Science.gov

Sample records for early spectrophotometric evolution

  1. The Early Spectrophotometric Evolution of V1186 Scorpii (Nova Scorpii 2004 No. 1)

    NASA Astrophysics Data System (ADS)

    Schwarz, G. J.; Woodward, C. E.; Bode, M. F.; Evans, A.; Eyres, S. P.; Geballe, T. R.; Gehrz, R. D.; Greenhouse, M. A.; Helton, L. A.; Liller, W.; Lyke, J. E.; Lynch, D. K.; O'Brien, T. J.; Rudy, R. J.; Russell, R. W.; Shore, S. N.; Starrfield, S. G.; Temim, T.; Truran, J. W.; Venturini, C. C.; Wagner, R. M.; Williams, R. E.; Zamanov, R.

    2007-08-01

    We report optical photometry and optical through mid-infrared spectroscopy of the classical nova V1186 Sco. This slowly developing nova had a complex light curve with multiple secondary peaks similar to those seen in PW Vul. The time to decline 2 mag, t2, was 20 days, but the erratic nature of the light curve makes determination of intrinsic properties based on the decline time (e.g., luminosity) problematic, and the often-cited relationship of maximum magnitude versus the rate of decay of the light curve of Della Valle & Livio fails to yield a plausible distance. Spectra covering 0.35-35 μm were obtained in two separate epochs during the first year of outburst. The first set of spectra, taken about 2 months after visible maximum, are typical of a CO-type nova with narrow-line emission from H I, Fe II, O I, and He I. Later data, obtained between 260 and 380 days after maximum, reveal an emerging nebular spectrum. Spitzer spectra show weakening hydrogen recombination emission with the emergence of [Ne II] (12.81 μm) as the strongest line. Strong emission from [Ne III] (15.56 μm) is also detected. Photoionization models with low effective temperature sources and only marginal neon enhancement (Ne ~ 1.3 Nesolar) are consistent with these IR fine-structure neon lines indicating that V1186 Sco did not occur on a ONeMg white dwarf. In contrast, the slow and erratic light-curve evolution, spectral development, and photoionization analysis of the ejecta imply that the outburst occurred on a low-mass CO white dwarf. We note that this is the first time strong [Ne II] lines have been detected so early in the outburst of a CO nova and suggest that the presence of mid-infrared neon lines is not directly indicative of a ONeMg nova event.

  2. Spectrophotometric Evolution of Eta Carinae's Great Eruption

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Prieto, Jose Luis; Bianco, Federica; Matheson, Thomas; Smith, Nathan; Smith, Chris; Chornock, Ryan; Sinnott, Brendan; Welch, Douglas; Walborn, Nolan

    2013-06-01

    Eta Carinae is one of the most massive binaries in the Milky Way, and its expanding circumstellar nebula has been studied in detail. It was seen as the second brightest star in the sky during its 1800s "Great Eruption", but only visual estimates of its brightness were recorded. We discovered light echoes of the Great Eruption, which allowed us to obtain a spectrum of this event now, 150 years after it was first observed. We will present our new follow-up observations with which we have started to retrace its spectrophotometric evolution during and before the eruption.

  3. Spectrophotometric evolution of Nova Delphini 2013

    NASA Astrophysics Data System (ADS)

    Tarasova, T. N.; Shakhovskoi, D. N.

    2013-09-01

    We continue spectrophotometric observations with the 2.6 m telescope of CrAO (the first results were reported in our previous telegram ATel5291). We carried out observations on August 19 and on September 1 with low resolution spectrograph (R=1000) in the wavelength interval 3300-7575A and on August 20 with high resolution echelle spectrograph (R=33000) in the wavelength interval 4300-7200A.

  4. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  5. Early stellar evolution

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1994-01-01

    Research into the formation and early evolution of stars is currently an area of great interest and activity. The theoretical and observational foundations for this development are reviewed in this paper. By now, the basic physics governing cloud collapse is well understood, as is the structure of the resulting protostars. However, the theory predicts protostellar luminosities that are greater than those of most infrared sources. Observationally, it is thought that protostars emit powerful winds that push away remnant cloud gas, but both the origin of these winds and the nature of their interaction with ambient gas are controversial. Finally, the theory of pre-main-sequence stars has been modified to incorporate more realistic initial conditions. This improvement helps to explain the distribution of such stars in the H-R diagram. Many important issues, such as the origin of binary stars and stellar clusters, remain as challenges for future research.

  6. Early cellular evolution.

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  7. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  8. EARLY EVOLUTION OF PRESTELLAR CORES

    SciTech Connect

    Horedt, G. P.

    2013-08-20

    Prestellar cores are approximated by singular polytropic spheres. Their early evolution is studied analytically with a Bondi-like scheme. The considered approximation is meaningful for polytropic exponents {gamma} between 0 and 6/5, implying radial power-law density profiles between r {sup -1} and r {sup -2.5}. Gravitationally unstable Jeans and Bonnor-Ebert masses differ at most by a factor of 3.25. Tidally stable prestellar cores must have a mean density contrast {approx}> 8 with respect to the external parent cloud medium. The mass-accretion rate relates to the cube of equivalent sound speed, as in Shu's seminal paper. The prestellar masses accreted over 10{sup 5} years cover the whole stellar mass spectrum; they are derived in simple closed form, depending only on the polytropic equation of state. The stellar masses that can be formed via strict conservation of angular momentum are at most of the order of a brown dwarf.

  9. The evolution of early neurogenesis.

    PubMed

    Hartenstein, Volker; Stollewerk, Angelika

    2015-02-23

    The foundation of the diverse metazoan nervous systems is laid by embryonic patterning mechanisms, involving the generation and movement of neural progenitors and their progeny. Here we divide early neurogenesis into discrete elements, including origin, pattern, proliferation, and movement of neuronal progenitors, which are controlled by conserved gene cassettes. We review these neurogenetic mechanisms in representatives of the different metazoan clades, with the goal to build a conceptual framework in which one can ask specific questions, such as which of these mechanisms potentially formed part of the developmental "toolkit" of the bilaterian ancestor and which evolved later. PMID:25710527

  10. Early evolution without a tree of life

    PubMed Central

    2011-01-01

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre. PMID:21714942

  11. A Galactic Weigh-in: Mass Models of SINGS Galaxies Using Chemo-spectrophotometric Galactic Evolution Models

    NASA Astrophysics Data System (ADS)

    de Denus-Baillargeon, M.-M.; Hernandez, O.; Boissier, S.; Amram, P.; Carignan, C.

    2013-08-01

    The baryonic mass-to-light ratio (Upsilonsstarf) used to perform the photometry-to-mass conversion has a tremendous influence on the measurement of the baryonic content and distribution as well as on the determination of the dark halo parameters. Since numerous clues hint at an inside-out formation process for galaxies, a radius-dependant Upsilonsstarf is needed to physically represent the radially varying stellar population. In this article, we use chemo-spectrophotometric galactic evolution (CSPE) models to determine Upsilonsstarf for a wide range of masses and sizes in the scenario of an inside-out formation process by gas accretion. We apply our method to a SINGS subsample of 10 spiral and dwarf galaxies with photometric coverage ranging from the UV to the mid-IR. The CSPE models prove to be a good tool for weighting the different photometric bands in order to obtain consistent stellar disk masses regardless of the spectral band used. On the other hand, we show that the color index versus Upsilonsstarf relation is an imperfect tool for assigning masses to young stellar populations because of the degeneracy affecting Upsilonsstarf in all bands at low color index. The disks resulting from our analysis are compatible with the maximum disk hypothesis provided that an adequate bulge/disk decomposition is performed and that the correction for the presence of a bar is not neglected since bars disturb the internal disk kinematics. Disk-mass models including Upsilonsstarf as a free parameter as well as models using our physically motivated, radially varying Upsilonsstarf are presented and discussed for each galaxy.

  12. A GALACTIC WEIGH-IN: MASS MODELS OF SINGS GALAXIES USING CHEMO-SPECTROPHOTOMETRIC GALACTIC EVOLUTION MODELS

    SciTech Connect

    De Denus-Baillargeon, M.-M.; Hernandez, O.; Carignan, C.; Boissier, S.; Amram, P.

    2013-08-20

    The baryonic mass-to-light ratio (Y{sub *}) used to perform the photometry-to-mass conversion has a tremendous influence on the measurement of the baryonic content and distribution as well as on the determination of the dark halo parameters. Since numerous clues hint at an inside-out formation process for galaxies, a radius-dependant Y{sub *} is needed to physically represent the radially varying stellar population. In this article, we use chemo-spectrophotometric galactic evolution (CSPE) models to determine Y{sub *} for a wide range of masses and sizes in the scenario of an inside-out formation process by gas accretion. We apply our method to a SINGS subsample of 10 spiral and dwarf galaxies with photometric coverage ranging from the UV to the mid-IR. The CSPE models prove to be a good tool for weighting the different photometric bands in order to obtain consistent stellar disk masses regardless of the spectral band used. On the other hand, we show that the color index versus Y{sub *} relation is an imperfect tool for assigning masses to young stellar populations because of the degeneracy affecting Y{sub *} in all bands at low color index. The disks resulting from our analysis are compatible with the maximum disk hypothesis provided that an adequate bulge/disk decomposition is performed and that the correction for the presence of a bar is not neglected since bars disturb the internal disk kinematics. Disk-mass models including Y{sub *} as a free parameter as well as models using our physically motivated, radially varying Y{sub *} are presented and discussed for each galaxy.

  13. Chemical evolution of the early Martian hydrosphere

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions.

  14. Evolution of early lesions in leprosy.

    PubMed

    Mishra, B; Mukherjee, A; Girdhar, A; Husain, S; Malaviya, G N; Girdhar, B K

    1993-09-01

    We observed 29 patients presenting with vague peripheral neurological symptoms for 6 months or more. During this period, 16 developed clinical leprosy, 3 developed borderline tuberculoid leprosy and the other 13 developed neuritic leprosy. Of these 13 cases 11 subsequently developed skin lesions similar to those seen in indeterminate and in borderline tuberculoid leprosy. Based on the above observations, an attempt has been made to explain the evolution of early lesions of leprosy. PMID:8231606

  15. Symbiogenesis and the early evolution of life

    NASA Astrophysics Data System (ADS)

    Carrapico, Francisco; Rodrigues, Telma

    2005-09-01

    The concept of symbiogenesis was introduced in 1909 by the Russian biologist Constantin Merezhkowsky as "the origin of organisms by the combination or by the association of two or several beings which enter into symbiosis". In this article we develop this idea, associated to the Freeman Dyson's hypothesis, applied to the early evolutive stages of life, considering that it could be a possible main rule in the appearance and development of life conditions on Earth and elsewhere. A cooperative, synergistic strategy should be considered as having been the determinant in the development of the survival of the fittest, especially under extremely adverse environmental conditions. This concept must be also applied to the first communities of cells as the base supporting evolution of the early "tree of life". Cells, like we have previously described, can be included in a new cellular concept entitled, "symbiocell", since survival of the community under such adverse conditions required a cooperative, synergistic strategy. Similar principles could also be used to understand chemical pre-biotic evolution. We believe that astrobiologists should consider it as a new approach to understand organic and biological evolution.

  16. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  17. Early Microbial Evolution: The Age of Anaerobes.

    PubMed

    Martin, William F; Sousa, Filipa L

    2016-02-01

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. PMID:26684184

  18. Human evolution. Evolution of early Homo: an integrated biological perspective.

    PubMed

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-01

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. PMID:24994657

  19. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  20. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  1. The evolution of early vertebrate photoreceptors

    PubMed Central

    Collin, Shaun P.; Davies, Wayne L.; Hart, Nathan S.; Hunt, David M.

    2009-01-01

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land. PMID:19720654

  2. The Early Sun: Evolution and Dynamic Environment

    NASA Astrophysics Data System (ADS)

    Reipurth, B.

    2005-12-01

    An overview is given of the astrophysical processes that govern the formation and early evolution of solar-like stars, specifically aimed at meteoriticists. After a discussion of the various types of protostars and young stars and of the collapse process, the importance of binary and multiple star formation is emphasized. The frequency and properties of young binaries as derived from observations are summarized. Theoretical work demonstrates how newborn multiple stars are unstable and decay on short time scales to stable configurations, often ejecting lower-mass members through dynamical interactions. Observations of phenomena like Herbig-Haro jets and FU Orionis eruptions find a natural explanation within a scenario involving the evolution of small multiple systems and the resulting formation of close binaries. It is emphasized that the vast majority of stars in our Galaxy are formed in clusters, but that most of these clusters dissolve soon after the remaining gas has been dispersed and the gravitational potential that held the cluster together therefore is weakened. Thus, while most stars are born in clusters, only a small fraction will remain in clusters lasting hundreds of millions of years. The likelihood that the early Sun was a member of a temporary cluster at birth and perhaps even a member of a small multiple system is stressed. Possible relic evidence that the Sun was part of a cluster of a few thousand stars includes the solar obliquity, the detection of traces of 60Fe in ordinary chondrites, the sharp edge of the Kuiper belt, and the discovery of distant large objects in eccentric orbits like Sedna. The meteoritic record must be examined with the possibility in mind that the early Sun may well have been a member of a long gone cluster and that the early solar nebula may have been affected by close passages of sibling stars.

  3. LIGHT ECHOES FROM η CARINAE'S GREAT ERUPTION: SPECTROPHOTOMETRIC EVOLUTION AND THE RAPID FORMATION OF NITROGEN-RICH MOLECULES

    SciTech Connect

    Prieto, J. L.; Knapp, G. R.; Rest, A.; Walborn, N. R.; Bianco, F. B.; Matheson, T.; Smith, N.; Hsiao, E. Y.; Campillay, A.; Contreras, C.; González, C.; Morrell, N.; Phillips, M. M.; Chornock, R.; Paredes Álvarez, L.; James, D.; Smith, R. C.; Kunder, A.; Margheim, S.; Welch, D. L.; and others

    2014-05-20

    We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ∼0.9 mag in ∼1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ∼300 days after peak brightness, the spectra show strong molecular transitions of CN at ≳ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.

  4. Light Echoes from η Carinae's Great Eruption: Spectrophotometric Evolution and the Rapid Formation of Nitrogen-rich Molecules

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Rest, A.; Bianco, F. B.; Matheson, T.; Smith, N.; Walborn, N. R.; Hsiao, E. Y.; Chornock, R.; Paredes Álvarez, L.; Campillay, A.; Contreras, C.; González, C.; James, D.; Knapp, G. R.; Kunder, A.; Margheim, S.; Morrell, N.; Phillips, M. M.; Smith, R. C.; Welch, D. L.; Zenteno, A.

    2014-05-01

    We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ~0.9 mag in ~1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ~300 days after peak brightness, the spectra show strong molecular transitions of CN at >~ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula. This Letter includes data gathered with the 6.5 m Magellan telescope at Las Campanas Observatory, Chile.

  5. Fossil evidence for the early ant evolution

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André

    2008-02-01

    Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.

  6. Calculations of the early evolution of Jupiter

    NASA Technical Reports Server (NTRS)

    Bodenheimer, P.

    1974-01-01

    The evolution of the protoplanet Jupiter is followed, using a hydrodynamic computer code with radiative energy transport. Jupiter is assumed to have formed as a subcondensation in the primitive solar nebula at a density just high enough for gravitational collapse to occur. The initial state has a density of 0.0015 nanograms per cu cm and a temperature of 43 K; the calculations are carried to an equilibrium state where the central density reaches 0.5 g per cu cm and the central temperature reaches 25,000 K. During the early part of the evolution the object contracts in quasi-hydrostatic equilibrium; later on hydrodynamic collapse occurs, induced by the dissociation of hydrogen molecules. After dissociation is complete, the planet regains hydrostatic equilibrium with a radius of a few times the present value. Further evolution beyond this point is not treated here; however the results are consistent with the existence of a high-luminosity phase shortly after the planet settles into its final quasi-static contraction.-

  7. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  8. Spinal cord evolution in early Homo.

    PubMed

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. PMID:26553817

  9. The Early Evolution of Mars' Crust

    NASA Astrophysics Data System (ADS)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  10. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  11. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  12. Early hydrodynamic evolution of a stellar collision

    SciTech Connect

    Kushnir, Doron; Katz, Boaz

    2014-04-20

    The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient {sup 56}Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M {sub ☉}) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.

  13. The early geodynamic evolution of Mars-type planets

    NASA Astrophysics Data System (ADS)

    Zhang, Siqi; O'Neill, Craig

    2016-02-01

    It is not clear whether Mars once possessed active tectonics, yet the question is critical for understanding the thermal evolution of Mars, and the origin and longevity of its early dynamo. To address these issues, we have coupled mantle flow simulations, together with parameterized core evolution models, to simulate the early evolution of Mars-like planets, and constrain the influence of early mobile-lid tectonics on core evolution. We have explored a wide parameter suite, encapsulating a range of uncertainties in initial conditions, rheological parameters, and surface strength. We present successful models that experience early mobile-lid behaviour, with a later transition into a stagnant-lid mode, which reproduce core dynamo histories similar to the magnetic history of early Mars.

  14. Natural evidence for chemical and early biological evolution

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Oparin (1924) and Haldane (1929) have independently hypothesized that life arose under reducing conditions through an evolutionary sequence of events involving increasingly complex organic substances. The natural evidence for this hypothesis of chemical evolution is considered, giving particular attention to tangible samples which have been chemically analyzed in earth-bound laboratories. It is found that meteorites provide naturally occurring evidence in support of chemical evolution, but not of biological evolution. Studies on the early Precambrian Swaziland Sequence and the Bulawayan System of southern Africa provide evidence for very early biological evolution.

  15. The early history of chance in evolution.

    PubMed

    Pence, Charles H

    2015-04-01

    Work throughout the history and philosophy of biology frequently employs 'chance', 'unpredictability', 'probability', and many similar terms. One common way of understanding how these concepts were introduced in evolution focuses on two central issues: the first use of statistical methods in evolution (Galton), and the first use of the concept of "objective chance" in evolution (Wright). I argue that while this approach has merit, it fails to fully capture interesting philosophical reflections on the role of chance expounded by two of Galton's students, Karl Pearson and W.F.R. Weldon. Considering a question more familiar from contemporary philosophy of biology--the relationship between our statistical theories of evolution and the processes in the world those theories describe--is, I claim, a more fruitful way to approach both these two historical actors and the broader development of chance in evolution. PMID:26466463

  16. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  17. Early School-Leaving in Spain: Evolution, Intensity and Determinants

    ERIC Educational Resources Information Center

    Fernandez-Macias, Enrique; Anton, Jose-Ignacio; Brana, Francisco-Javier; De Bustillo, Rafael Munoz

    2013-01-01

    Spain has one of the highest levels of early school leaving and educational failure of the European Union. The purpose of this paper is to analyse the anatomy of early school leaving in Spain and its characteristics. In order to do so, in the first part we discuss the measurement problems related with this concept and the evolution of drop-out…

  18. Solar Radiation as Driving Force In Early Evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  19. The origin and early evolution of roots.

