Science.gov

Sample records for early terrestrial crust

  1. Early Formation of Terrestrial Crust

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; Schmitt, A. K.; McCulloch, M. T.; Lovera, O. M.

    2007-12-01

    Early (≥4.5 Ga) Formation of Terrestrial Crust T.M. Harrison1, A.K. Schmitt1, M.T. McCulloch2, and O.M. Lovera1 1Department of Earth and Space Sciences and IGPP, UCLA, Los Angeles, CA 90095, USA; 2Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 2601 AUSTRALIA Large deviations in ǎrepsilonHf(T) from bulk silicate Earth seen in >4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at ca. 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/177Hf (Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/206Pb analyses, permitting assessment of the use of ion microprobe data to characterize the age of the volumetrically larger domain sampled by laser drilling. Our new results confirm and extend the earlier observation of significant negative deviations in ǎrepsilonHf(T) throughout the Hadean, although no positive ǎrepsilonHf(T) values were documented in this study. These data yields an essentially uniform spectrum of single-stage model ages between 4.54 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. We derived the full error propagation expression for a parameter, ǎrepsilono, which measures the difference of a sample from solar system initial (Hf) (Hfo), and from this conclude that data plotting close to (Hfo), are statistically meaningful and consistent with silicate differentiation at 4.540±0.006 Ga. δ18O and Ti thermometry for these Hadean zircons show little obvious correlation with initial (Hf), consistent with their derivation through fusion of a broad suite of crustal rock types under near water-saturated conditions. Together with the inclusion assemblage and other isotopic and trace element data obtained from these ancient zircons, our results

  2. Combined147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Bourdon, Bernard; Mojzsis, Stephen J.; Rudge, John F.; Guitreau, Martin; Blichert-Toft, Janne

    2014-06-01

    silicate differentiation controlled the composition of Earth's oldest crust. Inherited 142Nd anomalies in Archean rocks are vestiges of the mantle-crust differentiation before ca. 4300 Ma. Here we report new whole-rock 147,146Sm-143,142Nd data for the Acasta Gneiss Complex (AGC; Northwest Territories, Canada). Our 147Sm-143Nd data combined with literature data define an age of 3371 ± 141 Ma (2 SD) and yield an initial ɛ143Nd of -5.6 ± 2.1. These results are at odds with the Acasta zircon U-Pb record, which comprises emplacement ages of 3920-3960 Ma. Ten of our thirteen samples show 142Nd deficits of -9.6 ± 4.8 ppm (2 SD) relative to the modern Earth. The discrepancy between 142Nd anomalies and a mid-Archean 147Sm-143Nd age can be reconciled with Nd isotope reequilibration of the AGC during metamorphic perturbations at ca. 3400 Ma. A model age of ca. 4310 Ma is derived for the early enrichment of the Acasta source. Two compositional end-members can be identified: a felsic component with 142Nd/144Nd identical to the modern Earth and a mafic component with 142Nd/144Nd as low as -14.1 ppm. The ca. 4310 Ma AGC source is ˜200 Myr younger than those estimated for Nuvvuagittuq (northern Québec) and Isua (Itsaq Gneiss Complex, West Greenland). The AGC does not have the same decoupled Nd-Hf isotope systematics as these other two terranes, which have been attributed to the crystallization of an early magma ocean. The Acasta signature rather is ascribed to the formation of Hadean crust that was preserved for several hundred Myr. Its longevity can be linked to 142Nd evolution in the mantle and does not require slow mantle stirring times nor modification of its convective mode.

  3. Early formation of evolved asteroidal crust.

    PubMed

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-01

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System. PMID:19129845

  4. Chronology of early lunar crust

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.; Nyquist, L. E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed.

  5. Biogeochemical signals from deep microbial life in terrestrial crust.

    PubMed

    Suzuki, Yohey; Konno, Uta; Fukuda, Akari; Komatsu, Daisuke D; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230

  6. Biogeochemical Signals from Deep Microbial Life in Terrestrial Crust

    PubMed Central

    Fukuda, Akari; Komatsu, Daisuke D.; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi

    2014-01-01

    In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230

  7. Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Schmitt, Axel K.; McCulloch, Malcolm T.; Lovera, Oscar M.

    2008-04-01

    Large deviations in ɛHf( T) from bulk silicate Earth seen in > 4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/ 177Hf initial ratios ( Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/ 206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/ 206Pb analyses, permitting assessment of the age of the volumetrically larger domain sampled by laser drilling against the spatially more restricted ion microprobe ages. Our new results confirm and extend the earlier observation of significant negative deviations in ɛHf( T) throughout the Hadean, although no positive ɛHf( T) values were documented in this study. Monte Carlo modelling of these data yields an essentially uniform spectrum of model ages between 4.56 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. To assess whether the five data plotting close to solar system initial Hf ( Hfo) are statistically robust, we derived the error propagation equation for a parameter, ɛo, which measures the difference of a sample from Hf o. Our analysis suggests that this limited data is indicative of source sequestration in a crustal-type Lu/Hf environment prior to 4.5 Ga. Oxygen isotope data and Ti thermometry from Hadean zircons show little obvious correlation with Hf, consistent with their derivation through fusion of a broad suite of crustal rock types under water-saturated conditions. Together with other isotopic and trace element data obtained from these ancient zircons, our results indicate essentially continuous derivation of crust from the mantle from 4.5 to 4.2 Ga with concurrent recycling into the mantle and internal crustal re-working. These results represent further evidence that by 4.35 Ga, portions of the crust had taken on continental

  8. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  9. The Early Evolution of Mars' Crust

    NASA Astrophysics Data System (ADS)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  10. Chronology and complexity of early lunar crust

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.; Ryder, G.; Nyquist, L. E.

    1989-01-01

    The petrology and chronology of early lunar crust is examined using the least equivocal of the available petrographic and age data on lunar rock samples, and the possible processes which produced the lunar crust are discussed. The results suggest that the lunar anorthositic crust was formed by about 120 Ma after the primary accretion of the moon at 4.56 Ga. At least some members of the diverse Mg-suites of rocks, such as norites, troctolites, and dunites, crystallized within a very few 100s of Ma after 4.56 Ga. A trace-element-rich material (KREEP) was formed by about 4.3 Ga ago, and this residue was subsequently reworked in melting and impact processes such that most samples which contain it have ages around 3.9-4.0 Ga. The findings also suggest that the onset of ferrous mare basalt volcanism began about 4.33 Ga, much earlier than was once assumed, and was still in process before the end of the most intense period of bombardment (3.9-4.0 Ga ago).

  11. Core and early crust formation on Mars

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Keller, T.; Gerya, T.; Tackley, P. J.; Connolly, J.; Zhu, G.

    2010-12-01

    One of the most striking surface features on Mars is the crustal dichotomy. It is the oldest geological feature on Mars and was formed more than 4.1 Ga ago by either exogenic or endogenic processes [1,2]. In order to find an internal origin of the crustal dichotomy, located within a maximum of 400 Ma of planetary differentiation, the thermal state of the planet resulting from core formation needs to be considered. Additionally, it was suggested that a primordial crust with up to 45 km thickness can be formed already during the Martian core formation [3]. We suggest that the sinking of iron diapirs delivered by predifferentiated impactors induced impact- and shear heating-related temperature anomalies in the mantle that fostered the formation of early Martian crust. Thus, the crustal thickness distribution would largely be a result of planetary core formation, late impact history and the onset of mantle convection. To test this hypothesis we use numerical models to simulate the formation of the Martian iron core and the resulting mantle convection pattern, while peridotite melting is enabled to track melting caused by shear and radioactive heating. We perform 2D simulations using the spherical-Cartesian code I2ELVIS for planetary accretion and the spherical code STAGYY for the consequent onset of mantle convection. We apply a temperature-, stress- and melt-fraction dependent viscoplastic rheology. Radioactive and shear heating as well as consumption of latent heat by silicate melting are taken into account. The depth of neutral buoyancy of silicate melt with respect to solid silicates is determined by the difference in compressibility of the liquid and solid phase. To self-consistently simulate the silicate phase changes expected inside a Mars-sized body, we use the thermodynamical database Perple_X. As initial condition for core formation, we apply randomly distributed iron diapirs with 75 km radius inside the planet, representing the cores of stochastically

  12. Iron Isotopic Fractionation in Early Planetary Crusts

    NASA Astrophysics Data System (ADS)

    Wang, K.; Moynier, F.; Dauphas, N.; Barrat, J.; Day, J. M.; Sio, C.; Korotev, R. L.; Zeigler, R. A.

    2012-12-01

    Differentiated meteorites (achondrites) derive from planetary bodies that experienced variable degrees of melting and silicate-metal segregation. The oldest achondrites, such as eucrites, angrites, brachinites and the oligoclase-rich meteorites Graves Nunataks 06128/06129 (GRA 06128/9), were formed ~2-5 Ma after the first Solar System solids. They represent the oldest differentiated silicate samples known in the Solar System and the study of these samples provides insight on the origins and conditions of formation of the first planetary crusts. Here, we present new high-precision data for the Fe isotopic compositions of eucrites, angrites, brachinites and GRA 06128/9 and interpret these results in terms of magmatism during formation of these samples. We find that most eucrites and brachinites are not fractionated compared to undifferentiated chondritic meteorites (δ56Fe = 0.00±0.01, 2se), while the rare Stannern-trend eucrites are slightly enriched in the heavier isotopes of Fe. Angrites are also enriched in the heavier isotopes (δ56Fe = 0.12±0.01, 2se), similar to what is observed for terrestrial basalts, reflecting the relatively high oxidation states of the angrite parent body(ies). Contrastingly to the 'basaltic' achondrites, GRA 06128/9 are enriched in light isotopes of Fe (δ56Fe = -0.08±0.02, 2se). Evidence for light Fe isotope enrichments may be the consequence of the segregation of magma rich in sulphide (usually enriched in light isotopes of Fe compared to silicate and metal in undifferentiated meteorites). If correct, this result not only confirms that GRA 06128/9 represent products from <30% partial melting of an asteroidal body, prior to core formation, but also indicates complementary Fe isotope systematics between GRA 06128/9 and brachinites.

  13. The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Dürr, Hans H.; Moosdorf, Nils; Meybeck, Michel; Kempe, Stephan

    2012-01-01

    The terrestrial surface, the "skin of the earth", is an important interface for global (geochemical) material fluxes between major reservoirs of the Earth system: continental and oceanic crust, ocean and atmosphere. Because of a lack in knowledge of the geochemical composition of the terrestrial surface, it is not well understood how the geochemical evolution of the Earth's crust is impacted by its properties. Therefore, here a first estimate of the geochemical composition of the terrestrial surface is provided, which can be used for further analysis. The geochemical average compositions of distinct lithological classes are calculated based on a literature review and applied to a global lithological map. Comparison with the bulk composition of the upper continental crust shows that the geochemical composition of the terrestrial surface (below the soil horizons) is significantly different from the assumed average of the upper continental crust. Specifically, the elements Ca, S, C, Cl and Mg are enriched at the terrestrial surface, while Na is depleted (and probably K). Analysis of these results provide further evidence that chemical weathering, chemical alteration of minerals in marine settings, biogeochemical processes (e.g. sulphate reduction in sediments and biomineralization) and evaporite deposition are important for the geochemical composition of the terrestrial surface on geological time scales. The movement of significant amounts of carbonate to the terrestrial surface is identified as the major process for observed Ca-differences. Because abrupt and significant changes of the carbonate abundance on the terrestrial surface are likely influencing CO2-consumption rates by chemical weathering on geological time scales and thus the carbon cycle, refined, spatially resolved analysis is suggested. This should include the recognition of the geochemical composition of the shelf areas, now being below sea level.

  14. Stored mafic/ultramafic crust and early Archean mantle depletion

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Patchett, P. J.

    1990-01-01

    Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive epsilon(Nd) values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high epsilon values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic oceanic crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high epsilon(Nd) values of the Archean upper mantle.

  15. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Astrophysics Data System (ADS)

    Taylor, P. N.; Kalsbeek, F.

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  16. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Technical Reports Server (NTRS)

    Taylor, P. N.; Kalsbeek, F.

    1986-01-01

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  17. Pristine Igneous Rocks and the Genesis of Early Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Lindstrom, David (Technical Monitor)

    2002-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology.

  18. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  19. Crust formation and plate motion in the early archean.

    PubMed

    Kröner, A; Layer, P W

    1992-06-01

    Mounting evidence for voluminous continental crust formation in the early Archean involving intracrustal melting and selective preservation of granitoid rocks suggests that initial crust formation crust formation and growth were predominantly by magmatic underplating in plumegenerated Iceland-type settings. Collision of these early islands to give rise to larger blocks is suggested by extensive horizontal shortening in both supracrustal and granitoid assemblages. Preservation of early Archean high-grade gneisses that were once at depths of 20 to 30 kilometers implies that these blocks developed thick, subcrustal roots despite high mantle heat flow. Rigid continental plates must have existed since at least 3.5 billion years ago, and greenstone belts (composed of mixed metavolcanic and metasedimentary sequences intruded by granitoid plutons) probably developed on or near these microcontinents. Paleomagnetic data with good age control from at least one ancient craton suggest that plate motion was at normal minimum average velocities of about 17 millimeters per year with respect to the poles during the period 3.5 billion to 2.4 billion years ago. If this is true on a global scale, Archean plate motion was not faster than in later geologic times. PMID:17791608

  20. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  1. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-01

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues. PMID:14534583

  2. Mars: The initial emplacement of ground ice in response to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the martian valley networks to terrestrial runoff channels, and their almost exclusive occurrence in the planet's ancient (approximately 4 billion year old) heavily cratered terrain, is often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was ground water sapping, a process that does not require that surface water exist in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered from two perspectives: (1) that the early climate started warm and wet, but gradually cooled with time; and (2) that it never differed substantially from that of today.

  3. In situ evidence for continental crust on early Mars

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Toplis, M. J.; Wiens, R. C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; Bridges, J. C.; Mangold, N.; Le Mouélic, S.; Fisk, M.; Meslin, P.-Y.; Beck, P.; Pinet, P.; Le Deit, L.; Rapin, W.; Stolper, E. M.; Newsom, H.; Dyar, D.; Lanza, N.; Vaniman, D.; Clegg, S.; Wray, J. J.

    2015-08-01

    Understanding of the geologic evolution of Mars has been greatly improved by recent orbital, in situ and meteorite data, but insights into the earliest period of Martian magmatism (4.1 to 3.7 billion years ago) remain scarce. The landing site of NASA’s Curiosity rover, Gale crater, which formed 3.61 billion years ago within older terrain, provides a window into this earliest igneous history. Along its traverse, Curiosity has discovered light-toned rocks that contrast with basaltic samples found in younger regions. Here we present geochemical data and images of 22 specimens analysed by Curiosity that demonstrate that these light-toned materials are feldspar-rich magmatic rocks. The rocks belong to two distinct geochemical types: alkaline compositions containing up to 67 wt% SiO2 and 14 wt% total alkalis (Na2O + K2O) with fine-grained to porphyritic textures on the one hand, and coarser-grained textures consistent with quartz diorite and granodiorite on the other hand. Our analysis reveals unexpected magmatic diversity and the widespread presence of silica- and feldspar-rich materials in the vicinity of the landing site at Gale crater. Combined with the identification of feldspar-rich rocks elsewhere and the low average density of the crust in the Martian southern hemisphere, we conclude that silica-rich magmatic rocks may constitute a significant fraction of ancient Martian crust and may be analogous to the earliest continental crust on Earth.

  4. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  5. Early terrestrial ecosystems: the animal evidence

    SciTech Connect

    Gray, J.

    1985-01-01

    Work on fossil spores indicates that plants at a level of vegetative organization comparable to bryophytes and vascular plants existed on land in the Early Silurian. Vascular plants, limnetic fishes, and probable Ascomycetes have Late Silurian records. Charophytes are known in the Late Silurian but may have been marine. The presence of microarthropods in the Ludlovian has been hypothesized from fungal masses in the Burgsvik Sandstone that closely resemble microarthropod frass. A number of microarthropods such as collembolans and mites are microphagous; these animals are among the earliest known from the Early Devonian. These fungal masses as animal traces have been given added credibility by the recovery of animal body fossils from basal Llandovery age fluvial deposits of the Central Appalachians that yield abundant plant spores but that lack marine invertebrates, phytoplankton or chitinozoans. The remains are abundant and sufficiently varied to suggest that they may represent a variety of organisms. Some are eurypterid-like, others grossly arthropod-like, although they may represent an unknown phylum or phyla. Many small invertebrates are associated with extant bryophytes, which have been viewed as stepping stones or halfway houses for them as they emerged from water onto land. The occurrence of these Early Silurian invertebrate remains with abundant spore tetrads, which Gray has hypothesized represent land plants at a bryophyte or hepatic grade of organization, is of great interest in trying to understand the early development of nonmarine ecosystems.

  6. Comparison of Lunar Basalts and Gabbros with those of the Terrestrial Ocean Crust

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2012-12-01

    Initial studies of lunar samples returned from the Apollo and Luna missions took place before rocks of the Earth's lower ocean crust, chiefly varieties of gabbro cumulates, were widely known or understood. Continuing exploration of the ocean crust invites some new comparisons. When volcanic rocks and glass from Apollo 11 and 17 were discovered to have very high TiO2 contents (8-14%), nothing comparable was known from Earth. The high-TiO2 lunar samples were soon described as primary melts derived from considerable depths in the lunar mantle. Other lunar samples have only very low TiO2 contents (~0.2%) and very low concentrations of highly incompatible elements such as Zr and Sr. Today, dredging and drilling results indicate that oxide gabbros rich in magmatic oxides and sulfides and with up to 12% TiO2 comprise a significant percentage of the gabbroic portion of the ocean crust especially at slowly spreading ridges. These are very late stage differentiates, and are commonly juxtaposed by high-temperature deformation processes with more primitive olivine gabbros and troctolites having only ~0.2% TiO2 and low concentrations of Zr and other incompatible elements. The rocks are mainly adcumulates, with very low concentrations of incompatible elements set by proportions of cumulus minerals, and with little contribution from the liquids that produced them. In addition, some lunar gabbros with highly calcic plagioclase (~An93-98) are similar to gabbros and troctolites found in island arcs. All of these similarities suggest that very few lunar basaltic rocks are pristine; instead they all could be nearly complete shock fusion products produced by meteorite impact into a diverse assemblage of lunar gabbros that included both low- and high-TiO2 gabbroic facies. On this hypothesis, no lunar basalt is a primary melt derived from the Moon's mantle. Although magmatic environments on the ancient Moon and in the modern ocean crust were different in important ways, the general

  7. Terrestrial Planet Evolution in the Stagnant-Lid Regime: Size Effects and the Formation of Self-Destabilizing Crust

    NASA Astrophysics Data System (ADS)

    O'Rourke, J. G.; Korenaga, J.

    2012-12-01

    mechanisms may reduce the effective viscosity deep within massive terrestrial planets, crustal thickness and the degree of mantle processing are both predicted to decrease with increased planet mass, and these size effects can also be derived with simple scaling analyses. The possibility of basalt-eclogite phase transition in the planetary crust is found to increase with planetary mass, and we suggest that massive terrestrial planets may escape the stagnant-lid regime through the formation of a self-destabilizing dense eclogite layer.

  8. Growth of early continental crust controlled by melting of amphibolite in subduction zones.

    PubMed

    Foley, Stephen; Tiepolo, Massimo; Vannucci, Riccardo

    2002-06-20

    It is thought that the first continental crust formed by melting of either eclogite or amphibolite, either at subduction zones or on the underside of thick oceanic crust. However, the observed compositions of early crustal rocks and experimental studies have been unable to distinguish between these possibilities. Here we show a clear contrast in trace-element ratios of melts derived from amphibolites and those from eclogites. Partial melting of low-magnesium amphibolite can explain the low niobium/tantalum and high zirconium/samarium ratios in melts, as required for the early continental crust, whereas the melting of eclogite cannot. This indicates that the earliest continental crust formed by melting of amphibolites in subduction-zone environments and not by the melting of eclogite or magnesium-rich amphibolites in the lower part of thick oceanic crust. Moreover, the low niobium/tantalum ratio seen in subduction-zone igneous rocks of all ages is evidence that the melting of rutile-eclogite has never been a volumetrically important process. PMID:12075348

  9. Neodymium and lead isotope evidence for enriched early Archean crust in North America

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Housh, Todd B.; Isachsen, Clark E.; Podosek, Frank A.; King, Janet E.

    1989-01-01

    Neodymium and lead isotope measurements and uranium-lead zircon geochronology from Archaean gneisses of the Slave Province in the Northwest Territories of Canada are reported. The gneisses contain zircons with cores older than 3.842 Gyr and an epsilon(Nd) (3.7 Gyr) of - 4.8. This is the oldest reported chondritic model age for a terrestrial sample and provides evidence for strongly enriched pre-3.8-Gyr crust, a reservoir complementary to the depleted mantle already in existence by 3.8 Gyr before the present.

  10. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  11. Granodiorite and alkaline suite at Gale crater: continental crust on early Mars

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Toplis, M. J.; Cousin, A.; Fabre, C.; Wiens, R. C.; Mangold, N.; Forni, O.; Gasnault, O.; Pinet, P.; Rapin, W.; Fisk, M.; Le Deit, L.; Meslin, P.-Y.; Maurice, S.; Lasue, J.; Stolper, E.; Beck, P.; Wray, J.; Bridges, J. C.; Le Mouelic, S.

    2015-10-01

    The Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian terrains on Mars. The rover encountered a great variety of felsic igneous float rocks ranging from granodiorite to trachy andesite and trachyte during the first part of the traverse up to sol 550. They are the first in-situ evidence of low density early Noachian crust on Mars, sampled by Peace Vallis river cross-cutting the crater wall over a 2-3km thick vertical section, below the basaltic regolite.

  12. Fractionation of the Early Terrestrial Atmospheres: Dynamical Escape

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.

    2002-01-01

    Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the maximum mass of flowing gas constituents decreases until all gases become static. We show that fractionation can continue beyond this point when non-radial flow and dynamically enhanced Jeans escape are considered. For example, the early terrestrial atmospheres are thought to have had large hydrogen contents, resulting in exobase altitudes of a planetary radius or more. In this case, rotational speeds at the exobases of Earth and Mars would be large enough so that light constituents would "spin" off and fractionate, especially at equatorial latitudes. Also, in the presence of transonic flow of hydrogen only, non-radial expansion throws heavier gases to high altitudes in the exosphere, accompanied by strong bulk speeds at the exobase, which results in enhanced thermal escape fluxes and fractionation. flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the

  13. Lichen metabolism identified in Early Devonian terrestrial organisms

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Porter, Steven; Kuglitsch, Jeffrey J.

    2003-02-01

    We used δ13C values to identify lichen metabolism in the globally distributed Early Devonian (409 386 Ma) macrofossil Spongiophyton minutissimum, which had been alternatively interpreted as a green plant of bryophyte grade or as a lichen, based on its morphology. Extant mosses and hornworts exhibited a range of δ13Ctissue values that was discrete from that of extant lichens. The δ13Ctissue values of 96 S. minutissimum specimens coincided with δ13Ctissue values of extant lichens. In contrast, S. minutissimum δ13Ctissue values showed no similarity to bryophyte carbon isotope values. The identification of large global populations of lichens during the Early Devonian may indicate that lichen-accelerated soil formation fostered the development of Paleozoic terrestrial ecosystems.

  14. The Cool Early Earth: Oxygen Isotope Evidence for Continental Crust and Oceans on Earth at 4.4 Ga

    NASA Astrophysics Data System (ADS)

    Valley, J. W.; King, E. M.; Peck, W. H.; Graham, C. M.; Wilde, S. A.

    2001-05-01

    Zircons preserve the best record of U-Pb crystallization age and oxygen isotope ratios of igneous rocks. The d18-O of non-metamict zircon is unaffected even by hydrothermal alteration and high-grade metamorphism. Ion microprobe analysis of detrital zircons from the \\sim3 Ga Jack Hills metaconglomerate (Narryer Gneiss Terrane, Yilgarn Craton, Western Australia) yield U-Pb ages from 3.1 to 4.4 Ga (SHRIMP II, Wilde et al. 2001 Nature) and d18-O from 5 to 8 permil (Cameca 4f, Peck et al. 2001 GCA). The d18-O of these zircons averages 6.3, and is 1 permil higher than that in equilibrium with the mantle and that of normal Archean granitic zircons (5.3+-0.3, 5.5+-0.4, respectively; King et al. 1998 Pre-C Res, Peck et al. 2000 Geology). The distribution of mantle-like vs. mildly elevated d18-O values for magmas is constant from 2.7 to 4.4 Ga, and on 4 continents. The age of 4.404+-0.008 Ga from one 200 micron zircon is >99% concordant and represents the oldest recognized terrestrial material. This crystal is zoned in d18-O (5.0+-0.7 vs. 7.4+-0.7) and REEs (La=0.3 to 13.6 ppm), and contains inclusions of SiO2. REE patterns are HREE enriched with positive Ce and negative Eu anomalies; calculated melts are LREE enriched. Taken together, these results suggest crystallization from a quartz-saturated granitic magma and thus the existence of continental crust, possibly in a setting like Iceland. The high d18-O portion of the crystal would be in equilibrium with a magma at d18-O(WR)= 8.5-9.5. There is no known mantle reservoir with such high values. d18-O(WR) values above 8.5 are typical of "S-type" granites that have melted or assimilated material that was altered by low temperature interaction with water at the surface of the Earth (i.e., weathering, diagenesis, low T hydrothermal alteration). Thus the high d18-O value of the 4.4 Ga zircon suggests that surface temperatures were cool enough for liquid water suggesting that the early steam-rich atmosphere condensed to form

  15. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  16. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  17. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  18. Lunar granulites and their precursor anorthositic norites of the early lunar crust

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Lindstrom, D. J.

    1986-01-01

    Lunar granulities, which are ancient and KREEP-free, represent the best samples of early lunar crust. They can be divided into ferroan and magnesium groups, and each group can be subdivided on the basis of mineral composition and REE concentrations. It is shown that some of the granulites may be derived from distinct anorthitic norite precursors, while some others are clearly polymict, though it is believed that even these granulites had anorthositic norites as their dominant precursors. The granulites have compositions similar to those of the two lunar meteorites, one of which is ferroan, the other magnesian. These meteorites are soil breccias from an unknown location distant from the Apollo landing sites and contain anorthositic norites as abundant clasts. Granulite and lunar-meteorite compositions more closely resemble the average composition of lunar highlands than those of any other returned lunar samples. The predominance of plutonic anorthositic norite precursors in material having the composition typical of highlands suggests that plutonic anorthositic norites were more abundant in the early lunar crust than is implied by their scarcity in Apollo pristine rocks.

