secondary important factor. Among the four types of forest disturbance considered in this study, forest recovery from fires, and afforestation and reforestation during the past few decades played an important role in short-term biomass dynamics. This study provided observational evidence and valuable information for the relationships between forest biomass and climate as well as forest disturbances. PMID:24687944

  11. Forest Resource Management Plans: A Sustainability Approach

    ERIC Educational Resources Information Center

    Pile, Lauren S.; Watts, Christine M.; Straka, Thomas J.

    2012-01-01

    Forest Resource Management Plans is the capstone course in many forestry and natural resource management curricula. The management plans are developed by senior forestry students. Early management plans courses were commonly technical exercises, often performed on contrived forest "tracts" on university-owned or other public lands, with a goal of…

  12. Forest Dynamics in the Eastern Ghats of Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have

  13. Secondary Syphilitic Lesions

    PubMed Central

    Baughn, Robert E.; Musher, Daniel M.

    2005-01-01

    An important theme that emerges from all early historical accounts is that in addition to the decreased virulence of Treponema pallidum, the incidence of secondary syphilis has decreased drastically over the past three centuries. Even in the early 20th century, most syphilologists were of the opinion that the disease had undergone changes in its manifestations and that they were dealing with an attenuated form of the spirochete. Such opinions were based primarily on the observations that violent cutaneous reactions and fatalities associated with the secondary stage had become extremely rare. The rate of primary and secondary syphilis in the United States increased in 2002 for the second consecutive year. After a decade-long decline that led to an all-time low in 2000, the recent trend is attributable, to a large extent, by a increase in reported syphilis cases among men, particularly homosexual and bisexual men having sex with men. The present review addresses the clinical and diagnostic criteria for the recognition of secondary syphilis, the clinical course and manifestations of the disease if allowed to proceed past the primary stage of disease in untreated individuals, and the treatment for this stage of the disease. PMID:15653827

  14. Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen.

    PubMed

    Floryszak-Wieczorek, Jolanta; Arasimowicz, Magdalena; Milczarek, Grzegorz; Jelen, Henryk; Jackowiak, Hanna

    2007-01-01

    Participation of nitric oxide (NO) in cross-talk between ivy pelargonium (Pelargonium peltatum) leaves and Botrytis cinerea was investigated using electrochemical and biochemical approaches. In response to the necrotroph, leaves initiated a near-immediate NO burst, but the specificity of its generation was dependent on the genetic makeup of the host plant. In the resistant cultivar, a strong NO burst was followed by a wave of secondary NO generation, shown by bio-imaging with DAF-2DA. The epicentre of NO synthesis was located in targeted cells, which exhibited a TUNEL-positive reaction. Soon after the challenge, an elevated concentration of hydrogen peroxide (H(2)O(2)) was correlated with a reversible inhibition of catalase (CAT), ascorbate peroxidase (APX), and suppression of ethylene synthesis. The induced NO generation initially expanded and then gradually disappeared on successive days, provoking noncell-death-associated resistance with an enhanced pool of antioxidants, which finally favoured the maintenance of homeostasis of surrounding cells. By contrast, in the susceptible pelargonium, a weak NO burst was recorded and further NO generation increased only as the disease progressed, which was accompanied by very intensive H(2)O(2) and ethylene synthesis. The pathogen colonizing susceptible cells also acquired the ability to produce considerable amounts of NO and enhanced nitrosative and oxidative stress in host tissues. PMID:17688587

  15. Forest School in an Inner City? Making the Impossible Possible

    ERIC Educational Resources Information Center

    Elliott, Heather

    2015-01-01

    The Forest School approach to Early Years education, originally developed in Scandinavia, is influencing learning outside the classroom in England. An inner city primary school in Yorkshire investigated the nature and purpose of Forest Schools in Denmark, through a study visit, prior to developing their own Forest School in the midst of an urban…

  16. Forest Schools in Great Britain: An Initial Exploration

    ERIC Educational Resources Information Center

    Maynard, Trisha

    2007-01-01

    Closely associated with the Danish early years programme, the Forest School concept was brought to England by staff of Bridgwater College, Somerset, following an exchange visit to Denmark in 1993. Drawing on interviews with three Forest School workers and data posted on the Bridgwater College Forest School website, the article outlines and then…

  17. Forested wetlands

    SciTech Connect

    Lugo, A.E.; Brinson, M.; Brown, S.

    1990-01-01

    Forested wetlands have important roles in global biogeochemical cycles, supporting freshwater and saltwater commercial fisheries, and in providing a place for wildlife of all kinds to flourish. Scientific attention towards these ecosystems has lagged with only a few comprehensive works on forested wetlands of the world. A major emphasis of this book is to develop unifying principles and data bases on the structure and function of forested wetlands, in order to stimulate scientific study of them. Wetlands are areas that are inundated or saturated by surface-water or ground-water, at such a frequency and duration that under natural conditions they support organisms adapted to poorly aerated and/or saturated soil. The strategy of classifying the conditions that control the structure and behavior of forested wetlands by assuming that the physiognomy and floristic composition of the system will reflect the total energy expenditure of the ecosystem; and the structural and functional characteristics of forested wetlands from different parts of the world are the major topics covered.

  18. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest.

    PubMed

    Lebrija-Trejos, Edwin; Reich, Peter B; Hernández, Andres; Wright, S Joseph

    2016-09-01

    Multiple niche-based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density-dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first-year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density-dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow-growing and well-defended species. Niche differentiation along the growth-survival trade-off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed-size variation and promote species coexistence through a tolerance-fecundity trade-off. PMID:27346439

  19. Forest management in Northeast China: history, problems, and challenges.

    PubMed

    Yu, Dapao; Zhou, Li; Zhou, Wangming; Ding, Hong; Wang, Qingwei; Wang, Yue; Wu, Xiaoqing; Dai, Limin

    2011-12-01

    Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future. PMID:21350964

  20. Forest Management in Northeast China: History, Problems, and Challenges

    NASA Astrophysics Data System (ADS)

    Yu, Dapao; Zhou, Li; Zhou, Wangming; Ding, Hong; Wang, Qingwei; Wang, Yue; Wu, Xiaoqing; Dai, Limin

    2011-12-01

    Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future.

  1. Evaporation and transpiration differences among successional stages of Tropical Dry Forest, Santa Rosa National Park, Costa Rica

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, César D.; Calvo-Alvarado, Julio

    2016-04-01

    Seasonal environments in the tropics show strong responses to changes in precipitation regimes. The monthly water availability is the main trigger for ecological responses as flowering, fructification, leaf sprouting and senescence. Among these environments, the tropical dry forests (TDF) depends directly on the soil water availability, defining the forest growing season despite the forest characteristics. However, within the same ecosystem is possible to find differences in the water fluxes due to forest age. The TDF located in Santa Rosa National Park (SRNP) in Costa Rica; shows a particular matrix of secondary forest patches varying in age, structure, and species composition allowing us to evaluate the water fluxes differences among successional stages of TDF. Three permanent plots of 1000.0 m2 were selected from the Tropi-Dry project. Each plot characterized a specific successional stage of this ecosystem varying in forest structure and age. Every location was equipped to measure the hourly soil water content and forest growth, while the meteorological conditions were collected by the meteorological station of the national park. The data was collected from December 2005 to June 2009 however, due to data gaps and quality control the data analysis includes only the hydrological years between 2006 and 2009. The soil water content was measured at three depths in each plot (10, 30 and 40 cm) to determine the real evapotranspiration from the forest. The precipitation along these three years shows strong variations registering 326.5 mm-1yr-1 in the first year up to 3004.0 mm-1yr-1 during the last year, these strong changes are influenced by the ENOS phenomena in the region. Regardless the precipitation amounts the evapotranspiration do not differ strongly on a yearly basis, were 726.7 mm-1yr-1, 675.1 mm-1yr-1 and 751.6 mm-1yr-1 were exported to the atmosphere by the early, intermediate and late stages of TDF secondary forest. The yearly strong differences in

  2. Effects of tropical montane forest disturbance on epiphytic macrolichens.

    PubMed

    Benítez, Angel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for "shade-adapted lichens", while the richness of "heliophytic lichens" increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. PMID:23137982

  3. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  4. Secondary Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of their name, "secondary" products are essential for plant survival. They are required for basic cell functions as well as communicating the plant's presence to the surrounding environment and defense against pests as defined in the broad sense (i.e., diseases, nematodes, insects and plan...

  5. Early initiation of salvage hormone therapy influences survival in patients who failed initial radiation for locally advanced prostate cancer: A secondary analysis of RTOG protocol 86-10

    SciTech Connect

    Shipley, William U. . E-mail: wshipley@partners.org; DeSilvio, Michelle; Pilepich, Michael V.; Roach, Mack; Wolkov, Harvey B.; Sause, William T.; Rubin, Philip; Lawton, Colleen A.

    2006-03-15

    Purpose: We examined overall and disease-specific survival outcomes both from the time of initial treatment and from the start of salvage hormone therapy (HT), by the extent of disease progression at the time salvage HT was started in patients treated on RTOG Protocol 86-10. Methods and Materials: With a median follow-up of 9.0 years, 247 patients (54%) had received subsequent salvage HT. The overall survival (OVS) and disease-specific survival (DSS) were compared by the extent of disease progression at the time salvage HT was started. Results: For those patients with distant metastases (DM) present at the start of salvage HT, the OVS and DSS were significantly reduced when compared with those with DM absent at the time salvage HT was started (OVS at 8 years, 31% vs. 58%; DSS at 8 years, 38% vs. 65%). A statistically significant increase in DSS was observed among the 143 patients with DM absent when patients with prostate-specific antigen (PSA) less than 20 were compared with those with PSA greater than 20 at the time salvage HT was started. Conclusions: The DSS and the OVS of the relapsed patient are decreased in those with more extensive disease at the time of salvage HT. However, because this protocol could not evaluate the effect of posttreatment PSA velocity on outcomes, which is likely a better predictor of long-term success with salvage HT, these results cannot be taken to demonstrate that early salvage HT in patients with long posttreatment PSA doubling times is necessary for longer survival.

  6. Forests & Trees.

    ERIC Educational Resources Information Center

    Gage, Susan

    1989-01-01

    This newsletter discusses the disappearance of the world's forests and the resulting environmental problems of erosion and flooding; loss of genetic diversity; climatic changes such as less rainfall, and intensifying of the greenhouse effect; and displacement and destruction of indigenous cultures. The articles, lessons, and activities are…

  7. Forest Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA's Technology Applications Center, with other government and academic agencies, provided technology for improved resources management to the Cibola National Forest. Landsat satellite images enabled vegetation over a large area to be classified for purposes of timber analysis, wildlife habitat, range measurement and development of general vegetation maps.

