Science.gov

Sample records for early terrestrial crust

  1. Early Formation of Terrestrial Crust

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; Schmitt, A. K.; McCulloch, M. T.; Lovera, O. M.

    2007-12-01

    Early (≥4.5 Ga) Formation of Terrestrial Crust T.M. Harrison1, A.K. Schmitt1, M.T. McCulloch2, and O.M. Lovera1 1Department of Earth and Space Sciences and IGPP, UCLA, Los Angeles, CA 90095, USA; 2Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 2601 AUSTRALIA Large deviations in ǎrepsilonHf(T) from bulk silicate Earth seen in >4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at ca. 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/177Hf (Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/206Pb analyses, permitting assessment of the use of ion microprobe data to characterize the age of the volumetrically larger domain sampled by laser drilling. Our new results confirm and extend the earlier observation of significant negative deviations in ǎrepsilonHf(T) throughout the Hadean, although no positive ǎrepsilonHf(T) values were documented in this study. These data yields an essentially uniform spectrum of single-stage model ages between 4.54 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. We derived the full error propagation expression for a parameter, ǎrepsilono, which measures the difference of a sample from solar system initial (Hf) (Hfo), and from this conclude that data plotting close to (Hfo), are statistically meaningful and consistent with silicate differentiation at 4.540±0.006 Ga. δ18O and Ti thermometry for these Hadean zircons show little obvious correlation with initial (Hf), consistent with their derivation through fusion of a broad suite of crustal rock types under near water-saturated conditions. Together with the inclusion assemblage and other isotopic and trace element data obtained from these ancient zircons, our results

  2. Combined147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Bourdon, Bernard; Mojzsis, Stephen J.; Rudge, John F.; Guitreau, Martin; Blichert-Toft, Janne

    2014-06-01

    silicate differentiation controlled the composition of Earth's oldest crust. Inherited 142Nd anomalies in Archean rocks are vestiges of the mantle-crust differentiation before ca. 4300 Ma. Here we report new whole-rock 147,146Sm-143,142Nd data for the Acasta Gneiss Complex (AGC; Northwest Territories, Canada). Our 147Sm-143Nd data combined with literature data define an age of 3371 ± 141 Ma (2 SD) and yield an initial ɛ143Nd of -5.6 ± 2.1. These results are at odds with the Acasta zircon U-Pb record, which comprises emplacement ages of 3920-3960 Ma. Ten of our thirteen samples show 142Nd deficits of -9.6 ± 4.8 ppm (2 SD) relative to the modern Earth. The discrepancy between 142Nd anomalies and a mid-Archean 147Sm-143Nd age can be reconciled with Nd isotope reequilibration of the AGC during metamorphic perturbations at ca. 3400 Ma. A model age of ca. 4310 Ma is derived for the early enrichment of the Acasta source. Two compositional end-members can be identified: a felsic component with 142Nd/144Nd identical to the modern Earth and a mafic component with 142Nd/144Nd as low as -14.1 ppm. The ca. 4310 Ma AGC source is ˜200 Myr younger than those estimated for Nuvvuagittuq (northern Québec) and Isua (Itsaq Gneiss Complex, West Greenland). The AGC does not have the same decoupled Nd-Hf isotope systematics as these other two terranes, which have been attributed to the crystallization of an early magma ocean. The Acasta signature rather is ascribed to the formation of Hadean crust that was preserved for several hundred Myr. Its longevity can be linked to 142Nd evolution in the mantle and does not require slow mantle stirring times nor modification of its convective mode.

  3. Early formation of evolved asteroidal crust.

    PubMed

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-01

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System. PMID:19129845

  4. Chronology of early lunar crust

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.; Nyquist, L. E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed.

  5. Biogeochemical Signals from Deep Microbial Life in Terrestrial Crust

    PubMed Central

    Fukuda, Akari; Komatsu, Daisuke D.; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230

  6. Biogeochemical signals from deep microbial life in terrestrial crust.

    PubMed

    Suzuki, Yohey; Konno, Uta; Fukuda, Akari; Komatsu, Daisuke D; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230

  7. Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Schmitt, Axel K.; McCulloch, Malcolm T.; Lovera, Oscar M.

    2008-04-01

    Large deviations in ɛHf( T) from bulk silicate Earth seen in > 4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/ 177Hf initial ratios ( Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/ 206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/ 206Pb analyses, permitting assessment of the age of the volumetrically larger domain sampled by laser drilling against the spatially more restricted ion microprobe ages. Our new results confirm and extend the earlier observation of significant negative deviations in ɛHf( T) throughout the Hadean, although no positive ɛHf( T) values were documented in this study. Monte Carlo modelling of these data yields an essentially uniform spectrum of model ages between 4.56 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. To assess whether the five data plotting close to solar system initial Hf ( Hfo) are statistically robust, we derived the error propagation equation for a parameter, ɛo, which measures the difference of a sample from Hf o. Our analysis suggests that this limited data is indicative of source sequestration in a crustal-type Lu/Hf environment prior to 4.5 Ga. Oxygen isotope data and Ti thermometry from Hadean zircons show little obvious correlation with Hf, consistent with their derivation through fusion of a broad suite of crustal rock types under water-saturated conditions. Together with other isotopic and trace element data obtained from these ancient zircons, our results indicate essentially continuous derivation of crust from the mantle from 4.5 to 4.2 Ga with concurrent recycling into the mantle and internal crustal re-working. These results represent further evidence that by 4.35 Ga, portions of the crust had taken on continental

  8. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  9. The Early Evolution of Mars' Crust

    NASA Astrophysics Data System (ADS)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  10. Chronology and complexity of early lunar crust

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.; Ryder, G.; Nyquist, L. E.

    1989-01-01

    The petrology and chronology of early lunar crust is examined using the least equivocal of the available petrographic and age data on lunar rock samples, and the possible processes which produced the lunar crust are discussed. The results suggest that the lunar anorthositic crust was formed by about 120 Ma after the primary accretion of the moon at 4.56 Ga. At least some members of the diverse Mg-suites of rocks, such as norites, troctolites, and dunites, crystallized within a very few 100s of Ma after 4.56 Ga. A trace-element-rich material (KREEP) was formed by about 4.3 Ga ago, and this residue was subsequently reworked in melting and impact processes such that most samples which contain it have ages around 3.9-4.0 Ga. The findings also suggest that the onset of ferrous mare basalt volcanism began about 4.33 Ga, much earlier than was once assumed, and was still in process before the end of the most intense period of bombardment (3.9-4.0 Ga ago).

  11. Core and early crust formation on Mars

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Keller, T.; Gerya, T.; Tackley, P. J.; Connolly, J.; Zhu, G.

    2010-12-01

    One of the most striking surface features on Mars is the crustal dichotomy. It is the oldest geological feature on Mars and was formed more than 4.1 Ga ago by either exogenic or endogenic processes [1,2]. In order to find an internal origin of the crustal dichotomy, located within a maximum of 400 Ma of planetary differentiation, the thermal state of the planet resulting from core formation needs to be considered. Additionally, it was suggested that a primordial crust with up to 45 km thickness can be formed already during the Martian core formation [3]. We suggest that the sinking of iron diapirs delivered by predifferentiated impactors induced impact- and shear heating-related temperature anomalies in the mantle that fostered the formation of early Martian crust. Thus, the crustal thickness distribution would largely be a result of planetary core formation, late impact history and the onset of mantle convection. To test this hypothesis we use numerical models to simulate the formation of the Martian iron core and the resulting mantle convection pattern, while peridotite melting is enabled to track melting caused by shear and radioactive heating. We perform 2D simulations using the spherical-Cartesian code I2ELVIS for planetary accretion and the spherical code STAGYY for the consequent onset of mantle convection. We apply a temperature-, stress- and melt-fraction dependent viscoplastic rheology. Radioactive and shear heating as well as consumption of latent heat by silicate melting are taken into account. The depth of neutral buoyancy of silicate melt with respect to solid silicates is determined by the difference in compressibility of the liquid and solid phase. To self-consistently simulate the silicate phase changes expected inside a Mars-sized body, we use the thermodynamical database Perple_X. As initial condition for core formation, we apply randomly distributed iron diapirs with 75 km radius inside the planet, representing the cores of stochastically

  12. Iron Isotopic Fractionation in Early Planetary Crusts

    NASA Astrophysics Data System (ADS)

    Wang, K.; Moynier, F.; Dauphas, N.; Barrat, J.; Day, J. M.; Sio, C.; Korotev, R. L.; Zeigler, R. A.

    2012-12-01

    Differentiated meteorites (achondrites) derive from planetary bodies that experienced variable degrees of melting and silicate-metal segregation. The oldest achondrites, such as eucrites, angrites, brachinites and the oligoclase-rich meteorites Graves Nunataks 06128/06129 (GRA 06128/9), were formed ~2-5 Ma after the first Solar System solids. They represent the oldest differentiated silicate samples known in the Solar System and the study of these samples provides insight on the origins and conditions of formation of the first planetary crusts. Here, we present new high-precision data for the Fe isotopic compositions of eucrites, angrites, brachinites and GRA 06128/9 and interpret these results in terms of magmatism during formation of these samples. We find that most eucrites and brachinites are not fractionated compared to undifferentiated chondritic meteorites (δ56Fe = 0.00±0.01, 2se), while the rare Stannern-trend eucrites are slightly enriched in the heavier isotopes of Fe. Angrites are also enriched in the heavier isotopes (δ56Fe = 0.12±0.01, 2se), similar to what is observed for terrestrial basalts, reflecting the relatively high oxidation states of the angrite parent body(ies). Contrastingly to the 'basaltic' achondrites, GRA 06128/9 are enriched in light isotopes of Fe (δ56Fe = -0.08±0.02, 2se). Evidence for light Fe isotope enrichments may be the consequence of the segregation of magma rich in sulphide (usually enriched in light isotopes of Fe compared to silicate and metal in undifferentiated meteorites). If correct, this result not only confirms that GRA 06128/9 represent products from <30% partial melting of an asteroidal body, prior to core formation, but also indicates complementary Fe isotope systematics between GRA 06128/9 and brachinites.

  13. The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Dürr, Hans H.; Moosdorf, Nils; Meybeck, Michel; Kempe, Stephan

    2012-01-01

    The terrestrial surface, the "skin of the earth", is an important interface for global (geochemical) material fluxes between major reservoirs of the Earth system: continental and oceanic crust, ocean and atmosphere. Because of a lack in knowledge of the geochemical composition of the terrestrial surface, it is not well understood how the geochemical evolution of the Earth's crust is impacted by its properties. Therefore, here a first estimate of the geochemical composition of the terrestrial surface is provided, which can be used for further analysis. The geochemical average compositions of distinct lithological classes are calculated based on a literature review and applied to a global lithological map. Comparison with the bulk composition of the upper continental crust shows that the geochemical composition of the terrestrial surface (below the soil horizons) is significantly different from the assumed average of the upper continental crust. Specifically, the elements Ca, S, C, Cl and Mg are enriched at the terrestrial surface, while Na is depleted (and probably K). Analysis of these results provide further evidence that chemical weathering, chemical alteration of minerals in marine settings, biogeochemical processes (e.g. sulphate reduction in sediments and biomineralization) and evaporite deposition are important for the geochemical composition of the terrestrial surface on geological time scales. The movement of significant amounts of carbonate to the terrestrial surface is identified as the major process for observed Ca-differences. Because abrupt and significant changes of the carbonate abundance on the terrestrial surface are likely influencing CO2-consumption rates by chemical weathering on geological time scales and thus the carbon cycle, refined, spatially resolved analysis is suggested. This should include the recognition of the geochemical composition of the shelf areas, now being below sea level.

  14. Stored mafic/ultramafic crust and early Archean mantle depletion

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Patchett, P. J.

    1990-01-01

    Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive epsilon(Nd) values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high epsilon values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic oceanic crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high epsilon(Nd) values of the Archean upper mantle.

  15. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Astrophysics Data System (ADS)

    Taylor, P. N.; Kalsbeek, F.

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  16. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Technical Reports Server (NTRS)

    Taylor, P. N.; Kalsbeek, F.

    1986-01-01

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  17. Pristine Igneous Rocks and the Genesis of Early Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Lindstrom, David (Technical Monitor)

    2002-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology.

  18. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  19. Crust formation and plate motion in the early archean.

    PubMed

    Kröner, A; Layer, P W

    1992-06-01

    Mounting evidence for voluminous continental crust formation in the early Archean involving intracrustal melting and selective preservation of granitoid rocks suggests that initial crust formation crust formation and growth were predominantly by magmatic underplating in plumegenerated Iceland-type settings. Collision of these early islands to give rise to larger blocks is suggested by extensive horizontal shortening in both supracrustal and granitoid assemblages. Preservation of early Archean high-grade gneisses that were once at depths of 20 to 30 kilometers implies that these blocks developed thick, subcrustal roots despite high mantle heat flow. Rigid continental plates must have existed since at least 3.5 billion years ago, and greenstone belts (composed of mixed metavolcanic and metasedimentary sequences intruded by granitoid plutons) probably developed on or near these microcontinents. Paleomagnetic data with good age control from at least one ancient craton suggest that plate motion was at normal minimum average velocities of about 17 millimeters per year with respect to the poles during the period 3.5 billion to 2.4 billion years ago. If this is true on a global scale, Archean plate motion was not faster than in later geologic times. PMID:17791608

  20. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  1. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-01

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues. PMID:14534583

  2. Mars: The initial emplacement of ground ice in response to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the martian valley networks to terrestrial runoff channels, and their almost exclusive occurrence in the planet's ancient (approximately 4 billion year old) heavily cratered terrain, is often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was ground water sapping, a process that does not require that surface water exist in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered from two perspectives: (1) that the early climate started warm and wet, but gradually cooled with time; and (2) that it never differed substantially from that of today.

  3. In situ evidence for continental crust on early Mars

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Toplis, M. J.; Wiens, R. C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; Bridges, J. C.; Mangold, N.; Le Mouélic, S.; Fisk, M.; Meslin, P.-Y.; Beck, P.; Pinet, P.; Le Deit, L.; Rapin, W.; Stolper, E. M.; Newsom, H.; Dyar, D.; Lanza, N.; Vaniman, D.; Clegg, S.; Wray, J. J.

    2015-08-01

    Understanding of the geologic evolution of Mars has been greatly improved by recent orbital, in situ and meteorite data, but insights into the earliest period of Martian magmatism (4.1 to 3.7 billion years ago) remain scarce. The landing site of NASA’s Curiosity rover, Gale crater, which formed 3.61 billion years ago within older terrain, provides a window into this earliest igneous history. Along its traverse, Curiosity has discovered light-toned rocks that contrast with basaltic samples found in younger regions. Here we present geochemical data and images of 22 specimens analysed by Curiosity that demonstrate that these light-toned materials are feldspar-rich magmatic rocks. The rocks belong to two distinct geochemical types: alkaline compositions containing up to 67 wt% SiO2 and 14 wt% total alkalis (Na2O + K2O) with fine-grained to porphyritic textures on the one hand, and coarser-grained textures consistent with quartz diorite and granodiorite on the other hand. Our analysis reveals unexpected magmatic diversity and the widespread presence of silica- and feldspar-rich materials in the vicinity of the landing site at Gale crater. Combined with the identification of feldspar-rich rocks elsewhere and the low average density of the crust in the Martian southern hemisphere, we conclude that silica-rich magmatic rocks may constitute a significant fraction of ancient Martian crust and may be analogous to the earliest continental crust on Earth.

  4. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  5. Early terrestrial ecosystems: the animal evidence

    SciTech Connect

    Gray, J.

    1985-01-01

    Work on fossil spores indicates that plants at a level of vegetative organization comparable to bryophytes and vascular plants existed on land in the Early Silurian. Vascular plants, limnetic fishes, and probable Ascomycetes have Late Silurian records. Charophytes are known in the Late Silurian but may have been marine. The presence of microarthropods in the Ludlovian has been hypothesized from fungal masses in the Burgsvik Sandstone that closely resemble microarthropod frass. A number of microarthropods such as collembolans and mites are microphagous; these animals are among the earliest known from the Early Devonian. These fungal masses as animal traces have been given added credibility by the recovery of animal body fossils from basal Llandovery age fluvial deposits of the Central Appalachians that yield abundant plant spores but that lack marine invertebrates, phytoplankton or chitinozoans. The remains are abundant and sufficiently varied to suggest that they may represent a variety of organisms. Some are eurypterid-like, others grossly arthropod-like, although they may represent an unknown phylum or phyla. Many small invertebrates are associated with extant bryophytes, which have been viewed as stepping stones or halfway houses for them as they emerged from water onto land. The occurrence of these Early Silurian invertebrate remains with abundant spore tetrads, which Gray has hypothesized represent land plants at a bryophyte or hepatic grade of organization, is of great interest in trying to understand the early development of nonmarine ecosystems.

  6. Comparison of Lunar Basalts and Gabbros with those of the Terrestrial Ocean Crust

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2012-12-01

    Initial studies of lunar samples returned from the Apollo and Luna missions took place before rocks of the Earth's lower ocean crust, chiefly varieties of gabbro cumulates, were widely known or understood. Continuing exploration of the ocean crust invites some new comparisons. When volcanic rocks and glass from Apollo 11 and 17 were discovered to have very high TiO2 contents (8-14%), nothing comparable was known from Earth. The high-TiO2 lunar samples were soon described as primary melts derived from considerable depths in the lunar mantle. Other lunar samples have only very low TiO2 contents (~0.2%) and very low concentrations of highly incompatible elements such as Zr and Sr. Today, dredging and drilling results indicate that oxide gabbros rich in magmatic oxides and sulfides and with up to 12% TiO2 comprise a significant percentage of the gabbroic portion of the ocean crust especially at slowly spreading ridges. These are very late stage differentiates, and are commonly juxtaposed by high-temperature deformation processes with more primitive olivine gabbros and troctolites having only ~0.2% TiO2 and low concentrations of Zr and other incompatible elements. The rocks are mainly adcumulates, with very low concentrations of incompatible elements set by proportions of cumulus minerals, and with little contribution from the liquids that produced them. In addition, some lunar gabbros with highly calcic plagioclase (~An93-98) are similar to gabbros and troctolites found in island arcs. All of these similarities suggest that very few lunar basaltic rocks are pristine; instead they all could be nearly complete shock fusion products produced by meteorite impact into a diverse assemblage of lunar gabbros that included both low- and high-TiO2 gabbroic facies. On this hypothesis, no lunar basalt is a primary melt derived from the Moon's mantle. Although magmatic environments on the ancient Moon and in the modern ocean crust were different in important ways, the general

  7. Terrestrial Planet Evolution in the Stagnant-Lid Regime: Size Effects and the Formation of Self-Destabilizing Crust

    NASA Astrophysics Data System (ADS)

    O'Rourke, J. G.; Korenaga, J.

    2012-12-01

    mechanisms may reduce the effective viscosity deep within massive terrestrial planets, crustal thickness and the degree of mantle processing are both predicted to decrease with increased planet mass, and these size effects can also be derived with simple scaling analyses. The possibility of basalt-eclogite phase transition in the planetary crust is found to increase with planetary mass, and we suggest that massive terrestrial planets may escape the stagnant-lid regime through the formation of a self-destabilizing dense eclogite layer.

  8. Growth of early continental crust controlled by melting of amphibolite in subduction zones.

    PubMed

    Foley, Stephen; Tiepolo, Massimo; Vannucci, Riccardo

    2002-06-20

    It is thought that the first continental crust formed by melting of either eclogite or amphibolite, either at subduction zones or on the underside of thick oceanic crust. However, the observed compositions of early crustal rocks and experimental studies have been unable to distinguish between these possibilities. Here we show a clear contrast in trace-element ratios of melts derived from amphibolites and those from eclogites. Partial melting of low-magnesium amphibolite can explain the low niobium/tantalum and high zirconium/samarium ratios in melts, as required for the early continental crust, whereas the melting of eclogite cannot. This indicates that the earliest continental crust formed by melting of amphibolites in subduction-zone environments and not by the melting of eclogite or magnesium-rich amphibolites in the lower part of thick oceanic crust. Moreover, the low niobium/tantalum ratio seen in subduction-zone igneous rocks of all ages is evidence that the melting of rutile-eclogite has never been a volumetrically important process. PMID:12075348

  9. Neodymium and lead isotope evidence for enriched early Archean crust in North America

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Housh, Todd B.; Isachsen, Clark E.; Podosek, Frank A.; King, Janet E.

    1989-01-01

    Neodymium and lead isotope measurements and uranium-lead zircon geochronology from Archaean gneisses of the Slave Province in the Northwest Territories of Canada are reported. The gneisses contain zircons with cores older than 3.842 Gyr and an epsilon(Nd) (3.7 Gyr) of - 4.8. This is the oldest reported chondritic model age for a terrestrial sample and provides evidence for strongly enriched pre-3.8-Gyr crust, a reservoir complementary to the depleted mantle already in existence by 3.8 Gyr before the present.

  10. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  11. Granodiorite and alkaline suite at Gale crater: continental crust on early Mars

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Toplis, M. J.; Cousin, A.; Fabre, C.; Wiens, R. C.; Mangold, N.; Forni, O.; Gasnault, O.; Pinet, P.; Rapin, W.; Fisk, M.; Le Deit, L.; Meslin, P.-Y.; Maurice, S.; Lasue, J.; Stolper, E.; Beck, P.; Wray, J.; Bridges, J. C.; Le Mouelic, S.

    2015-10-01

    The Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian terrains on Mars. The rover encountered a great variety of felsic igneous float rocks ranging from granodiorite to trachy andesite and trachyte during the first part of the traverse up to sol 550. They are the first in-situ evidence of low density early Noachian crust on Mars, sampled by Peace Vallis river cross-cutting the crater wall over a 2-3km thick vertical section, below the basaltic regolite.

  12. Fractionation of the Early Terrestrial Atmospheres: Dynamical Escape

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.

    2002-01-01

    Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the maximum mass of flowing gas constituents decreases until all gases become static. We show that fractionation can continue beyond this point when non-radial flow and dynamically enhanced Jeans escape are considered. For example, the early terrestrial atmospheres are thought to have had large hydrogen contents, resulting in exobase altitudes of a planetary radius or more. In this case, rotational speeds at the exobases of Earth and Mars would be large enough so that light constituents would "spin" off and fractionate, especially at equatorial latitudes. Also, in the presence of transonic flow of hydrogen only, non-radial expansion throws heavier gases to high altitudes in the exosphere, accompanied by strong bulk speeds at the exobase, which results in enhanced thermal escape fluxes and fractionation. flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the

  13. Lichen metabolism identified in Early Devonian terrestrial organisms

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Porter, Steven; Kuglitsch, Jeffrey J.

    2003-02-01

    We used δ13C values to identify lichen metabolism in the globally distributed Early Devonian (409 386 Ma) macrofossil Spongiophyton minutissimum, which had been alternatively interpreted as a green plant of bryophyte grade or as a lichen, based on its morphology. Extant mosses and hornworts exhibited a range of δ13Ctissue values that was discrete from that of extant lichens. The δ13Ctissue values of 96 S. minutissimum specimens coincided with δ13Ctissue values of extant lichens. In contrast, S. minutissimum δ13Ctissue values showed no similarity to bryophyte carbon isotope values. The identification of large global populations of lichens during the Early Devonian may indicate that lichen-accelerated soil formation fostered the development of Paleozoic terrestrial ecosystems.

  14. The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga

    NASA Astrophysics Data System (ADS)

    Valley, J. W.; King, E. M.; Peck, W. H.; Graham, C. M.; Wilde, S. A.

    2001-05-01

    Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is >99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of "S-type" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form

  15. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  16. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  17. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  18. Lunar granulites and their precursor anorthositic norites of the early lunar crust

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Lindstrom, D. J.

    1986-01-01

    Lunar granulities, which are ancient and KREEP-free, represent the best samples of early lunar crust. They can be divided into ferroan and magnesium groups, and each group can be subdivided on the basis of mineral composition and REE concentrations. It is shown that some of the granulites may be derived from distinct anorthitic norite precursors, while some others are clearly polymict, though it is believed that even these granulites had anorthositic norites as their dominant precursors. The granulites have compositions similar to those of the two lunar meteorites, one of which is ferroan, the other magnesian. These meteorites are soil breccias from an unknown location distant from the Apollo landing sites and contain anorthositic norites as abundant clasts. Granulite and lunar-meteorite compositions more closely resemble the average composition of lunar highlands than those of any other returned lunar samples. The predominance of plutonic anorthositic norite precursors in material having the composition typical of highlands suggests that plutonic anorthositic norites were more abundant in the early lunar crust than is implied by their scarcity in Apollo pristine rocks.

  19. Some Speculations Concerning The Abitibi Greenstone Belt As A Possible Analog To The Early Martian Crust

    NASA Astrophysics Data System (ADS)

    Russell, M.; Allwood, A.; Anderson, R. B.; Atkinson, B.; Beaty, D.; Bristow, T. F.; Ehlmann, B. L.; Grotzinger, J. P.; Hand, K. P.; Halevy, I.; Hurowitz, J. A.; Knoll, A.; McCleese, D. J.; Milliken, R.; Stolper, D. A.; Stolper, E. M.; Tosca, N. J.; Agouron Mars Simulation Field Team

    2011-12-01

    The Noachian crust of Mars comprises basaltic and, potentially, komatiitic lavas derived from a hot mantle slightly more reducing and sulfur-rich than that of the Earth. Ultramafic volcanic sequences of the ~2.7Ga Tisdale Group of the Abitibi Greenstone Belt, Ontario, provide a potential analog to these early martian lavas. The Abitibi rocks are a possible source of quartz veins carrying, in places, pyrite, carbonate and gold. These were hydrothermally introduced into volcanic and sedimentary rocks during greenschist metamorphism. Kilometer-scale talc-magnesite zones, resulting from the carbonation of serpentinized ultramafics, may have been the source and seawater, with some magmatic addition, was probably responsible for the pervasive alteration, although the chemical nature of hydrothermal fluids circulating in such piles depends upon the temperature of wall-rock interactions and is largely independent of fluid origin. Any sulfides and gold in unaltered ultramafic putative source rocks may have been lost to the invasive convective fluids. Given high heat flow and the presence of a hydrosphere, hydrothermal convection cells were probably the main mechanism of heat transfer through the crust on both planets. Exploration of the Abitibi belt provides a template for possible martian exploration strategies. Orbital remote sensing indicates that some ultramafic rocks on Mars have also been serpentinized and isolated areas of magnesite have been recently discovered, overlying altered mafic crust, with characteristic ridges at scales of a few hundred meters. While cogent arguments have been made favoring sedimentary exhalative accumulations of hydrothermal silica of the kind that are known to harbor bacteria on our own planet, no in situ siliceous sinters or even quartz veins have been identified with certainty on Mars. Here, we report on the mineralogic and visible to infrared spectral characteristics of mafic and ultramafic lithologies at Abitibi for comparison to

  20. Exploring Terrestrial Temperature Changes during the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Clyde, W. C.; Fricke, H. C.; Eiler, J. M.