    PubMed

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-10-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  20. Origin and early evolution of land plants

    PubMed Central

    2008-01-01

    The origin of the sporophyte in land plants represents a fundamental phase in plant evolution. Today this subject is controversial, and scarcely considered in textbooks and journals of botany, in spite of its importance. There are two conflicting theories concerning the origin of the alternating generations in land-plants: the “antithetic” theory and the “homologous” theory. These have never been fully resolved, although, on the ground of the evidences on the probable ancestors of land plants, the antithetic theory is considered more plausible than the homologous theory. However, additional phylogenetic dilemmas are the evolution of bryophytes from algae and the transition from these first land plants to the pteridophytes. All these very large evolutionary jumps are discussed on the basis of the phyletic gradualist neo-Darwinian theory and other genetic evolutionary mechanisms. PMID:19513262

  1. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  2. Evolution of an early Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Volkov, A. N.

    2016-06-01

    Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to constrain Titan's accretion temperature. Here we show that for the range of temperatures of interest, heating of the surface is not the primary driver for escape. Atmospheric loss from a thick Titan atmosphere is predominantly driven by heating of the upper atmosphere; therefore, the loss rate cannot be used to easily constrain the accretion temperature. We give an estimate of the solar driven escape rate from an early atmosphere on Titan, and then briefly discuss its relevance to the cooling rate, isotope ratios, and the time period suggested to convert NH3 to the present N2 atmosphere.

  3. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  4. Geometry Shapes Evolution of Early Multicellularity

    PubMed Central

    Libby, Eric; Ratcliff, William; Travisano, Michael; Kerr, Ben

    2014-01-01

    Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major transitions is a division of reproductive labor among its lower-level units in which reproduction is the sole responsibility of a subset of units. Although it can have clear benefits once established, it is unknown how such reproductive division of labor originates. We consider a recent evolution experiment on the yeast Saccharomyces cerevisiae as a unique platform to address the issue of reproductive differentiation during an evolutionary transition in individuality. In the experiment, independent yeast lineages evolved a multicellular “snowflake-like” cluster formed in response to gravity selection. Shortly after the evolution of clusters, the yeast evolved higher rates of cell death. While cell death enables clusters to split apart and form new groups, it also reduces their performance in the face of gravity selection. To understand the selective value of increased cell death, we create a mathematical model of the cellular arrangement within snowflake yeast clusters. The model reveals that the mechanism of cell death and the geometry of the snowflake interact in complex, evolutionarily important ways. We find that the organization of snowflake yeast imposes powerful limitations on the available space for new cell growth. By dying more frequently, cells in clusters avoid encountering space limitations, and, paradoxically, reach higher numbers. In addition, selection for particular group sizes can explain the increased rate of apoptosis both in terms of total cell number and total numbers of collectives. Thus, by considering the geometry of a primitive multicellular organism we can gain insight into the initial emergence of reproductive division of labor during an evolutionary transition in individuality. PMID:25233196

  5. Some aspects of the early evolution of photosynthesis

    NASA Astrophysics Data System (ADS)

    Masinovsky, Z.; Lozovaya, G. I.; Sivash, A. A.

    The early evolution of a photocatalytic system of the porphyrin type, able to efficiently collect and utilize solar energy for primary electron transfer is discussed. Experimental results concerning some spectral and photochemical properties of the porphyrins, biosynthetic precursors of chlorophyll and their complexes with polymeric templates are reviewed. Protoporphyrin IX associated with pigmented proteinoid is demonstrated to be a favourable candidate for a role of a photosensitizer of the first photosynthetic reaction centers. The origin and early evolution of the photosynthetic electron transfer chain and of the phosphorylating mechanism are discussed with emphasis on the energetic mechanisms of archaebacteria.

  6. The early evolution of life: solution to Darwin's dilemma

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1994-01-01

    Recent studies of Precambrian fossils indicate that life on Earth originated earlier than assumed, microscopic life was prevalent in the Precambrian Eon, the tempo and mode of evolution during the Precambrian period were different from other periods, and that only the Precambrian fossil record can be used as evidence of early life. Implications for future research include directing the search for the origin of life away from the geological record, modification of hypotheses about molecular change, use of Precambrian microfossils in dating younger geological units, and progress in defining the nature of major events in early evolution.

  7. Prelinguistic evolution in early hominins: whence motherese?

    PubMed

    Falk, Dean

    2004-08-01

    In order to formulate hypotheses about the evolutionary underpinnings that preceded the first glimmerings of language, mother-infant gestural and vocal interactions are compared in chimpanzees and humans and used to model those of early hominins. These data, along with paleoanthropological evidence, suggest that prelinguistic vocal substrates for protolanguage that had prosodic features similar to contemporary motherese evolved as the trend for enlarging brains in late australopithecines/early Homo progressively increased the difficulty of parturition, thus causing a selective shift toward females that gave birth to relatively undeveloped neonates. It is hypothesized that hominin mothers adopted new foraging strategies that entailed maternal silencing, reassuring, and controlling of the behaviors of physically removed infants (i.e., that shared human babies' inability to cling to their mothers' bodies). As mothers increasingly used prosodic and gestural markings to encourage juveniles to behave and to follow, the meanings of certain utterances (words) became conventionalized. This hypothesis is based on the premises that hominin mothers that attended vigilantly to infants were strongly selected for, and that such mothers had genetically based potentials for consciously modifying vocalizations and gestures to control infants, both of which receive support from the literature. PMID:15773427

  8. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  9. Calibrating rates of early Cambrian evolution.

    PubMed

    Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P

    1993-09-01

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover. PMID:11539488

  10. Calibrating rates of early Cambrian evolution

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter

    1993-01-01

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  11. Early primate evolution in Afro-Arabia.

    PubMed

    Seiffert, Erik R

    2012-11-01

    The peculiar mammalian fauna that inhabited Afro-Arabia during the Paleogene first came to the attention of the scientific community in the early part of the twentieth century, when Andrews1 and Schlosser2 published their landmark descriptions of fossil mammals from the Fayum Depression in northern Egypt. Their studies revealed a highly endemic assemblage of land mammals that included the first known Paleogene records of hyraxes, proboscideans, and anthropoid primates, but which lacked ancestors of many iconic mammalian lineages that are found in Africa today, such as rhinos, zebras, bovids, giraffes, and cats. Over the course of the last century, the Afro-Arabian Paleogene has yielded fossil remains of several other endemic mammalian lineages,3 as well as a diversity of prosimian primates,4 but we are only just beginning to understand how the continent's faunal composition came to be, through ancient processes such as the movement of tectonic plates, changes in climate and sea level, and early phylogenetic splits among the major groups of placental mammals. These processes, in turn, made possible chance dispersal events that were critical in determining the competitive landscape--and, indeed, the survival--of our earliest anthropoid ancestors. Newly discovered fossils indicate that the persistence and later diversification of Anthropoidea was not an inevitable result of the clade's competitive isolation or adaptive superiority, as has often been assumed, but rather was as much due to the combined influences of serendipitous geographic conditions, global cooling, and competition with a group of distantly related extinct strepsirrhines with anthropoid-like adaptations known as adapiforms. Many of the important details of this story would not be known, and could never have been predicted, without the fossil evidence that has recently been unearthed by field paleontologists. PMID:23280921

  12. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  13. Early Stages of the Evolution of Life: a Cybernetic Approach

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  14. Open Listening: Creative Evolution in Early Childhood Settings

    ERIC Educational Resources Information Center

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  15. Early evolution of Tubulogenerina during the Paleogene of Europe

    USGS Publications Warehouse

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  16. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.

    PubMed

    Wang, Min; Lloyd, Graeme T

    2016-04-13

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap betweenArchaeopteryxand crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  17. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  18. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  19. Evolution of entanglement entropy in the early universe

    SciTech Connect

    Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen E-mail: r01222031@ntu.edu.tw

    2014-02-01

    We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitative agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.

  20. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  1. The Origin and Early Evolution of Membrane Channels

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-02-01

    The origin and early evolution of ion channels are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly greater complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Bacteria, and Archaea). We discuss the potassiumsodium- calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  2. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  3. Early organic evolution: Implications for mineral and energy resources

    SciTech Connect

    Schidlowski, M.

    1992-01-01

    Early Organic Evolution is the proceedings of the ninth Alfred Wegener Conference, the final meeting of IGCP Project 157 held in Germany in 1988. Over the past 15 years, Project 157 has promoted the blending of organic geochemistry, economic geology, and evolutionary biology. This IGCP publication covers a diverse set of topics and truly reflects the interdisciplinary nature of the field of early organic evolution. In the second and largest section, seventeen papers on organic matter in ancient sediments discuss the chemical analysis of early sediments, gas, and oil. The reader is treated to a review of carbon isotope chemistry and a [delta][sup 13]C walk through the past 3.8 billion years, and even deeper yet into the mantle. Following this is a series of papers carefully describing elemental, isotopic, and organic geochemical (particularly biomarker) data from ancient sediments found throughout the earth. This section ends very strongly with the paper by Fowler on the influence of a single alga on Ordovician oils and rocks from Canada. He first gives a detailed account of the considerable chemical and microscopic evidence showing that minimally reworked Gloeocapsomorpha prisca is the main contributor of organic matter to the oil and rock and then goes on to discuss the nature of the organism. In general, this book reviews information presented in other places, but still serves as a good resource for those interested in the evolution of the Earth.

  4. Bryophyte diversity and evolution: windows into the early evolution of land plants.

    PubMed

    Shaw, A Jonathan; Szövényi, Péter; Shaw, Blanka

    2011-03-01

    The "bryophytes" comprise three phyla of plants united by a similar haploid-dominant life cycle and unbranched sporophytes bearing one sporangium: the liverworts (Marchantiophyta), mosses (Bryophyta), and hornworts (Anthocerophyta). Combined, these groups include some 20000 species. As descendents of embryophytes that diverged before tracheophytes appeared, bryophytes offer unique windows into the early evolution of land plants. We review insights into the evolution of plant life cycles, in particular the elaboration of the sporophyte generation, the major lineages within bryophyte phyla, and reproductive processes that shape patterns of bryophyte evolution. Recent transcriptomic work suggests extensive overlap in gene expression in bryophyte sporophytes vs. gametophytes, but also novel patterns in the sporophyte, supporting Bower's antithetic hypothesis for origin of alternation of generations. Major lineages of liverworts, mosses, and hornworts have been resolved and general patterns of morphological evolution can now be inferred. The life cycles of bryophytes, arguably more similar to those of early embryophytes than are those in any other living plant group, provide unique insights into gametophyte mating patterns, sexual conflicts, and the efficacy and effects of spore dispersal during early land plant evolution. PMID:21613131

  5. Early animal evolution and the origins of nervous systems

    PubMed Central

    Budd, Graham E.

    2015-01-01

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  6. Early animal evolution and the origins of nervous systems.

    PubMed

    Budd, Graham E

    2015-12-19

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  7. The evolution of field early-type galaxies in the FDF and WHDF

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Böhm, Asmus; Ziegler, Bodo L.

    2009-03-01

    We explore the properties of 24 field early-type galaxies in the redshift range 0.20 < z < 0.75 down to MB <= -19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. Target galaxies were selected on the basis of a combination of luminosity, spectrophotometric type, morphology and photometric redshift or broad-band colours. High signal-to-noise ratio intermediate-resolution spectroscopy has been acquired at the Very Large Telescope, complemented by deep high-resolution imaging with the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) and additional ground-based multiband photometry. All galaxy spectra were observed under subarcsecond conditions and allow us to derive accurate kinematics and stellar population properties of the galaxies. To clarify the low level of star formation detected in some galaxies, we identify the amount of active galactic nuclei (AGN) activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. None of the galaxies in our sample was identified as secure AGN source based on their X-ray emission. The rest-frame B- and K-band scaling relations of the Faber-Jackson relation and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical (effective) mass-to-light ratio of our galaxies as <Δlog(M/LB)/z> = -0.74 +/- 0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, which gets supported by recent studies of field galaxies up to z ~ 1. Independent evidence for recent star formation activity is provided by spectroscopic ([OII] emission, Hδ) and photometric (rest-frame broad

  8. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  9. Stochastic evolution of rotations of early type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung

    2016-01-01

    Recent Integral-Field Spectrograph surveys (SAURON, ATLAS 3D, and SAMI project, for example) have revealed that early type galaxies have wide range of rotational properties even though they share similar photometric properties. High resolution numerical studies have shown that galaxy-galaxy interactions have significant effect on the rotation of early type galaxies, however, with limited number of sample galaxies.We present kinematic analysis of thousands of galaxies in 20 clusters from a set of cosmological hydrodynamic zoom-in simulations. Although galaxy mergers play an important role, the direction of change in the amount of rotation depends on many merger parameters such as mass ratio, orbital parameters, and relative direction of galaxy rotations. Furthermore, all their merger parameters themselves are results of non-linear galaxy formation and evolution processes. By compiling numerous galaxy merger events, we discuss statistical properties of the evolution of early type galaxy rotation. We present the impacts of various interactions: major and minor mergers, multiple mergers, and flybys.

  10. Early animal evolution: emerging views from comparative biology and geology

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Carroll, S. B.

    1999-01-01

    The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.

  11. Magnetic Field and Early Evolution of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke

    2016-03-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetised cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper, we review the mechanism of magnetic braking, its effect on disk formation and early evolution, and the mechanisms that resolve the magnetic braking problem. In particular, we emphasise the importance of non-ideal effects. The combination of magnetic diffusion and thermal evolution during gravitational collapse provides a robust formation process for the circumstellar disk at the very early phase of protostar formation. The rotation induced by the Hall effect can supply a sufficient amount of angular momentum for typical circumstellar disks around T Tauri stars. By examining the combination of the suggested mechanisms, we conclude that the circumstellar disks commonly form in the very early phase of protostar formation.

  12. The early evolution of eukaryotes - A geological perspective

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.

    1992-01-01

    This paper examines the goodness of fit between patterns of biological and environmental history implied by molecular phylogenies of eukaryotic organisms and the geological records of early eukaryote evolution. It was found that Precambrian geological records show evidence that episodic increases in biological diversity roughly coincided with episodic environmental changes and by sharp increases in atmospheric oxygen concentrations which significantly changed the earth surface environments. Although the goodness of fit among physical and biological changes is gratifyingly high, the records of these changes do not always coincide in time. The additional information in these fields that is needed for complete integration of geological and phylogenic records is suggested.

  13. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  14. Late stages of accumulation and early evolution of the planets

    NASA Technical Reports Server (NTRS)

    Vityazev, Andrey V.; Perchernikova, G. V.

    1991-01-01

    Recently developed solutions of problems are discussed that were traditionally considered fundamental in classical solar system cosmogony: determination of planetary orbit distribution patterns, values for mean eccentricity and orbital inclinations of the planets, and rotation periods and rotation axis inclinations of the planets. Two important cosmochemical aspects of accumulation are examined: the time scale for gas loss from the terrestrial planet zone, and the composition of the planets in terms of isotope data. It was concluded that the early beginning of planet differentiation is a function of the heating of protoplanets during collisions with large (thousands of kilometers) bodies. Energetics, heat mass transfer processes, and characteristic time scales of these processes at the early stages of planet evolution are considered.

  15. Early Palaeogene temperature evolution of the southwest Pacific Ocean.

    PubMed

    Bijl, Peter K; Schouten, Stefan; Sluijs, Appy; Reichart, Gert-Jan; Zachos, James C; Brinkhuis, Henk

    2009-10-01

    Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes. PMID:19812670

  16. Early time evolution of artificially created dusty space plasmas

    NASA Astrophysics Data System (ADS)

    Scales, Wayne

    An alternate approach to studying natural dust layers in the earth's upper atmosphere is to perform active space experiments in which a dust cloud is created in a controlled manner. Its evolution can then be more carefully observed and studied and then compared to characteristics of natural dust clouds. Such space experiments are currently under development are planned for the near future. Several important issues to be investigated include dust charging processes, plasma flows, electrodynamic structure, plasma irregularities, and coupling between the neutral components of the upper atmosphere and the dust clouds. Also possibilities of remote sensing plasma processes in these clouds through radar measurements will be studied. This talk will address some of the physical processes expected to be important during the early time phase after creation of an artificial dust cloud in the earth's ionosphere. Of principal importance will be the production of plasma irregularities which may lead to radar echoes and the possibility of their relationship to well known radar echoes observed from natural dusty space plasmas. First, a plasma model will be described that may be used for investigating early time evolution after expansion of an artificial dust cloud across the magnetic field in the ionosphere. This model will then be used to investigate the electrodynamics and possible plasma irregularity generation mechanisms after creation of an artificial dust cloud. Finally, possibilities of radar signatures observed from the dust cloud will be considered.

  17. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  18. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    SciTech Connect

    Semikoz, V.B.; Smirnov, A.Yu.; Sokoloff, D.D. E-mail: smirnoff.alexandr@gmail.com

    2013-10-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law B/3−L{sub eR} = const at temperatures T > T{sub RL} ≅ 10 TeV the following universe cooling leads to the production of a non-zero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgs decays becoming more faster when entering the equilibrium at T = T{sub RL} with the universe expansion, Γ{sub RL} ∼ T > H ∼ T{sup 2}, resulting in the parallel evolution of both the right and the left electron asymmetries at T < T{sub RL} through the corresponding Abelian anomalies in SM in the presence of a seed hypermagnetic field. The hypermagnetic helicity evolution proceeds in a self-consistent way with the lepton asymmetry growth. The role of sphaleron transitions decreasing the left lepton number turns out to be negligible in given scenario. The hypermagnetic helicity can be a supply for the magnetic one in Higgs phase assuming a strong seed hypermagnetic field in symmetric phase.

  19. Clades reach highest morphological disparity early in their evolution

    NASA Astrophysics Data System (ADS)

    Hughes, Martin; Gerber, Sylvain; Albion Wills, Matthew

    2013-08-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the "big five" mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing.

  20. Clades reach highest morphological disparity early in their evolution

    PubMed Central

    Hughes, Martin; Gerber, Sylvain; Wills, Matthew Albion

    2013-01-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the “big five” mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing. PMID:23884651

  1. Spectrophotometric Analysis of Caffeine.

    PubMed

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  2. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  3. Cabomba as a model for studies of early angiosperm evolution

    PubMed Central

    Vialette-Guiraud, Aurelie C. M.; Alaux, Michael; Legeai, Fabrice; Finet, Cedric; Chambrier, Pierre; Brown, Spencer C.; Chauvet, Aurelie; Magdalena, Carlos; Rudall, Paula J.; Scutt, Charles P.