  8. A 70-year perspective on tropical forest regeneration.

    PubMed

    Abbas, Sawaid; Nichol, Janet E; Fischer, Gunter A

    2016-02-15

    Forested areas of the world decreased by 129 million hectare during the past quarter-century, and only 35 % of remainder is primary forest. Secondary forests are therefore relatively more important for biodiversity conservation, catchment protection, climate control, and the ecological services they provide. Many governments expend large resources on afforestation projects, which may not be supported by objective data on rates and pathways of natural succession in secondary forest. This paper describes a 70-year succession of tropical forest in Hong Kong under different management regimes including afforestation programs, frequent fire, and fire protection. From complete destruction of its forest during the Second World War, forest has established rapidly in areas where a shrub cover was able to colonize. The practice of afforestation as a nursery stage on degraded hillsides, for establishment of forest seedlings by natural invasion is not supported by the evidence, as when the native Pinus massoniana plantations were eliminated by disease during the 1970s, no forest or woody species were seen in the areas affected. In fact there was a reversion to grassland, which persisted there for almost three decades, until recent shrub invasion. The fastest period of forest regeneration, at 10.9% annually between 1989 and 2001, occurred when shrubland edge was greatest and forest was able to colonize across interfluves between linear-shaped riparian shrublands in valley bottoms. After 2001, succession to forest was slower, at 7.8% annually, as forest patches consolidated and edge habitats reduced. Effective forest management policies could include seeding of native shrubs extending linearly from established forest, to maximize edge length between woody species and grasslands, and planting of late successional species in areas where forest pioneers are in decline. PMID:26674683

  9. Ant community structure during forest succession in a subtropical forest in South-East China

    NASA Astrophysics Data System (ADS)

    Staab, Michael; Schuldt, Andreas; Assmann, Thorsten; Bruelheide, Helge; Klein, Alexandra-Maria

    2014-11-01

    Understanding how communities respond to environmental gradients is critical to predict responses of species to changing habitat conditions such as in regenerating secondary habitats after human land use. In this study, ground-living ants were sampled with pitfall traps in 27 plots in a heterogeneous and diverse subtropical forest to test if and how a broad set of environmental variables including elevation, successional age, and tree species richness influence ant diversity and community composition. In total, 13,441 ant individuals belonging to 71 species were found. Ant abundance was unrelated to all environmental variables. Rarefied ant species richness was negatively related to elevation, and Shannon diversity decreased with shrub cover. There was considerable variation in ant species amongst plots, associated with elevation, successional age, and variables related to succession such as shrub cover. It is shown that younger secondary forests may support a species-rich and diverse community of ants in subtropical forests even though the species composition between younger and older forests is markedly different. These findings confirm the conservation value of secondary subtropical forests, which is critical because subtropical forests have been heavily exploited by human activities globally. However, the findings also confirm that old-growth forest should have priority in conservation as it supports a distinct ant community. Our study identifies a set of ant species which are associated with successional age and may thus potentially assist local conservation planning.

  10. Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Mielke, L. H.; Shepson, P. B.; Bryan, A. M.; Steiner, A. L.; Ortega, J.; Daly, R.; Helmig, D.; Vogel, C. S.; Griffith, S.; Dusanter, S.; Stevens, P. S.; Alaghmand, M.

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) can react in the atmosphere to form organic nitrates, which serve as NOx (NO + NO2) reservoirs, impacting ozone and secondary organic aerosol production, the oxidative capacity of the atmosphere, and nitrogen availability to ecosystems. To examine the contributions of biogenic emissions and the formation and fate of organic nitrates in a forest environment, we simulated the oxidation of 57 individual BVOCs emitted from a rural mixed forest in northern Michigan. Key BVOC-oxidant reactions were identified for future laboratory and field investigations into reaction rate constants, yields, and speciation of oxidation products. Of the total simulated organic nitrates, monoterpenes contributed ~70% in the early morning at ~12 m above the forest canopy when isoprene emissions were low. In the afternoon, when vertical mixing and isoprene nitrate production were highest, the simulated contribution of isoprene-derived organic nitrates was greater than 90% at all altitudes, with the concentration of secondary isoprene nitrates increasing with altitude. Notably, reaction of isoprene with NO3 leading to isoprene nitrate formation was found to be significant (~8% of primary organic nitrate production) during the daytime, and monoterpene reactions with NO3 were simulated to comprise up to ~83% of primary organic nitrate production at night. Lastly, forest succession, wherein aspen trees are being replaced by pine and maple trees, was predicted to lead to increased afternoon concentrations of monoterpene-derived organic nitrates. This further underscores the need to understand the formation and fate of these species, which have different chemical pathways and oxidation products compared to isoprene-derived organic nitrates and can lead to secondary organic aerosol formation.

  11. Secondary osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-06-01

    Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is -2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  12. Secondary osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    SUMMARY Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is –2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  13. Early Learning Innovation Act

    THOMAS, 111th Congress

    Rep. Himes, James A. [D-CT-4

    2009-10-29

    12/08/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Supporting Early Learning Act

    THOMAS, 113th Congress

    Rep. Himes, James A. [D-CT-4

    2014-02-03

    06/13/2014 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Tropical Forest for Sale! An Interdisciplinary Land-Use Simulation.

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    1998-01-01

    Describes an extended role-playing game for middle school to post-secondary students centered around the sale of a forest and farm in Costa Rica. Takes an in-depth look at the question of what it takes to purchase and protect a tropical forest. (DDR)

  16. Forest certification--an instrument to promote sustainable forest management?

    PubMed

    Rametsteiner, Ewald; Simula, Markku

    2003-01-01

    Forest certification was introduced in the early 1990s to address concerns of deforestation and forest degradation and to promote the maintenance of biological diversity, especially in the tropics. Initially pushed by environmental groups, it quickly evolved as a potential instrument to promote sustainable forest management (SFM). To date about 124 million ha or 3.2% of the world's forests have been certified by the different certification schemes created over the last decade. Forest certification shares the aim of promoting SFM with another tool, namely criteria and indicators (C&I) for SFM. C&I sets are mainly developed for the national level to describe and monitor status and trends in forests and forest management. They also provide an essential reference basis for forest certification standards, which set performance targets to be applied on a defined area. Progress in developing these two different tools has been significant. After 10 years of implementation, it is evident that the original intention to save tropical biodiversity through certification has largely failed to date. Most of certified areas are in the temperate and boreal zone, with Europe as the most important region. Only around ten per cent is located in tropical countries. The standards used for issuing certificates upon compliance are diverse, both between certification schemes and within one and the same scheme when applied in different regions. However, they are at least equal to legal requirements and often include elements that set actually higher standards. While the quality of actual audits of the standards is of varying quality, there are indications that independent audits are an incentive for improving forest management. As a voluntary market-based tool, forest certification is depending on the ability to cover the costs incurred and thus on often-elusive green consumer sentiment. Regardless of many difficulties, forest certification has been very successful in raising awareness and

  17. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink.

    PubMed

    McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H

    2015-02-01

    Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come. PMID:26240851

  18. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  19. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    SciTech Connect

    Nelson, E.A.; McKee, W.H. Jr.; Dulohery, C.J.

    1995-09-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy`s Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950`s. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area.

  20. Early Salvage Hormonal Therapy for Biochemical Failure Improved Survival in Prostate Cancer Patients After Neoadjuvant Hormonal Therapy Plus Radiation Therapy-A Secondary Analysis of Irish Clinical Oncology Research Group 97-01

    SciTech Connect

    Mydin, Aminudin R.; Dunne, Mary T.; Finn, Marie A.; Armstrong, John G.

    2013-01-01

    Purpose: To assess the survival benefit of early vs late salvage hormonal therapy (HT), we performed a secondary analysis on patients who developed recurrence from Irish Clinical Oncology Research Group 97-01, a randomized trial comparing 4 vs 8 months neoadjuvant HT plus radiation therapy (RT) in intermediate- and high-risk prostate adenocarcinoma. Methods and Materials: A total of 102 patients from the trial who recurred were analyzed at a median follow-up of 8.5 years. The patients were divided into 3 groups based on the timing of salvage HT: 57 patients had prostate-specific antigen (PSA) {<=}10 ng/mL and absent distant metastases (group 1, early), 21 patients had PSA >10 ng/mL and absent distant metastases (group 2, late), and 24 patients had distant metastases (group 3, late). The endpoint analyzed was overall survival (OS) calculated from 2 different time points: date of enrolment in the trial (OS1) and date of initiation of salvage HT (OS2). Survival was estimated using Kaplan-Meier curves and a Cox regression model. Results: The OS1 differed significantly between groups (P<.0005): OS1 at 10 years was 78% in group 1, 42% in group 2, and 29% in group 3. The OS2 also differed significantly between groups (P<.0005): OS2 at 6 years was 70% in group 1, 47% in group 2, and 22% in group 3. Group 1 had the longest median time from end of RT to biochemical failure compared with groups 2 and 3 (3.3, 0.9, and 1.7 years, respectively; P<.0005). Group 1 also had the longest median PSA doubling time compared with groups 2 and 3 (9.9, 3.6, and 2.4 months, respectively; P<.0005). On multivariate analysis, timing of salvage HT, time from end of RT to biochemical failure, and PSA nadir on salvage HT were significant predictors of survival. Conclusion: Early salvage HT based on PSA {<=}10 ng/mL and absent distant metastases improved survival in patients with prostate cancer after failure of initial treatment with neoadjuvant HT plus RT.

  1. Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Fu, PingQing; Ono, Kaori; Tachibana, Eri; Kawamura, Kimitaka

    2014-02-01

    The seasonal variations in aerosol water-soluble organic nitrogen (WSON) concentrations measured in a deciduous forest canopy over an approximately 30 month period were investigated for possible sources in the forest. The WSON concentrations (average 157 ± 127 ng N m-3) and WSON/water-soluble total nitrogen mass fractions (average 20 ± 11%) in the total suspended particulate matter exhibited a clear seasonal cycle with maxima in early summer. The WSON mass was found to reside mostly in the fine-mode size range (Dp < 1.9 µm) during the summer months. WSON was positively correlated with oxidation products of α-pinene and isoprene with similar size distributions, suggesting that secondary formation from biogenic hydrocarbon precursors is a plausible source for WSON in summer. In contrast, the majority of WSON in autumn was associated with coarse fraction (Dp > 1.9 µm), which was similar to the size distributions of sugar compounds, indicating that the major WSON sources in autumn are associated with primary biological emissions. The vertical differences in WSON concentrations suggest that the water-soluble organic aerosol is enriched with nitrogen below the canopy level relative to the forest floor. The WSON concentration increased with enhanced hydrogen ion concentrations in aerosol in the early summer, indicating that aerosol acidity associated with anthropogenic sources outside the forest likely plays an important role in the formation of WSON in that season. The study suggests that multiple sources of WSON within the forest canopy may dominate over others in specific seasons, providing insights into WSON formation processes in forest environments.

  2. [Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China].