    2012-12-01

    The Early Eocene is marked by a number of rapid global warming events called hyperthermals. These hyperthermals are associated with negative carbon isotope excursions (CIE) in both marine and terrestrial records. Multiple theories exist to explain the connection of these hyperthermals with the CIEs and each theory predicts different responses by the climate system. Characterizing the timing, duration and magnitude of temperature change that is associated with these hyperthermals is important for determining whether the hyperthermals are all driven by the same underlying climate dynamics or perhaps differ from one another in cause and climatic consequences. In the simplest case, all share a common underlying mechanism; this predicts that the associated temperature changes scale in a predictable way with the magnitude of the CIE (and perhaps exhibit other similarities, such as the relative amplitudes of marine and terrestrial temperature change). To our knowledge, however, the only hyperthermal with paleotemperature data from land is the Paleocene-Eocene Thermal Maximum (PETM). Here we present preliminary carbonate clumped isotope paleotemperature estimates for Early Eocene hyperthermal ETM2/H2 from paleosol carbonates from the Bighorn Basin in Wyoming, USA. We compare the results to existing clumped isotope paleotemperature estimates for the PETM in the Bighorn Basin. Temperatures recorded by paleosol carbonates (which likely reflect near-peak summer ground temperatures) prior to each CIE are ~30°C and increase to ~40-43°C during the apex of each CIE. Following both CIEs, temperatures drop back to pre-CIE values. In the case of ETM2/H2, temperatures begin to rise again immediately, possibly in association with a later hyperthermal, though further work needs to be done to establish this with certainty. These preliminary data suggest that both the absolute values and the magnitudes of temperature changes associated with the PETM and ETM2/H2 are similar; the

  1. Linking playa surface dust emission potential to feedbacks between surface moisture and salt crust expansion through high resolution terrestrial laser scanning measurements

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Wiggs, G.

    2012-12-01

    The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks

  2. Early Earth Felsic Crust Formation: Insights from Numerical Modelling of High-MgO Archaean Basalt Partial Melting

    NASA Astrophysics Data System (ADS)

    Riel, N., Jr.

    2015-12-01

    The Tonalite-Trondhjemite-Granodiorite series (TTGs) represent the bulk of the felsic continental crust that formed between 4.4 and 2.5 Ga and is preserved in Archaean craton (3.8-2.5 Ga). It is now recognized that the petrogenesis of TTG series derives from an hydrous mafic system at high pressure. However, the source of the early TTGs (3.5-3.2 Ga) have not been preserved and its characteristics are still debated. In this study we use thermodynamical modelling coupled with two-phase flow to investigate the products of partial melting of high-MgO primary mafic crust. Our model setup is made of a 45-km thick hydrated mafic crust and is heated above the solidus from 50 to 200°C. To explore the effects of melt-rock interactions during melt transfer (via two-phase flow), the melt composition is modelled either in thermodynamic equilibrium with the rock or in thermodynamic disequilibrium. Our modelling results show that partial melting of hydrous high-MgO metabasalt crust can produce significant volumes of felsic melt. The average composition of these melts is SiO2-rich > 62%, Mg# = 40-50, Na2O ~6%, MgO = 0.5-1% which is consistent with the composition of TTGs. The residual rock after melt segregation is composed of olivine + garnet + pyroxene which is in agreement with Archaean eclogites found in mantle xenoliths of Archaean cratons. Moreover, the depleted residual rock is denser than the mantle and is likely to be recycled in the mantle. We show that the early felsic crust with a TTGs signature could have been formed by partial melting of high-MgO hydrated metabasaltic crust, and propose that plume-related activity and/or rapid burial due to high volcanic activity are likely geodynamic conditions to generate an early felsic crust.

  3. Habitability of Terrestrial Planets in the Early Solar System

    NASA Astrophysics Data System (ADS)

    SLEEP, N. H.

    2001-12-01

    The Protoearth, Mars, Venus, and the Moon-forming impactor were potentially habitable in the early solar system. The interiors of larger asteroids had habitable circulating water. To see when the inner solar system became continuously habitable, one needs to consider the most dangerous events and the safest refugia from them. Early geochemical and accretionary processes set the subsequent silicate planet reservoirs and hence hydrospheric and atmospheric masses. The moon-forming impact made the Moon and the Earth sterile bodies. Following the impact, the Earth passed through a rock-vapor atmosphere on the scale of 1000s of years and an internally heated steam greenhouse on the scale of 2 m.y. Minerals bearing the principle volatiles (water, Cl, and CO2) were stable at the Earth's surface by the time it cooled to 800K. The mass of reactable shallow material was insufficient to contain the available water and CO2. Habitable conditions were established after CO2 could be deeply subducted into the mantle. Vast quantities of H2 were vented during accretion and after the moon-forming impact and eventually lost to space. It is unknown whether significant amounts of this gas were present when the Earth's surface cooled into the habitable range. The moon remained sterile because its interior is essentially devoid of water. The mantle of the Earth, in contrast, cannot hold the available water, leaving the excess to form oceans. Nitrogen may behave similarly with the excess going into the air. Impacts of large asteroids (and comets) were an ever-present danger on otherwise habitable planets. The safest niche on planets was kilometer or deeper crustal rocks habitable by thermophiles. It is inevitable that several objects, which would have left only thermophile survivors, struck the Earth. Such events were so infrequent that the conditions of such a bottleneck should not be confused with conditions for the origin of life. An alternative refugium involves ejection of life within

  4. Metasomatic modification of oceanic crust during early stages of subduction recorded in Mariana blueschist

    NASA Astrophysics Data System (ADS)

    Zack, Thomas; Savov, Ivan P.; Pabst, Sonja; Schmitt, Axel K.

    2013-04-01

    Serpentine mud volcanoes from the Mariana forearc bear unique witness of metasomatic processes in an active subduction zone in the form of centimeter-size blueschist-facies xenoliths. Charcateristic metamorphic assemblages point to conditions of ca 400°C and a formation depth of 27 km. Bulk rock compositions of amphibole-talc schists and chlorite-rich schists lie on a mixing line, extending from typical MORB towards SiO2-enriched mantle. Such mixing trends are remarkably similar to findings from the amphibolite-facies assemblages of the Catalina schist, although they equilibrated at much lower temperatures (Pabst et al. 2012). These observations demonstrate that the material experienced severe metasomatic changes at the slab-mantle interface in the shallow forearc. Further supporting evidence derives from δ11B measurements: phengite, amphibole and chlorite within the clasts have boron isotope values of -6±4‰, significantly lighter than oceanic crust, requiring isotopic fractionation by fluids carrying an isotopically heavy B component (Pabst et al. 2012). Although most current models assume that the Mariana blueschists record conditions of the ongoing subduction process, our recent findings indicate otherwise. Large (>100 µm) rutiles with high U (ca 20 ppm) found in one blueschist clast were dated by HR-SIMS at UCLA employing recently established U/Pb dating techniques (Schmitt & Zack 2012). Rutile concordia ages were tightly constrained at 48.1±2.9 Ma and are reproduced by concordia ages of low Th/U zircons at 47.5±1.5 Ma in the same sample. As those ages are interpreted to be formation ages of metasomatically modified blueschists and are only a few million years older than subduction initiation (at ca 50-52 Ma), we draw the following conclusions: (1) fast cooling of the downgoing oceanic crust must occur right after subduction initiation; (2) effective metasomatic and mechanical mixing processes (subduction channels?) must be established early in

  5. Biological soil crusts reduce soil erosion in early successional subtropical forests in PR China

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Käppeler, Kathrin; Nebel, Martin; Webber, Carla; Scholten, Thomas

    2016-04-01

    Biological soil crusts (BSCs) have major influences on terrestrial ecosystems and play significant functional roles in soil systems, such as accelerating soil formation, changing water flows or enhancing soil stability. By that, they have the potential to protect soil surfaces against erosive forces by wind or water. However, the effect of BSCs on erosion processes is rarely mentioned in literature and most of the work done focused on arid and semi-arid environments. Furthermore, compared to the structure and function of BSCs, less attention was paid to their temporal and topographical distribution. This study aims to investigate the influence of BSCs on initial soil erosion, and their topographical development over time in initial subtropical forest ecosystems. Therefore, measurements have been conducted within a biodiversity and ecosystem functioning experiment (BEF China) near Xingangshan, Jiangxi Province, PR China. Interrill erosion was measured on 220 microscale run-off plots (ROPs, 0.4 m × 0.4 m) and the occurrence, distribution and development of BSCs within the measuring setup were recorded. BSC cover in each ROP was determined photogrammetrically in four time steps (autumn 2011, summer 2012, summer 2013 and summer 2014). BSC species were identified by morphological characteristics and classified to higher taxonomic levels. Higher BSC cover led to reduced sediment discharge and runoff volume due to its protection against splash energy, the adherence of soil particles and enhanced infiltration. Canopy ground cover and leaf area index had a positive effect on the development of BSC cover at this initial stage of the forest ecosystem. Moreover, BSC cover decreased with increasing slope, as we presume that developing BSCs are washed away more easily at steep gradients. Elevation and aspect did not show an influence. BSCs in this study were moss-dominated and 26 different moos species were found. Mean BSC cover on ROPs was 14 % in the 3rd year of the tree

  6. Microbial Mg-carbonate Precipitation and Early Diagenetic Dolomite Crust Formation at Hypersaline Lagoon, Rio de Janeiro State, Brazil.

    NASA Astrophysics Data System (ADS)

    Bahniuk Rumbelsperger, A. M.; McKenzie, J. A.; Perri, E.; Vögeli, N.; Vasconcelos, C.

    2015-12-01

    Sedimentary dolomite rocks are commonly considered to be primarily a replacement product of the calcium carbonate components comprising the original limestone, a process known as secondary replacement dolomitization. Although numerous dolomite formations in the geologic record are composed of fine-grained crystals of micritic dolomite, an alternative process, i.e., direct precipitation, is often excluded because of the absence of visible or geochemical indicators supporting primary precipitation. We present a study of a modern coastal hypersaline lagoon, Brejo do Espinho, Rio de Janeiro State, Brazil, which is located in a special climatic regime where a well-defined seasonal cycle of wet and dry conditions occur. The direct precipitation of modern high-Mg calcite and Ca-dolomite mud from the lagoonal waters under low-temperature hypersaline conditions is associated with the activity of microbial organisms living in this restricted environment. The mud undergoes an early diagenetic transformation into a 100% dolomite crust on the margins of the lagoon. The biomineralization process, characterized by the variations of the physico-chemical conditions in this environment during the annual hydrologic cycle, is integrated with isotopic analysis to define the early diagenetic processes responsible for the formation of both dolomitic mud and crust. The carbon isotope values indicate a contribution of respired organic carbon, which is greater for the crust (δ13C = -9.5‰ VPDB) than mud (δ13C = -1.2‰ VPDB). The oxygen isotope values reflect a moderate degree of evaporation during mud formation (δ18O = 1.1‰ VPDB), whereas it is greatly enhanced during early diagenetic crust formation (δ18O = 4.2‰ VPDB). The clumped isotope formation temperatures derived for the Brejo do Espinho mud is 34°C and 32°C for the crust. These temperatures are consistent with the upper range of measured values during the dry season when the lagoon experiences the most hypersaline

  7. The granulite suite: Impact melts and metamorphic breccias of the early lunar crust

    NASA Technical Reports Server (NTRS)

    Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.

    1993-01-01

    The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites

  8. Nitrogen Fixation on Early Mars and Other Terrestrial Planets: Experimental Demonstration of Abiotic Fixation Reactions to Nitrite and Nitrate

    NASA Astrophysics Data System (ADS)

    Summers, David P.; Khare, Bishun

    2007-05-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO2. Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO2 does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO2 reaction with ice, adsorbed water, etc.).

  9. The Crusts of Mars and Earth

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; Hahn, B. C.

    2007-05-01

    The differentiation of terrestrial planets and large moons results in crusts with compositions differing greatly from primitive mantles. Typically, large fractions of incompatible elements, including heat-producing elements, are transferred into the crust. Mechanisms and timing of this process differ greatly from planet to planet. Accordingly, in order to understand planetary evolution, it is necessary to understand the composition and evolution of planetary crusts. Crustal evolution on Earth is perhaps the least representative of the terrestrial planets and large moons of the solar system. Although Earth substantially melted after the giant impact that resulted in the Moon, there is little evidence for the existence of a primary crust suggesting that such crust was recycled and mixed into the mantle during the Hadean. Instead, Earth has a very young, continually recycled basaltic secondary (oceanic) crust and an andesitic tertiary (continental) crust, unique in the solar system, that grew episodically over 4 Gyr, but with an average age of about 2 Gyr. The continental - oceanic crust dichotomy, temporal changes in continental crust composition, role of plume volcanism and continental growth are largely consequences of evolving plate- tectonic processes. Mars provides a valuable comparison to Earth because it is a planet that is, in many ways, intermediate between Earth and planetary bodies, such as the Moon and Mercury, that completed crustal development by about 3 Gyr and have been dormant since. Martian crust is mostly ancient (>3.5 Gyr) but volcanism has persisted, possibly episodically, to 200 Myr or younger. Proposals of early plate tectonics persist, but the weight of evidence suggests Mars is a one-plate planet. The 50 km thick crust constitutes 3.2% of the mass of the planet and, even with modest levels of LILE enrichment (K=0.33%), has had well in excess of 50% of incompatible elements removed from the mantle during early differentiation that likely

  10. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  11. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  12. Growth of early continental crust by water-present eclogite melting in subduction zones

    NASA Astrophysics Data System (ADS)

    Laurie, A.; Stevens, G.

    2011-12-01

    The geochemistry of well preserved Paleo- to Meso-Archaean Tonalite-Trondhjemite-Granodiorite (TTG) suite rocks, such as the ca 3.45 Ga trondhjemites from the Barberton greenstone belt in South Africa, provides insight into the origins of Earth's early felsic continental crust. This is particularly well demonstrated by the high-Al2O3 variety of these magmas, such as the Barberton rocks, where the geochemistry requires that they are formed by high pressure (HP) melting of a garnet-rich metamafic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. Most of the experimental data relevant to Archaean TTG genesis has been generated by studies of fluid-absent melting of metabasaltic sources. However, water drives arc magmatism within Phanerozoic subduction zones and thus, understanding the behaviour of water in Archaean subduction zones, may have considerable value for understanding the genesis of these TTG magmas. Consequently, this study investigates the role of HP water-present melting of an eclogite-facies starting material, in the production of high-Al2O3 type TTG melts. Water-saturated partial melting experiments were conducted between 1.9 and 3.0GPa; and, 870°C and 900°C. The melting reaction is characterized by the breakdown of sodic Cpx, together with Qtz and H2O, to form melt in conjunction with a less sodic Cpx: Qtz + Cpx1 + Grt1 + H2O = Melt + Cpx2 + Grt2. In many of the experimental run products, melt segregated efficiently from residual crystals, allowing for the measurement of a full range of trace elements via Laser Ablation Inductively Coupled Plasma Mass Spectroscopy. The experimental glasses produced by this study have the compositions of peraluminous trondhjemites; and they are light rare earth element, Zr and Sr enriched; and heavy rare earth element, Y and Nb depleted. The compositions of the experimental glasses are similar to high-Al2O3 type

  13. Workshop on Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions

    NASA Technical Reports Server (NTRS)

    Walker, D. (Editor); Mccallum, I. S. (Editor)

    1981-01-01

    The significance of the lunar highland pristine cumulate samples were reevaluated with the aid of the additional insights provided by geologically constrained terrestrial investigations. This exercise involved a review of the state of knowledge about terrestrial and lunar cumulate rocks as well as an enumeration and reevaluation of the processes hypothesized to have been responsible for their formation, both classically and at present.

  14. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets

    NASA Astrophysics Data System (ADS)

    Kleine, Thorsten; Touboul, Mathieu; Bourdon, Bernard; Nimmo, Francis; Mezger, Klaus; Palme, Herbert; Jacobsen, Stein B.; Yin, Qing-Zhu; Halliday, Alexander N.

    2009-09-01

    The 182Hf- 182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ˜1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al- 26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ˜3 Myr after CAI formation and may have continued until ˜10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ˜20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained. The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during

  15. Wind and Rotation Enhanced Escape from the Early Terrestrial Atmospheres

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow; similar to solar wind flow dynamics. However, in many cases, although the outward flow is hydrodynamic at low altitudes, it becomes collisionless at higher altitudes, before sonic speeds are ever attained. Recent models dealing with the transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach leads to escape rates that are too low, because thermospheric winds and planetary rotation are known to increase the escape flux above the corresponding Jeans flux. In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes.

  16. Wind and Rotation Enhanced Escape From the Early Terrestrial Atmospheres

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.

    2001-05-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow, similar to solar wind flow dynamics. However, in many cases the outward flow is hydrodynamic at low altitudes only to become collisionless at higher altitudes, well before sonic speeds are ever attained. Recent models dealing with such transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach has lead to escape rates that are too low due to the fact that thermospheric winds and planetary rotation increase escape fluxes considerably over the corresponding Jeans fluxes (1). In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes. (1) Hartle, R. E. and H. G. Mayr, J. Geophys. Res., 81, 1207, 1976.

  17. Freshly brewed continental crust

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Hayes, J. L.; Caddick, M. J.; Madrigal, P.

    2015-12-01

    Earth's crust is the life-sustaining interface between our planet's deep interior and surface. Basaltic crusts similar to Earth's oceanic crust characterize terrestrial planets in the solar system while the continental masses, areas of buoyant, thick silicic crust, are a unique characteristic of Earth. Therefore, understanding the processes responsible for the formation of continents is fundamental to reconstructing the evolution of our planet. We use geochemical and geophysical data to reconstruct the evolution of the Central American Land Bridge (Costa Rica and Panama) over the last 70 Ma. We also include new preliminary data from a key turning point (~12-6 Ma) from the evolution from an oceanic arc depleted in incompatible elements to a juvenile continental mass in order to evaluate current models of continental crust formation. We also discovered that seismic P-waves (body waves) travel through the crust at velocities closer to the ones observed in continental crust worldwide. Based on global statistical analyses of all magmas produced today in oceanic arcs compared to the global average composition of continental crust we developed a continental index. Our goal was to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust. We suggest that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone, a process probably more common in the Achaean where most continental landmasses formed, can produce the starting material necessary for juvenile continental crust formation.

  18. Early oxygenation of the terrestrial environment during the Mesoproterozoic.

    PubMed

    Parnell, John; Boyce, Adrian J; Mark, Darren; Bowden, Stephen; Spinks, Sam

    2010-11-11

    Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (∼2.3 billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8 Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S < 25‰ before 1 Gyr to ≥50‰ after 0.64 Gyr. This change in Δ(34)S has been interpreted to represent the evolution from single-step bacterial sulphate reduction to a combination of bacterial sulphate reduction and sulphide oxidation, largely bacterially mediated. This evolution is seen as marking the rise in atmospheric oxygen concentrations and the evolution of non-photosynthetic sulphide-oxidizing bacteria. Here we report Δ(34)S values exceeding 50‰ from a terrestrial Mesoproterozoic (1.18 Gyr old) succession in Scotland, a time period that is at present poorly characterized. This level of fractionation implies disproportionation in the sulphur cycle, probably involving sulphide-oxidizing bacteria, that is not evident from Δ(34)S data in the marine record. Disproportionation in both red beds and lacustrine black shales at our study site suggests that the Mesoproterozoic terrestrial environment was sufficiently oxygenated to support a biota that was adapted to an oxygen-rich atmosphere, but had also penetrated into subsurface sediment. PMID:21068840

  19. Crustal radiogenic heat production and the selective survival of ancient continental crust

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1985-01-01

    It is pointed out that the oldest terrestrial rocks have so far revealed no evidence of the impact phase of Earth evolution. This observation suggests that processes other than impact were dominant at the time of stabilization of these units. However, a use of the oldest terrestrial rocks as a sample of the early terrestrial crust makes it necessary to consider the possibility that these rocks may represent a biased sample. In the present study, the global continental heat flow data set is used to provide further evidence that potassium, uranium, and thorium abundances are, on the average, low in surviving Archean crust relative to younger continental crust. An investigation is conducted of the implications of relatively low crustal radiogenic heat production to the stabilization of early continental crust, and possible Archean crustal stabilization models are discussed.

  20. Crustal radiogenic heat production and the selective survival of ancient continental crust

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1985-01-01

    It is pointed out that the oldest terrestrial rocks have so far revealed no evidence of the impact phase of earth evolution. This observation suggests that processes other than impact were dominant at the time of stabilization of these units. However, a use of the oldest terrestrial rocks as a sample of the early terrestrial crust makes it necessary to consider the possibility that these rocks may represent a biased sample. In the present study, the global continental heat flow data set is used to provide further evidence that potassium, uranium, and thorium abundances are, on the average, low in surviving Archean crust relative to younger continental crust. An investigation is conducted of the implications of relatively low crustal radiogenic heat production to the stabilization of early continental crust, and possible Archean crustal stabilization models are discussed.

  1. Historical space psychology: Early terrestrial explorations as Mars analogues

    NASA Astrophysics Data System (ADS)

    Suedfeld, Peter

    2010-03-01

    The simulation and analogue environments used by psychologists to circumvent the difficulties of conducting research in space lack many of the unique characteristics of future explorations, especially the mission to Mars. This paper suggests that appropriate additional analogues would be the multi-year maritime and terrestrial explorations that mapped the surface of the Earth in previous centuries. These, like Mars, often involved a hazardous trek through unknown territory, flanked by extended, dangerous voyages to and from the exploration sites. Characteristic issues included interpersonal relationships under prolonged stress, stretches of boredom interspersed with intense work demands, the impossibility of rescue, resupply, or other help from home, chronic danger, physical discomfort and lack of privacy, and the crucial role of the leader. Illustrative examples of one important factor, leadership style, are discussed. The examination of such expeditions can help to identify the psychological stressors that are likely to be experienced by Mars explorers, and can also indicate countermeasures to reduce the damaging impact of those stressors.

  2. Early Carboniferous (˜357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria)

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Ren, Minghua; Ali, Kamal; Förster, Hans-Jürgen; Al Safarjalani, Abdulrahman; Nasir, Sobhi; Whitehouse, Martin J.; Leybourne, Matthew I.; Romer, Rolf L.

    2014-05-01

    Continental crust beneath northern Arabia is deeply buried and poorly known. To advance our knowledge of this crust, we studied 8 xenoliths brought to the surface by Neogene eruptions of Tell Thannoun, S. Syria. The xenolith suite consists of two peridotites, one pyroxenite, four mafic granulites, and one charnockite. The four mafic granulites and charnockite are probably samples of the lower crust, and two mafic granulites gave 2-pyroxene equilibration temperatures of 780-800 °C, which we take to reflect temperatures at the time of formation. Peridotite and pyroxenite gave significantly higher temperatures of ∼900 °C, consistent with derivation from the underlying lithospheric mantle. Fe-rich peridotite yielded T∼800 °C, perhaps representing a cumulate layer in the crust. Three samples spanning the lithologic range of the suite (pyroxenite, mafic granulite, and charnockite) yielded indistinguishable concordant U-Pb zircon ages of ∼357 Ma, interpreted to approximate when these magmas crystallized. These igneous rocks are mostly juvenile additions from the mantle, as indicated by low initial 87Sr/86Sr (0.70312 to 0.70510) and strongly positive initial εNd(357 Ma) (+4 to +9.5). Nd model ages range from 0.55 to 0.71 Ga. We were unable to unequivocally infer a tectonic setting where these melts formed: convergent margin, rift, or hotspot. These xenoliths differ from those of Jordan and Saudi Arabia to the south in four principal ways: 1) age, being least 200 Ma younger than the presumed Neoproterozoic (533-1000 Ma) crust beneath Jordan and Saudi Arabia; 2) the presence of charnockite; 3) abundance of Fe-rich mafic and ultramafic lithologies; and 4) the presence of sapphirine. Our studies indicate that northern Arabian plate lithosphere contains a significant proportion of juvenile Late Paleozoic crust, the extent of which remains to be elucidated. This discovery helps explain fission track resetting documented for rocks from Israel and provides insights into

  3. Experimental investigation of the early interaction between cyanobacterial soil crusts and vascular plants

    NASA Astrophysics Data System (ADS)

    Klemens Zaplata, Markus; Veste, Maik; Pohle, Ina; Schümberg, Sabine; Abreu Schonert, Iballa; Hinz, Christoph

    2016-04-01

    While there are hints that biological soil crusts (BSCs) can constitute physical barriers for the emergence of vascular plants, a conceptual approach for the quantitative evaluation of these effects is still missing. Here we present an experimental design to test the emergence of seedlings in situ with (i) capping natural intact, (ii) destroyed and (iii) removed BSC. The selected field site is directly adjacent to the constructed Hühnerwasser catchment (Lusatia, Germany). This site exists since the end of 2008 and consists of loamy sand. Serving as proxy for seedling thrust, we inserted pre-germinated seeds of three confamiliar plant species with different seed masses (members of the Fabaceae family: Lotus corniculatus L., Ornithopus sativus Brot., and Glycine max (L.) Merr.). In each treatment as well as in the control group planting depths were 10 mm. We took care that experimental plots had identical crust thickness, slightly less than 4 mm, serving as proxy for mechanical resistance. A plot became established as follows: Firstly, the pristine crusted surface was vertically cut. To the windward side the BSC remained intact (i: "with BSC" stripe). To the downwind side soil material was temporarily excavated for laterally inserting the seeds beneath the surface of the first stripe. Then at the thereby disturbed second stripe pulverised BSC material became filled as a top layer (ii: "BSC mix" stripe). From the next stripe the BSC was removed (iii: "no BSC" stripe). Thus each plot had each experimental group in spatial contiguity (within 50 cm × 50 cm). The overall 50 plots were distributed across an area of 40 m × 12 m. When individuals of a species either emerged at all stripes, "× × ×", or at no stripe of a plot, "- - -", there was no reason to suppose any effect of a crust. The "- × ×" emergence pattern (depicting the appearance of seedlings in both stripes possessing manipulated surfaces) points towards hindrance more clearly than "- × -" or "- -

  4. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  5. Eastern Indian 3800-million-year-old crust and early mantle differentiation

    USGS Publications Warehouse

    Basu, A.R.; Ray, S.L.; Saha, A.K.; Sarkar, S.N.

    1981-01-01

    Samarium-neodymium data for nine granitic and tonalite gneisses occurring as remnants within the Singhbhum granite batholith in eastern India define an isochron of age 3775 ?? 89 ?? 106 years with an initial 143Nd/144Nd ratio of 0.50798 ?? 0.00007. This age contrasts with the rubidium-strontium age of 3200 ?? 106 years for the same suite of rocks. On the basis of the new samarium-neodynium data, field data, and petrologic data, a scheme of evolution is proposed for the Archean crust in eastern India. The isotopic data provide evidence that parts of the earth's mantle were already differentiated with respect to the chondritic samarium-neodymium ratio 3800 ?? 106 years ago.

  6. Early Archean sialic crust of the Siberian craton: Its composition and origin of magmatic protoliths

    NASA Astrophysics Data System (ADS)

    Vovna, G. M.; Mishkin, M. A.; Sakhno, V. G.; Zarubina, N. V.

    2009-12-01

    This study demonstrates that the base of the Archean deep-seated granulite complexes within the Siberian craton consists of a metabasite-enderbite association. The major and trace element distribution patterns revealed that the protoliths of this association are represented by calc-alkaline andesites and dacites, containing several minor sequences of komatiitic-tholeiitic volcanic rocks. The origin of the primary volcanic rocks of the metabasite-enderbite association is inferred on the basis of a model of mantle plume magmatism, which postulates that both andesitic and dacitic melts were derived from the primary basitic crust at the expense of heat generated by ascending mantle plumes. The formation of the protoliths of the Archen metabasite-enderbite association of the Siberian craton began at 3.4 Ga and continued until the late Archean.