  19. Some Speculations Concerning The Abitibi Greenstone Belt As A Possible Analog To The Early Martian Crust

    NASA Astrophysics Data System (ADS)

    Russell, M.; Allwood, A.; Anderson, R. B.; Atkinson, B.; Beaty, D.; Bristow, T. F.; Ehlmann, B. L.; Grotzinger, J. P.; Hand, K. P.; Halevy, I.; Hurowitz, J. A.; Knoll, A.; McCleese, D. J.; Milliken, R.; Stolper, D. A.; Stolper, E. M.; Tosca, N. J.; Agouron Mars Simulation Field Team

    2011-12-01

    The Noachian crust of Mars comprises basaltic and, potentially, komatiitic lavas derived from a hot mantle slightly more reducing and sulfur-rich than that of the Earth. Ultramafic volcanic sequences of the ~2.7Ga Tisdale Group of the Abitibi Greenstone Belt, Ontario, provide a potential analog to these early martian lavas. The Abitibi rocks are a possible source of quartz veins carrying, in places, pyrite, carbonate and gold. These were hydrothermally introduced into volcanic and sedimentary rocks during greenschist metamorphism. Kilometer-scale talc-magnesite zones, resulting from the carbonation of serpentinized ultramafics, may have been the source and seawater, with some magmatic addition, was probably responsible for the pervasive alteration, although the chemical nature of hydrothermal fluids circulating in such piles depends upon the temperature of wall-rock interactions and is largely independent of fluid origin. Any sulfides and gold in unaltered ultramafic putative source rocks may have been lost to the invasive convective fluids. Given high heat flow and the presence of a hydrosphere, hydrothermal convection cells were probably the main mechanism of heat transfer through the crust on both planets. Exploration of the Abitibi belt provides a template for possible martian exploration strategies. Orbital remote sensing indicates that some ultramafic rocks on Mars have also been serpentinized and isolated areas of magnesite have been recently discovered, overlying altered mafic crust, with characteristic ridges at scales of a few hundred meters. While cogent arguments have been made favoring sedimentary exhalative accumulations of hydrothermal silica of the kind that are known to harbor bacteria on our own planet, no in situ siliceous sinters or even quartz veins have been identified with certainty on Mars. Here, we report on the mineralogic and visible to infrared spectral characteristics of mafic and ultramafic lithologies at Abitibi for comparison to

  20. Exploring Terrestrial Temperature Changes during the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Clyde, W. C.; Fricke, H. C.; Eiler, J. M.

    2012-12-01

    The Early Eocene is marked by a number of rapid global warming events called hyperthermals. These hyperthermals are associated with negative carbon isotope excursions (CIE) in both marine and terrestrial records. Multiple theories exist to explain the connection of these hyperthermals with the CIEs and each theory predicts different responses by the climate system. Characterizing the timing, duration and magnitude of temperature change that is associated with these hyperthermals is important for determining whether the hyperthermals are all driven by the same underlying climate dynamics or perhaps differ from one another in cause and climatic consequences. In the simplest case, all share a common underlying mechanism; this predicts that the associated temperature changes scale in a predictable way with the magnitude of the CIE (and perhaps exhibit other similarities, such as the relative amplitudes of marine and terrestrial temperature change). To our knowledge, however, the only hyperthermal with paleotemperature data from land is the Paleocene-Eocene Thermal Maximum (PETM). Here we present preliminary carbonate clumped isotope paleotemperature estimates for Early Eocene hyperthermal ETM2/H2 from paleosol carbonates from the Bighorn Basin in Wyoming, USA. We compare the results to existing clumped isotope paleotemperature estimates for the PETM in the Bighorn Basin. Temperatures recorded by paleosol carbonates (which likely reflect near-peak summer ground temperatures) prior to each CIE are ~30°C and increase to ~40-43°C during the apex of each CIE. Following both CIEs, temperatures drop back to pre-CIE values. In the case of ETM2/H2, temperatures begin to rise again immediately, possibly in association with a later hyperthermal, though further work needs to be done to establish this with certainty. These preliminary data suggest that both the absolute values and the magnitudes of temperature changes associated with the PETM and ETM2/H2 are similar; the

  1. Linking playa surface dust emission potential to feedbacks between surface moisture and salt crust expansion through high resolution terrestrial laser scanning measurements

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Wiggs, G.

    2012-12-01

    The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks

  2. Early Earth Felsic Crust Formation: Insights from Numerical Modelling of High-MgO Archaean Basalt Partial Melting

    NASA Astrophysics Data System (ADS)

    Riel, N., Jr.

    2015-12-01

    The Tonalite-Trondhjemite-Granodiorite series (TTGs) represent the bulk of the felsic continental crust that formed between 4.4 and 2.5 Ga and is preserved in Archaean craton (3.8-2.5 Ga). It is now recognized that the petrogenesis of TTG series derives from an hydrous mafic system at high pressure. However, the source of the early TTGs (3.5-3.2 Ga) have not been preserved and its characteristics are still debated. In this study we use thermodynamical modelling coupled with two-phase flow to investigate the products of partial melting of high-MgO primary mafic crust. Our model setup is made of a 45-km thick hydrated mafic crust and is heated above the solidus from 50 to 200°C. To explore the effects of melt-rock interactions during melt transfer (via two-phase flow), the melt composition is modelled either in thermodynamic equilibrium with the rock or in thermodynamic disequilibrium. Our modelling results show that partial melting of hydrous high-MgO metabasalt crust can produce significant volumes of felsic melt. The average composition of these melts is SiO2-rich > 62%, Mg# = 40-50, Na2O ~6%, MgO = 0.5-1% which is consistent with the composition of TTGs. The residual rock after melt segregation is composed of olivine + garnet + pyroxene which is in agreement with Archaean eclogites found in mantle xenoliths of Archaean cratons. Moreover, the depleted residual rock is denser than the mantle and is likely to be recycled in the mantle. We show that the early felsic crust with a TTGs signature could have been formed by partial melting of high-MgO hydrated metabasaltic crust, and propose that plume-related activity and/or rapid burial due to high volcanic activity are likely geodynamic conditions to generate an early felsic crust.

  3. Habitability of Terrestrial Planets in the Early Solar System

    NASA Astrophysics Data System (ADS)

    SLEEP, N. H.

    2001-12-01

    The Protoearth, Mars, Venus, and the Moon-forming impactor were potentially habitable in the early solar system. The interiors of larger asteroids had habitable circulating water. To see when the inner solar system became continuously habitable, one needs to consider the most dangerous events and the safest refugia from them. Early geochemical and accretionary processes set the subsequent silicate planet reservoirs and hence hydrospheric and atmospheric masses. The moon-forming impact made the Moon and the Earth sterile bodies. Following the impact, the Earth passed through a rock-vapor atmosphere on the scale of 1000s of years and an internally heated steam greenhouse on the scale of 2 m.y. Minerals bearing the principle volatiles (water, Cl, and CO2) were stable at the Earth's surface by the time it cooled to 800K. The mass of reactable shallow material was insufficient to contain the available water and CO2. Habitable conditions were established after CO2 could be deeply subducted into the mantle. Vast quantities of H2 were vented during accretion and after the moon-forming impact and eventually lost to space. It is unknown whether significant amounts of this gas were present when the Earth's surface cooled into the habitable range. The moon remained sterile because its interior is essentially devoid of water. The mantle of the Earth, in contrast, cannot hold the available water, leaving the excess to form oceans. Nitrogen may behave similarly with the excess going into the air. Impacts of large asteroids (and comets) were an ever-present danger on otherwise habitable planets. The safest niche on planets was kilometer or deeper crustal rocks habitable by thermophiles. It is inevitable that several objects, which would have left only thermophile survivors, struck the Earth. Such events were so infrequent that the conditions of such a bottleneck should not be confused with conditions for the origin of life. An alternative refugium involves ejection of life within

  4. Metasomatic modification of oceanic crust during early stages of subduction recorded in Mariana blueschist

    NASA Astrophysics Data System (ADS)

    Zack, Thomas; Savov, Ivan P.; Pabst, Sonja; Schmitt, Axel K.

    2013-04-01

    Serpentine mud volcanoes from the Mariana forearc bear unique witness of metasomatic processes in an active subduction zone in the form of centimeter-size blueschist-facies xenoliths. Charcateristic metamorphic assemblages point to conditions of ca 400°C and a formation depth of 27 km. Bulk rock compositions of amphibole-talc schists and chlorite-rich schists lie on a mixing line, extending from typical MORB towards SiO2-enriched mantle. Such mixing trends are remarkably similar to findings from the amphibolite-facies assemblages of the Catalina schist, although they equilibrated at much lower temperatures (Pabst et al. 2012). These observations demonstrate that the material experienced severe metasomatic changes at the slab-mantle interface in the shallow forearc. Further supporting evidence derives from δ11B measurements: phengite, amphibole and chlorite within the clasts have boron isotope values of -6±4‰, significantly lighter than oceanic crust, requiring isotopic fractionation by fluids carrying an isotopically heavy B component (Pabst et al. 2012). Although most current models assume that the Mariana blueschists record conditions of the ongoing subduction process, our recent findings indicate otherwise. Large (>100 µm) rutiles with high U (ca 20 ppm) found in one blueschist clast were dated by HR-SIMS at UCLA employing recently established U/Pb dating techniques (Schmitt & Zack 2012). Rutile concordia ages were tightly constrained at 48.1±2.9 Ma and are reproduced by concordia ages of low Th/U zircons at 47.5±1.5 Ma in the same sample. As those ages are interpreted to be formation ages of metasomatically modified blueschists and are only a few million years older than subduction initiation (at ca 50-52 Ma), we draw the following conclusions: (1) fast cooling of the downgoing oceanic crust must occur right after subduction initiation; (2) effective metasomatic and mechanical mixing processes (subduction channels?) must be established early in

  5. Biological soil crusts reduce soil erosion in early successional subtropical forests in PR China

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Käppeler, Kathrin; Nebel, Martin; Webber, Carla; Scholten, Thomas

    2016-04-01

    Biological soil crusts (BSCs) have major influences on terrestrial ecosystems and play significant functional roles in soil systems, such as accelerating soil formation, changing water flows or enhancing soil stability. By that, they have the potential to protect soil surfaces against erosive forces by wind or water. However, the effect of BSCs on erosion processes is rarely mentioned in literature and most of the work done focused on arid and semi-arid environments. Furthermore, compared to the structure and function of BSCs, less attention was paid to their temporal and topographical distribution. This study aims to investigate the influence of BSCs on initial soil erosion, and their topographical development over time in initial subtropical forest ecosystems. Therefore, measurements have been conducted within a biodiversity and ecosystem functioning experiment (BEF China) near Xingangshan, Jiangxi Province, PR China. Interrill erosion was measured on 220 microscale run-off plots (ROPs, 0.4 m × 0.4 m) and the occurrence, distribution and development of BSCs within the measuring setup were recorded. BSC cover in each ROP was determined photogrammetrically in four time steps (autumn 2011, summer 2012, summer 2013 and summer 2014). BSC species were identified by morphological characteristics and classified to higher taxonomic levels. Higher BSC cover led to reduced sediment discharge and runoff volume due to its protection against splash energy, the adherence of soil particles and enhanced infiltration. Canopy ground cover and leaf area index had a positive effect on the development of BSC cover at this initial stage of the forest ecosystem. Moreover, BSC cover decreased with increasing slope, as we presume that developing BSCs are washed away more easily at steep gradients. Elevation and aspect did not show an influence. BSCs in this study were moss-dominated and 26 different moos species were found. Mean BSC cover on ROPs was 14 % in the 3rd year of the tree

  6. Microbial Mg-carbonate Precipitation and Early Diagenetic Dolomite Crust Formation at Hypersaline Lagoon, Rio de Janeiro State, Brazil.

    NASA Astrophysics Data System (ADS)

    Bahniuk Rumbelsperger, A. M.; McKenzie, J. A.; Perri, E.; Vögeli, N.; Vasconcelos, C.

    2015-12-01

    Sedimentary dolomite rocks are commonly considered to be primarily a replacement product of the calcium carbonate components comprising the original limestone, a process known as secondary replacement dolomitization. Although numerous dolomite formations in the geologic record are composed of fine-grained crystals of micritic dolomite, an alternative process, i.e., direct precipitation, is often excluded because of the absence of visible or geochemical indicators supporting primary precipitation. We present a study of a modern coastal hypersaline lagoon, Brejo do Espinho, Rio de Janeiro State, Brazil, which is located in a special climatic regime where a well-defined seasonal cycle of wet and dry conditions occur. The direct precipitation of modern high-Mg calcite and Ca-dolomite mud from the lagoonal waters under low-temperature hypersaline conditions is associated with the activity of microbial organisms living in this restricted environment. The mud undergoes an early diagenetic transformation into a 100% dolomite crust on the margins of the lagoon. The biomineralization process, characterized by the variations of the physico-chemical conditions in this environment during the annual hydrologic cycle, is integrated with isotopic analysis to define the early diagenetic processes responsible for the formation of both dolomitic mud and crust. The carbon isotope values indicate a contribution of respired organic carbon, which is greater for the crust (δ13C = -9.5‰ VPDB) than mud (δ13C = -1.2‰ VPDB). The oxygen isotope values reflect a moderate degree of evaporation during mud formation (δ18O = 1.1‰ VPDB), whereas it is greatly enhanced during early diagenetic crust formation (δ18O = 4.2‰ VPDB). The clumped isotope formation temperatures derived for the Brejo do Espinho mud is 34°C and 32°C for the crust. These temperatures are consistent with the upper range of measured values during the dry season when the lagoon experiences the most hypersaline

  7. The granulite suite: Impact melts and metamorphic breccias of the early lunar crust

    NASA Technical Reports Server (NTRS)

    Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.

    1993-01-01

    The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites

  8. Nitrogen Fixation on Early Mars and Other Terrestrial Planets: Experimental Demonstration of Abiotic Fixation Reactions to Nitrite and Nitrate

    NASA Astrophysics Data System (ADS)

    Summers, David P.; Khare, Bishun

    2007-05-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO2. Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO2 does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO2 reaction with ice, adsorbed water, etc.).

  9. The Crusts of Mars and Earth

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; Hahn, B. C.

    2007-05-01

    The differentiation of terrestrial planets and large moons results in crusts with compositions differing greatly from primitive mantles. Typically, large fractions of incompatible elements, including heat-producing elements, are transferred into the crust. Mechanisms and timing of this process differ greatly from planet to planet. Accordingly, in order to understand planetary evolution, it is necessary to understand the composition and evolution of planetary crusts. Crustal evolution on Earth is perhaps the least representative of the terrestrial planets and large moons of the solar system. Although Earth substantially melted after the giant impact that resulted in the Moon, there is little evidence for the existence of a primary crust suggesting that such crust was recycled and mixed into the mantle during the Hadean. Instead, Earth has a very young, continually recycled basaltic secondary (oceanic) crust and an andesitic tertiary (continental) crust, unique in the solar system, that grew episodically over 4 Gyr, but with an average age of about 2 Gyr. The continental - oceanic crust dichotomy, temporal changes in continental crust composition, role of plume volcanism and continental growth are largely consequences of evolving plate- tectonic processes. Mars provides a valuable comparison to Earth because it is a planet that is, in many ways, intermediate between Earth and planetary bodies, such as the Moon and Mercury, that completed crustal development by about 3 Gyr and have been dormant since. Martian crust is mostly ancient (>3.5 Gyr) but volcanism has persisted, possibly episodically, to 200 Myr or younger. Proposals of early plate tectonics persist, but the weight of evidence suggests Mars is a one-plate planet. The 50 km thick crust constitutes 3.2% of the mass of the planet and, even with modest levels of LILE enrichment (K=0.33%), has had well in excess of 50% of incompatible elements removed from the mantle during early differentiation that likely

  10. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  11. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  12. Growth of early continental crust by water-present eclogite melting in subduction zones

    NASA Astrophysics Data System (ADS)

    Laurie, A.; Stevens, G.

    2011-12-01

    The geochemistry of well preserved Paleo- to Meso-Archaean Tonalite-Trondhjemite-Granodiorite (TTG) suite rocks, such as the ca 3.45 Ga trondhjemites from the Barberton greenstone belt in South Africa, provides insight into the origins of Earth's early felsic continental crust. This is particularly well demonstrated by the high-Al2O3 variety of these magmas, such as the Barberton rocks, where the geochemistry requires that they are formed by high pressure (HP) melting of a garnet-rich metamafic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. Most of the experimental data relevant to Archaean TTG genesis has been generated by studies of fluid-absent melting of metabasaltic sources. However, water drives arc magmatism within Phanerozoic subduction zones and thus, understanding the behaviour of water in Archaean subduction zones, may have considerable value for understanding the genesis of these TTG magmas. Consequently, this study investigates the role of HP water-present melting of an eclogite-facies starting material, in the production of high-Al2O3 type TTG melts. Water-saturated partial melting experiments were conducted between 1.9 and 3.0GPa; and, 870°C and 900°C. The melting reaction is characterized by the breakdown of sodic Cpx, together with Qtz and H2O, to form melt in conjunction with a less sodic Cpx: Qtz + Cpx1 + Grt1 + H2O = Melt + Cpx2 + Grt2. In many of the experimental run products, melt segregated efficiently from residual crystals, allowing for the measurement of a full range of trace elements via Laser Ablation Inductively Coupled Plasma Mass Spectroscopy. The experimental glasses produced by this study have the compositions of peraluminous trondhjemites; and they are light rare earth element, Zr and Sr enriched; and heavy rare earth element, Y and Nb depleted. The compositions of the experimental glasses are similar to high-Al2O3 type

  13. Workshop on Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions

    NASA Technical Reports Server (NTRS)

    Walker, D. (Editor); Mccallum, I. S. (Editor)

    1981-01-01

    The significance of the lunar highland pristine cumulate samples were reevaluated with the aid of the additional insights provided by geologically constrained terrestrial investigations. This exercise involved a review of the state of knowledge about terrestrial and lunar cumulate rocks as well as an enumeration and reevaluation of the processes hypothesized to have been responsible for their formation, both classically and at present.

  14. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets

    NASA Astrophysics Data System (ADS)

    Kleine, Thorsten; Touboul, Mathieu; Bourdon, Bernard; Nimmo, Francis; Mezger, Klaus; Palme, Herbert; Jacobsen, Stein B.; Yin, Qing-Zhu; Halliday, Alexander N.

    2009-09-01

    The 182Hf- 182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ˜1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al- 26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ˜3 Myr after CAI formation and may have continued until ˜10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ˜20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained. The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during

  15. Wind and Rotation Enhanced Escape From the Early Terrestrial Atmospheres

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.

    2001-05-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow, similar to solar wind flow dynamics. However, in many cases the outward flow is hydrodynamic at low altitudes only to become collisionless at higher altitudes, well before sonic speeds are ever attained. Recent models dealing with such transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach has lead to escape rates that are too low due to the fact that thermospheric winds and planetary rotation increase escape fluxes considerably over the corresponding Jeans fluxes (1). In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes. (1) Hartle, R. E. and H. G. Mayr, J. Geophys. Res., 81, 1207, 1976.

  16. Wind and Rotation Enhanced Escape from the Early Terrestrial Atmospheres

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow; similar to solar wind flow dynamics. However, in many cases, although the outward flow is hydrodynamic at low altitudes, it becomes collisionless at higher altitudes, before sonic speeds are ever attained. Recent models dealing with the transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach leads to escape rates that are too low, because thermospheric winds and planetary rotation are known to increase the escape flux above the corresponding Jeans flux. In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes.

  17. Freshly brewed continental crust

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Hayes, J. L.; Caddick, M. J.; Madrigal, P.

    2015-12-01

    Earth's crust is the life-sustaining interface between our planet's deep interior and surface. Basaltic crusts similar to Earth's oceanic crust characterize terrestrial planets in the solar system while the continental masses, areas of buoyant, thick silicic crust, are a unique characteristic of Earth. Therefore, understanding the processes responsible for the formation of continents is fundamental to reconstructing the evolution of our planet. We use geochemical and geophysical data to reconstruct the evolution of the Central American Land Bridge (Costa Rica and Panama) over the last 70 Ma. We also include new preliminary data from a key turning point (~12-6 Ma) from the evolution from an oceanic arc depleted in incompatible elements to a juvenile continental mass in order to evaluate current models of continental crust formation. We also discovered that seismic P-waves (body waves) travel through the crust at velocities closer to the ones observed in continental crust worldwide. Based on global statistical analyses of all magmas produced today in oceanic arcs compared to the global average composition of continental crust we developed a continental index. Our goal was to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust. We suggest that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone, a process probably more common in the Achaean where most continental landmasses formed, can produce the starting material necessary for juvenile continental crust formation.

  18. Early oxygenation of the terrestrial environment during the Mesoproterozoic.

    PubMed

    Parnell, John; Boyce, Adrian J; Mark, Darren; Bowden, Stephen; Spinks, Sam

    2010-11-11

    Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (∼2.3 billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8 Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S < 25‰ before 1 Gyr to ≥50‰ after 0.64 Gyr. This change in Δ(34)S has been interpreted to represent the evolution from single-step bacterial sulphate reduction to a combination of bacterial sulphate reduction and sulphide oxidation, largely bacterially mediated. This evolution is seen as marking the rise in atmospheric oxygen concentrations and the evolution of non-photosynthetic sulphide-oxidizing bacteria. Here we report Δ(34)S values exceeding 50‰ from a terrestrial Mesoproterozoic (1.18 Gyr old) succession in Scotland, a time period that is at present poorly characterized. This level of fractionation implies disproportionation in the sulphur cycle, probably involving sulphide-oxidizing bacteria, that is not evident from Δ(34)S data in the marine record. Disproportionation in both red beds and lacustrine black shales at our study site suggests that the Mesoproterozoic terrestrial environment was sufficiently oxygenated to support a biota that was adapted to an oxygen-rich atmosphere, but had also penetrated into subsurface sediment. PMID:21068840

  19. Crustal radiogenic heat production and the selective survival of ancient continental crust

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1985-01-01

    It is pointed out that the oldest terrestrial rocks have so far revealed no evidence of the impact phase of Earth evolution. This observation suggests that processes other than impact were dominant at the time of stabilization of these units. However, a use of the oldest terrestrial rocks as a sample of the early terrestrial crust makes it necessary to consider the possibility that these rocks may represent a biased sample. In the present study, the global continental heat flow data set is used to provide further evidence that potassium, uranium, and thorium abundances are, on the average, low in surviving Archean crust relative to younger continental crust. An investigation is conducted of the implications of relatively low crustal radiogenic heat production to the stabilization of early continental crust, and possible Archean crustal stabilization models are discussed.

  20. Crustal radiogenic heat production and the selective survival of ancient continental crust

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1985-01-01

    It is pointed out that the oldest terrestrial rocks have so far revealed no evidence of the impact phase of earth evolution. This observation suggests that processes other than impact were dominant at the time of stabilization of these units. However, a use of the oldest terrestrial rocks as a sample of the early terrestrial crust makes it necessary to consider the possibility that these rocks may represent a biased sample. In the present study, the global continental heat flow data set is used to provide further evidence that potassium, uranium, and thorium abundances are, on the average, low in surviving Archean crust relative to younger continental crust. An investigation is conducted of the implications of relatively low crustal radiogenic heat production to the stabilization of early continental crust, and possible Archean crustal stabilization models are discussed.

  1. Historical space psychology: Early terrestrial explorations as Mars analogues

    NASA Astrophysics Data System (ADS)

    Suedfeld, Peter

    2010-03-01

    The simulation and analogue environments used by psychologists to circumvent the difficulties of conducting research in space lack many of the unique characteristics of future explorations, especially the mission to Mars. This paper suggests that appropriate additional analogues would be the multi-year maritime and terrestrial explorations that mapped the surface of the Earth in previous centuries. These, like Mars, often involved a hazardous trek through unknown territory, flanked by extended, dangerous voyages to and from the exploration sites. Characteristic issues included interpersonal relationships under prolonged stress, stretches of boredom interspersed with intense work demands, the impossibility of rescue, resupply, or other help from home, chronic danger, physical discomfort and lack of privacy, and the crucial role of the leader. Illustrative examples of one important factor, leadership style, are discussed. The examination of such expeditions can help to identify the psychological stressors that are likely to be experienced by Mars explorers, and can also indicate countermeasures to reduce the damaging impact of those stressors.

  2. Early Carboniferous (˜357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria)

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Ren, Minghua; Ali, Kamal; Förster, Hans-Jürgen; Al Safarjalani, Abdulrahman; Nasir, Sobhi; Whitehouse, Martin J.; Leybourne, Matthew I.; Romer, Rolf L.

    2014-05-01

    Continental crust beneath northern Arabia is deeply buried and poorly known. To advance our knowledge of this crust, we studied 8 xenoliths brought to the surface by Neogene eruptions of Tell Thannoun, S. Syria. The xenolith suite consists of two peridotites, one pyroxenite, four mafic granulites, and one charnockite. The four mafic granulites and charnockite are probably samples of the lower crust, and two mafic granulites gave 2-pyroxene equilibration temperatures of 780-800 °C, which we take to reflect temperatures at the time of formation. Peridotite and pyroxenite gave significantly higher temperatures of ∼900 °C, consistent with derivation from the underlying lithospheric mantle. Fe-rich peridotite yielded T∼800 °C, perhaps representing a cumulate layer in the crust. Three samples spanning the lithologic range of the suite (pyroxenite, mafic granulite, and charnockite) yielded indistinguishable concordant U-Pb zircon ages of ∼357 Ma, interpreted to approximate when these magmas crystallized. These igneous rocks are mostly juvenile additions from the mantle, as indicated by low initial 87Sr/86Sr (0.70312 to 0.70510) and strongly positive initial εNd(357 Ma) (+4 to +9.5). Nd model ages range from 0.55 to 0.71 Ga. We were unable to unequivocally infer a tectonic setting where these melts formed: convergent margin, rift, or hotspot. These xenoliths differ from those of Jordan and Saudi Arabia to the south in four principal ways: 1) age, being least 200 Ma younger than the presumed Neoproterozoic (533-1000 Ma) crust beneath Jordan and Saudi Arabia; 2) the presence of charnockite; 3) abundance of Fe-rich mafic and ultramafic lithologies; and 4) the presence of sapphirine. Our studies indicate that northern Arabian plate lithosphere contains a significant proportion of juvenile Late Paleozoic crust, the extent of which remains to be elucidated. This discovery helps explain fission track resetting documented for rocks from Israel and provides insights into

  3. Experimental investigation of the early interaction between cyanobacterial soil crusts and vascular plants

    NASA Astrophysics Data System (ADS)

    Klemens Zaplata, Markus; Veste, Maik; Pohle, Ina; Schümberg, Sabine; Abreu Schonert, Iballa; Hinz, Christoph

    2016-04-01

    While there are hints that biological soil crusts (BSCs) can constitute physical barriers for the emergence of vascular plants, a conceptual approach for the quantitative evaluation of these effects is still missing. Here we present an experimental design to test the emergence of seedlings in situ with (i) capping natural intact, (ii) destroyed and (iii) removed BSC. The selected field site is directly adjacent to the constructed Hühnerwasser catchment (Lusatia, Germany). This site exists since the end of 2008 and consists of loamy sand. Serving as proxy for seedling thrust, we inserted pre-germinated seeds of three confamiliar plant species with different seed masses (members of the Fabaceae family: Lotus corniculatus L., Ornithopus sativus Brot., and Glycine max (L.) Merr.). In each treatment as well as in the control group planting depths were 10 mm. We took care that experimental plots had identical crust thickness, slightly less than 4 mm, serving as proxy for mechanical resistance. A plot became established as follows: Firstly, the pristine crusted surface was vertically cut. To the windward side the BSC remained intact (i: "with BSC" stripe). To the downwind side soil material was temporarily excavated for laterally inserting the seeds beneath the surface of the first stripe. Then at the thereby disturbed second stripe pulverised BSC material became filled as a top layer (ii: "BSC mix" stripe). From the next stripe the BSC was removed (iii: "no BSC" stripe). Thus each plot had each experimental group in spatial contiguity (within 50 cm × 50 cm). The overall 50 plots were distributed across an area of 40 m × 12 m. When individuals of a species either emerged at all stripes, "× × ×", or at no stripe of a plot, "- - -", there was no reason to suppose any effect of a crust. The "- × ×" emergence pattern (depicting the appearance of seedlings in both stripes possessing manipulated surfaces) points towards hindrance more clearly than "- × -" or "- -

  4. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  5. Eastern Indian 3800-million-year-old crust and early mantle differentiation

    USGS Publications Warehouse

    Basu, A.R.; Ray, S.L.; Saha, A.K.; Sarkar, S.N.