    2011-01-01

    Background The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. Scope The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants. PMID:21486926

  4. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  5. Early Vertebrate Evolution of the Host Restriction Factor Tetherin

    PubMed Central

    Heusinger, Elena; Kluge, Silvia F.; Kirchhoff, Frank

    2015-01-01

    ABSTRACT Tetherin is an interferon-inducible restriction factor targeting a broad range of enveloped viruses. Its antiviral activity depends on an unusual topology comprising an N-terminal transmembrane domain (TMD) followed by an extracellular coiled-coil region and a C-terminal glycosylphosphatidylinositol (GPI) anchor. One of the two membrane anchors is inserted into assembling virions, while the other remains in the plasma membrane of the infected cell. Thus, tetherin entraps budding viruses by physically bridging viral and cellular membranes. Although tetherin restricts the release of a large variety of diverse human and animal viruses, only mammalian orthologs have been described to date. Here, we examined the evolutionary origin of this protein and demonstrate that tetherin orthologs are also found in fish, reptiles, and birds. Notably, alligator tetherin efficiently blocks the release of retroviral particles. Thus, tetherin emerged early during vertebrate evolution and acquired its antiviral activity before the mammal/reptile divergence. Although there is only limited sequence homology, all orthologs share the typical topology. Two unrelated proteins of the slime mold Dictyostelium discoideum also adopt a tetherin-like configuration with an N-terminal TMD and a C-terminal GPI anchor. However, these proteins showed no evidence for convergent evolution and failed to inhibit virion release. In summary, our findings demonstrate that tetherin emerged at least 450 million years ago and is more widespread than previously anticipated. The early evolution of antiviral activity together with the high topology conservation but low sequence homology suggests that restriction of virus release is the primary function of tetherin. IMPORTANCE The continuous arms race with viruses has driven the evolution of a variety of cell-intrinsic immunity factors that inhibit different steps of the viral replication cycle. One of these restriction factors, tetherin, inhibits the

  6. Practical halving; the Nelumbo nucifera evidence on early eudicot evolution.

    PubMed

    Zheng, Chunfang; Sankoff, David

    2014-06-01

    We present a stepwise optimal genome halving algorithm designed for large eukaryote genomes with largely single-copy genes, taking advantage of a signature pattern of paralog distribution in ancient polyploids. This is applied to the genome of Nelumbo nucifera, the sacred lotus, which is the descendant of a duplicated basal eudicot genome. In concert with the reconstructed ancestor of the grape, we investigate early events in eudicot evolution and show that the chromosome number of the common ancestor of lotus and grape was likely between 5 and 7. We show that the duplication of the ancestor of lotus and the triplication of the ancestor of grape were not closely preceded by any additional such event before the divergence of their two lineages. PMID:24525373

  7. Contributions of Planetary Science to Studies of Early Biosphere Evolution

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    The history of impact cratering on the Moon, and extrapolations of crater chronologies to the inner planets, suggests that the late accretionary history of the Earth overlapped with other crucial events in the its history, including the origin of terrestrial life. This evidence, acquired from studies of other planetary bodies in the inner solar system, has profoundly affected how we view the early history of the Earth and evolution of the biosphere. Pre-biotic chemical evolution and the origin of life would have been delayed by the probable existence of a global magma ocean until -4.2 Ga. The early crust was largely destroyed by recycling, thus accounting for the sparse Archean record on Earth. Once life had developed, large impacts may have extinguished it several times before it finally gained a foothold. Potentially sterilizing impacts could have occurred as late as 3.7 Ga. At the very least, large impacts would have forced the biosphere through major environmental "bottlenecks" thereby canalizing its subsequent evolution. One legacy of these early events may be the structure of the present RNA-tree which indicates that extreme thermophiles are primitive within the Archaea, and may be the last common ancestors of life. By 3.5 Ga, marine sedimentary sequences contain unequivocal microbial fossils that attest to the presence of a terrestrial biosphere. The diversity of microbial forms present in these earliest fossil assemblages implies a preceding interval of evolution during which major evolutionary advances (e.g. photosynthesis) could have taken place. Evidence cited above places the origin of life within the interval 3.5 and 4.2 Ga, a period of 700 Ma. Thus, it appears that terrestrial life not only evolved rapidly, but perhaps more than once. This expands the possibilities that life may have also developed elsewhere. Of the other planets in our solar system, Mars holds the greatest chance of having developed life. But, the present surface of Mars is hostile

  8. The early evolution of Jean Piaget's clinical method.

    PubMed

    Mayer, Susan Jean

    2005-11-01

    This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known. PMID:17152748

  9. The Emergence and Early Evolution of Biological Carbon-Fixation

    PubMed Central

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a “phylometabolic” tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than

  10. Origins and Early Evolution of the tRNA Molecule

    PubMed Central

    Tamura, Koji

    2015-01-01

    Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA) can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC). The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome. PMID:26633518

  11. The early phases of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2016-05-01

    I review observations of galaxy formation and evolution from multiwavelength deep field surveys. These programs are designed to detect and study galaxies over a large range of cosmic history, with observations and many different wavelengths, each of which is important for measuring different physical processes at work in evolving galaxies. I begin with some background motivating interest in multiwavelength deep fields, and a short review of energetic processes that result in emission from galaxies in different wavelength/energy ranges. I then give a short summary of major observing facilities that are currently used for multiwavelength deep surveys, and then offer short descriptions of some of the major surveys that have produced much of the data used today by astronomers studying distant galaxy evolution. I continue with an overview of different methods that are commonly used to identify various types of galaxies at high redshift in deep field data sets. Then, for the remainder of the review, I focus on measurements of star formation rates and stellar masses in galaxies, and how they are used to evaluate the history of galaxy growth and evolution. I discuss the ways in which data at different wavelengths are used to infer star formation rates and stellar masses, concentrating on the complementarity of different techniques, as well as their limitations. I then discuss application of these methods for deriving the global history of star formation in the universe. These measurement now push back over more than 13 billion years of cosmic history and portray the rapid early growth of galaxies, and then the long, slow decline of star formation rates to the present era. I discuss recent results on the nature of star formation in galaxies at the peak epoch of galaxy growth, particularly around redshifts of 2, and their implications about the dominant physical processes that shaped the growth of most galaxies from the earliest times to the present day.

  12. Climatic influences on the evolution of early Homo?

    PubMed

    Antón, Susan C

    2007-01-01

    The nature of the human fossil record is less than ideal for the generation of precise correlations between environmental variables and patterns of evolution in specific lineages. Nonetheless, a critical look at what can and cannot be said from individual fossil morphology and the correlation of specific environmental proxies with specific hominin fossils may lead to a greater understanding of the degree of certainty with which we should embrace environmental hypotheses for the evolution of Homo. Climate shifts have been implicated in both the origin of the genus and its dispersal from Africa. Here, I consider three areas in which a climatic influence has been posited to explain evolutionary shifts in the genus Homo: the origin and dispersal of the genus from Africa; geography, climate and body size in early Homo, and the influence of climate-induced sea level rise on morphological isolation in H. erectus. Each of the data sets is far from ideal, and interpretations of each of the data sets are fraught with issues of equifinality. Of the three hypotheses discussed, the clearest link is seen between latitudinal variation (and presumably temperature) and body size in H. erectus. Similarly, climate-induced sea level change seems a reasonable isolating mechanism to explain the pattern of cranial variation in later Asian H. erectus, but the distribution could also reflect incompletely sampled clinal variation. Alternatively, only equivocal support is found for the influence of climate on the differentiation of H. erectus from H. habilis (as proxied by body/brain size scaling), and therefore the dispersal of the genus Homo cannot be as clearly linked to changes in body size and shape as it has been in the past. These preliminary data suggest that an emphasis on understanding local adaptation before looking at global (and specific) level change is critical to elucidating the importance of climatic factors on the evolution of the genus Homo. PMID:17855788

  13. Early Human Evolution in the Western Palaearctic: Ecological Scenarios

    NASA Astrophysics Data System (ADS)

    Carrión, José S.; Rose, James; Stringer, Chris

    2011-06-01

    This review presents the themes of a special issue dealing with environmental scenarios of human evolution during the Early Pleistocene (2.6-0.78 Ma; MIS 103-MIS 19) and early Middle Pleistocene (0.78-0.47 Ma; MIS 19-base of MIS 12) within the western Palaearctic. This period is one of dramatic changes in the climates and the distribution of Palaearctic biota. These changes have played their role in generating adaptive and phyletic patterns within the human ancestry, involving several species such as Homo habilis, "Homo georgicus", Homo erectus, Homo antecessor and Homo heidelbergensis. In the archaeological record, these species include the Oldowan (Mode 1) and Acheulian (Mode 2) lithic technologies. Taphonomic considerations of palaeoecological research in hominin-bearing sites are provided and evaluated. Syntheses are provided for north Africa, western Asia, the Mediterranean Basin, Britain, and continental Europe. Palaeoenvironmental reconstructions based on multidisciplinary data are given for Ain Boucherit, Ain Hanech and El-Kherba in Algeria, Dmanisi in Georgia, Atapuerca, Cueva Negra, and the Orce Basin in Spain, Monte Poggiolo and Pirro Nord in Italy, Pont-de-Lavaud in France, and Mauer in Germany. The state of the art with the Out of Africa 1 dispersal model is reviewed. A source-sink dynamics model for Palaeolithic Europe is described to explain the morphological disparity of H. heidelbergensis (we will sometimes use the informal name "Heidelbergs") and early Neanderthals. Other aspects debated here are the selective value of habitat mosaics including reconstructions based on mammal and avian databases, and the role of geological instability combined with topographic complexity. This review is completed by addressing the question of whether the appearance of evolutionary trends within hominins is concentrated in regions of highest worldwide biological diversity (biodiversity hotspots). It is concluded that the keys for the activation of evolutionary

  14. East African climate pulses and early human evolution

    NASA Astrophysics Data System (ADS)

    Maslin, Mark A.; Brierley, Chris M.; Milner, Alice M.; Shultz, Susanne; Trauth, Martin H.; Wilson, Katy E.

    2014-10-01

    Current evidence suggests that all of the major events in hominin evolution have occurred in East Africa. Over the last two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of East Africa has varied in the past. The landscape of East Africa has altered dramatically over the last 10 million years. It has changed from a relatively flat, homogenous region covered with mixed tropical forest, to a varied and heterogeneous environment, with mountains over 4 km high and vegetation ranging from desert to cloud forest. The progressive rifting of East Africa has also generated numerous lake basins, which are highly sensitive to changes in the local precipitation-evaporation regime. There is now evidence that the presence of precession-driven, ephemeral deep-water lakes in East Africa were concurrent with major events in hominin evolution. It seems the unusual geology and climate of East Africa created periods of highly variable local climate, which, it has been suggested could have driven hominin speciation, encephalisation and dispersal out of Africa. One example is the significant hominin speciation and brain expansion event at ˜1.8 Ma that seems to have been coeval with the occurrence of highly variable, extensive, deep-water lakes. This complex, climatically very variable setting inspired first the variability selection hypothesis, which was then the basis for the pulsed climate variability hypothesis. The newer of the two suggests that the long-term drying trend in East Africa was punctuated by episodes of short, alternating periods of extreme humidity and aridity. Both hypotheses, together with other key theories of climate-evolution linkages, are discussed in this paper. Though useful the actual evolution mechanisms, which led to early hominins are still unclear and continue to be debated. However, it is clear that an understanding of East African

  15. Large-Scale Impact Cratering and Early Earth Evolution

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Cintala, M. J.

    1997-01-01

    The surface of the Moon attests to the importance of large-scale impact in its early crustal evolution. Previous models of the effects of a massive bombardment on terrestrial crustal evolution have relied on analogies with the Moon, with allowances for the presence of water and a thinner lithosphere. It is now apparent that strict lunar-terrestrial analogies are incorrect because of the "differential scaling" of crater dimensions and melt volumes with event size and planetary gravity. Impact melt volumes and "ancient cavity dimensions for specific impacts were modeled according to previous procedures. In the terrestrial case, the melt volume (V(sub m)) exceeds that of the transient cavity (V(sub tc)) at diameters > or = 400 km. This condition is reached on the Moon only with transient cavity diameters > or = 3000 km, equivalent to whole Moon melting. The melt volumes in these large impact events are minimum estimates, since, at these sizes, the higher temperature of the target rocks at depth will increase melt production. Using the modification-scaling relation of Croft, a transient cavity diameter of about 400 km in the terrestrial environment corresponds to an expected final impact "basin" diameter of about 900 km. Such a "basin" would be comparable in dimensions to the lunar basin Orientale. This 900-km "basin" on the early Earth, however, would not have had the appearance of Orientale. It would have been essentially a melt pool, and, morphologically, would have had more in common with the palimpsests structures on Callisto and Ganymede. With the terrestrial equivalents to the large multiring basins of the Moon being manifested as muted palimpsest-like structures filled with impact melt, it is unlikely they played a role in establishing the freeboard on the early Earth. The composition of the massive impact melt sheets (> 10 (exp 7) cu km) produced in "basin-forming" events on the early Earth would have most likely ranged from basaltic to more mafic for the

  16. Teaching about the Early Earth: Evolution of Tectonics, Life, and the Early Atmosphere

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Manduca, C. A.; Kirk, K.; Williams, M. L.

    2007-12-01

    The early history of the Earth is the subject of some of the most exciting and innovative research in the geosciences, drawing evidence from virtually all fields of geoscience and using a variety of approaches that include field, analytical, experimental, and modeling studies. At the same time, the early Earth presents unique opportunities and challenges in geoscience education: how can we best teach "uncertain science" where the evidence is either incomplete or ambiguous? Teaching about early Earth provides a great opportunity to help students understand the nature of scientific evidence, testing, and understanding. To explore the intersection of research and teaching about this enigmatic period of Earth history, a national workshop was convened for experts in early Earth research and undergraduate geoscience education. The workshop was held in April, 2007 at the University of Massachusetts at Amherst as part of the On the Cutting Edge faculty professional development program. The workshop was organized around three scientific themes: evolution of global tectonics, life, and the early atmosphere. The "big scientific questions" at the forefront of current research about the early Earth were explored by keynote speakers and follow-up discussion groups: How did plate tectonics as we know it today evolve? Were there plates in the Hadean Eon? Was the early Earth molten? How rapidly did it cool? When and how did the atmosphere and hydrosphere evolve? How did life originate and evolve? How did all these components interact at the beginning of Earth's history and evolve toward the Earth system we know today? Similar "big questions" in geoscience education were addressed: how to best teach about "deep time;" how to help students make appropriate inferences when geologic evidence is incomplete; how to engage systems thinking and integrate multiple lines of evidence, across many scales of observation (temporal and spatial), and among many disciplines. Workshop participants

  17. Neoproterozoic Glaciations and the Early Evolution of Animals

    NASA Astrophysics Data System (ADS)

    Narbonne, G. M.

    2004-05-01

    The intense climatic changes that characterized the Neoproterozoic world were marked by equally profound evolutionary changes that ultimately led to the Cambrian Explosion. Early and Middle Neoproterozoic oceans contained prokaryotes and diverse eukaryotic lineages, including crown-group red, green, and heterokont algae. The survival of diverse eukaryotic lineages through the Sturtian, Marinoan, and Gaskiers glaciations implies that, although these were among the most extreme glaciations Earth has ever experienced, sea ice was not as thick or pervasive as required by earlier "hard Snowball" models. Most molecular clocks predict the existence of animals well before 600 Ma and a few tantalizing hints have been found, but the oldest definite evidence of animal life are phosphatized eggs and embryos overlying Marinoan glacial deposits in China. The subsequent Late Neoproterozoic is characterized by the global occurrence of the Ediacara biota, an assemblage of cm- to m-scale fossils of soft-bodied organisms that probably represent a mixture of stem groups of modern phyla and "failed experiments" in evolution. The oldest Ediacaran fossils occur in eastern Newfoundland, and postdate the glacial diamictites and cap carbonate of the Gaskiers Formation (580 Ma) by only 5 million years, implying a causal relationship between the end of the Neoproterozoic glaciations and the proliferation of animal life. These fossils include architecturally complex fronds up to two metres long, implying either extremely rapid rates of evolution or a pre-glacial origin of the Ediacara biota. Fossils of the Mistaken Point biota (575-560 Ma) were completely sessile and show a similar fractal architecture that is difficult to relate to any existing life forms. Some of these taxa persisted into the White Sea biota (560-550 Ma), which also contains trace fossils and metameric fossils that confirm the evolution of mobile bilaterians. The youngest Ediacaran fossils (550-543 Ma) exhibit the first

  18. Early Planetary Evolution: Clues from Vesta and the Moon

    NASA Astrophysics Data System (ADS)

    Pieters, Carle; Russell, C. T.; Raymond, Carol

    The Moon has long been considered a natural laboratory and small body ‘endmember’ that can be used to study early terrestrial planet evolution. With the recently completed year-long exploration of Vesta by Dawn, we now have extensive information for an even smaller differentiated planetary body with which to compare and test models and paradigms. Before Dawn arrived with modern sensors to characterize the global properties of Vesta, we had what we believe to be random samples from the surface (the HED family of meteorites) to guide our planning of scientific exploration. This is not greatly different from the progression in lunar exploration where limited samples were returned decades before an international array of sensors began to seriously document the global properties of the Moon. We now know that both Vesta and the Moon are airless differentiated silicate bodies that are ancient and essentially (but not completely) anhydrous. Both are heavily cratered and exhibit at least one enormous basin that models predict should have excavated (and possibly exposed) the mantle. Everything else about Vesta and the Moon (size, location, origin, environment, surface composition, etc.) is quite different and the observed contrasts between the two provide valuable constraints for comparison of fundamental processes acting on airless planetary bodies of the solar system.

  19. Early evolution of sexual dimorphism and polygyny in Pinnipedia.

    PubMed

    Cullen, Thomas M; Fraser, Danielle; Rybczynski, Natalia; Schröder-Adams, Claudia

    2014-05-01

    Sexual selection is one of the earliest areas of interest in evolutionary biology. And yet, the evolutionary history of sexually dimorphic traits remains poorly characterized for most vertebrate lineages. Here, we report on evidence for the early evolution of dimorphism within a model mammal group, the pinnipeds. Pinnipeds show a range of sexual dimorphism and mating systems that span the extremes of modern mammals, from monomorphic taxa with isolated and dispersed mating to extreme size dimorphism with highly ordered polygynous harem systems. In addition, the degree of dimorphism in pinnipeds is closely tied to mating system, with strongly dimorphic taxa always exhibiting a polygynous system, and more monomorphic taxa possessing weakly polygynous systems. We perform a comparative morphological description, and provide evidence of extreme sexual dimorphism (similar to sea lions), in the Miocene-aged basal pinniped taxon Enaliarctos emlongi. Using a geometric morphometric approach and combining both modern and fossil taxa we show a close correlation between mating system and sex-related cranial dimorphism, and also reconstruct the ancestral mating system of extant pinnipeds as highly polygynous. The results suggest that sexual dimorphism and extreme polygyny in pinnipeds arose by 27 Ma, in association with changing climatic conditions. PMID:24548136

  20. Modelling the early evolution of a Loop Current ring

    NASA Astrophysics Data System (ADS)

    Auladell, M.; Pelegrí, J. L.; García-Olivares, A.; Kirwan, A. D., Jr.; Lipphardt, B. L., Jr.; Martín, J. M.; Pascual, A.; Sangrà, P.; Zweng, M.

    2010-03-01

    The Colorado University Princeton Ocean Model (CUPOM) is used here to study the early stages in the life of Millennium, a mesoscale anticyclonic ring that detached from the Loop Current on April 2001 and lasted for more than 100 days. The numerical near-surface velocity field for the Gulf of Mexico is validated with the altimetry geostrophic velocities. The first 30 days of numerical data, before Millennium interacts with other mesoscalar features, are closely examined both from Eulerian and Lagrangian perspectives. During this time Millennium had a near-constant rotation period of 6.5 days, and particles do not leave the ring. Nevertheless, the distributions of temperature, salinity, and angular velocity confirm the existence of significant (possibly numerical) radial diffusion. Polar-coordinate phase plots for temperature-salinity anomalies and tangential-radial velocities, at several depths, illustrate the presence of an evolving oscillating pattern. Radial and tangential velocities change in phase, associated with vertical displacements of the isothermal and isohaline surfaces. A simple diffusion model with an effective diffusion coefficient of 200 m 2 s - 1 is appropriate to grossly simulate the temporal evolution of angular velocity within Millennium.