  7. Tectonic evolution of Early Paleozoic island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.

    2011-01-01

    The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.

  8. Srsbnd Ndsbnd Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust

    NASA Astrophysics Data System (ADS)

    He, Yongsheng; Li, Shuguang; Hoefs, Jochen; Kleinhanns, Ilka C.

    2013-01-01

    In order to characterize the recycled lower continental crust (LCC) in the Dabie orogen, 17 Early Cretaceous low-Mg adakitic (LMA) and 9 normal (non-adakitic) granitoids have been investigated for Srsbnd Ndsbnd Pb isotopes. Combined with literature data, LMA have low ƐNd(t) (- 27.8 to - 14.7) and 206Pb/204Pb(i) (15.69-17.16) and low to moderately high 87Sr/86Sr(i) (0.7066 to 0.7087) ratios. Normal granitoids yield isotope ratios similar to adakitic rocks, except a few with 87Sr/86Sr (i) up to 0.7105. Dabie LMA define a linear trend parallel to the North Hemisphere Reference Line (NHRL) in a 208Pb/204Pb(i)- 206Pb/204Pb(i) diagram. For a given 206Pb/204Pb(i), the 208Pb/204Pb(i) or ∆8/4 (152-217) of Dabie LMA are close to the majority of UHP gneisses and the Neoproterozoic mafic rocks from the northern margin of the South China Block (SCB), but significantly higher than adakitic rocks from the North China Block (∆8/4 < 150). Considering the commonly present Neoproterozoic inherited zircons, we suggest that the LMA in the Dabie orogen are derived from a thickened LCC that could be dominantly composed of ancient SCB lower crust. The Srsbnd Ndsbnd Pb isotopic composition of LMA are similar to those of Post-Collisional Mafic Igneous rocks (PCMI) from the Dabie orogen, but different to exhumed UHP rocks. The Srsbnd Ndsbnd Pb isotopic system of the mantle source of the PCMI could be enriched in components dominantly from delaminated LCC of the Dabie orogen instead of deeply subducted continental crust, which is in contrast to O- and C-isotope data by [Zhao, Z.F., Zheng, Y.F., Wei, C.S., Wu, Y.B., Chen, F.K., and Jahn, B.M., 2005. Zircon Usbnd Pb age, element and Csbnd O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83(1-2), 1-28; Dai, L.Q., Zhao, Z.F., Zheng, Y.F., Li, Q.L., Yang, Y.H., and Dai, M.N., 2011. Zircon Hfsbnd O isotope evidence for crust-mantle interaction during continental deep

  9. Early degassing of lunar urKREEP by crust-breaching impact(s)

    NASA Astrophysics Data System (ADS)

    Barnes, Jessica J.; Tartèse, Romain; Anand, Mahesh; McCubbin, Francis M.; Neal, Clive R.; Franchi, Ian A.

    2016-08-01

    Current models for the Moon's formation have yet to fully account for the thermal evolution of the Moon in the presence of H2O and other volatiles. Of particular importance is chlorine, since most lunar samples are characterised by unique heavy δ37Cl values, significantly deviating from those of other planetary materials, including Earth, for which δ37Cl values cluster around ∼0‰. In order to unravel the cause(s) of the Moon's unique chlorine isotope signature, we performed a comprehensive study of high-precision in situ Cl isotope measurements of apatite from a suite of Apollo samples with a range of geochemical characteristics and petrologic types. The Cl-isotopic compositions measured in lunar apatite in the studied samples display a wide range of δ37Cl values (reaching a maximum value of +36‰), which are positively correlated with the amount of potassium (K), Rare Earth Element (REE) and phosphorous (P) (KREEP) component in each sample. Using these new data, integrated with existing H-isotope data obtained for the same samples, we are able to place these findings in the context of the canonical lunar magma ocean (LMO) model. The results are consistent with the urKREEP reservoir being characterised by a δ37Cl ∼+30‰. Such a heavy Cl isotope signature requires metal-chloride degassing from a Cl-enriched urKREEP LMO residue, a process likely to have been triggered by at least one large crust-breaching impact event that facilitated the transport and exposure of urKREEP liquid to the lunar surface.

  10. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    PubMed Central

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-01-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  11. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming.

    PubMed

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V

    2016-01-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  12. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  13. Evidence for and implications of an Early Archean terrestrial impact record

    NASA Technical Reports Server (NTRS)

    Lowe, Donald R.; Byerly, Gary R.

    1988-01-01

    Early Archean, 3.5 to 3.2 Ga, greenstone sequences in South Africa and Western Australia contain a well-preserved record of early terrestrial meteorite impacts. The main impact-produced deposits are layers, 10 cm to over 1 m thick, composed largely of sand-sized spherules, 0.1 to 4 mm in diameter. The beds studied to date show an assemblage of features indicating formation by the fall of debris from impact-generated ejecta clouds. Some presented data effectively rule out normal magmatic or sedimentary processes in the origin of these units and provide substantial support for an origin by large impacts on the early earth. The presence of at least four, remarkably thick, nearly pure spherule layers suggests that smaller-scale impact deposits may be even more abundant in these sequences. The existence of a well-preserved Archean terrestrial impact record suggests that a direct source of evidence is available regarding a number of important aspects of early earth history.

  14. Intrusions of mixed origin migmatising early Achaean crust in northern Labrador, Canada

    NASA Technical Reports Server (NTRS)

    Schiotte, L.; Bridgwater, D.

    1986-01-01

    Migmatization of Early Archean Uivak gneisses by Late Archean granitic and trondhjemitic injections are described. The rare earth element, major element, and isotopic geochemistry of the felsic sheets is interpreted to indicate both mantle and crustal components, and the sheets with associated fluids were the vehicle for element transport in the crustal column with attendant isotopic modification of the older gneisses.

  15. Evolution of the earth's crust: Evidence from comparative planetology

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1973-01-01

    Geochemical data and orbital photography from Apollo, Mariner, and Venera missions were combined with terrestrial geologic evidence to study the problem of why the earth has two contrasting types of crust (oceanic and continental). The following outline of terrestrial crustal evolution is proposed. A global crust of intermediate to acidic composition, high in aluminum, was formed by igneous processes early in the earth's history; portions survive in some shield areas as granitic and anorthositic gneisses. This crust was fractured by major impacts and tectonic processes, followed by basaltic eruptions analogous to the lunar maria and the smooth plains of the north hemisphere of Mars. Seafloor spreading and subduction ensued, during which portions of the early continental crust and sediments derived therefrom were thrust under the remaining continental crust. The process is exemplified today in regions such as the Andes/Peru-Chile trench system. Underplating may have been roughly concentric, and the higher radioactive element content of the underplated sialic material could thus eventually cause concentric zones of regional metamorphism and magmatism.

  16. Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth

    NASA Technical Reports Server (NTRS)

    Chyba, C. F.; Sagan, C.; Thomas, P. J.; Brookshaw, L.

    1991-01-01

    A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts.

  17. Geochronological and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Hedge, C.E.

    1984-01-01

    Zircon U/Pb, feldspar common Pb, whole-rock Sm/Nd, and Rb/Sr data indicate that the fine-grained granodiorite (Z103) has yielded conclusive evidence for rocks of early Proterozoic age in the eastern Arabian Shield (21o19' N, 44o50' W). Z103 may have been emplaced approx 1630 m.y. ago and subsequently was severely deformed or perhaps even remobilized at approx 660 m.y. Furthermore, lead isotope data, along with other evidence, show that the 1630 m.y. crustal rocks inherited material from an older, probably Archaean, source at the time of their formation. At that time addition of mantle material considerably modified the Rb-Sr and Sm-Nd systems so that they now yield similar, or only slightly older apparent ages (1600-1800 m.y.).-L.diH.

  18. A terrestrial vegetation turnover in the middle of the Early Triassic

    NASA Astrophysics Data System (ADS)

    Saito, Ryosuke; Kaiho, Kunio; Oba, Masahiro; Takahashi, Satoshi; Chen, Zhong-Qiang; Tong, Jinnan

    2013-06-01

    Land-plant productivity was greatly reduced after the end-Permian mass extinction, causing a pronounced "coal gap" worldwide during the Early Triassic. Newly obtained organic geochemistry data from the Chaohu area, south China, indicated an abrupt and profound terrestrial vegetation change over the middle part of the Early Triassic Smithian-Spathian (S-S) interval. Herbaceous lycopsids and/or bryophytes dominated terrestrial vegetation from Griesbachian to Smithian times. The terrestrial ecosystem underwent an abrupt change, and woody conifers became dominant over the S-S interval. Several important biomarkers, namely retene, simonellite, and dehydroabietane (with multiple sources: conifer, lycopsid, and/or herbaceous bryophyte), were relatively abundant during Griesbachian, Dienerian, and Smithian times. The relatively low C/N ratio values during the Griesbachian-Smithian interval indicate that these biomarkers were likely sourced from herbaceous lycopsids and/or bryophytes. The extremely abundant conifer-sourced pimanthrene, combined with relatively high C/N ratio values, suggested the recovery of woody conifers after the S-S boundary. The new data revealed that the switch from herbaceous vegetation to woody coniferous vegetation marked a terrestrial plant recovery, which occurred globally within 3 million years after the end-Permian crisis rather than at a later date estimated in previous studies. In Chaohu, the S-S terrestrial event was marked by a reappearance of woody vegetation, while the S-S marine event was marked by an increase in ichnodiversity, trace complexity, burrow size, infaunal tiering level, and bioturbation level, and a possible intense upwelling event indicated by the extended tricyclic terpane ratios (ETR). Coeval vegetation changes with comparable patterns have also been documented in Europe and Pakistan based on palynologic studies. The S-S boundaries in Asia and Europe are associated with a positive δ13C excursion, the rebound of woody

  19. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  20. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  1. Growth of early archaean crust in the ancient Gneiss complex of Swaziland and adjacent Barberton Greenstone Belt, Southern Africa

    NASA Technical Reports Server (NTRS)

    Kroener, A.; Compston, W.; Tegtmeyer, A.; Milisenda, C.; Liew, T. C.

    1988-01-01

    The relationship between early Archean greenstones and high grade gneisses in the Ancient Gneiss Complex of Swaziland and the neighboring Barberton greenstone belt in Southern Africa is discussed. New high precision zircon analyses reveal a complex history in individual zircons from tonalitic orthogneisses, with ages as old as 3644 + 4 Ma. This suggests the presence of continental crust prior to the formation of the supracrustal rocks of the Barberton greenstone belt, which have been previously considered the earliest rocks in the area. The author suggested that these data are incompatible with the intraoceanic settings that have been widely accepted for this terrane, and favors either a marginal basin or rift environment. By using the detailed age information obtained from zircons in combination with Ar-40 and Ar-39 and paleomagnetic measurements, the author estimated that plate velocities for this part of Africa craton were about 10 to 70 mm/yr, during the period 3.4 to 2.5 Ga. This is not incompatible with the idea that Archean plate velocities may have been similiar to those of today.

  2. Growth of early archaean crust in the ancient Gneiss complex of Swaziland and adjacent Barberton Greenstone Belt, Southern Africa

    NASA Astrophysics Data System (ADS)

    Kroener, A.; Compston, W.; Tegtmeyer, A.; Milisenda, C.; Liew, T. C.

    The relationship between early Archean greenstones and high grade gneisses in the Ancient Gneiss Complex of Swaziland and the neighboring Barberton greenstone belt in Southern Africa is discussed. New high precision zircon analyses reveal a complex history in individual zircons from tonalitic orthogneisses, with ages as old as 3644 + 4 Ma. This suggests the presence of continental crust prior to the formation of the supracrustal rocks of the Barberton greenstone belt, which have been previously considered the earliest rocks in the area. The author suggested that these data are incompatible with the intraoceanic settings that have been widely accepted for this terrane, and favors either a marginal basin or rift environment. By using the detailed age information obtained from zircons in combination with Ar-40 and Ar-39 and paleomagnetic measurements, the author estimated that plate velocities for this part of Africa craton were about 10 to 70 mm/yr, during the period 3.4 to 2.5 Ga. This is not incompatible with the idea that Archean plate velocities may have been similiar to those of today.

  3. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis

    PubMed Central

    Janis, Christine M.; Devlin, Kelly; Warren, Daniel E.; Witzmann, Florian

    2012-01-01

    The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid–base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange. PMID:22535781

  4. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis.

    PubMed

    Janis, Christine M; Devlin, Kelly; Warren, Daniel E; Witzmann, Florian

    2012-08-01

    The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange. PMID:22535781

  5. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    SciTech Connect

    Beerbower, J.R. . Dept. of Geological Science); Olson, E.C. . Dept. of Biology); Hotton, N. III . Dept. of Paleobiology)

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fiber tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.

  6. Acyclic hydrocarbon environments ⩾ n-C 18 on the early terrestrial planets

    NASA Astrophysics Data System (ADS)

    Marcano, Vicente; Benitez, Pedro; Palacios-Prü, Ernesto

    2003-03-01

    The possible occurrence on the surface of the early Earth, Mars and Venus of hydrocarbon environments mainly composed by acyclic alkane molecules ⩾ n-C 18 has been revised. These hydrocarbons could be accumulated from the contribution of endogenous Fischer-Tropsh-type reactions and post-impact recombination reactions, as well as from exogenous sources such as comets, meteorites and dust particles. Such heavy alkane environments could offer protection for the synthesis and survival of biomolecules on the early terrestrial planets. Amounts of heavy n-alkanes delivered by large impactors, dust particles or produced by post-impact recombination on Venus would have been higher than those delivered or produced by the same sources on Earth and Mars before 3600 Myr ago. However, the high values of the total frequency of impacts by bolides >14-km in diameter estimated in this time period (viz. 3.9×10 3, Mars; 2.2×10 4, Earth, and 3.8×10 4 Venus) and the high surface temperatures generated by those impactors suggest the existence of very unstable conditions on the early terrestrial planets for the survival and long-term accumulation of acyclic hydrocarbons. Therefore, the most significant accumulation of n-alkanes could have occurred only during the longer intervals (10 5- 10 7 yr) between each impact through the contribution mainly of IDPs, and thereby a high decomposition rate would be expected for the accumulated n-alkanes by successive impacts. Amounts of n-alkanes accumulated from IDPs in these intervals have been estimated between 2.3×10 9 and 2.2×10 10 kg 3600- 3800 Myr ago. These processes are expected to occur on other planetary bodies or satellites belonging to our solar system and probably in analogs of the early solar system.

  7. Terrestrial Biomarkers for Early Life on Earth as Analogs for Possible Martian Life Forms: Examples of Minerally Replaced Bacteria and Biofilms From the 3.5 - 3.3-Ga Barberton Greenstone Belt, South Africa

    NASA Technical Reports Server (NTRS)

    Westall, F.; McKay, D. S.; Gibson, E. K.; deWit, M. J.; Dann, J.; Gerneke, D.; deRonde, C. E. J.

    1998-01-01

    The search for extraterrestrial life and especially martian life hinges on a variety of methods used to identify vestiges of what we could recognize as life, including chemical signatures, morphological fossils, and biogenic precipitates. Although the possibility of extant life on Mars (subsurface) is being considered, most exploration efforts may be directed toward the search for fossil life. Geomorphological evidence points to a warmer and wetter Mars early on in its history, a scenario that encourages comparison with the early Earth. For this reason, study of the early terrestrial life forms and environment in which they lived may provide clues as to how to search for extinct martian life. As a contribution to the early Archean database of terrestrial microfossils, we present new data on morphological fossils from the 3.5-3.3-Ga Barberton greenstone belt (BGB), South Africa. This study underlines the variety of fossil types already present in some of the oldest, best-preserved terrestrial sediments, ranging from minerally replaced bacteria and bacteria molds of vaRious morphologies (coccoid, coccobacillus, bacillus) to minerally replaced biofilm. Biofilm or extracellular polymeric substance (EPS) is produced by bacteria and appears to be more readily fossilisable than bacteria themselves. The BGB fossils occur in shallow water to subaerial sediments interbedded with volcanic lavas, the whole being deposited on oceanic crust. Penecontemporaneous silicification of sediments and volcanics resulted in the chertification of the rocks, which were later subjected to low-grade metamorphism (lower greenschist).

  8. Identification of Lichen Metabolism in an Early Devonian Terrestrial Fossil using Carbon Stable Isotope Signature

    NASA Astrophysics Data System (ADS)

    Porter, S.; Jahren, H.

    2002-05-01

    The fossil organismSpongiophyton minutissimum is commonly found in early terrestrial assemblages (Devonian age, 430-340 Ma). Suites of morphological descriptions of this fossil have been published, starting in 1954, and have led to two competing hypotheses: 1.) that this early colonizer of land was a primitive bryophyte, and therefore a precursor to modern plant organisms, and 2.) thatS. minutissimum was a lichen: a close association between an alga and a fungus. Because the ultimate mechanisms for carbon supply to the carboxylating enzyme in bryophytes and lichens differ fundamentally, we expect these two types of organisms to exhibit separate ranges of δ 13Ctissue value. In bryophytes, gaseous carbon dioxide diffuses through perforations in cuticle (resulting in δ 13Catmosphere - δ 13Cbryophyte = ~20 ‰ ). Within the lichen, carbon is supplied to the carboxylating enzyme of the photobiont as carbon dioxide dissolved in fungal cell fluids (resulting in δ 13Catmosphere - δ 13Clichen = ~15 ‰ ). By comparing the δ 13Ctissue value ofS. minutissimum (mean = -23 ‰ ;n = 75) with δ 13Ctissue values in twenty-five lichens, representative of the four different phylogenetic clades (mean = -23 ‰ ;n = 25) and thirty different genera of bryophytes including mosses, liverworts, and hornworts (mean = -28 ‰ ;n = 30), we conclude thatS. minutissimum was cycling carbon via processes that much more closely resembled those of lichens, and not bryophytes. We discuss the general strategies associated with lichen biology, such as the ability to withstand dessication during reproduction, and how they may have contributed to the successful colonization of terrestrial environments.

  9. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  10. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  11. Predicting the Sources and Formation Mechanisms of Evolved Lunar Crust by Linking K/Ca Ratios of Lunar Granites to Analogous Terrestrial Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.

    2012-01-01

    Although silicic rocks (i.e. granites and rhyolites) comprise a minor component of the sampled portion of the lunar crust, recent remote sensing studies [e.g., 1-4] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust formation. Isotopic data indicate that silicic melts were generated over a prolonged timespan from 4.3 to 3.9 Ga [e.g., 6-8]. The protracted age range and broad distribution of silicic rocks on the Moon indicate that their petrogenesis was an important mechanism for secondary crust formation. Understanding the origin and evolution of such silicic magmas is critical to determining the composition of the lunar crustal highlands and will help to distinguish between opposing ideas for the Moon's bulk composition and differentiation. The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 9, 10]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [11, 12]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal

  12. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    humidity (<20%) combined with elevated temperatures (>25°C) could cause sufficient cavitation to reduce hydraulic conductivity by 50%. This suggests that the Early Devonian environments that supported the earliest vascular plants were not subject to prolonged midseason droughts, or, alternatively, that the growing season was short. This places minimum constraints on water availability (e.g., groundwater hydration, relative humidity) in locations where Asteroxylon fossils are found; these environments must have had high relative humidities, comparable to tropical riparian environments. Given these constraints, biome-scale paleovegetation models that place early vascular plants distal to water sources can be revised to account for reduced drought tolerance. Paleoclimate proxies that treat early terrestrial plants as functionally interchangeable can incorporate physiological differences in a quantitatively meaningful way. Application of hydraulic models to fossil plants provides an additional perspective on the 475 million-year history of terrestrial photosynthetic environments and has potential to corroborate other plant-based paleoclimate proxies.

  13. Workshop on the Growth of Continental Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D. (Editor)

    1988-01-01

    Constraints and observations were discussed on a fundamental unsolved problem of global scale relating to the growth of planetary crusts. All of the terrestrial planets were considered, but emphasis was placed on the Earth's continental crust. The title of each session is: (1) Extraterrestrial crustal growth and destruction; (2) Constraints for observations and measurements of terrestrial rocks; (3) Models of crustal growth and destruction; and (4) Process of crustal growth and destruction.

  14. Multiple Tectonic Regimes and Diverging Geologic Histories of Terrestrial Planets: The Importance of the Early Years

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2013-12-01

    We use 3D mantle convection and planetary tectonics simulations to explore the links between tectonic regimes, the age of a planet, and its surface evolution. We demonstrate that the tectonic regime of a planet is dependant on its thermal and climatic evolution. A young planet with a high degree of internal heating has a strong susceptibility to climate-induced transitions in tectonic styles. The amplitude of a long lived surface temperature perturbation needed to initiate a transition from a mobile- to a stagnant-lid mode of tectonics decreases with increasing degrees of internal heating. As surface temperatures increase, episodic convection occurs over a larger range of lid strengths, suggesting that young and high temperature planetary bodies have a higher potential to exist in a long-lived mode of episodic tectonics. Once the system transitions into a stagnant-lid, the reverse transition is not attainable by a return to the original surface temperature, which indicates that the climate-tectonic system is bi-stable [multiple tectonic states are possible for the same parameter values]. As a planet ages, the system becomes increasingly insensitive to surface temperature induced transitions after ~30 - 50% of the original radiogenics decay. For a planet to transition from mobile- into episodic-, or stagnant-lid modes through the mechanism of increasing surface temperatures, the implication is that the change would have to occur early in its evolution, within the first 1-2 giga years. While the sensitivity to climatic perturbations decreases with the age of the planet, decreasing internal heat production can usher in a transition in tectonic regimes from a stagnant-lid state, into an episodic- and finally mobile-/sluggish-lid regimes. The implications are that terrestrial worlds can alternate between multiple tectonic states over giga-year timescales. The implications for the early Earth and Earth-Venus differences will be discussed.

  15. How do Early Impacts Modulate the Tectonic, Magnetic and Climatic Evolutions of Terrestrial Planets?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Jackson, M. G.; Lenardic, A.; Weller, M. B.

    2015-12-01

    The landmark discovery showing that the 142Nd/144Nd ratio of the accessible modern terrestrial mantle is greater than ordinary-chondrites has remarkable implications for the formation, as well as the geodynamic, magnetic and climatic histories of Earth. If Earth is derived from ordinary chondrite precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20-30 Myr following accretion. Critically for Earth evolution, this reservoir hosts the equivalent of the modern continents' budget of radioactive heat-producing elements (U, Th and K). If this reservoir was lost to space through mechanical erosion by early impactors, the planet's radiogenic heat generation is 18-45% lower than chondrite-based compositional estimates. Recent geodynamic calculations suggest that this reduced heat production will favor the emergence of Earth-like plate tectonics. However, parameterized thermal history calculations favor a relatively recent transition from mostly Atlantic-sized plates to the current plate tectonic mode characterized predominantly by the subduction of Pacific-sized plates. Such a transition in the style of Earth's plate tectonics is also consistent with a delayed dynamo and an evolving rate of volcanic outgassing that ultimately favors Earth's long-term clement climate. By contrast, relatively enhanced radiogenic heat production related to a less early impact erosion reduces the likelihood of present day plate tectonics: A chondritic Earth has a stronger likelihood to evolve as a Venus-like planet characterized by potentially wild swings in tectonic and climatic regime. Indeed, differences in internal heat production related to varying extents of impact erosion may exert strong control over Earth's climate and explain aspects of the differences among the current climatic regimes of Earth, Venus and Mars.

  16. The "terminal Triassic catastrophic extinction event" in perspective: a review of carboniferous through Early Jurassic terrestrial vertebrate extinction patterns

    USGS Publications Warehouse

    Weems, R.E.

    1992-01-01

    A catastrophic terminal Triassic extinction event among terrestrial vertebrates is not supported by available evidence. The current model for such an extinction is based on at least eight weak or untenable assumptions: (1) a terminal Triassic extinction-inducing asteroid impact occurred, (2) a terminal Triassic synchronous mass extinction of terrestrial vertebrates occurred, (3) a concurrent terminal Triassic marine extinction occurred, (4) all terrestrial vertebrate families have similar diversities and ecologies, (5) changes in familial diversity can be gauged accurately from the known fossil record, (6) extinction of families can be compared through time without normalizing for changes in familial diversity through time, (7) extinction rates can be compared without normalizing for differing lengths of geologic stages, and (8) catastrophic mass extinctions do not select for small size. These assumptions have resulted in unsupportable and (or) erroneous conclusions. Carboniferous through Early Jurassic terrestrial vertebrate families mostly have evolution and extinction patterns unlike the vertebrate evolution and extinction patterns during the terminal Cretaceous event. Only the Serpukhovian (mid Carboniferous) extinction event shows strong analogy to the terminal Cretaceous event. Available data suggest no terminal Triassic extinction anomaly, but rather a prolonged and nearly steady decline in the global terrestrial vertebrate extinction rate throughout the Triassic and earliest Jurassic. ?? 1992.

  17. The coupled 182W-142Nd record of early terrestrial mantle differentiation

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Horan, Mary F.; Walker, Richard J.

    2016-06-01

    New Sm-Nd, Lu-Hf, Hf-W, and Re-Os isotope data, in combination with highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) and W abundances, are reported for the 3.55 Ga Schapenburg komatiites, South Africa. The Schapenburg komatiites define a Re-Os isochron with an age of 3550 ± 87 Ma and initial γ187Os = +3.7 ± 0.2 (2SD). The absolute HSE abundances in the mantle source of the Schapenburg komatiite system are estimated to be only 29 ± 5% of those in the present-day bulk silicate Earth (BSE). The komatiites were derived from mantle enriched in the decay products of the long-lived 147Sm and 176Lu nuclides (initial ɛ143Nd = +2.4 ± 0.1, ɛ176Hf = +5.7 ± 0.3, 2SD). By contrast, the komatiites are depleted, relative to the modern mantle, in 142Nd and 182W (μ182W = -8.4 ± 4.5, μ142Nd = -4.9 ± 2.8, 2SD). These results constitute the first observation in terrestrial rocks of coupled depletions in 142Nd and 182W. Such isotopic depletions require derivation of the komatiites from a mantle domain that formed within the first ˜30 Ma of Solar System history and was initially geochemically enriched in highly incompatible trace elements as a result of crystal-liquid fractionation in an early magma ocean. This mantle domain further must have experienced subsequent melt depletion, after 182Hf had gone extinct, to account for the observed initial excesses in 143Nd and 176Hf. The survival of early-formed 182W and 142Nd anomalies in the mantle until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective mantle mixing during the Hadean. This work moreover renders unlikely that variable late accretion, by itself, can account for all of the observed W isotope variations in Archean rocks.