    PubMed

    Gao, Fei; Lin, Wei; Cui, Xiao-yang

    2016-01-01

    To investigate the seasonal dynamics of soil organic carbon (SOC) mineralization in Xiaoxing'an Mountain, we incubated soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in different seasons in the laboratory and measured the SOC mineralization rate and cumulative SOC mineralization (Cm). We employed simultaneous reaction model to describe C mineralization kinetics and estimated SOC mineralization parameters including soil easily mineralizable C (C1), potentially mineralizable C (C₀). We also analyzed the relations between Cm, C₁and their influencing factors. Results showed that the incubated SOC mineralization rate and Cm for 0-5 cm soil layer decreased from early spring to late autumn, while for 5-10 cm soil layer the seasonal variation was not statistically significant for both forest types. The C₁ in 0-5 and 5-10 cm soil layers varied from 42.92-92.18 and 19.23-32.95 mg kg⁻¹, respectively, while the C₀ in 0-5 and 5-10 cm soil layers varied from 863.92-3957.15 and 434.15-865.79 mg · kg⁻¹, respec- tively. Both C₁ and C₀ decreased from early spring to late autumn. The proportions of C₀ in SOC for two forest types were 0.74%-2.78% and 1.11%-1.84% in 0-5 and 5-10 cm soil layers, respectively, and decreased from early spring to late autumn, indicating that SOC tended to become more stable as a whole from spring to autumn. The Cm and C₀ were significantly positively correlated to in situ soil water content and hot water-extractable carbohydrate content, but were not correlated to in situ soil temperature and cool water-extractable carbohydrate content. We concluded that soil labile organic carbon, soil physical and chemical properties contributed to the seasonal dynamics of SOC mineralization in the forests. PMID:27228587

  3. Montana's forest resources. Forest Service resource bulletin

    SciTech Connect

    Conner, R.C.; O'Brien, R.A.

    1993-09-01

    The report includes highlights of the forest resource in Montana as of 1989. Also the study describes the extent, condition, and location of the State's forests with particular emphasis on timberland. Includes statistical tables, area by land classes, ownership, and forest type, growing stock and sawtimber volumes, growth, mortality, and removals for timberland.

  4. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial

    PubMed Central

    2015-01-01

    Summary Background Brain scans are essential to exclude haemorrhage in patients with suspected acute ischaemic stroke before treatment with alteplase. However, patients with early ischaemic signs could be at increased risk of haemorrhage after alteplase treatment, and little information is available about whether pre-existing structural signs, which are common in older patients, affect response to alteplase. We aimed to investigate the association between imaging signs on brain CT and outcomes after alteplase. Methods IST-3 was a multicentre, randomised controlled trial of intravenous alteplase (0·9 mg/kg) versus control within 6 h of acute ischaemic stroke. The primary outcome was independence at 6 months (defined as an Oxford Handicap Scale [OHS] score of 0–2). 3035 patients were enrolled to IST-3 and underwent prerandomisation brain CT. Experts who were unaware of the random allocation assessed scans for early signs of ischaemia (tissue hypoattenuation, infarct extent, swelling, and hyperattenuated artery) and pre-existing signs (old infarct, leukoaraiosis, and atrophy). In this prespecified analysis, we assessed interactions between these imaging signs, symptomatic intracranial haemorrhage (a secondary outcome in IST-3) and independence at 6 months, and alteplase, adjusting for age, National Institutes of Health Stroke Scale (NIHSS) score, and time to randomisation. This trial is registered at ISRCTN.com, number ISRCTN25765518. Findings 3017 patients were assessed in this analysis, of whom 1507 were allocated alteplase and 1510 were assigned control. A reduction in independence was predicted by tissue hypoattenuation (odds ratio 0·66, 95% CI 0·55–0·81), large lesion (0·51, 0·38–0·68), swelling (0·59, 0·46–0·75), hyperattenuated artery (0·59, 0·47–0·75), atrophy (0·74, 0·59–0·94), and leukoaraiosis (0·72, 0·59–0·87). Symptomatic intracranial haemorrhage was predicted by old infarct (odds ratio 1·72, 95% CI 1·18–2·51), tissue

  5. ForWarn Forest Disturbance Change Detection System Provides a Weekly Snapshot of US Forest Conditions to Aid Forest Managers

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Spruce, J.; Kumar, J.; Hoffman, F. M.

    2012-12-01

    The Eastern Forest Environmental Threat Assessment Center and Western Wildland Environmental Assessment Center of the USDA Forest Service have collaborated with NASA Stennis Space Center to develop ForWarn, a forest monitoring tool that uses MODIS satellite imagery to produce weekly snapshots of vegetation conditions across the lower 48 United States. Forest and natural resource managers can use ForWarn to rapidly detect, identify, and respond to unexpected changes in the nation's forests caused by insects, diseases, wildfires, severe weather, or other natural or human-caused events. ForWarn detects most types of forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, and landslides. It also detects drought, flood, and temperature effects, and shows early and delayed seasonal vegetation development. Operating continuously since January 2010, results show ForWarn to be a robust and highly capable tool for detecting changes in forest conditions. To help forest and natural resource managers rapidly detect, identify, and respond to unexpected changes in the nation's forests, ForWarn produces sets of national maps showing potential forest disturbances at 231m resolution every 8 days, and posts the results to the web for examination. ForWarn compares current greenness with the "normal," historically seen greenness that would be expected for healthy vegetation for a specific location and time of the year, and then identifies areas appearing less green than expected to provide a strategic national overview of potential forest disturbances that can be used to direct ground and aircraft efforts. In addition to forests, ForWarn also tracks potential disturbances in rangeland vegetation and agriculural crops. ForWarn is the first national-scale system of its kind based on remote sensing developed specifically for forest disturbances. The ForWarn system had an official unveiling and rollout in

  6. Palaeomagnetism and rock magnetism of the Permian redbeds from the Velebit Mt. (Karst Dinarides, Croatia): dating of the early Alpine tectonics in the Western Dinarides by a secondary magnetization

    NASA Astrophysics Data System (ADS)

    Werner, Tomasz; Lewandowski, Marek; Vlahović, Igor; Velić, Ivo; Sidorczuk, Magdalena

    2015-05-01

    The studied area of the Velebit Mt., a part of the Adria microplate, belonged to a NE margin of Gondwana during the Carboniferous and Permian. While the Carboniferous to the Early Permian was characterised by deposition of clastic rocks, younger sedimentation was dominated by a thick sequence of carbonate rocks. The Lower Permian deposits of the core part of the Velebit Mt. at Košna and Crne Grede localities were investigated using palaeomagnetic and rock magnetic measurements. The main remanence carriers were recognized as haematite with an increasing contribution of SP/SD magnetite in younger subsections. The AMS fabric with low anisotropy ratio (1-3%) is strongly oblate at Košna and weakly prolate at Crne Grede, reflecting differences in the contribution of magnetic phases. A significant remagnetization of the Permian rocks, as proved by results of a conglomerate test, probably caused by a combination of elevated temperatures and fluid migration, may be assigned to burial-related processes that affected the rocks before the final uplift of the Dinarides. Characteristic remanent magnetizations recorded in haematite are apparently similar to the Permian direction for Africa (shallow inclination with NNW declination), as expected for Velebit Mt. coordinates. Paradoxically, this orientation is observed in situ within the almost vertically dipping beds. We explain this relationship assuming a syn-folding Cretaceous remagnetization of the rocks at their subhorizontal position (ca. 30°S), in which a mean vector of the secondary remanence overlaps with the Cretaceous direction, expected for Africa at the Velebit Mt. geographical coordinates. Consequently, our results indirectly point to the Cretaceous time of incipient stages of the Dinaric tectonism, and suggest African geotectonic affinity of the Velebit rocks. No important vertical-axis rotation is implied by our results, in contrast to previously published data. The puzzling complete remagnetization carried by

  7. Upland forests of the American/Pacific islands: Research opportunities in Micronesia and American Samoa. Forest Service general technical report (Final)

    SciTech Connect

    DeBell, D.S.; Whitesell, C.D.

    1993-07-01

    The Upland forests of Micronesia and American Samoa can provide many social, ecological, and esthetic benefits for island inhabitants. Substantial upland areas (the majority of acreage on some islands) are now occupied by secondary and grassland/savanna vegetation: such areas represent opportunities for restoration, with both native forest cover and plantations of introduced species. The review briefly describes characteristics of the islands and the nature of existing and potential upland forests, including the most common upland tree species. Principal information needs and research opportunities are discussed for 10 subjects: watershed rehabilitation, forest restoration in secondary vegetation areas, basic ecology, soils and nutrient relationships, damaging agents, forest inventory and productivity assessment, silvicultural systems, valuation of forest products and services, threatened and endangered species, and description and protection of native forest habitats.

  8. Temporal change in fragmentation of continental US forests

    USGS Publications Warehouse

    Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Homer, C.

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US. Early and late dates for the land-cover change data were ca. 1992 and ca. 2001. Forest density was used as a multi-scale index of fragmentation by measuring the proportion of forest in neighborhoods ranging in size from 2.25 to 5314.41 ha. The multi-scale forest density maps were classified using thresholds of 40% (patch), 60% (dominant), and 90% (interior) to analyze temporal change of fragmentation. The loss of dominant and interior forest showed distinct scale effects, whereas loss of patch forest was much less scale-dependent. Dominant forest loss doubled from the smallest to the largest spatial scale, while interior forest loss increased by approximately 80% from the smallest to the second largest spatial scale, then decreased somewhat. At the largest spatial scale, losses of dominant and interior forest were 5 and 10%, respectively, of their ca. 1992 amounts. In contrast, patch forest loss increased by only 25% from the smallest to largest spatial scale. These results indicate that continental US forests were sensitive to forest loss because of their already fragmented state. Forest loss would have had to occur in an unlikely spatial pattern in order to avoid the proportionately greater impact on dominant and interior forest at larger spatial scales. ?? 2008 US Government.

  9. Forest Health Detectives

    ERIC Educational Resources Information Center

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  10. Monitoring forest structure at landscape level: a case study of Scots pine forest in NE Turkey.

    PubMed

    Terzioğlu, Salih; Başkent, Emin Zeki; Kadioğullari, Ali Ihsan

    2009-05-01

    This study aims to investigate the change in spatial-temporal configuration of secondary forest succession and generate measurements for monitoring the changes in structural plant diversity in Yalnizçam Scots pine forest in NE Turkey from 1972 to 2005. The successional stages were mapped using the combination of Geographic Information System (GIS), Global Positioning System (GPS), aerial photos and high resolution satellite images (IKONOS). Forest structure and its relationship with structural plant diversity along with its changes over time were characterized using FRAGSTATS. In terms of spatial configuration of seral stages, the total number of fragments increased from 572 to 735, and mean size of patch (MPS) decreased from 154.97 ha to 120.60 ha over 33 years. The situation resulted in forestation serving appropriate conditions for plant diversity in the area. As an overall change in study area, there was a net increase of 1823.3 ha forest during the period with an average annual forestation rate of 55.25 ha year(-1) (0.4% per year). In conclusion, the study revealed that stand type maps of forest management plans in Turkey provide a great chance to monitor the changes in structural plant diversity over time. The study further contributes to the development of a framework for effective integration of biodiversity conservation into Multiple Use Forest Management (MUFM) plans using the successional stages as a critical mechanism. PMID:18553149

  11. Use of Multi-Year MODIS Phenological Data Products to Detect and Monitor Forest Disturbances at Regional and National Scales

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Jerry; Smoot, James; Ross, Kenton

    2010-01-01

    This presentation discusses an effort to use select MODIS phenological products for forest disturbance monitoring at the regional and CONUS scales. Forests occur on 1/3 of the U.S. land base and include regionally prevalent forest disturbances that can threaten forest sustainability. Regional and CONUS forest disturbance monitoring is needed for a national forest threat early warning system being developed by the USDA Forest Service with help from NASA, ORNL, and USGS. MODIS NDVI phenology products are being used to develop forest disturbance monitoring capabilities of this EWS.