  1. Stepwise evolution of Elk-1 in early deuterostomes.

    PubMed

    Saxton, Janice; Ferjentsik, Zoltan; Ducker, Charles; Johnson, Andrew D; Shaw, Peter E

    2016-03-01

    Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm. PMID:26613204

  2. Evolution of the mandibular third premolar crown in early Australopithecus.

    PubMed

    Delezene, Lucas K; Kimbel, William H

    2011-06-01

    The Pliocene hominins Australopithecus anamensis and Australopithecus afarensis likely represent ancestor-descendent taxa--possibly an anagenetic lineage--and capture significant change in the morphology of the canine and mandibular third premolar (P(3)) crowns, dental elements that form the canine honing complex in nonhuman catarrhines. This study focuses on the P(3) crown, highlighting plesiomorphic features in A. anamensis. The A. afarensis P(3) crown, in contrast, is variable in its expression of apomorphic features that are characteristic of geologically younger hominins. Temporal variation characterizes each taxon as well. The A. anamensis P(3) from Allia Bay, Kenya expresses apomorphic character states, shared with A. afarensis, which are not seen in the older sample of A. anamensis P(3)s from Kanapoi, Kenya, while spatiotemporal differences in shape exist within the A. afarensis hypodigm. The accumulation of derived features in A. afarensis results in an increased level of P(3) molarisation. P(3) molarisation did not evolve concurrent with postcanine megadontia and neither did the appearance of derived aspects of P(3) occlusal form coincide with the loss of canine honing in hominins, which is apparent prior to the origin of the genus Australopithecus. A. afarensis P(3) variation reveals the independence of shape, size, and occlusal form. The evolution of the P(3) crown in early Australopithecus bridges the wide morphological gap that exists between geologically younger hominins on the one hand and extant apes and Ardipithecus on the other. PMID:21481921

  3. Formation and evolution of early-type galaxies.

    NASA Astrophysics Data System (ADS)

    Chiosi, C.; Merlin, E.

    In this review, we present some recent results for NB-TSPH models of early type galaxies (ETGs) made of Dark and Baryonic matter according to the Lambda -CDM model of the Universe. The models are framed in the quasi-monolithic or early hierarchical scenario. By means of fully hydrodynamical NB-TSPH simulations performed with the Padova code EVOL, we produce a number of self-similar models of ETGs for different initial total masses and over-densities with respect to the surrounding medium, and follow their evolution from the detachment from the linear regime and Hubble flow at z > 20 down to the stage of nearly complete assembly of the stellar content (at about z<1 for all of them) and often to the present epoch (z=0). We find a strong correlation between the total mass and/or over-density of the proto-haloes and the subsequent star formation histories (SFH). Massive (Mtot≃ 1013 M⊙) haloes experience a single, intense burst of star formation (with rates > 103 M⊙/yr) at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass (Mtot≃ 1011 M⊙) haloes have histories that strongly depend on their initial over-density; finally, low mass haloes (Mtot≃ 109 M⊙) always have erratic, burst-like star forming histories. The model galaxies have morphological, structural, and chemical properties resembling those of real galaxies. In addition to this, we try to cast light on the physical causes of the tight correlation between the mass in stars and the size of ETGs (the Mass-Radius Relation, MRR). We suggest that the MRR is the result of two complementary mechanisms: on one hand, the result of local physical processes, which fix the star mass and the radius of individual objects; on the other hand, the action of cosmological global, statistical principles, which shape the distribution of objects in the MR-plane. In the picture emerging from this study, nature seems to play the dominant role, whereas nurture

  4. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  5. Genesis and evolution of dust in the early Universe

    NASA Astrophysics Data System (ADS)

    Gall, Christa

    2010-10-01

    The most fascinating aspect of studying dust is the fact that small dust particles of a few micrometer which we cannot see with our naked eyes are a fundamentally important component in a Universe whose dimension we hardly can imagine. Dust grains impact the evolution of the Universe in many ways. For example they are known as the main formation site of molecular hydrogen which acts as important coolant by the formation of stars similar to our Sun. Dust is essential for the formation of planets and plays an important role in the end stages of life of most stars. Large amounts of dust have been discovered in quasars (QSOs) at high redshift where the epoch of cosmic evolution was ! 1 Gyr, but the origin and evolution of these remains elusive. Supernovae (SNe) and asymptotic giant branch (AGB) stars have been contemplated as prime dust sources due to their potential ability of generating sufficiently high amounts of dust. Though AGB stars are in fact known as the main dust source in the present Universe, their partially (too) long lifetimes questions their significance as dust contributers in the early Universe. SNe are sufficiently short-lived, but there exists a discrepancy between observationally and theoretically ascertained dust yields. The principal aim of this thesis is to elucidate the astrophysical conditions required for generating these large amounts of dust in massive starburst galaxies and QSOs at high redshift. We first intend to identify the mass ranges of the most efficient dust producing stars at high redshift. We ascertain the dust production efficiency of stars in the mass range 3-40 M⊙ using observed and theoretical dust yields of AGB stars and SNe. Based on these efficiencies we determine the total dust productivity for different stellar sources and investigate its dependency on the initial mass function (IMF). It is found that the dust production efficiency generally decreases with increasing progenitor mass. The total dust production strongly

  6. The Evolution of Brains from Early Mammals to Humans

    PubMed Central

    Kaas, Jon H.

    2012-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20–25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a

  7. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    .728 Ga (Normetal) to 2.70 Ga (Noranda). The Pb isotopic compositions from these galenas, when normalized to a common age of 2.7 Ga, define a highly linear array in 207Pb/204Pb vs. 206Pb/204Pb. This array is nearly coincident with the 2.7 Ga geochron with a slope that corresponds to an age of ~4.4 Ga and with an extraordinary large range of 207Pb/204Pb, about the same magnitude as modern MORB. These data have important implications for the evolution of the Archean mantle. First, the slope of the Abitibi Pb-Pb array and its coincidence with the 2.7 Ga geochron suggests widespread U-Pb differentiation within the first hundred million years of Earth's history. This may have been due to either core formation or silicate/melt differentiation due to widespread melting of the mantle (e.g., formation of a magma ocean). Second, variations in μ in the Abitibi mantle and the subsequent Pb isotopic heterogeneities, whatever their cause, have not been significantly changed from 4.4 until 2.7 Ga. This implies that changes in μ in the Abitibi mantle source between 4.4 and 2.7 Ga, such as would be caused by crust extraction or recycling of older crust into this region of the mantle, were insufficient to destroy the original μ variations created at 4.4 Ga. Therefore, it appears that this portion of the mantle had essentially remained isolated and undisturbed from the early Hadean until the late Archean.

  8. Understanding the early cycling evolution behaviors for phase change memory application

    NASA Astrophysics Data System (ADS)

    Wang, Yuchan; Chen, Yifeng; Cai, Daolin; Cheng, Yan; Chen, Xiaogang; Wang, Yueqing; Xia, Mengjiao; Zhou, Mi; Li, Gezi; Zhang, Yiyun; Gao, Dan; Song, Zhitang; Feng, Gaoming

    2014-11-01

    The RESET current of T-shaped phase change memory cells with 35 nm heating electrodes has been studied to understand the behavior of early cycling evolution. Results show that the RESET current has been significantly reduced after the early cycling evolution (1st RESET) operation. Compared the transmission electron microscope images, it is found that the hexagonal Ge2Sb2Te5 (GST) crystal grains are changed into the grains with face centered cubic structure after the early cycling evolution operation, which is taken as the major reason for the reduced RESET current, confirmed by a two-dimensional finite analysis and ab initio calculations.

  9. The evolution of modern corals and their early history

    NASA Astrophysics Data System (ADS)

    Stanley, George D.

    2003-02-01

    ephemeral, "naked coral", presents the greatest potential for solution of the enigma of the origin of scleractinians. It states that different groups of soft-bodied, unrelated "anemone-like" anthozoans gave rise to various calcified scleractinian-like corals through aragonitic biomineralization. Although there is evidence for this phenomenon being more universal in the mid-Triassic interval, following a lengthy Early Triassic post-extinction perturbation, it appears to have occurred at least three other times prior to this interval. This idea suggests that, because of ephemeral characteristics, the skeleton does not represent a clade of zoantharian evolution but instead represents a grade of organization. In the fossil record, skeletons may have appeared and disappeared at different times as some clades reverted to soft-bodied existence and these phenomena could account for notable gaps in the taxonomic and fossil record. A fuller understanding and possible solution to the problem of the origin of modern corals may be forthcoming. However, it will require synthesis of diverse kinds of data and an integration of findings from paleobiology, stratigraphy, molecular biology, carbonate geochemistry, biochemistry and invertebrate physiology.

  10. The Formation and Early Evolution of Young Massive Clusters

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Kruijssen, J. M. D.; Bastian, N.; Bally, J.; Rathborne, J.; Testi, L.; Stolte, A.; Dale, J.; Bressert, E.; Alves, J.

    We review the formation and early evolution of the most massive (> few 104 M⊙) and dense (radius of a few parsecs) young stellar clusters, focusing on the role that studies of these objects in our Galaxy can play in our understanding of star and planet formation as a whole. Comparing the demographics of young massive cluster (YMC) progenitor clouds and YMCs across the Galaxy shows that gas in the Galactic Center can accumulate to a high enough density that molecular clouds already satisfy the criteria used to define YMCs, without forming stars. In this case formation can proceed in situ — i.e., the stars form at protostellar densities close to the final stellar density. Conversely, in the disk, the gas either begins forming stars while it is being accumulated to high density, in a "conveyor belt" mode, or the timescale to accumulate the gas to such high densities must be much shorter than the star-formation timescale. The distinction between the formation regimes in the two environments is consistent with the predictions of environmentally dependent density thresholds for star formation. This implies that stars in YMCs of similar total mass and radius can have formed at widely different initial protostellar densities. The fact that no strong, systematic variations in fundamental properties (such as the IMF) are observed between YMCs in the disk and Galactic Center suggests that, statistically speaking, stellar mass assembly is not affected by the initial protostellar density. We then review recent theoretical advances and summarize the debate on three key open questions: the initial (proto)stellar distribution, infant (im)mortality, and age spreads within YMCs. We conclude that (1) the initial protostellar distribution is likely hierarchical, (2) YMCs likely experienced a formation history that was dominated by gas exhaustion rather than gas expulsion, (3) YMCs are dynamically stable from a young age, and (4) YMCs have age spreads much smaller than their mean

  11. Early evolution of the LIM homeobox gene family

    SciTech Connect

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  12. The evolution of early Homo: a reply to Scott.

    PubMed

    Van Arsdale, A P; Wolpoff, M H

    2014-03-01

    Scott presents a welcome reply to our article, "A single lineage in early Pleistocene Homo" (Van Arsdale and Wolpoff ). However, Scott's reply mischaracterizes and fails to directly address the hypothesis of a single lineage that we test. Additionally, the approach taken by Scott fails to replicate the methods used in our analysis. As Scott himself suggests, our null hypothesis of a single evolving lineage in early Homo remains without refutation. Although many evolutionary scenarios might explain the complex pattern of variation present in the early Homo fossil record, the most parsimonious remains that of a single lineage displaying evolutionary change over time. PMID:24372272

  13. Inflationary gravitational waves and the evolution of the early universe

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.

  14. Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya

    2015-11-01

    The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.

  15. The Evolution of the National Early Childhood Technical Assistance Center

    ERIC Educational Resources Information Center

    Gallagher, James J.; Danaher, Joan C.; Clifford, Richard M.

    2009-01-01

    This review traces the evolution from 1971 to the present of a national technical assistance (TA) program to support the creation, expansion, and improvement of services for infants, toddlers, and preschoolers with special needs. From its beginning as a TA resource for demonstration projects, to linking outreach projects' expertise with state…

  16. Mathematics in Early Childhood Education: Revolution or Evolution?

    ERIC Educational Resources Information Center

    Stipek, Deborah

    2013-01-01

    Hachey (2013) aptly describes a recent surge in attention to mathematics for young children. The value of math for children as young as preschool age, however, was discovered before the 21st century. This is presently not a revolution but rather a potentially important step in an evolution of work that began at least a half century ago. Some…

  17. Three-dimensional evolution of early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1991-01-01

    The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.

  18. A primitive protostegid from Australia and early sea turtle evolution

    PubMed Central

    Kear, Benjamin P; Lee, Michael S.Y

    2005-01-01

    Sea turtles (Chelonioidea) are a prominent group of modern marine reptiles whose early history is poorly understood. Analysis of exceptionally well preserved fossils of Bouliachelys suteri gen. et sp. nov., a large-bodied basal protostegid (primitive chelonioid) from the Early Cretaceous (Albian) of Australia, indicates that early sea turtles were both larger and more diverse than previously thought. The analysis implies at least five distinct sea turtle lineages existed around 100 million years ago. Currently, the postcranially primitive Ctenochelys and Toxochelys are interpreted as crown-group sea turtles closely related to living cheloniids (e.g. Chelonia); in contrast, the new phylogeny suggests that they are transitional (intermediate stem-taxa) between continental testudines and derived, pelagic chelonioids. PMID:17148342

  19. Early evolution and ecology of camouflage in insects.

    PubMed

    Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S

    2012-12-26

    Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant-insect interaction. PMID:23236135

  20. The Origin and Early Evolution of Roots1

    PubMed Central

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-01-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  1. Evolution of Planetesimals Accreted in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Johnson, T. V.; Castillo-Rogez, J. C.; Thomas, P. C.

    2011-01-01

    The purpose of this presentation is to point out that the origins and abundances of short-lived nu-clides in the early solar system had important conse-quences for "icy planetesimals". It is believed that these planetesimals, composed of ice and rock, were once very abundant in the early, outer solar system. Today, spacecraft can visit remnants of that popula-tion and measure their properties. Cassini's flyby of Saturn's satellite Phoebe may have been the first visit to an object related to this population.

  2. Early Universe evolution in presence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Delgado Gaspar, I.; Pérez Martínez, A.; Piccinelli, G.; Sussman, R. A.

    2015-11-01

    We analyse the evolution of a magnetised Universe in a stage between the leptonic era and the beginning of the radiation-dominated epoch using an anisotropic Bianchi I model. In our description the cosmic fluid is made of primordial radiation, neutrinos, magnetic field, non-interacting already decoupled dark matter (WIMPS), baryons, electrons, and positrons. The interaction of the field with the electron-positron gas is taken into account, resulting in anisotropic equations of state for these constituents. Numerical simulations reveal some differences between the behaviour of magnetised Bianchi I Universes and that of first order perturbations on an FLRW background.

  3. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  4. Convergence of ion channel genome content in early animal evolution.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H

    2015-02-24

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  5. Convergence of ion channel genome content in early animal evolution

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2015-01-01

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  6. Formation, early evolution, and gravitational stability of protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Nakamoto, Taishi; Nakagawa, Yoshitsugo

    1994-01-01

    The formation, viscous evolution, and gravitational stability of protoplanetary disks are investigated. The formation process is parameterized by the angular velocity of the molecular cloud core omega, while the viscous evolution is parameterized by the viscosity parameter alpha in the disk; in this study we consider a range of (0.4-6) x 10(exp -14)/s for omega and from 10(exp -5) to 10(exp -1) for alpha. The axisymmetric gravitational stabilities of the disks are checked using Toomre's criterion. The resulting disk surface temperature distribution, (d log T(sub s)/d log R) approximately = -0.6 (R is the cylindrical radius), can be attributed to two heating sources: the viscous heating dominant in the inner disk region, and the accretion shock heating dominant in the outer disk region. This surface temperature distribution matches that observed in many disks around young stellar objects. During the infall stage, disks with alpha less than 10(exp -1.5) become gravitationally unstable independent of omega. The gravitational instabilities occur at radii ranging from 5 to 40 AU. The ratio of the disk mass to the central star mass ranges from 0.2 to 0.5 at the times of instability, about 4 x 10(exp -5) x (omega/10(exp -14)/s)(exp -0.67) yr. Most disks with low alpha and high omega become gravitationally unstable during their formation phase.

  7. Understanding the early cycling evolution behaviors for phase change memory application

    SciTech Connect

    Wang, Yuchan Chen, Yifeng Cai, Daolin; Cheng, Yan; Chen, Xiaogang; Wang, Yueqing; Xia, Mengjiao; Zhou, Mi; Li, Gezi; Zhang, Yiyun; Gao, Dan; Song, Zhitang; Feng, Gaoming

    2014-11-28

    The RESET current of T-shaped phase change memory cells with 35 nm heating electrodes has been studied to understand the behavior of early cycling evolution. Results show that the RESET current has been significantly reduced after the early cycling evolution (1st RESET) operation. Compared the transmission electron microscope images, it is found that the hexagonal Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) crystal grains are changed into the grains with face centered cubic structure after the early cycling evolution operation, which is taken as the major reason for the reduced RESET current, confirmed by a two-dimensional finite analysis and ab initio calculations.

  8. The Early Evolution of the Solar Nebula with Implications for the Formation of Primitive Material

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins

    2002-01-01

    I will present a review of our understanding of the early evolution of the solar nebula especially as it bears on the formation of primitive meteorites. Although my emphasis will be on the results of theoretical studies, I will also summarize some of the observational evidence supporting these conclusions. In particular, I will summarize our current best deductions about midplane temperatures and densities of the solar nebula and about both long-term and episodic evolution.

  9. A Geological Model for the Evolution of Early Continents (Invited)

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  10. Evolution of morphology of bacterial cellulose scaffolds during early culture.

    PubMed

    Luo, Honglin; Zhang, Jing; Xiong, Guangyao; Wan, Yizao

    2014-10-13

    Morphological characteristics of a fibrous tissue engineering (TE) scaffold are key parameters affecting cell behavior. However, no study regarding the evolution of morphology of bacterial cellulose (BC) scaffolds during the culture process has been reported to date. In this work, BC scaffolds cultured for different times starting from 0.5h were characterized. The results demonstrated that the formation of an integrated scaffold and its 3D network structure, porosity, fiber diameter, light transmittance, and the morphology of hydroxyapatite (HAp)-deposited BC scaffolds changed with culture time. However, the surface and crystal structure of BC fibers did not change with culture time and no difference was found in the crystal structure of HAp deposited on BC templates regardless of BC culture time. The findings presented herein suggest that proper selection of culture time can potentially enhance the biological function of BC TE scaffold by optimizing its morphological characteristics. PMID:25037408

  11. Some remarks on the early evolution of Enceladus

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2014-12-01

    Thermal history of Enceladus is investigated from the beginning of accretion to formation of its core (~400 My). We consider model with solid state convection (in a solid layer) as well as liquid state convection (in molten parts of the satellite). The numerical model of convection uses full conservative finite difference method. The roles of two modes of convection are considered using the parameterized theory of convection. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. Heat transfer processes are: conduction, solid state convection, and liquid state convection. It is found that core formation was completed only when liquid state convection had slowed down. Eventually, the porous core with pores filled with water was formed. Recent data concerning gravity field of Enceladus confirm low density of the core. We investigated also thermal history for different values of the following parameters: time of beginning of accretion tini, duration of accretion tacr, viscosity of ice close to the melting point ηm, activation energy in formula for viscosity E, thermal conductivity of silicate component ksil, ammonia content XNH3, and energy of serpentinization cserp. All these parameters are important for evolution, but not dramatic differences are found for realistic values. Moreover, the hypothesis of proto-Enceladus (stating that initially Enceladus was substantially larger) is considered and thermal history of such body is calculated. The last subject is the Mimas-Enceladus paradox. Comparison of thermal models of Mimas and Enceladus indicates that period favorable for 'excited path of evolution' was significantly shorter for Mimas than for Enceladus.