  18. The U-Pb, Hf and O isotopic record of ancient detrital zircons in Zimbabwean sediments - formation, reworking and nature of early Archaean crust

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Hofmann, Axel; Kemp, Anthony I. S.; Whitehouse, Martin J.; Wind, Sandra; Feng, Yuexing

    2014-05-01

    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from different Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan Groups and undated Sebakwian Group are presented to better define the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Textural and compositional criteria were employed to minimize effects arising from Pb loss, metamorphic overprinting and interaction with low temperature fluids. 207Pb/206Pb age spectra (concordance > 90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events both globally and within the Zimbabwe craton. O isotope compositions of ~ 4 - 10 opoint to both derivation from magmas in equilibrium with mantle and the assimilation of supracrustal material or interaction with metamorphic fluids. In ɛHf-time space, 3.8-3.6 Ga grains define an array consistent with derivation from a mafic to intermediate source reservoir (Lu/Hf ~0.015) that separated from chondritic mantle at ~ 3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from juvenile mantle sources and reworking of pre-existing crust. Importantly, initial Hf isotopic compositions document a protracted history of remelting, without evidence for significant mantle depletion prior to 3.35 Ga. This suggests that production of earliest crust in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs, possibly because heterogeneous mantle was effectively remixed by rapid convection due to higher temperatures in the early Archaean or the volume of crust was too small in volume to influence the isotopic mantle evolution. Similar Hf-O-time relationships observed in southern West Greenland were used as a basis to propose a transition in geodynamics 3.2 Ga ago. The absence of detrital zircons with crystallization ages > 3.8 Ga, along with a simple ɛHf-time array consistent with reworking of a mafic protolith

  19. Early crust of the Podolia Domain of the Ukrainian Shield: Isotopic age of terrigenous zircons from quartzites of the Bug Group

    NASA Astrophysics Data System (ADS)

    Bibikova, E. V.; Fedotova, A. A.; Claesson, S.; Stepanyuk, L. M.

    2015-11-01

    Detrital zircons of the ancient metasedimentary rocks bear important information about the early crust of the Earth. In this work, the early crust in the west of the Ukrainian Shield was studied using U-Pb dating of terrigenous zircons from metasedimentary rocks (quartzites) of the lower parts of the Bug Group (Kosharo-Aleksandrovka Formation) of the Podolia Domain and through Sm-Nd isotopic investigation of these rocks. The Nd model age of rocks is 3.4-3.1 Ga. Detrital zircons were studied in two samples of quartzites. The cathodoluminescent images of most zircons support their clastic origin. More than 150 zircon grains were studied on an ion microprobe. The isotope age of zircons is 3775-2000 Ma. These results were compared with previous results of study of terrigenous zircons from garnet schists of the Zaval'e quarry located closely to the studied area. It is concluded that both Paleoarchean and Meso- to Neoarchean rocks were destroyed during formation of terrigenous rocks of the Bug Group. The different amount of ancient zircons in quartzites and garnet schists indicates the different remoteness of the most ancient rocks from sedimentary basins.

  20. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    More than twenty years since the publication of Armstrong's seminal paper, debate still rages about most aspects of the Earth's first billion years. Although orders of magnitude more data have been generated since then, the arguments remain the same. The debate is largely centered on the isotopic systematics of minerals and whole rocks, the major and trace element geochemistry of continental crust, and various geodynamic models for differentiation of the planet. Most agree that earth, like all the terrestrial planets, differentiated into a crust, mantle and core very early in its history. After that, models of crustal evolution diverge significantly, including the suggestions that modern style plate tectonics did not originate until ca. 2.7 Ga or younger and that plumes have played a major role in the generation of continental crust. Many believe that the preserved rock record and the detrital zircon record are consistent with episodic crustal growth, which in turn has led to geodynamic models of episodic mantle convection driving major crust forming events. High-precision and high-throughput geochronology have led to claims of episodicity even more pronounced than that presented in Gastil's 1960 paper. We believe that Earth history has been dominated by plate tectonics and that continental crust is formed largely by amalgamation of island arcs, seamounts, micro continents, and oceanic plateaus. While there are geochemical differences in the average composition of Archean igneous rocks when compared to younger rocks, the processes responsible for their formation may not have changed a great deal. In this view, the so-called crustal growth curves originated by Hurley are in fact crude approximations of crustal preservation. The most highly cited rationales for the view that little silicic crust formed during Earth's first billion years are the lack of known exposed crust older than 3.5 Ga and the paucity of detrital zircons older than 4.0 Ga in sedimentary rocks of

  1. The hydrologic response of Mars to the onset of a colder climate and to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Morphologic similarities between the Martian valley networks and terrestrial runoff channel have been cited as evidence that the early Martian climate was originally more Earth-like, with temperatures and pressures high enough to permit the precipitation of H2O as snow or rain. Although unambiguous evidence that Mars once possessed a warmer, wetter climate is lacking, a study of the transition from such conditions to the present climate can benefit our understanding of both the early development of the cryosphere and the various ways in which the current subsurface hydrology of Mars is likely to differ from that of the Earth. Viewed from this perspective, the early hydrologic evolution of Mars is essentially identical to considering the hydrologic response of the Earth to the onset of a global subfreezing climate.

  2. Early Archean crust in the northern Wyoming province Evidence from U-Pb ages of detrital zircons

    USGS Publications Warehouse

    Mueller, P.A.; Wooden, J.L.; Nutman, A.P.; Mogk, D.W.

    1998-01-01

    U-Pb ages of individual detrital and metamorphic zircons from 12 Archean metasedimentary rocks, including quartzites, from the Beartooth, Ruby, and Tobacco Root uplifts of the northern Wyoming province indicate that they were deposited between 2.7 and 3.2 Ga. Younger, metamorphic zircons are found as overgrowths and new grains in some samples, and yield ages between 2.7 and 1.9 Ga. They are, however, much less abundant than detrital grains, which constitute >75% of the 355 grains analyzed. The majority of the detrital grains have ages between 3.2 and 3.4 Ga; none are younger than 2.9 Ga. Grains with 207Pb/206Pb ages between 3.4 and 4.0 Ga constituted approximately 15% of all grains with analyses within 10% of concordia, but are concentrated in samples from the eastern Beartooth Mountains. Comparison of the average of the Pb-Pb ages of individual zircons within 10% of concordia with previously published Lu-Hf chondritic model ages for some individual samples suggests that the age distribution recorded by the U-Pb system in these zircons has not been significantly disturbed by pre- or post-depositional Pb-loss. Collectively, these data suggest that the individual metasedimentary rocks did not completely share a common provenance and that a major crust-forming cycle occurred 3.2 to 3.4 Ga. In conjunction with previously published U-Th-Pb whole-rock data, these results suggest that rocks with a relatively high proportion of > 3.4 Ga grains may have had crust of comparable age in their provenance. ?? 1998 Elsevier Science B.V.

  3. Early Cretaceous low-Mg# adakitic rocks in the southern margin of the central North China Craton: Partial melting of thickened lower continental crust and tectonic implications

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    This paper reports new whole-rock geochemical, Sr-Nd-Pb isotopic, and zircon U-Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia-Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon LA-ICP-MS U-Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~130 Ma) and the late Early Cretaceous (116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054-0.7095), and low eNd(t) (-11.90 to -22.20) and eHf(t) (-16.7 to -32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754-542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the

  4. Continental crust subducted deeply into lithospheric mantle: the driving force of Early Carboniferous magmatism in the Variscan collisional orogen (Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Janoušek, Vojtěch; Schulmann, Karel; Lexa, Ondrej; Holub, František; Franěk, Jan; Vrána, Stanislav

    2014-05-01

    The vigorous Late Devonian-Early Carboniferous plutonic activity in the core of the Bohemian Massif was marked by a transition from normal-K calc-alkaline, arc-related (~375-355 Ma), through high-K calc-alkaline (~346 Ma) to (ultra-)potassic (343-335 Ma) suites, the latter associated with mainly felsic HP granulites enclosing Grt/Spl mantle peridotite bodies. The changing chemistry, especially an increase in K2O/Na2O and 87Sr/86Sri with decrease in 143Nd/144Ndi in the basic end-members, cannot be reconciled by contamination during ascent. Instead it has to reflect the character of the mantle sources, changing over time. The tectonic model invokes an oceanic subduction passing to subduction of the attenuated Saxothuringian crust under the rifted Gondwana margin (Teplá-Barrandian and Moldanubian domains). The deep burial of this mostly refractory felsic metaigneous material is evidenced by the presence of coesite/diamond (Massonne 2001; Kotková et al. 2011) in the detached UHP slices exhumed through the subduction channel and thrusted over the Saxothuringian basement, and by the abundance of felsic HP granulites (> 2.3 GPa), some bearing evidence for small-scale HP melt separation, in the orogen's core (Vrána et al. 2013). The subduction channel was most likely formed by 'dirty' serpentinites contaminated by the melts/fluids derived from the underlying continental-crust slab (Zheng 2012). Upon the passage through the orogenic mantle, the continental crust-slab derived material not only contaminated the adjacent mantle forming small bodies/veins of pyroxenites (Becker 1996), glimmerites (Becker et al. 1999) or even phlogopite- and apatite-bearing peridotites (Naemura et al. 2009) but the felsic HP-HT granulites also sampled the individual peridotite types at various levels. Eventually the subducted felsic material would form an (U)HP continental wedge under the forearc/arc region, to be later redistributed under the Moldanubian crust by channel flow and crustal

  5. Collescipoli - An unusual fusion crust glass. [chondrite

    NASA Technical Reports Server (NTRS)

    Nozette, S.

    1979-01-01

    An electron microprobe study was conducted on glass fragments taken from the fusion crust and an internal glass-lined vein in the H-5 chondrite Collescipoli. Microprobe analyses of the glasses revealed an unusual fusion crust composition, and analyses of glass from inside the meteorite showed compositions expected for a melt of an H-group chondrite. Studies of fusion crusts by previous workers, e.g., Krinov and Ramdohr, showed that fusion crusts contain large amounts of magnetite and other oxidized minerals. The Collescipoli fusion crusts do contain these minerals, but they also contain relatively large amounts of reduced metal, sulphide, and a sodium-rich glass. This study seems to indicate that Collescipoli preserved an early type of fusion crust. Oxidation was incomplete in the fusion crust melt that drained into a crack. From this study it is concluded that fusion crust formation does not invariably result in complete oxidation of metal and sulphide phases.

  6. Crustal development in the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1985-01-01

    The development of planetary crusts may be divided into primary, resulting from melting during accretion, and secondary crusts developed by partial melting from planetary mantles. The Mercurian crust is probably primary with no compelling evidence of later basaltic extrusions. Reflectance spectral evidence for the existence Fe2(+) is equivocal. The Viking Lander XRF data on Mars indicate basaltic material at both sites 4,000 km apart. Surface aeolian processes would be expected to provide a homogeneous average of the crust, but no evidence of more siliceous material is present. This conclusion is weakly supported by the Russian gamma ray data. No evidence for granite appears from the Russian Venera XRF data which indicates MORB-type and alkali basalt (4% K2O) surface compositions. The highlands of Ishtar Terra and Aphrodite probably owe their elevation to tectonic processes rather than compositional effects. Venus may thus resemble the early Archean Earth. The terrestrial granitic continental crust is a product of episodic multiple partial melting events, probably a consequence of the presence of surface water.

  7. Early Holocene volcanism in CKD (Kamchatka) as a mechanical probe of the stress level in the crust.

    NASA Astrophysics Data System (ADS)

    Simakin, Alexander; Shaposhnikova, Olga

    2016-04-01

    The last (late Pleistocene) glaciation in Kluychevskaya group of volcanoes (KGV) can be considered as a large scale mechanical experiment allowing evaluation of the level of the global geodynamic stresses in the crust of North Kamchatka. KGV is located in the Central Kamchatka depression (CKD). Formation of the CKD can be connected with accretion of Kronotsky paleoarc to the Kamchatka edge c.a. 5 Mys ago. At the compression stage zone of the contact was thickened so that lower part can reach PT parameters of basalt-eclogite transition. Suggested carbonates contamination of the mantle wedge during accretion (Simakin et al., 2015) can became a source of CO2 facilitating eclogite formation. Dense eclogitic keel and trench retreat following accretion can be the driving forces of the CKD rift formation. Extension is partially accommodated (several mm/yr eastward motion) on the eastern border of CKD in the zone of the normal faulting (Kozhurin et al., 2006). And partially extension is accommodated by the formation of the series of dykes of submeridional direction marked by monogenic cones on the surface. At the last phase of the Pleistocene glaciation KGV was covered by the ice cap with 80 km diameter and above 1000 m maximum thickness on the slopes. After the fast deglaciation surface uplift has produced horizontal compression (Simakin and Muravyev, 2015; Pagli and Sigmundsson, 2008). Addition of the deglacial compression to the geodynamic extension turns s1 direction to the horizontal latitudinal one. Due to the horizontal compression areal of eruptions was expanded towards edges of the former glacier. Numerical modeling demonstrates that maximum level of the glacial stress is proportional to the ice gravity load and is estimated to be 5.8-7.5 MPa. Initially principle compressive stress due to the deglaciation was higher than geodynamic one abs(s1,glac) > abs(s1,geod). Time of the volcanism return to the basic submeridional direction marked the moment of viscous

  8. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  9. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  10. Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean1

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kato, Yasuhiro

    2004-11-01

    Early Archean (3.46 Ga) hydrothermally altered basaltic rocks exposed near Marble Bar, eastern Pilbara Craton, have been studied in order to reveal geological and geochemical natures of seafloor hydrothermal carbonatization and to estimate the CO 2 flux sunk into the altered oceanic crust by the carbonatization. The basaltic rocks are divided into basalt and dolerite, and the basalt is further subdivided into type I, having original igneous rock textures, and type II, lacking these textures due to strong hydrothermal alteration. Primary clinopyroxene phenocrysts are preserved in some part of the dolerite samples, and the alteration mineral assemblage of dolerite (chlorite + epidote + albite + quartz ± actinolite) indicates that the alteration condition was typical greenschist facies. In other samples, all primary minerals were completely replaced by secondary minerals, and the alteration mineral assemblage of the type I and type II basalts (chlorite + K-mica + quartz + carbonate minerals ± albite) is characterized by the presence of K-mica and carbonate minerals and the absence of Ca-Al silicate minerals such as epidote and actinolite, suggesting the alteration condition of high CO 2 fugacity. The difference of the alteration mineral assemblages between basalt and dolerite is probably attributed to the difference of water/rock ratio that, in turn, depends on their porosity. Carbonate minerals in the carbonatized basalt include calcite, ankerite, and siderite, but calcite is quite dominant. The δ 13C values of the carbonate minerals are -0.3 ± 1.2‰ and mostly within the range of marine carbonate, indicating that the carbonate minerals were formed by seafloor hydrothermal alteration and that carbonate carbon in the altered basalt was derived from seawater. Whole-rock chemical composition of the basaltic rocks is essentially similar to that of modern mid-ocean ridge basalt (MORB) except for highly mobile elements such as K 2O, Rb, Sr, and Ba. Compared to the

  11. The nature of the crust in the Yukon-Koyukuk province as inferred from the chemical and isotopic composition of five Late Cretaceous to Early Tertiary volcanic fields in western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E.; Arth, Joseph G.

    1989-01-01

    Late Cretaceous and early Tertiary volcanic and plutonic rocks in western Alaska comprise a vast magmatic province extending from the Alaska Range north to the Arctic Circle, south to Bristol Bay, and west to the Bering Sea Shelf. The chemical and isotopic composition of five of these Late Cretaceous to early Tertiary volcanic fields in the north central part of this province were studied to determine if Paleozoic or older continental crust underlies the Yukon-Koyukuk province. -from Authors

  12. Magma mixing and crust-mantle interaction in Southeast China during the Early Cretaceous: Evidence from the Furongshan granite porphyry and mafic microgranular enclaves

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Zuo; Chen, Pei-Rong; Sun, Li-Qiang; Ling, Hong-Fei; Zhao, You-Dong; Lan, Hong-Feng

    2015-11-01

    The petrogenesis and tectonic setting of Early Cretaceous granitoids and their enclaves emplaced in the Gan-Hang Tectonic Belt are still controversial. Here, we investigate mafic microgranular enclaves (MMEs) and their host granite porphyry from the Furongshan caldera to elucidate magma mixing and crust-mantle interaction in the Gan-Hang Tectonic Belt. The Furongshan granite porphyry is characterized by enrichments of alkalis, REE, Zr + Nb + Ce + Y contents (averaging 377 ppm), and high zircon saturation temperatures (793-843 °C), suggesting A-type granitic affinities. The granite porphyry can be further classified as an A2 subtype granite based on high Y/Nb ratios (averaging 1.37). Zircon cores from the Furongshan MMEs exhibit the same εHf(t) values (-10.0 to -3.0) and U-Pb ages (127-129 Ma) as zircons form the granite porphyry, implying that they were captured from the felsic magma as xenocrysts. Petrological and mineralogical characteristics (such as needle-like apatite and disequilibrium feldspar xenocryst) suggest that the Furongshan MMEs and host granite porphyry were formed by magma mixing rather than restite, xenolith or fractional crystallization of mafic magma. The Furongshan granite porphyry samples have initial 87Sr/86Sr ratios of 0.7073-0.7099 and εNd(t) values of -3.7 to -3.3, which are similar to those of the MMEs (0.7068-0.7077 and -3.2 to -2.9, respectively). Similar trace element and Sr-Nd isotopic compositions imply a high degree of geochemical equilibration between the granite porphyry and its MMEs, and hence intense magma mixing, although some element contents and zircons εHf(t) values differ due to high zircon closure temperature and rapid cooling of commingled magmas. A binary mixing model based on Sr-Nd isotopes indicates a contribution of ∼50% basaltic melt to the hybrid magma of the Furongshan granite porphyry. A compilation of Sr-Nd-Hf isotopic data of the granitoids and MMEs from the Xiangshan, Furongshan and Muchen areas suggest

  13. On the relationship between early solar activity and the evolution of terrestrial planet atmospheres

    NASA Technical Reports Server (NTRS)

    Repin, Robert O.

    1989-01-01

    Mass fractionation during hydrodynamic escape of hydrogen-rich primordial atmospheres form Venus, earth, and Mars can account for most of the salient features of mass distributions in their present-day atmospheres. The principal assumptions and results of an escape-fractionation model for the evolution of terrestrial planet atmospheres from primary to final states are qualitatively described, with emphasis on the astrophysical conditions needed to enable the loss process. A substantial and rapidly declining flux of energetic solar radiation into atmospheric exospheres is required, initially (at solar ages of about 1-10 million years) two to three orders of magnitude more intense than that supplied by extreme-ultraviolet emission from the contemporary sun. The solar accretion disk must have dissipated if such radiation is to penetrate the system midplane to planetray distances. On both criteria, hydrodynamic escape from planets appears plausible in the astrophysical environment of the naked T-Tauri stars.

  14. The Continental Crust.

    ERIC Educational Resources Information Center

    Burchfiel, B. Clark

    1983-01-01

    Continental crust underlies the continents, their margins, and also small shallow regions in oceans. The nature of the crust (much older than oceanic crust) and its dynamics are discussed. Research related to and effects of tectonics, volcanism, erosion, and sedimentation on the crust are considered. (JN)

  15. Early archean spherule beds in the Barberton mountain land, South Africa: Impact or terrestrial origin?

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; Koeberl, Christian; Johnson, Steven; McDonald, Iain

    The origin of multiple spherule-rich layers of millimeter to meter width, all occurring within the transition from the Fig Tree to the Onverwacht Group of the Barberton Greenstone Belt in South Africa, has been strongly debated during the last decade. One school subscribes to an origin by large meteorite impact, whereas others have preferred terrestrial processes. In particular, strong enrichments in siderophile elements, especially Ir, and chondrite-like PGE patterns for spherule layer samples have been cited as evidence favoring an impact origin. Recently, Cr isotopic signatures obtained for samples from two spherule layers have provided further support for this hypothesis. In contrast, our group has emphasized that secondary hydrothermal processes have pervasively overprinted the whole stratigraphy at this transition. Ir concentrations up to 5 times chondritic are suspect as primary impact-produced signatures. Here, we report new petrographic and geochemical data for samples from spherulitic horizons marking the S2 layer and from interlayered BIF, chert, and mudstone strata. In contrast to earlier work, the new samples were obtained from outside of the gold-sulfide mineralized ore zone on Agnes Mine. Both spherule and country rock samples are enriched in siderophile elements, with up to >1500 ppb Ir. Some of the highest values are related to clearly secondary fault and shear zone deposits. Chrome-spinel in spherule layers is often zoned. A proton microprobe study identified in one case the mineral gersdorffite, of likely secondary origin, as a carrier phase for Ir, whereas in other samples Ir must be contained in matrix silicates. New PGE analyses for more or less sulfidemineralized samples yielded uniformly flat, near-chondritic patterns.

  16. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G., Jr.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  17. Early results from a terrestrial-marine BGC coupling study in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Vermilyea, A.; Spencer, R. G.; Hood, E. W.; Stubbins, A.

    2010-12-01

    In 2010 we began a long-term comparative study of watershed contributions to coastal marine nutrients in the northeast Pacific from a modest deployment of sensors combined with sample analysis. The preliminary results presented here establish a baseline for defining and subsequently tracking physical system parameters relevant to marine productivity over two decades, in two contexts: First in the context of research by Hood and others: Comparing glacier-covered to un-glaciated watershed output in a Lagrangian sense of particle and parcel transport. Second, in a more Eulerian sense: How will impact on coastal marine ecosystems from changing terrestrial freshwater input compare over decades to that of changes in physical parameters like pH, upwelling nutrient supply along the continental shelf and temperature? In our initial efforts we trolled two estuary plumes pulling samples for laboratory analysis and operating in situ sensors in tandem with GPS while other in situ sensors collected data from within source rivers (Eagle River and Peterson Creek near Juneau, AK, in respectively glaciated and forested watersheds). The strategy is to produce comparable synoptic datasets across the freshwater-marine mixing regime of the plume using salinity as a mixing proxy. Initial datasets include CDOM, dissolved oxygen, turbidity, chlorophyll-A, and (from samples) total organic carbon, total nitrogen, absorption spectra and excitation-emission matrices. Future work will expand this list to include mass spectrometer and NMR data. In working with this synoptic dataset we are faced with both curation and interpretation challenges; hence a primary objective of the project is to use the trans-disciplinary and data-intensive nature of the research problem set to motivate technology adoption. We have in mind here the notion of electronic publication (exemplified in this AGU poster) that permits collaborators and readers to reach back into source data and trace the origins and processes

  18. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.

    PubMed

    Carley, Sanya R; Krause, Rachel M; Warren, David C; Rupp, John A; Graham, John D

    2012-07-01

    While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS. PMID:22681614

  19. Lu-Hf systematics of the ultra-high temperature Napier Complex, East Antarctica: evidence for the early Archean formation of continental crust

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.; Andronikov, A. V.; Osanai, Y.; Harley, S. L.; Kelly, N. M.

    2009-12-01

    The Napier Complex in East Antarctica comprises some of the oldest rocks on earth (~3.8 billion years old), overprinted by an ultra-high temperature (UHT) metamorphic event near the Archean-Proterozoic boundary. Garnet, orthopyroxene, sapphirine, osumilite, rutile and a whole rock representing an equilibrated assemblage from this belt yield a Lu-Hf isochron age of 2,403 ± 43 Ma. Preservation of the UHT mineral assemblage in the rock analyzed suggests rapid cooling with closure likely to have occurred for the Lu-Hf system at post-peak UHT conditions near a temperature of ~800C. Individual zircon grains from Gage Ridge within the Napier Complex yielded a remarkably uniform range of 176Hf/177Hf values between 0.280433 ± 7 and 0.280505 ± 10, corresponding to ɛHf > +5.6 at 3.85 Ga relative to the chondritic uniform reservoir (CHUR). Because of their exceedingly low Lu/Hf values (<0.001), the grains are effectively recording the initial Hf isotope composition of the magmatic systems from which the gneiss protoliths crystallized. These results indicate that (1) the source of the crustal materials that formed the Napier Complex at 3.85 Ga were depleted relative to the CHUR. The extent of depletion involved is higher than has been predicted by extrapolation from the Lu-Hf isotopic evolution inferred for the source of Proterozoic and Phanerozoic basalts, judging from an fLu/Hf value of 0.51, (2) the depleted mantle reservoir has been in existence since very early in Earth’s history, in agreement with the early differentiation of the Earth that the latest core formation models require, and (3) an extremely depleted source also mean that the bulk of continental crust was extracted from the mantle by ~3.8 Ga. Moreover, the results demonstrate that even the oldest silicic rocks in the complex are not likely to have formed from remobilized older crustal materials, but were instead juvenile products of mantle melting. In addition, zircons with metamorphic rims have a similar

  20. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  1. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  2. Ion microprobe zircon geochronology of the Uivak Gneisses: Implications for the evolution of early terrestrial crust in the North Atlantic Craton

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.

    1983-01-01

    Ion microprobe U-Pb results for zircons from three Uivak I gneisses and one specimen of Uivak II gneiss, from the Saglek-Hebron area of Northern Labrador are reported. These results are compared with interpretations based on published conventional U-Pb zircon results and with conclusions about crustal evolution in the NAC derived from Rb-Sr, Sm-Nd and Pb-Pb isotopic studies.

  3. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya

    PubMed Central

    Braun, David R.; Harris, John W. K.; Levin, Naomi E.; McCoy, Jack T.; Herries, Andy I. R.; Bamford, Marion K.; Bishop, Laura C.; Richmond, Brian G.; Kibunjia, Mzalendo

    2010-01-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  4. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya.

    PubMed

    Braun, David R; Harris, John W K; Levin, Naomi E; McCoy, Jack T; Herries, Andy I R; Bamford, Marion K; Bishop, Laura C; Richmond, Brian G; Kibunjia, Mzalendo

    2010-06-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  5. Early terrestrial impact events: Archean spherule layers in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Schulz, Toni; Reimold, W. Uwe; Hofmann, Axel

    2015-04-01

    In addition to the oldest known impact structure on Earth, the 2.02-billion-year-old Vredefort Structure in South Africa, the evidence of Early Earth impact events are Archean spherule beds in South Africa and Australia. These spherules have been interpreted as condensation products from impact plumes and molten impact ejecta or/and impact ejecta that were melted during atmospheric re-entry [e.g., 1,2]. The 3.2-3.5 Ga spherule layers in the Barberton Greenstone Belt in South Africa currently represent the oldest known remnants of impact deposits on Earth. Aiming at identification of extraterrestrial components and to determine the diagenetic and metamorphic history of spherule layer intersections recently recovered in the CT3 drill core from the northeastern part of the Barberton Greenstone Belt, we have studied samples from these layers in terms of petrography and geochemistry. All samples, including spherule layer intersections and intercalating country rocks, were studied for mineral identification by optical and electron microscopy, as well as electron microprobe analysis (EPMA) at Natural History Museum Vienna and Museum für Naturkunde Berlin (MfN). Major and trace element compositions were determined via X-ray fluorescence spectrometry at MfN and instrumental neutron activation analysis (INAA) at University of Vienna. Os isotopes were measured by thermal ionization mass spectrometry (N-TIMS) at University of Vienna. Eighteen spherule beds are distributed over 150 meter drill core in CT3. Spherules are variably, deformed or undeformed. The high number of these layers may have been caused by tectonic duplication. Spherule beds are intercalated with shale, chert, carbonate, and/or sulfide deposits (country rocks). The size range of spherules is 0.5 to 2 mm, and some layers exhibit gradation. Shapes of spherules differ from spherical to ovoid, as well as teardrops, and spherules commonly show off-center vesicles, which have been interpreted as a primary

  6. Speciation of C-O-H volatiles in reduced magmas applicable to early terrestrial and planetary deep volatile cycles

    NASA Astrophysics Data System (ADS)

    Armstrong, Lora; Hirschmann, Marc

    2014-05-01

    The speciation and solubility of C-O-H volatiles in reduced magmas are of great importance for volatile behavior in the early Earth and other planets determining partitioning between Earth's earliest atmospheres, mantle, and cores, as well as influencing volcanogenic degassing on reduced planetary bodies such as Mars and the Moon. In mafic and ultramafic magmas, C is soluble chiefly as carbonate under oxidizing conditions, but when fO2 is below that required for graphite (or diamond) saturation, carbonate solubility diminishes severely. This has left the question as to what, if any, species may host dissolved C in magmas under reducing conditions. Initial results suggested that the principle species may be CH4 (Mysen et al. 2009), but experiments at well-defined thermodynamic conditions have shown that CH4 solubility is very small except under conditions of very high H2 fugacity (Ardia et al. 2012). More recent experiments (Wetzel et al. 2013; Stanley et al. 2014) have identified Fe-carbonyl-like species as possibly the most stable. To clarify the relative stability of these species, we have conducted additional high pressure experiments at 1.2 GPa and 1400°C with graphite-saturated martian and terrestrial (MORB) basalt compositions, over a range of oxygen fugacities, paying careful attention to the availability of H2O. FTIR and Raman analyses reveal a range of distinct species that predominate as a function of fO2 and availability of H2O. At comparatively oxidizing conditions, carbonate is the most abundant species but within 1 log unit of iron wustite (IW), carbonyl-like species predominate, provided that conditions are comparatively dry. At yet more reducing conditions, carbonyl is absent and instead N-H associated species (perhaps amides?) are more important. Methane is observed only when quenched glasses have appreciable H2O (approaching ~ 1 wt.%). In all cases, solubilities are small when conditions are reduced, with <100 ppm C at IW or below.