  12. Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest.

    PubMed

    He, Zhongsheng; Liu, Jinfu; Su, Songjin; Zheng, Shiqun; Xu, Daowei; Wu, Zeyan; Hong, Wei; Wang, James Li-Ming

    2015-01-01

    The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest. PMID:26496710

  13. Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest

    PubMed Central

    He, Zhongsheng; Liu, Jinfu; Su, Songjin; Zheng, Shiqun; Xu, Daowei; Wu, Zeyan; Hong, Wei; Wang, James Li-Ming

    2015-01-01

    The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils’ physical and chemical properties and increase the population species’ richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest. PMID:26496710

  14. Forest dynamics

    PubMed Central

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  15. Forest dynamics.

    PubMed

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  16. AmeriFlux US-MMS Morgan Monroe State Forest

    SciTech Connect

    Philip, Rich; Novick, Kim

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MMS Morgan Monroe State Forest. Site Description - Owned by the Indiana Department of Natural Resources (IDNR), the Morgan Monroe State Forest, the site's namesake, is operated thanks to the long-term agreement between Indiana University and IDNR. The first settlers cleared the surrounding ridges for farming, but were largely unsuccessful. The state of Indiana purchased the land in 1929, creating the Morgan Monroe State Forest. Many of the trees in the tower footprint are 60-80 years old, surviving selective logging that ended over the past 10 years. Today, the forest is a secondary successional broadleaf forest within the maple-beech to oak hickory transition zone of the eastern deciduous forest.

  17. Invasion by Ligustrum lucidum (Oleaceae) in NW Argentina: early stage characteristics in different habitat types.

    PubMed

    Aragón, Roxana; Groom, Martha

    2003-03-01

    Currently biological invasions are considered one of the world's most serious conservation problems. Ligustrum lucidum is the most abundant exotic tree in secondary forest patches of montane forests of NW Argentina. We studied the determinants of success of the early stages of its life cycle in distinct habitat types, with the hope of identifying vulnerabilities that could be exploited to control the invasion. Seed arrival, germination, seedling recruitment and survival, and sapling growth were studied in edges, gaps and forest interior. Seed arrival was also assessed under perches and in open fields. Germination was studied in forest and grassland patches. L. lucidum seedling survival and sapling growth were compared with the most abundant native species survival and growth. Seed arrival was strongly seasonal with a peak in mid-August. Seed rain did not differ significantly among habitat types, however there was a tendency for edges to receive more seeds when only dispersed seeds were considered. Perches strongly enhanced seed arrival; more than 40 times the number of seeds were dispersed beneath citrus plants (i.e. perches) than found in paired open areas. In the forest, seeds in gaps and edges had higher germination rates, but there was no difference in seedling survival. Fruits under closed canopy exhibited the lowest germination. Germination and survival were low in open areas. Neither seedling recruitment nor sapling growth differed between gaps and forest interior. L. lucidum saplings grew significantly more than saplings of the most common native species, and also showed higher seedling survival. L. lucidum is a prolific fruit producer, is capable of germinating and surviving in a broad range of forest environments, it is relatively shade tolerant and has higher survival and faster growth rate in comparison to the most common native species. All these characteristics highlight its potency as a successful invader, and point to few vulnerabilities that could

  18. Growth dynamics and biodiversity of larch forest after wildfire at the north of central Siberia

    SciTech Connect

    Danilin, I.

    1996-12-31

    Investigations of qualitative and quantitative changes occurring in disturbed forest communities in Siberia are now recognized as important issues, since anthropogenic stress is increasingly affecting forests from year to year and often results in irreversible decomposition of forest ecosystems over large areas. In forests of central Siberia, fire accounts for the greatest disturbance. The level of fire-caused forest destruction is noticeably high. Space imagery analysis has revealed that, from 1980 throughout 1995, the average annual forest area covered by fires was more than 500,000 ha. In as much as this is a country with permafrost soils, fires promote swamping and treeless areas. However, forests regenerate naturally on some burned areas. Forest regeneration can occur either with stand replacement (through secondary birch) or without replacement when new forests are formed by the pre-fire edificators. The second way of succession is ecologically more preferable, because the larch population is more resistant to external influences and keeps its native biodiversity.

  19. Remote sensing assessment of forest health in the Bohemian forests of central Europe

    SciTech Connect

    Entcheva, P.K.; Rock, B.N.; Lauten, G.N.; Cibula, W.G.

    1996-12-31

    Current studies using Landsat TM data for assessment of forest damage in the Czech Republic and Germany have demonstrated that tree levels of forest damage (light, moderate and heavy) can be discriminated applying logit regression methods, when on the ground foresters can recognize a total of five levels of decline. Field studies using portable spectrometer and a narrow-band video camera provide evidence for recent improvement in forest health and demonstrate that monitoring of the red edge portion of the visible/near infrared region of the spectrum may provide the early warning capabilities, missing when using broad band sensor systems. Detailed measurements of initial stages of damage suggest that hyperspectral sensors, such as the Lewis HSI scheduled for launch in 1997, will provide the capabilities for detection and identification of the initial stages of forest damage.

  20. Phosphorus input through fog deposition in a dry tropical forest

    NASA Astrophysics Data System (ADS)

    Vandecar, Karen L.; Runyan, Christiane W.; D'Odorico, Paolo; Lawrence, Deborah; Schmook, Birgit; Das, Rishiraj

    2015-12-01

    In many tropical forests, where phosphorus (P) is considered a limiting nutrient, atmospheric deposition can contribute significantly to available P. Previous studies have shown that P inputs from atmospheric deposition are enhanced by plant canopies. This effect is explained as the result of increased deposition of P-rich aerosol particles (dry deposition) and fog droplets (fog or "occult" deposition) onto leaf surfaces. Here we studied the importance of fog as a source of P to a P-limited dry tropical forest. Throughout an 80 day period during the dry season when fog is most common, we sampled fog water and bulk precipitation in a clearing and measured leaf wetness and throughfall in an adjacent secondary and mature forest stand. During the study period, total P (PT) concentrations in fog water ranged from 0.15 to 6.40 mg/L, on average fourteenfold greater than PT concentrations in bulk precipitation (0.011 to 0.451 mg/L), and sixfold and sevenfold greater than throughfall PT concentrations in the secondary and mature forest stands, respectively (0.007 to 1.319 mg/L; 0.009 to 0.443 mg/L). Based on leaf area index, the frequency of fog deposition, and amount of water deposited per fog event, we estimate that fog delivers a maximum of 1.01 kg/ha/yr to secondary forest stands and 1.75 kg/ha/yr to mature forest stands, compared to 0.88 kg/ha/yr to secondary forest stands and 1.98 kg/ha/yr to mature forest stands via throughfall (wet + dry deposition) and stemflow. Thus, fog deposition may contribute substantially to available P in tropical dry forests.

  1. Cyril Norwood and the Ideal of Secondary Education. Secondary Education in a Changing World

    ERIC Educational Resources Information Center

    McCulloch, Gary

    2007-01-01

    Tracing the life of Sir Cyril Norwood, one of England's most prominent and influential educators, this book investigates the historical development of secondary education in England and Wales during the early twentieth century. During this time, an enduring ideal of secondary education associated with Sir Cyril Norwood became dominant. This was…

  2. A contemporary assessment of change in humid tropical forests.

    PubMed

    Asner, Gregory P; Rudel, Thomas K; Aide, T Mitchell; Defries, Ruth; Emerson, Ruth

    2009-12-01

    In recent decades the rate and geographic extent of land-use and land-cover change has increased throughout the world's humid tropical forests. The pan-tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long-term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large-scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small-scale deforestation, low-intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis. PMID:20078639

  3. Primary forests are irreplaceable for sustaining tropical biodiversity.

    PubMed

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-10-20

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests. PMID:21918513

  4. Spatiotemporal analysis of the effects of forest covers on stream water quality in Western Ghats of peninsular India

    NASA Astrophysics Data System (ADS)

    Singh, Sunita; Mishra, Arabinda

    2014-11-01

    The hydrological research has largely concentrated on two extremes - undisturbed forest cover versus cleared forest land, whereas most tropical forest areas are now a mix of secondary vegetation, and old forest interspersed with patches cleared for agriculture or other non-forest use (Bruijnzeel, 2004; Giambelluca, 2002). For this reason, research on spatiotemporal variations in the effects of a mix of primary forest, mature secondary forests and disturbed forests on stream water quality was conducted in four watersheds in the Western Ghats of peninsular India. The study indicated that every one percent decrease in the forest cover (all lands with tree cover of canopy density of 10% and above when projected vertically on the horizontal ground with minimum areal extent of one ha) increases turbidity, total suspended solids (TSS) and Escherichia coli by 8.41%, 4.17% and 3.91%, respectively as also decreases calcium hardness by 0.49%. However, when the forest cover was segregated into old forests (primary forest, mature secondary forest and undisturbed mature plantations) and, open and disturbed forests the old forests were observed to significantly improve (p < 0.05) most water quality parameters. In contrast the open and disturbed forests were observed to deteriorate the observed water quality parameters except for turbidity and TSS. The magnitudes of regression coefficients indicated that the old forests were 2.2 and 2.74 times more effective than the disturbed forests in reducing turbidity and TSS, respectively. Tradeoffs between the provisioning services and water quality improvement services of the forest were apparent.

  5. Spatiotemporal analysis of the effects of forest covers on water yield in the Western Ghats of peninsular India

    NASA Astrophysics Data System (ADS)

    Singh, Sunita; Mishra, Arabinda

    2012-06-01

    SummaryBiotic interference has greatly disturbed the forest cover, the forest soils and, therefore, the hydrological functioning of the forest (Bonell and Bruijnzeel, 2005). Though widely debated, reduction in water yield (Water Yield: Total quantity of surface water that can be expected in a given period from a stream at the outlet of its catchment (Subramanya, 2008)) appears to be one such consequence. Scientific understanding of how this contentious issue affects the benefits of forests for water is critical to avoid unintended consequences (IUFRO, 2007). Gaps in research exist for tropical forest areas that are now a general mix of primary forest and secondary vegetation interspersed with patches cleared for agriculture or other non-forest uses (Bruijnzeel, 2004; Giambelluca, 2002). For this reason, research on spatiotemporal variations in the effects of a mix of primary forest (Primary Forests: Old forests with no or inconsequential human disturbance), mature secondary forests (Secondary Forests: Forests regenerating largely through natural processes after significant human and/or natural disturbance of the original forest vegetation at a single point in time or over an extended period, and displaying a major difference in forest structure and/or canopy species composition with respect to nearby primary forests on similar sites (Chokkalingam and Jong, 2001)) and disturbed forests (Disturbed Forests: Forests that have been exploited on moderate to large scale for timber, fuel wood, fodder, shifting cultivation and other tangible benefits. Reforestation activities may or may not have been undertaken in them) on runoff coefficients was conducted in four watersheds in the Western Ghats of peninsular India. Forest cover (Forest Cover: All lands with tree cover of canopy density of 10% and above when projected vertically on the horizontal ground with minimum areal extent of one Ha) significantly (0.01 < p < 0.05) and positively influenced the runoff coefficient and

  6. Analysis of Edge Effects on Fragmented Forests Using Forest Inventories in Southwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Numata, I.; Silva, S.; Cochrane, M. A.