  12. Early-time evolution of a radiative shock

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Krauland, C. M.; Di Stefano, C. A.; Trantham, M.; Grosskopf, M. J.; Klein, S. R.; Marion, D. C.

    2013-06-01

    We have performed high-energy-density physics experiments with large radiative fluxes, relevant to radiative shocks in our universe. These experiments were performed at the Omega Laser facility and used a laser irradiance of 7.2 × 1014 W cm-2 to launch a Be disk into low-density Xe gas. The radiative shocks were observed early in time as the dense shocked Xe layer began to form. The average shock position indicates that the shock is moving over 130 km s-1. Data are compared to simulation output from the CRASH code, which was developed at the Center for Radiative Shock Hydrodynamics at the University of Michigan.

  13. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  14. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion. PMID:26469049

  15. A Cretaceous eutriconodont and integument evolution in early mammals

    NASA Astrophysics Data System (ADS)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D.

    2015-10-01

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  16. Robotic surgery for early stage cervical cancer: Evolution and current trends.

    PubMed

    Medlin, Erin E; Kushner, David M; Barroilhet, Lisa

    2015-12-01

    The management of early stage cervical cancer often includes surgery in the form of radical hysterectomy, radical trachelectomy, or radical parametrectomy. Surgical techniques have evolved to include minimal invasive approaches, and more recently, to include robotic assisted techniques. This review highlights the evolution of surgical management of early cervical cancer and specifically explores robotic assisted radical hysterectomy, radical trachelectomy, radical parametrectomy, and the role of neoadjuvant chemotherapy. PMID:26768315

  17. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    SciTech Connect

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C. E-mail: ndario@ufl.edu

    2015-01-10

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ{sub ADP,} {sub N}. We find statistically significant correlation between δ{sub ADP,} {sub N} and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  18. Early evolution of efficient enzymes and genome organization

    PubMed Central

    2012-01-01

    Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight. PMID:23114029

  19. The early spectral evolution of Nova Cassiopeiae 1993

    NASA Technical Reports Server (NTRS)

    Hauschildt, Peter H.; Starrfield, Sumner; Shore, Steven N.; Gonzalez-Riestra, Rosario; Sonneborn, George; Allard, France

    1994-01-01

    In this paper we describe the evolution of Nova Cas 1993 over the first two months of its outburst. We present an ultraviolet light curve that covers the period from announcement to just after dust began forming in the ejecta (1994 Feb. 15) and International Ultraviolet Explorer (IUE) spacecraft constraints forced us to halt our observations. We have used spherical, expanding, Non-local Thermodynamic Equilibrium (NLTE) stellar atmospheres to compute synthetic spectra and have compared the results to combined ultraviolet (low-resolution 1200-3400 A and high-resolution 2400-3300 A) spectra. Our fits show that the effective temperature of the ejecta increased from approx. 8000 to about approx. 16 000 K between 1993 Dec. 12 and 1993 Dec. 26. The temperature then increased more slowly to approx. 24 000 on 1994 Jan. 28. A preliminary abundance analysis shows evidence for hydrogen depletion, as we also found for Nova V1974 Cygni; however we find a larger enhancement of carbon, nitrogen, and oxygen. We also show that the principal mechanism for mass ejection in this nova is a radiation pressure driven wind and that mechanical driving is not necessary.

  20. Jupiter's decisive role in the inner Solar System's early evolution.

    PubMed

    Batygin, Konstantin; Laughlin, Greg

    2015-04-01

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter's inward migration entrained s ≳ 10-100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution. PMID:25831540

  1. The Structural Evolution of Forming and Early Stage Star Clusters

    NASA Astrophysics Data System (ADS)

    Jaehnig, Karl; Da Rio, Nicola; Tan, Jonathan C.

    2016-05-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) Survey and the statistical analysis of the Angular Dispersion Parameter, δADP. We find statistically significant correlation between δADP and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  2. Evolution of attention mechanisms for early visual processing

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  3. Architecture and early evolution of the Oslo Rift

    NASA Astrophysics Data System (ADS)

    Sundvoll, B.; Larsen, B. T.

    1994-12-01

    A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation. Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305-310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300-305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.

  4. Early events in the evolution of spider silk genes.

    PubMed

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of

  5. Early Events in the Evolution of Spider Silk Genes

    PubMed Central

    Starrett, James; Garb, Jessica E.; Kuelbs, Amanda; Azubuike, Ugochi O.; Hayashi, Cheryl Y.

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae (‘true spiders’). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions

  6. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava.

    PubMed

    Henry, J Q; Tagawa, K; Martindale, M Q

    2001-01-01

    Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister-phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect-developing representative of the enteropneust hemichordates, Ptychodera flava. Single blastomeres were iontophoretically labeled with Dil at the 2- through 16-cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct-developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect-developing echinoids. The 16-celled embryo contains eight animal "mesomeres," four slightly larger "macromeres," and four somewhat smaller vegetal "micromeres." The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct-developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two- or the four-cell stage are capable of forming normal-appearing, miniature tornaria larvae. These findings indicate that the fates of these

  7. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava

    NASA Technical Reports Server (NTRS)

    Henry, J. Q.; Tagawa, K.; Martindale, M. Q.

    2001-01-01

    Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister-phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect-developing representative of the enteropneust hemichordates, Ptychodera flava. Single blastomeres were iontophoretically labeled with Dil at the 2- through 16-cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct-developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect-developing echinoids. The 16-celled embryo contains eight animal "mesomeres," four slightly larger "macromeres," and four somewhat smaller vegetal "micromeres." The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct-developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two- or the four-cell stage are capable of forming normal-appearing, miniature tornaria larvae. These findings indicate that the fates of these

  8. Early evolution of the T-box transcription factor family.

    PubMed

    Sebé-Pedrós, Arnau; Ariza-Cosano, Ana; Weirauch, Matthew T; Leininger, Sven; Yang, Ally; Torruella, Guifré; Adamski, Marcin; Adamska, Maja; Hughes, Timothy R; Gómez-Skarmeta, José Luis; Ruiz-Trillo, Iñaki

    2013-10-01

    Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family diversified at the onset of Metazoa. Moreover, we demonstrate functional conservation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laevis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieved by interaction with alternative cofactors, as opposed to differences in binding specificity. PMID:24043797

  9. Early Evolution of Disrupted Asteroid P/2016 G1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Licandro, J.; Cabrera-Lavers, A.; Pozuelos, F. J.

    2016-08-01

    We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4 m Gran Telescopio Canarias (GTC) from 2016 late April to early June. The images are best interpreted as the result of a relatively short-duration event with an onset of about {350}-30+10 days before perihelion (i.e., around 2016 February 10), starting sharply and decreasing with {24}-7+10 days (HWHM). The results of the modeling imply that the emission of ∼1.7 × 107 kg of dust, if composed of particles of 1 μm to 1 cm in radius, is distributed following a power law of index ‑3 and having a geometric albedo of 0.15. A detailed fitting of a conspicuous westward feature in the head of the comet-like object indicates that a significant fraction of the dust was ejected along a privileged direction right at the beginning of the event, which suggests that the parent body has possibly suffered an impact followed by a partial or total disruption. From the limiting magnitude reachable with the instrumental setup, and assuming a geometric albedo of 0.15 for the parent body, an upper limit for the size of possible fragment debris of ∼50 m in radius is derived.

  10. Early Evolution of Disrupted Asteroid P/2016 G1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Licandro, J.; Cabrera-Lavers, A.; Pozuelos, F. J.

    2016-08-01

    We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4 m Gran Telescopio Canarias (GTC) from 2016 late April to early June. The images are best interpreted as the result of a relatively short-duration event with an onset of about {350}-30+10 days before perihelion (i.e., around 2016 February 10), starting sharply and decreasing with {24}-7+10 days (HWHM). The results of the modeling imply that the emission of ˜1.7 × 107 kg of dust, if composed of particles of 1 μm to 1 cm in radius, is distributed following a power law of index ‑3 and having a geometric albedo of 0.15. A detailed fitting of a conspicuous westward feature in the head of the comet-like object indicates that a significant fraction of the dust was ejected along a privileged direction right at the beginning of the event, which suggests that the parent body has possibly suffered an impact followed by a partial or total disruption. From the limiting magnitude reachable with the instrumental setup, and assuming a geometric albedo of 0.15 for the parent body, an upper limit for the size of possible fragment debris of ˜50 m in radius is derived.

  11. Modelling of the thermal evolution and differentiation of early Ceres

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2015-04-01

    The asteroid 1 Ceres is one of the remaining examples of the intermediate stages of planetary accretion. Studies of such protoplanetary objects provide insight into the history of the formation of Earth and other planets. One of Ceres' remarkable properties is the relatively low average bulk density of 2077±36 kg m-3[1]. Assuming a nearly chondritic composition, this low value can be explained either by the presence of a low density phase[2,3] (possibly water ice or hydrated silicates) that could have differentiated forming an icy mantle over a rocky core[2,3], or by a relatively high average porosity[4]. The shape and the moment of inertia of Ceres are consistent with both a homogeneous and a differentiated structure. In the first case Ceres would be just a large version of a common asteroid. In the second case this body could exhibit properties characteristic for a planet rather than an asteroid: presence of a core, mantle and crust, as well as a liquid ocean in the past and maybe still a thin basal ocean today. We study the evolution of a Ceres-like body via numerical modelling in order to draw conclusions about the thermal metamorphism of the interior and its present-day structure. A numerical model of an ice-silicate planetesimal, considering both water-rock and metal-silicate differentiation of Ceres is being developed. In particular, accretion from a km-sized porous seed to a Ceres-sized asteroid is considered. Further relevant processes, such as transition from amorphous to crystalline ice, melting of ice, hydrothermal convection, as well as melting and percolation of metal and silicates are included in the model. The model is suited to prioritise between the two possible structures mentioned above and to constrain the present-day state of Ceres' interior. The necessary conditions for the differentiation as well as the influence of the vital parameters, such as the accretion duration, will be discussed. [1] Thomas, C. et al. (2005) Nature, 437, 224-226. [2

  12. A new Early Permian reptile and its significance in early diapsid evolution.

    PubMed

    Reisz, Robert R; Modesto, Sean P; Scott, Diane M

    2011-12-22

    The initial stages of evolution of Diapsida (the large clade that includes not only snakes, lizards, crocodiles and birds, but also dinosaurs and numerous other extinct taxa) is clouded by an exceedingly poor Palaeozoic fossil record. Previous studies had indicated a 38 Myr gap between the first appearance of the oldest diapsid clade (Araeoscelidia), ca 304 million years ago (Ma), and that of its sister group in the Middle Permian (ca 266 Ma). Two new reptile skulls from the Richards Spur locality, Lower Permian of Oklahoma, represent a new diapsid reptile: Orovenator mayorum n. gen. et sp. A phylogenetic analysis identifies O. mayorum as the oldest and most basal member of the araeoscelidian sister group. As Richards Spur has recently been dated to 289 Ma, the new diapsid neatly spans the above gap by appearing 15 Myr after the origin of Diapsida. The presence of O. mayorum at Richards Spur, which records a diverse upland fauna, suggests that initial stages in the evolution of non-araeoscelidian diapsids may have been tied to upland environments. This hypothesis is consonant with the overall scant record for non-araeoscelidian diapsids during the Permian Period, when the well-known terrestrial vertebrate communities are preserved almost exclusively in lowland deltaic, flood plain and lacustrine sedimentary rocks. PMID:21525061

  13. Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): Data on early anthropoid evolution and biogeography

    PubMed Central

    Marivaux, Laurent; Antoine, Pierre-Olivier; Baqri, Syed Rafiqul Hassan; Benammi, Mouloud; Chaimanee, Yaowalak; Crochet, Jean-Yves; de Franceschi, Dario; Iqbal, Nayyer; Jaeger, Jean-Jacques; Métais, Grégoire; Roohi, Ghazala; Welcomme, Jean-Loup

    2005-01-01

    Asian tarsiid and sivaladapid primates maintained relictual distributions in southern Asia long after the extirpation of their close Holarctic relatives near the Eocene–Oligocene boundary. We report here the discovery of amphipithecid and eosimiid primates from Oligocene coastal deposits in Pakistan that demonstrate that stem anthropoids also survived in southern Asia beyond the climatic deterioration that characterized the Eocene–Oligocene transition. These fossils provide data on temporal and paleobiogeographic aspects of early anthropoid evolution and significantly expand the record of stem anthropoid evolution in the Paleogene of South Asia. PMID:15937103

  14. Long-Term evolution of the erosion rates during Early Mars

    NASA Astrophysics Data System (ADS)

    Quantin-Nataf, C.; Craddock, R. A.; Dubuffet, F.; Lozac'h, L.; Martinot, M.

    2015-10-01

    Many Geologic features attest to the fact that liquid water was once stable on the Martian surface. The erosional processes necessary to create these features must have been supported by a climate that is much different than today. However, the evolution of these primitives conditions toward the current dry and cold Martian climate where the erosion processes are 2-3 orders in magnitude lower represents a major gap in our understanding of the evolution of Mars history. Here we document the time-dependence of the erosion rates on Mars during early Mars, period during which the erosion rates have decreased of at least one order in magnitude.

  15. Evolution of CO2 and H2O on Mars: A cold Early History?

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.

    2011-01-01

    The martian climate has long been thought to have evolved substantially through history from a warm and wet period to the current cold and dry conditions on the martian surface. This view has been challenged based primarily on evidence that the early Sun had a substantially reduced luminosity and that a greenhouse atmosphere would be difficult to sustain on Mars for long periods of time. In addition, the evidence for a warm, wet period of martian history is far from conclusive with many of the salient features capable of being explained by an early cold climate. An important test of the warm, wet early Mars hypothesis is the abundance of carbonates in the crust [1]. Recent high precision isotopic measurements of the martian atmosphere and discoveries of carbonates on the martian surface provide new constraints on the evolution of the martian atmosphere. This work seeks to apply these constraints to test the feasibility of the cold early scenario

  16. Early-late life trade-offs and the evolution of ageing in the wild

    PubMed Central

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-01-01

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing—the disposable soma and the antagonistic pleiotropy theories—and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. PMID:25833848

  17. Early-late life trade-offs and the evolution of ageing in the wild.

    PubMed

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-05-01

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing-the disposable soma and the antagonistic pleiotropy theories-and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. PMID:25833848

  18. Crustal evolution of the early earth: The role of major impacts

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The role of major impact basins (such as those which formed on the moon before 4 billion years ago) is examined to determine the effects of such impacts on the early crustal evolution of the earth. Specifically addressed is the fundamental problem of what is the origin of the earth's fundamental crustal dichotomy of low density continental and high density oceanic crust and its relationship to the superficially similar highlands/maria crustal dichotomies of the moon, Mercury and Mars.

  19. Geochemical evolution of the northern plains of Mars - Early hydrosphere, carbonate development, and present morphology

    NASA Technical Reports Server (NTRS)

    Schaefer, Martha W.

    1990-01-01

    An equilibrium geochemical model of the primitive Martian atmosphere-regolith-ocean system that could have existed early in the history of Mars is developed. The results of this model are used to examine the evolution of the volatile budget of Mars and the processes occurring in the Martian ocean that may have contributed to the deposition of large carbonate beds on the northern plains. Results of this model are compared to those of the Pollack et al. (1987) model.

  20. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology.

    PubMed

    Ward, Carol V; Tocheri, Matthew W; Plavcan, J Michael; Brown, Francis H; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  1. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology

    PubMed Central

    Ward, Carol V.; Tocheri, Matthew W.; Plavcan, J. Michael; Brown, Francis H.; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  2. SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Ramkumar, Balasubramanian; Wuyts, Stijn; Zibetti, Stefano; Holden, Bradford

    2013-01-10

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg{sup 2} to study the structural evolution of massive early-type galaxies since z {approx} 2. Mass-selected samples, complete down to log(M/M {sub Sun }) {approx} 10.7 such that 'typical' (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the {approx}400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z {approx}< 2, the most massive early-type galaxies (log(M/M {sub Sun }) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M {sub Sun }) {approx} 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  3. Shape Evolution of Massive Early-type Galaxies: Confirmation of Increased Disk Prevalence at z > 1

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford

    2013-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg2 to study the structural evolution of massive early-type galaxies since z ~ 2. Mass-selected samples, complete down to log(M/M ⊙) ~ 10.7 such that "typical" (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z <~ 2, the most massive early-type galaxies (log(M/M ⊙) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M ⊙) ~ 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  4. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    PubMed Central

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  5. Polarization Evolution of Early Optical Afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2016-01-01

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford-Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  6. Modelling magma ocean solidification and volatile outgassing during early planetary evolution.

    NASA Astrophysics Data System (ADS)

    Nikolaou, Athanasia; Tosi, Nicola; Plesa, Ana-Catalina

    2016-04-01

    The early phases of the evolution of the Earth and terrestrial planets likely included a state characterized by one or multiple vigorously convecting magma oceans. Even super earths at a close distance to their host star can presently be in a similar hot state. Understanding magma ocean's evolution can serve to better characterise terrestrial planets that have passed through such a state in their history and possibly constrain that state in our planet. However, the temporal evolution of a vigorously convecting magma ocean is poorly known due to missing constraints on the mechanical and thermal properties of the molten material and on the blanketing effect of the overlying atmosphere, which can strongly influence the heat flowing out of the planet and retard its cooling and solidification. The outgassing of volatiles with greenhouse potential is a key process that affects both aforementioned factors. Using a simple 1D model we simulate the evolution of a primitive magma ocean coupled with a grey atmosphere. The evolution of the potential temperature dictates the rate of mantle crystallization, which proceeds from the bottom upwards because of the steeper slope of the mantle adiabat compared to the melting curve. This model allows us to represent the complex physical state of simultaneous regimes of liquid and solid convection in the mantle. In future steps we are going to replace the grey atmosphere model with a more sophisticated 1D model of radiative-convective equilibrium to better represent the emissivity of the atmosphere generated by magma ocean outgassing.

  7. Water in the lunar interior: Implications for early evolution of the moon.

    NASA Astrophysics Data System (ADS)

    Goswami, Jitendranath

    2016-07-01

    Water in the lunar interior: Implications for early evolution of the moon. J. N. Goswami*, A. Basu Sarbadhikari and K. K. Marhas Physical Research Laboratory, Ahmedabad-38009 Water and other volatiles present in lunar interior can significantly affect the early evolution of the moon. Lunar volcanic glasses and in olivine hosted melt inclusions, suggest water content ranging from ~700 to 1400 ppm in the deep lunar interior (≥500 km). Apatite in lunar basalts, that sampled magma at a shallower depth (<200 km) show significant volatile zoning making it difficult to retrieve their source volatile content. We have identified and analysed apatite in Apollo 15 sample that formed at 150-200 km below the lunar surface, in a closed system and devoid of volatile zoning. The analyses of volatiles were done using a Nano-SIMs in the imaging mode and terrestrial apatite was used as standard. Water content in two apatite grains are in the range of 2200-2850 and 3400-3750 ppm, respectively; F and Cl also show nearly uniform distribution. Considering reasonable partition coefficient of water between apatite and basaltic melt, we infer values of ~ 100-160 ppm (water), 80-90 ppm (F) and 10-20 ppm (Cl) in the parent magma of 15555 that sampled a lunar depth of 150-200 km. These values are much lower than those for lunar volcanic glasses and melt inclusions trapped in them and strongly suggest a non-uniform distribution of water and other volatiles in the lunar interior. Presence of water in lunar mantle could have significantly affected the early evolution of Moon and, in particular helped in sustaining a lunar core dynamo for an extended duration and can also influence thermo-chemical processes, e.g. differential degree of melting, in different mantle source regions during the early evolutionary stages of the Moon.