  7. Sea surface temperatures and terrestrial water storage provide early warning information about fire season severity in the Amazon

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; DeFries, R. S.; Collatz, G. J.; Kasibhatla, P. S.; Giglio, L.; Jin, Y.; Marlier, M. E.; Velicogna, I.; Famiglietti, J. S.

    2012-12-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in satellite observations of active fires in South America and sea surface temperatures. We found that the Oceanic Niño Index was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional fire season severity with 3-5 month lead times. We further examined the hypothesis that year-to-year variations in soil water recharge during the wet season modifies atmospheric water vapor and fire behavior during the following dry season. We tested this hypothesis by analyzing terrestrial water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE), active fires from the Moderate Resolution Imaging Spectroradiometer (MODIS), and other satellite and climate data during 2002-2011. We found that TWS anomalies at the end of the wet season were negatively correlated with the number of active fires during the dry season for three regions across the southern Amazon. The most significant relationships (p < 0.02) were observed for TWS anomalies during April-August, several months before the peak month of burning (September). Analysis of other datasets provided evidence for a cascade of processes during drought events, with lower cumulative precipitation (and higher cumulative evapotranspiration) in the wet season substantially reducing TWS, and subsequently surface and column water vapor. Our results indicate that TWS from GRACE also has the potential to provide early warning information about fire season severity in the Amazon.

  8. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  9. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  10. Eoarchean crustal evolution of the Jack Hills zircon source and loss of Hadean crust

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.; Harrison, T. Mark; Kohl, Issaku E.; Young, Edward D.

    2014-12-01

    Given the global dearth of Hadean (>4 Ga) rocks, 4.4-4.0 Ga detrital zircons from Jack Hills, Narryer Gneiss Complex (Yilgarn Craton, Western Australia) constitute our best archive of early terrestrial materials. Previous Lu-Hf investigations of these zircons suggested that felsic (low Lu/Hf) crust formation began by ∼4.4 to 4.5 Ga and continued for several hundred million years with evidence of the least radiogenic Hf component persisting until at least ∼4 Ga. However, evidence for the involvement of Hadean materials in later crustal evolution is sparse, and even in the detrital Jack Hills zircon population, the most unradiogenic, ancient isotopic signals have not been definitively identified in the younger (<3.9 Ga) rock and zircon record. Here we show Lu-Hf data from <4 Ga Jack Hills detrital zircons that document a significant and previously unknown transition in Yilgarn Craton crustal evolution between 3.9 and 3.7 Ga. The zircon source region evolved largely by internal reworking through the period 4.0-3.8 Ga, and the most ancient and unradiogenic components of the crust are mostly missing from the record after ∼4 Ga. New juvenile additions to the crust at ca. 3.9-3.8 Ga are accompanied by the disappearance of unradiogenic crust ca. 3.9-3.7 Ga. Additionally, this period is also characterized by a restricted range of δ18O after 3.8 Ga and a shift in several zircon trace element characteristics ca. 3.9-3.6 Ga. The simultaneous loss of ancient crust accompanied by juvenile crust addition can be explained by a mechanism similar to subduction, which effects both processes on modern Earth. The oxygen isotope and trace element information, although less sensitive to tectonic setting, also supports a transition in zircon formation environment in this period.

  11. The Oceanic Crust.

    ERIC Educational Resources Information Center

    Francheteau, Jean

    1983-01-01

    The earth's oceanic crust is created and destroyed in a flow outward from midocean ridges to subduction zones, where it plunges back into the mantle. The nature and dynamics of the crust, instrumentation used in investigations of this earth feature, and research efforts/findings are discussed. (JN)

  12. Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa.

    PubMed

    Kyriacou, K; Blackhurst, D M; Parkington, J E; Marais, A D

    2016-08-01

    Many attempts have been made to define and reconstruct the most plausible ecological and dietary niche of the earliest members of the human species. While earlier models emphasise big-game hunting in terrestrial, largely savannah environments, more recent scenarios consider the role of marine and aquatic foods as a source of polyunsaturated fatty acids (PUFA) and other brain-selective nutrients. Along the coast of southern Africa, there appears to be an association between the emergence of anatomically modern humans and accumulation of some of the earliest shell middens during the Middle Stone Age (200-40 ka). Fragmentary fossil remains classified as those of anatomically modern humans, along with marine food residues and numerous material cultural indicators of increased social and behavioural complexity have been recovered from coastal sites. In this paper, new information on the nutrient content of marine and terrestrial foods available to early modern humans in the southwestern Cape is presented and compared with existing data on the nutritional value of some wild plant and animal foods in Africa. The results suggest that coastal foraging, particularly the collection of abundant and predictable marine molluscs, would have allowed early modern humans to exploit some of the richest and most accessible sources of protein, micronutrients and longer-chain omega-6 and omega-3 fatty acids. Reliable and accessible sources of omega-3 eicosapentaenoic and docosahexaenoic acid are considerably more restricted in terrestrial foods. PMID:27457547

  13. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  14. Early Eocene carbon isotope excursions: Evidence from the terrestrial coal seam in the Fushun Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Tang, Zihua; Wang, Xu; Yang, Shiling

    2014-05-01

    A series of transient global warming events between 56 and 50 Ma are characterized by a pronounced negative carbon isotope excursion (CIE). However, the documents of these hyperthermals, such as Eocene Thermal Maximum 2 and H2 events, have come chiefly from marine sediments, and their expression in terrestrial organic carbon is still poorly constrained. Here we yield a high-resolution carbon isotope record of terrestrial organic material from the Fushun Basin, which displays four prominent CIEs with magnitudes larger than 2.5‰. Based on age constraint and comparisons with deep-sea records, our data provide the first evidence of the four hyperthermals in coal seams and suggest a global significance of these events. Moreover, the difference of CIE magnitudes between marine and terrestrial records shows a significant linear correlation with the marine carbonate CIE, implying that these events are likely attributable to recurring injections of 13C-depleted carbon from submarine methane hydrates and/or permafrost.

  15. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  16. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  17. Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust-mantle interaction

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Niu, Yaoling; Hu, Yan; Chen, Shuo; Zhang, Yu; Duan, Meng; Sun, Pu

    2016-09-01

    We present a detailed study of geochronology, mineral chemistries, bulk-rock major and trace element abundances, and Sr-Nd-Hf isotope compositions of the granodiorite and associated dioritic dikes in the Hongqilafu pluton at the northwestern margin of the Tibetan Plateau. The granodiorite and dioritic dikes yielded zircon U-Pb ages of ~ 104 Ma and ~ 100 Ma, respectively. The dioritic dikes comprise varying lithologies of gabbroic diorite, diorite porphyry and granodiorite porphyry, exhibiting a compositional spectrum from intermediate to felsic rocks. Their mineral compositions display disequilibrium features such as large major element compositional variations of plagioclase, clinopyroxene and amphibole crystals. These dioritic dikes are enriched in incompatible elements (Ba, Rb, Th, U, K) and Sr-Nd-Hf isotopes (87Sr/86Sri: 0.7066 to 0.7071, εNd(t): - 5.3 to - 7.4, εHf(t): - 3.6 to - 6.2). We suggest that the dioritic dikes were most likely derived from partial melting of mantle wedge metasomatized by the subducted/subducting seafloor with a sediment component, followed by AFC processes with fractional crystallization of clinopyroxene, amphibole and plagioclase and assimilation of lower continental crust. The mantle-wedge derived magma parental to the dioritic dikes underplated and induced the lower continental crust to melt, forming the felsic crustal magma parental to the granodiorite with mantle melt signatures and having more enriched isotope compositions (87Sr/86Sri: 0.7087 to 0.7125, εNd(t): - 9.5 to - 11.6, εHf(t): - 10.3 to - 14.1) than those of the dioritic dikes. The Hongqilafu pluton is thus the product of mantle-crust interaction at an active continental margin subduction setting over the period of several million years. This understanding further indicates that the closure timing of the Shyok back-arc basin and the collision between the Kohistan-Ladakh Arc and the Karakoram Terrane may have taken place later than ~ 100 Ma.

  18. Mineralogy of Inverted Pigeonite and Plagioclase in Cumulate Eucrites Y-980433 and Y-980318 with Reference to Early Crust Formation of the Vesta-Like Body

    NASA Technical Reports Server (NTRS)

    Takeda, H.; Ohtake, M.; Hiroi, T.; Nyquist, L. E.; Shih, C.-Y.; Yamaguchi, A.; Nagaoka, H.

    2011-01-01

    On July 16, the Dawn spacecraft became the first probe to enter orbit around asteroid 4 Vesta and will study the asteroid for a year before departing for Ceres. The Vesta-HED link is directly tied to the observed and inferred mineralogy of the asteroid and the mineralogy of the meteorites [1]. Pieters et al. [2] reported reflectance spectra of the Yamato- (Y-)980318 cumulate eucrite as a part of their study on the Asteroid-Meteorite Links in connection with the Dawn Mission. Pyroxenes and calcic plagioclase are the dominant minerals present in HED meteorites and provide multiple clues about how the parent body evolved [1]. The differentiation trends of HED meteorites are much simpler than those of the lunar crust

  19. Partial melting of the mélange for the growth of andesitic crust indicated by the Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet

    NASA Astrophysics Data System (ADS)

    Hao, LuLu; Wang, Qiang; Wyman, Derek; Ou, Quan; Dan, Wei; Jiang, ZiQi; Yang, JinHui; Long, XiaoPing; Li, Jie

    2016-04-01

    Deciphering the petrogenesis of andesitic/dioritic rocks is fundamental to understanding the formation of the continental crust. Here we present the detailed petrology, geochronology, major and trace element, Sr-Nd-Hf-O isotope data for the Early Cretaceous (ca. 122 Ma) dioritic rocks in the Bizha area in southern Qiangtang, Tibet. The dioritic rocks are characterized by large ion lithophile elements, Pb and light rare earth elements but depletion of high field strength elements with slightly enriched and variable ɛNd(t) values of -0.01 to -3.31 and initial 87Sr/86Sr isotopic ratios of 0.7053 to 0.7062. They also have variable magmatic zircon Hf-O isotope compositions (ɛHf(t) = -5.3 to +3.6 and δ18O = 7.3 to 9.5 ‰). Combined with contemporary andesitic lavas in southern Qiangtang, we suggest that the intermediate magmatic rocks in this area were most probably derived by partial melting of the mélange, which is a mixture of the middle oceanic ridge basalts (MORBs), sediments and mantle wedge peridotites, formed along the interface between the subducted slab and the overlying mantle wedge in a subduction channel before ~ 124 Ma. The mélange diapir melting was triggered by the asthenospheric upwelling and hot corner flow caused by roll-back of the northward subducted Bangong-Nujiang oceanic slab during the Early Cretaceous. The Early Cretaceous intermediate magmatic rocks in southern Qiangtang have an overall continental crust-like andesitic composition. Therefore, partial melting of the mélange provides an important support for the generation of andesitic magmas in continental arcs and the "andesite model" for crustal growth.

  20. Devonian Nb-enriched basalts and andesites of north-central Tibet: Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block

    NASA Astrophysics Data System (ADS)

    Zhang, Hongrui; Yang, Tiannan; Hou, Zengqian; Bian, Yeke

    2016-07-01

    The early evolution of the Tethyan Ocean in north-central Tibet is currently poorly constrained. A sequence of volcanic rocks ranging from basic to intermediate in composition has been identified in the Zaduo area of the North Qiangtang Block. SHRIMP U-Pb dating of zircons from a sample of Zaduo andesite suggests an eruption age of Late Devonian (~ 380 Ma). The Zaduo volcanic rocks exhibit geochemical characteristics similar to those of typical Nb-enriched basalts, with relatively high Nb, Ta, and Zr contents, resulting in high Nb/La ratios (0.70-1.08) and Nb/U ratios (10.57-34.37). The relative enrichment in high field strength elements, together with positive εNd(t) values of + 4.6 to + 5.8 and low (87Sr/86Sr)i ratios of 0.70367-0.70532, indicates the Zaduo volcanic rocks were derived from a depleted mantle source metasomatized by silicate melts of a subducted oceanic slab. The occurrence of Nb-enriched volcanic rocks in the North Qiangtang Block suggests that the subduction of Paleo-Tethyan oceanic crust was initiated in the Late Devonian. Available geochronological data from ophiolites surrounding the North Qiangtang Block suggest that the subducted slab is most likely the Longmucuo-Shuanghu Paleo-Tethyan oceanic crust.

  1. Magmatic intrusions in the lunar crust

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  2. The effect of thicker oceanic crust in the Archaean on the growth of continental crust through time

    NASA Technical Reports Server (NTRS)

    Wilks, M. E.

    1988-01-01

    Present crustal evolution models fail to account for the generation of the large volume of continental crust in the required time intervals. All Archaean plate tectonic models, whether invoking faster spreading rates, similar to today's spreading rates, or longer ridge lengths, essentially propose that continental crust has grown by island arc accretion due to the subduction of oceanic crust. The petrological differences that characterize the Archaean from later terrains result from the subduction of hotter oceanic crust into a hotter mantle. If the oceanic crust was appreciably thicker in the Archaean, as geothermal models would indicate, this thicker crust is surely going to have an effect on tectonic processes. A more valid approach is to compare the possible styles of convergence of thick oceanic crust with modern convergence zones. The best modern analog occurs where thick continental crust is colliding with thick continental crust. Oceanic crustal collision on the scale of the present-day Himalayan continental collision zone may have been a frequent occurrence in the Archaean, resulting in extensive partial melting of the hydrous underthrust oceanic crust to produce voluminous tonalite melts, leaving a depleted stabilized basic residuum. Present-day island arc accretion may not have been the dominant mechanism for the growth of the early Archaean crust.

  3. Corium crust strength measurements.

    SciTech Connect

    Lomperski, S.; Nuclear Engineering Division

    2009-11-01

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  4. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. implications for the structure of Paleocene terrestrial ecosystems.

    PubMed

    Angst, D; Lécuyer, C; Amiot, R; Buffetaut, E; Fourel, F; Martineau, F; Legendre, S; Abourachid, A; Herrel, A

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on (13)C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ(13)C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans. PMID:24563098

  5. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  6. Osmium isotope evidence for Early to Middle Proterozoic mantle lithosphere stabilization and concomitant production of juvenile crust in Dish Hill, CA peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Armytage, Rosalind M. G.; Brandon, Alan D.; Peslier, Anne H.; Lapen, Thomas J.

    2014-07-01

    The 187Os/188Os compositions in peridotite samples from the sub-continental lithospheric mantle (SCLM) can be used to constrain the timing of melt extraction and potentially test the link between large-scale mantle melting and juvenile crust production. The SCLM has often experienced a complex history such that some lithophile elements such as REEs (rare earth elements) in these rocks typically record overprinting during metasomatism. New 187Os/188Os, major and trace element compositional data were obtained on sixteen Dish Hill peridotite xenoliths (California, USA) and are used to examine these issues. The samples show strong correlations between 187Os/188Os and indicators of melt depletion such as Lu abundance in clinopyroxene, modal abundance of clinopyroxene, bulk rock Al2O3 and the Cr# (Cr/(Cr + Al) in spinel. These relationships indicate that metasomatism did not compromise the 187Os/188Os systematics. The data appear to form two melt depletion trends consistent with Re depletion model ages (TRD) obtained from the two Al2O3 versus 187Os/188Os trends are 2.1 ± 0.5 Ga and 1.3 ± 0.3 Ga (±95% conf.). It has been suggested that the SCLM under Dish Hill may be fragments of oceanic lithosphere emplaced as the result of Farallon plate subduction during the Late Cretaceous (Luffi et al., 2009). However, the strong melt depletion trends, major element compositions and Re-depletion ages are not consistent with the interpretation of this suite of xenoliths having an oceanic lithospheric origin. Rather, the 2.1 Ga age coincides with Nd model ages of 2-2.3 Ga (Bennett and DePaolo, 1987; Rämö and Calzia, 1998) for the overlying Mojavia crustal province. The 1.3 Ga age is consistent with large-scale A-type magmatism in the nearby region at this time that is purported to be the result of mantle plume melting processes. Therefore, data from this study point to the SCLM under Dish Hill being formed by two ancient mantle-melting events, which could be the result of

  7. Raindrop induced crust formation

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Józsa, Sándor; Németh, Tibor; Kovács, Ivett; Szalai, Zoltán

    2016-04-01

    Rainfall simulators are wildly used to study soil erosion because all parts of the erosion process can be simulated with them. Small-scale laboratory rainfall simulator was used to examine the detachment phase of the erosion and study the redistribution trend of the organic and mineral components of the soil. Splash erosion often creates crust on the soil surface that decreases porosity and infiltration. Crusts have crucial role in physical soil degradation processes, erosion and crop production fall. Intensive rainfall on a recently tilled Regosol and a Cambisol plots detached the aggregates and the occurred runoff scattered the individual particles on the surface. Oriented thin sections from the various morphological types of surface crusts were made similar as a thin section from any rock but during the preparation the samples were saturated often with dilute two-component adhesive to solidify the soil to preserve the crust. Raman spectroscopy and XRD analysis measurements are in progress in order to identify spatial changes in organic matter and mineralogical composition among the crust layers. Preliminary results suggest the separation of the mineral and organic soil components. The lighter organic matter seems to be enriched in the soil loss while the heavier minerals are deposited and stratified in the deeper micromorphological positions of the surface. The understanding of this selectivity is necessary in soil loss estimation.

  8. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such

  9. Strange Quark Star Crusts

    SciTech Connect

    Steiner, Andrew W.

    2007-02-27

    If strange quark matter is absolutely stable, some neutron stars may be strange quark stars. Strange quark stars are usually assumed to have a simple liquid surface. We show that if the surface tension of droplets of quark matter in the vacuum is sufficiently small, droplets of quark matter on the surface of a strange quark star may form a solid crust on top of the strange quark star. This solid crust can significantly modify the predictions for the photon emission for the surface in an observable way.

  10. Earthquakes in Stable Continental Crust.

    ERIC Educational Resources Information Center

    Johnston, Arch C.; Kanter, Lisa R.

    1990-01-01

    Discussed are some of the reasons for earthquakes which occur in stable crust away from familiar zones at the ends of tectonic plates. Crust stability and the reactivation of old faults are described using examples from India and Australia. (CW)

  11. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2010-01-08

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  12. Terrestrial sequestration

    SciTech Connect

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  13. Petrogenesis of the early Cretaceous volcanic rocks in the North Huaiyang tectono-magmatic unit of the Dabie Orogen, eastern China: Implications for crust-mantle interaction

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Yu; Zhao, Tai-Ping; Zhao, Jun-Hong

    2016-03-01

    New elemental and isotopic data are presented for the early Cretaceous felsic to mafic volcanic rocks in the North Huaiyang tectono-magmatic unit (NHY) of the Dabie Orogen, in order to investigate their petrogenesis and provide insights into the nature of the late Mesozoic lithosphere mantle beneath the region and its tectonic relationship with neighboring blocks. LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Jingangtai Formation erupted in a quite short interval about 5 Mys during the Early Cretaceous (128-123 Ma). The rocks have wide ranges of SiO2 (48-68 wt.%) and MgO (0.6-5.6 wt.%) contents. They are enriched in large-ion-lithophile-elements (LILE) (e.g. Rb, Ba) and light rare-earth-elements (LREE), and depleted in high field strength elements (e.g. Nb, Ta and Ti) with weak negative Eu anomalies (Eu/Eu∗ = 0.71-0.94). Meanwhile, the rocks show relatively high whole-rock initial 87Sr/86Sr ratios (0.7074-0.7094), strong negative εNd(t) (-19.1 to -15.8) and zircon εHf values (-20.7 to -14.1). Such typical "continental" geochemical characteristics did not result from crustal contamination during magma ascent, but from an enriched mantle source modified by materials from the subducted Yangtze Craton during the Triassic continental collision. We propose that the petrogenesis of the large-scale contemporaneous magmatism of Dabie Orogen including felsic to mafic volcanic rocks in the NHY reflects an intensive lithospheric thinning and extension during the early Cretaceous as a tectonic response to the change of plate motion of westward subducted Pacific Plate beneath the Eurasian continent.

  14. Moho vs crust-mantle boundary: Evolution of an idea

    NASA Astrophysics Data System (ADS)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  15. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  16. Constraining the Conditions Required for the Delamination of Subducting Crust

    NASA Astrophysics Data System (ADS)

    Maunder, B. L.; Van Hunen, J.; Magni, V.; Bouilhol, P.

    2014-12-01

    It is commonly accepted that the building of the continental crust is linked to subduction zone processes, but the refining mechanism isolating the felsic product from its basaltic counterpart, leading to a stratified crust, remains poorly understood. Delamination of subducting material and its subsequent melting and segregation, with the felsic part being underplated and added to the crust from below has been suggested to be a viable scenario.In this study we use thermo-mechanical numerical models of subduction to explore the possibility of delamination of the igneous slab crust and determine the conditions that are required by varying key parameters, such as subduction speed and angle, slab age, crustal thickness and density, overriding plate thickness, mantle temperature, depth of eclogitisation and the rheological properties for crustal and mantle material. We also quantify the extent of the resultant crustal melting, and its composition.Our preliminary models demonstrate that for present day mantle potential temperatures and average slab crustal thickness, the slab crust may only delaminate for extreme rheologies (i.e very weak crust), making slab mafic crust delamination unlikely. Contrastingly, in an early earth setting (High mantle temperature potential and thicker mafic slab crust) we find that the whole crustal scale delamination of the subducting mafic crust is a dynamically viable mechanism for a reasonable rheology when slabs are younger than ~20Ma. The resulting delamination leads to buoyant upwelling and ponding of mafic crustal material beneath the overriding lithosphere. After only ~5 Myrs from the onset of delamination, delaminated mafic crust would sit in the hot mantle wedge, where it would likely cross its solidus. These melts would be readily segregated from the migmatitic mafic source and contribute to the formation of felsic crust with little interaction with the mantle wedge, explaining part of the spectrum of TTG forming the earliest

  17. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Xu, Xisheng; Zou, Haibo; Liu, Lei

    2014-01-01

    The early Paleozoic orogen in South China Block is an intracontinental orogen, and synchronous magmatism (440-390 Ma) is mainly acidic with minor intermediate-mafic magmatism. Previous studies suggest that most of the early Paleozoic granites in South China belong to peraluminous S-type genesis while amphibole-bearing I-type granites are subordinate. However, our results indicate that considerable amounts of these early Paleozoic granites have characteristics of both S- and I-type granites. Thus, we propose to divide these granites into two groups: fewer of them are Group A with relatively high ɛHf(t) values (clustering within - 3.0 to + 9.0) and ɛNd(t) values (- 5.2 to + 1.3) as well as higher initial temperatures at 810-850 °C, and most of them are Group B with relatively low ɛHf(t) values (clustering within - 16.0 to - 1.0) and ɛNd(t) values (- 13.2 to - 4.1) as well as relatively low initial temperatures at 700-830 °C. The Xiawan monzogranite and Duntou granodiorite are typical Group A granitoids and yield zircon U-Pb ages of ca. 410 Ma. These two granites are characterized by high SiO2 (between 67.59 and 74.87 wt.%), metaluminous to peraluminous (A/CNK = 0.96-1.48) compositions, and a negative correlation between P2O5 and SiO2. Their biotites belong to magnesium biotites, indicating that they have partial features of either I- or S-type granites. Duntou granodiorites exhibit higher ɛHf(t) values (clustering within + 1 to + 8) and ɛNd(t) values (- 3.0 to + 1.1) while Xiawan monzogranites show relatively low ɛHf(t) values (clustering within - 1 to + 5) and ɛNd(t) values (- 5.0 to - 3.7). Group B granitoids are represented by the Miao'ershan-Yuechengling batholith, which are characterized by high SiO2 (between 64.57 and 77.37 wt.%), metaluminous compositions (A/CNK = 0.90-1.24), and a negative correlation between P2O5 and SiO2. Yuechengling porphyritic amphibole-bearing biotite granites in this batholith contain abundant amphibole, indicating that they

  18. Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the late cretaceous and early tertiary.

    PubMed

    Hickey, L J; West, R M; Dawson, M R; Choi, D K

    1983-09-16

    Magnetostratigraphic correlation of the Eureka Sound Formation in the Canadian high Arctic reveals profound difference between the time of appearance of fossil land plants and vertebrates in the Arctic and in mid-northern latitudes. Latest Cretaceous plant fossils in the Arctic predate mid-latitude occurrences by as much as 18 million years, while typical Eocene vertebrate fossils appear some 2 to 4 million years early. PMID:17811507

  19. Paleoceanographic Implications of the Terrestrial Carbon-Isotope Record of the Early Toarcian (Jurassic) Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Hesselbo, S.; Jenkyns, H. C.; Duarte, L. V.