    1981-01-01

    Samarium-neodymium data for nine granitic and tonalite gneisses occurring as remnants within the Singhbhum granite batholith in eastern India define an isochron of age 3775 ?? 89 ?? 106 years with an initial 143Nd/144Nd ratio of 0.50798 ?? 0.00007. This age contrasts with the rubidium-strontium age of 3200 ?? 106 years for the same suite of rocks. On the basis of the new samarium-neodynium data, field data, and petrologic data, a scheme of evolution is proposed for the Archean crust in eastern India. The isotopic data provide evidence that parts of the earth's mantle were already differentiated with respect to the chondritic samarium-neodymium ratio 3800 ?? 106 years ago.

  6. Early Archean sialic crust of the Siberian craton: Its composition and origin of magmatic protoliths

    NASA Astrophysics Data System (ADS)

    Vovna, G. M.; Mishkin, M. A.; Sakhno, V. G.; Zarubina, N. V.

    2009-12-01

    This study demonstrates that the base of the Archean deep-seated granulite complexes within the Siberian craton consists of a metabasite-enderbite association. The major and trace element distribution patterns revealed that the protoliths of this association are represented by calc-alkaline andesites and dacites, containing several minor sequences of komatiitic-tholeiitic volcanic rocks. The origin of the primary volcanic rocks of the metabasite-enderbite association is inferred on the basis of a model of mantle plume magmatism, which postulates that both andesitic and dacitic melts were derived from the primary basitic crust at the expense of heat generated by ascending mantle plumes. The formation of the protoliths of the Archen metabasite-enderbite association of the Siberian craton began at 3.4 Ga and continued until the late Archean.

  7. Tectonic evolution of Early Paleozoic island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.

    2011-01-01

    The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.

  8. Srsbnd Ndsbnd Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust

    NASA Astrophysics Data System (ADS)

    He, Yongsheng; Li, Shuguang; Hoefs, Jochen; Kleinhanns, Ilka C.

    2013-01-01

    In order to characterize the recycled lower continental crust (LCC) in the Dabie orogen, 17 Early Cretaceous low-Mg adakitic (LMA) and 9 normal (non-adakitic) granitoids have been investigated for Srsbnd Ndsbnd Pb isotopes. Combined with literature data, LMA have low ƐNd(t) (- 27.8 to - 14.7) and 206Pb/204Pb(i) (15.69-17.16) and low to moderately high 87Sr/86Sr(i) (0.7066 to 0.7087) ratios. Normal granitoids yield isotope ratios similar to adakitic rocks, except a few with 87Sr/86Sr (i) up to 0.7105. Dabie LMA define a linear trend parallel to the North Hemisphere Reference Line (NHRL) in a 208Pb/204Pb(i)- 206Pb/204Pb(i) diagram. For a given 206Pb/204Pb(i), the 208Pb/204Pb(i) or ∆8/4 (152-217) of Dabie LMA are close to the majority of UHP gneisses and the Neoproterozoic mafic rocks from the northern margin of the South China Block (SCB), but significantly higher than adakitic rocks from the North China Block (∆8/4 < 150). Considering the commonly present Neoproterozoic inherited zircons, we suggest that the LMA in the Dabie orogen are derived from a thickened LCC that could be dominantly composed of ancient SCB lower crust. The Srsbnd Ndsbnd Pb isotopic composition of LMA are similar to those of Post-Collisional Mafic Igneous rocks (PCMI) from the Dabie orogen, but different to exhumed UHP rocks. The Srsbnd Ndsbnd Pb isotopic system of the mantle source of the PCMI could be enriched in components dominantly from delaminated LCC of the Dabie orogen instead of deeply subducted continental crust, which is in contrast to O- and C-isotope data by [Zhao, Z.F., Zheng, Y.F., Wei, C.S., Wu, Y.B., Chen, F.K., and Jahn, B.M., 2005. Zircon Usbnd Pb age, element and Csbnd O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83(1-2), 1-28; Dai, L.Q., Zhao, Z.F., Zheng, Y.F., Li, Q.L., Yang, Y.H., and Dai, M.N., 2011. Zircon Hfsbnd O isotope evidence for crust-mantle interaction during continental deep

  9. Early degassing of lunar urKREEP by crust-breaching impact(s)

    NASA Astrophysics Data System (ADS)

    Barnes, Jessica J.; Tartèse, Romain; Anand, Mahesh; McCubbin, Francis M.; Neal, Clive R.; Franchi, Ian A.

    2016-08-01

    Current models for the Moon's formation have yet to fully account for the thermal evolution of the Moon in the presence of H2O and other volatiles. Of particular importance is chlorine, since most lunar samples are characterised by unique heavy δ37Cl values, significantly deviating from those of other planetary materials, including Earth, for which δ37Cl values cluster around ∼0‰. In order to unravel the cause(s) of the Moon's unique chlorine isotope signature, we performed a comprehensive study of high-precision in situ Cl isotope measurements of apatite from a suite of Apollo samples with a range of geochemical characteristics and petrologic types. The Cl-isotopic compositions measured in lunar apatite in the studied samples display a wide range of δ37Cl values (reaching a maximum value of +36‰), which are positively correlated with the amount of potassium (K), Rare Earth Element (REE) and phosphorous (P) (KREEP) component in each sample. Using these new data, integrated with existing H-isotope data obtained for the same samples, we are able to place these findings in the context of the canonical lunar magma ocean (LMO) model. The results are consistent with the urKREEP reservoir being characterised by a δ37Cl ∼+30‰. Such a heavy Cl isotope signature requires metal-chloride degassing from a Cl-enriched urKREEP LMO residue, a process likely to have been triggered by at least one large crust-breaching impact event that facilitated the transport and exposure of urKREEP liquid to the lunar surface.

  10. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    PubMed Central

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-01-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  11. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming.

    PubMed

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V

    2016-01-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  12. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  13. Evidence for and implications of an Early Archean terrestrial impact record

    NASA Technical Reports Server (NTRS)

    Lowe, Donald R.; Byerly, Gary R.

    1988-01-01

    Early Archean, 3.5 to 3.2 Ga, greenstone sequences in South Africa and Western Australia contain a well-preserved record of early terrestrial meteorite impacts. The main impact-produced deposits are layers, 10 cm to over 1 m thick, composed largely of sand-sized spherules, 0.1 to 4 mm in diameter. The beds studied to date show an assemblage of features indicating formation by the fall of debris from impact-generated ejecta clouds. Some presented data effectively rule out normal magmatic or sedimentary processes in the origin of these units and provide substantial support for an origin by large impacts on the early earth. The presence of at least four, remarkably thick, nearly pure spherule layers suggests that smaller-scale impact deposits may be even more abundant in these sequences. The existence of a well-preserved Archean terrestrial impact record suggests that a direct source of evidence is available regarding a number of important aspects of early earth history.

  14. Intrusions of mixed origin migmatising early Achaean crust in northern Labrador, Canada

    NASA Technical Reports Server (NTRS)

    Schiotte, L.; Bridgwater, D.

    1986-01-01

    Migmatization of Early Archean Uivak gneisses by Late Archean granitic and trondhjemitic injections are described. The rare earth element, major element, and isotopic geochemistry of the felsic sheets is interpreted to indicate both mantle and crustal components, and the sheets with associated fluids were the vehicle for element transport in the crustal column with attendant isotopic modification of the older gneisses.

  15. Evolution of the earth's crust: Evidence from comparative planetology

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1973-01-01

    Geochemical data and orbital photography from Apollo, Mariner, and Venera missions were combined with terrestrial geologic evidence to study the problem of why the earth has two contrasting types of crust (oceanic and continental). The following outline of terrestrial crustal evolution is proposed. A global crust of intermediate to acidic composition, high in aluminum, was formed by igneous processes early in the earth's history; portions survive in some shield areas as granitic and anorthositic gneisses. This crust was fractured by major impacts and tectonic processes, followed by basaltic eruptions analogous to the lunar maria and the smooth plains of the north hemisphere of Mars. Seafloor spreading and subduction ensued, during which portions of the early continental crust and sediments derived therefrom were thrust under the remaining continental crust. The process is exemplified today in regions such as the Andes/Peru-Chile trench system. Underplating may have been roughly concentric, and the higher radioactive element content of the underplated sialic material could thus eventually cause concentric zones of regional metamorphism and magmatism.

  16. Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth

    NASA Technical Reports Server (NTRS)

    Chyba, C. F.; Sagan, C.; Thomas, P. J.; Brookshaw, L.

    1991-01-01

    A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts.

  17. Geochronological and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Hedge, C.E.

    1984-01-01

    Zircon U/Pb, feldspar common Pb, whole-rock Sm/Nd, and Rb/Sr data indicate that the fine-grained granodiorite (Z103) has yielded conclusive evidence for rocks of early Proterozoic age in the eastern Arabian Shield (21o19' N, 44o50' W). Z103 may have been emplaced approx 1630 m.y. ago and subsequently was severely deformed or perhaps even remobilized at approx 660 m.y. Furthermore, lead isotope data, along with other evidence, show that the 1630 m.y. crustal rocks inherited material from an older, probably Archaean, source at the time of their formation. At that time addition of mantle material considerably modified the Rb-Sr and Sm-Nd systems so that they now yield similar, or only slightly older apparent ages (1600-1800 m.y.).-L.diH.

  18. A terrestrial vegetation turnover in the middle of the Early Triassic

    NASA Astrophysics Data System (ADS)

    Saito, Ryosuke; Kaiho, Kunio; Oba, Masahiro; Takahashi, Satoshi; Chen, Zhong-Qiang; Tong, Jinnan

    2013-06-01

    Land-plant productivity was greatly reduced after the end-Permian mass extinction, causing a pronounced "coal gap" worldwide during the Early Triassic. Newly obtained organic geochemistry data from the Chaohu area, south China, indicated an abrupt and profound terrestrial vegetation change over the middle part of the Early Triassic Smithian-Spathian (S-S) interval. Herbaceous lycopsids and/or bryophytes dominated terrestrial vegetation from Griesbachian to Smithian times. The terrestrial ecosystem underwent an abrupt change, and woody conifers became dominant over the S-S interval. Several important biomarkers, namely retene, simonellite, and dehydroabietane (with multiple sources: conifer, lycopsid, and/or herbaceous bryophyte), were relatively abundant during Griesbachian, Dienerian, and Smithian times. The relatively low C/N ratio values during the Griesbachian-Smithian interval indicate that these biomarkers were likely sourced from herbaceous lycopsids and/or bryophytes. The extremely abundant conifer-sourced pimanthrene, combined with relatively high C/N ratio values, suggested the recovery of woody conifers after the S-S boundary. The new data revealed that the switch from herbaceous vegetation to woody coniferous vegetation marked a terrestrial plant recovery, which occurred globally within 3 million years after the end-Permian crisis rather than at a later date estimated in previous studies. In Chaohu, the S-S terrestrial event was marked by a reappearance of woody vegetation, while the S-S marine event was marked by an increase in ichnodiversity, trace complexity, burrow size, infaunal tiering level, and bioturbation level, and a possible intense upwelling event indicated by the extended tricyclic terpane ratios (ETR). Coeval vegetation changes with comparable patterns have also been documented in Europe and Pakistan based on palynologic studies. The S-S boundaries in Asia and Europe are associated with a positive δ13C excursion, the rebound of woody

  19. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  20. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  1. Growth of early archaean crust in the ancient Gneiss complex of Swaziland and adjacent Barberton Greenstone Belt, Southern Africa

    NASA Technical Reports Server (NTRS)

    Kroener, A.; Compston, W.; Tegtmeyer, A.; Milisenda, C.; Liew, T. C.

    1988-01-01

    The relationship between early Archean greenstones and high grade gneisses in the Ancient Gneiss Complex of Swaziland and the neighboring Barberton greenstone belt in Southern Africa is discussed. New high precision zircon analyses reveal a complex history in individual zircons from tonalitic orthogneisses, with ages as old as 3644 + 4 Ma. This suggests the presence of continental crust prior to the formation of the supracrustal rocks of the Barberton greenstone belt, which have been previously considered the earliest rocks in the area. The author suggested that these data are incompatible with the intraoceanic settings that have been widely accepted for this terrane, and favors either a marginal basin or rift environment. By using the detailed age information obtained from zircons in combination with Ar-40 and Ar-39 and paleomagnetic measurements, the author estimated that plate velocities for this part of Africa craton were about 10 to 70 mm/yr, during the period 3.4 to 2.5 Ga. This is not incompatible with the idea that Archean plate velocities may have been similiar to those of today.

  2. Growth of early archaean crust in the ancient Gneiss complex of Swaziland and adjacent Barberton Greenstone Belt, Southern Africa

    NASA Astrophysics Data System (ADS)

    Kroener, A.; Compston, W.; Tegtmeyer, A.; Milisenda, C.; Liew, T. C.

    The relationship between early Archean greenstones and high grade gneisses in the Ancient Gneiss Complex of Swaziland and the neighboring Barberton greenstone belt in Southern Africa is discussed. New high precision zircon analyses reveal a complex history in individual zircons from tonalitic orthogneisses, with ages as old as 3644 + 4 Ma. This suggests the presence of continental crust prior to the formation of the supracrustal rocks of the Barberton greenstone belt, which have been previously considered the earliest rocks in the area. The author suggested that these data are incompatible with the intraoceanic settings that have been widely accepted for this terrane, and favors either a marginal basin or rift environment. By using the detailed age information obtained from zircons in combination with Ar-40 and Ar-39 and paleomagnetic measurements, the author estimated that plate velocities for this part of Africa craton were about 10 to 70 mm/yr, during the period 3.4 to 2.5 Ga. This is not incompatible with the idea that Archean plate velocities may have been similiar to those of today.

  3. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis

    PubMed Central

    Janis, Christine M.; Devlin, Kelly; Warren, Daniel E.; Witzmann, Florian

    2012-01-01

    The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid–base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange. PMID:22535781

  4. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis.

    PubMed

    Janis, Christine M; Devlin, Kelly; Warren, Daniel E; Witzmann, Florian

    2012-08-01

    The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange. PMID:22535781

  5. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    SciTech Connect

    Beerbower, J.R. . Dept. of Geological Science); Olson, E.C. . Dept. of Biology); Hotton, N. III . Dept. of Paleobiology)

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fiber tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.

  6. Acyclic hydrocarbon environments ⩾ n-C 18 on the early terrestrial planets

    NASA Astrophysics Data System (ADS)

    Marcano, Vicente; Benitez, Pedro; Palacios-Prü, Ernesto

    2003-03-01

    The possible occurrence on the surface of the early Earth, Mars and Venus of hydrocarbon environments mainly composed by acyclic alkane molecules ⩾ n-C 18 has been revised. These hydrocarbons could be accumulated from the contribution of endogenous Fischer-Tropsh-type reactions and post-impact recombination reactions, as well as from exogenous sources such as comets, meteorites and dust particles. Such heavy alkane environments could offer protection for the synthesis and survival of biomolecules on the early terrestrial planets. Amounts of heavy n-alkanes delivered by large impactors, dust particles or produced by post-impact recombination on Venus would have been higher than those delivered or produced by the same sources on Earth and Mars before 3600 Myr ago. However, the high values of the total frequency of impacts by bolides >14-km in diameter estimated in this time period (viz. 3.9×10 3, Mars; 2.2×10 4, Earth, and 3.8×10 4 Venus) and the high surface temperatures generated by those impactors suggest the existence of very unstable conditions on the early terrestrial planets for the survival and long-term accumulation of acyclic hydrocarbons. Therefore, the most significant accumulation of n-alkanes could have occurred only during the longer intervals (10 5- 10 7 yr) between each impact through the contribution mainly of IDPs, and thereby a high decomposition rate would be expected for the accumulated n-alkanes by successive impacts. Amounts of n-alkanes accumulated from IDPs in these intervals have been estimated between 2.3×10 9 and 2.2×10 10 kg 3600- 3800 Myr ago. These processes are expected to occur on other planetary bodies or satellites belonging to our solar system and probably in analogs of the early solar system.

  7. Terrestrial Biomarkers for Early Life on Earth as Analogs for Possible Martian Life Forms: Examples of Minerally Replaced Bacteria and Biofilms From the 3.5 - 3.3-Ga Barberton Greenstone Belt, South Africa

    NASA Technical Reports Server (NTRS)

    Westall, F.; McKay, D. S.; Gibson, E. K.; deWit, M. J.; Dann, J.; Gerneke, D.; deRonde, C. E. J.

    1998-01-01

    The search for extraterrestrial life and especially martian life hinges on a variety of methods used to identify vestiges of what we could recognize as life, including chemical signatures, morphological fossils, and biogenic precipitates. Although the possibility of extant life on Mars (subsurface) is being considered, most exploration efforts may be directed toward the search for fossil life. Geomorphological evidence points to a warmer and wetter Mars early on in its history, a scenario that encourages comparison with the early Earth. For this reason, study of the early terrestrial life forms and environment in which they lived may provide clues as to how to search for extinct martian life. As a contribution to the early Archean database of terrestrial microfossils, we present new data on morphological fossils from the 3.5-3.3-Ga Barberton greenstone belt (BGB), South Africa. This study underlines the variety of fossil types already present in some of the oldest, best-preserved terrestrial sediments, ranging from minerally replaced bacteria and bacteria molds of vaRious morphologies (coccoid, coccobacillus, bacillus) to minerally replaced biofilm. Biofilm or extracellular polymeric substance (EPS) is produced by bacteria and appears to be more readily fossilisable than bacteria themselves. The BGB fossils occur in shallow water to subaerial sediments interbedded with volcanic lavas, the whole being deposited on oceanic crust. Penecontemporaneous silicification of sediments and volcanics resulted in the chertification of the rocks, which were later subjected to low-grade metamorphism (lower greenschist).

  8. Identification of Lichen Metabolism in an Early Devonian Terrestrial Fossil using Carbon Stable Isotope Signature

    NASA Astrophysics Data System (ADS)

    Porter, S.; Jahren, H.

    2002-05-01

    The fossil organismSpongiophyton minutissimum is commonly found in early terrestrial assemblages (Devonian age, 430-340 Ma). Suites of morphological descriptions of this fossil have been published, starting in 1954, and have led to two competing hypotheses: 1.) that this early colonizer of land was a primitive bryophyte, and therefore a precursor to modern plant organisms, and 2.) thatS. minutissimum was a lichen: a close association between an alga and a fungus. Because the ultimate mechanisms for carbon supply to the carboxylating enzyme in bryophytes and lichens differ fundamentally, we expect these two types of organisms to exhibit separate ranges of δ 13Ctissue value. In bryophytes, gaseous carbon dioxide diffuses through perforations in cuticle (resulting in δ 13Catmosphere - δ 13Cbryophyte = ~20 ‰ ). Within the lichen, carbon is supplied to the carboxylating enzyme of the photobiont as carbon dioxide dissolved in fungal cell fluids (resulting in δ 13Catmosphere - δ 13Clichen = ~15 ‰ ). By comparing the δ 13Ctissue value ofS. minutissimum (mean = -23 ‰ ;n = 75) with δ 13Ctissue values in twenty-five lichens, representative of the four different phylogenetic clades (mean = -23 ‰ ;n = 25) and thirty different genera of bryophytes including mosses, liverworts, and hornworts (mean = -28 ‰ ;n = 30), we conclude thatS. minutissimum was cycling carbon via processes that much more closely resembled those of lichens, and not bryophytes. We discuss the general strategies associated with lichen biology, such as the ability to withstand dessication during reproduction, and how they may have contributed to the successful colonization of terrestrial environments.

  9. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  10. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  11. Predicting the Sources and Formation Mechanisms of Evolved Lunar Crust by Linking K/Ca Ratios of Lunar Granites to Analogous Terrestrial Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.

    2012-01-01

    Although silicic rocks (i.e. granites and rhyolites) comprise a minor component of the sampled portion of the lunar crust, recent remote sensing studies [e.g., 1-4] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust formation. Isotopic data indicate that silicic melts were generated over a prolonged timespan from 4.3 to 3.9 Ga [e.g., 6-8]. The protracted age range and broad distribution of silicic rocks on the Moon indicate that their petrogenesis was an important mechanism for secondary crust formation. Understanding the origin and evolution of such silicic magmas is critical to determining the composition of the lunar crustal highlands and will help to distinguish between opposing ideas for the Moon's bulk composition and differentiation. The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 9, 10]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [11, 12]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal

  12. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    humidity (<20%) combined with elevated temperatures (>25°C) could cause sufficient cavitation to reduce hydraulic conductivity by 50%. This suggests that the Early Devonian environments that supported the earliest vascular plants were not subject to prolonged midseason droughts, or, alternatively, that the growing season was short. This places minimum constraints on water availability (e.g., groundwater hydration, relative humidity) in locations where Asteroxylon fossils are found; these environments must have had high relative humidities, comparable to tropical riparian environments. Given these constraints, biome-scale paleovegetation models that place early vascular plants distal to water sources can be revised to account for reduced drought tolerance. Paleoclimate proxies that treat early terrestrial plants as functionally interchangeable can incorporate physiological differences in a quantitatively meaningful way. Application of hydraulic models to fossil plants provides an additional perspective on the 475 million-year history of terrestrial photosynthetic environments and has potential to corroborate other plant-based paleoclimate proxies.

  13. Workshop on the Growth of Continental Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D. (Editor)

    1988-01-01

    Constraints and observations were discussed on a fundamental unsolved problem of global scale relating to the growth of planetary crusts. All of the terrestrial planets were considered, but emphasis was placed on the Earth's continental crust. The title of each session is: (1) Extraterrestrial crustal growth and destruction; (2) Constraints for observations and measurements of terrestrial rocks; (3) Models of crustal growth and destruction; and (4) Process of crustal growth and destruction.

  14. How do Early Impacts Modulate the Tectonic, Magnetic and Climatic Evolutions of Terrestrial Planets?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Jackson, M. G.; Lenardic, A.; Weller, M. B.

    2015-12-01

    The landmark discovery showing that the 142Nd/144Nd ratio of the accessible modern terrestrial mantle is greater than ordinary-chondrites has remarkable implications for the formation, as well as the geodynamic, magnetic and climatic histories of Earth. If Earth is derived from ordinary chondrite precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20-30 Myr following accretion. Critically for Earth evolution, this reservoir hosts the equivalent of the modern continents' budget of radioactive heat-producing elements (U, Th and K). If this reservoir was lost to space through mechanical erosion by early impactors, the planet's radiogenic heat generation is 18-45% lower than chondrite-based compositional estimates. Recent geodynamic calculations suggest that this reduced heat production will favor the emergence of Earth-like plate tectonics. However, parameterized thermal history calculations favor a relatively recent transition from mostly Atlantic-sized plates to the current plate tectonic mode characterized predominantly by the subduction of Pacific-sized plates. Such a transition in the style of Earth's plate tectonics is also consistent with a delayed dynamo and an evolving rate of volcanic outgassing that ultimately favors Earth's long-term clement climate. By contrast, relatively enhanced radiogenic heat production related to a less early impact erosion reduces the likelihood of present day plate tectonics: A chondritic Earth has a stronger likelihood to evolve as a Venus-like planet characterized by potentially wild swings in tectonic and climatic regime. Indeed, differences in internal heat production related to varying extents of impact erosion may exert strong control over Earth's climate and explain aspects of the differences among the current climatic regimes of Earth, Venus and Mars.

  15. Multiple Tectonic Regimes and Diverging Geologic Histories of Terrestrial Planets: The Importance of the Early Years

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2013-12-01

    We use 3D mantle convection and planetary tectonics simulations to explore the links between tectonic regimes, the age of a planet, and its surface evolution. We demonstrate that the tectonic regime of a planet is dependant on its thermal and climatic evolution. A young planet with a high degree of internal heating has a strong susceptibility to climate-induced transitions in tectonic styles. The amplitude of a long lived surface temperature perturbation needed to initiate a transition from a mobile- to a stagnant-lid mode of tectonics decreases with increasing degrees of internal heating. As surface temperatures increase, episodic convection occurs over a larger range of lid strengths, suggesting that young and high temperature planetary bodies have a higher potential to exist in a long-lived mode of episodic tectonics. Once the system transitions into a stagnant-lid, the reverse transition is not attainable by a return to the original surface temperature, which indicates that the climate-tectonic system is bi-stable [multiple tectonic states are possible for the same parameter values]. As a planet ages, the system becomes increasingly insensitive to surface temperature induced transitions after ~30 - 50% of the original radiogenics decay. For a planet to transition from mobile- into episodic-, or stagnant-lid modes through the mechanism of increasing surface temperatures, the implication is that the change would have to occur early in its evolution, within the first 1-2 giga years. While the sensitivity to climatic perturbations decreases with the age of the planet, decreasing internal heat production can usher in a transition in tectonic regimes from a stagnant-lid state, into an episodic- and finally mobile-/sluggish-lid regimes. The implications are that terrestrial worlds can alternate between multiple tectonic states over giga-year timescales. The implications for the early Earth and Earth-Venus differences will be discussed.

  16. The "terminal Triassic catastrophic extinction event" in perspective: a review of carboniferous through Early Jurassic terrestrial vertebrate extinction patterns

    USGS Publications Warehouse

    Weems, R.E.