  8. The Problems of Replication in the Early Stages of Evolution: Enumeration of Variants and Spatial Configurations of Replicators

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.

    2014-12-01

    Two main problems of replication in the early stages of evolution are discussed: the problem of exponentially large number of conformational degrees of freedom and the problem of enumeration of variants.

  9. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths

    PubMed Central

    Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.

    2015-01-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364

  10. Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes

    PubMed Central

    Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P.; Platt, Roy N.; Jurka, Jerzy; Kojima, Kenji K.; Caballero, Juan; Smit, Arian F.; Vliet, Kent A.; Hoffmann, Federico G.; Brosius, Jürgen; Green, Richard E.; Braun, Edward L.; Ray, David A.; Schmitz, Jürgen

    2015-01-01

    Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

  11. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes.

    PubMed

    Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P; Platt, Roy N; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Smit, Arian F; Vliet, Kent A; Hoffmann, Federico G; Brosius, Jürgen; Green, Richard E; Braun, Edward L; Ray, David A; Schmitz, Jürgen

    2015-01-01

    Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

  12. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    PubMed

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic. PMID:25754468

  13. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    PubMed Central

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic. PMID:25754468

  14. Symbiosis in cell evolution: Life and its environment on the early earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  15. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales

    PubMed Central

    Fitzgerald, Erich M.G

    2006-01-01

    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual. PMID:17015308

  16. Evolution of domain walls in the early universe. Ph.D. Thesis - Chicago Univ.

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence

    1989-01-01

    The evolution of domain walls in the early universe is studied via 2-D computer simulation. The walls are initially configured on a triangular lattice and then released from the lattice, their evolution driven by wall curvature and by the universal expansion. The walls attain an average velocity of about 0.3c and their surface area per volume (as measured in comoving coordinates) goes down with a slope of -1 with respect to conformal time, regardless of whether the universe is matter or radiation dominated. The additional influence of vacuum pressure causes the energy density to fall away from this slope and steepen, thus allowing a situation in which domain walls can constitute a significant portion of the energy density of the universe without provoking an unacceptably large perturbation upon the microwave background.

  17. Orbital resonances and planetary accretion in the early solar system evolution

    NASA Astrophysics Data System (ADS)

    Torbett, M. V.

    1982-03-01

    The solar system, in its early evolution, is thought to have consisted of an accretion disk around a growing central protostar. The accretion disk from which the planets ultimately formed can play a significant role in the processes of planetary and solar formation. As well as leading, by thermalization of orbital motions in the disk, to bipolar flows in the T Tauri stage of stellar evolution, the disk can influence the course of planetary accumulation. By virtue of its essentially solar composition, Jupiter was formed before the accretion disk was removed. This first formed planet then gravitationally imposed a harmonic structure on the planetesimal swarm through its commensurability resonances. Accelerated growth of planetesimals in orbital resonance with Jupiter resulted in runaway growth producing planetary embryos. These embryos accelerated growth at their own resonances in a process that propagation inward and outward forming a resonant configuration of embryos.

  18. Detection of early landscape evolution through controlled experimentation, data analysis, and numerical modeling at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.

  19. A Model of Isotope Separation in Cells at the Early Stages of Evolution

    NASA Astrophysics Data System (ADS)

    Melkikh, A. V.; Bokunyaeva, A. O.

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  20. Origin of the Directed Movement of Protocells in the Early Stages of the Evolution of Life

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Chesnokova, Oksana I.

    2012-08-01

    The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell.

  1. Origin of the directed movement of protocells in the early stages of the evolution of life.

    PubMed

    Melkikh, Alexey V; Chesnokova, Oksana I

    2012-08-01

    The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell. PMID:22772806

  2. The hydrodynamics of aspherical planetary nebulae. II - Numerical modelling of the early evolution

    NASA Astrophysics Data System (ADS)

    Icke, Vincent; Balick, Bruce; Frank, Adam

    1992-01-01

    Initial results are presented from numerical hydrodynamic calculations of the early evolution of aspherical planetary nebulae. It is found that the interacting winds produce the customary triple discontinuity, and that the outer shock's morphology conforms with remarkable fidelity to the analytic expectations. The inner shock develops in transient fashion, due to a reflection off the equatorial belt in which the shock deflects and focuses the fast wind. The shapes of the contact discontinuity and the flow behind the leading shock indicate two qualitatively distinct patterns.

  3. Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view

    PubMed Central

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E.

    2014-01-01

    The basic principles of Ca2+ regulation emerged early in prokaryotes. Ca2+ signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca2+ concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca2+ signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca2+ exchangers and four-domain voltage-gated Ca2+ channels. Newly identified evolutionary evidence suggests that the distinct Ca2+ signaling machineries in animals, plants and fungi likely originated from an ancient Ca2+ signaling machinery prior to early eukaryotic radiation. PMID:25498309

  4. DEVIATIONS FROM THE SCHMIDT-KENNICUTT RELATIONS DURING EARLY GALAXY EVOLUTION

    SciTech Connect

    Papadopoulos, Padelis P.; Pelupessy, Federico I.

    2010-07-10

    We utilize detailed time-varying models of the coupled evolution of stars and the H I, H{sub 2}, and CO-bright H{sub 2} gas phases in galaxy-sized numerical simulations to explore the evolution of gas-rich and/or metal-poor systems, which are expected to be numerous in the early universe. The inclusion of the CO-bright H{sub 2} gas phase and the realistic rendering of star formation as an H{sub 2}-regulated process (and the new feedback processes that this entails) allow the most realistic tracking of strongly evolving galaxies and much better comparison with observations. We find that while galaxies eventually settle into states conforming to the Schmidt-Kennicutt (S-K) relations, significant and systematic deviations of their star formation rates (SFRs) from the latter occur, and are especially pronounced and prolonged for metal-poor systems. The largest such deviations occur for gas-rich galaxies during not only the early evolutionary stages but also during brief periods at later stages. Given that gas-rich and/or metal-poor states of present-epoch galaxies are expected in the early universe while a much larger number of mergers frequently reset non-isolated systems to gas-rich states, even brief periods of sustained deviations of their SFRs from those expected from the S-K relations may come to characterize significant periods of their stellar mass built-up. This indicates potentially serious limitations of S-K-type relations as reliable sub-grid elements of star formation physics in simulations of structure formation in the early universe. We anticipate that galaxies with marked deviations from the S-K relations will be found at high redshifts as unbiased inventories of total gas mass become possible with ALMA and the EVLA.

  5. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  6. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Tellería, Maria C.; Olivero, Eduardo B.; Raine, J. Ian; Forest, Félix

    2015-01-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76–66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60–50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324

  7. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324

  8. Early Cretaceous mammal from North America and the evolution of marsupial dental characters.

    PubMed Central

    Cifelli, R L

    1993-01-01

    A mammal from the Early Cretaceous of the western United States, represented by a lower jaw exceptional in its completeness, presents unambiguous evidence of postcanine dental formula in an Early Cretaceous marsupial-like mammal, and prompts a reconsideration of the early evolution of marsupial dental characters. A marsupial postcanine dental formula (three premolars and four molars) and several marsupial-like features of the lower molars are present in the new taxon, but a hallmark specialization of marsupials (twinning of the hypoconulid and entoconid on lower molars) is lacking. This, coupled with recent evidence from the Late Cretaceous of the western United States, suggests that the distinctive marsupial dental formula evolved prior to the most characteristic specialization of lower molars and that apomorphies presumed to be diagnostic of the upper molars (such as auxiliary stylar cusps) were relatively more recent developments in marsupial history. Dental evidence supports the monophyly of higher (tribosphenic) mammals and suggests that the predominantly Old World Deltatheroida, recently proposed as a sister taxon to marsupials, represents a primitive and unrelated group of higher mammals; by this interpretation, early marsupials and their presumed close relatives are restricted to North America. This, together with the hypothesized relationships of South American/Australian marsupials (in the context of the North American Cretaceous radiation) and evidence from the fossil record of South America, in turn supports a North American origin for the group. Images Fig. 1 PMID:8415715

  9. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  10. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  11. The evolution of early cellular systems viewed through the lens of biological interactions

    PubMed Central

    Poole, Anthony M.; Lundin, Daniel; Rytkönen, Kalle T.

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are “free-living.” As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution. PMID:26539175

  12. Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations

    PubMed Central

    Lillis, Kyle P.; Wang, Zemin; Mail, Michelle; Zhao, Grace Q.; Berdichevsky, Yevgeny; Bacskai, Brian

    2015-01-01

    In secondary epilepsy, a seizure-prone neural network evolves during the latent period between brain injury and the onset of spontaneous seizures. The nature of the evolution is largely unknown, and even its completeness at the onset of seizures has recently been challenged by measures of gradually decreasing intervals between subsequent seizures. Sequential calcium imaging of neuronal activity, in the pyramidal cell layer of mouse hippocampal in vitro preparations, during early post-traumatic epileptogenesis demonstrated rapid increases in the fraction of neurons that participate in interictal activity. This was followed by more gradual increases in the rate at which individual neurons join each developing seizure, the pairwise correlation of neuronal activities as a function of the distance separating the pair, and network-wide measures of functional connectivity. These data support the continued evolution of synaptic connectivity in epileptic networks beyond the latent period: early seizures occur when recurrent excitatory pathways are largely polysynaptic, while ongoing synaptic remodeling after the onset of epilepsy enhances intranetwork connectivity as well as the onset and spread of seizure activity. PMID:26156993

  13. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling

    PubMed Central

    2013-01-01

    Background The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. Results Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms. Conclusions Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host. PMID:23375108

  14. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates

    PubMed Central

    Sallan, Lauren Cole; Coates, Michael I.

    2010-01-01

    The Devonian marks a critical stage in the early evolution of vertebrates: It opens with an unprecedented diversity of fishes and closes with the earliest evidence of limbed tetrapods. However, the latter part of the Devonian has also been characterized as a period of global biotic crisis marked by two large extinction pulses: a “Big Five” mass extinction event at the Frasnian-Famennian stage boundary (374 Ma) and the less well-documented Hangenberg event some 15 million years later at the Devonian-Carboniferous boundary (359 Ma). Here, we report the results of a wide-ranging analysis of the impact of these events on early vertebrate evolution, which was obtained from a database of vertebrate occurrences sampling over 1,250 taxa from 66 localities spanning Givetian to Serpukhovian stages (391 to 318 Ma). We show that major vertebrate clades suffered acute and systematic effects centered on the Hangenberg extinction involving long-term losses of over 50% of diversity and the restructuring of vertebrate ecosystems worldwide. Marine and nonmarine faunas were equally affected, precluding the existence of environmental refugia. The subsequent recovery of previously diverse groups (including placoderms, sarcopterygian fish, and acanthodians) was minimal. Tetrapods, actinopterygians, and chondrichthyans, all scarce within the Devonian, undergo large diversification events in the aftermath of the extinction, dominating all subsequent faunas. The Hangenberg event represents a previously unrecognized bottleneck in the evolutionary history of vertebrates as a whole and a historical contingency that shaped the roots of modern biodiversity. PMID:20479258

  15. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates.

    PubMed

    Sallan, Lauren Cole; Coates, Michael I

    2010-06-01

    The Devonian marks a critical stage in the early evolution of vertebrates: It opens with an unprecedented diversity of fishes and closes with the earliest evidence of limbed tetrapods. However, the latter part of the Devonian has also been characterized as a period of global biotic crisis marked by two large extinction pulses: a "Big Five" mass extinction event at the Frasnian-Famennian stage boundary (374 Ma) and the less well-documented Hangenberg event some 15 million years later at the Devonian-Carboniferous boundary (359 Ma). Here, we report the results of a wide-ranging analysis of the impact of these events on early vertebrate evolution, which was obtained from a database of vertebrate occurrences sampling over 1,250 taxa from 66 localities spanning Givetian to Serpukhovian stages (391 to 318 Ma). We show that major vertebrate clades suffered acute and systematic effects centered on the Hangenberg extinction involving long-term losses of over 50% of diversity and the restructuring of vertebrate ecosystems worldwide. Marine and nonmarine faunas were equally affected, precluding the existence of environmental refugia. The subsequent recovery of previously diverse groups (including placoderms, sarcopterygian fish, and acanthodians) was minimal. Tetrapods, actinopterygians, and chondrichthyans, all scarce within the Devonian, undergo large diversification events in the aftermath of the extinction, dominating all subsequent faunas. The Hangenberg event represents a previously unrecognized bottleneck in the evolutionary history of vertebrates as a whole and a historical contingency that shaped the roots of modern biodiversity. PMID:20479258

  16. Early Thermal Evolution of Planetesimals and Its Impact on Processing and Dating of Meteoritic Material

    NASA Astrophysics Data System (ADS)

    Gail, H.-P.; Trieloff, M.; Breuer, D.; Spohn, T.

    Radioisotopic ages for meteorites and their components provide constraints on the evolution of small bodies: timescales of accretion, thermal and aqueous metamorphism, differentiation, cooling, and impact metamorphism. Realizing that the decay heat of short-lived nuclides (e.g., 26Al, 60Fe) was the main heat source driving differentiation and metamorphism, thermal modeling of small bodies is of the utmost importance to set individual meteorite age data into the general context of the thermal evolution of their parent bodies, and to derive general conclusions about the nature of planetary building blocks in the early solar system. As a general result, modeling easily explains that iron meteorites are older than chondrites, as early formed planetesimals experienced a higher concentration of short-lived nuclides and more severe heating. However, core formation processes may also extend to 10 million years (m.y.) after the formation of calcium-aluminum-rich inclusions (CAIs). A general effect of the porous nature of the starting material is that relatively small bodies (less than a few kilometers) will also differentiate if they form within 2 m.y. after CAIs. A particular interesting feature to be explored is the possibility that some chondrites may derive from the outer undifferentiated layers of asteroids that are differentiated in their interiors. This could explain the presence of remnant magnetization in some chondrites due to a planetary magnetic field.

  17. Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations.

    PubMed

    Lillis, Kyle P; Wang, Zemin; Mail, Michelle; Zhao, Grace Q; Berdichevsky, Yevgeny; Bacskai, Brian; Staley, Kevin J

    2015-07-01

    In secondary epilepsy, a seizure-prone neural network evolves during the latent period between brain injury and the onset of spontaneous seizures. The nature of the evolution is largely unknown, and even its completeness at the onset of seizures has recently been challenged by measures of gradually decreasing intervals between subsequent seizures. Sequential calcium imaging of neuronal activity, in the pyramidal cell layer of mouse hippocampal in vitro preparations, during early post-traumatic epileptogenesis demonstrated rapid increases in the fraction of neurons that participate in interictal activity. This was followed by more gradual increases in the rate at which individual neurons join each developing seizure, the pairwise correlation of neuronal activities as a function of the distance separating the pair, and network-wide measures of functional connectivity. These data support the continued evolution of synaptic connectivity in epileptic networks beyond the latent period: early seizures occur when recurrent excitatory pathways are largely polysynaptic, while ongoing synaptic remodeling after the onset of epilepsy enhances intranetwork connectivity as well as the onset and spread of seizure activity. PMID:26156993

  18. Sibling cooperation in earwig families provides insights into the early evolution of social life.

    PubMed

    Falk, Joachim; Wong, Janine W Y; Kölliker, Mathias; Meunier, Joël

    2014-04-01

    The evolutionary transition from solitary to social life is driven by direct and indirect fitness benefits of social interactions. Understanding the conditions promoting the early evolution of social life therefore requires identification of these benefits in nonderived social systems, such as animal families where offspring are mobile and able to disperse and will survive independently. Family life is well known to provide benefits to offspring through parental care, but research on sibling interactions generally focused on fitness costs to offspring due to competitive behaviors. Here we show experimentally that sibling interactions also reflect cooperative behaviors in the form of food sharing in nonderived families of the European earwig, Forficula auricularia. Food ingested by individual offspring was transferred to their siblings through mouth-to-anus contacts and active allo-coprophagy. These transfers occurred in both the presence and the absence of the tending mothers, even though the direct contact with the mothers limited sibling food sharing. Neither food deprivation or relatedness influenced the total amount of transferred food, but relatedness affected frass release and the behavioral mechanisms mediating food sharing. Related offspring obtained food predominately through allo-coprophagy, whereas unrelated offspring obtained food through mouth-to-anus contacts. Overall, this study emphasizes that sibling cooperation may be a key process promoting the early evolution of social life. PMID:24642498

  19. The chemical evolution in the early phases of massive star formation

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas; Beuther, Henrik; Semenov, Dmitry; Linz, Hendrik; Vasyunina, Tatiana; Dullemond, Cornelis; Bihr, Simon; Henning, Thomas

    2013-07-01

    Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. The chemistry is employed as a unique tool: 1) to investigate the underlying physical processes and 2) to characterize the evolution of the chemical composition. With these aims in mind, we observed a sample of 59 high-mass star-forming regions at different evolutionary stages varying from the early starless phase of Infrared Dark Clouds (IRDC) to High Mass Protostellar Objects (HMPO) to Hot Molecular Cores (HMC) and, finally, Ultra Compact HII regions (UCHII) at 1mm and 3mm with the IRAM 30m telescope. We determined their large-scale chemical abundances and column densities and found that the chemical composition evolves along with the evolutionary stages. We modeled the chemical evolution in these environments, using a 1D physical model where density and temperature vary from stage to stage coupled with an advanced gas-grain chemical model. By varying the temperature and density structure the best-fit chi-square values of all the relevant parameters were derived. A satisfying overall agreement between observed and modeled column densities for most of the molecules in all evolutionary stages was obtained. In addition the best-fit model provided chemical ages for each phase.

  20. Scientific Goals of SPICA for Galaxy Formation and Evolution in Early Universe

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Task Force, Spica; Spica Science Team

    2009-12-01

    We review the scientific goals of SPICA for galaxy formation and evolution in the early Universe, along with Japanese activities defining the goals and the specification of the relevant instruments. The main targets are: (1) discovery of first generation objects (Pop III stars) at the reionization epoch, (2) the origin of the cosmic farinfrared background and its fluctuation, (3) the star formation history of dusty galaxies and their contribution to stellar-mass assembly over the cosmic time, (4) the role of super-massive black holes in galaxy evolution, and (5) the effects of environment on galaxy evolution in cluster of galaxies and large scale structures at the high-z Universe. The Japanese community for optical and infrared astronomy has organized a dedicated team for SPICA (SPICA Task Force, SFT). STF is playing a central role in defining the scientific capabilities of SPICA and in supporting the development of SPICA instruments: a large-format MIR camera, MIR spectrometers, and a high contrast photometric and spectroscopic MIR coronagraph.