    2005-12-01

    Macrofossil wood in two European sections representing the Toarcian (Early Jurassic) Oceanic Anoxic Event (OAE) have previously been shown to exhibit a large (~ -6 to -7 %) shift in d13C values which has been interpreted as a massive and geologically short-lived perturbation to the global carbon cycle. This interpretation has recently been challenged on the basis of a compilation of carbon-isotope data from belemnites collected from sections in northern Europe that exhibit carbon isotope values that are heavier than expected at the peak of the OAE. Here we present new carbon isotope measurements from wood collected from a marine record of the early Toarcian at Peniche, Portugal, a section currently under consideration as a GSSP for the base of the Toarcian. A large negative excursion (~ -7%) is confirmed for the OAE in these samples. These cannot have been severely impregnated by hydrocarbons of marine origin and the ages are well defined by ammonite biostratigraphy and by Sr-isotope stratigraphy. Carbon-isotope data is also presented for an early diagenetic silica nodule that formed within jet from the Toarcian of the Yorkshire coast, northeast England; values are indistinguishable from those of stratigraphically equivalent jet samples from which solvent extractable hydrocarbons had been removed. Thus, the early Toarcian negative carbon-isotope excursion is confirmed as a phenomenon of the global shallow-ocean, biosphere and atmosphere. It is likely that the anomalously heavy values obtained from belemnites from the OAE interval derive their isotopic signature from localized and possibly seasonal water masses characterized by dissolved inorganic carbon strongly enriched in heavy carbon by very high organic productivity.

  20. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  1. Relamination of mafic subducting crust throughout Earth's history

    NASA Astrophysics Data System (ADS)

    Maunder, Ben; van Hunen, Jeroen; Magni, Valentina; Bouilhol, Pierre

    2016-09-01

    Earth has likely cooled by several hundred degrees over its history, which has probably affected subduction dynamics and associated magmatism. Today, the process of compositional buoyancy driven upwelling, and subsequent underplating, of subducted materials (commonly referred to as "relamination") is thought to play a role in the formation of continental crust. Given that Archean continental crust formation is best explained by the involvement of mafic material, we investigate the feasibility of mafic crust relamination under a wide range of conditions applicable to modern and early Earth subduction zones, to assess if such a process might have been viable in an early Earth setting. Our numerical parametric study illustrates that the hotter, thicker-crust conditions of the early Earth favour the upward relamination of mafic subducting crust. The amount of relaminating subducting crust is observed to vary significantly, with subduction convergence rate having the strongest control on the volume of relaminated material. Indeed, removal of the entire mafic crust from the subducting slab is possible for slow subduction (∼2 cm/yr) under Archean conditions. We also observe great variability in the depth at which this separation occurs (80-120 km), with events corresponding to shallower detachment being more voluminous, and that relaminating material has to remain metastably buoyant until this separation depth, which is supported by geological, geophysical and geodynamical observations. Furthermore, this relamination behaviour is commonly episodic with a typical repeat time of approximately 10 Myrs, similar to timescales of episodicity observed in the Archean rock record. We demonstrate that this relamination process can result in the heating of considerable quantities of mafic material (to temperatures in excess of 900 °C), which is then emplaced below the over-riding lithosphere. As such, our results have implications for Archean subduction zone magmatism, for

  2. Terrestrial nest-building by wild chimpanzees (Pan troglodytes): implications for the tree-to-ground sleep transition in early hominins.

    PubMed

    Koops, Kathelijne; McGrew, William C; Matsuzawa, Tetsuro; Knapp, Leslie A

    2012-07-01

    Nest-building is a great ape universal and arboreal nesting in chimpanzees and bonobos suggests that the common ancestor of Pan and Homo also nested in trees. It has been proposed that arboreal nest-building remained the prevailing pattern until Homo erectus, a fully terrestrial biped, emerged. We investigated the unusual occurrence of ground-nesting in chimpanzees (Pan troglodytes), which may inform on factors influencing the tree-to-ground sleep transition in the hominin lineage. We used a novel genetic approach to examine ground-nesting in unhabituated chimpanzees at Seringbara in the Nimba Mountains, Guinea. Previous research showed that ground-nesting at Seringbara was not ecologically determined. Here, we tested a possible mate-guarding function of ground-nesting by analyzing DNA from shed hairs collected from ground nests and tree nests found in close proximity. We examined whether or not ground-nesting was a group-level behavioral pattern and whether or not it occurred in more than one community. We used multiple genetic markers to identify sex and to examine variation in mitochondrial DNA control region (HV1, HV2) sequences. Ground-nesting was a male-biased behavior and males constructed more elaborate ("night") nests than simple ("day") nests on the ground. The mate-guarding hypothesis was not supported, as ground and associated tree nests were built either by maternally-related males or possibly by the same individuals. Ground-nesting was widespread and likely habitual in two communities. We suggest that terrestrial nest-building may have already occurred in arboreally-adapted early hominins before the emergence of H. erectus. PMID:22460549

  3. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry

    USGS Publications Warehouse

    Driese, S.G.; Jirsa, M.A.; Ren, M.; Brantley, S.L.; Sheldon, N.D.; Parker, Dana C.; Schmitz, M.

    2011-01-01

    primitive microbial community) during weathering. Cu metal in the profile may document lower pO2 than present day at the surface. Comparison with previous studies of weathered tonalite and basalt (Denison, 2.45-2.22Ga) in Ontario, Canada, reveal general similarities in paleoweathering with our study, as well as important differences related to lower paleoatmospheric pO2 and terrestrial biosignature for the older Minnesota profile. A falling water table in the Alpine Lake locality is presumed to have promoted formation of this gossan-like deep-weathering system that extends to 50-m depth. ?? 2011 Elsevier B.V.

  4. An early Middle Anisian (Middle Triassic) Tubiphytes and cement crusts-dominated reef from North Dobrogea (Romania): facies, depositional environment and diagenesis

    NASA Astrophysics Data System (ADS)

    Popa, Livia; Panaiotu, Cristina E.; Grădinaru, Eugen

    2014-06-01

    A well-developed Triassic carbonate platform is exposed in the eastern part of the Tulcea Unit, in the Cimmerian North Dobrogean Orogen, southeastern Romania. Facies analysis of the 200 m thick succession of lower Middle Anisian limestones exposed in a large limestone quarry south of the village of Mahmudia suggests a transition from upper slope towards toe-of-slope carbonate facies, reflecting sea-level fluctuations and tectonic tilting. The slope is dominated by in situ microbialites in the upper portion, consisting of reefal boundstone facies, and by molluscan coquina and cement boundstones. A key role is played by the cosmopolitan micro-encruster Tubiphytes, which became common in the aftermath of the mass extinction at the Permian/Triassic boundary, and by autochthonous micrite and synsedimentary marine cement. The absence of metazoan reef builders, such as sponges and corals, reflects the fact that microbes were the first organisms to recover after the Permian/Triassic crisis under unusual marine conditions and that their main role in reef formation was sediment stabilization along the upper slopes. The lower slope is mostly detrital, being dominated by platform-derived bioclastic rudstones and crinoidal floatstones, which are interbedded with basinal carbonate hemipelagics. The toe-of-slope is composed of pelagic wackestones framed by thin tongues of intraclast breccia. All these observations are in agreement with the slopeshedding model described for the Pennsylvanian microbial margin in Asturias (northern Spain) and the Anisian- Ladinian flat-topped, steep-rimmed Latemar platform (Dolomites, Italy). As most of the Anisian reefs were described from western and eastern Tethys (Southern Alps, Hungary, China), the occurrence of the early Middle Anisian Tubiphytes-reef from North Dobrogea (Romania) contributes to resolving the puzzle of the geographic distribution of reef recovery in the Middle Triassic.

  5. The main features of the interaction of mantle magmas with granulite complexes of the lower crust and their relationship with granitic melts (exemplified by the Early Caledonides of the West Baikal Region, Russia)

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexandr; Khromykh, Sergei; Mekhonoshin, Alexei; Volkova, Nina; Travin, Alexei; Mikheev, Evgeny; Vladimirova, Anna

    2016-04-01

    Granulite complexes occurring in the Early Caledonian southern folded framing of the Siberian Craton are deeply eroded fragments of the Vendian-Early Paleozoic accretionary prism, which is an indicator of the early stages of the Paleo-Asian Ocean (Gladkochub et al., 2010). The main feature of the granulite complexes is a wide development of gabbro-pyroxenites composing tectonic plates, synmetamorphic intrusive bodies, and numerous disintegrated fragments (boudins and enclaves), immersed in a metamorphic matrix. The volume of basites reaches 5-10 %, which allows us to consider mantle magmatism as a heat source for the granulite metamorphism. The most studied polygon is Chernorud granulite zone, which is a part of the Olkhon metamorphic terrane, West Baikal Region. Just this polygon was used for considering the problems of interaction of mantle magmas with lower crust granulite complexes and their relationship with granitic melts. The Chernorud Zone is a typical example of the accretionary prism with a predominance of metabasalts (70-80 %), subordinate amounts of marbles, quartzites and metapelites that have been subjected to granulite facies metamorphism and viscoelastic flow of rock masses. Study of two-pyroxene granulites (metabasalts) and garnet-sillimanite gneisses (metapelites) allows us to estimate P-T metamorphic conditions (P = 7.7-8.6 kbar, T = 770-820°C) and their U-Pb metamorphic age (530-500 Ma). Metabasalts correspond in their geochemistry to the island-arc tholeiitic series (Volkova et al., 2010; Gladkochub et al., 2010). Sin-metamorphic gabbro-pyroxenites formed in two stages: 1) Chernorud complex - tectonic slices and body's exhumed from deep earth crust levels (10-12 kb) and composed of arc tholeiitic series rocks (age T ≥ 500 Ma); 2) Ulan-Khargana complex - supply magmatic canals and fragmented tabular intrusions. This rocks composition corresponds to subalkaline petrochemical series (OIB) and U/Pb age is equal to 485±10 Ma (Travin et al., 2009

  6. Pre-terrestrial origin of rust in the Nakhla meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1990-01-01

    The authors present quantative elemental compositions and summarize textural evidence for the pre-terrestrial origin of rust on the Nakhla meteorite. The material in question is called 'rust' because its phase composition remains unknown. Compelling evidence for the pre-terrestrial origin of the rust is found in rust veins truncated by fusion crust and preserved as faults in sutured igneous crystals. Rust veins that approach the meteorite's fusion crust become discontinuous and exhibit vugs that suggest partial decrepitation; no veins that penetrate the fusion crust have been found. Because the rust probably contains volatile compounds, it is reasonable to expect that heating near the ablation surface (formed during atmospheric entry to Earth) would encourage devolatilization of the rust. Hence, the absence of rust veins in fusion crust and vugs in rust veins near fusion crust clearly imply that the rust existed in the meteorite before atmospheric entry.

  7. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  8. [Crusted scabies: A review].

    PubMed

    Jouret, G; Bounemeur, R; Presle, A; Takin, R

    2016-04-01

    Crusted scabies is a rare and severe form of infestation by Sarcoptes scabies var. hominis. It is characterized by profuse hyperkeratosis containing over 4000 mites per gram of skin, with treatment being long and difficult. The condition is both direct and indirectly contagious. It has a central role in epidemic cycles of scabies, the incidence of which is on the rise in economically stable countries. Recent discoveries concerning the biology of mites, the pathophysiology of hyperkeratosis and the key role of IL-17 in this severe form open up new therapeutic perspectives. PMID:26948093

  9. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    marine environments; time-series in Fe-Mn crusts may show a heavier isotope composition in older crust layers due to the shallower water environments in the early history of the seamounts on which the crusts grow.

  10. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  11. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    Mengyin adakitic porphyry was most likely derived from partial melting of subducted oceanic slab with some input of NCB Neoarchean-Paleoproterozoic lower crust components. The Liujing adakitic porphyry was probably derived from partial melting of delaminated newly underplated thick lower crust, which then interacted with above asthenospheric mantle peridotite. Slab rollback together with the ridge subduction of the Paleo-Pacific slab was the most likely geodynamic mechanism for formation of the Early Cretaceous Mengyin and Liujing adakitic porphyries.

  12. On the early processing of terrestrial organic matter released to (sub-)Arctic coastal waters as deduced from biomarkers, isotopes and a simple model

    NASA Astrophysics Data System (ADS)

    Gustafsson, Örjan; Vonk, Jorien; van Dongen, Bart; Dudarev, Oleg; Semiletov, Igor

    2010-05-01

    The surface layer of the vast sub-Arctic and Arctic tundra and taiga holds over a third of the global soil carbon and this area is now experiencing among the largest climate warming of anywhere on Earth. Yet, there is a shortage of investigations of the biogeochemical fate of coastally exported terrestrial organic matter (terrOM) from these systems, in part due to the inaccessibility of the large Eurasian-Arctic shelves. This paper seeks to synthesize initial findings from a large-scale survey of single surface sediments outside the five Great Russian Arctic Rivers (GRARs; Ob,Yenisey, Lena, Kolyma and Indigirka) and from detailed process-studies of a water column and surface sediment transect off pristine sub-Arctic Kalix River, one of the largest unregulated rivers in Europe draining into the northernmost Baltic Sea. There is at present a discrepancy in the literature of how the early (water column) fate of terrestrial organic matter is believed to occur between the northern Baltic Sea and the Eurasian Arctic shelf seas. For the Baltic, one suggests substantial DOC degradation but no consideration of POC degradation. For the Arctic, terrestrial DOC is believed to be conservatively mixed while POC is assumed to follow a generic "global" average degradation. Our studies to date show that terrOM entering sub-Arctic Baltic and Eurasian-Arctic seas follows continent-scale trends in molecular and isotopic composition. Sphagnum is a key contributor to the pre-aged (1000s of 14C years) terrOM in these coastal waters with greatest Sphagnum contribution but youngest terrOM toward the west. The Kalix-Baltic transect revealed rapid degradation of acyl lipids along the 80 km distance from river mouth to the open bay. For instance, the ratio of HMW n-alkanoic acids to HMW n-alkanes in surface water suspended particles dropped from 2.7 to 1.2. There was also rapid degradation during settling and in the surface sediment as the same ratio in sediments dropped between the estuary

  13. On the early processing of terrestrial organic matter released to (sub-)Arctic coastal waters as deduced from biomarkers, isotopes and a simple model

    NASA Astrophysics Data System (ADS)

    Gustafsson, Ö.; Vonk, J.; van Dongen, B.; Dudarev, O.; Semiletov, I.

    2009-04-01

    The surface layer of the vast sub-Arctic and Arctic tundra and taiga holds over a third of the global soil carbon and this area is now experiencing among the largest climate warming of anywhere on Earth. Yet, there is a shortage of investigations of the biogeochemical fate of coastally exported terrestrial organic matter (terrOM) from these systems, in part due to the inaccessibility of the large Eurasian-Arctic shelves. This paper seeks to synthesize initial findings from a large-scale survey of single surface sediments outside the five Great Russian Arctic Rivers (GRARs; Ob,Yenisey, Lena, Kolyma and Indigirka) and from detailed process-studies of a water column and surface sediment transect off pristine sub-Arctic Kalix River, one of the largest unregulated rivers in Europe draining into the northernmost Baltic Sea. There is at present a discrepancy in the literature of how the early (water column) fate of terrestrial organic matter is believed to occur between the northern Baltic Sea and the Eurasian Arctic shelf seas. For the Baltic, one suggests substantial DOC degradation but no consideration of POC degradation. For the Arctic, terrestrial DOC is believed to be conservatively mixed while POC is assumed to follow a "global" average degradation. Our studies to date show that terrOM entering sub-Arctic Baltic and Eurasian-Arctic seas follows continent-scale trends in molecular and isotopic composition. Sphagnum is a key contributor to the pre-aged (1000s of 14C years) terrOM in these coastal waters with greatest Sphagnum contribution but youngest terrOM toward the west. The Kalix-Baltic transect revealed rapid degradation of acyl lipids along the 80 km distance from river mouth to the open bay. For instance, the ratio of HMW n-alkanoic acids to HMW n-alkanes in surface water suspended particles dropped from 2.7 to 1.2. There was also rapid degradation during settling and in the surface sediment as the same ratio in sediments dropped between the estuary - open

  14. Phosphorus Redox on the Early Earth: First Identification of Low-Oxidation State Phosphorus Compounds in Terrestrial Samples

    NASA Astrophysics Data System (ADS)

    Block, K. M.; Pasek, M. A.

    2008-12-01

    Phosphorus is one of the key elements in biochemical systems, playing an important role in metabolism as ATP and other coenzymes, in replication as DNA and RNA, and in cellular structure as phospholipids. The geochemical cycling of phosphorus on the Earth is usually confined to the rock cycle- redox reactions of phosphorus are never considered. However, it has been proposed that redox reactions of phosphorus were important on the early Earth (Pasek, PNAS 2008). Indeed, such a suggestion is buttressed by the discovery of condensed phosphate formation linked to the oxidation of reduced P compounds. However, prior to the present work, there has been no report of these P compounds in geologic samples. Here we report the first occurrence of reduced P in samples of fulgurites, the glassy material resulting from the fusion of sand, soil, or rock during a lightning strike. On average, lightning strikes the Earth's surface at a rate of approximately 65 times per second (Krider et al., J. Geophys. Res.,1968) exposing target areas to extreme energy dissipation and temperatures. Through electron microprobe analyses and NMR we have identified naturally formed metal droplets containing Fe and P within several fulgurite samples and Ca-phosphite compounds. These droplets are highly reduced compared to the original material and are not naturally present in the target area, rather they were formed through the rapid, intense heating and quenching experienced during fulgurite formation. This process provides a natural means to create localized environments with greater than normal abundances of reduced Fe and P, less commonly found on Earth's surface than their oxidized counterparts. In particular, small areas that receive repeated lightning strikes due to topography or local weather patterns (e.g. hilltops) could potentially house unique microhabitats with reduced elements available for biological use.

  15. ESR dating evidence for early man at a Lower Palaeolithic cave-site in the Northern Caucasus as derived from terrestrial mollusc shells

    NASA Astrophysics Data System (ADS)

    Molodkov, Anatoly

    2001-12-01

    Eight terrestrial shell samples from recent excavations at Treugolnaya (Triangular) Cave (Northern Caucasus) were analysed by electron spin resonance (ESR) to produce a chronology for the most ancient Acheulian-bearing layers of the cave-site. The lifetime of the 2.0012 centre used for dating is about 3×10 8 at 5°C that allows to date the multi-level sequence of the cave-site at least in the range of the last one million years. The dating results obtained suggest that the first (from the bottom) archaeological layer, 7a, is likely to be about 583,000a old, and the next, 5b, is some 393,000 a old. These layers can be correlated with oxygen isotope stages 15 and 11, respectively. The estimates obtained imply that man presumably reached the Northern Caucasus at least as early as the beginning of stage 15, i.e. much earlier than generally recognised. The leaving of the cave by ancient man due to development of glacial environment during the subsequent stage(s) can probably be linked with the penetration of man to the southern areas of the East European Plain.

  16. Analysis of environmental factors determining development and succession in biological soil crusts.

    PubMed

    Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang

    2015-12-15

    Biological soil crusts play important ecological functions in arid and semi-arid regions, while different crust successional patterns appeared in different regions. Therefore in this study, the environmental conditions between Shapotou (with cyanobacterial, lichen and moss crusts) and Dalate Banner (with only cyanobacterial and moss crusts) regions of China were compared to investigate why lichen crusts only appeared in Shapotou; at the same time, artificial moss inoculation was conducted to find out the environmental factors promoting crust succession to moss stage. The results showed lichen crusts always developed from cyanobacterial crusts, which provide not only the stable soil surface, but also the biomass basis for lichen formation; furthermore, addition of crust physicochemical characteristics (primarily silt content) play a facilitating effect on lichen emergence (R(2)=0.53). The inoculation experiment demonstrated early crust soil surface and enough water holding content (>4%) provided the essential guarantee for moss germination. Our results show that there is heterogeneity in crust succession in different regions, which may be mainly affected by the ambient soil microenvironments. It is concluded that a positive feedback mechanism is expected between crust succession and ambient soil microenvironments; while a negative feedback mechanism forms between crust succession and free living cyanobacteria and algae. PMID:26318686

  17. Paleoclimatic and paleoecological reconstruction of early Miocene terrestrial equatorial deposits, Rusinga and Mfangano Islands, Lake Victoria, Kenya

    NASA Astrophysics Data System (ADS)

    Michel, L. A.; Peppe, D. J.; McNulty, K. P.; Driese, S. G.; Lutz, J.; Nightingale, S.; Maxbauer, D. P.; Horner, W. H.; DiPietro, L. M.; Lehmann, T.; Dunsworth, H. M.; Harcourt-Smith, W. E.; Ogondo, J.

    2012-12-01

    Biological responses to climatic shifts are often studied to inform us on future anthropogenic-driven climate change. However, few of these climatic shifts occur over time scales appropriate to modern change and few occur with biota similar to modern. The Miocene Climatic Optimum is an ideal interval to study because of its rapid duration and because it occurred during the rise and proliferation of apes. The sediments on Rusinga and Mfangano Islands, Lake Victoria, Kenya were deposited between 18 and 20 Ma and record a changing equatorial climate just prior to the Miocene Climate Optimum. This location also offers an opportunity to use multiple proxies to constrain climate and landscape, including paleosol geochemistry, paleobotany and paleontology. Additionally, due to the rich fossil preservation on the islands, climatic shifts are framed within the context of early caterrhine evolution. Here, we report a climate shift recorded through three time slices spanning two formations over ~2 myr. The oldest unit, the Wayando Formation, records an arid, probably open ecosystem with pedogenic calcite rhizoliths, a high groundwater table, poorly-formed paleosols and permineralized sedges. The middle time slice, the Grit Member-Fossil Bed Member contact of the Hiwegi Formation, shows evidence of a local saline lake, with desiccation features, satin-spar after gypsum deposits and salt hoppers. Paleobotanical and sedimentological data from roughly contemporaneous strata indicate a warm, highly seasonal environment that supported a mixture of woodland and forested elements across the landscape. The youngest unit, which is within the Kibanga Member of the Hiwegi Formation, displays demonstrable evidence for a closed-canopy multistoried forest with the presence of tree-stump casts and permineralized root systems within a red-brown paleosol. Within the same paleosol horizon, the dental remains of the catarrhines Proconsul and Dendropithecus have been discovered in situ. This

  18. A mantle- and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: trace element and REE evidence for subduction-related rift origin of Early Jurassic Demirkent intrusive complex

    NASA Astrophysics Data System (ADS)

    Dokuz, Abdurrahman; Tanyolu, Erkan; Genç, Salim

    2006-06-01

    , unfractionated HREE patterns and evolution towards the higher Y concentrations and lower Sr/Y ratios within the body. All these features are obtained in experimentally produced melts from mafic rocks at low pressures (≤5 kbar) and also widespread in the rocks of arc where old (Upper Cretaceous or older) oceanic crust is being subducted. Major and REE modelling supports formation of the quartz dioritic parent to the felsic intrusive rocks by 70% partial melting of a primitive gabbroic sample (G694). Therefore, once taking into account the extensional conditions prevailing in the Pontian arc crust in Early Jurassic time, former basic products (gabbros) seem to be the most appropriate source for the tonalite-trondhjemite body. Magmatic emplacement of stratigraphically similar lithologies in the Pulur Massif, just southwest of the Yusufeli, was dated to be 184 Ma by the 40Ar/39Ar method on amphibole, and is compatible with the initiation of Early Jurassic rifting in the region.

  19. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    NASA Astrophysics Data System (ADS)

    Peppe, D. J.; Evans, D. D.

    2006-05-01

    lead to more accurate and detailed correlations of the terrestrial and marine climate records through the early Cenozoic.

  20. Evidence for a (15)N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment.

    PubMed

    Bocherens, Hervé; Drucker, Dorothée G; Madelaine, Stéphane

    2014-04-01

    The Middle to Upper Palaeolithic transition around 35,000 years ago coincides with the replacement of Neanderthals by anatomically modern humans in Europe. Several hypotheses have been suggested to explain this replacement, one of them being the ability of anatomically modern humans to broaden their dietary spectrum beyond the large ungulate prey that Neanderthals consumed exclusively. This scenario is notably based on higher nitrogen-15 amounts in early Upper Palaeolithic anatomically modern human bone collagen compared with late Neanderthals. In this paper, we document a clear increase of nitrogen-15 in bone collagen of terrestrial herbivores during the early Aurignacian associated with anatomically modern humans compared with the stratigraphically older Châtelperronian and late Mousterian fauna associated with Neanderthals. Carnivores such as wolves also exhibit a significant increase in nitrogen-15, which is similar to that documented for early anatomically modern humans compared with Neanderthals in Europe. A shift in nitrogen-15 at the base of the terrestrial foodweb is responsible for such a pattern, with a preserved foodweb structure before and after the Middle to Upper Palaeolithic transition in south-western France. Such an isotopic shift in the terrestrial ecosystem may be due to an increase in aridity during the time of deposition of the early Aurignacian layers. If it occurred across Europe, such a shift in nitrogen-15 in terrestrial foodwebs would be enough to explain the observed isotopic trend between late Neanderthals and early anatomically modern humans, without any significant change in the diet composition at the Middle to Upper Palaeolithic transition. PMID:24630359

  1. Tectonomagmatic evolution of the terrestrial planets: importance for understanding of processes of their formation and subsequent development

    NASA Astrophysics Data System (ADS)

    Sharkov, E.; Bogatikov, O.

    2009-04-01

    Our knowledge about formation and evolution of the terrestrial planets (the Earth, Venus, Mars, Mercury and, possibly, the Moon) based on different physical and geochemical speculations and models. The main disadvantage of such hypotheses is their abstract character and ignoring any data on tectonomagmatic evolution of those planets. At the same time, just this type of data provide an important information, which is necessary for elaborating of a present-day theory of their formation and evolution. The Earth has been much better studied compared to the other planets, therefore we will discuss the main questions of planetary tectonomagmatic evolution using the Earth as example plus involve other data on the Moon and the terrestrial planets. Two dominating hypotheses about composition of the primordial Earth's crust exist now: (1) traditional implies that the primordial crust had basic composition, whereas the sialic crust resulted from a geosyncline process or, in modern terms, from processes at convergent plate margins, and (2) primordial crust was sialic; the plate tectonic mechanisms started in the Middle Paleoproterozoic and resulted in oceanic spreading and formation of the secondary oceanic crust. Both models require a global melting of a primary chondritic material to form the primordial crust. The final result depends on the degree of melt differentiation during solidification of a magmatic ocean. Such a solidification, due to differences between adiabatic and melting-points gradients had to proceed in bottom-top direction (Jeffries, 1929) and resulted in accumulation of low-temperature derivates in the primordial crust. Geological data, namely granite-dominated Archean crust, and results of studying of detrital zircon from Australia supports the primordial-sialic crust hypothesis. The Moon which is four times smaller than Earth has a basic primordial crust. Such a difference can be explained by different depths of their magmatic oceans. The Early

  2. Abstracts for the International Workshop on Meteorite Impact on the Early Earth

    SciTech Connect

    Not Available

    1990-09-01

    This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.

  3. Abstracts for the International Workshop on Meteorite Impact on the Early Earth

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.

  4. TERRESTRIAL ECOTOXICOLOGY

    EPA Science Inventory

    Terrestrial ecotoxicology is the study of how environmental pollutants affect land-dependent organisms and their environment. It requires three elements: (1) a source, (2) a receptor, and (3) an exposure pathway. This article reviews the basic principles of each of each element...

  5. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  6. Rocas Verdes Ophiolite Complexes in the Southernmost Andes: Remnants of the Mafic Igneous Floor of a Back-arc Basin that Rifted the South American Continental Crust in the Late Jurrassic and Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Stern, C. R.