    1992-01-01

    A catastrophic terminal Triassic extinction event among terrestrial vertebrates is not supported by available evidence. The current model for such an extinction is based on at least eight weak or untenable assumptions: (1) a terminal Triassic extinction-inducing asteroid impact occurred, (2) a terminal Triassic synchronous mass extinction of terrestrial vertebrates occurred, (3) a concurrent terminal Triassic marine extinction occurred, (4) all terrestrial vertebrate families have similar diversities and ecologies, (5) changes in familial diversity can be gauged accurately from the known fossil record, (6) extinction of families can be compared through time without normalizing for changes in familial diversity through time, (7) extinction rates can be compared without normalizing for differing lengths of geologic stages, and (8) catastrophic mass extinctions do not select for small size. These assumptions have resulted in unsupportable and (or) erroneous conclusions. Carboniferous through Early Jurassic terrestrial vertebrate families mostly have evolution and extinction patterns unlike the vertebrate evolution and extinction patterns during the terminal Cretaceous event. Only the Serpukhovian (mid Carboniferous) extinction event shows strong analogy to the terminal Cretaceous event. Available data suggest no terminal Triassic extinction anomaly, but rather a prolonged and nearly steady decline in the global terrestrial vertebrate extinction rate throughout the Triassic and earliest Jurassic. ?? 1992.

  17. The coupled 182W-142Nd record of early terrestrial mantle differentiation

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Horan, Mary F.; Walker, Richard J.

    2016-06-01

    New Sm-Nd, Lu-Hf, Hf-W, and Re-Os isotope data, in combination with highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) and W abundances, are reported for the 3.55 Ga Schapenburg komatiites, South Africa. The Schapenburg komatiites define a Re-Os isochron with an age of 3550 ± 87 Ma and initial γ187Os = +3.7 ± 0.2 (2SD). The absolute HSE abundances in the mantle source of the Schapenburg komatiite system are estimated to be only 29 ± 5% of those in the present-day bulk silicate Earth (BSE). The komatiites were derived from mantle enriched in the decay products of the long-lived 147Sm and 176Lu nuclides (initial ɛ143Nd = +2.4 ± 0.1, ɛ176Hf = +5.7 ± 0.3, 2SD). By contrast, the komatiites are depleted, relative to the modern mantle, in 142Nd and 182W (μ182W = -8.4 ± 4.5, μ142Nd = -4.9 ± 2.8, 2SD). These results constitute the first observation in terrestrial rocks of coupled depletions in 142Nd and 182W. Such isotopic depletions require derivation of the komatiites from a mantle domain that formed within the first ˜30 Ma of Solar System history and was initially geochemically enriched in highly incompatible trace elements as a result of crystal-liquid fractionation in an early magma ocean. This mantle domain further must have experienced subsequent melt depletion, after 182Hf had gone extinct, to account for the observed initial excesses in 143Nd and 176Hf. The survival of early-formed 182W and 142Nd anomalies in the mantle until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective mantle mixing during the Hadean. This work moreover renders unlikely that variable late accretion, by itself, can account for all of the observed W isotope variations in Archean rocks.

  18. The U-Pb, Hf and O isotopic record of ancient detrital zircons in Zimbabwean sediments - formation, reworking and nature of early Archaean crust

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Hofmann, Axel; Kemp, Anthony I. S.; Whitehouse, Martin J.; Wind, Sandra; Feng, Yuexing

    2014-05-01

    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from different Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan Groups and undated Sebakwian Group are presented to better define the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Textural and compositional criteria were employed to minimize effects arising from Pb loss, metamorphic overprinting and interaction with low temperature fluids. 207Pb/206Pb age spectra (concordance > 90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events both globally and within the Zimbabwe craton. O isotope compositions of ~ 4 - 10 opoint to both derivation from magmas in equilibrium with mantle and the assimilation of supracrustal material or interaction with metamorphic fluids. In ɛHf-time space, 3.8-3.6 Ga grains define an array consistent with derivation from a mafic to intermediate source reservoir (Lu/Hf ~0.015) that separated from chondritic mantle at ~ 3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from juvenile mantle sources and reworking of pre-existing crust. Importantly, initial Hf isotopic compositions document a protracted history of remelting, without evidence for significant mantle depletion prior to 3.35 Ga. This suggests that production of earliest crust in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs, possibly because heterogeneous mantle was effectively remixed by rapid convection due to higher temperatures in the early Archaean or the volume of crust was too small in volume to influence the isotopic mantle evolution. Similar Hf-O-time relationships observed in southern West Greenland were used as a basis to propose a transition in geodynamics 3.2 Ga ago. The absence of detrital zircons with crystallization ages > 3.8 Ga, along with a simple ɛHf-time array consistent with reworking of a mafic protolith

  19. Early crust of the Podolia Domain of the Ukrainian Shield: Isotopic age of terrigenous zircons from quartzites of the Bug Group

    NASA Astrophysics Data System (ADS)

    Bibikova, E. V.; Fedotova, A. A.; Claesson, S.; Stepanyuk, L. M.

    2015-11-01

    Detrital zircons of the ancient metasedimentary rocks bear important information about the early crust of the Earth. In this work, the early crust in the west of the Ukrainian Shield was studied using U-Pb dating of terrigenous zircons from metasedimentary rocks (quartzites) of the lower parts of the Bug Group (Kosharo-Aleksandrovka Formation) of the Podolia Domain and through Sm-Nd isotopic investigation of these rocks. The Nd model age of rocks is 3.4-3.1 Ga. Detrital zircons were studied in two samples of quartzites. The cathodoluminescent images of most zircons support their clastic origin. More than 150 zircon grains were studied on an ion microprobe. The isotope age of zircons is 3775-2000 Ma. These results were compared with previous results of study of terrigenous zircons from garnet schists of the Zaval'e quarry located closely to the studied area. It is concluded that both Paleoarchean and Meso- to Neoarchean rocks were destroyed during formation of terrigenous rocks of the Bug Group. The different amount of ancient zircons in quartzites and garnet schists indicates the different remoteness of the most ancient rocks from sedimentary basins.

  20. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    More than twenty years since the publication of Armstrong's seminal paper, debate still rages about most aspects of the Earth's first billion years. Although orders of magnitude more data have been generated since then, the arguments remain the same. The debate is largely centered on the isotopic systematics of minerals and whole rocks, the major and trace element geochemistry of continental crust, and various geodynamic models for differentiation of the planet. Most agree that earth, like all the terrestrial planets, differentiated into a crust, mantle and core very early in its history. After that, models of crustal evolution diverge significantly, including the suggestions that modern style plate tectonics did not originate until ca. 2.7 Ga or younger and that plumes have played a major role in the generation of continental crust. Many believe that the preserved rock record and the detrital zircon record are consistent with episodic crustal growth, which in turn has led to geodynamic models of episodic mantle convection driving major crust forming events. High-precision and high-throughput geochronology have led to claims of episodicity even more pronounced than that presented in Gastil's 1960 paper. We believe that Earth history has been dominated by plate tectonics and that continental crust is formed largely by amalgamation of island arcs, seamounts, micro continents, and oceanic plateaus. While there are geochemical differences in the average composition of Archean igneous rocks when compared to younger rocks, the processes responsible for their formation may not have changed a great deal. In this view, the so-called crustal growth curves originated by Hurley are in fact crude approximations of crustal preservation. The most highly cited rationales for the view that little silicic crust formed during Earth's first billion years are the lack of known exposed crust older than 3.5 Ga and the paucity of detrital zircons older than 4.0 Ga in sedimentary rocks of

  1. The hydrologic response of Mars to the onset of a colder climate and to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Morphologic similarities between the Martian valley networks and terrestrial runoff channel have been cited as evidence that the early Martian climate was originally more Earth-like, with temperatures and pressures high enough to permit the precipitation of H2O as snow or rain. Although unambiguous evidence that Mars once possessed a warmer, wetter climate is lacking, a study of the transition from such conditions to the present climate can benefit our understanding of both the early development of the cryosphere and the various ways in which the current subsurface hydrology of Mars is likely to differ from that of the Earth. Viewed from this perspective, the early hydrologic evolution of Mars is essentially identical to considering the hydrologic response of the Earth to the onset of a global subfreezing climate.

  2. Early Archean crust in the northern Wyoming province Evidence from U-Pb ages of detrital zircons

    USGS Publications Warehouse

    Mueller, P.A.; Wooden, J.L.; Nutman, A.P.; Mogk, D.W.

    1998-01-01

    U-Pb ages of individual detrital and metamorphic zircons from 12 Archean metasedimentary rocks, including quartzites, from the Beartooth, Ruby, and Tobacco Root uplifts of the northern Wyoming province indicate that they were deposited between 2.7 and 3.2 Ga. Younger, metamorphic zircons are found as overgrowths and new grains in some samples, and yield ages between 2.7 and 1.9 Ga. They are, however, much less abundant than detrital grains, which constitute >75% of the 355 grains analyzed. The majority of the detrital grains have ages between 3.2 and 3.4 Ga; none are younger than 2.9 Ga. Grains with 207Pb/206Pb ages between 3.4 and 4.0 Ga constituted approximately 15% of all grains with analyses within 10% of concordia, but are concentrated in samples from the eastern Beartooth Mountains. Comparison of the average of the Pb-Pb ages of individual zircons within 10% of concordia with previously published Lu-Hf chondritic model ages for some individual samples suggests that the age distribution recorded by the U-Pb system in these zircons has not been significantly disturbed by pre- or post-depositional Pb-loss. Collectively, these data suggest that the individual metasedimentary rocks did not completely share a common provenance and that a major crust-forming cycle occurred 3.2 to 3.4 Ga. In conjunction with previously published U-Th-Pb whole-rock data, these results suggest that rocks with a relatively high proportion of > 3.4 Ga grains may have had crust of comparable age in their provenance. ?? 1998 Elsevier Science B.V.

  3. Early Cretaceous low-Mg# adakitic rocks in the southern margin of the central North China Craton: Partial melting of thickened lower continental crust and tectonic implications

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    This paper reports new whole-rock geochemical, Sr-Nd-Pb isotopic, and zircon U-Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia-Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon LA-ICP-MS U-Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~130 Ma) and the late Early Cretaceous (116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054-0.7095), and low eNd(t) (-11.90 to -22.20) and eHf(t) (-16.7 to -32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754-542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the

  4. Continental crust subducted deeply into lithospheric mantle: the driving force of Early Carboniferous magmatism in the Variscan collisional orogen (Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Janoušek, Vojtěch; Schulmann, Karel; Lexa, Ondrej; Holub, František; Franěk, Jan; Vrána, Stanislav

    2014-05-01

    The vigorous Late Devonian-Early Carboniferous plutonic activity in the core of the Bohemian Massif was marked by a transition from normal-K calc-alkaline, arc-related (~375-355 Ma), through high-K calc-alkaline (~346 Ma) to (ultra-)potassic (343-335 Ma) suites, the latter associated with mainly felsic HP granulites enclosing Grt/Spl mantle peridotite bodies. The changing chemistry, especially an increase in K2O/Na2O and 87Sr/86Sri with decrease in 143Nd/144Ndi in the basic end-members, cannot be reconciled by contamination during ascent. Instead it has to reflect the character of the mantle sources, changing over time. The tectonic model invokes an oceanic subduction passing to subduction of the attenuated Saxothuringian crust under the rifted Gondwana margin (Teplá-Barrandian and Moldanubian domains). The deep burial of this mostly refractory felsic metaigneous material is evidenced by the presence of coesite/diamond (Massonne 2001; Kotková et al. 2011) in the detached UHP slices exhumed through the subduction channel and thrusted over the Saxothuringian basement, and by the abundance of felsic HP granulites (> 2.3 GPa), some bearing evidence for small-scale HP melt separation, in the orogen's core (Vrána et al. 2013). The subduction channel was most likely formed by 'dirty' serpentinites contaminated by the melts/fluids derived from the underlying continental-crust slab (Zheng 2012). Upon the passage through the orogenic mantle, the continental crust-slab derived material not only contaminated the adjacent mantle forming small bodies/veins of pyroxenites (Becker 1996), glimmerites (Becker et al. 1999) or even phlogopite- and apatite-bearing peridotites (Naemura et al. 2009) but the felsic HP-HT granulites also sampled the individual peridotite types at various levels. Eventually the subducted felsic material would form an (U)HP continental wedge under the forearc/arc region, to be later redistributed under the Moldanubian crust by channel flow and crustal

  5. Collescipoli - An unusual fusion crust glass. [chondrite

    NASA Technical Reports Server (NTRS)

    Nozette, S.

    1979-01-01

    An electron microprobe study was conducted on glass fragments taken from the fusion crust and an internal glass-lined vein in the H-5 chondrite Collescipoli. Microprobe analyses of the glasses revealed an unusual fusion crust composition, and analyses of glass from inside the meteorite showed compositions expected for a melt of an H-group chondrite. Studies of fusion crusts by previous workers, e.g., Krinov and Ramdohr, showed that fusion crusts contain large amounts of magnetite and other oxidized minerals. The Collescipoli fusion crusts do contain these minerals, but they also contain relatively large amounts of reduced metal, sulphide, and a sodium-rich glass. This study seems to indicate that Collescipoli preserved an early type of fusion crust. Oxidation was incomplete in the fusion crust melt that drained into a crack. From this study it is concluded that fusion crust formation does not invariably result in complete oxidation of metal and sulphide phases.

  6. Crustal development in the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1985-01-01

    The development of planetary crusts may be divided into primary, resulting from melting during accretion, and secondary crusts developed by partial melting from planetary mantles. The Mercurian crust is probably primary with no compelling evidence of later basaltic extrusions. Reflectance spectral evidence for the existence Fe2(+) is equivocal. The Viking Lander XRF data on Mars indicate basaltic material at both sites 4,000 km apart. Surface aeolian processes would be expected to provide a homogeneous average of the crust, but no evidence of more siliceous material is present. This conclusion is weakly supported by the Russian gamma ray data. No evidence for granite appears from the Russian Venera XRF data which indicates MORB-type and alkali basalt (4% K2O) surface compositions. The highlands of Ishtar Terra and Aphrodite probably owe their elevation to tectonic processes rather than compositional effects. Venus may thus resemble the early Archean Earth. The terrestrial granitic continental crust is a product of episodic multiple partial melting events, probably a consequence of the presence of surface water.

  7. Early Holocene volcanism in CKD (Kamchatka) as a mechanical probe of the stress level in the crust.

    NASA Astrophysics Data System (ADS)

    Simakin, Alexander; Shaposhnikova, Olga

    2016-04-01

    The last (late Pleistocene) glaciation in Kluychevskaya group of volcanoes (KGV) can be considered as a large scale mechanical experiment allowing evaluation of the level of the global geodynamic stresses in the crust of North Kamchatka. KGV is located in the Central Kamchatka depression (CKD). Formation of the CKD can be connected with accretion of Kronotsky paleoarc to the Kamchatka edge c.a. 5 Mys ago. At the compression stage zone of the contact was thickened so that lower part can reach PT parameters of basalt-eclogite transition. Suggested carbonates contamination of the mantle wedge during accretion (Simakin et al., 2015) can became a source of CO2 facilitating eclogite formation. Dense eclogitic keel and trench retreat following accretion can be the driving forces of the CKD rift formation. Extension is partially accommodated (several mm/yr eastward motion) on the eastern border of CKD in the zone of the normal faulting (Kozhurin et al., 2006). And partially extension is accommodated by the formation of the series of dykes of submeridional direction marked by monogenic cones on the surface. At the last phase of the Pleistocene glaciation KGV was covered by the ice cap with 80 km diameter and above 1000 m maximum thickness on the slopes. After the fast deglaciation surface uplift has produced horizontal compression (Simakin and Muravyev, 2015; Pagli and Sigmundsson, 2008). Addition of the deglacial compression to the geodynamic extension turns s1 direction to the horizontal latitudinal one. Due to the horizontal compression areal of eruptions was expanded towards edges of the former glacier. Numerical modeling demonstrates that maximum level of the glacial stress is proportional to the ice gravity load and is estimated to be 5.8-7.5 MPa. Initially principle compressive stress due to the deglaciation was higher than geodynamic one abs(s1,glac) > abs(s1,geod). Time of the volcanism return to the basic submeridional direction marked the moment of viscous

  8. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  9. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  10. Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean1

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kato, Yasuhiro

    2004-11-01

    Early Archean (3.46 Ga) hydrothermally altered basaltic rocks exposed near Marble Bar, eastern Pilbara Craton, have been studied in order to reveal geological and geochemical natures of seafloor hydrothermal carbonatization and to estimate the CO 2 flux sunk into the altered oceanic crust by the carbonatization. The basaltic rocks are divided into basalt and dolerite, and the basalt is further subdivided into type I, having original igneous rock textures, and type II, lacking these textures due to strong hydrothermal alteration. Primary clinopyroxene phenocrysts are preserved in some part of the dolerite samples, and the alteration mineral assemblage of dolerite (chlorite + epidote + albite + quartz ± actinolite) indicates that the alteration condition was typical greenschist facies. In other samples, all primary minerals were completely replaced by secondary minerals, and the alteration mineral assemblage of the type I and type II basalts (chlorite + K-mica + quartz + carbonate minerals ± albite) is characterized by the presence of K-mica and carbonate minerals and the absence of Ca-Al silicate minerals such as epidote and actinolite, suggesting the alteration condition of high CO 2 fugacity. The difference of the alteration mineral assemblages between basalt and dolerite is probably attributed to the difference of water/rock ratio that, in turn, depends on their porosity. Carbonate minerals in the carbonatized basalt include calcite, ankerite, and siderite, but calcite is quite dominant. The δ 13C values of the carbonate minerals are -0.3 ± 1.2‰ and mostly within the range of marine carbonate, indicating that the carbonate minerals were formed by seafloor hydrothermal alteration and that carbonate carbon in the altered basalt was derived from seawater. Whole-rock chemical composition of the basaltic rocks is essentially similar to that of modern mid-ocean ridge basalt (MORB) except for highly mobile elements such as K 2O, Rb, Sr, and Ba. Compared to the

  11. The nature of the crust in the Yukon-Koyukuk province as inferred from the chemical and isotopic composition of five Late Cretaceous to Early Tertiary volcanic fields in western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E.; Arth, Joseph G.

    1989-01-01

    Late Cretaceous and early Tertiary volcanic and plutonic rocks in western Alaska comprise a vast magmatic province extending from the Alaska Range north to the Arctic Circle, south to Bristol Bay, and west to the Bering Sea Shelf. The chemical and isotopic composition of five of these Late Cretaceous to early Tertiary volcanic fields in the north central part of this province were studied to determine if Paleozoic or older continental crust underlies the Yukon-Koyukuk province. -from Authors

  12. Magma mixing and crust-mantle interaction in Southeast China during the Early Cretaceous: Evidence from the Furongshan granite porphyry and mafic microgranular enclaves

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Zuo; Chen, Pei-Rong; Sun, Li-Qiang; Ling, Hong-Fei; Zhao, You-Dong; Lan, Hong-Feng

    2015-11-01

    The petrogenesis and tectonic setting of Early Cretaceous granitoids and their enclaves emplaced in the Gan-Hang Tectonic Belt are still controversial. Here, we investigate mafic microgranular enclaves (MMEs) and their host granite porphyry from the Furongshan caldera to elucidate magma mixing and crust-mantle interaction in the Gan-Hang Tectonic Belt. The Furongshan granite porphyry is characterized by enrichments of alkalis, REE, Zr + Nb + Ce + Y contents (averaging 377 ppm), and high zircon saturation temperatures (793-843 °C), suggesting A-type granitic affinities. The granite porphyry can be further classified as an A2 subtype granite based on high Y/Nb ratios (averaging 1.37). Zircon cores from the Furongshan MMEs exhibit the same εHf(t) values (-10.0 to -3.0) and U-Pb ages (127-129 Ma) as zircons form the granite porphyry, implying that they were captured from the felsic magma as xenocrysts. Petrological and mineralogical characteristics (such as needle-like apatite and disequilibrium feldspar xenocryst) suggest that the Furongshan MMEs and host granite porphyry were formed by magma mixing rather than restite, xenolith or fractional crystallization of mafic magma. The Furongshan granite porphyry samples have initial 87Sr/86Sr ratios of 0.7073-0.7099 and εNd(t) values of -3.7 to -3.3, which are similar to those of the MMEs (0.7068-0.7077 and -3.2 to -2.9, respectively). Similar trace element and Sr-Nd isotopic compositions imply a high degree of geochemical equilibration between the granite porphyry and its MMEs, and hence intense magma mixing, although some element contents and zircons εHf(t) values differ due to high zircon closure temperature and rapid cooling of commingled magmas. A binary mixing model based on Sr-Nd isotopes indicates a contribution of ∼50% basaltic melt to the hybrid magma of the Furongshan granite porphyry. A compilation of Sr-Nd-Hf isotopic data of the granitoids and MMEs from the Xiangshan, Furongshan and Muchen areas suggest

  13. On the relationship between early solar activity and the evolution of terrestrial planet atmospheres

    NASA Technical Reports Server (NTRS)

    Repin, Robert O.

    1989-01-01

    Mass fractionation during hydrodynamic escape of hydrogen-rich primordial atmospheres form Venus, earth, and Mars can account for most of the salient features of mass distributions in their present-day atmospheres. The principal assumptions and results of an escape-fractionation model for the evolution of terrestrial planet atmospheres from primary to final states are qualitatively described, with emphasis on the astrophysical conditions needed to enable the loss process. A substantial and rapidly declining flux of energetic solar radiation into atmospheric exospheres is required, initially (at solar ages of about 1-10 million years) two to three orders of magnitude more intense than that supplied by extreme-ultraviolet emission from the contemporary sun. The solar accretion disk must have dissipated if such radiation is to penetrate the system midplane to planetray distances. On both criteria, hydrodynamic escape from planets appears plausible in the astrophysical environment of the naked T-Tauri stars.

  14. The Continental Crust.

    ERIC Educational Resources Information Center

    Burchfiel, B. Clark

    1983-01-01

    Continental crust underlies the continents, their margins, and also small shallow regions in oceans. The nature of the crust (much older than oceanic crust) and its dynamics are discussed. Research related to and effects of tectonics, volcanism, erosion, and sedimentation on the crust are considered. (JN)

  15. Early archean spherule beds in the Barberton mountain land, South Africa: Impact or terrestrial origin?

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; Koeberl, Christian; Johnson, Steven; McDonald, Iain

    The origin of multiple spherule-rich layers of millimeter to meter width, all occurring within the transition from the Fig Tree to the Onverwacht Group of the Barberton Greenstone Belt in South Africa, has been strongly debated during the last decade. One school subscribes to an origin by large meteorite impact, whereas others have preferred terrestrial processes. In particular, strong enrichments in siderophile elements, especially Ir, and chondrite-like PGE patterns for spherule layer samples have been cited as evidence favoring an impact origin. Recently, Cr isotopic signatures obtained for samples from two spherule layers have provided further support for this hypothesis. In contrast, our group has emphasized that secondary hydrothermal processes have pervasively overprinted the whole stratigraphy at this transition. Ir concentrations up to 5 times chondritic are suspect as primary impact-produced signatures. Here, we report new petrographic and geochemical data for samples from spherulitic horizons marking the S2 layer and from interlayered BIF, chert, and mudstone strata. In contrast to earlier work, the new samples were obtained from outside of the gold-sulfide mineralized ore zone on Agnes Mine. Both spherule and country rock samples are enriched in siderophile elements, with up to >1500 ppb Ir. Some of the highest values are related to clearly secondary fault and shear zone deposits. Chrome-spinel in spherule layers is often zoned. A proton microprobe study identified in one case the mineral gersdorffite, of likely secondary origin, as a carrier phase for Ir, whereas in other samples Ir must be contained in matrix silicates. New PGE analyses for more or less sulfidemineralized samples yielded uniformly flat, near-chondritic patterns.

  16. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G., Jr.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  17. Early results from a terrestrial-marine BGC coupling study in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Vermilyea, A.; Spencer, R. G.; Hood, E. W.; Stubbins, A.

    2010-12-01

    In 2010 we began a long-term comparative study of watershed contributions to coastal marine nutrients in the northeast Pacific from a modest deployment of sensors combined with sample analysis. The preliminary results presented here establish a baseline for defining and subsequently tracking physical system parameters relevant to marine productivity over two decades, in two contexts: First in the context of research by Hood and others: Comparing glacier-covered to un-glaciated watershed output in a Lagrangian sense of particle and parcel transport. Second, in a more Eulerian sense: How will impact on coastal marine ecosystems from changing terrestrial freshwater input compare over decades to that of changes in physical parameters like pH, upwelling nutrient supply along the continental shelf and temperature? In our initial efforts we trolled two estuary plumes pulling samples for laboratory analysis and operating in situ sensors in tandem with GPS while other in situ sensors collected data from within source rivers (Eagle River and Peterson Creek near Juneau, AK, in respectively glaciated and forested watersheds). The strategy is to produce comparable synoptic datasets across the freshwater-marine mixing regime of the plume using salinity as a mixing proxy. Initial datasets include CDOM, dissolved oxygen, turbidity, chlorophyll-A, and (from samples) total organic carbon, total nitrogen, absorption spectra and excitation-emission matrices. Future work will expand this list to include mass spectrometer and NMR data. In working with this synoptic dataset we are faced with both curation and interpretation challenges; hence a primary objective of the project is to use the trans-disciplinary and data-intensive nature of the research problem set to motivate technology adoption. We have in mind here the notion of electronic publication (exemplified in this AGU poster) that permits collaborators and readers to reach back into source data and trace the origins and processes

  18. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.

    PubMed

    Carley, Sanya R; Krause, Rachel M; Warren, David C; Rupp, John A; Graham, John D

    2012-07-01

    While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS. PMID:22681614

  19. Lu-Hf systematics of the ultra-high temperature Napier Complex, East Antarctica: evidence for the early Archean formation of continental crust

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.; Andronikov, A. V.; Osanai, Y.; Harley, S. L.; Kelly, N. M.