  1. The role of gas in the evolution of early type galaxies

    NASA Astrophysics Data System (ADS)

    Donovan, Jennifer L.

    Early-type galaxies continue to surprise us. Far from being the uniformly "red and dead" systems they were long believed to be, many of these galaxies are now known to exhibit significant amounts of neutral and molecular gas and even to host recent star formation. The presence of these features provides clues regarding the evolution of these galaxies; any successful theory of galaxy evolution must address how these massive systems have reached the present day in their present form. In this thesis, we study the role of gas in the evolution of early-type galaxies in several ways. We address the hypothesis that early types can grow via dissipationless, or gasless, mergers by studying the viability of a set of optical criteria for selecting remnants of this kind. We find that selecting "dry" mergers on the basis of their optical colors and magnitudes is not sufficient to ensure that they do not have gas or host recent star formation, implying that samples selected in this way may not be truly "dry". We next present an in-depth study of an example of such a "not-dry" system: ESO 381-47, an early-type galaxy which is embedded in a massive HI structure and is surrounded by a ring of recent star formation. For this system, which in optical light appears to be a normal early-type galaxy consisting of ancient stellar populations, rejuvenation is occurring in its outer parts. We discuss several possible triggers for the recent star formation within the HI disk. To address how common this phenomenon may be, we compile a complete, volume- limited sample of early-type galaxies and observe their ultraviolet properties. HI data is available for a subset of this sample, and for the first time, we are able to search for pockets of low-level star formation within the neutral gas around early-type galaxies. We find a correlation between the presence of HI and low-level near-ultraviolet emission. We also compare the colors and magnitudes of resolved "blobs" of far-ultraviolet emission

  2. Computer simulation on the cooperation of functional molecules during the early stages of evolution.

    PubMed

    Ma, Wentao; Hu, Jiming

    2012-01-01

    It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with "micro-resolution" at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a "habitat-shift" into bulk water. Second, the protocell stage started with a substage of "pseudo-protocells", with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent "true-protocell" substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the emergence of single

  3. Major transitions in the evolution of early land plants: a bryological perspective.

    PubMed

    Ligrone, Roberto; Duckett, Jeffrey G; Renzaglia, Karen S

    2012-04-01

    Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells

  4. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.

    PubMed

    Simmons, Nancy B; Seymour, Kevin L; Habersetzer, Jörg; Gunnell, Gregg F

    2008-02-14

    Bats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species. Although recent studies unambiguously support bat monophyly and consensus is rapidly emerging about evolutionary relationships among extant lineages, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat. The evolutionary pathways that led to flapping flight and echolocation in bats have been in dispute, and until now fossils have been of limited use in documenting transitions involved in this marked change in lifestyle. Phylogenetically informed comparisons of the new taxon with other bats and non-flying mammals reveal that critical morphological and functional changes evolved incrementally. Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding-fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour. PMID:18270539

  5. Dark-matter halos and evolution of high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Koopmans, Leon

    2004-07-01

    Gravitational lensing and stellar dynamics provide two complementary methods to determine the mass distribution and evolution of luminous and dark-matter in early-type {E/S0} galaxies. The combined study of stellar dynamics and gravitational lensing allows one to break degeneracies inherent to each method separately, providing a clean probe of the internal structure of massive galaxies. Since most lens galaxies are at redshifts z=0.1-1.0, they also provide the required look-back time to study their structural and stellar-population evolution. We recently analyzed 5 E/S0 lens galaxies between z=0.5 and 1.0, combining exquisite Hubble Space Telescope imaging data with kinematic data from ground-based Keck spectroscopy, placing the first precise constraints on the dark-matter mass fraction and its inner slope beyond the local Universe. To expand the sample to 30 systems - required to study potential trends and evolution in the E/S0 mass profiles - we propose to target the 49 E/S0 lens-galaxy candidates discovered by Bolton et al. {2004} from the Sloan Digital Sky Survey {SDSS}. With the average lens rate being 40% and some systems having a lensing probability close to unity, we expect to discover 20 strong gravitational lenses from the sample. This will triple the current sample of 9 E/S0 systems, with data in hand. With the sample of 30 systems, we will be able to determine the average slope of the dark-matter and total mass profile of E/S0 galaxies to 10% and 4% accuracy, respectively. If present, we can simultaneously detect 10% evolution in the total mass slope with 95% confidence. This will provide unprecedented constraints on E/S0 galaxies beyond the local Universe and allow a stringent test of their formation scenarios and the standard cosmological model.

  6. HAZMAT I: The Evolution of Far- and Near-UV Emission from Early M Stars

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Barman, T. S.; Peacock, S.

    2014-01-01

    With the recent discoveries of several super-earths orbiting M dwarfs well within their habitable zones (0.1 to 0.4 AU), and with many more such planets to come, it is critical to assess the evolution of the high-energy radiation environment of these systems. We have begun the HAZMAT (Habitable Zones and M dwarf Activity across Time) program by first measuring the drop in near-UV and far-UV flux in early M stars from 10 Myr to several Gyr using photometry from NASA's Galaxy Evolution Explorer (GALEX). We focus this study on the confirmed low-mass members of nearby young moving groups, the Hyades cluster, and old field stars. We show a relatively slow decline in UV flux up until at least 650 Myr with a sharper drop in the old M dwarfs. Yet without confirmed M dwarfs in nearby star clusters with ages of 1-2 Gyr, mapping the precise evolution at these older ages is not currently possible. The UV data also provide much-needed constraints to M dwarf upper-atmosphere models, which are insufficient for predicting UV emission from M dwarfs. Our analysis will produce empirically-motivated chromospheric profiles for the young and old M stars, which can then be used to predict the extreme-UV fluxes most critical to the evolution of a planetary atmosphere. The HAZMAT program is the first comprehensive study of the UV history of M stars, and will ultimately tell us if a planet in the canonical habitable zone can indeed be habitable.

  7. Visible spectrophotometric method for amiodarone.

    PubMed

    Bosînceanu, Andreea; Popa, Graţiela; Tântaru, Gladiola; Popovici, Iuliana

    2012-01-01

    Amiodarone is an antiarrhythmic agent used for various types of tachyarrhythmia, both ventricular and supraventricular (atrial) arrhythmia. A spectrophotometric method for the assay of amiodarone was established. Based on the reduction of potassium ferricyanide in hydrochloric acid medium to potassium ferrocyanide forming a blue colored complex ferric ferrocyanide with Fe (III) ions. The compound was most stable in a mixture of ethylic alcohol and water (2:1, v/v) and it had an absorption maximum at 725 nm. The data were according to the Lambert-Beer Law in the concentration range of 0.5-5.0 microg/sample: correlation and coefficient R = 0.99977, R2 = 0.999541, slope of the line 0.12775, intercept 0.042077. The detection limit (DL) was 0.1032 microg/sample and the quantification limit (QL) 0.344 microg/ sample. PMID:23077917

  8. In-situ spectrophotometric probe

    DOEpatents

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  9. In-situ spectrophotometric probe

    DOEpatents

    Prather, W.S.

    1992-12-15

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  10. Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Gotchev, O. V.; Vianello, E.; Boehly, T. R.; Knauer, J. P.; McKenty, P. W.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Skupsky, S.; Smalyuk, V. A.; Betti, R.; McCrory, R. L.; Meyerhofer, D. D.; Cherfils-Clérouin, C.

    2006-01-01

    Excessive increase in the shell entropy and degradation from spherical symmetry in inertial confinement fusion implosions limit shell compression and could impede ignition. The entropy is controlled by accurately timing shock waves launched into the shell at an early stage of an implosion. The seeding of the Rayleigh-Taylor instability, the main source of the asymmetry growth, is also set at early times during the shock transit across the shell. In this paper we model the shock timing and early perturbation growth of directly driven targets measured on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. By analyzing the distortion evolution, it is shown that one of the main parameters characterizing the growth is the size of the conduction zone Dc, defined as a distance between the ablation front and the laser deposition region. Modes with kDc>1 are stable and experience oscillatory behavior [V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999)]. The model shows that the main stabilizing mechanism is the dynamic overpressure due to modulations in the blow-off velocity inside the conduction zone. The long wavelengths with kDc<1 experience growth because of coupled Richtmyer-Meshkov-like and Landau-Darrieus instabilities [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1982)]. To match the simulation results with both the shock timing and perturbation growth measurements a new nonlocal thermal transport model is developed and used in hydrocodes.

  11. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence

    NASA Astrophysics Data System (ADS)

    Zhou, Zhonghe

    2004-10-01

    The study of the origin and early evolution of birds has never produced as much excitement and public attention as in the past decade. Well preserved and abundant new fossils of birds and dinosaurs have provided unprecedented new evidence on the dinosaurian origin of birds, the arboreal origin of avian flight, and the origin of feathers prior to flapping flight. The Mesozoic avian assemblage mainly comprises two major lineages: the prevalent extinct group Enantiornithes, and the Ornithurae, which gave rise to all modern birds, as well as several more basal taxa. Cretaceous birds radiated into various paleoecological niches that included fish- and seed-eating. Significant size and morphological differences and variation in flight capabilities, ranging from gliding to powerful flight among early birds, highlight the diversification of birds in the Early Cretaceous. There is little evidence, however, to support a Mesozoic origin of modern avian groups. Controversy and debate, nevertheless, surround many of these findings, and more details are needed to give a better appreciation of the significance of these new discoveries.

  12. Cosmic Evolution of Size and Velocity Dispersion for Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, L.; Lapi, A.; Bressan, A.; Bernardi, M.; De Zotti, G.; Danese, L.

    2010-08-01

    Massive (stellar mass M sstarf >~ 3 × 1010 M sun), passively evolving galaxies at redshifts z >~ 1 exhibit on average physical sizes smaller, by factors ≈3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z <~ 1 is limited to less than 40%, while most of the evolution occurs at z >~ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (lsim1/10 of the local one), points to a timescale for reaching the new, expanded equilibrium configuration of less than the Hubble time tH (z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r <~ 1 kpc). We propose that quasar activity, which peaks at redshift z ~ 2, can remove large amounts of gas from central galaxy regions on a timescale shorter than the triggering a puffing up of the stellar component at constant stellar mass (or a timescale on the order of the dynamical one); in this case, the size increase goes together with a decrease in the central mass. The size evolution is expected to parallel that of the quasars and the inverse hierarchy, or downsizing, seen in the quasar evolution is mirrored in the size evolution. Exploiting the virial theorem, we derive the relation between the stellar velocity dispersion of ETGs and the characteristic velocity of their hosting halos at the

  13. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  14. Basin Evolution of the Cretaceous-Early Eocene Xigaze Forearc, Southern Tibet

    NASA Astrophysics Data System (ADS)

    Orme, D. A.; Carrapa, B.; Kapp, P. A.; Gehrels, G. E.; Reiners, P. W.

    2013-12-01

    An understanding of the processes which control the evolution of forearc basins is important for deciphering the tectonic development of a convergent margin prior to continent-continent suturing. This study presents sedimentologic, modal petrographic and geo-thermochronologic data from the Xigaze forearc basin, preserved along ~ 600 km of the Indus-Yarlung Suture Zone in southern Tibet. From late Cretaceous to early Cenozoic time, subduction of Neo-Tethyan oceanic crust beneath the southern margin of Asia accommodated the northward motion of the Indian craton and formed the Xigaze forearc basin. Following collision with India in the early Cenozoic, the basin transitioned from predominantly marine to non-marine sedimentation and was subsequently uplifted to a mean elevation of 5000 m. Thus, the sedimentary record in the Xigaze forearc preserves information regarding the tectonic evolution of the Indo-Asia continental margin prior to and following collision. We present new measured sections and geo-thermochronologic data from Early Cretaceous to Early Eocene clastic and carbonate sedimentary rocks, preserved in two previously unexplored regions of the forearc, (1) at its western most extent, northwest of Saga, and (2) north of Lhatse. In turn, we compare our results with previously published data in order to synthesize our current understanding of forearc evolution. Strata preserved in the Lhaste region record an initial shallow marine phase of forearc sedimentation (Aptian), but quickly transition to deep marine slope and distal fan turbidite facies (Albian-Campanian). In contrast, facies preserved in the Saga region record a younger shoaling upward marine sequence (Maastrichtian-Ypresian), with the uppermost ~ 400 m consisting of fluvial channel sandstones and red-green paleosols. Facies and depositional environments in the Saga region are highly variable along strike, with turbidites, shelf limestones, estuarine siliciclastics and thick paleosols sequences all

  15. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  16. Early evolution of the extraordinary Nova Delphini 2013 (V339 Del)

    NASA Astrophysics Data System (ADS)

    Skopal, A.; Drechsel, H.; Tarasova, T.; Kato, T.; Fujii, M.; Teyssier, F.; Garde, O.; Guarro, J.; Edlin, J.; Buil, C.; Antao, D.; Terry, J.-N.; Lemoult, T.; Charbonnel, S.; Bohlsen, T.; Favaro, A.; Graham, K.

    2014-09-01

    Aims: We determine the temporal evolution of the luminosity (LWD), radius (RWD) and effective temperature (Teff) of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. Methods: These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500-9200 Å), UBVRCIC and JHKLM photometry. Important insights in the physical conditions of the ejecta were gained from an analysis of the evolution of the Hα and Raman-scattered 6825 Å O vi line using medium-resolution spectroscopy (R ~ 10 000). Results: During the fireball stage (Aug. 14.8-19.9, 2013), Teff was in the range of 6000-12 000 K, RWD was expanding non-uniformly in time from ~66 to ~300 (d/ 3 kpc) R⊙, and LWD was super-Eddington, but not constant. Its maximum of ~9 × 1038 (d/ 3 kpc)2 erg s-1 occurred around Aug. 16.0, at the maximum of Teff, half a day before the visual maximum. After the fireball stage, a large emission measure of 1.0-2.0 × 1062 (d/ 3 kpc)2 cm-3 constrained the lower limit of LWD to be well above the super-Eddington value. The mass of the ionized region was a few × 10-4 M⊙, and the mass-loss rate was decreasing from ~5.7 (Aug. 22) to ~0.71 × 10-4 M⊙ yr-1 (Sept. 20). The evolution of the Hα line and mainly the transient emergence of the Raman-scattered O vi 1032 Å line suggested a biconical ionization structure of the ejecta with a disk-like H i region persisting around the WD until its total ionization, around day 40. On Sept. 20 (day 35), the model SED indicated a dust emission component in the spectrum. The dust was located beyond the H i zone, where it was shielded from the hard, ≳105 K, radiation of the burning WD at that time. Conclusions: Our extensive spectroscopic observations of the classical nova V339 Del allowed us to map its evolution from the very early phase after its explosion. It is evident

  17. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Grenfell, T. C.; Matzler, C.; Luther, C. A.; Svendsen, E. A.

    1987-01-01

    Emissivities at frequencies from 5 to 94 GHz and backscatter at frequencies from 1 to 17 GHz were measured from sea ice in Fram Strait during the marginal Ice Zone Experiment in June and July of 1983 and 1984. The ice observed was primarily multiyear; the remainder, first-year ice, was often deformed. Results from this active and passive microwave study include the description of the evolution of the sea ice during early summer and midsummer; the absorption properties of summer snow; the interrelationship between ice thickness and the state and thickness of snow; and the modulation of the microwave signature, especially at the highest frequencies, by the freezing of the upper few centimeters of the ice.

  18. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians

    PubMed Central

    Lu, Jing; Zhu, Min; Ahlberg, Per Erik; Qiao, Tuo; Zhu, You’an; Zhao, Wenjin; Jia, Liantao

    2016-01-01

    Crown or modern sarcopterygians (coelacanths, lungfishes, and tetrapods) differ substantially from stem sarcopterygians, such as Guiyu and Psarolepis, and a lack of transitional fossil taxa limits our understanding of the origin of the crown group. The Onychodontiformes, an enigmatic Devonian predatory fish group, seems to have characteristics of both stem and crown sarcopterygians but is difficult to place because of insufficient anatomical information. We describe the new skull material of Qingmenodus, a Pragian (~409-million-year-old) onychodont from China, using high-resolution computed tomography to image internal structures of the braincase. In addition to its remarkable similarities with stem sarcopterygians in the ethmosphenoid portion, Qingmenodus exhibits coelacanth-like neurocranial features in the otic region. A phylogenetic analysis based on a revised data set unambiguously assigns onychodonts to crown sarcopterygians as stem coelacanths. Qingmenodus thus bridges the morphological gap between stem sarcopterygians and coelacanths and helps to illuminate the early evolution and diversification of crown sarcopterygians. PMID:27386576

  19. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  20. The role of hard turbulent thermal convection in the Earth's early thermal evolution

    NASA Technical Reports Server (NTRS)

    Hansen, Ulli; Yuen, David A.; Zhao, Wuling; Malevsky, Andrei V.

    1992-01-01

    In the last several years great progress was made in the study of a new transition in thermal convection, called hard turbulence. Initial experiments were conducted with helium gas, then with water. It was shown that for base-heated Newtonian convection a transition occurred at Rayleigh numbers between 10(exp 7) and 10(exp 8). This transition is characterized by the appearance of disconnected plume structures in contrast to continuous plumes with mushroom-shaped tops found for lower Rayleigh numbers. This new hydrodynamic transition is expected to play an important role in reshaping our concepts of mantle convection in the early stages of planetary evolution. We have conducted two-dimensional calculations for large and small aspect-ratio configuration to see whether such a transition would take place for infinite Prandtl number fluids.

  1. Supernovae and Their Expanding Blast Waves during the Early Evolution of Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tenorio-Tagle, Guillermo; Muñoz-Tuñón, Casiana; Silich, Sergiy; Cassisi, Santi

    2015-11-01

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 106 M⊙), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  2. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians.

    PubMed

    Lu, Jing; Zhu, Min; Ahlberg, Per Erik; Qiao, Tuo; Zhu, You'an; Zhao, Wenjin; Jia, Liantao

    2016-06-01

    Crown or modern sarcopterygians (coelacanths, lungfishes, and tetrapods) differ substantially from stem sarcopterygians, such as Guiyu and Psarolepis, and a lack of transitional fossil taxa limits our understanding of the origin of the crown group. The Onychodontiformes, an enigmatic Devonian predatory fish group, seems to have characteristics of both stem and crown sarcopterygians but is difficult to place because of insufficient anatomical information. We describe the new skull material of Qingmenodus, a Pragian (~409-million-year-old) onychodont from China, using high-resolution computed tomography to image internal structures of the braincase. In addition to its remarkable similarities with stem sarcopterygians in the ethmosphenoid portion, Qingmenodus exhibits coelacanth-like neurocranial features in the otic region. A phylogenetic analysis based on a revised data set unambiguously assigns onychodonts to crown sarcopterygians as stem coelacanths. Qingmenodus thus bridges the morphological gap between stem sarcopterygians and coelacanths and helps to illuminate the early evolution and diversification of crown sarcopterygians. PMID:27386576

  3. Geochemical evolution of the northern plains of Mars: Early hydrosphere, carbonate development, and present morphology

    SciTech Connect

    Schaefer, M.W. )

    1990-08-30

    It is likely that early in Mars' history, abundant liquid water was available. Under a thick (several bars) carbon dioxide atmosphere, this water could have formed an ocean, located primarily in the lowlands of the northern hemisphere. An equilibrium geochemical model of this ocean and its interactions with the atmosphere and regolith of Mars was developed, and the results of this model were used to discuss the evolution of the volatile budget of Mars, including the deposition of large carbonate beds on the northern plains. Differential solutional weathering of these carbonate beds may have caused the formation of some of the enigmatic features seen on the northern plains of Mars, such as the thumbprint terrain and enclosed depressions.