    2001-12-01

    The Rocas Verdes are an en echelon group of late Jurassic and early Cretaceous igneous complexes in the southernmost Andes. They consist of mafic pillow lavas, dikes and gabbros interpreted as the upper portions of ophiolite complexes formed along mid-ocean-ridge-type spreading centers. When secondary metamorphic affects are accounted for, the geochemistry of mafic Rocas Verdes rocks are similar to ocean-ridge basalts (MORB). The spreading centers that generated the Rocas Verdes rifted the southwestern margin of the Gondwana continental crust, during the start of break-up in the southern Atlantic, to form the igneous floor of a back-arc basin behind a contemporaneous convergent plate boundary magmatic arc. Late Jurassic and early Cretaceous sediments from both the magmatic arc on the southwest and the continental platform on the northeast of the basin were deposited in the Rocas Verdes basin, and these sediments are interbedded with mafic pillow lavas along the margins of the Rocas Verdes mafic complexes. Also, mafic dikes and gabbros intrude older pre-Andean and Andean lithologies along both flanks of the Rocas Verdes, and leucocratic country rocks are engulfed in the Rocas Verdes mafic complexes. These relations indicate that the Rocas Verdes complexes formed in place and are autochthonous, having been uplifted but not obducted, which may explain the lack of exposure of the deeper ultramafic units. Zircon U/Pb ages of 150+/-1 Ma for the Larsen Harbour Formation, a southern extension of the Rocas Verdes belt on South Georgia Island, and 138+/-2 Ma for the Sarmiento complex, the northernmost in the Rocas Verdes belt, indicate that this basin may have formed by "unzipping" from the south to the north, with the southern portion beginning to form earlier and developing more extensively than the northern portion of the basin. Paleomagnetic data suggest that the Rocas Verdes basin developed in conjunction with the displacement of the Antarctic Peninsula and opening of

  7. Geochemistry, zircon U-Pb and Lu-Hf isotopes of an Early Cretaceous intrusive suite in northeastern Jiangxi Province, South China Block: Implications for petrogenesis, crust/mantle interactions and geodynamic processes

    NASA Astrophysics Data System (ADS)

    Deng, Zhengbin; Liu, Shuwen; Zhang, Lifei; Wang, Zongqi; Wang, Wei; Yang, Pengtao; Luo, Ping; Guo, Boran

    2014-07-01

    The Early Cretaceous Tieshan intrusive suite, in northeastern Jiangxi Province along the northern margin of the Eastern Cathaysia Block, is composed of diabase porphyrites, monzodiorites, syenite porphyries, quartz monzonites, monzogranites and granite porphyries. LA-ICPMS zircon U-Pb isotopic analyses reveal that this intrusive complex was emplaced between 142 Ma and 117 Ma. The ~ 135 Ma diabase porphyrites, monzodiorites, and syenite porphyries are characterized by low to moderate SiO2 and MgO contents, with high K2O and total alkaline contents. These rocks exhibit slightly to strongly fractionated REE patterns and upper crust-like multi-element patterns with depletions of Nb, Ta and Ti, and show strongly negative εHf (t) values of - 9.0 to - 11.8. All these patterns are identical to those of the Caiyuan syenites, Huangtuling gabbros in the east, and Lengshuikeng trachyandesites and quartz syenites in the west. These geochemical and zircon Lu-Hf isotopic features indicate that their magmatic precursors were generated by 0.2%-2% partial melting of a phlogopite-bearing enriched subcontinental lithospheric mantle source that was metasomatized by sediments. The ~ 117 Ma quartz monzonite has slightly higher εHf (t) values (- 5.6 to - 8.7) like those of the Honggong syenites, indicating an interaction between the asthenosphere and the lithosphere. The ~ 142-134 Ma granite porphyries and monzogranites are characterized by high SiO2 levels but low concentrations of refractory elements, and show enrichment of LREEs and LILEs, with variable negative anomalies of Nb, Ta, Ti, Sr, P and Ba in multi-element diagrams normalized by primitive mantle. The monzogranite exhibits strongly negative εHf (t) values of - 10.5 to - 13.3 and TDM2 (Hf) values of 1849-2023 Ma, and the granite porphyries display relatively wide εHf (t) values of - 7.2 to - 13.4 and TDM2 (Hf) values of 1645-2043 Ma, indicating that these monzogranites and granite porphyries are highly fractionated granites

  8. Habitability Of Europa's Crust

    NASA Astrophysics Data System (ADS)

    Greenberg, R.; Tufts, B. R.; Geissler, P.; Hoppa, G.

    Physical characterization of Europa's crust shows it to be rich in potentially habitable niches, with several timescales for change that would allow stability for organisms to prosper and still require and drive evolution and adaptation. Studies of tectonics on Europa indicate that tidal stress causes much of the surface cracking, that cracks pen- etrate through to liquid water (so the ice must be thin), and that cracks continue to be worked by tidal stress. Thus a global ocean is (or was until recently) well linked to the surface. Daily tidal flow (period~days) transports substances up and down through the active cracks, mixing surface oxidants and fuels (cometary material) with the oceanic reservoir of endogenic and exogenic substances. Organisms moving with the flow or anchored to the walls could exploit the disequilibrium chemistry, and those within a few meters of the surface could photosynthesize. Cracks remain active for at least ~10,000 yr, but deactivate as nonsynchronous rotation moves them to different stress regimes in less than a million yr. Thus, to survive, organisms squeezed into the ocean must migrate to new cracks, and those frozen in place must hibernate. Most sites remelt and would release captive organisms within about a million yr based on the prevalence of chaotic terrain, which covers nearly half of Europa. Linkage of the ocean to the surface also could help sustain life in the ocean by delivering oxidants and fuels. Suboceanic volcanism (if any) could provide additional sites and support for life, but is not necessary. Recent results support this model. We further constrain the non-synchronous rotation rate, demonstrate the plausibility of episodic melt-through, show that characteristics of pits and uplift features do not imply thick ice, and demonstrate polar wander, i.e. that the ice crust is detached from the solid interior and has slipped as a unit relative to the spin axis. Thus Europa's biosphere (habitable if not inhabited) likely

  9. Fe and O isotope composition of meteorite fusion crusts: Possible natural analogues to chondrule formation?

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.; Poole, Graeme M.; Hoyes, Jack; Coles, Barry J.; Unsworth, Catherine; Albrecht, Nina; Smith, Caroline; RehkäMper, Mark; Pack, Andreas; Genge, Matthew; Russell, Sara S.

    2015-02-01

    Meteorite fusion crust formation is a brief event in a high-temperature (2000-12,000 K) and high-pressure (2-5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9-1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high-pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O-poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.

  10. Analytical, Experimental, and Modelling Studies of Lunar and Terrestrial Rocks

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1997-01-01

    The goal of our research has been to understand the paths and the processes of planetary evolution that produced planetary surface materials as we find them. Most of our work has been on lunar materials and processes. We have done studies that obtain geological knowledge from detailed examination of regolith materials and we have reported implications for future sample-collecting and on-surface robotic sensing missions. Our approach has been to study a suite of materials that we have chosen in order to answer specific geologic questions. We continue this work under NAG5-4172. The foundation of our work has been the study of materials with precise chemical and petrographic analyses, emphasizing analysis for trace chemical elements. We have used quantitative models as tests to account for the chemical compositions and mineralogical properties of the materials in terms of regolith processes and igneous processes. We have done experiments as needed to provide values for geochemical parameters used in the models. Our models take explicitly into account the physical as well as the chemical processes that produced or modified the materials. Our approach to planetary geoscience owes much to our experience in terrestrial geoscience, where samples can be collected in field context and sampling sites revisited if necessary. Through studies of terrestrial analog materials, we have tested our ideas about the origins of lunar materials. We have been mainly concerned with the materials of the lunar highland regolith, their properties, their modes of origin, their provenance, and how to extrapolate from their characteristics to learn about the origin and evolution of the Moon's early igneous crust. From this work a modified model for the Moon's structure and evolution is emerging, one of globally asymmetric differentiation of the crust and mantle to produce a crust consisting mainly of ferroan and magnesian igneous rocks containing on average 70-80% plagioclase, with a large

  11. The origin of continental crust: Outlines of a general theory

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1985-01-01

    The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).

  12. Template for the Terrestrial Planets: The Moon (Invited)

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.

    2010-12-01

    On the Moon, the geologic record and early history of the crust and mantle have been preserved for more than 4 Gyr. Ancient large craters and basins provide access to the interior; a continuous rain of smaller event, micrometeorites, and plasma record the recent history of the Earth-Moon environment. Such a record makes this small differentiated body an invaluable asset for understanding processes affecting all terrestrial planets. An international armada of spacecraft have recently orbited the Moon with advanced sensors to measure its physical properties: SELENE/Kaguya [JAXA], ChangE [CNSA], Chandrayaan-1 [ISRO], and LRO/LCROSS [NASA]. The data from these modern robotic missions are being calibrated, validated, and distributed and new results and insights are appearing throughout the peer-reviewed scientific literature. From these new data, the Moon indeed continues to surprise us. We recognize that the large basins provide windows into early crustal processes and we have identified direct compositional products of the early Magma Ocean. We have uncovered secondary deep magmatic products of the lunar crust, identified new rock types, and characterized basin impact melt that was possibly derived from the mantle. We now know hydrated materials from the interior exist far more abundantly than suspected, water and hydrated materials are currently widespread across the surface of the Moon, and some polar areas appear to be locations where hydrous materials are concentrated. The Moon provides a template to read the record of interplay between geochemistry, petrology and geophysics for an evolving planetary body early in solar system history.

  13. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  14. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  15. Dynamics of the Precambrian Continental Crust

    NASA Astrophysics Data System (ADS)

    Perchuk, L. L.; Gerya, T. V.; van Reenen, D. D.; Smit, C. A.

    2003-04-01

    The Precambrian continental crust is mainly composed of (1) granite greenstone belts (GGB) and (2) granulite facies complexes (GFC). The GFC are often separated from GGB by inward dipping crustal scale shear zones with characteristic sense of movements reflecting thrusting of GFC onto cratonic rocks. The isotope age of the shear zones is identical to GFC, while the latter are always younger than the granite greenstone belts. The dynamics relationships between these two geological units strongly determine tectonic evolution of the Precambrian continental crust. Numerous thermobarometric studies of magmatic and metamorphic rocks show that the Archaean to Early Protorozoic crust as well as the Mantle were hot and therefore relatively soft. Such geothermal regimes may limit separation and movement of micro continents, limiting collisional mechanisms in evolution of the Precambrian crust. The goal of this paper is to show evidence for an alterative model that is based on the mechanism of gravitational redistribution of rocks within the Precambrian continental crust, which might be initiated by a fluid/heat flow related to mantle plumes. The model is tested on the basis of geological, geochemical, geophysical and petrologic data for many paired GFT GGB complexes around the word. Studied granulite complexes are located in between Archaean GGB from which they are separated by inward dipping crustal scale shear zones with reverse sense of movements. The most important evidence for this mechanism is: (i) the near isobaric cooling (IC) and (ii) decompression cooling (DC) shapes of the retrograde P T paths recorded in GFC, while rocks from the juxtaposed GGB in footwalls of the bounding shear zones record P T loops. The Pmax of the loops corresponds to the Pmin, recorded in GFC. Thus the GGB P T loop reflects the burial and ascending of the juxtaposed GGB while the GFC P T path records the exhumation only. The identical isotopic age of GFC and contacting rocks from the shear

  16. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  17. Magnetic Sources in the Crust of Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a simple schematic representation of localized magnetic sources in the crust of Mars, buried beneath the surface, and revealed by observation of the magnetic field (blue) extending up to satellite altitude (about 120 kilometers). Most of our close passes to date - for which we have data - reveal the presence of one or more magnetic anomalies close to the path of the spacecraft. Since the sources must be close to the path of the satellite, we can only infer that the crust of Mars is strewn with similar magnetic anomalies, awaiting discovery. Where we can obtain enough data - that is to say, spaced more or less evenly in longitude with a spacing comparable to our periapsis altitude - we can construct a detailed image of the magnetic state of the Martian crust. We can then perhaps learn about the history of the now-extinct early Mars dynamo and the evolution of the surface of Mars.

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  18. Probing the structure and porosity of the lunar highlands crust

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Evans, Alexander J.; Johnson, Brandon C.; Melosh, H. Jay; Miljković, Katarina; Phillips, Roger J.; Andrews-Hanna, Jeffrey C.; Milbury, Colleen; Neumann, Gregory A.; Nimmo, Francis; Smith, David E.; Solomon, Sean C.; Sori, Michael M.; Thomason, Carver J.; Wieczorek, Mark A.; Zuber, Maria T.

    2015-04-01

    Impact cratering is held to be the primary mechanism responsible for regulating porosity in primordial planetary lithospheres, increasing porosity via fracturing and dilatant bulking and decreasing porosity via localized heating and compaction. Constraints on these processes, however, are limited to gravity profiles of four lunar craters and gravity and seismic observations of ~50 terrestrial craters, many of which have been substantially modified by erosion and weathering. The Gravity Recovery and Interior Laboratory (GRAIL) mission has afforded unprecedented insight into the structure of the lithosphere of the Moon. We use a Bouguer-corrected GRAIL gravity field to investigate the porosity associated with ~1200 complex lunar highlands craters. We find that the Bouguer anomaly (BA) of these craters is generally negative and scales inversely with crater size, implying that larger impacts result in more extensive fracturing and dilatant bulking. The BA of craters larger than ~93 km is independent of crater diameter, indicating that impact-generated porosity is truncated at depth. Considerable variability in the BA of craters is observed. Some craters, in fact, exhibit positive Bouguer anomalies. We find that positive values of the residual BA, the average BA within the crater rim less the average BA within an outer annulus from the outer flank of the rim to two crater radii from the crater center, correlate with high porosity in the surrounding crust. Our analysis shows that, whereas early impacts generally increased crustal porosity, when crustal porosity becomes too high, impacts reduce porosity, leading to the concept of a steady-state porosity, which we estimate to be ~15±1% for the lunar highlands. Knowledge of the extent and variability of crustal porosity is critical to understanding the thermal and geologic evolution of planetary bodies and to the ancient ecology of Earth.

  19. Crust-atmosphere coupling and carbon sequestration on palaeo-Mars

    NASA Astrophysics Data System (ADS)

    Macartney, Adrienne; Lee, Martin; Harkness, Patrick

    2014-05-01

    The modern surface of Mars displays evidence for past liquid water flows, with mounds and polygons in the Chryse-Acidalia region possibly indicating large bodies of ancient standing liquid [1]. For liquid water to be stable at the planet's surface, temperatures of >273.2K and a saturation water vapour pressure of >6.1 mbar are required [2]. To achieve such conditions, atmospheric pressures >1 bar CO2 have been hypothesised during the late Noachian/early Hesperian period (i.e. ~1.4-3.0 Ga [3]). Mars' currently thin (6 mbar) atmosphere poses the question of the fate of the hypothesised multi-bar CO2 atmosphere. Estimates for ~270 mbar lost to space [4], with ~5 mbar at the poles [5], leaves a minimum 750 mbar unaccounted for. The nakhlite martian meteorites display clear evidence of low water to rock (W/R) ratio isochemical silicate mineral carbonation [6]. Such carbonation processes can also be observed in basic terrestrial rock exposures, such as the Leka ophiolite, Norway [7]. Hydration and carbonation of silicate rocks is an important negative feedback process in the terrestrial carbon cycle. Significant atmospheric CO2 removal via silicate weathering partly balances the volcanic CO2 output. Peridotite contains >40% olivine, which can hydrate to form quartz, magnesite and serpentine and these reactions may be followed by carbon sequestration, forming highly alkaline travertine springs (pH>11), which have been observed in terrestrial ophiolites worldwide. Carbonation is exothermic, with the total fully carbonated solid products possessing 44% greater mass than the reactants [8]. This causes cracking [9], exposing fresh reactant surfaces, although this can be offset by expansion causing reduced porosity [10]. The raised temperatures increase reaction rates, and a positive feedback mechanism of sustained carbonation can develop. The crust of Mars is composed of similarly basic minerals, mostly basalt on the surface [11]. By investigating carbonated terrestrial

  20. Evolution of the Archaean crust by delamination and shallow subduction.

    PubMed

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time. PMID:12529633

  1. Oceanic crust deep seismic survey

    NASA Astrophysics Data System (ADS)

    McBride, J. H.; White, R. S.

    In September 1991, the British Institutions Reflection Profiling Syndicate (BIRPS) collected 578 km of deep seismic reflection profiles over the oceanic crust beneath the Cape Verde abssyal plain in approximately 4900 m of water (Fig. 1). The survey, under the direction of J. H. McBride, was undertaken in response to a proposal made by R. S. White at the 1990 BIRPS open syndicate meeting in Birmingham, England, and was acquired using GECO-PRAKLA'S M/V Bin Hai 511. The survey consisted of two strike lines parallel to magnetic sea-floor lineations and nine orthogonal crossing lines oriented parallel to the spreading direction (Fig. 2). Adjacent lines are spaced at 4 km. For the first time, this provides the ability to map oceanic crust in “3D,” since the line spacing is less than or equal to the Fresnel-zone diameter for the lower crust.

  2. Profiling planktonic foraminiferal crust formation

    NASA Astrophysics Data System (ADS)

    Steinhardt, Juliane; de Nooijer, Lennart L. J.; Brummer, Geert-Jan; Reichart, Gert-Jan

    2015-07-01

    Planktonic foraminifera migrate vertically through the water column during their life, thereby growing and calcifying over a range of depth-associated conditions. Some species form a calcite veneer, crust, or cortex at the end of their lifecycle. This additional calcite layer may vary in structure, composition, and thickness, potentially accounting for most of their total shell mass and thereby dominating the element and isotope signature of the whole shell. Here we apply laser ablation ICP-MS depth profiling to assess variability in thickness and Mg/Ca composition of shell walls of three encrusting species derived from sediment traps. Compositionally, Mg/Ca is significantly lower in the crusts of Neogloboquadrina dutertrei and Globorotalia scitula, as well as in the cortex of Pulleniatina obliquiloculata, independent of the species-specific Mg/Ca of their lamellar calcite shell. Wall thickness accounts for nearly half of the total thickness in both crustal species and nearly a third in cortical P. obliquiloculata, regardless of their initial shell wall thickness. Crust thickness and crustal Mg/Ca decreases toward the younger chambers in N. dutertrei and to a lesser extent, also in G. scitula. In contrast, the cortex of P. obliquiloculata shows a nearly constant thickness and uniform Mg/Ca through the complete chamber wall. Patterns in thickness and Mg/Ca of the crust indicate that temperature is not the dominant factor controlling crust formation. Instead, we present a depth-resolved model explaining compositional differences within individuals and between successive chambers as well as compositional heterogeneity of the crust and lamellar calcite in all three species studied here.

  3. Soil stabilization by biological soil crusts in arid Tunisia

    NASA Astrophysics Data System (ADS)

    Guidez, Sabine; Couté, Alain; Bardat, Jacques

    2015-04-01

    As part of the fight against desertification (LCD) in arid Tunisia, we have been able to highlight the important role played by biological soil crusts (BSC) in soil stabilization. The identification of the major species of cyanobacteria, lichens and bryophytes, their adaptation and terrestrial colonization strategies in this high climatic constraints area through their morpho-anatomical criteria have been set. In addition to their biological composition, their internal arrangement (i.e. texture and microstructure) reflects the structural stability of BSC against erosion. Precisely, the aggregative power of cyanobacteria and their ways of moving inside a soil, the capacity of mosses to grow through the sediments and lichens ability to bind at particles on surface, thus stabilizing the substrate have been demonstrated. Then, the three biological components ability to capture soil particles has been widely illustrated, proving the major environmental contribution of BSC in arid areas biological crusts formation, providing that soils will experience an increase of organic matter and fine particles rates subsequently gaining faster and better stability. Although the thickness and the morphology of crusts are related to the cover rates of these different biological components, the water properties of the latter, studied at the environmental SEM, illustrate their important role in altering the water cycle. Thus, the mixed crusts, i.e. with good presence of three biological components, cause the highest runoff rates by their ability to retain the water and spread on the surface. In spite of a swelling coefficient in presence of water higher than cryptogams, the cyanobacterial crusts located in newly stabilized areas of our studied region, remain finally insufficiently dense to impact surface hydrology. But, we showed after all that the cyanobacteria, pioneer species, have a certain environmental role. The lichen crusts cause a increased runoff because the lichens have a

  4. Statistics of Magnetar Crusts Magnetoemission

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.; Korovina, Yu. V.

    2016-05-01

    Soft repeating gamma-ray (SGR) bursts are considered as magnetoemission of crusts of magnetars (ultranamagnetized neutron stars). It is shown that all the SGR burst observations can be described and systematized within randomly jumping interacting moments model including quantum fluctuations and internuclear magnetic interaction in an inhomogeneous crusty nuclear matter.

  5. Bioalteration of basaltic glass in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Furnes, Harald; Staudigel, Hubert; Thorseth, Ingunn H.; Torsvik, Terje; Muehlenbachs, Karlis; Tumyr, Ole

    2001-08-01

    Bioalteration of Quaternary to Early Cretaceous basaltic glass from pillow lavas of the upper oceanic crust can be documented in Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) samples from shallow to deep drill holes from the north to central Atlantic Ocean, Lau Basin, and Costa Rica Rift, a wide range of marine settings. Biogenerated textures are rooted in fractures and occur as two main types, a granular type and a tubular type. The granular type, common at all depths within the volcanic pile, appears as solid bands, semicircles or irregular patches of individual and/or coalesced spherical bodies, mostly 0.2-0.6 μm in diameter, with irregular protrusions into the fresh glass. The tubular type is more common at deeper levels in the crust and consists of thin tubes, sometime branching bodies, mostly 20-30 μm long and are more common at deeper levels. The upper crust displays a large variability in the relative importance of biotic to abiotic alteration, and the degree of bioalteration appears to decrease with depth. Thus the fraction of bioalteration of the total alteration of the glass ranges from 20-90% in the upper 300 m down to a maximum of 10% at about 500 m depth. This might be due to a natural variability in the abundance of bioaltered glass or to biased sampling from low drilling recovery of relatively young crust. The proportion of bioaltered to abiotically altered glass does not show any systematic variations with age of the crust. Thus bioalteration lasts as long as abiotic alteration, i.e., for as long as water is available to the hydration of the oceanic crust. Evidence from heat flow measurements suggests that hydrothermal circulation lasts until at least ˜70 Ma, and thus the deep biosphere is likely to expand at least into crust of this age.

  6. Helium isotopes in ferromanganese crusts from the central Pacific Ocean

    USGS Publications Warehouse

    Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.

    2006-01-01

    Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.

  7. Ozone generation by rock fracture: Earthquake early warning?

    SciTech Connect

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  8. Permeability within basaltic oceanic crust

    NASA Astrophysics Data System (ADS)

    Fisher, Andrew T.

    1998-05-01

    Water-rock interactions within the seafloor are responsible for significant energy and solute fluxes between basaltic oceanic crust and the overlying ocean. Permeability is the primary hydrologic property controlling the form, intensity, and duration of seafloor fluid circulation, but after several decades of characterizing shallow oceanic basement, we are still learning how permeability is created and distributed and how it changes as the crust ages. Core-scale measurements of basaltic oceanic crust yield permeabilities that are quite low (generally 10-22 to 10-17 m²), while in situ measurements in boreholes suggest an overlapping range of values extending several orders of magnitude higher (10-18 to 10-13 m²). Additional indirect estimates include calculations made from borehole temperature and flow meter logs (10-16 to 10-11 m²), numerical models of coupled heat and fluid flow at the ridge crest and within ridge flanks (10-16 to 10-9 m²), and several other methods. Qualitative indications of permeability within the basaltic oceanic crust come from an improved understanding of crustal stratigraphy and patterns of alteration and tectonic modification seen in ophiolites, seafloor samples and boreholes. Difficulties in reconciling the wide range of estimated permeabilities arise from differences in experimental scale and critical assumptions regarding the nature and distribution of fluid flow. Many observations and experimental and modeling results are consistent with permeability varying with depth into basement and with primary basement lithology. Permeability also seems to be highly heterogeneous and anisotropic throughout much of the basaltic crust, as within crystalline rocks in general. A series of focused experiments is required to resolve permeability in shallow oceanic basement and to directly couple upper crustal hydrogeology to magmatic, tectonic, and geochemical crustal evolution.

  9. Ontong Java volcanism initiated long-term climate warming that caused substantial changes in terrestrial vegetation several tens of thousand years before the onset of OAE1a (Early Aptian, Cretaceous)

    NASA Astrophysics Data System (ADS)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During Cretaceous times, several intense volcanic episodes are proposed as trigger for episodic climate warming, for changes in marine circulation patterns and for elevated marine productivity, which resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Volcanic outgassing results in an increased pCO2 and should lead to a rise in global temperatures. We therefore investigated if the volcanically-induced increase in pCO2 at the onset of OAE1a in the early Aptian led to a temperature rise that was sufficient to affect terrestrial vegetation assemblages. In order to analyse changes in terrestrial palynomorph assemblages, we examined 15 samples from 12 black shale horizons throughout the early Aptian negative C-isotope spike interval of the Pusiano section (Maiolica Formation; N-Italy). These sediments were deposited at the southern continental margin of the alpine Tethys Ocean and have been bio- and magnetostratigraphically dated by Channell et al. (1995). In order to obtain a continuous palynological record of the negative C-isotope spike interval and the base of OAE1a, we combined this pre-OAE1a interval of Pusiano with the OAE1a interval of the nearby Cismon section (Hochuli et al., 1999). The sporomorph assemblages at the base of this composite succession feature abundant bisaccate pollen, which reflects a warm-temperate climate. Rather arid conditions are inferred from low trilete spore percentages. Several tens of thousand years before the onset of OAE1a, C-isotope values started to decrease. Some thousand years later, bisaccate pollen began to decrease, whereas an increase of Classopollis spp. and Araucariacites spp

  10. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  11. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion

    USGS Publications Warehouse

    Barger, N.N.; Herrick, J.E.; Van Zee, J.; Belnap, J.

    2006-01-01

    In this study, we conducted rainfall simulation experiments in a cool desert ecosystem to examine the role of biological soil crust disturbance and composition on dissolved and sediment C and N losses. We compared runoff and sediment C and N losses from intact late-successional dark cyanolichen crusts (intact) to both trampled dark crusts (trampled) and dark crusts where the top 1 cm of the soil surface was removed (scraped). In a second experiment, we compared C and N losses in runoff and sediments in early-successional light cyanobacterial crusts (light) to that of intact late-successional dark cyanolichen crusts (dark). A relatively high rainfall intensity of approximately 38 mm per 10-min period was used to ensure that at least some runoff was generated from all plots. Losses of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonium (NH 4+ ) were significantly higher from trampled plots as compared to scraped and intact plots. Sediment C and N losses, which made up more than 98% of total nutrient losses in all treatments, were more than 4-fold higher from trampled plots relative to intact plots (sediment C g/m2, intact = 0.74, trampled = 3.47; sediment N g/m2, intact = 0.06, trampled = 0.28). In light crusts, DOC loss was higher relative to dark crusts, but no differences were observed in dissolved N. Higher sediment loss in light crusts relative to dark crusts resulted in 5-fold higher loss of sediment-bound C and N. Total C flux (sediment + dissolved) was on the order of 0.9 and 7.9 g/m2 for dark and light crusts, respectively. Sediment N concentration in the first minutes after runoff from light crusts was 3-fold higher than the percent N of the top 1 cm of soil, suggesting that even short-term runoff events may have a high potential for N loss due to the movement of sediments highly enriched in N. Total N loss from dark crusts was an order of magnitude lower than light crusts (dark = 0.06 g N/m2, light = 0.63 g/m2). Overall, our

  12. Post-glacial ocean acidification and the decline of reefal microbial crusts

    NASA Astrophysics Data System (ADS)

    Riding, R.; Liang, L.; Braga, J.