    2009-12-01

    The Napier Complex in East Antarctica comprises some of the oldest rocks on earth (~3.8 billion years old), overprinted by an ultra-high temperature (UHT) metamorphic event near the Archean-Proterozoic boundary. Garnet, orthopyroxene, sapphirine, osumilite, rutile and a whole rock representing an equilibrated assemblage from this belt yield a Lu-Hf isochron age of 2,403 ± 43 Ma. Preservation of the UHT mineral assemblage in the rock analyzed suggests rapid cooling with closure likely to have occurred for the Lu-Hf system at post-peak UHT conditions near a temperature of ~800C. Individual zircon grains from Gage Ridge within the Napier Complex yielded a remarkably uniform range of 176Hf/177Hf values between 0.280433 ± 7 and 0.280505 ± 10, corresponding to ɛHf > +5.6 at 3.85 Ga relative to the chondritic uniform reservoir (CHUR). Because of their exceedingly low Lu/Hf values (<0.001), the grains are effectively recording the initial Hf isotope composition of the magmatic systems from which the gneiss protoliths crystallized. These results indicate that (1) the source of the crustal materials that formed the Napier Complex at 3.85 Ga were depleted relative to the CHUR. The extent of depletion involved is higher than has been predicted by extrapolation from the Lu-Hf isotopic evolution inferred for the source of Proterozoic and Phanerozoic basalts, judging from an fLu/Hf value of 0.51, (2) the depleted mantle reservoir has been in existence since very early in Earth’s history, in agreement with the early differentiation of the Earth that the latest core formation models require, and (3) an extremely depleted source also mean that the bulk of continental crust was extracted from the mantle by ~3.8 Ga. Moreover, the results demonstrate that even the oldest silicic rocks in the complex are not likely to have formed from remobilized older crustal materials, but were instead juvenile products of mantle melting. In addition, zircons with metamorphic rims have a similar

  20. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  1. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  2. Ion microprobe zircon geochronology of the Uivak Gneisses: Implications for the evolution of early terrestrial crust in the North Atlantic Craton

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.

    1983-01-01

    Ion microprobe U-Pb results for zircons from three Uivak I gneisses and one specimen of Uivak II gneiss, from the Saglek-Hebron area of Northern Labrador are reported. These results are compared with interpretations based on published conventional U-Pb zircon results and with conclusions about crustal evolution in the NAC derived from Rb-Sr, Sm-Nd and Pb-Pb isotopic studies.

  3. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya.

    PubMed

    Braun, David R; Harris, John W K; Levin, Naomi E; McCoy, Jack T; Herries, Andy I R; Bamford, Marion K; Bishop, Laura C; Richmond, Brian G; Kibunjia, Mzalendo

    2010-06-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  4. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya

    PubMed Central

    Braun, David R.; Harris, John W. K.; Levin, Naomi E.; McCoy, Jack T.; Herries, Andy I. R.; Bamford, Marion K.; Bishop, Laura C.; Richmond, Brian G.; Kibunjia, Mzalendo

    2010-01-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  5. Early terrestrial impact events: Archean spherule layers in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Schulz, Toni; Reimold, W. Uwe; Hofmann, Axel

    2015-04-01

    In addition to the oldest known impact structure on Earth, the 2.02-billion-year-old Vredefort Structure in South Africa, the evidence of Early Earth impact events are Archean spherule beds in South Africa and Australia. These spherules have been interpreted as condensation products from impact plumes and molten impact ejecta or/and impact ejecta that were melted during atmospheric re-entry [e.g., 1,2]. The 3.2-3.5 Ga spherule layers in the Barberton Greenstone Belt in South Africa currently represent the oldest known remnants of impact deposits on Earth. Aiming at identification of extraterrestrial components and to determine the diagenetic and metamorphic history of spherule layer intersections recently recovered in the CT3 drill core from the northeastern part of the Barberton Greenstone Belt, we have studied samples from these layers in terms of petrography and geochemistry. All samples, including spherule layer intersections and intercalating country rocks, were studied for mineral identification by optical and electron microscopy, as well as electron microprobe analysis (EPMA) at Natural History Museum Vienna and Museum für Naturkunde Berlin (MfN). Major and trace element compositions were determined via X-ray fluorescence spectrometry at MfN and instrumental neutron activation analysis (INAA) at University of Vienna. Os isotopes were measured by thermal ionization mass spectrometry (N-TIMS) at University of Vienna. Eighteen spherule beds are distributed over 150 meter drill core in CT3. Spherules are variably, deformed or undeformed. The high number of these layers may have been caused by tectonic duplication. Spherule beds are intercalated with shale, chert, carbonate, and/or sulfide deposits (country rocks). The size range of spherules is 0.5 to 2 mm, and some layers exhibit gradation. Shapes of spherules differ from spherical to ovoid, as well as teardrops, and spherules commonly show off-center vesicles, which have been interpreted as a primary

  6. Speciation of C-O-H volatiles in reduced magmas applicable to early terrestrial and planetary deep volatile cycles

    NASA Astrophysics Data System (ADS)

    Armstrong, Lora; Hirschmann, Marc

    2014-05-01

    The speciation and solubility of C-O-H volatiles in reduced magmas are of great importance for volatile behavior in the early Earth and other planets determining partitioning between Earth's earliest atmospheres, mantle, and cores, as well as influencing volcanogenic degassing on reduced planetary bodies such as Mars and the Moon. In mafic and ultramafic magmas, C is soluble chiefly as carbonate under oxidizing conditions, but when fO2 is below that required for graphite (or diamond) saturation, carbonate solubility diminishes severely. This has left the question as to what, if any, species may host dissolved C in magmas under reducing conditions. Initial results suggested that the principle species may be CH4 (Mysen et al. 2009), but experiments at well-defined thermodynamic conditions have shown that CH4 solubility is very small except under conditions of very high H2 fugacity (Ardia et al. 2012). More recent experiments (Wetzel et al. 2013; Stanley et al. 2014) have identified Fe-carbonyl-like species as possibly the most stable. To clarify the relative stability of these species, we have conducted additional high pressure experiments at 1.2 GPa and 1400°C with graphite-saturated martian and terrestrial (MORB) basalt compositions, over a range of oxygen fugacities, paying careful attention to the availability of H2O. FTIR and Raman analyses reveal a range of distinct species that predominate as a function of fO2 and availability of H2O. At comparatively oxidizing conditions, carbonate is the most abundant species but within 1 log unit of iron wustite (IW), carbonyl-like species predominate, provided that conditions are comparatively dry. At yet more reducing conditions, carbonyl is absent and instead N-H associated species (perhaps amides?) are more important. Methane is observed only when quenched glasses have appreciable H2O (approaching ~ 1 wt.%). In all cases, solubilities are small when conditions are reduced, with <100 ppm C at IW or below.

  7. Sea surface temperatures and terrestrial water storage provide early warning information about fire season severity in the Amazon

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; DeFries, R. S.; Collatz, G. J.; Kasibhatla, P. S.; Giglio, L.; Jin, Y.; Marlier, M. E.; Velicogna, I.; Famiglietti, J. S.

    2012-12-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in satellite observations of active fires in South America and sea surface temperatures. We found that the Oceanic Niño Index was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional fire season severity with 3-5 month lead times. We further examined the hypothesis that year-to-year variations in soil water recharge during the wet season modifies atmospheric water vapor and fire behavior during the following dry season. We tested this hypothesis by analyzing terrestrial water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE), active fires from the Moderate Resolution Imaging Spectroradiometer (MODIS), and other satellite and climate data during 2002-2011. We found that TWS anomalies at the end of the wet season were negatively correlated with the number of active fires during the dry season for three regions across the southern Amazon. The most significant relationships (p < 0.02) were observed for TWS anomalies during April-August, several months before the peak month of burning (September). Analysis of other datasets provided evidence for a cascade of processes during drought events, with lower cumulative precipitation (and higher cumulative evapotranspiration) in the wet season substantially reducing TWS, and subsequently surface and column water vapor. Our results indicate that TWS from GRACE also has the potential to provide early warning information about fire season severity in the Amazon.

  8. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  9. Eoarchean crustal evolution of the Jack Hills zircon source and loss of Hadean crust

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.; Harrison, T. Mark; Kohl, Issaku E.; Young, Edward D.

    2014-12-01

    Given the global dearth of Hadean (>4 Ga) rocks, 4.4-4.0 Ga detrital zircons from Jack Hills, Narryer Gneiss Complex (Yilgarn Craton, Western Australia) constitute our best archive of early terrestrial materials. Previous Lu-Hf investigations of these zircons suggested that felsic (low Lu/Hf) crust formation began by ∼4.4 to 4.5 Ga and continued for several hundred million years with evidence of the least radiogenic Hf component persisting until at least ∼4 Ga. However, evidence for the involvement of Hadean materials in later crustal evolution is sparse, and even in the detrital Jack Hills zircon population, the most unradiogenic, ancient isotopic signals have not been definitively identified in the younger (<3.9 Ga) rock and zircon record. Here we show Lu-Hf data from <4 Ga Jack Hills detrital zircons that document a significant and previously unknown transition in Yilgarn Craton crustal evolution between 3.9 and 3.7 Ga. The zircon source region evolved largely by internal reworking through the period 4.0-3.8 Ga, and the most ancient and unradiogenic components of the crust are mostly missing from the record after ∼4 Ga. New juvenile additions to the crust at ca. 3.9-3.8 Ga are accompanied by the disappearance of unradiogenic crust ca. 3.9-3.7 Ga. Additionally, this period is also characterized by a restricted range of δ18O after 3.8 Ga and a shift in several zircon trace element characteristics ca. 3.9-3.6 Ga. The simultaneous loss of ancient crust accompanied by juvenile crust addition can be explained by a mechanism similar to subduction, which effects both processes on modern Earth. The oxygen isotope and trace element information, although less sensitive to tectonic setting, also supports a transition in zircon formation environment in this period.

  10. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  11. The Oceanic Crust.

    ERIC Educational Resources Information Center

    Francheteau, Jean

    1983-01-01

    The earth's oceanic crust is created and destroyed in a flow outward from midocean ridges to subduction zones, where it plunges back into the mantle. The nature and dynamics of the crust, instrumentation used in investigations of this earth feature, and research efforts/findings are discussed. (JN)

  12. Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa.

    PubMed

    Kyriacou, K; Blackhurst, D M; Parkington, J E; Marais, A D

    2016-08-01

    Many attempts have been made to define and reconstruct the most plausible ecological and dietary niche of the earliest members of the human species. While earlier models emphasise big-game hunting in terrestrial, largely savannah environments, more recent scenarios consider the role of marine and aquatic foods as a source of polyunsaturated fatty acids (PUFA) and other brain-selective nutrients. Along the coast of southern Africa, there appears to be an association between the emergence of anatomically modern humans and accumulation of some of the earliest shell middens during the Middle Stone Age (200-40 ka). Fragmentary fossil remains classified as those of anatomically modern humans, along with marine food residues and numerous material cultural indicators of increased social and behavioural complexity have been recovered from coastal sites. In this paper, new information on the nutrient content of marine and terrestrial foods available to early modern humans in the southwestern Cape is presented and compared with existing data on the nutritional value of some wild plant and animal foods in Africa. The results suggest that coastal foraging, particularly the collection of abundant and predictable marine molluscs, would have allowed early modern humans to exploit some of the richest and most accessible sources of protein, micronutrients and longer-chain omega-6 and omega-3 fatty acids. Reliable and accessible sources of omega-3 eicosapentaenoic and docosahexaenoic acid are considerably more restricted in terrestrial foods. PMID:27457547

  13. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  14. Early Eocene carbon isotope excursions: Evidence from the terrestrial coal seam in the Fushun Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Tang, Zihua; Wang, Xu; Yang, Shiling

    2014-05-01

    A series of transient global warming events between 56 and 50 Ma are characterized by a pronounced negative carbon isotope excursion (CIE). However, the documents of these hyperthermals, such as Eocene Thermal Maximum 2 and H2 events, have come chiefly from marine sediments, and their expression in terrestrial organic carbon is still poorly constrained. Here we yield a high-resolution carbon isotope record of terrestrial organic material from the Fushun Basin, which displays four prominent CIEs with magnitudes larger than 2.5‰. Based on age constraint and comparisons with deep-sea records, our data provide the first evidence of the four hyperthermals in coal seams and suggest a global significance of these events. Moreover, the difference of CIE magnitudes between marine and terrestrial records shows a significant linear correlation with the marine carbonate CIE, implying that these events are likely attributable to recurring injections of 13C-depleted carbon from submarine methane hydrates and/or permafrost.

  15. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  16. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  17. Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust-mantle interaction

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Niu, Yaoling; Hu, Yan; Chen, Shuo; Zhang, Yu; Duan, Meng; Sun, Pu

    2016-09-01

    We present a detailed study of geochronology, mineral chemistries, bulk-rock major and trace element abundances, and Sr-Nd-Hf isotope compositions of the granodiorite and associated dioritic dikes in the Hongqilafu pluton at the northwestern margin of the Tibetan Plateau. The granodiorite and dioritic dikes yielded zircon U-Pb ages of ~ 104 Ma and ~ 100 Ma, respectively. The dioritic dikes comprise varying lithologies of gabbroic diorite, diorite porphyry and granodiorite porphyry, exhibiting a compositional spectrum from intermediate to felsic rocks. Their mineral compositions display disequilibrium features such as large major element compositional variations of plagioclase, clinopyroxene and amphibole crystals. These dioritic dikes are enriched in incompatible elements (Ba, Rb, Th, U, K) and Sr-Nd-Hf isotopes (87Sr/86Sri: 0.7066 to 0.7071, εNd(t): - 5.3 to - 7.4, εHf(t): - 3.6 to - 6.2). We suggest that the dioritic dikes were most likely derived from partial melting of mantle wedge metasomatized by the subducted/subducting seafloor with a sediment component, followed by AFC processes with fractional crystallization of clinopyroxene, amphibole and plagioclase and assimilation of lower continental crust. The mantle-wedge derived magma parental to the dioritic dikes underplated and induced the lower continental crust to melt, forming the felsic crustal magma parental to the granodiorite with mantle melt signatures and having more enriched isotope compositions (87Sr/86Sri: 0.7087 to 0.7125, εNd(t): - 9.5 to - 11.6, εHf(t): - 10.3 to - 14.1) than those of the dioritic dikes. The Hongqilafu pluton is thus the product of mantle-crust interaction at an active continental margin subduction setting over the period of several million years. This understanding further indicates that the closure timing of the Shyok back-arc basin and the collision between the Kohistan-Ladakh Arc and the Karakoram Terrane may have taken place later than ~ 100 Ma.

  18. Mineralogy of Inverted Pigeonite and Plagioclase in Cumulate Eucrites Y-980433 and Y-980318 with Reference to Early Crust Formation of the Vesta-Like Body

    NASA Technical Reports Server (NTRS)

    Takeda, H.; Ohtake, M.; Hiroi, T.; Nyquist, L. E.; Shih, C.-Y.; Yamaguchi, A.; Nagaoka, H.

    2011-01-01

    On July 16, the Dawn spacecraft became the first probe to enter orbit around asteroid 4 Vesta and will study the asteroid for a year before departing for Ceres. The Vesta-HED link is directly tied to the observed and inferred mineralogy of the asteroid and the mineralogy of the meteorites [1]. Pieters et al. [2] reported reflectance spectra of the Yamato- (Y-)980318 cumulate eucrite as a part of their study on the Asteroid-Meteorite Links in connection with the Dawn Mission. Pyroxenes and calcic plagioclase are the dominant minerals present in HED meteorites and provide multiple clues about how the parent body evolved [1]. The differentiation trends of HED meteorites are much simpler than those of the lunar crust

  19. Partial melting of the mélange for the growth of andesitic crust indicated by the Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet

    NASA Astrophysics Data System (ADS)

    Hao, LuLu; Wang, Qiang; Wyman, Derek; Ou, Quan; Dan, Wei; Jiang, ZiQi; Yang, JinHui; Long, XiaoPing; Li, Jie

    2016-04-01

    Deciphering the petrogenesis of andesitic/dioritic rocks is fundamental to understanding the formation of the continental crust. Here we present the detailed petrology, geochronology, major and trace element, Sr-Nd-Hf-O isotope data for the Early Cretaceous (ca. 122 Ma) dioritic rocks in the Bizha area in southern Qiangtang, Tibet. The dioritic rocks are characterized by large ion lithophile elements, Pb and light rare earth elements but depletion of high field strength elements with slightly enriched and variable ɛNd(t) values of -0.01 to -3.31 and initial 87Sr/86Sr isotopic ratios of 0.7053 to 0.7062. They also have variable magmatic zircon Hf-O isotope compositions (ɛHf(t) = -5.3 to +3.6 and δ18O = 7.3 to 9.5 ‰). Combined with contemporary andesitic lavas in southern Qiangtang, we suggest that the intermediate magmatic rocks in this area were most probably derived by partial melting of the mélange, which is a mixture of the middle oceanic ridge basalts (MORBs), sediments and mantle wedge peridotites, formed along the interface between the subducted slab and the overlying mantle wedge in a subduction channel before ~ 124 Ma. The mélange diapir melting was triggered by the asthenospheric upwelling and hot corner flow caused by roll-back of the northward subducted Bangong-Nujiang oceanic slab during the Early Cretaceous. The Early Cretaceous intermediate magmatic rocks in southern Qiangtang have an overall continental crust-like andesitic composition. Therefore, partial melting of the mélange provides an important support for the generation of andesitic magmas in continental arcs and the "andesite model" for crustal growth.

  20. Devonian Nb-enriched basalts and andesites of north-central Tibet: Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block

    NASA Astrophysics Data System (ADS)

    Zhang, Hongrui; Yang, Tiannan; Hou, Zengqian; Bian, Yeke

    2016-07-01

    The early evolution of the Tethyan Ocean in north-central Tibet is currently poorly constrained. A sequence of volcanic rocks ranging from basic to intermediate in composition has been identified in the Zaduo area of the North Qiangtang Block. SHRIMP U-Pb dating of zircons from a sample of Zaduo andesite suggests an eruption age of Late Devonian (~ 380 Ma). The Zaduo volcanic rocks exhibit geochemical characteristics similar to those of typical Nb-enriched basalts, with relatively high Nb, Ta, and Zr contents, resulting in high Nb/La ratios (0.70-1.08) and Nb/U ratios (10.57-34.37). The relative enrichment in high field strength elements, together with positive εNd(t) values of + 4.6 to + 5.8 and low (87Sr/86Sr)i ratios of 0.70367-0.70532, indicates the Zaduo volcanic rocks were derived from a depleted mantle source metasomatized by silicate melts of a subducted oceanic slab. The occurrence of Nb-enriched volcanic rocks in the North Qiangtang Block suggests that the subduction of Paleo-Tethyan oceanic crust was initiated in the Late Devonian. Available geochronological data from ophiolites surrounding the North Qiangtang Block suggest that the subducted slab is most likely the Longmucuo-Shuanghu Paleo-Tethyan oceanic crust.

  1. Magmatic intrusions in the lunar crust

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  2. The effect of thicker oceanic crust in the Archaean on the growth of continental crust through time

    NASA Technical Reports Server (NTRS)

    Wilks, M. E.

    1988-01-01

    Present crustal evolution models fail to account for the generation of the large volume of continental crust in the required time intervals. All Archaean plate tectonic models, whether invoking faster spreading rates, similar to today's spreading rates, or longer ridge lengths, essentially propose that continental crust has grown by island arc accretion due to the subduction of oceanic crust. The petrological differences that characterize the Archaean from later terrains result from the subduction of hotter oceanic crust into a hotter mantle. If the oceanic crust was appreciably thicker in the Archaean, as geothermal models would indicate, this thicker crust is surely going to have an effect on tectonic processes. A more valid approach is to compare the possible styles of convergence of thick oceanic crust with modern convergence zones. The best modern analog occurs where thick continental crust is colliding with thick continental crust. Oceanic crustal collision on the scale of the present-day Himalayan continental collision zone may have been a frequent occurrence in the Archaean, resulting in extensive partial melting of the hydrous underthrust oceanic crust to produce voluminous tonalite melts, leaving a depleted stabilized basic residuum. Present-day island arc accretion may not have been the dominant mechanism for the growth of the early Archaean crust.

  3. Corium crust strength measurements.

    SciTech Connect

    Lomperski, S.; Nuclear Engineering Division

    2009-11-01

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  4. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  5. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. implications for the structure of Paleocene terrestrial ecosystems.

    PubMed

    Angst, D; Lécuyer, C; Amiot, R; Buffetaut, E; Fourel, F; Martineau, F; Legendre, S; Abourachid, A; Herrel, A

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on (13)C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ(13)C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans. PMID:24563098

  6. Osmium isotope evidence for Early to Middle Proterozoic mantle lithosphere stabilization and concomitant production of juvenile crust in Dish Hill, CA peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Armytage, Rosalind M. G.; Brandon, Alan D.; Peslier, Anne H.; Lapen, Thomas J.

    2014-07-01

    The 187Os/188Os compositions in peridotite samples from the sub-continental lithospheric mantle (SCLM) can be used to constrain the timing of melt extraction and potentially test the link between large-scale mantle melting and juvenile crust production. The SCLM has often experienced a complex history such that some lithophile elements such as REEs (rare earth elements) in these rocks typically record overprinting during metasomatism. New 187Os/188Os, major and trace element compositional data were obtained on sixteen Dish Hill peridotite xenoliths (California, USA) and are used to examine these issues. The samples show strong correlations between 187Os/188Os and indicators of melt depletion such as Lu abundance in clinopyroxene, modal abundance of clinopyroxene, bulk rock Al2O3 and the Cr# (Cr/(Cr + Al) in spinel. These relationships indicate that metasomatism did not compromise the 187Os/188Os systematics. The data appear to form two melt depletion trends consistent with Re depletion model ages (TRD) obtained from the two Al2O3 versus 187Os/188Os trends are 2.1 ± 0.5 Ga and 1.3 ± 0.3 Ga (±95% conf.). It has been suggested that the SCLM under Dish Hill may be fragments of oceanic lithosphere emplaced as the result of Farallon plate subduction during the Late Cretaceous (Luffi et al., 2009). However, the strong melt depletion trends, major element compositions and Re-depletion ages are not consistent with the interpretation of this suite of xenoliths having an oceanic lithospheric origin. Rather, the 2.1 Ga age coincides with Nd model ages of 2-2.3 Ga (Bennett and DePaolo, 1987; Rämö and Calzia, 1998) for the overlying Mojavia crustal province. The 1.3 Ga age is consistent with large-scale A-type magmatism in the nearby region at this time that is purported to be the result of mantle plume melting processes. Therefore, data from this study point to the SCLM under Dish Hill being formed by two ancient mantle-melting events, which could be the result of

  7. Raindrop induced crust formation

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Józsa, Sándor; Németh, Tibor; Kovács, Ivett; Szalai, Zoltán

    2016-04-01

    Rainfall simulators are wildly used to study soil erosion because all parts of the erosion process can be simulated with them. Small-scale laboratory rainfall simulator was used to examine the detachment phase of the erosion and study the redistribution trend of the organic and mineral components of the soil. Splash erosion often creates crust on the soil surface that decreases porosity and infiltration. Crusts have crucial role in physical soil degradation processes, erosion and crop production fall. Intensive rainfall on a recently tilled Regosol and a Cambisol plots detached the aggregates and the occurred runoff scattered the individual particles on the surface. Oriented thin sections from the various morphological types of surface crusts were made similar as a thin section from any rock but during the preparation the samples were saturated often with dilute two-component adhesive to solidify the soil to preserve the crust. Raman spectroscopy and XRD analysis measurements are in progress in order to identify spatial changes in organic matter and mineralogical composition among the crust layers. Preliminary results suggest the separation of the mineral and organic soil components. The lighter organic matter seems to be enriched in the soil loss while the heavier minerals are deposited and stratified in the deeper micromorphological positions of the surface. The understanding of this selectivity is necessary in soil loss estimation.

  8. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such

  9. Strange Quark Star Crusts

    SciTech Connect

    Steiner, Andrew W.

    2007-02-27

    If strange quark matter is absolutely stable, some neutron stars may be strange quark stars. Strange quark stars are usually assumed to have a simple liquid surface. We show that if the surface tension of droplets of quark matter in the vacuum is sufficiently small, droplets of quark matter on the surface of a strange quark star may form a solid crust on top of the strange quark star. This solid crust can significantly modify the predictions for the photon emission for the surface in an observable way.

  10. Earthquakes in Stable Continental Crust.

    ERIC Educational Resources Information Center

    Johnston, Arch C.; Kanter, Lisa R.

    1990-01-01

    Discussed are some of the reasons for earthquakes which occur in stable crust away from familiar zones at the ends of tectonic plates. Crust stability and the reactivation of old faults are described using examples from India and Australia. (CW)

  11. Terrestrial sequestration

    SciTech Connect

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  12. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2010-01-08

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  13. Petrogenesis of the early Cretaceous volcanic rocks in the North Huaiyang tectono-magmatic unit of the Dabie Orogen, eastern China: Implications for crust-mantle interaction

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Yu; Zhao, Tai-Ping; Zhao, Jun-Hong

    2016-03-01

    New elemental and isotopic data are presented for the early Cretaceous felsic to mafic volcanic rocks in the North Huaiyang tectono-magmatic unit (NHY) of the Dabie Orogen, in order to investigate their petrogenesis and provide insights into the nature of the late Mesozoic lithosphere mantle beneath the region and its tectonic relationship with neighboring blocks. LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Jingangtai Formation erupted in a quite short interval about 5 Mys during the Early Cretaceous (128-123 Ma). The rocks have wide ranges of SiO2 (48-68 wt.%) and MgO (0.6-5.6 wt.%) contents. They are enriched in large-ion-lithophile-elements (LILE) (e.g. Rb, Ba) and light rare-earth-elements (LREE), and depleted in high field strength elements (e.g. Nb, Ta and Ti) with weak negative Eu anomalies (Eu/Eu∗ = 0.71-0.94). Meanwhile, the rocks show relatively high whole-rock initial 87Sr/86Sr ratios (0.7074-0.7094), strong negative εNd(t) (-19.1 to -15.8) and zircon εHf values (-20.7 to -14.1). Such typical "continental" geochemical characteristics did not result from crustal contamination during magma ascent, but from an enriched mantle source modified by materials from the subducted Yangtze Craton during the Triassic continental collision. We propose that the petrogenesis of the large-scale contemporaneous magmatism of Dabie Orogen including felsic to mafic volcanic rocks in the NHY reflects an intensive lithospheric thinning and extension during the early Cretaceous as a tectonic response to the change of plate motion of westward subducted Pacific Plate beneath the Eurasian continent.

  14. Moho vs crust-mantle boundary: Evolution of an idea

    NASA Astrophysics Data System (ADS)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  15. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  16. Constraining the Conditions Required for the Delamination of Subducting Crust

    NASA Astrophysics Data System (ADS)

    Maunder, B. L.; Van Hunen, J.; Magni, V.; Bouilhol, P.