    2015-12-01

    Deforestation fragments contiguous forests into smaller and smaller pieces, inducing ecological and biological changes in forest ecosystems. Edge effects are spatial and temporal phenomena. The effects of forest fragmentation vary primarily as functions of edge penetration distance, spatial arrangements and time of persistence of forest edges. Across varying penetration distances in a forest edge, numerous changes occur including elevated tree mortality and canopy desiccation, changes in forest structure and species composition, alternation of hydrological and carbon cycles. We analyzed the effects of edge penetration distance and time of persistence of forest edges on forest biophysical characteristics based upon more than thirty 500m transects over highly fragmented forests in Acre, the southwestern Amazon. Spatial variability of tree data (diameter at breast height - DBH, above ground biomass, tree density, species composition and population) was measured along a penetration distance of 500m from forest edges. Different edge age classes (1-5yr, 6-10yr, > 10yr) and edge penetration distances were identified based upon a Landsat time-series analysis. The number of individual plants with DBH > 10cm tends to be greater near edge (largest in the first 100m), while larger biomass amounts are found at > 300m distance. The impact of penetration distance on biomass, however, is not statistically significant. In terms of the distribution of DBHs, while smaller trees with DBH <=20cm account for 70% of all trees, larger DBH trees tend to increase after 300m penetration distance. The effect of edge persistence period (edge age) is not significant for both the number of individual plants as well as the biomass, however it is more pronounced on secondary species' biomass such as Cecrcopia sp and bamboo, which increase as edges persist longer.

  7. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  8. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  9. Historical forest patterns of Oregon's central Coast Range

    USGS Publications Warehouse

    Ripple, W.J.; Hershey, K.T.; Anthony, R.G.

    2000-01-01

    To describe the composition and pattern of unmanaged forestland in Oregon's central Coast Range, we analyzed forest conditions from a random sample of 18 prelogging (1949 and earlier) landscapes. We also compared the amount and variability of old forest (conifer-dominated stands > 53 cm dbh) in the prelogging landscapes with that in the current landscapes. Sixty-three percent of the prelogging landscape comprised old forest, approximately 21% of which also had a significant (> 20% cover) hardwood component. The proportions of forest types across the 18 prelogging landscapes varied greatly for both early seral stages (cv = 81194) and hardwoods (cv = 127) and moderately for old forest (cv = 39). With increasing distance from streams, the amount of hardwoods and nonforest decreased, whereas the amount of seedling/sapling/pole and young conifers increased. The amount of old forest was significantly greater (p < 0.002) in prelogging forests than in current landscapes. Old-forest patterns also differed significantly (p < 0.015) between prelogging and current landscapes; patch density, coefficient of variation of patch size, edge density, and fragmentation were greater in current landscapes and mean patch size, largest patch size, and core habitat were greater in prelogging forests. Generally, old-forest landscape pattern variables showed a greater range in prelogging landscapes than in current landscapes. Management strategies designed to increase the amount of old forest and the range in landscape patterns would result in a landscape more closely resembling that found prior to intensive logging. (C) 2000 Elsevier Science Ltd.

  10. Utilization of residual forest biomass

    SciTech Connect

    Hakkila, P.

    1989-01-01

    The first world-wide energy crisis in the early 1970s resulted in an explosive increase in both the number and diversity of studies on unmerchantable tree components such as tops, branches, foliage, stumps, and roots, and on whole small-sized trees. This book presents a synopsis and the latest information on forest biomass utilization and the potential of this renewable raw material resource, presented from an interdisciplinary viewpoint. This balanced review of scientific literature as well as recent practical developments and experience in forest biomass utilization covers various aspects of quantity and properties of the resource, harvesting and transport, ecological consequences of intensive biomass recovery, comminution and upgrading, utilization for pulp, paper, composite boards, fodder, and energy in solid, liquid, or gaseous form.

  11. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    PubMed

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future. PMID:27039520

  12. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    PubMed Central

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035

  13. Attenuation of cosmic ray flux in temperate forest

    NASA Astrophysics Data System (ADS)

    Plug, L. J.; Gosse, J. C.; McIntosh, J. J.; Bigley, R.

    2007-06-01

    Forests alter secondary cosmic radiation (CR) to the ground by (1) diminishing it owing to absorption by trees, (2) inducing spatial and temporal variability because biomass distribution is heterogeneous, and (3) lengthening the apparent mean attenuation length at ground level because nucleons are shielded over muons. We model CR flux through three-dimensional simulated forests with properties drawn from old-growth plots in Nova Scotia, Canada (Acadian forest) and the Olympic Peninsula, Washington state (coastal rain forest). For exposure durations of ≥105, conservative mean shielding in rain forest is 7.3 ± 2.3%, canopy and floor biomass included. Acadian/boreal forest has mean shielding 2.3 ± 0.6%. These long-timescale mean values are similar to previous estimates from treating forest biomass as a layer of constant thickness. Ground flux varies significantly between sites within a forest, ranging from 1 to 100% of nonforested flux for short timescales if some trees are large (diameters ≥1.5 m) because the position of the sample site relative to individual large trees is important. Temperate rain forests have large trees and disturbance/regeneration intervals approaching 103 y; hence, CR flux and resultant terrestrial cosmogenic nuclide (TCN) concentrations vary by 1.5% after 8000 y but only 0.2% after 80,000 y. These results are for a forest that is statistically uniform through time; changes in biomass heterogeneity through time and/or space, owing to climate, wind-throw, or localized recruitment, would increase the inherent variability of TCN production. TCN dating experiments on timescales much shorter than 80 secondary successions of the forest will have significant uncertainty in effective production rates but catchment-wide average erosion experiments will not.

  14. NITROGEN SATURATION IN NORTHERN FOREST ECOSYSTEMS

    EPA Science Inventory

    In this article we provide a formal definition of nitrogen saturation and set forth a series of testable hypotheses regarding the states of forest ecosystem response to chronic nitrogen deposition. hese hypotheses are used to suggest early indicators of nitrogen saturation and to...

  15. The Children's Rain Forest.

    ERIC Educational Resources Information Center

    Thornton, Carol A.; And Others

    1995-01-01

    Describes a unit on rain forests in which first graders studied about rain forests, built a classroom rain forest, and created a bulletin board. They also graphed rainfall, estimated body water, and estimated the number of newspapers that could be produced from one canopy tree. (MKR)

  16. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the

  17. BRASERO: A Resource for Benchmarking RNA Secondary Structure Comparison Algorithms.

    PubMed

    Allali, Julien; Saule, Cédric; Chauve, Cédric; d'Aubenton-Carafa, Yves; Denise, Alain; Drevet, Christine; Ferraro, Pascal; Gautheret, Daniel; Herrbach, Claire; Leclerc, Fabrice; de Monte, Antoine; Ouangraoua, Aida; Sagot, Marie-France; Termier, Michel; Thermes, Claude; Touzet, Hélène

    2012-01-01

    The pairwise comparison of RNA secondary structures is a fundamental problem, with direct application in mining databases for annotating putative noncoding RNA candidates in newly sequenced genomes. An increasing number of software tools are available for comparing RNA secondary structures, based on different models (such as ordered trees or forests, arc annotated sequences, and multilevel trees) and computational principles (edit distance, alignment). We describe here the website BRASERO that offers tools for evaluating such software tools on real and synthetic datasets. PMID:22675348

  18. Hyperspectral sensing of forests

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  19. An anthropological view of the forest culture of Peten, Guatemala

    SciTech Connect

    Schwartz, N.B.

    1995-12-31

    Traditional farmers and harvesters of non-timber forest products in Peten treat the forest in ways that conserve and regenerate its resources. They believe no one owns the forest outright. Humans share it with other life forms and therefore no one has the right to monopolize or destroy forest resources. Traditional Peteneros find a use for almost everything in the forest, and believe it neither smart nor proper to use a given area for a single purpose, for example, to clear an area of all trees and devote it exclusively to a cattle pasture. In the traditional system most medicinal plants, basic foodstuffs, fuelwoods and construction materials are taken from the bosque (secondary forests within walking distance of human settlements). Peteneros` sustainable use of bosques eases pressure on the monte (primary forests). In the monte Peteneros` harvesting practices are protective of resources, causing minimal damage. Finding almost everything in the forest useful, Peteneros believe all soils and plants should be tended and allowed to regenerate. However, modern developments such as uncontrolled logging, large-scale, unorganized colonization, cattle raising and market demands leading to monocropped farm plots imperil the forests of Peten and a way of life that subsumes a practical conservation ethic.

  20. Modeling the forest transition: forest scarcity and ecosystem service hypotheses.

    PubMed

    Satake, Akiko; Rudel, Thomas K

    2007-10-01

    An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply

  1. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  2. Conceptualizing Forest Degradation.

    PubMed

    Ghazoul, Jaboury; Burivalova, Zuzana; Garcia-Ulloa, John; King, Lisa A

    2015-10-01

    Forest degradation is a global environmental issue, but its definition is problematic. Difficulties include choosing appropriate reference states, timescales, thresholds, and forest values. We dispense with many such ambiguities by interpreting forest degradation through the frame of ecological resilience, and with reference to forest dynamics. Specifically, we define forest degradation as a state of anthropogenically induced arrested succession, where ecological processes that underlie forest dynamics are diminished or severely constrained. Metrics of degradation might include those that reflect ecological processes shaping community dynamics, notably the regeneration of plant species. Arrested succession implies that management intervention is necessary to recover successional trajectories. Such a definition can be applied to any forest ecosystem, and can also be extended to other ecosystems. PMID:26411619

  3. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    PubMed

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

  4. Woody Species Diversity in Forest Plantations in a Mountainous Region of Beijing, China: Effects of Sampling Scale and Species Selection

    PubMed Central

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

  5. Impact of land use change on atmospheric P inputs in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Das, Rishiraj; Lawrence, Deborah; D'Odorico, Paolo; Delonge, Marcia

    2011-03-01

    Forest canopies increase atmospheric inputs of nutrients to forest ecosystems by trapping dust and particulates. In tropical dry forests, this mechanism may contribute significant amounts of phosphorus, often a limiting nutrient in these ecosystems. Shifting cultivation may reduce the atmospheric inputs of phosphorus through the removal and restructuring of the forest canopy. We studied the impacts of land clearing by shifting cultivation in the southern Yucatan peninsula by measuring P in atmospheric bulk deposition and throughfall in two secondary forest stands and one mature forest stand to determine whether mature forests have greater throughfall P inputs than regenerating areas. From May to November 2007, we sampled rainfall in an open field and throughfall in three adjacent forest stands of different ages: 6 year old, 20 year old and mature (>60 year). We analyzed subsamples for inorganic and organic P. During the 7 month wet season, cumulative P input for the open field was 0.28 kg/ha, the 6 year stand accumulated 0.44 kg/ha, the 20 year stand accumulated 0.55 kg/ha and the mature stand accumulated 0.81 kg/ha. Organic P inputs were ˜50% of total P inputs in the open field, and 30-38% of total P inputs for the forest stands. The mature forest had significantly higher P concentrations and inputs than the open field or secondary forest stands, and forest stands had significantly greater P inputs than the open field, but there were no significant differences between the older and younger secondary forests. The repeated clearing of forests may thus reduce important P inputs to the ecosystem in the long-term.