  4. Unique caudal plumage of Jeholornis and complex tail evolution in early birds

    PubMed Central

    O’Connor, Jingmai; Wang, Xiaoli; Sullivan, Corwin; Zheng, Xiaoting; Tubaro, Pablo; Zhang, Xiaomei; Zhou, Zhonghe

    2013-01-01

    The Early Cretaceous bird Jeholornis was previously only known to have a distally restricted ornamental frond of tail feathers. We describe a previously unrecognized fan-shaped tract of feathers situated dorsal to the proximal caudal vertebrae. The position and morphology of these feathers is reminiscent of the specialized upper tail coverts observed in males of some sexually dimorphic neornithines. As in the neornithine tail, the unique “two-tail” plumage in Jeholornis probably evolved as the result of complex interactions between natural and sexual selective pressures and served both aerodynamic and ornamental functions. We suggest that the proximal fan would have helped to streamline the body and reduce drag whereas the distal frond was primarily ornamental. Jeholornis reveals that tail evolution was complex and not a simple progression from frond to fan. PMID:24101506

  5. Some aspects of the early evolution of the Appointed Factory Doctor Service*

    PubMed Central

    Smiley, James A.

    1971-01-01

    Smiley, J. A. (1971).Brit. J. industr. Med.,28, 315-322. Some aspects of the early evolution of the Appointed Factory Doctor Service. The appointment of certifying surgeons marks the beginning of the recognition by the State of its responsibility for the supervision of the health and welfare of young people in industry. The importance of the rôle played by Leonard Horner, one of the first four inspectors of factories, is discussed. Some of the problems and vicissitudes of the service in the 19th century are outlined and it is suggested that the system is inappropriate to the needs of the present. Legislation which would integrate all the agencies which are concerned with the well-being of young people, including the Appointed Factory Doctor Service, should be actively considered. PMID:5124831

  6. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.

    PubMed

    Campanini, Emeline B; Vandewege, Michael W; Pillai, Nisha E; Tay, Boon-Hui; Jones, Justin L; Venkatesh, Byrappa; Hoffmann, Federico G

    2015-11-01

    The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins. PMID:26475318

  7. The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis

    2016-06-01

    During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.

  8. Novel scenarios of early animal evolution--is it time to rewrite textbooks?

    PubMed

    Dohrmann, Martin; Wörheide, Gert

    2013-09-01

    Understanding how important phenotypic, developmental, and genomic features of animals originated and evolved is essential for many fields of biological research, but such understanding depends on robust hypotheses about the phylogenetic interrelationships of the higher taxa to which the studied species belong. Molecular approaches to phylogenetics have proven able to revolutionize our knowledge of organismal evolution. However, with respect to the deepest splits in the metazoan Tree of Life-the relationships between Bilateria and the four non-bilaterian phyla (Porifera, Placozoa, Ctenophora, and Cnidaria)-no consensus has been reached yet, since a number of different, often contradictory, hypotheses with sometimes spectacular implications have been proposed in recent years. Here, we review the recent literature on the topic and contrast it with more classical perceptions based on analyses of morphological characters. We conclude that the time is not yet ripe to rewrite zoological textbooks and advocate a conservative approach when it comes to developing scenarios of the early evolution of animals. PMID:23539635

  9. The nucleosynthetic origins and chemical evolution of phosphorus in the early universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2013-10-01

    Relatively little is known about the chemical evolution of the element phosphorus, despite its relatively large abundance in the Sun and its importance for biological life. The goal of this archive proposal is to establish the chemical evolution trend of phosphorus, extending our knowledge from solar metallicity to stars with less than 1/1000th the solar metallicity.Previous studies have used weak near-infrared P I lines to establish phosphorus abundance trends from -1.0 < [Fe/H] < 0. We have identified a strong P I doublet in the UV at 2136 Angstroms, which is present in the spectra of 22 stars available in the HST archives. Our study will {1} improve on the limited observations of the abundance trend at high metallicity and extend it to metallicities lower by 2 dex and {2} determine whether [P/Fe] flattens out towards lower metallicities {like the alpha-elements Mg, Si, Ca, and Ti} or whether it continues to increase {like Co and Zn}. Our results will provide the first tight constraints on the nucleosynthesis of phosphorus and its production sites in the early Universe.We request one semester of funding to support a graduate student to lead the spectral analysis work, one month of summer salary, and miscellaneous travel and publication costs.

  10. [Symbiogenesis as a Model for Reconstructing the Early Stages of Genome Evolution].

    PubMed

    Provorov, N A; Tikhonovich, I A; Vorobyov, N I

    2016-02-01

    Symbiogenic evolution, which involves transformations of bacteria into the cellular organelles, is represented as a model for reconstructing the early stages of genome evolution, including the origin of DNA genomes from RNA genomes and the emergence of template processes on the basis of self-replicating molecular complexes in the ancestral metabolic systems. The antiquity of RNA genomes is supported by an increased evolutionary stability of ribosomal protein synthesis (translation) with respect to the DNA-dependent template processes (replication, transcription, recombination, and reparation). This stability is demonstrated by analysis of the deeply reduced genomes of symbiotic bacteria and cellular organelles as well as the "minimal" genomes which are common to phylogenetically diverse organisms. Higher evolutionary conservation of template biosynthetic processes with respect to step processes determining the metabolism and development in cells does not support the hypothesis about emergence ofgenomes within the ancestral cellular metabolic systems which are thought to be of abiogenic origin, instead suggesting dualistic origin of life on Earth. We suppose that the genome-free organelles of some eukaryotes (mitosomes, many hydrogenosomes, and some plastids) represent the products of reversion of symbiotic bacteria into ancestral forms which implemented their basic cellular functions using the informational macromolecules of exogenic origin. In the framework of this hypothesis the eukaryotic cells functioning based on the massive transfer of gene products (RNAs, proteins) from cytosol to organelles may represent the analogs of ancestral biocenoses that possessed integral hereditary systems (metagenomes). PMID:27215028

  11. A New Basal Sauropod Dinosaur from the Middle Jurassic of Niger and the Early Evolution of Sauropoda

    PubMed Central

    Remes, Kristian; Ortega, Francisco; Fierro, Ignacio; Joger, Ulrich; Kosma, Ralf; Marín Ferrer, José Manuel; Ide, Oumarou Amadou; Maga, Abdoulaye

    2009-01-01

    Background The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. Principal Findings A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. Conclusions Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification. PMID:19756139

  12. Evolution of Cupido and Coahuila carbonate platforms, early Cretaceous, northeastern Mexico

    USGS Publications Warehouse

    Lehmann, C.; Osleger, D.A.; Montanez, I.P.; Sliter, W.; Arnaud-Vanneau, A.; Banner, J.

    1999-01-01

    The Cupido and Coahuila platforms of northeastern Mexico are part of the extensive carbonate platform system that rimmed the ancestral Gulf of Mexico during Barremian to Albian time. Exposures of Cupido and Coahuila lithofacies in several mountain ranges spanning an ???80 000 km2 area reveal information about platform morphology and composition, paleoenvironmental relations, and the chronology of platform evolution. New biostratigraphic data, integrated with carbon and strontium isotope stratigraphy, significantly improve chronostratigraphic relations across the region. These data substantially change previous age assignments of several formations and force a revision of the longstanding stratigraphy in the region. The revised stratigraphy and enhanced time control, combined with regional facies associations, allow the construction of cross sections, isopach maps, and timeslice paleogeographic maps that collectively document platform morphology and evolution. The orientation of the Cupido (Barremian-Aptian) shelf margin was controlled by the emergent Coahuila basement block to the northwest. The south-facing margin is a high-energy grainstone shoal, whereas the margin facing the ancestral Gulf of Mexico to the east is a discontinuous rudist-coral reef. A broad shelf lagoon developed in the lee of the Cupido margin, where as much as 660 m of cyclic peritidal deposits accumulated. During middle to late Aptian time, a major phase of flooding forced a retrograde backstep of the Cupido platform, shifting the locus of shallow-marine sedimentation northwestward toward the Coahuila block. This diachronous flooding event records both the demise of the Cupido shelf and the consequent initiation of the Coahuila ramp. The backstepped Coahuila ramp (Aptian-Albian) consisted of a shallow shoal margin separating an interior evaporitic lagoon from a low-energy, muddy deep ramp. More than 500 m of cyclic carbonates and evaporites accumulated in the evaporitic lagoon during early to

  13. A novel proxy links CAMP volcanism with end-Triassic mass extinction and early Jurassic evolution

    NASA Astrophysics Data System (ADS)

    Ruhl, M.; Bjerrum, C. J.; Frei, R.

    2011-12-01

    Global mass extinction events are marked by a major loss of terrestrial and marine biodiversity and the global collapse of ecosystems during times of extensive volcanic activity and the emplacement of large igneous provinces (LIPs). Large-scale greenhouse gas release, initiated by volcanism, had a profound impact on global geochemical cycles (e.g. initiating strong perturbations in δ13C records). Hence, these events may be regarded as natural deep-time analogues for studying mechanistic feedbacks between rapid and large/scale greenhouse gas emissions, environmental change and biotic crises. Such studies require high resolution stratigraphic correlation between volcanic activity, disruption of global geochemical cycles and biotic crises, which at present is poorly constrained. Here we present a novel proxy that records explosive continental volcanic activity in distant marine shale sediments. The proxy builds on the relative abundance of the trace elements Lu, Hf, Y and Nb (monitored as the (Lu/ Hf)/(Y/ Nb)-ratio). We test the method on a marine sedimentary record comprising Central Atlantic Magmatic Province (CAMP) volcanism and the associated end-Triassic global mass extinction, at ~201.38 Ma. We show that the onset of sharp well-defined peaks in the (Lu/ Hf)/(Y/ Nb)-ratio coincides with the end-Triassic biotic crisis. Subsequent subordinate peaks closely correspond to periods of early Jurassic biotic radiation and evolution. Large-scale volcanic activity therefore not only initiated the end-Triassic mass extinction, it possibly also actively punctuated and regulated the pace of early Jurassic evolution. Further, the proxy also records the timing of Siberian Traps volcanism relative to the end-Permian mass extinction, the largest extinction in Earth's history. Hence, this proxy for the first time allows causality studies between increased volcanic activity, disruption of global geochemical cycles and global biodiversity loss, in unprecedented stratigraphic

  14. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471

  15. Why do leafcutter bees cut leaves? New insights into the early evolution of bees.

    PubMed

    Litman, Jessica R; Danforth, Bryan N; Eardley, Connal D; Praz, Christophe J

    2011-12-01

    Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation--the inclusion of foreign material in nest construction--underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints. PMID:21490010

  16. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    PubMed

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda. PMID:26933218

  17. Why do leafcutter bees cut leaves? New insights into the early evolution of bees

    PubMed Central

    Litman, Jessica R.; Danforth, Bryan N.; Eardley, Connal D.; Praz, Christophe J.

    2011-01-01

    Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation—the inclusion of foreign material in nest construction—underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints. PMID:21490010

  18. Early mantle composition and evolution inferred from 142Nd and 182W variation in Isua samples

    NASA Astrophysics Data System (ADS)

    Rizo Garza, H. L.; Touboul, M.; Puchtel, I. S.; Walker, R. J.; Carlson, R. W.; Horan, M. F.; Boyet, M.

    2013-12-01

    The short-lived 146Sm-142Nd chronometer applied to Eoarchean rocks from Greenland led to the discovery of the oldest known mantle reservoir, likely formed during the first 150 Ma of Earth's history [1-4]. The geochemical composition and evolution of this reservoir can, thus, reveal the nature of early Earth differentiation events, and its survival provides information on the mixing rates of early heterogeneities in the mantle. High precision 142Nd analyses have revealed that the early-formed reservoir sampled by the Greenland rocks was depleted in incompatible elements, and that its obliteration by remixing into the mantle was completed around 3.3 Ga [5]. High precision 182W data are a promising tool that can provide new information about the earliest phase of Earth's evolution. Excesses in182W of ~+13 ppm relative to terrestrial standards, detected in ~ 3.8 Ga rocks from Greenland [6] were interpreted to reflect the incomplete mixing of late-accreted materials into the mantle sources of these rocks during the period between 4.5 and 3.8 Ga. Here, we measured highly siderophile element (HSE) abundances and 182W in Greenland rocks with ages ranging between 3.8 and 3.3 Ga. Platinum concentrations of ~3 to nearly 8ppb were measured in all samples, except for the of the 3.3 Ga rocks. The relatively high Pt abundances are not consistent with mantle sources characterized by strong HSE depletion. The tungsten isotopic data for the 3.8 Ga old samples show no 182W anomalies. By contrast, variable 182W excesses of as high as 13ppm are present in 3.7, 3.4 and 3.3 Ga samples. The 182W results do not correlate with the 142Nd variability in the same rocks. The 3.8 Ga samples also stand out with respect to their high W concentrations (2 - 3 ppm) compared to the other Greenland samples (0.1- 0.8 ppm). The 182W data, together with the HSE data may help to constrain the composition of the Archean mantle through time, and will allow modeling of the mixing rate of late arriving

  19. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    PubMed Central

    2008-01-01

    Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains) and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate tetraploidizations forming a

  20. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    PubMed

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. PMID:26916364

  1. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    PubMed

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. PMID:27087142

  2. Multiple Kisspeptin Receptors in Early Osteichthyans Provide New Insights into the Evolution of This Receptor Family

    PubMed Central

    Pasquier, Jérémy; Lafont, Anne-Gaëlle; Jeng, Shan-Ru; Morini, Marina; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Tostivint, Hervé; Chang, Ching-Fong; Rousseau, Karine; Dufour, Sylvie

    2012-01-01

    Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative of early sarcopterygians, the spotted gar, a non-teleost actinopterygian, and the European eel, a member of an early group of teleosts (elopomorphs). We report the occurrence of three Kissr for the first time in a teleost, the eel. As measured by quantitative RT-PCR, the three eel Kissr were differentially expressed in the brain-pituitary-gonadal axis, and differentially regulated in experimentally matured eels, as compared to prepubertal controls. Subfunctionalisation, as shown by these differences in tissue distribution and regulation, may have represented significant evolutionary constraints for the conservation of multiple Kissr paralogs in this species. Furthermore, we identified four Kissr in both coelacanth and spotted gar genomes, providing the first evidence for the presence of four Kissr in vertebrates. Phylogenetic and syntenic analyses supported the existence of four Kissr paralogs in osteichthyans and allowed to propose a clarified nomenclature of Kissr (Kissr-1 to -4) based on these paralogs. Syntenic analysis suggested that the four Kissr paralogs arose through the two rounds of whole genome duplication (1R and 2R) in early vertebrates, followed by multiple gene loss events in the actinopterygian and sarcopterygian lineages. Due to gene loss there was no impact of the teleost-specific whole genome duplication (3R) on the number of Kissr paralogs in current

  3. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.

    PubMed

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang

    2016-03-01

    Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant

  4. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  5. The Federal Role in Early Childhood Education: Evolution in the Goals, Governance, and Policy Instruments of Project Head Start

    ERIC Educational Resources Information Center

    Kalifeh, Phyllis; Cohen-Vogel, Lora; Grass, Saralyn

    2011-01-01

    The authors analyze bills, congressional records, agency reports, and newspaper articles to trace the evolution of Project Head Start, by far the nation's largest federal early childhood program, beginning with the Economic Opportunity Act of 1964. Their analysis is organized around the policy goals embedded in the program and the governance…

  6. Neoproterozoic-Early Paleozoic tectonic evolution of the western part of the Kyrgyz Ridge (Northern Tian Shan) caledonides

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.; Ryazantsev, A. V.; Tretyakov, A. A.; Tolmacheva, T. Yu.; Yakubchuk, A. S.; Kotov, A. B.; Salnikova, E. B.; Kovach, V. P.

    2013-11-01

    The conducted comprehensive study of the western part of Kyrgyz Ridge provided new data on the structure, composition and age of Precambrian and Early Paleozoic stratified and igneous complexes. The main achievements of these studies are: (1) the establishment of a wide age spectrum, embracing the interval from the Neoproterozoic to the end of the Early Ordovician, for the clastic-carbonate units composing the cover of the Northern Tian Shan sialic massif; (2) the reconstruction and dating of Early and Late Cambrian ophiolite complexes formed in suprasubduction settings;(3) the discovery and dating of the Early-Middle Ordovician volcano-sedimentary complex of island-arc affinity; and (4) proof of the wide occurrence of Late Ordovician granitoids, some of which bear Cu-Au-Mo ores. The intricate thrust-and-fold structure of the western part of the Kyrgyz Ridge, formed in several stages from the Middle Cambrian (?) until the end of the Middle Ordovician, was scrutinized; the importance of the Early Ordovician stage was demonstrated. The intrusion of large batholiths in the early Late Ordovician accomplished the caledonide structural evolution. Formation of Neoproterozoic and Early Paleozoic caledonide complexes, which were possibly related to the protracted and entangled evolution of the active continental margin, ceased by the Late Ordovician.

  7. Lake evolution during the Early Danian Dan-C2 hyperthermal, Boltysh impact crater, Ukraine

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.

    2016-04-01

    Lacustrine facies record complex relationships between lake evolution and environmental conditions and provide proxies for climate changes. However, lacustrine successions formed during past hyperthermals as recorded from negative carbon isotope excursions (CIEs) are of limited availability and thus less well understood. Here, we present a complete lacustrine record of the Early Danian Dan-C2 hyperthermal at c. 65.2 Ma from a core drilled in the K-Pg Boltysh impact crater, Ukraine. This borehole allows a detailed facies analysis and reconstruction of lake evolution and associated plant ecosystem in correspondence with rapid climate change. The Boltysh borehole reveals a c. 400 m thick siliciclastic and organic-rich succession overlying impact melt-breccia dated at 65.17 ± 0.64 Ma. Based on detailed core logging, 8 distinctive facies associations are identified, including 1) littoral mudstones, 2) siliciclastic shoreline deposits, 3) siliciclastic littoral to sublittoral deposits, 4) mudstone laminites, 5) organic-rich mudstones, and deposits of 6) coarse-grained, 7) fine-grained density currents, and 8) debris flows. Based on the occurrence of these facies associations 3 major phases of lake evolution are distinguished: 1) an initial pre-CIE rising clastic-dominated lake phase characterised by the presence of coarse-grained density and debris flow deposits, 2) an organic-rich fluctuating shallow lake phase during the main phase of the CIE, characterised by alternating packages of the mudstone laminites and organic-rich mudstones; and 3) a rising clastic-dominated lake during and post-CIE recovery phase, which shows a high presence of siliciclastic shoreline and littoral to sublittoral deposits. This study provides a full record of lacustrine response to climate change during the Dan-C2 hyperthermal, and subsequently allows us to infer lake formation and environmental conditions at different stages during climate warming. The high resolution sedimentary record

  8. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo; Tackley, Paul

    2015-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much

  9. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  10. Early evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, D. J.; Tackley, P. J.

    2014-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much