    2014-12-01

    It is commonly accepted that the building of the continental crust is linked to subduction zone processes, but the refining mechanism isolating the felsic product from its basaltic counterpart, leading to a stratified crust, remains poorly understood. Delamination of subducting material and its subsequent melting and segregation, with the felsic part being underplated and added to the crust from below has been suggested to be a viable scenario.In this study we use thermo-mechanical numerical models of subduction to explore the possibility of delamination of the igneous slab crust and determine the conditions that are required by varying key parameters, such as subduction speed and angle, slab age, crustal thickness and density, overriding plate thickness, mantle temperature, depth of eclogitisation and the rheological properties for crustal and mantle material. We also quantify the extent of the resultant crustal melting, and its composition.Our preliminary models demonstrate that for present day mantle potential temperatures and average slab crustal thickness, the slab crust may only delaminate for extreme rheologies (i.e very weak crust), making slab mafic crust delamination unlikely. Contrastingly, in an early earth setting (High mantle temperature potential and thicker mafic slab crust) we find that the whole crustal scale delamination of the subducting mafic crust is a dynamically viable mechanism for a reasonable rheology when slabs are younger than ~20Ma. The resulting delamination leads to buoyant upwelling and ponding of mafic crustal material beneath the overriding lithosphere. After only ~5 Myrs from the onset of delamination, delaminated mafic crust would sit in the hot mantle wedge, where it would likely cross its solidus. These melts would be readily segregated from the migmatitic mafic source and contribute to the formation of felsic crust with little interaction with the mantle wedge, explaining part of the spectrum of TTG forming the earliest

  17. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Xu, Xisheng; Zou, Haibo; Liu, Lei

    2014-01-01

    The early Paleozoic orogen in South China Block is an intracontinental orogen, and synchronous magmatism (440-390 Ma) is mainly acidic with minor intermediate-mafic magmatism. Previous studies suggest that most of the early Paleozoic granites in South China belong to peraluminous S-type genesis while amphibole-bearing I-type granites are subordinate. However, our results indicate that considerable amounts of these early Paleozoic granites have characteristics of both S- and I-type granites. Thus, we propose to divide these granites into two groups: fewer of them are Group A with relatively high ɛHf(t) values (clustering within - 3.0 to + 9.0) and ɛNd(t) values (- 5.2 to + 1.3) as well as higher initial temperatures at 810-850 °C, and most of them are Group B with relatively low ɛHf(t) values (clustering within - 16.0 to - 1.0) and ɛNd(t) values (- 13.2 to - 4.1) as well as relatively low initial temperatures at 700-830 °C. The Xiawan monzogranite and Duntou granodiorite are typical Group A granitoids and yield zircon U-Pb ages of ca. 410 Ma. These two granites are characterized by high SiO2 (between 67.59 and 74.87 wt.%), metaluminous to peraluminous (A/CNK = 0.96-1.48) compositions, and a negative correlation between P2O5 and SiO2. Their biotites belong to magnesium biotites, indicating that they have partial features of either I- or S-type granites. Duntou granodiorites exhibit higher ɛHf(t) values (clustering within + 1 to + 8) and ɛNd(t) values (- 3.0 to + 1.1) while Xiawan monzogranites show relatively low ɛHf(t) values (clustering within - 1 to + 5) and ɛNd(t) values (- 5.0 to - 3.7). Group B granitoids are represented by the Miao'ershan-Yuechengling batholith, which are characterized by high SiO2 (between 64.57 and 77.37 wt.%), metaluminous compositions (A/CNK = 0.90-1.24), and a negative correlation between P2O5 and SiO2. Yuechengling porphyritic amphibole-bearing biotite granites in this batholith contain abundant amphibole, indicating that they

  18. Paleoceanographic Implications of the Terrestrial Carbon-Isotope Record of the Early Toarcian (Jurassic) Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Hesselbo, S.; Jenkyns, H. C.; Duarte, L. V.

    2005-12-01

    Macrofossil wood in two European sections representing the Toarcian (Early Jurassic) Oceanic Anoxic Event (OAE) have previously been shown to exhibit a large (~ -6 to -7 %) shift in d13C values which has been interpreted as a massive and geologically short-lived perturbation to the global carbon cycle. This interpretation has recently been challenged on the basis of a compilation of carbon-isotope data from belemnites collected from sections in northern Europe that exhibit carbon isotope values that are heavier than expected at the peak of the OAE. Here we present new carbon isotope measurements from wood collected from a marine record of the early Toarcian at Peniche, Portugal, a section currently under consideration as a GSSP for the base of the Toarcian. A large negative excursion (~ -7%) is confirmed for the OAE in these samples. These cannot have been severely impregnated by hydrocarbons of marine origin and the ages are well defined by ammonite biostratigraphy and by Sr-isotope stratigraphy. Carbon-isotope data is also presented for an early diagenetic silica nodule that formed within jet from the Toarcian of the Yorkshire coast, northeast England; values are indistinguishable from those of stratigraphically equivalent jet samples from which solvent extractable hydrocarbons had been removed. Thus, the early Toarcian negative carbon-isotope excursion is confirmed as a phenomenon of the global shallow-ocean, biosphere and atmosphere. It is likely that the anomalously heavy values obtained from belemnites from the OAE interval derive their isotopic signature from localized and possibly seasonal water masses characterized by dissolved inorganic carbon strongly enriched in heavy carbon by very high organic productivity.

  19. Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the late cretaceous and early tertiary.

    PubMed

    Hickey, L J; West, R M; Dawson, M R; Choi, D K

    1983-09-16

    Magnetostratigraphic correlation of the Eureka Sound Formation in the Canadian high Arctic reveals profound difference between the time of appearance of fossil land plants and vertebrates in the Arctic and in mid-northern latitudes. Latest Cretaceous plant fossils in the Arctic predate mid-latitude occurrences by as much as 18 million years, while typical Eocene vertebrate fossils appear some 2 to 4 million years early. PMID:17811507

  20. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  1. Relamination of mafic subducting crust throughout Earth's history

    NASA Astrophysics Data System (ADS)

    Maunder, Ben; van Hunen, Jeroen; Magni, Valentina; Bouilhol, Pierre

    2016-09-01

    Earth has likely cooled by several hundred degrees over its history, which has probably affected subduction dynamics and associated magmatism. Today, the process of compositional buoyancy driven upwelling, and subsequent underplating, of subducted materials (commonly referred to as "relamination") is thought to play a role in the formation of continental crust. Given that Archean continental crust formation is best explained by the involvement of mafic material, we investigate the feasibility of mafic crust relamination under a wide range of conditions applicable to modern and early Earth subduction zones, to assess if such a process might have been viable in an early Earth setting. Our numerical parametric study illustrates that the hotter, thicker-crust conditions of the early Earth favour the upward relamination of mafic subducting crust. The amount of relaminating subducting crust is observed to vary significantly, with subduction convergence rate having the strongest control on the volume of relaminated material. Indeed, removal of the entire mafic crust from the subducting slab is possible for slow subduction (∼2 cm/yr) under Archean conditions. We also observe great variability in the depth at which this separation occurs (80-120 km), with events corresponding to shallower detachment being more voluminous, and that relaminating material has to remain metastably buoyant until this separation depth, which is supported by geological, geophysical and geodynamical observations. Furthermore, this relamination behaviour is commonly episodic with a typical repeat time of approximately 10 Myrs, similar to timescales of episodicity observed in the Archean rock record. We demonstrate that this relamination process can result in the heating of considerable quantities of mafic material (to temperatures in excess of 900 °C), which is then emplaced below the over-riding lithosphere. As such, our results have implications for Archean subduction zone magmatism, for

  2. Terrestrial nest-building by wild chimpanzees (Pan troglodytes): implications for the tree-to-ground sleep transition in early hominins.

    PubMed

    Koops, Kathelijne; McGrew, William C; Matsuzawa, Tetsuro; Knapp, Leslie A

    2012-07-01

    Nest-building is a great ape universal and arboreal nesting in chimpanzees and bonobos suggests that the common ancestor of Pan and Homo also nested in trees. It has been proposed that arboreal nest-building remained the prevailing pattern until Homo erectus, a fully terrestrial biped, emerged. We investigated the unusual occurrence of ground-nesting in chimpanzees (Pan troglodytes), which may inform on factors influencing the tree-to-ground sleep transition in the hominin lineage. We used a novel genetic approach to examine ground-nesting in unhabituated chimpanzees at Seringbara in the Nimba Mountains, Guinea. Previous research showed that ground-nesting at Seringbara was not ecologically determined. Here, we tested a possible mate-guarding function of ground-nesting by analyzing DNA from shed hairs collected from ground nests and tree nests found in close proximity. We examined whether or not ground-nesting was a group-level behavioral pattern and whether or not it occurred in more than one community. We used multiple genetic markers to identify sex and to examine variation in mitochondrial DNA control region (HV1, HV2) sequences. Ground-nesting was a male-biased behavior and males constructed more elaborate ("night") nests than simple ("day") nests on the ground. The mate-guarding hypothesis was not supported, as ground and associated tree nests were built either by maternally-related males or possibly by the same individuals. Ground-nesting was widespread and likely habitual in two communities. We suggest that terrestrial nest-building may have already occurred in arboreally-adapted early hominins before the emergence of H. erectus. PMID:22460549

  3. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry

    USGS Publications Warehouse

    Driese, S.G.; Jirsa, M.A.; Ren, M.; Brantley, S.L.; Sheldon, N.D.; Parker, Dana C.; Schmitz, M.

    2011-01-01

    primitive microbial community) during weathering. Cu metal in the profile may document lower pO2 than present day at the surface. Comparison with previous studies of weathered tonalite and basalt (Denison, 2.45-2.22Ga) in Ontario, Canada, reveal general similarities in paleoweathering with our study, as well as important differences related to lower paleoatmospheric pO2 and terrestrial biosignature for the older Minnesota profile. A falling water table in the Alpine Lake locality is presumed to have promoted formation of this gossan-like deep-weathering system that extends to 50-m depth. ?? 2011 Elsevier B.V.

  4. An early Middle Anisian (Middle Triassic) Tubiphytes and cement crusts-dominated reef from North Dobrogea (Romania): facies, depositional environment and diagenesis

    NASA Astrophysics Data System (ADS)

    Popa, Livia; Panaiotu, Cristina E.; Grădinaru, Eugen

    2014-06-01

    A well-developed Triassic carbonate platform is exposed in the eastern part of the Tulcea Unit, in the Cimmerian North Dobrogean Orogen, southeastern Romania. Facies analysis of the 200 m thick succession of lower Middle Anisian limestones exposed in a large limestone quarry south of the village of Mahmudia suggests a transition from upper slope towards toe-of-slope carbonate facies, reflecting sea-level fluctuations and tectonic tilting. The slope is dominated by in situ microbialites in the upper portion, consisting of reefal boundstone facies, and by molluscan coquina and cement boundstones. A key role is played by the cosmopolitan micro-encruster Tubiphytes, which became common in the aftermath of the mass extinction at the Permian/Triassic boundary, and by autochthonous micrite and synsedimentary marine cement. The absence of metazoan reef builders, such as sponges and corals, reflects the fact that microbes were the first organisms to recover after the Permian/Triassic crisis under unusual marine conditions and that their main role in reef formation was sediment stabilization along the upper slopes. The lower slope is mostly detrital, being dominated by platform-derived bioclastic rudstones and crinoidal floatstones, which are interbedded with basinal carbonate hemipelagics. The toe-of-slope is composed of pelagic wackestones framed by thin tongues of intraclast breccia. All these observations are in agreement with the slopeshedding model described for the Pennsylvanian microbial margin in Asturias (northern Spain) and the Anisian- Ladinian flat-topped, steep-rimmed Latemar platform (Dolomites, Italy). As most of the Anisian reefs were described from western and eastern Tethys (Southern Alps, Hungary, China), the occurrence of the early Middle Anisian Tubiphytes-reef from North Dobrogea (Romania) contributes to resolving the puzzle of the geographic distribution of reef recovery in the Middle Triassic.

  5. The main features of the interaction of mantle magmas with granulite complexes of the lower crust and their relationship with granitic melts (exemplified by the Early Caledonides of the West Baikal Region, Russia)

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexandr; Khromykh, Sergei; Mekhonoshin, Alexei; Volkova, Nina; Travin, Alexei; Mikheev, Evgeny; Vladimirova, Anna

    2016-04-01

    Granulite complexes occurring in the Early Caledonian southern folded framing of the Siberian Craton are deeply eroded fragments of the Vendian-Early Paleozoic accretionary prism, which is an indicator of the early stages of the Paleo-Asian Ocean (Gladkochub et al., 2010). The main feature of the granulite complexes is a wide development of gabbro-pyroxenites composing tectonic plates, synmetamorphic intrusive bodies, and numerous disintegrated fragments (boudins and enclaves), immersed in a metamorphic matrix. The volume of basites reaches 5-10 %, which allows us to consider mantle magmatism as a heat source for the granulite metamorphism. The most studied polygon is Chernorud granulite zone, which is a part of the Olkhon metamorphic terrane, West Baikal Region. Just this polygon was used for considering the problems of interaction of mantle magmas with lower crust granulite complexes and their relationship with granitic melts. The Chernorud Zone is a typical example of the accretionary prism with a predominance of metabasalts (70-80 %), subordinate amounts of marbles, quartzites and metapelites that have been subjected to granulite facies metamorphism and viscoelastic flow of rock masses. Study of two-pyroxene granulites (metabasalts) and garnet-sillimanite gneisses (metapelites) allows us to estimate P-T metamorphic conditions (P = 7.7-8.6 kbar, T = 770-820°C) and their U-Pb metamorphic age (530-500 Ma). Metabasalts correspond in their geochemistry to the island-arc tholeiitic series (Volkova et al., 2010; Gladkochub et al., 2010). Sin-metamorphic gabbro-pyroxenites formed in two stages: 1) Chernorud complex - tectonic slices and body's exhumed from deep earth crust levels (10-12 kb) and composed of arc tholeiitic series rocks (age T ≥ 500 Ma); 2) Ulan-Khargana complex - supply magmatic canals and fragmented tabular intrusions. This rocks composition corresponds to subalkaline petrochemical series (OIB) and U/Pb age is equal to 485±10 Ma (Travin et al., 2009

  6. Pre-terrestrial origin of rust in the Nakhla meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1990-01-01

    The authors present quantative elemental compositions and summarize textural evidence for the pre-terrestrial origin of rust on the Nakhla meteorite. The material in question is called 'rust' because its phase composition remains unknown. Compelling evidence for the pre-terrestrial origin of the rust is found in rust veins truncated by fusion crust and preserved as faults in sutured igneous crystals. Rust veins that approach the meteorite's fusion crust become discontinuous and exhibit vugs that suggest partial decrepitation; no veins that penetrate the fusion crust have been found. Because the rust probably contains volatile compounds, it is reasonable to expect that heating near the ablation surface (formed during atmospheric entry to Earth) would encourage devolatilization of the rust. Hence, the absence of rust veins in fusion crust and vugs in rust veins near fusion crust clearly imply that the rust existed in the meteorite before atmospheric entry.

  7. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  8. [Crusted scabies: A review].

    PubMed

    Jouret, G; Bounemeur, R; Presle, A; Takin, R

    2016-04-01

    Crusted scabies is a rare and severe form of infestation by Sarcoptes scabies var. hominis. It is characterized by profuse hyperkeratosis containing over 4000 mites per gram of skin, with treatment being long and difficult. The condition is both direct and indirectly contagious. It has a central role in epidemic cycles of scabies, the incidence of which is on the rise in economically stable countries. Recent discoveries concerning the biology of mites, the pathophysiology of hyperkeratosis and the key role of IL-17 in this severe form open up new therapeutic perspectives. PMID:26948093

  9. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    marine environments; time-series in Fe-Mn crusts may show a heavier isotope composition in older crust layers due to the shallower water environments in the early history of the seamounts on which the crusts grow.

  10. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  11. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    Mengyin adakitic porphyry was most likely derived from partial melting of subducted oceanic slab with some input of NCB Neoarchean-Paleoproterozoic lower crust components. The Liujing adakitic porphyry was probably derived from partial melting of delaminated newly underplated thick lower crust, which then interacted with above asthenospheric mantle peridotite. Slab rollback together with the ridge subduction of the Paleo-Pacific slab was the most likely geodynamic mechanism for formation of the Early Cretaceous Mengyin and Liujing adakitic porphyries.

  12. On the early processing of terrestrial organic matter released to (sub-)Arctic coastal waters as deduced from biomarkers, isotopes and a simple model

    NASA Astrophysics Data System (ADS)

    Gustafsson, Örjan; Vonk, Jorien; van Dongen, Bart; Dudarev, Oleg; Semiletov, Igor

    2010-05-01

    The surface layer of the vast sub-Arctic and Arctic tundra and taiga holds over a third of the global soil carbon and this area is now experiencing among the largest climate warming of anywhere on Earth. Yet, there is a shortage of investigations of the biogeochemical fate of coastally exported terrestrial organic matter (terrOM) from these systems, in part due to the inaccessibility of the large Eurasian-Arctic shelves. This paper seeks to synthesize initial findings from a large-scale survey of single surface sediments outside the five Great Russian Arctic Rivers (GRARs; Ob,Yenisey, Lena, Kolyma and Indigirka) and from detailed process-studies of a water column and surface sediment transect off pristine sub-Arctic Kalix River, one of the largest unregulated rivers in Europe draining into the northernmost Baltic Sea. There is at present a discrepancy in the literature of how the early (water column) fate of terrestrial organic matter is believed to occur between the northern Baltic Sea and the Eurasian Arctic shelf seas. For the Baltic, one suggests substantial DOC degradation but no consideration of POC degradation. For the Arctic, terrestrial DOC is believed to be conservatively mixed while POC is assumed to follow a generic "global" average degradation. Our studies to date show that terrOM entering sub-Arctic Baltic and Eurasian-Arctic seas follows continent-scale trends in molecular and isotopic composition. Sphagnum is a key contributor to the pre-aged (1000s of 14C years) terrOM in these coastal waters with greatest Sphagnum contribution but youngest terrOM toward the west. The Kalix-Baltic transect revealed rapid degradation of acyl lipids along the 80 km distance from river mouth to the open bay. For instance, the ratio of HMW n-alkanoic acids to HMW n-alkanes in surface water suspended particles dropped from 2.7 to 1.2. There was also rapid degradation during settling and in the surface sediment as the same ratio in sediments dropped between the estuary

  13. On the early processing of terrestrial organic matter released to (sub-)Arctic coastal waters as deduced from biomarkers, isotopes and a simple model

    NASA Astrophysics Data System (ADS)

    Gustafsson, Ö.; Vonk, J.; van Dongen, B.; Dudarev, O.; Semiletov, I.

    2009-04-01

    The surface layer of the vast sub-Arctic and Arctic tundra and taiga holds over a third of the global soil carbon and this area is now experiencing among the largest climate warming of anywhere on Earth. Yet, there is a shortage of investigations of the biogeochemical fate of coastally exported terrestrial organic matter (terrOM) from these systems, in part due to the inaccessibility of the large Eurasian-Arctic shelves. This paper seeks to synthesize initial findings from a large-scale survey of single surface sediments outside the five Great Russian Arctic Rivers (GRARs; Ob,Yenisey, Lena, Kolyma and Indigirka) and from detailed process-studies of a water column and surface sediment transect off pristine sub-Arctic Kalix River, one of the largest unregulated rivers in Europe draining into the northernmost Baltic Sea. There is at present a discrepancy in the literature of how the early (water column) fate of terrestrial organic matter is believed to occur between the northern Baltic Sea and the Eurasian Arctic shelf seas. For the Baltic, one suggests substantial DOC degradation but no consideration of POC degradation. For the Arctic, terrestrial DOC is believed to be conservatively mixed while POC is assumed to follow a "global" average degradation. Our studies to date show that terrOM entering sub-Arctic Baltic and Eurasian-Arctic seas follows continent-scale trends in molecular and isotopic composition. Sphagnum is a key contributor to the pre-aged (1000s of 14C years) terrOM in these coastal waters with greatest Sphagnum contribution but youngest terrOM toward the west. The Kalix-Baltic transect revealed rapid degradation of acyl lipids along the 80 km distance from river mouth to the open bay. For instance, the ratio of HMW n-alkanoic acids to HMW n-alkanes in surface water suspended particles dropped from 2.7 to 1.2. There was also rapid degradation during settling and in the surface sediment as the same ratio in sediments dropped between the estuary - open

  14. Phosphorus Redox on the Early Earth: First Identification of Low-Oxidation State Phosphorus Compounds in Terrestrial Samples

    NASA Astrophysics Data System (ADS)

    Block, K. M.; Pasek, M. A.

    2008-12-01

    Phosphorus is one of the key elements in biochemical systems, playing an important role in metabolism as ATP and other coenzymes, in replication as DNA and RNA, and in cellular structure as phospholipids. The geochemical cycling of phosphorus on the Earth is usually confined to the rock cycle- redox reactions of phosphorus are never considered. However, it has been proposed that redox reactions of phosphorus were important on the early Earth (Pasek, PNAS 2008). Indeed, such a suggestion is buttressed by the discovery of condensed phosphate formation linked to the oxidation of reduced P compounds. However, prior to the present work, there has been no report of these P compounds in geologic samples. Here we report the first occurrence of reduced P in samples of fulgurites, the glassy material resulting from the fusion of sand, soil, or rock during a lightning strike. On average, lightning strikes the Earth's surface at a rate of approximately 65 times per second (Krider et al., J. Geophys. Res.,1968) exposing target areas to extreme energy dissipation and temperatures. Through electron microprobe analyses and NMR we have identified naturally formed metal droplets containing Fe and P within several fulgurite samples and Ca-phosphite compounds. These droplets are highly reduced compared to the original material and are not naturally present in the target area, rather they were formed through the rapid, intense heating and quenching experienced during fulgurite formation. This process provides a natural means to create localized environments with greater than normal abundances of reduced Fe and P, less commonly found on Earth's surface than their oxidized counterparts. In particular, small areas that receive repeated lightning strikes due to topography or local weather patterns (e.g. hilltops) could potentially house unique microhabitats with reduced elements available for biological use.

  15. Analysis of environmental factors determining development and succession in biological soil crusts.

    PubMed

    Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang

    2015-12-15

    Biological soil crusts play important ecological functions in arid and semi-arid regions, while different crust successional patterns appeared in different regions. Therefore in this study, the environmental conditions between Shapotou (with cyanobacterial, lichen and moss crusts) and Dalate Banner (with only cyanobacterial and moss crusts) regions of China were compared to investigate why lichen crusts only appeared in Shapotou; at the same time, artificial moss inoculation was conducted to find out the environmental factors promoting crust succession to moss stage. The results showed lichen crusts always developed from cyanobacterial crusts, which provide not only the stable soil surface, but also the biomass basis for lichen formation; furthermore, addition of crust physicochemical characteristics (primarily silt content) play a facilitating effect on lichen emergence (R(2)=0.53). The inoculation experiment demonstrated early crust soil surface and enough water holding content (>4%) provided the essential guarantee for moss germination. Our results show that there is heterogeneity in crust succession in different regions, which may be mainly affected by the ambient soil microenvironments. It is concluded that a positive feedback mechanism is expected between crust succession and ambient soil microenvironments; while a negative feedback mechanism forms between crust succession and free living cyanobacteria and algae. PMID:26318686

  16. ESR dating evidence for early man at a Lower Palaeolithic cave-site in the Northern Caucasus as derived from terrestrial mollusc shells

    NASA Astrophysics Data System (ADS)

    Molodkov, Anatoly

    2001-12-01

    Eight terrestrial shell samples from recent excavations at Treugolnaya (Triangular) Cave (Northern Caucasus) were analysed by electron spin resonance (ESR) to produce a chronology for the most ancient Acheulian-bearing layers of the cave-site. The lifetime of the 2.0012 centre used for dating is about 3×10 8 at 5°C that allows to date the multi-level sequence of the cave-site at least in the range of the last one million years. The dating results obtained suggest that the first (from the bottom) archaeological layer, 7a, is likely to be about 583,000a old, and the next, 5b, is some 393,000 a old. These layers can be correlated with oxygen isotope stages 15 and 11, respectively. The estimates obtained imply that man presumably reached the Northern Caucasus at least as early as the beginning of stage 15, i.e. much earlier than generally recognised. The leaving of the cave by ancient man due to development of glacial environment during the subsequent stage(s) can probably be linked with the penetration of man to the southern areas of the East European Plain.

  17. Paleoclimatic and paleoecological reconstruction of early Miocene terrestrial equatorial deposits, Rusinga and Mfangano Islands, Lake Victoria, Kenya

    NASA Astrophysics Data System (ADS)

    Michel, L. A.; Peppe, D. J.; McNulty, K. P.; Driese, S. G.; Lutz, J.; Nightingale, S.; Maxbauer, D. P.; Horner, W. H.; DiPietro, L. M.; Lehmann, T.; Dunsworth, H. M.; Harcourt-Smith, W. E.; Ogondo, J.

    2012-12-01

    Biological responses to climatic shifts are often studied to inform us on future anthropogenic-driven climate change. However, few of these climatic shifts occur over time scales appropriate to modern change and few occur with biota similar to modern. The Miocene Climatic Optimum is an ideal interval to study because of its rapid duration and because it occurred during the rise and proliferation of apes. The sediments on Rusinga and Mfangano Islands, Lake Victoria, Kenya were deposited between 18 and 20 Ma and record a changing equatorial climate just prior to the Miocene Climate Optimum. This location also offers an opportunity to use multiple proxies to constrain climate and landscape, including paleosol geochemistry, paleobotany and paleontology. Additionally, due to the rich fossil preservation on the islands, climatic shifts are framed within the context of early caterrhine evolution. Here, we report a climate shift recorded through three time slices spanning two formations over ~2 myr. The oldest unit, the Wayando Formation, records an arid, probably open ecosystem with pedogenic calcite rhizoliths, a high groundwater table, poorly-formed paleosols and permineralized sedges. The middle time slice, the Grit Member-Fossil Bed Member contact of the Hiwegi Formation, shows evidence of a local saline lake, with desiccation features, satin-spar after gypsum deposits and salt hoppers. Paleobotanical and sedimentological data from roughly contemporaneous strata indicate a warm, highly seasonal environment that supported a mixture of woodland and forested elements across the landscape. The youngest unit, which is within the Kibanga Member of the Hiwegi Formation, displays demonstrable evidence for a closed-canopy multistoried forest with the presence of tree-stump casts and permineralized root systems within a red-brown paleosol. Within the same paleosol horizon, the dental remains of the catarrhines Proconsul and Dendropithecus have been discovered in situ. This

  18. A mantle- and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: trace element and REE evidence for subduction-related rift origin of Early Jurassic Demirkent intrusive complex

    NASA Astrophysics Data System (ADS)

    Dokuz, Abdurrahman; Tanyolu, Erkan; Genç, Salim

    2006-06-01

    , unfractionated HREE patterns and evolution towards the higher Y concentrations and lower Sr/Y ratios within the body. All these features are obtained in experimentally produced melts from mafic rocks at low pressures (≤5 kbar) and also widespread in the rocks of arc where old (Upper Cretaceous or older) oceanic crust is being subducted. Major and REE modelling supports formation of the quartz dioritic parent to the felsic intrusive rocks by 70% partial melting of a primitive gabbroic sample (G694). Therefore, once taking into account the extensional conditions prevailing in the Pontian arc crust in Early Jurassic time, former basic products (gabbros) seem to be the most appropriate source for the tonalite-trondhjemite body. Magmatic emplacement of stratigraphically similar lithologies in the Pulur Massif, just southwest of the Yusufeli, was dated to be 184 Ma by the 40Ar/39Ar method on amphibole, and is compatible with the initiation of Early Jurassic rifting in the region.