  6. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  7. High rates of carbon storage in old deciduous forests: Emerging mechanisms from the Forest Accelerated Succession ExperimenT (FASET)

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Nave, L. E.; Hardiman, B. S.; Bohrer, G.; Halperin, A.; Maurer, K.; Le Moine, J.; Nadelhoffer, K.; Vogel, C. S.; Curtis, P.; University Of Michigan Biological Station Forest Ecosystem Study (Umbs-Fest) Team

    2010-12-01

    Deciduous forests of the eastern US are broadly approaching an ecological threshold in which early successional dominant trees are senescing and giving way to later successional species, with unknown consequences for regional carbon (C) cycling. Though recent research demonstrates that forests may accumulate C for centuries, the mechanisms behind sustained rates of C storage in old, particularly deciduous, forests have not been identified. In a regionally representative forest at the University of Michigan Biological Station, we are combining observational and experimental C cycling studies to forecast how forest C storage responds to climate variation, disturbance, and succession. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is testing the hypothesis that forest production will increase rather than decline with age, due to increases in nitrogen (N) availability, N allocation to the canopy, and the concurrent development of a more biologically and structurally complex canopy. Results thus far support our hypothesis that aging forests in the region may sustain high rates of C storage through shifts in N cycling and increased canopy complexity. Girdling-induced mortality of early successional species reduced soil respiration, accelerated fine root turnover, and prompted the redistribution of N from the foliage of early to later successional species. Nitrogen redistribution increased leaf area index (LAI) production by later successional species, offsetting declines in LAI from senescing early successional species. High rates of net primary production (NPP) were sustained in stands comprising a diverse assemblage of early and later successional species because later successional species, when already present in the canopy, rapidly compensated for declining growth of early successional species. Canopy structural complexity, which increased with forest age, was positively

  8. How Data Mining Threatens Student Privacy. Joint Hearing before the Subcommittee on Cybersecurity, Infrastructure Protection, and Security Technologies of the Committee on Homeland Security, House of Representatives Serial No. 113-76 and the Subcommittee on Early Childhood, Elementary, and Secondary Education of the Committee on Education and the Workforce, House of Representatives Serial No. 113-61, House of Representatives, One Hundred Thirteenth Congress, Second Session (June 25, 2014)

    ERIC Educational Resources Information Center

    US House of Representatives, 2015

    2015-01-01

    This paper presents the first joint hearing of the Subcommittee on Cybersecurity, Infrastructure Protection, and Security Technologies of the Committee on Homeland Security and the Subcommittee on Early Childhood, Elementary, and Secondary Education of the Committee on Education and the Workforce. The subcommittees met to examine data collection…

  9. Democratization of Secondary Education in Malaysia: Emerging Problems and Challenges of Educational Reform

    ERIC Educational Resources Information Center

    Sua, Tan Yao

    2012-01-01

    The democratization of education in Malaysia has come a long way since the early 1960s. In the early 1990s, the government decided to democratize secondary education in order to widen formal access to secondary education, especially at the upper secondary level. It is the contention of this paper that the widening of formal access to education may…

  10. Regulation of nitrification in upland forest soils

    SciTech Connect

    Donaldson, J.M.

    1987-01-01

    Forest soils often have low nitrate levels and are slow to produce NO/sub 3//sup -/-N when incubated in the laboratory or after site disturbance. Several hypotheses have been proposed to explain the patterns of nitrification that have been observed in forests ecosystems. These hypotheses suggest that nitrification is limited by low soil pH, NH/sub 4//sup +/-N availability, the presence of allelopathic inhibitors or low levels of other nutrients, such as phosphorus. In this study, experiments were designed to determine if nitrate production in forest soils is regulated by soil pH, NH/sub 4//sup +/ of allelopathic compounds. Three sites representing secondary succession in upland oak-hickory forests were sampled five times during a one-year period. Sampling dates coincided with important stages in the phenological development of the site vegetation. Soils were incubated for up to six weeks in the laboratory. This allowed accurate definition of the potential for nitrogen mineralization and nitrification. Results of laboratory incubation and field-treatment experiments indicate that HN/sub 4//sup +/-N availability is the main factor regulating NH/sub 4//sup +/-oxidizer populations and nitrification in the forest soils investigated. Ammonium is the substrate of nitrification.

  11. Variation in rainfall interception along a forest succession gradient

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Zimmermann, Alexander; van Breugel, Michiel

    2013-04-01

    Rainfall interception by forest canopies reduces the water influx to the forest floor. When forests are replaced by pasture, the process of canopy interception temporarily stops until a new forest develops on abandoned pasture land. Modern land-cover change typically involves regrowing forests but the relation between forest succession and canopy interception is hardly understood. This lack of knowledge is unfortunate because rainfall interception plays an important role in regional water cycles and needs to be quantified for modeling purposes. To help close the knowledge gap, we designed a chronosequence study of throughfall along a secondary succession gradient in a tropical forest region of Panama. The investigated gradient comprises 20 natural forest patches regrowing for 1 up to about 130 years. We sampled each patch with a minimum of 20 funnel-type throughfall collectors over a continuous two-month period that had nearly 900 mm of rain. At the same time and locations, we acquired forest structure data based on DBH measurements of all trees > 1 cm DBH, identified all tree species, and took hemispherical photographs to calculate canopy openness. We used Bayesian Model Averaging (BMA) to identify those vegetation parameters that have the strongest influence on interception variation. Interception loss increased with forest age from 0 to nearly 200 mm of the total rainfall input (0 - 20 %), with the steepest rise occurring within the first decade of forest succession. Parsimonious models which contain canopy openness and basal area or stem density of stems smaller than 5 cm DBH are favored about more complex models. Leave-one-out cross validation revealed that our BMA approach can be used to predict interception with an RMSE of 5 %. Based on our results we argue that hydrological modeling exercises should account for variation in interception due to succession stage, which is possible e.g. by using a statistical approach to relate interception estimates to forest

  12. Emissions of Biogenic Volatile Organic Compounds and Observations of VOC Oxidation at Harvard Forest

    NASA Astrophysics Data System (ADS)

    McKinney, K. A.; Pho, T.; Vasta, A.; Lee, B. H.

    2009-12-01

    The contribution of biogenic volatile organic compounds (BVOCs) to oxidant concentrations and secondary organic aerosol (SOA) production in forested environments depends on the emission rates of these compounds. Recent findings have suggested that the emission rates of BVOCs and the range of species emitted could be larger than previously thought. In this study, Proton Transfer Reaction Mass Spectrometry (PTR-MS) was used to obtain fast (<1 Hz) measurements of the predominant BVOC species, including isoprene, monoterpenes, and oxygenated BVOCs, above the canopy at Harvard Forest (Petersham, MA) during the summers of 2005, 2007, and 2008. Together with vertical wind data, these measurements are used to determine fluxes of BVOCs out of the forest using the virtual disjunct eddy covariance method. Concentrations of additional VOCs, including methyl vinyl ketone + methacrolein and terpene oxidation products were also measured. Isoprene is the dominant emitted species, with peak emission rates and midday mixing ratios of ca. 4 mg isoprene m-2 h-1 and ca. 5 ppbv, respectively. Isoprene emission rates are expected to vary with temperature and radiation (PAR) levels, and are compared to standard emission algorithms based on these parameters. Interannual variability in isoprene emission rates is also observed, and contributing factors are explored. In contrast to isoprene, maximum monoterpene concentrations typically were less than 1 ppbv and occurred in the early evening, with a local minimum at midday. Monoterpene fluxes are about an order of magnitude smaller than those of isoprene. The amplitude of the flux diurnal cycle suggests monoterpene emissions at Harvard Forest may exhibit light dependence as well as temperature dependence. Fluxes of oxygenated VOCs, including methanol, acetone, methyl ethyl ketone, and oxygenated terpenes that have rarely been observed previously, are also reported, and the dependence of their emission rates on factors such as time of year

  13. Impact of Forest Management on Future Forest Carbon Storage in Alaska Coastal Forests

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Kushch, S. A.

    2014-12-01

    The forest in Coastal Alaska are unique in many ways. Two groups of forest types occur in the Alaska region: boreal and temperate rain forests. About eighty-eight percent of these forests are in public ownership. High proportations of reserved forests and old-growth forests make the forests in coastal Alaska differ from that in other coastal regions. This study is focused on how forest management actions may impact the future carbon stocks and flux in coastal Alaska forests. The Forest Inventory and Analysis (FIA) data collected by US Forest Service are the primary data used for estimation of current carbon storage and projections of future forest carbon storage for all forest carbon pools in Alaska coastal forests under different management scenarios and climate change effect.

  14. [Effects of exotic Larix kaempferi on forest soil quality and bacterial diversity].

    PubMed

    Yang, Xin; Cao, Jing; Dong, Mao-Xing; Ma, Xiao-Jun

    2008-10-01

    The study on the soil quality and bacterial diversity under 8-30 years old exotic Larix kaempferi, native Pinus tabulaeformis, and secondary deciduous broadleaf forest stands in Xiaolong-shan Mountains of Gansu, Northwest China showed that the soil pH under different forest stands had no distinct variation, but soil moisture content was increased with increasing age of forest stands. Soil organic matter and nitrogen contents were the highest under secondary deciduous forest, followed by under L. kaermpferi, and P. tabulaeformis. However, the soils under different ages of forest stands had no obvious variations in their organic matter and nitrogen contents, suggesting that tree species was the main factor affecting soil quality. Compared with P. tabulaeformis, exotic L. kaempferi could significantly increase soil organic matter and nitrogen contents. PCR-DGGE banding patterns suggested that the soil under secondary deciduous broadleaf forest had the highest bacterial diversity, followed by under L. kaempferi, and P. tabulaeformis. The sequenced DGGE bands were classified into three bacterial groups, i. e., Proteobacteria, Cytophaga - Flavobacterium - Bacteroides, and high G + C content gram-positive type, among which, Proteobacteria occurred most frequently. Further detailed analyses suggested that the soil bacterial compositions under exotic Larix stands were more similar to each other than those under pine and secondary deciduous broadleaf forests. It was concluded that exotic L. kaempferi induced the changes of microbial diversity in the forest soils of this region. PMID:19123342

  15. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities.