    2011-12-01

    Data from Pacific, Indian Ocean and Caribbean coral reefs indicate marked Late Pleistocene to Holocene decline in the maximum thickness of microbial carbonate crusts in reef cavities. Using estimated values of pH, temperature, CO2, and ionic composition, we calculated calcite saturation ratio (Ωcalcite) of tropical surface seawater for the past 16 Ka. This shows a declining trend of Ωcalcite, paralleling that of reefal microbial crust thickness. We suggest that thinning of reefal microbial crusts could reflect decrease in seawater carbonate saturation due to ocean acidification in response to deglacial CO2 increase. Previously, decline in reefal microbial crusts, for example at Tahiti in the Pacific Ocean, has mainly been attributed to changes in nutrient supply associated with ocean upwelling and/or terrestrial run-off. Ocean acidification does not preclude such effects on microbial crust development produced by localized changes, but two features in particular are consistent with a global link with carbonate saturation state. Firstly, post-glacial decline in reefal microbial crust thickness affected tropical coral reefs in several oceans. Secondly, seawater carbonate saturation is a major long-term control on microbial carbonate abundance; microbially-induced biocalcification requires elevated seawater saturation for CaCO3 minerals and can be expected to fluctuate with carbonate saturation. In addition to compiling published crust thickness data, we measured thicknesses of microbial carbonate crusts in cavities in Tahiti reefs sampled by Integrated Ocean Drilling Program coring in 2005. This indicates halving of maximum crust thickness, during the same period as steep decline in mean-ocean calcite saturation, near the Pleistocene-Holocene transition. Reefal microbial crusts have been common since skeletal reefs became widespread during the Ordovician Period, 475 Ma ago. The habitat for cryptic crusts expanded as scleractinian corals developed cavernous

  13. [Nitrogen fixation potential of biological soil crusts in Heidaigou open coal mine, Inner Mongolia, China].

    PubMed

    Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen

    2016-02-01

    Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation

  14. Relamination and the Differentiation of Continental Crust

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kelemen, P. B.; Behn, M. D.

    2014-12-01

    Most immature crust must be refined to attain the composition of mature continental crust. This refining may take the form of weathering, delamination, or relamination. Although delamination and relamination both call upon gravity-driven separation of felsic rock into the crust and mafic rock into the mantle, delamination involves foundering of rock from the base of active magmatic arcs, whereas relamination involves the underplating/diapirism of subducted sediment, arc crust, and continent crust to the base of the crust in any convergence zone. Relamination may be more efficient than lower crustal foundering at generating large volumes of material with the major- and trace-element composition of continental crust, and may have operated rapidly enough to have refined the composition of the entire continental crust over the lifetime of Earth. If so, felsic rocks could form much of the lower crust, and the bulk continental crust may be more silica rich than generally considered. Seismic wavespeeds require that only ~10-20% of the lowermost 5-15 km of continental crust must be mafic; combined heat-flow and wavespeed constraints permit continental lower crust to have 50 to 65 wt% SiO2.

  15. Magnetic structure of the crust

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1985-01-01

    The bibuniqueness aspect of geophysical interpretation must be constrained by geological insight to limit the range of theoretically possible models. An additional step in depth understanding of the relationship between rock magnetization and geological circumstances on a grand scale is required. Views about crustal structure and the distribution of lithologies suggests a complex situation with lateral and vertical variability at all levels in the crust. Volcanic, plutonic, and metamorphic processes together with each of the observed anomalies. Important questions are addressed: (1) the location of the magnetic bottom; (2) whether the source is a discrete one or are certain parts of the crust cumulatively contributing to the overall magnetization; (3) if the anomaly to some recognizable surface expression is localized, how to arrive at a geologically realistic model incorporating magnetization contrasts which are realistic; (3) in the way the primary mineralogies are altered by metamorphism and the resulting magnetic contracts; (4) the effects of temperature and pressure on magnetization.

  16. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-cretaceous mass extinction.

    PubMed

    Chin, Karen; Pearson, Dean; Ekdale, A A

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  17. Fossil Worm Burrows Reveal Very Early Terrestrial Animal Activity and Shed Light on Trophic Resources after the End-Cretaceous Mass Extinction

    PubMed Central

    Chin, Karen; Pearson, Dean; Ekdale, A. A.

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  18. Magnetization of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Carley, R. A.; Whaler, K. A.; Purucker, M. E.; Halekas, J. S.

    2012-01-01

    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.

  19. New estimates of global CH4 and C2H6 production in the Precambrian crust

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Chelsea N.; Lacrampe-Couloume, Georges; Ballentine, Chris J.; Sherwood Lollar, Barbara

    2015-04-01

    Saline fracture fluids found deep within the Precambrian shield possess isotopic and geochemical signatures consistent with prolonged water rock interaction. Noble gas-derived residence times of these fluids, on the order of millions to billions of years, highlight their significance as an ancient deep hydrosphere (Lippmann-Pipke et al., 2011; Holland et al., 2013). With mM concentrations of dissolved gases such as H2 and hydrocarbons, these fracture fluids are energy rich and capable of sustaining microbial communities of H2-utilizing methanogens and sulphate reducers (Lin et al., 2006). Globally, Precambrian rocks constitute over 70% of the volume of the continental crust (Goodwin, 1996) and represent a substantial under-investigated source of such dissolved gases. Recent calculations of global H2 production from these Precambrian Shield rocks, including both hydration reactions and radiolysis, doubles previous estimates to an increased rate of 0.4-2.3 x 1011 mol/yr (Sherwood Lollar et al., 2014). This has important consequences for hydrocarbon production, reflected in the high abundance of CH4 and C2H6 in dissolved fracture gases, up to 80 and 10 vol %, respectively. Given the long residence times of these fluids, hydrocarbon production could have persisted on geological timescales. To date, production from this source has not been incorporated into models of evolution of the early atmosphere. Additionally, the quantification of abiotic sources of methane and ethane in the analogous terrestrial Precambrian crust could contribute to our understanding of the origin of the episodic traces of methane recently detected on Mars (Webster et al., 2014). Investigating the origin of these gases has important implications for the global carbon cycle, as well as the distribution of life in the terrestrial deep subsurface and on other planets. We examine the isotopic evolution of these fracture fluids in the Canadian Shield and provide the first attempts to estimate methane

  20. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    PubMed

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. PMID:26798012

  1. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L.

    2016-01-01

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.

  2. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: Implication for crust-mantle interaction and post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Guang; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Yang, Yue-Heng; Liu, Yongsheng

    2012-05-01

    The Tongshi intrusive complex, located within the western Shandong Province (Luxi Block) in the eastern North China Craton, comprises high-K calc-alkaline series (fine-grained quartz monzonite and porphyritic quartz monzonite) and shoshonitic series (coarse- to fine-grained porphyritic syenites). Here we report comprehensive data on petrology, geochemistry, Sr-Nd-Pb isotopes and zircon U-Pb and Hf isotopic compositions from the intrusive complex. LA-ICPMS zircon U-Pb ages show that this complex was emplaced at 180.1-184.7 Ma. The fine-grained quartz monzonite and porphyritic quartz monzonite have similar major and trace elements features, implying a similar petrogenetic history. Coupled with the widespread Neoarchean inherited zircons in these rocks, the high SiO2 and Na2O as well as the low MgO contents and low Pb isotopic ratios ((206Pb/204Pb)i = 15.850-16.881, (207Pb/204Pb)i = 14.932-15.261, (208Pb/204Pb)i = 35.564-36.562) of the quartz monzonites suggest an origin from ancient tonalite-trondhjemite-granodiorite (TTG) crust. However, their higher Nd and Hf isotopic ratios (ɛNd (t) = - 11.7 to - 7.0, ɛHf (t) = - 25.0 to - 10.3) as compared to the basement rocks indicate input of enriched lithospheric mantle-derived materials. The coarse- to fine-grained porphyritic syenites were derived from similar sources as inferred from their comparable major and trace elements contents as well as the Nd, Hf and Pb isotopic compositions. The Neoarchean inherited zircons and depletion of Nb, Ta, P and Ti in these rocks indicate the involvement of ancient crust. However, the high Nd and Hf isotopic ratios (ɛNd (t) = - 0.8 to 1.5, ɛHf (t) = - 4.4 to 4.8) coupled with high Pb isotopic compositions ((206Pb/204Pb)i = 18.082-19.560, (207Pb/204Pb)i = 15.510-15.730, (208Pb/204Pb)i = 37.748-39.498) suggest that the porphyritic syenites were mainly derived from an asthenospheric mantle. Based on the geochemical and isotopic features, a magmatic process similar to MASH (melting

  3. History of the earth's crust

    SciTech Connect

    Eicher, D.L.; Mcalester, A.L.; Rottman, M.L.

    1984-01-01

    The history of the earth's crust since its formation 4.6 Gyr ago is traced in an introductory textbook, with consideration of the global climate and the general outline of biological evolution. The methodology of paleogeology is introduced, and the origin of the solar system, the accumulation and differentiation of the earth, the beginnings of life, and the history of the moon are examined. Separate chapters are then devoted to the Precambrian, Paleozoic, Mesozoic, and Cenozoic earth. Photographs, maps, diagrams, and drawings are provided. 49 references.

  4. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific

    USGS Publications Warehouse

    Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.

    2012-01-01

    A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.

  5. Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event 1a: Evidence for the release of 13C-depleted carbon into the atmosphere

    NASA Astrophysics Data System (ADS)

    van Breugel, Yvonne; Schouten, Stefan; Tsikos, Harilaos; Erba, Elisabetta; Price, Gregory D.; Sinninghe Damsté, Jaap S.

    2007-03-01

    A common feature of records of the early Aptian oceanic anoxic event (OAE) 1a is the sharp negative δ13C excursion displayed in both carbonate and organic matter at the onset of this event. A synchronous negative δ13C excursion has also been noted for terrestrial organic matter. This negative excursion has been attributed to either an injection of 13C-depleted light carbon into the atmosphere or, in case of marine sediments, recycling of 13C-depleted CO2. However, most studies were done on separate cores, and no information on the relative timing of the negative spikes in terrestrial versus marine records has been obtained. Here we examine early Aptian core sections from two geographically distal sites (Italy and the mid-Pacific) to elucidate the causes and relative timing of this negative "spike." At both sites, increased organic carbon (Corg) and decreased bulk carbonate contents characterize the interval recording OAE 1a (variously referred to as the "Selli event"). The organic material within the "Selli level" is immature and of autochthonous origin. Measured δ13C values of marine and terrestrial biomarkers largely covary with those of bulk organic carbon, with lowest values recorded at the base of the organic-rich section. By contrast, sediments enveloping the "Selli level" exhibit very low Corg contents, and their extractable Corg is predominantly of allochthonous origin. Hydrous pyrolysis techniques used to obtain an autochthonous, pre-Selli δ13C value for algal-derived pristane from corresponding sample material yielded a negative δ13C shift of up to 4‰. A negative δ13C shift of similar magnitude was also measured for the terrigenous n-alkanes. The results are collectively best explained by means of a massive, syndepositional, rapid input of 13C-depleted carbon into the atmosphere and surface oceans, likely delivered either via methane produced from the dissociation of sedimentary clathrates or perhaps by widespread thermal metamorphism of Corg

  6. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain

  7. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system

    SciTech Connect

    Bau, M.; Moeller, P. )

    1993-05-01

    The chemically precipitated component in Early Precambrian (> 2.3 Ga) iron formations (IFs) displays (Sm/Yb)[sub CN] < 1 and (Eu/Sm)[sub SN] > 1 which reflects the corresponding ratios of contemporaneous seawater. In conjunction with [epsilon][sub Nd-IF] > [epsilon][sub Nd-shale] this rare earth element (REE) signature reveals that the REE distribution in Early Precambrian IFs must be explained by mixing between a marine bottom and a surface water component, and that the REEs (and by analogy the Fe) cannot be derived from weathering of a continental source. Mixing calculations reveal that (Sm/Yb)[sub CN] in Early Precambrian marine surface waters was significantly lower than it is today. To explain this difference, two mechanisms are discussed on the basis of higher P[sub CO[sub 2

  8. Evolution of the continental crust as recorded in accessory minerals

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi

    2013-04-01

    Recent developments in precise in situ isotopic analysis by LA-ICPMS and SIMS allow correlating multiple isotopic systems within single grains of accessory minerals such as zircon and monazite. The combined isotope systematics have provided valuable insights into the evolution of the continental crust. Zircon, a common accessory phase in granitoids, can be precisely dated by the U-Pb system. Zircon Lu-Hf isotopic composition is a function of crustal residence time of the magmatic protolith, whereas the O isotopic composition is a sensitive record of reworking of mature sediments such as pelite. An integration of U-Pb, Lu-Hf and O isotopic data for detrital zircons from modern large rivers indicates that: (1) the preserved continental crust dominantly formed between 3.6 and 1.0 Ga, (2) the major mode of crustal development would change during the supercontinent cycle, i.e., the generation of juvenile crust during supercontinent fragmentation versus the stabilization of the generated crust via crustal remelting during supercontinent fragmentation, and (3) reworking of mature sediments increased abruptly at ca. 2.1 Ga. No granitoids are known to have survived since 4.03 Ga. Yet evidence of an even older evolved crust is provided by detrital zircons with ages up to 4.4 Ga from Mt. Narryer and Jack Hills metasedimentary rocks in the Yilgarn Craton, Western Australia. Recently, such Hadean zircons have been found from outside the Yilgarn Craton, indicating that the young Earth had widespread granitoid crust. In addition, another accessory phase, monazite, in the Mt. Narryer and Jack Hills metasedimentary rocks offers an unique opportunity to advance our knowledge of early crustal evolution. Monazite, a light rare earth element phosphate mineral, occurs as an igneous accessory phase particularly in low-Ca granitoids, in contrast to the occurrence of igneous zircon in a wide range of granitoids. U-Pb and Sm-Nd isotope systematic of monazite are analogous to U-Pb and Lu

  9. Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Weber, B.; Büdel, B.; Andreae, M. O.; Pöschl, U.

    2009-07-01

    Microbiotic crusts consisting of bacteria, fungi, algae, lichens, and bryophytes colonize most terrestrial surfaces, and they are able to fix carbon and nitrogen from the atmosphere. Here we show that microbiotic crusts are likely to play major roles in the global biogeochemical cycles of carbon and nitrogen, and we suggest that they should be further characterized and taken into account in studies and models of the Earth system and climate. For the global annual net uptake of carbon by microbiotic crusts we present a first estimate of ~3.6 Pg a-1. This uptake corresponds to ~6% of the estimated global net carbon uptake by terrestrial vegetation (net primary production, NPP: ~60 Pg a-1), and it is of the same magnitude as the global annual carbon turnover due to biomass burning. The estimated rate of nitrogen fixation by microbiotic crusts (~45 Tg a-1) amounts to ~40% of the global estimate of biological nitrogen fixation (107 Tg a-1). With regard to Earth system dynamics and global change, the large contribution of microbiotic crusts to nitrogen fixation is likely to be important also for the sequestration of CO2 by terrestrial plants (CO2 fertilization), because the latter is constrained by the availability of fixed nitrogen.

  10. Terrestrial analogs for space exploration habitation systems

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.; Brown, Jeri W.

    1992-01-01

    The Space Exploration Initiative (SEI) can use early earth-based analogs to simulate many aspects of space flight missions and system operation. These analogs can thus provide information supporting future missions to the moon and to Mars. A study was performed to investigate the potential of terrestrial analogs in simulating human space exploration missions. The study resulted in preliminary requirements and concepts for analog habitation systems, and further study in this area is necessary for SEI terrestrial analog development.

  11. Pacific ferromanganese crust geology and geochemistry

    SciTech Connect

    Andreev, S.I.; Vanstein, B.G.; Anikeeva, L.I. )

    1990-06-01

    Cobaltiferous ferromanganese crusts form part of a large series of oceanic ferromanganese oxide deposits. The crusts show high cobalt (commonly over 0.4%), low nickel and copper sum (0.4-0.8%), considerably high manganese (18-20%), and iron (14-18%). Less abundant elements in crusts are represented by molybdenum and vanadium; the rare-earth elements cerium, lanthenum, and yttrium; and the noble metals platinum and rhodium. Co-rich crusts form at water depths of 600 to 2,500 m. Crust thicknesses range from millimeters to 15-17 cm, averaging 2-6 cm. The most favorable conditions for 4-10 cm thick crusts to occur is at water depths of 1,200-2,200 m. The crusts formed on basaltic, calcareous, siliceous, and breccia bedrock surfaces provided there were conditions preventing bottom sedimentation at them. If the sedimentation takes place, it may be accompanied by nodules similar in composition to the crusts. The most favorable topography for extensive crust formation is considered to be subdued (up to 20{degree}) slopes and summit platforms of conical seamounts, frequently near faults and their intersection zones. Subhorizontal guyot summits do not usually favor crust growth. Crust geochemistry is primarily defined by mineralogy and manganese hydroxides (vernadite)/iron ratio. The first associated group of compounds includes cobalt, nickel, molybdenum, vanadium, cerium, and titanium; the other is strontium, yttrium, cerium, and cadmium. The aluminosilicate phase is associated with titanium, iron, chromium, and vanadium; phosphate biogenic phase includes copper, nickel, zinc, lead, and barium. The crucial point in cobaltiferous crust formation is their growth rate on which is dependent the degree of ferromanganese matrix sorption saturation with cobalt. The optimum for cobalt-rich ferromanganese ores is the conditions facilitating long-term and continuous hydrogenic processes.

  12. Evolution of the terrestrial planets (geological and petrological data)

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    How the terrestrial solid planetary bodies were developed? What major stages of their irreversible evolution took place before they turned into "dead" stone balls? We discuss these problems on examples of the Earth and the Moon, which evolution studied the best. According to modern views, after accretion of these bodies, magma oceans of some hundreds km deep appeared on their surface. According to Jeffries (1929), solidification of large molted bodies, because of the difference between adiabatic gradient in silicate melts (0.3oC/km) and gradient of their melting points (3oC/km), could be going only upwards, from the bottom to the surface. As a result a powerful crystallizing differentiation of the oceans' magmas took place with accumulation of the most low-melting components to the surface. Due to different deep of the oceans on the Moon and the Earth, the primordial crusts on these bodies were rather different: mafic on the Moon and sialic on the Earth. Geological evolution of the Earth began 4 Ga ago from appearance of Archean granite-greenstone terranes (GGT) and divided them granulite belts. Mantle-derived magmatism of high-Mg komatiite-basaltic series was located in greenstone belts, which formed irregular network within GGTs and composed 10-15 The sharp change of the magmatic activity with appearance in global scale of geochemical-enriched Fe-Ti picrites and basalts occurred in interval 2.3-2.0 Ga ago. Such melts was typical for Phanerozoic within-plate magmatism and linked with thermochemical mantle plumes of the second generation, which ascended from the liquid core-mantle boundary (CMB). It was followed by plate tectonic appearance 2 Ga ago and from this particular time such tectonic regime has existed till now. From this particular time, ancient Earth's continental crust began to involved in subduction processes and interchange by secondary oceanic crust which forms about 70Where this geochemical-enriched material was conserved and how it was activated

  13. The evolution of the moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.; Johnston, D. H.

    1974-01-01

    The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.

  14. Pulsar glitches: the crust is not enough.

    PubMed

    Andersson, N; Glampedakis, K; Ho, W C G; Espinoza, C M

    2012-12-14

    Pulsar glitches are traditionally viewed as a manifestation of vortex dynamics associated with a neutron superfluid reservoir confined to the inner crust of the star. In this Letter we show that the nondissipative entrainment coupling between the neutron superfluid and the nuclear lattice leads to a less mobile crust superfluid, effectively reducing the moment of inertia associated with the angular momentum reservoir. Combining the latest observational data for prolific glitching pulsars with theoretical results for the crust entrainment, we find that the required superfluid reservoir exceeds that available in the crust. This challenges our understanding of the glitch phenomenon, and we discuss possible resolutions to the problem. PMID:23368300

  15. The hardwater effect in AMS 14C dating of food crusts on pottery

    NASA Astrophysics Data System (ADS)

    Philippsen, Bente; Kjeldsen, Henrik; Hartz, Sönke; Paulsen, Harm; Clausen, Ingo; Heinemeier, Jan

    2010-04-01

    The pottery investigated in this study comes from late mesolithic inland sites next to rivers in Northern Germany. The first AMS 14C datings of food crusts from these sites showed surprisingly high ages, which could be caused by the hardwater effect. Modern samples from the rivers have ages of several hundred 14C years, and a modern food crust prepared from fish with a certain reservoir age shows the same age as the fish. Surprisingly, there was a large age difference between water samples and fish/mollusc shell from the same river. Associated archaeological samples of terrestrial and fluvial origin show age differences of several hundred and up to 3000 years. These high age differences are only to a limited extent transferred to the archaeological food crusts.

  16. Expansion of Voltage-dependent Na+ Channel Gene Family in Early Tetrapods Coincided with the Emergence of Terrestriality and Increased Brain Complexity

    PubMed Central

    Zakon, Harold H.; Jost, Manda C.; Lu, Ying

    2011-01-01

    Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost–tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input. PMID:21148285

  17. Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity.

    PubMed

    Zakon, Harold H; Jost, Manda C; Lu, Ying

    2011-04-01

    Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input. PMID:21148285

  18. Osmium isotope and highly siderophile element systematics of the lunar crust

    USGS Publications Warehouse

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  19. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  20. Apulian crust: Top to bottom

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana

    2014-12-01

    We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.

  1. Continental crust beneath the Agulhas Plateau, Southwest Indian Ocean

    SciTech Connect

    Tucholke, B.E.; Houtz, R.E.; Barrett, D.M.

    1981-05-10

    The Agulhas Plateau lies 500 km off the Cape of Good Hope in the southwestern Indian Ocean. Acoustic basement beneath the northern one third of this large, aseismic structural high has rugged morphology, but basement in the south is anomalously smooth, excepting a 30- to 90-km-wide zone with irregular relief that trends south-southwest through the center of the plateau. Seismic refraction profiles across the southern plateau indicate that the zone of irregular acoustic basement overlies thickened oceanic crust and that continental crust, locally thinned and intruded by basalts, underlies several regions of smooth acoustic basement. Recovery of quartzo-feldspathic gneisses in dredge hauls confirms the presence of continental crust. The smoothness of acoustic basement probably results from erosion (perhaps initially subaerial) of topographic highs with depositions and cementation of debris in ponds to form high-velocity beds. Basalt flows and sills also may contribute locally to form smooth basement. The rugged basement of the northern plateau appears to be of oceanic origin. A plate reconstruction to the time of initial opening of the South Atlantic places the continental part of the southern plateau adjacent to the southern edge of the Falkland Plateau, and both abut the western Mozambique Ridge. Both the Agulhas and Falkland plateaus were displaced westward during initial rifting in the Early Cretaceous. Formation of an RRR triple junction at the northern edge of the Agulhas continental fragment during middle Cretaceous time may explain the origin of the rugged, thickened oceanic crust beneath plateau as well as the apparent extension of the continental crust and intrusion of basaltic magmas beneath the southern plateau.

  2. Primitive layered gabbros from fast-spreading lower oceanic crust.

    PubMed

    Gillis, Kathryn M; Snow, Jonathan E; Klaus, Adam; Abe, Natsue; Adrião, Alden B; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J; Faak, Kathrin; Falloon, Trevor J; Friedman, Sarah A; Godard, Marguerite; Guerin, Gilles; Harigane, Yumiko; Horst, Andrew J; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M; John, Barbara E; Koepke, Juergen; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E; McCaig, Andrew M; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P

    2014-01-01

    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt. PMID:24291793

  3. Climate during the Roman and early-medieval periods in North-western Europe: a review of climate reconstructions from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Reichelmann, Dana F. C.; Gouw-Bouman, Marjolein T. I. J.; Hoek, Wim Z.; van Lanen, Rowin J.; Stouthamer, Esther; Jansma, Esther

    2016-04-01

    High-resolution palaeoclimate reconstructions are essential to identify possible influences of climate variability on landscape evolution and landscape-related cultural changes (e.g., shifting settlement patterns and long-distance trade relations). North-western Europe is an ideal research area for comparison between climate variability and cultural transitions given its geomorphological diversity and the significant cultural changes that took place in this region during the last two millennia (e.g., the decline of the Roman Empire and the transition to medieval kingdoms). Compared to more global climate records, such as ice cores and marine sediments, terrestrial climate proxies have the advantage of representing a relatively short response time to regional climatic change. Furthermore for this region large quantity of climate reconstructions is available covering the last millennium, whereas for the first millennium AD only few high resolution climate reconstructions are available. We compiled climate reconstructions for sites in North-western Europe from the literature and its underlying data. All these reconstructions cover the time period of AD 1 to 1000. We only selected data with an annual to decadal resolution and a minimum resolution of 50 years. This resulted in 18 climate reconstructions from different archives such as chironomids (1), pollen (4), Sphagnum cellulose (1), stalagmites (6), testate amoebae (4), and tree-rings (2). The compilation of the different temperature reconstructions shows similar trends in most of the records. Colder conditions since AD 300 for a period of approximately 400 years and warmer conditions after AD 700 become apparent. A contradicting signal is found before AD 300 with warmer conditions indicated by most of the records but not all. This is likely the result of the use of different proxies, reflecting temperatures linked to different seasons. The compilation of the different precipitation reconstructions also show similar

  4. Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth

    NASA Technical Reports Server (NTRS)

    Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.

  5. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    PubMed

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo. PMID:25877203

  6. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Wood, Bernard J.

    2015-04-01

    Recent 142Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a `hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the `hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an 142Nd/144Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the `missing' heat source for the geodynamo.

  7. Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1985-01-01

    The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth.

  8. Plagioclase flotation and lunar crust formation

    NASA Technical Reports Server (NTRS)

    Walker, D.; Hays, J. F.

    1977-01-01

    Anorthitic plagioclase floats in liquids parental to the lunar highlands crust. The plagioclase enrichment that is characteristic of lunar highlands rocks can be the result of plagioclase flotation. Such rocks would form a gravitationally stable upper crust on their parental magma.

  9. Geo-neutrino Detection From the Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Dye, S.

    2006-05-01

    It is well established that radioactivity within the Earth contributes to terrestrial heat flow and dynamic activity of the planet. At present, the extent of the contribution is predicted by models rather than measured by observation. Radioactive heat is dominated by long-lived isotopes of uranium, thorium, and potassium. It is now demonstrated that uranium and thorium in the Earth can be measured by geo-neutrino detectors. Geo- neutrino detectors at both continental and oceanic locations are needed to determine the partitioning of uranium and thorium between the crusts and mantle. The key role of the marine geo-neutrino detector for measuring mantle radioactivity, searching for the putative geo-reactor, and monitoring nuclear activity is described.

  10. Terrestrial photovoltaic collector technology trend

    SciTech Connect

    Shimada, K.; Costogue, E.

    1984-08-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe/sub 2/ and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.