  19. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    NASA Astrophysics Data System (ADS)

    Peppe, D. J.; Evans, D. D.

    2006-05-01

    lead to more accurate and detailed correlations of the terrestrial and marine climate records through the early Cenozoic.

  20. Evidence for a (15)N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment.

    PubMed

    Bocherens, Hervé; Drucker, Dorothée G; Madelaine, Stéphane

    2014-04-01

    The Middle to Upper Palaeolithic transition around 35,000 years ago coincides with the replacement of Neanderthals by anatomically modern humans in Europe. Several hypotheses have been suggested to explain this replacement, one of them being the ability of anatomically modern humans to broaden their dietary spectrum beyond the large ungulate prey that Neanderthals consumed exclusively. This scenario is notably based on higher nitrogen-15 amounts in early Upper Palaeolithic anatomically modern human bone collagen compared with late Neanderthals. In this paper, we document a clear increase of nitrogen-15 in bone collagen of terrestrial herbivores during the early Aurignacian associated with anatomically modern humans compared with the stratigraphically older Châtelperronian and late Mousterian fauna associated with Neanderthals. Carnivores such as wolves also exhibit a significant increase in nitrogen-15, which is similar to that documented for early anatomically modern humans compared with Neanderthals in Europe. A shift in nitrogen-15 at the base of the terrestrial foodweb is responsible for such a pattern, with a preserved foodweb structure before and after the Middle to Upper Palaeolithic transition in south-western France. Such an isotopic shift in the terrestrial ecosystem may be due to an increase in aridity during the time of deposition of the early Aurignacian layers. If it occurred across Europe, such a shift in nitrogen-15 in terrestrial foodwebs would be enough to explain the observed isotopic trend between late Neanderthals and early anatomically modern humans, without any significant change in the diet composition at the Middle to Upper Palaeolithic transition. PMID:24630359

  1. Tectonomagmatic evolution of the terrestrial planets: importance for understanding of processes of their formation and subsequent development

    NASA Astrophysics Data System (ADS)

    Sharkov, E.; Bogatikov, O.

    2009-04-01

    Our knowledge about formation and evolution of the terrestrial planets (the Earth, Venus, Mars, Mercury and, possibly, the Moon) based on different physical and geochemical speculations and models. The main disadvantage of such hypotheses is their abstract character and ignoring any data on tectonomagmatic evolution of those planets. At the same time, just this type of data provide an important information, which is necessary for elaborating of a present-day theory of their formation and evolution. The Earth has been much better studied compared to the other planets, therefore we will discuss the main questions of planetary tectonomagmatic evolution using the Earth as example plus involve other data on the Moon and the terrestrial planets. Two dominating hypotheses about composition of the primordial Earth's crust exist now: (1) traditional implies that the primordial crust had basic composition, whereas the sialic crust resulted from a geosyncline process or, in modern terms, from processes at convergent plate margins, and (2) primordial crust was sialic; the plate tectonic mechanisms started in the Middle Paleoproterozoic and resulted in oceanic spreading and formation of the secondary oceanic crust. Both models require a global melting of a primary chondritic material to form the primordial crust. The final result depends on the degree of melt differentiation during solidification of a magmatic ocean. Such a solidification, due to differences between adiabatic and melting-points gradients had to proceed in bottom-top direction (Jeffries, 1929) and resulted in accumulation of low-temperature derivates in the primordial crust. Geological data, namely granite-dominated Archean crust, and results of studying of detrital zircon from Australia supports the primordial-sialic crust hypothesis. The Moon which is four times smaller than Earth has a basic primordial crust. Such a difference can be explained by different depths of their magmatic oceans. The Early

  2. Abstracts for the International Workshop on Meteorite Impact on the Early Earth

    SciTech Connect

    Not Available

    1990-09-01

    This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.

  3. Abstracts for the International Workshop on Meteorite Impact on the Early Earth

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.

  4. TERRESTRIAL ECOTOXICOLOGY

    EPA Science Inventory

    Terrestrial ecotoxicology is the study of how environmental pollutants affect land-dependent organisms and their environment. It requires three elements: (1) a source, (2) a receptor, and (3) an exposure pathway. This article reviews the basic principles of each of each element...

  5. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  6. Rocas Verdes Ophiolite Complexes in the Southernmost Andes: Remnants of the Mafic Igneous Floor of a Back-arc Basin that Rifted the South American Continental Crust in the Late Jurrassic and Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Stern, C. R.

    2001-12-01

    The Rocas Verdes are an en echelon group of late Jurassic and early Cretaceous igneous complexes in the southernmost Andes. They consist of mafic pillow lavas, dikes and gabbros interpreted as the upper portions of ophiolite complexes formed along mid-ocean-ridge-type spreading centers. When secondary metamorphic affects are accounted for, the geochemistry of mafic Rocas Verdes rocks are similar to ocean-ridge basalts (MORB). The spreading centers that generated the Rocas Verdes rifted the southwestern margin of the Gondwana continental crust, during the start of break-up in the southern Atlantic, to form the igneous floor of a back-arc basin behind a contemporaneous convergent plate boundary magmatic arc. Late Jurassic and early Cretaceous sediments from both the magmatic arc on the southwest and the continental platform on the northeast of the basin were deposited in the Rocas Verdes basin, and these sediments are interbedded with mafic pillow lavas along the margins of the Rocas Verdes mafic complexes. Also, mafic dikes and gabbros intrude older pre-Andean and Andean lithologies along both flanks of the Rocas Verdes, and leucocratic country rocks are engulfed in the Rocas Verdes mafic complexes. These relations indicate that the Rocas Verdes complexes formed in place and are autochthonous, having been uplifted but not obducted, which may explain the lack of exposure of the deeper ultramafic units. Zircon U/Pb ages of 150+/-1 Ma for the Larsen Harbour Formation, a southern extension of the Rocas Verdes belt on South Georgia Island, and 138+/-2 Ma for the Sarmiento complex, the northernmost in the Rocas Verdes belt, indicate that this basin may have formed by "unzipping" from the south to the north, with the southern portion beginning to form earlier and developing more extensively than the northern portion of the basin. Paleomagnetic data suggest that the Rocas Verdes basin developed in conjunction with the displacement of the Antarctic Peninsula and opening of

  7. Geochemistry, zircon U-Pb and Lu-Hf isotopes of an Early Cretaceous intrusive suite in northeastern Jiangxi Province, South China Block: Implications for petrogenesis, crust/mantle interactions and geodynamic processes

    NASA Astrophysics Data System (ADS)

    Deng, Zhengbin; Liu, Shuwen; Zhang, Lifei; Wang, Zongqi; Wang, Wei; Yang, Pengtao; Luo, Ping; Guo, Boran

    2014-07-01

    The Early Cretaceous Tieshan intrusive suite, in northeastern Jiangxi Province along the northern margin of the Eastern Cathaysia Block, is composed of diabase porphyrites, monzodiorites, syenite porphyries, quartz monzonites, monzogranites and granite porphyries. LA-ICPMS zircon U-Pb isotopic analyses reveal that this intrusive complex was emplaced between 142 Ma and 117 Ma. The ~ 135 Ma diabase porphyrites, monzodiorites, and syenite porphyries are characterized by low to moderate SiO2 and MgO contents, with high K2O and total alkaline contents. These rocks exhibit slightly to strongly fractionated REE patterns and upper crust-like multi-element patterns with depletions of Nb, Ta and Ti, and show strongly negative εHf (t) values of - 9.0 to - 11.8. All these patterns are identical to those of the Caiyuan syenites, Huangtuling gabbros in the east, and Lengshuikeng trachyandesites and quartz syenites in the west. These geochemical and zircon Lu-Hf isotopic features indicate that their magmatic precursors were generated by 0.2%-2% partial melting of a phlogopite-bearing enriched subcontinental lithospheric mantle source that was metasomatized by sediments. The ~ 117 Ma quartz monzonite has slightly higher εHf (t) values (- 5.6 to - 8.7) like those of the Honggong syenites, indicating an interaction between the asthenosphere and the lithosphere. The ~ 142-134 Ma granite porphyries and monzogranites are characterized by high SiO2 levels but low concentrations of refractory elements, and show enrichment of LREEs and LILEs, with variable negative anomalies of Nb, Ta, Ti, Sr, P and Ba in multi-element diagrams normalized by primitive mantle. The monzogranite exhibits strongly negative εHf (t) values of - 10.5 to - 13.3 and TDM2 (Hf) values of 1849-2023 Ma, and the granite porphyries display relatively wide εHf (t) values of - 7.2 to - 13.4 and TDM2 (Hf) values of 1645-2043 Ma, indicating that these monzogranites and granite porphyries are highly fractionated granites

  8. Habitability Of Europa's Crust

    NASA Astrophysics Data System (ADS)

    Greenberg, R.; Tufts, B. R.; Geissler, P.; Hoppa, G.

    Physical characterization of Europa's crust shows it to be rich in potentially habitable niches, with several timescales for change that would allow stability for organisms to prosper and still require and drive evolution and adaptation. Studies of tectonics on Europa indicate that tidal stress causes much of the surface cracking, that cracks pen- etrate through to liquid water (so the ice must be thin), and that cracks continue to be worked by tidal stress. Thus a global ocean is (or was until recently) well linked to the surface. Daily tidal flow (period~days) transports substances up and down through the active cracks, mixing surface oxidants and fuels (cometary material) with the oceanic reservoir of endogenic and exogenic substances. Organisms moving with the flow or anchored to the walls could exploit the disequilibrium chemistry, and those within a few meters of the surface could photosynthesize. Cracks remain active for at least ~10,000 yr, but deactivate as nonsynchronous rotation moves them to different stress regimes in less than a million yr. Thus, to survive, organisms squeezed into the ocean must migrate to new cracks, and those frozen in place must hibernate. Most sites remelt and would release captive organisms within about a million yr based on the prevalence of chaotic terrain, which covers nearly half of Europa. Linkage of the ocean to the surface also could help sustain life in the ocean by delivering oxidants and fuels. Suboceanic volcanism (if any) could provide additional sites and support for life, but is not necessary. Recent results support this model. We further constrain the non-synchronous rotation rate, demonstrate the plausibility of episodic melt-through, show that characteristics of pits and uplift features do not imply thick ice, and demonstrate polar wander, i.e. that the ice crust is detached from the solid interior and has slipped as a unit relative to the spin axis. Thus Europa's biosphere (habitable if not inhabited) likely

  9. Fe and O isotope composition of meteorite fusion crusts: Possible natural analogues to chondrule formation?

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.; Poole, Graeme M.; Hoyes, Jack; Coles, Barry J.; Unsworth, Catherine; Albrecht, Nina; Smith, Caroline; RehkäMper, Mark; Pack, Andreas; Genge, Matthew; Russell, Sara S.

    2015-02-01

    Meteorite fusion crust formation is a brief event in a high-temperature (2000-12,000 K) and high-pressure (2-5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9-1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high-pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O-poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.

  10. Analytical, Experimental, and Modelling Studies of Lunar and Terrestrial Rocks

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1997-01-01

    The goal of our research has been to understand the paths and the processes of planetary evolution that produced planetary surface materials as we find them. Most of our work has been on lunar materials and processes. We have done studies that obtain geological knowledge from detailed examination of regolith materials and we have reported implications for future sample-collecting and on-surface robotic sensing missions. Our approach has been to study a suite of materials that we have chosen in order to answer specific geologic questions. We continue this work under NAG5-4172. The foundation of our work has been the study of materials with precise chemical and petrographic analyses, emphasizing analysis for trace chemical elements. We have used quantitative models as tests to account for the chemical compositions and mineralogical properties of the materials in terms of regolith processes and igneous processes. We have done experiments as needed to provide values for geochemical parameters used in the models. Our models take explicitly into account the physical as well as the chemical processes that produced or modified the materials. Our approach to planetary geoscience owes much to our experience in terrestrial geoscience, where samples can be collected in field context and sampling sites revisited if necessary. Through studies of terrestrial analog materials, we have tested our ideas about the origins of lunar materials. We have been mainly concerned with the materials of the lunar highland regolith, their properties, their modes of origin, their provenance, and how to extrapolate from their characteristics to learn about the origin and evolution of the Moon's early igneous crust. From this work a modified model for the Moon's structure and evolution is emerging, one of globally asymmetric differentiation of the crust and mantle to produce a crust consisting mainly of ferroan and magnesian igneous rocks containing on average 70-80% plagioclase, with a large

  11. The origin of continental crust: Outlines of a general theory

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1985-01-01

    The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).

  12. Template for the Terrestrial Planets: The Moon (Invited)

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.

    2010-12-01

    On the Moon, the geologic record and early history of the crust and mantle have been preserved for more than 4 Gyr. Ancient large craters and basins provide access to the interior; a continuous rain of smaller event, micrometeorites, and plasma record the recent history of the Earth-Moon environment. Such a record makes this small differentiated body an invaluable asset for understanding processes affecting all terrestrial planets. An international armada of spacecraft have recently orbited the Moon with advanced sensors to measure its physical properties: SELENE/Kaguya [JAXA], ChangE [CNSA], Chandrayaan-1 [ISRO], and LRO/LCROSS [NASA]. The data from these modern robotic missions are being calibrated, validated, and distributed and new results and insights are appearing throughout the peer-reviewed scientific literature. From these new data, the Moon indeed continues to surprise us. We recognize that the large basins provide windows into early crustal processes and we have identified direct compositional products of the early Magma Ocean. We have uncovered secondary deep magmatic products of the lunar crust, identified new rock types, and characterized basin impact melt that was possibly derived from the mantle. We now know hydrated materials from the interior exist far more abundantly than suspected, water and hydrated materials are currently widespread across the surface of the Moon, and some polar areas appear to be locations where hydrous materials are concentrated. The Moon provides a template to read the record of interplay between geochemistry, petrology and geophysics for an evolving planetary body early in solar system history.

  13. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  14. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  15. Dynamics of the Precambrian Continental Crust

    NASA Astrophysics Data System (ADS)

    Perchuk, L. L.; Gerya, T. V.; van Reenen, D. D.; Smit, C. A.

    2003-04-01

    The Precambrian continental crust is mainly composed of (1) granite greenstone belts (GGB) and (2) granulite facies complexes (GFC). The GFC are often separated from GGB by inward dipping crustal scale shear zones with characteristic sense of movements reflecting thrusting of GFC onto cratonic rocks. The isotope age of the shear zones is identical to GFC, while the latter are always younger than the granite greenstone belts. The dynamics relationships between these two geological units strongly determine tectonic evolution of the Precambrian continental crust. Numerous thermobarometric studies of magmatic and metamorphic rocks show that the Archaean to Early Protorozoic crust as well as the Mantle were hot and therefore relatively soft. Such geothermal regimes may limit separation and movement of micro continents, limiting collisional mechanisms in evolution of the Precambrian crust. The goal of this paper is to show evidence for an alterative model that is based on the mechanism of gravitational redistribution of rocks within the Precambrian continental crust, which might be initiated by a fluid/heat flow related to mantle plumes. The model is tested on the basis of geological, geochemical, geophysical and petrologic data for many paired GFT GGB complexes around the word. Studied granulite complexes are located in between Archaean GGB from which they are separated by inward dipping crustal scale shear zones with reverse sense of movements. The most important evidence for this mechanism is: (i) the near isobaric cooling (IC) and (ii) decompression cooling (DC) shapes of the retrograde P T paths recorded in GFC, while rocks from the juxtaposed GGB in footwalls of the bounding shear zones record P T loops. The Pmax of the loops corresponds to the Pmin, recorded in GFC. Thus the GGB P T loop reflects the burial and ascending of the juxtaposed GGB while the GFC P T path records the exhumation only. The identical isotopic age of GFC and contacting rocks from the shear

  16. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  17. Magnetic Sources in the Crust of Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a simple schematic representation of localized magnetic sources in the crust of Mars, buried beneath the surface, and revealed by observation of the magnetic field (blue) extending up to satellite altitude (about 120 kilometers). Most of our close passes to date - for which we have data - reveal the presence of one or more magnetic anomalies close to the path of the spacecraft. Since the sources must be close to the path of the satellite, we can only infer that the crust of Mars is strewn with similar magnetic anomalies, awaiting discovery. Where we can obtain enough data - that is to say, spaced more or less evenly in longitude with a spacing comparable to our periapsis altitude - we can construct a detailed image of the magnetic state of the Martian crust. We can then perhaps learn about the history of the now-extinct early Mars dynamo and the evolution of the surface of Mars.

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  18. Probing the structure and porosity of the lunar highlands crust

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Evans, Alexander J.; Johnson, Brandon C.; Melosh, H. Jay; Miljković, Katarina; Phillips, Roger J.; Andrews-Hanna, Jeffrey C.; Milbury, Colleen; Neumann, Gregory A.; Nimmo, Francis; Smith, David E.; Solomon, Sean C.; Sori, Michael M.; Thomason, Carver J.; Wieczorek, Mark A.; Zuber, Maria T.

    2015-04-01

    Impact cratering is held to be the primary mechanism responsible for regulating porosity in primordial planetary lithospheres, increasing porosity via fracturing and dilatant bulking and decreasing porosity via localized heating and compaction. Constraints on these processes, however, are limited to gravity profiles of four lunar craters and gravity and seismic observations of ~50 terrestrial craters, many of which have been substantially modified by erosion and weathering. The Gravity Recovery and Interior Laboratory (GRAIL) mission has afforded unprecedented insight into the structure of the lithosphere of the Moon. We use a Bouguer-corrected GRAIL gravity field to investigate the porosity associated with ~1200 complex lunar highlands craters. We find that the Bouguer anomaly (BA) of these craters is generally negative and scales inversely with crater size, implying that larger impacts result in more extensive fracturing and dilatant bulking. The BA of craters larger than ~93 km is independent of crater diameter, indicating that impact-generated porosity is truncated at depth. Considerable variability in the BA of craters is observed. Some craters, in fact, exhibit positive Bouguer anomalies. We find that positive values of the residual BA, the average BA within the crater rim less the average BA within an outer annulus from the outer flank of the rim to two crater radii from the crater center, correlate with high porosity in the surrounding crust. Our analysis shows that, whereas early impacts generally increased crustal porosity, when crustal porosity becomes too high, impacts reduce porosity, leading to the concept of a steady-state porosity, which we estimate to be ~15±1% for the lunar highlands. Knowledge of the extent and variability of crustal porosity is critical to understanding the thermal and geologic evolution of planetary bodies and to the ancient ecology of Earth.

  19. Crust-atmosphere coupling and carbon sequestration on palaeo-Mars

    NASA Astrophysics Data System (ADS)

    Macartney, Adrienne; Lee, Martin; Harkness, Patrick

    2014-05-01

    The modern surface of Mars displays evidence for past liquid water flows, with mounds and polygons in the Chryse-Acidalia region possibly indicating large bodies of ancient standing liquid [1]. For liquid water to be stable at the planet's surface, temperatures of >273.2K and a saturation water vapour pressure of >6.1 mbar are required [2]. To achieve such conditions, atmospheric pressures >1 bar CO2 have been hypothesised during the late Noachian/early Hesperian period (i.e. ~1.4-3.0 Ga [3]). Mars' currently thin (6 mbar) atmosphere poses the question of the fate of the hypothesised multi-bar CO2 atmosphere. Estimates for ~270 mbar lost to space [4], with ~5 mbar at the poles [5], leaves a minimum 750 mbar unaccounted for. The nakhlite martian meteorites display clear evidence of low water to rock (W/R) ratio isochemical silicate mineral carbonation [6]. Such carbonation processes can also be observed in basic terrestrial rock exposures, such as the Leka ophiolite, Norway [7]. Hydration and carbonation of silicate rocks is an important negative feedback process in the terrestrial carbon cycle. Significant atmospheric CO2 removal via silicate weathering partly balances the volcanic CO2 output. Peridotite contains >40% olivine, which can hydrate to form quartz, magnesite and serpentine and these reactions may be followed by carbon sequestration, forming highly alkaline travertine springs (pH>11), which have been observed in terrestrial ophiolites worldwide. Carbonation is exothermic, with the total fully carbonated solid products possessing 44% greater mass than the reactants [8]. This causes cracking [9], exposing fresh reactant surfaces, although this can be offset by expansion causing reduced porosity [10]. The raised temperatures increase reaction rates, and a positive feedback mechanism of sustained carbonation can develop. The crust of Mars is composed of similarly basic minerals, mostly basalt on the surface [11]. By investigating carbonated terrestrial

  20. Evolution of the Archaean crust by delamination and shallow subduction.

    PubMed

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time. PMID:12529633

  1. Oceanic crust deep seismic survey

    NASA Astrophysics Data System (ADS)

    McBride, J. H.; White, R. S.

    In September 1991, the British Institutions Reflection Profiling Syndicate (BIRPS) collected 578 km of deep seismic reflection profiles over the oceanic crust beneath the Cape Verde abssyal plain in approximately 4900 m of water (Fig. 1). The survey, under the direction of J. H. McBride, was undertaken in response to a proposal made by R. S. White at the 1990 BIRPS open syndicate meeting in Birmingham, England, and was acquired using GECO-PRAKLA'S M/V Bin Hai 511. The survey consisted of two strike lines parallel to magnetic sea-floor lineations and nine orthogonal crossing lines oriented parallel to the spreading direction (Fig. 2). Adjacent lines are spaced at 4 km. For the first time, this provides the ability to map oceanic crust in “3D,” since the line spacing is less than or equal to the Fresnel-zone diameter for the lower crust.

  2. Profiling planktonic foraminiferal crust formation

    NASA Astrophysics Data System (ADS)

    Steinhardt, Juliane; de Nooijer, Lennart L. J.; Brummer, Geert-Jan; Reichart, Gert-Jan

    2015-07-01

    Planktonic foraminifera migrate vertically through the water column during their life, thereby growing and calcifying over a range of depth-associated conditions. Some species form a calcite veneer, crust, or cortex at the end of their lifecycle. This additional calcite layer may vary in structure, composition, and thickness, potentially accounting for most of their total shell mass and thereby dominating the element and isotope signature of the whole shell. Here we apply laser ablation ICP-MS depth profiling to assess variability in thickness and Mg/Ca composition of shell walls of three encrusting species derived from sediment traps. Compositionally, Mg/Ca is significantly lower in the crusts of Neogloboquadrina dutertrei and Globorotalia scitula, as well as in the cortex of Pulleniatina obliquiloculata, independent of the species-specific Mg/Ca of their lamellar calcite shell. Wall thickness accounts for nearly half of the total thickness in both crustal species and nearly a third in cortical P. obliquiloculata, regardless of their initial shell wall thickness. Crust thickness and crustal Mg/Ca decreases toward the younger chambers in N. dutertrei and to a lesser extent, also in G. scitula. In contrast, the cortex of P. obliquiloculata shows a nearly constant thickness and uniform Mg/Ca through the complete chamber wall. Patterns in thickness and Mg/Ca of the crust indicate that temperature is not the dominant factor controlling crust formation. Instead, we present a depth-resolved model explaining compositional differences within individuals and between successive chambers as well as compositional heterogeneity of the crust and lamellar calcite in all three species studied here.

  3. Soil stabilization by biological soil crusts in arid Tunisia

    NASA Astrophysics Data System (ADS)

    Guidez, Sabine; Couté, Alain; Bardat, Jacques

    2015-04-01

    As part of the fight against desertification (LCD) in arid Tunisia, we have been able to highlight the important role played by biological soil crusts (BSC) in soil stabilization. The identification of the major species of cyanobacteria, lichens and bryophytes, their adaptation and terrestrial colonization strategies in this high climatic constraints area through their morpho-anatomical criteria have been set. In addition to their biological composition, their internal arrangement (i.e. texture and microstructure) reflects the structural stability of BSC against erosion. Precisely, the aggregative power of cyanobacteria and their ways of moving inside a soil, the capacity of mosses to grow through the sediments and lichens ability to bind at particles on surface, thus stabilizing the substrate have been demonstrated. Then, the three biological components ability to capture soil particles has been widely illustrated, proving the major environmental contribution of BSC in arid areas biological crusts formation, providing that soils will experience an increase of organic matter and fine particles rates subsequently gaining faster and better stability. Although the thickness and the morphology of crusts are related to the cover rates of these different biological components, the water properties of the latter, studied at the environmental SEM, illustrate their important role in altering the water cycle. Thus, the mixed crusts, i.e. with good presence of three biological components, cause the highest runoff rates by their ability to retain the water and spread on the surface. In spite of a swelling coefficient in presence of water higher than cryptogams, the cyanobacterial crusts located in newly stabilized areas of our studied region, remain finally insufficiently dense to impact surface hydrology. But, we showed after all that the cyanobacteria, pioneer species, have a certain environmental role. The lichen crusts cause a increased runoff because the lichens have a

  4. Statistics of Magnetar Crusts Magnetoemission

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.; Korovina, Yu. V.

    2016-05-01

    Soft repeating gamma-ray (SGR) bursts are considered as magnetoemission of crusts of magnetars (ultranamagnetized neutron stars). It is shown that all the SGR burst observations can be described and systematized within randomly jumping interacting moments model including quantum fluctuations and internuclear magnetic interaction in an inhomogeneous crusty nuclear matter.

  5. Bioalteration of basaltic glass in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Furnes, Harald; Staudigel, Hubert; Thorseth, Ingunn H.; Torsvik, Terje; Muehlenbachs, Karlis; Tumyr, Ole

    2001-08-01

    Bioalteration of Quaternary to Early Cretaceous basaltic glass from pillow lavas of the upper oceanic crust can be documented in Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) samples from shallow to deep drill holes from the north to central Atlantic Ocean, Lau Basin, and Costa Rica Rift, a wide range of marine settings. Biogenerated textures are rooted in fractures and occur as two main types, a granular type and a tubular type. The granular type, common at all depths within the volcanic pile, appears as solid bands, semicircles or irregular patches of individual and/or coalesced spherical bodies, mostly 0.2-0.6 μm in diameter, with irregular protrusions into the fresh glass. The tubular type is more common at deeper levels in the crust and consists of thin tubes, sometime branching bodies, mostly 20-30 μm long and are more common at deeper levels. The upper crust displays a large variability in the relative importance of biotic to abiotic alteration, and the degree of bioalteration appears to decrease with depth. Thus the fraction of bioalteration of the total alteration of the glass ranges from 20-90% in the upper 300 m down to a maximum of 10% at about 500 m depth. This might be due to a natural variability in the abundance of bioaltered glass or to biased sampling from low drilling recovery of relatively young crust. The proportion of bioaltered to abiotically altered glass does not show any systematic variations with age of the crust. Thus bioalteration lasts as long as abiotic alteration, i.e., for as long as water is available to the hydration of the oceanic crust. Evidence from heat flow measurements suggests that hydrothermal circulation lasts until at least ˜70 Ma, and thus the deep biosphere is likely to expand at least into crust of this age.