    PubMed

    Paula, Fabiana S; Rodrigues, Jorge L M; Zhou, Jizhong; Wu, Liyou; Mueller, Rebecca C; Mirza, Babur S; Bohannan, Brendan J M; Nüsslein, Klaus; Deng, Ye; Tiedje, James M; Pellizari, Vivian H

    2014-06-01

    Land use change in the Amazon rainforest alters the taxonomic structure of soil microbial communities, but whether it alters their functional gene composition is unknown. We used the highly parallel microarray technology GeoChip 4.0, which contains 83,992 probes specific for genes linked nutrient cycling and other processes, to evaluate how the diversity, abundance and similarity of the targeted genes responded to forest-to-pasture conversion. We also evaluated whether these parameters were reestablished with secondary forest growth. A spatially nested scheme was employed to sample a primary forest, two pastures (6 and 38 years old) and a secondary forest. Both pastures had significantly lower microbial functional genes richness and diversity when compared to the primary forest. Gene composition and turnover were also significantly modified with land use change. Edaphic traits associated with soil acidity, iron availability, soil texture and organic matter concentration were correlated with these gene changes. Although primary and secondary forests showed similar functional gene richness and diversity, there were differences in gene composition and turnover, suggesting that community recovery was not complete in the secondary forest. Gene association analysis revealed that response to ecosystem conversion varied significantly across functional gene groups, with genes linked to carbon and nitrogen cycling mostly altered. This study indicates that diversity and abundance of numerous environmentally important genes respond to forest-to-pasture conversion and hence have the potential to affect the related processes at an ecosystem scale. PMID:24806276

  16. Importance of early successional habitat to ruffed grouse and American woodcock

    USGS Publications Warehouse

    Dessecker, D.R.; McAuley, D.G.

    2001-01-01

    Ruffed grouse (Bonasa umbellus) and American woodcock (Scolopax minor) provide millions of days of recreation each year for people in the eastern United States (U.S). These popular game birds depend on early successional forest habitats throughout much of the year. Ruffed grouse and woodcock populations are declining in the eastern United States as an abundance of shrub-dominated and young forest habitats decrease in most of the region. Continued decreases in early successional forest habitats are likely on nonindustrial private forest lands as ownership fragmentation increases and tract size decreases and on public forest lands due to societal attitudes toward proactive forest management, especially even-age treatments.

  17. Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska’s Boreal Forest

    PubMed Central

    Bernhardt, Emily L.; Chapin, F. Stuart

    2013-01-01

    Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type– black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation) and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites) and for a reduced subset of sites (n = 49) that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest composition. PMID

  18. Neuropathy secondary to drugs

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000700.htm Neuropathy secondary to drugs To use the sharing features on this page, please enable JavaScript. Neuropathy secondary to drugs is a loss of sensation ...

  19. Teaching with Secondary Data.

    ERIC Educational Resources Information Center

    Sobol, Jeff

    1981-01-01

    Presents a general overview of the use of secondary data in teaching sociology on the college level. Topics discussed include potential for additional applications, sources which constitute secondary data, reasons for using secondary data in the classroom, information about computing, and potential problems. (Author/DB)

  20. The Future of Public Forests: An Institutional Blending Approach to Forest Governance in England

    ERIC Educational Resources Information Center

    Hodge, Ian D.; Adams, William M.

    2013-01-01

    Early in 2011, the Government initiated a consultation on the potential sale of the Public Forest Estate in England. This proposal leads to vociferous negative public reaction and the consultation was withdrawn and an Independent Panel established. This paper reviews the arguments as to the options and appropriate institutional arrangements for…

  1. Forest management and economics

    SciTech Connect

    Buongiorno, J.; Gilless, J.K.

    1987-01-01

    This volume provides a survey of quantitative methods, guiding the reader through formulation and analysis of models that address forest management problems. The authors use simple mathematics, graphics, and short computer programs to explain each method. Emphasizing applications, they discuss linear, integer, dynamic, and goal programming; simulation; network modeling; and econometrics, as these relate to problems of determining economic harvest schedules in even-aged and uneven-aged forests, the evaluation of forest policies, multiple-objective decision making, and more.

  2. 3. View northeast, west facade of Lake Forest (original Forest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View northeast, west facade of Lake Forest (original Forest Cottage structure incorporated into renamed structure) - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  3. 4. View southeast, west facade of Lake Forest (original Forest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View southeast, west facade of Lake Forest (original Forest Cottage structure incorporated into renamed structure) - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  4. 7. View southwest, east facade of Lake Forest (original Forest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View southwest, east facade of Lake Forest (original Forest Cottage structure incorporated into renamed structure) - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  5. Forest Fires in a Random Forest

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhaïl; Vega Orozco, Carmen D.

    2013-04-01

    Forest fires in Canton Ticino (Switzerland) are very complex phenomena. Meteorological data can explain some occurrences of fires in time, but not necessarily in space. Using anthropogenic and geographical feature data with the random forest algorithm, this study tries to highlight factors that most influence the fire-ignition and to identify areas under risk. The fundamental scientific problem considered in the present research deals with an application of random forest algorithms for the analysis and modeling of forest fires patterns in a high dimensional input feature space. This study is focused on the 2,224 anthropogenic forest fires among the 2,401 forest fire ignition points that have occurred in Canton Ticino from 1969 to 2008. Provided by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), the database characterizes each fire by their location (x,y coordinates of the ignition point), start date, duration, burned area, and other information such as ignition cause and topographic features such as slope, aspect, altitude, etc. In addition, the database VECTOR25 from SwissTopo was used to extract information of the distances between fire ignition points and anthropogenic structures like buildings, road network, rail network, etc. Developed by L. Breiman and A. Cutler, the Random Forests (RF) algorithm provides an ensemble of classification and regression trees. By a pseudo-random variable selection for each split node, this method grows a variety of decision trees that do not return the same results, and thus by a committee system, returns a value that has a better accuracy than other machine learning methods. This algorithm incorporates directly measurement of importance variable which is used to display factors affecting forest fires. Dealing with this parameter, several models can be fit, and thus, a prediction can be made throughout the validity domain of Canton Ticino. Comprehensive RF analysis was carried out in order to 1

  6. Threatened and neglected forests

    SciTech Connect

    Pellicane, P.J.; Gutkowski, R.M.; Czarnock, J.

    1997-02-01

    Polands once considerable forest resource suffered destruction during World War II and is now a victim of the legacy of past forest practices, the toxic effects of industrial pollution, and the urgent needs of its people today. Polish forest are threatened by a variety of abiotic, biotic and anthropogenic factors. Extremes of climate and declining groundwater tables add to the problem. Pollution is the most serious problem, particularly air pollution. Much of the air pollution in Poland is attributable to mining and burning high-sulfur coal. Besides describing the causes of the forest decline, this article discusses solutions.

  7. Monitoring Network Confirms Land Use Change is a Substantial Component of the Forest Carbon Sink in the eastern United States

    PubMed Central

    Woodall, C. W.; Walters, B. F.; Coulston, J. W.; D’Amato, A. W.; Domke, G. M.; Russell, M. B.; Sowers, P. A.

    2015-01-01

    Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region–wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories. In eastern US forests, LU change is a substantial component of C sink strength (~37% of forest sink strength) only secondary to that of C accumulation in forests remaining forest where their comingling with other LUs does not substantially reduce sink strength. The strongest sinks of forest C were study areas not completely dominated by forests, even when there was some loss of forest to agriculture/settlement/other LUs. Long-term LU planning exercises and policy development that seeks to maintain and/or enhance regional C sinks should explicitly recognize the importance of maximizing non-forest to forest LU changes and not overlook management and conservation of forests located in landscapes not currently dominated by forests. PMID:26639409

  8. Monitoring Network Confirms Land Use Change is a Substantial Component of the Forest Carbon Sink in the eastern United States.

    PubMed

    Woodall, C W; Walters, B F; Coulston, J W; D'Amato, A W; Domke, G M; Russell, M B; Sowers, P A

    2015-01-01

    Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region-wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories. In eastern US forests, LU change is a substantial component of C sink strength (~37% of forest sink strength) only secondary to that of C accumulation in forests remaining forest where their comingling with other LUs does not substantially reduce sink strength. The strongest sinks of forest C were study areas not completely dominated by forests, even when there was some loss of forest to agriculture/settlement/other LUs. Long-term LU planning exercises and policy development that seeks to maintain and/or enhance regional C sinks should explicitly recognize the importance of maximizing non-forest to forest LU changes and not overlook management and conservation of forests located in landscapes not currently dominated by forests. PMID:26639409

  9. Monitoring Network Confirms Land Use Change is a Substantial Component of the Forest Carbon Sink in the eastern United States

    NASA Astrophysics Data System (ADS)

    Woodall, C. W.; Walters, B. F.; Coulston, J. W.; D'Amato, A. W.; Domke, G. M.; Russell, M. B.; Sowers, P. A.

    2015-12-01

    Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region-wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories. In eastern US forests, LU change is a substantial component of C sink strength (~37% of forest sink strength) only secondary to that of C accumulation in forests remaining forest where their comingling with other LUs does not substantially reduce sink strength. The strongest sinks of forest C were study areas not completely dominated by forests, even when there was some loss of forest to agriculture/settlement/other LUs. Long-term LU planning exercises and policy development that seeks to maintain and/or enhance regional C sinks should explicitly recognize the importance of maximizing non-forest to forest LU changes and not overlook management and conservation of forests located in landscapes not currently dominated by forests.

  10. Hemophagocytic lymphohistiocytosis secondary to infections: A tropical experience!

    PubMed Central

    Kodan, P; Chakrapani, M; Shetty, M; Pavan, R; Bhat, P

    2015-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a potentially fatal hyper inflammatory condition, if not recognized and treated in time. A high index of suspicion can help identify the condition early. This condition can occur in the primary or secondary form. Secondary HLH or hemophagocytic syndrome (HPS) secondary to infections is an important clinical entity especially in tropical world. In this article, we share our experience with this entity and make an attempt to explore literature about ravenous macrophages which occurs secondary to infections. It is a series of six cases of HLH secondary to infectious disease in our center in a coastal city in South India over last one year with follow up. PMID:25766345

  11. Secondary power systems

    SciTech Connect

    Not Available

    1985-01-01

    In aeronautical engineering secondary power systems have long played second fiddle to the airframe, the engine, and indeed, the avionics. This collection of papers is thus timely, and its publication by the Institution of Mechanical Engineers appropriate, as secondary power systems in modern aircraft present challenging mechanical engineering problems. In military aircraft demands for electrical and hydraulic power and high pressure air have grown over the past two decades. To these basic needs are added requirements for emergency power, ground power, and independent engine starting. Additionally increased reliability and maintainability is demanded from all secondary power systems. Complete contents: What is a secondary power system. Modern technology secondary power systems for next generation military aircraft; Integrated power units; Secondary power system gearbox; Starting the system - air turbine starters; Auxiliary and emergency power system; Secondary hydraulic power generation; Advanced technology electrical power generation equipment.

  12. Drivers of forest cover dynamics in smallholder farming systems: the case of northwestern Vietnam.

    PubMed

    Jadin, Isaline; Vanacker, Veerle; Hoang, Huong Thi Thu

    2013-04-01

    The national-scale forest recovery of Vietnam started in the early 1990s and is associated with a shift from net deforestation to net reforestation. Large disparities in forest cover dynamics are, however, observed at the local scale. This study aims to unravel the mechanisms driving forest cover change for a mountainous region located in northwest Vietnam. Statistical analyses were used to explore the association between forest cover change and household characteristics. In Sa Pa district, deforestation rates are decreasing, but forest degradation continues at similar rates. Deforestation is not necessarily associated with impoverished ethnic communities or high levels of subsistence farming, and the largest forest cover dynamics are found in villages with the best socio-economic conditions. Our empirical study does not provide strong evidence of a dominant role of agriculture in forest cover dynamics. It shows that empirical studies on local-scale forest dynamics remain important to unravel the complexity of human-environment interactions. PMID:23001944

  13. Distinctive Tropical Forest Variants Have Unique Soil Microbial Communities, But Not Always Low Microbial Diversity

    PubMed Central

    Tripathi, Binu M.; Song, Woojin; Slik, J. W. F.; Sukri, Rahayu S.; Jaafar, Salwana; Dong, Ke; Adams, Jonathan M.

    2016-01-01

    There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, Northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests) due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM) fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity. PMID:27092105

  14. Distinctive Tropical Forest Variants Have Unique Soil Microbial Communities, But Not Always Low Microbial Diversity.

    PubMed

    Tripathi, Binu M; Song, Woojin; Slik, J W F; Sukri, Rahayu S; Jaafar, Salwana; Dong, Ke; Adams, Jonathan M

    2016-01-01

    There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, Northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests) due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM) fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity. PMID:27092105

  15. People and Forests.

    ERIC Educational Resources Information Center

    NatureScope, 1986

    1986-01-01

    Provides: (1) background information on how forests are managed and some of the problems facing forests around the world; (2) three activities dealing with these topics; and (3) three ready-to-copy pages for student use. Activities include an objective, recommended age level(s), recommended subject area(s), list of materials needed, and…

  16. The National Forests

    ERIC Educational Resources Information Center

    Clawson, Marion

    1976-01-01

    National forests are a valuable national asset in terms of wood, recreation, wilderness, wildlife, and water. Management is inefficient and uneconomic creating wasteful capital investment and below-potential economic output. Better national leadership, analysis of forests as a business enterprise, and recruitment of outside persons into Forest…

  17. Chisholm Forest Fire

    Atmospheric Science Data Center

    2013-04-17

    ... Larger Image A new look at smoke from the Chisholm forest fire, which ignited on May 23, 2001 about 160 kilometers north of ... in detail by M. Fromm and R. Servranckx, "Transport of forest fire smoke above the tropopause by supercell convection", Geophys. Res. ...

  18. People & Tropical Rain Forests.

    ERIC Educational Resources Information Center

    NatureScope, 1989

    1989-01-01

    Discusses ways people who live in rain forests make a living and some of the products that enrich our lives. Provides activities covering forest people, tropical treats, jungle in the pantry, treetop explorers, and three copyable pages to accompany activities. (Author/RT)

  19. Trading forest carbon

    EPA Science Inventory

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  20. Kidney stones and crushed bones secondary to hyperparathyroidism

    PubMed Central

    Sreejith, G. Nair; Pranab, K. Prabhakaran

    2016-01-01

    Here we report a 65-year-old woman with multiple brown tumors and renal stones secondary to primary hyperparathyroidism. This case highlights the need for early recognition of parathyroid hyperactivity. PMID:26722166

  1. Rational forest productivity decline.

    PubMed

    MacLellan, James I; Carleton, T J

    2003-01-01

    A whole forest optimisation model was employed to examine economic behaviour as it relates to long term, forest productivity decline in the boreal forests of Ontario, Canada. Our productivity investment model (PIM) incorporated a choice between productivity decline as represented by a drop in forest Site Class, and a fee to 'maintain' site productivity. Sensitivity analysis was used to determine the point at which these fees exceeded the value of the differential in timber volume between upper and lower site classes. By varying discount rate, 'productivity investment frontiers' were constructed, which highlight the effects of the magnitude in productivity decline, maintenance fees, and harvest flow constraints upon the occurrence and schedule of productivity declines. In presenting this simple approach to exploring the effects of economic choice upon forest productivity decline, the phenomena of 'natural capital divestment' within forestry is described. PMID:12859006

  2. 78 FR 73819 - Forest Resource Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Forest Service Forest Resource Coordinating Committee AGENCY: Forest Service, USDA. ACTION: Notice of...-18, 2013 meeting of the Forest Resource Coordinating Committee due to the Government partial shutdown... INFORMATION CONTACT: Maya Solomon, Forest Resource Coordinating Committee Program Coordinator; by phone...

  3. Formulating secondary-level reading interventions.

    PubMed

    Kamps, Debra M; Greenwood, Charles R

    2005-01-01

    Recent advances concerning emerging/beginning reading skills, positive behavioral support (PBS), and three-tiered schoolwide prevention models combined with federal mandates (i.e., IDEA and No Child Left Behind) have stimulated interest in providing early and intensive instructional intervention services to children at risk for reading and behavior problems. New measures for identifying students as early as kindergarten who are not acquiring early basic literacy skills make this possible. However, questions regarding exactly how to formulate, deliver, sustain, and manage secondary-level interventions remain to be addressed. This paper describes first-year, first-grade findings for students participating in secondary-level interventions (i.e., small-group reading instruction) in a randomized trial of the efficacy of secondary and tertiary reading and behavior interventions under way at the Center for Early Intervention in Reading and Behavior, University of Kansas. The formulation of the experimental secondary-level intervention was guided by evidence supporting the efficacy of (a) small groups of 3 to 6 participating students and low student-teacher ratio combined with (b) explicit, phonics-based instruction. Selected curricula were Reading Mastery, Proactive Reading, Programmed Reading, and Read Well, use of which varied by choice across experimental-group schools. PBS was an additional intervention context in experimental schools. Comparison schools and first-grade teachers did not employ the three-tiered model, early screening, or PBS; most students were taught using conventional whole-group instruction, little or no individualization, and curricula with weak scientific evidence. Initial results indicate significantly larger growth for experimental secondary-level at-risk students than for comparisons. Experimental-group first graders not showing growth were those identified with disabilities or behavioral risks and English language learners. Implications are

  4. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    NASA Astrophysics Data System (ADS)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs

  5. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  6. Do Students in Secondary Education Manifest Sexist Attitudes?

    ERIC Educational Resources Information Center

    Pozo, Carmen; Martos, Maria J.; Morillejo, Enrique Alonso

    2010-01-01

    Introduction: Sexism and sexist attitudes can give rise to gender violence. It is therefore important to analyze these variables at an early age (in secondary school classrooms); from this analysis we will have a basis for intervention. Method: The study sample consists of 962 secondary school students. Measuring instruments were used to assess…

  7. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.; Brovkin, V.

    2015-12-01

    The biogeophysical effect of forests in a climate with permanent high-latitude ice cover has already been investigated. We extend this analysis to warm, basically ice-free climates, and we choose the early Eocene, some 54 to 52 million years ago, as paradigm for such type of climate. We use the Max Planck Institute for Meteorology Earth System Model to evaluate the radiative forcing of forests and the feedbacks triggered by forests in early Eocene and pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet in the early Eocene climate and in the pre-industrial climate. The warming can be attributed to different feedback processes, though. The lapse-rate - water-vapour feedback is stronger in early Eocene climate than in pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate - water-vapour feedback in the early Eocene climate. Subsequently, global mean warming by forests is weaker in the early Eocene climate than in the pre-industrial climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than in the pre-industrial climate. When the land is covered with dark soils, forests cool the early Eocene climate stronger than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger in the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  8. Forest Plant and Bird Communities in the Lau Group, Fiji

    PubMed Central

    Franklin, Janet; Steadman, David W.

    2010-01-01

    Background We examined species composition of forest and bird communities in relation to environmental and human disturbance gradients on Lakeba (55.9 km2), Nayau (18.4 km2), and Aiwa Levu (1.2 km2), islands in the Lau Group of Fiji, West Polynesia. The unique avifauna of West Polynesia (Fiji, Tonga, Samoa) has been subjected to prehistoric human-caused extinctions but little was previously known about this topic in the Lau Group. We expected that the degree of human disturbance would be a strong determinant of tree species composition and habitat quality for surviving landbirds, while island area would be unrelated to bird diversity. Methodology/Principal Findings All trees >5 cm diameter were measured and identified in 23 forest plots of 500 m2 each. We recognized four forest species assemblages differentiated by composition and structure: coastal forest, dominated by widely distributed species, and three forest types with differences related more to disturbance history (stages of secondary succession following clearing or selective logging) than to environmental gradients (elevation, slope, rockiness). Our point counts (73 locations in 1 or 2 seasons) recorded 18 of the 24 species of landbirds that exist on the three islands. The relative abundance and species richness of birds were greatest in the forested habitats least disturbed by people. These differences were due mostly to increased numbers of columbid frugivores and passerine insectivores in forests on Lakeba and Aiwa Levu. Considering only forested habitats, the relative abundance and species richness of birds were greater on the small but completely forested (and uninhabited) island of Aiwa Levu than on the much larger island of Lakeba. Conclusions/Significance Forest disturbance history is more important than island area in structuring both tree and landbird communities on remote Pacific islands. Even very small islands may be suitable for conservation reserves if they are protected from human

  9. Conserving biodiversity in managed forests: Lessons from natural forests

    SciTech Connect

    Hansen, A.J. ); Spies, T.A.; Swanson, F.J.; Ohmann, J.L. )

    1991-06-01

    In this article, the authors review patterns of disturbance and succession in natural forests in the Coastal Northwest and compare structure and composition across an age gradient of unmanaged stands. Stand and landscape patterns in managed forests are then examined and compared with those in natural forests. They draw on the results to offer guidance on the management of Coastal Northwest forests that are dedicated to both wood production and conservation of biodiversity. Finally, the authors suggest that the lessons learned from natural forests here may be useful in other biomes, where unmanaged forests are rare and standards for designing seminatural forests are not available.

  10. Forest pathology in Hawaii

    USGS Publications Warehouse

    Gardner, D.E.

    2003-01-01

    Native Hawaiian forests are characterised by a high degree of endemism, including pathogens as well as their hosts. With the exceptions of koa (Acacia koa Gray), possibly maile (Alyxia oliviformis Gaud.), and, in the past, sandalwood (Santalum spp.), forest species are of little commercial value. On the other hand, these forests are immensely important from a cultural, ecological, and evolutionary standpoint. Forest disease research was lacking during the mid-twentieth century, but increased markedly with the recognition of ohia (Metrosideros polymorpha Gaud.) decline in the 1970s. Because many pathogens are themselves endemic, or are assumed to be, having evolved with their hosts, research emphasis in natural areas is on understanding host-parasite interactions and evolutionary influences, rather than disease control. Aside from management of native forests, attempts at establishing a commercial forest industry have included importation of several species of pine, Araucaria, and Eucalyptus as timber crops, and of numerous ornamentals. Diseases of these species have been introduced with their hosts. The attacking of native species by introduced pathogens is problematic - for example, Armillaria mellea (Vahl ex Fr.) Que??l. on koa and mamane (Sophora c