  6. Helium isotopes in ferromanganese crusts from the central Pacific Ocean

    USGS Publications Warehouse

    Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.

    2006-01-01

    Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.

  7. Ozone generation by rock fracture: Earthquake early warning?

    SciTech Connect

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  8. Permeability within basaltic oceanic crust

    NASA Astrophysics Data System (ADS)

    Fisher, Andrew T.

    1998-05-01

    Water-rock interactions within the seafloor are responsible for significant energy and solute fluxes between basaltic oceanic crust and the overlying ocean. Permeability is the primary hydrologic property controlling the form, intensity, and duration of seafloor fluid circulation, but after several decades of characterizing shallow oceanic basement, we are still learning how permeability is created and distributed and how it changes as the crust ages. Core-scale measurements of basaltic oceanic crust yield permeabilities that are quite low (generally 10-22 to 10-17 m²), while in situ measurements in boreholes suggest an overlapping range of values extending several orders of magnitude higher (10-18 to 10-13 m²). Additional indirect estimates include calculations made from borehole temperature and flow meter logs (10-16 to 10-11 m²), numerical models of coupled heat and fluid flow at the ridge crest and within ridge flanks (10-16 to 10-9 m²), and several other methods. Qualitative indications of permeability within the basaltic oceanic crust come from an improved understanding of crustal stratigraphy and patterns of alteration and tectonic modification seen in ophiolites, seafloor samples and boreholes. Difficulties in reconciling the wide range of estimated permeabilities arise from differences in experimental scale and critical assumptions regarding the nature and distribution of fluid flow. Many observations and experimental and modeling results are consistent with permeability varying with depth into basement and with primary basement lithology. Permeability also seems to be highly heterogeneous and anisotropic throughout much of the basaltic crust, as within crystalline rocks in general. A series of focused experiments is required to resolve permeability in shallow oceanic basement and to directly couple upper crustal hydrogeology to magmatic, tectonic, and geochemical crustal evolution.

  9. Ontong Java volcanism initiated long-term climate warming that caused substantial changes in terrestrial vegetation several tens of thousand years before the onset of OAE1a (Early Aptian, Cretaceous)

    NASA Astrophysics Data System (ADS)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During Cretaceous times, several intense volcanic episodes are proposed as trigger for episodic climate warming, for changes in marine circulation patterns and for elevated marine productivity, which resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Volcanic outgassing results in an increased pCO2 and should lead to a rise in global temperatures. We therefore investigated if the volcanically-induced increase in pCO2 at the onset of OAE1a in the early Aptian led to a temperature rise that was sufficient to affect terrestrial vegetation assemblages. In order to analyse changes in terrestrial palynomorph assemblages, we examined 15 samples from 12 black shale horizons throughout the early Aptian negative C-isotope spike interval of the Pusiano section (Maiolica Formation; N-Italy). These sediments were deposited at the southern continental margin of the alpine Tethys Ocean and have been bio- and magnetostratigraphically dated by Channell et al. (1995). In order to obtain a continuous palynological record of the negative C-isotope spike interval and the base of OAE1a, we combined this pre-OAE1a interval of Pusiano with the OAE1a interval of the nearby Cismon section (Hochuli et al., 1999). The sporomorph assemblages at the base of this composite succession feature abundant bisaccate pollen, which reflects a warm-temperate climate. Rather arid conditions are inferred from low trilete spore percentages. Several tens of thousand years before the onset of OAE1a, C-isotope values started to decrease. Some thousand years later, bisaccate pollen began to decrease, whereas an increase of Classopollis spp. and Araucariacites spp

  10. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  11. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion

    USGS Publications Warehouse

    Barger, N.N.; Herrick, J.E.; Van Zee, J.; Belnap, J.

    2006-01-01

    In this study, we conducted rainfall simulation experiments in a cool desert ecosystem to examine the role of biological soil crust disturbance and composition on dissolved and sediment C and N losses. We compared runoff and sediment C and N losses from intact late-successional dark cyanolichen crusts (intact) to both trampled dark crusts (trampled) and dark crusts where the top 1 cm of the soil surface was removed (scraped). In a second experiment, we compared C and N losses in runoff and sediments in early-successional light cyanobacterial crusts (light) to that of intact late-successional dark cyanolichen crusts (dark). A relatively high rainfall intensity of approximately 38 mm per 10-min period was used to ensure that at least some runoff was generated from all plots. Losses of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonium (NH 4+ ) were significantly higher from trampled plots as compared to scraped and intact plots. Sediment C and N losses, which made up more than 98% of total nutrient losses in all treatments, were more than 4-fold higher from trampled plots relative to intact plots (sediment C g/m2, intact = 0.74, trampled = 3.47; sediment N g/m2, intact = 0.06, trampled = 0.28). In light crusts, DOC loss was higher relative to dark crusts, but no differences were observed in dissolved N. Higher sediment loss in light crusts relative to dark crusts resulted in 5-fold higher loss of sediment-bound C and N. Total C flux (sediment + dissolved) was on the order of 0.9 and 7.9 g/m2 for dark and light crusts, respectively. Sediment N concentration in the first minutes after runoff from light crusts was 3-fold higher than the percent N of the top 1 cm of soil, suggesting that even short-term runoff events may have a high potential for N loss due to the movement of sediments highly enriched in N. Total N loss from dark crusts was an order of magnitude lower than light crusts (dark = 0.06 g N/m2, light = 0.63 g/m2). Overall, our

  12. Post-glacial ocean acidification and the decline of reefal microbial crusts

    NASA Astrophysics Data System (ADS)

    Riding, R.; Liang, L.; Braga, J.

    2011-12-01

    Data from Pacific, Indian Ocean and Caribbean coral reefs indicate marked Late Pleistocene to Holocene decline in the maximum thickness of microbial carbonate crusts in reef cavities. Using estimated values of pH, temperature, CO2, and ionic composition, we calculated calcite saturation ratio (Ωcalcite) of tropical surface seawater for the past 16 Ka. This shows a declining trend of Ωcalcite, paralleling that of reefal microbial crust thickness. We suggest that thinning of reefal microbial crusts could reflect decrease in seawater carbonate saturation due to ocean acidification in response to deglacial CO2 increase. Previously, decline in reefal microbial crusts, for example at Tahiti in the Pacific Ocean, has mainly been attributed to changes in nutrient supply associated with ocean upwelling and/or terrestrial run-off. Ocean acidification does not preclude such effects on microbial crust development produced by localized changes, but two features in particular are consistent with a global link with carbonate saturation state. Firstly, post-glacial decline in reefal microbial crust thickness affected tropical coral reefs in several oceans. Secondly, seawater carbonate saturation is a major long-term control on microbial carbonate abundance; microbially-induced biocalcification requires elevated seawater saturation for CaCO3 minerals and can be expected to fluctuate with carbonate saturation. In addition to compiling published crust thickness data, we measured thicknesses of microbial carbonate crusts in cavities in Tahiti reefs sampled by Integrated Ocean Drilling Program coring in 2005. This indicates halving of maximum crust thickness, during the same period as steep decline in mean-ocean calcite saturation, near the Pleistocene-Holocene transition. Reefal microbial crusts have been common since skeletal reefs became widespread during the Ordovician Period, 475 Ma ago. The habitat for cryptic crusts expanded as scleractinian corals developed cavernous

  13. [Nitrogen fixation potential of biological soil crusts in Heidaigou open coal mine, Inner Mongolia, China].

    PubMed

    Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen

    2016-02-01

    Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation

  14. Relamination and the Differentiation of Continental Crust

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kelemen, P. B.; Behn, M. D.

    2014-12-01

    Most immature crust must be refined to attain the composition of mature continental crust. This refining may take the form of weathering, delamination, or relamination. Although delamination and relamination both call upon gravity-driven separation of felsic rock into the crust and mafic rock into the mantle, delamination involves foundering of rock from the base of active magmatic arcs, whereas relamination involves the underplating/diapirism of subducted sediment, arc crust, and continent crust to the base of the crust in any convergence zone. Relamination may be more efficient than lower crustal foundering at generating large volumes of material with the major- and trace-element composition of continental crust, and may have operated rapidly enough to have refined the composition of the entire continental crust over the lifetime of Earth. If so, felsic rocks could form much of the lower crust, and the bulk continental crust may be more silica rich than generally considered. Seismic wavespeeds require that only ~10-20% of the lowermost 5-15 km of continental crust must be mafic; combined heat-flow and wavespeed constraints permit continental lower crust to have 50 to 65 wt% SiO2.

  15. Magnetic structure of the crust

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1985-01-01

    The bibuniqueness aspect of geophysical interpretation must be constrained by geological insight to limit the range of theoretically possible models. An additional step in depth understanding of the relationship between rock magnetization and geological circumstances on a grand scale is required. Views about crustal structure and the distribution of lithologies suggests a complex situation with lateral and vertical variability at all levels in the crust. Volcanic, plutonic, and metamorphic processes together with each of the observed anomalies. Important questions are addressed: (1) the location of the magnetic bottom; (2) whether the source is a discrete one or are certain parts of the crust cumulatively contributing to the overall magnetization; (3) if the anomaly to some recognizable surface expression is localized, how to arrive at a geologically realistic model incorporating magnetization contrasts which are realistic; (3) in the way the primary mineralogies are altered by metamorphism and the resulting magnetic contracts; (4) the effects of temperature and pressure on magnetization.

  16. Fossil Worm Burrows Reveal Very Early Terrestrial Animal Activity and Shed Light on Trophic Resources after the End-Cretaceous Mass Extinction

    PubMed Central

    Chin, Karen; Pearson, Dean; Ekdale, A. A.

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  17. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-cretaceous mass extinction.

    PubMed

    Chin, Karen; Pearson, Dean; Ekdale, A A

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  18. Magnetization of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Carley, R. A.; Whaler, K. A.; Purucker, M. E.; Halekas, J. S.

    2012-01-01

    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.

  19. New estimates of global CH4 and C2H6 production in the Precambrian crust

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Chelsea N.; Lacrampe-Couloume, Georges; Ballentine, Chris J.; Sherwood Lollar, Barbara

    2015-04-01

    Saline fracture fluids found deep within the Precambrian shield possess isotopic and geochemical signatures consistent with prolonged water rock interaction. Noble gas-derived residence times of these fluids, on the order of millions to billions of years, highlight their significance as an ancient deep hydrosphere (Lippmann-Pipke et al., 2011; Holland et al., 2013). With mM concentrations of dissolved gases such as H2 and hydrocarbons, these fracture fluids are energy rich and capable of sustaining microbial communities of H2-utilizing methanogens and sulphate reducers (Lin et al., 2006). Globally, Precambrian rocks constitute over 70% of the volume of the continental crust (Goodwin, 1996) and represent a substantial under-investigated source of such dissolved gases. Recent calculations of global H2 production from these Precambrian Shield rocks, including both hydration reactions and radiolysis, doubles previous estimates to an increased rate of 0.4-2.3 x 1011 mol/yr (Sherwood Lollar et al., 2014). This has important consequences for hydrocarbon production, reflected in the high abundance of CH4 and C2H6 in dissolved fracture gases, up to 80 and 10 vol %, respectively. Given the long residence times of these fluids, hydrocarbon production could have persisted on geological timescales. To date, production from this source has not been incorporated into models of evolution of the early atmosphere. Additionally, the quantification of abiotic sources of methane and ethane in the analogous terrestrial Precambrian crust could contribute to our understanding of the origin of the episodic traces of methane recently detected on Mars (Webster et al., 2014). Investigating the origin of these gases has important implications for the global carbon cycle, as well as the distribution of life in the terrestrial deep subsurface and on other planets. We examine the isotopic evolution of these fracture fluids in the Canadian Shield and provide the first attempts to estimate methane

  20. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    PubMed

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. PMID:26798012

  1. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L.

    2016-01-01

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.

  2. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: Implication for crust-mantle interaction and post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Guang; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Yang, Yue-Heng; Liu, Yongsheng

    2012-05-01

    The Tongshi intrusive complex, located within the western Shandong Province (Luxi Block) in the eastern North China Craton, comprises high-K calc-alkaline series (fine-grained quartz monzonite and porphyritic quartz monzonite) and shoshonitic series (coarse- to fine-grained porphyritic syenites). Here we report comprehensive data on petrology, geochemistry, Sr-Nd-Pb isotopes and zircon U-Pb and Hf isotopic compositions from the intrusive complex. LA-ICPMS zircon U-Pb ages show that this complex was emplaced at 180.1-184.7 Ma. The fine-grained quartz monzonite and porphyritic quartz monzonite have similar major and trace elements features, implying a similar petrogenetic history. Coupled with the widespread Neoarchean inherited zircons in these rocks, the high SiO2 and Na2O as well as the low MgO contents and low Pb isotopic ratios ((206Pb/204Pb)i = 15.850-16.881, (207Pb/204Pb)i = 14.932-15.261, (208Pb/204Pb)i = 35.564-36.562) of the quartz monzonites suggest an origin from ancient tonalite-trondhjemite-granodiorite (TTG) crust. However, their higher Nd and Hf isotopic ratios (ɛNd (t) = - 11.7 to - 7.0, ɛHf (t) = - 25.0 to - 10.3) as compared to the basement rocks indicate input of enriched lithospheric mantle-derived materials. The coarse- to fine-grained porphyritic syenites were derived from similar sources as inferred from their comparable major and trace elements contents as well as the Nd, Hf and Pb isotopic compositions. The Neoarchean inherited zircons and depletion of Nb, Ta, P and Ti in these rocks indicate the involvement of ancient crust. However, the high Nd and Hf isotopic ratios (ɛNd (t) = - 0.8 to 1.5, ɛHf (t) = - 4.4 to 4.8) coupled with high Pb isotopic compositions ((206Pb/204Pb)i = 18.082-19.560, (207Pb/204Pb)i = 15.510-15.730, (208Pb/204Pb)i = 37.748-39.498) suggest that the porphyritic syenites were mainly derived from an asthenospheric mantle. Based on the geochemical and isotopic features, a magmatic process similar to MASH (melting

  3. History of the earth's crust

    SciTech Connect

    Eicher, D.L.; Mcalester, A.L.; Rottman, M.L.

    1984-01-01

    The history of the earth's crust since its formation 4.6 Gyr ago is traced in an introductory textbook, with consideration of the global climate and the general outline of biological evolution. The methodology of paleogeology is introduced, and the origin of the solar system, the accumulation and differentiation of the earth, the beginnings of life, and the history of the moon are examined. Separate chapters are then devoted to the Precambrian, Paleozoic, Mesozoic, and Cenozoic earth. Photographs, maps, diagrams, and drawings are provided. 49 references.

  4. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific

    USGS Publications Warehouse

    Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.

    2012-01-01

    A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.

  5. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain

  6. Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event 1a: Evidence for the release of 13C-depleted carbon into the atmosphere

    NASA Astrophysics Data System (ADS)

    van Breugel, Yvonne; Schouten, Stefan; Tsikos, Harilaos; Erba, Elisabetta; Price, Gregory D.; Sinninghe Damsté, Jaap S.

    2007-03-01

    A common feature of records of the early Aptian oceanic anoxic event (OAE) 1a is the sharp negative δ13C excursion displayed in both carbonate and organic matter at the onset of this event. A synchronous negative δ13C excursion has also been noted for terrestrial organic matter. This negative excursion has been attributed to either an injection of 13C-depleted light carbon into the atmosphere or, in case of marine sediments, recycling of 13C-depleted CO2. However, most studies were done on separate cores, and no information on the relative timing of the negative spikes in terrestrial versus marine records has been obtained. Here we examine early Aptian core sections from two geographically distal sites (Italy and the mid-Pacific) to elucidate the causes and relative timing of this negative "spike." At both sites, increased organic carbon (Corg) and decreased bulk carbonate contents characterize the interval recording OAE 1a (variously referred to as the "Selli event"). The organic material within the "Selli level" is immature and of autochthonous origin. Measured δ13C values of marine and terrestrial biomarkers largely covary with those of bulk organic carbon, with lowest values recorded at the base of the organic-rich section. By contrast, sediments enveloping the "Selli level" exhibit very low Corg contents, and their extractable Corg is predominantly of allochthonous origin. Hydrous pyrolysis techniques used to obtain an autochthonous, pre-Selli δ13C value for algal-derived pristane from corresponding sample material yielded a negative δ13C shift of up to 4‰. A negative δ13C shift of similar magnitude was also measured for the terrigenous n-alkanes. The results are collectively best explained by means of a massive, syndepositional, rapid input of 13C-depleted carbon into the atmosphere and surface oceans, likely delivered either via methane produced from the dissociation of sedimentary clathrates or perhaps by widespread thermal metamorphism of Corg

  7. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system

    SciTech Connect

    Bau, M.; Moeller, P. )

    1993-05-01

    The chemically precipitated component in Early Precambrian (> 2.3 Ga) iron formations (IFs) displays (Sm/Yb)[sub CN] < 1 and (Eu/Sm)[sub SN] > 1 which reflects the corresponding ratios of contemporaneous seawater. In conjunction with [epsilon][sub Nd-IF] > [epsilon][sub Nd-shale] this rare earth element (REE) signature reveals that the REE distribution in Early Precambrian IFs must be explained by mixing between a marine bottom and a surface water component, and that the REEs (and by analogy the Fe) cannot be derived from weathering of a continental source. Mixing calculations reveal that (Sm/Yb)[sub CN] in Early Precambrian marine surface waters was significantly lower than it is today. To explain this difference, two mechanisms are discussed on the basis of higher P[sub CO[sub 2

  8. Evolution of the continental crust as recorded in accessory minerals

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi

    2013-04-01

    Recent developments in precise in situ isotopic analysis by LA-ICPMS and SIMS allow correlating multiple isotopic systems within single grains of accessory minerals such as zircon and monazite. The combined isotope systematics have provided valuable insights into the evolution of the continental crust. Zircon, a common accessory phase in granitoids, can be precisely dated by the U-Pb system. Zircon Lu-Hf isotopic composition is a function of crustal residence time of the magmatic protolith, whereas the O isotopic composition is a sensitive record of reworking of mature sediments such as pelite. An integration of U-Pb, Lu-Hf and O isotopic data for detrital zircons from modern large rivers indicates that: (1) the preserved continental crust dominantly formed between 3.6 and 1.0 Ga, (2) the major mode of crustal development would change during the supercontinent cycle, i.e., the generation of juvenile crust during supercontinent fragmentation versus the stabilization of the generated crust via crustal remelting during supercontinent fragmentation, and (3) reworking of mature sediments increased abruptly at ca. 2.1 Ga. No granitoids are known to have survived since 4.03 Ga. Yet evidence of an even older evolved crust is provided by detrital zircons with ages up to 4.4 Ga from Mt. Narryer and Jack Hills metasedimentary rocks in the Yilgarn Craton, Western Australia. Recently, such Hadean zircons have been found from outside the Yilgarn Craton, indicating that the young Earth had widespread granitoid crust. In addition, another accessory phase, monazite, in the Mt. Narryer and Jack Hills metasedimentary rocks offers an unique opportunity to advance our knowledge of early crustal evolution. Monazite, a light rare earth element phosphate mineral, occurs as an igneous accessory phase particularly in low-Ca granitoids, in contrast to the occurrence of igneous zircon in a wide range of granitoids. U-Pb and Sm-Nd isotope systematic of monazite are analogous to U-Pb and Lu

  9. Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Weber, B.; Büdel, B.; Andreae, M. O.; Pöschl, U.

    2009-07-01

    Microbiotic crusts consisting of bacteria, fungi, algae, lichens, and bryophytes colonize most terrestrial surfaces, and they are able to fix carbon and nitrogen from the atmosphere. Here we show that microbiotic crusts are likely to play major roles in the global biogeochemical cycles of carbon and nitrogen, and we suggest that they should be further characterized and taken into account in studies and models of the Earth system and climate. For the global annual net uptake of carbon by microbiotic crusts we present a first estimate of ~3.6 Pg a-1. This uptake corresponds to ~6% of the estimated global net carbon uptake by terrestrial vegetation (net primary production, NPP: ~60 Pg a-1), and it is of the same magnitude as the global annual carbon turnover due to biomass burning. The estimated rate of nitrogen fixation by microbiotic crusts (~45 Tg a-1) amounts to ~40% of the global estimate of biological nitrogen fixation (107 Tg a-1). With regard to Earth system dynamics and global change, the large contribution of microbiotic crusts to nitrogen fixation is likely to be important also for the sequestration of CO2 by terrestrial plants (CO2 fertilization), because the latter is constrained by the availability of fixed nitrogen.

  10. Terrestrial analogs for space exploration habitation systems

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.; Brown, Jeri W.

    1992-01-01

    The Space Exploration Initiative (SEI) can use early earth-based analogs to simulate many aspects of space flight missions and system operation. These analogs can thus provide information supporting future missions to the moon and to Mars. A study was performed to investigate the potential of terrestrial analogs in simulating human space exploration missions. The study resulted in preliminary requirements and concepts for analog habitation systems, and further study in this area is necessary for SEI terrestrial analog development.

  11. Pacific ferromanganese crust geology and geochemistry

    SciTech Connect

    Andreev, S.I.; Vanstein, B.G.; Anikeeva, L.I. )

    1990-06-01

    Cobaltiferous ferromanganese crusts form part of a large series of oceanic ferromanganese oxide deposits. The crusts show high cobalt (commonly over 0.4%), low nickel and copper sum (0.4-0.8%), considerably high manganese (18-20%), and iron (14-18%). Less abundant elements in crusts are represented by molybdenum and vanadium; the rare-earth elements cerium, lanthenum, and yttrium; and the noble metals platinum and rhodium. Co-rich crusts form at water depths of 600 to 2,500 m. Crust thicknesses range from millimeters to 15-17 cm, averaging 2-6 cm. The most favorable conditions for 4-10 cm thick crusts to occur is at water depths of 1,200-2,200 m. The crusts formed on basaltic, calcareous, siliceous, and breccia bedrock surfaces provided there were conditions preventing bottom sedimentation at them. If the sedimentation takes place, it may be accompanied by nodules similar in composition to the crusts. The most favorable topography for extensive crust formation is considered to be subdued (up to 20{degree}) slopes and summit platforms of conical seamounts, frequently near faults and their intersection zones. Subhorizontal guyot summits do not usually favor crust growth. Crust geochemistry is primarily defined by mineralogy and manganese hydroxides (vernadite)/iron ratio. The first associated group of compounds includes cobalt, nickel, molybdenum, vanadium, cerium, and titanium; the other is strontium, yttrium, cerium, and cadmium. The aluminosilicate phase is associated with titanium, iron, chromium, and vanadium; phosphate biogenic phase includes copper, nickel, zinc, lead, and barium. The crucial point in cobaltiferous crust formation is their growth rate on which is dependent the degree of ferromanganese matrix sorption saturation with cobalt. The optimum for cobalt-rich ferromanganese ores is the conditions facilitating long-term and continuous hydrogenic processes.

  12. Evolution of the terrestrial planets (geological and petrological data)

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    How the terrestrial solid planetary bodies were developed? What major stages of their irreversible evolution took place before they turned into "dead" stone balls? We discuss these problems on examples of the Earth and the Moon, which evolution studied the best. According to modern views, after accretion of these bodies, magma oceans of some hundreds km deep appeared on their surface. According to Jeffries (1929), solidification of large molted bodies, because of the difference between adiabatic gradient in silicate melts (0.3oC/km) and gradient of their melting points (3oC/km), could be going only upwards, from the bottom to the surface. As a result a powerful crystallizing differentiation of the oceans' magmas took place with accumulation of the most low-melting components to the surface. Due to different deep of the oceans on the Moon and the Earth, the primordial crusts on these bodies were rather different: mafic on the Moon and sialic on the Earth. Geological evolution of the Earth began 4 Ga ago from appearance of Archean granite-greenstone terranes (GGT) and divided them granulite belts. Mantle-derived magmatism of high-Mg komatiite-basaltic series was located in greenstone belts, which formed irregular network within GGTs and composed 10-15 The sharp change of the magmatic activity with appearance in global scale of geochemical-enriched Fe-Ti picrites and basalts occurred in interval 2.3-2.0 Ga ago. Such melts was typical for Phanerozoic within-plate magmatism and linked with thermochemical mantle plumes of the second generation, which ascended from the liquid core-mantle boundary (CMB). It was followed by plate tectonic appearance 2 Ga ago and from this particular time such tectonic regime has existed till now. From this particular time, ancient Earth's continental crust began to involved in subduction processes and interchange by secondary oceanic crust which forms about 70Where this geochemical-enriched material was conserved and how it was activated

  13. The evolution of the moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.; Johnston, D. H.

    1974-01-01

    The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.

  14. Pulsar glitches: the crust is not enough.

    PubMed

    Andersson, N; Glampedakis, K; Ho, W C G; Espinoza, C M

    2012-12-14

    Pulsar glitches are traditionally viewed as a manifestation of vortex dynamics associated with a neutron superfluid reservoir confined to the inner crust of the star. In this Letter we show that the nondissipative entrainment coupling between the neutron superfluid and the nuclear lattice leads to a less mobile crust superfluid, effectively reducing the moment of inertia associated with the angular momentum reservoir. Combining the latest observational data for prolific glitching pulsars with theoretical results for the crust entrainment, we find that the required superfluid reservoir exceeds that available in the crust. This challenges our understanding of the glitch phenomenon, and we discuss possible resolutions to the problem. PMID:23368300

  15. The hardwater effect in AMS 14C dating of food crusts on pottery

    NASA Astrophysics Data System (ADS)

    Philippsen, Bente; Kjeldsen, Henrik; Hartz, Sönke; Paulsen, Harm; Clausen, Ingo; Heinemeier, Jan

    2010-04-01

    The pottery investigated in this study comes from late mesolithic inland sites next to rivers in Northern Germany. The first AMS 14C datings of food crusts from these sites showed surprisingly high ages, which could be caused by the hardwater effect. Modern samples from the rivers have ages of several hundred 14C years, and a modern food crust prepared from fish with a certain reservoir age shows the same age as the fish. Surprisingly, there was a large age difference between water samples and fish/mollusc shell from the same river. Associated archaeological samples of terrestrial and fluvial origin show age differences of several hundred and up to 3000 years. These high age differences are only to a limited extent transferred to the archaeological food crusts.

  16. Expansion of Voltage-dependent Na+ Channel Gene Family in Early Tetrapods Coincided with the Emergence of Terrestriality and Increased Brain Complexity

    PubMed Central

    Zakon, Harold H.; Jost, Manda C.; Lu, Ying

    2011-01-01

    Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost–tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input. PMID:21148285

  17. Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity.

    PubMed

    Zakon, Harold H; Jost, Manda C; Lu, Ying

    2011-04-01

    Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input. PMID:21148285

  18. Osmium isotope and highly siderophile element systematics of the lunar crust

    USGS Publications Warehouse

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  19. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  20. Apulian crust: Top to bottom

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana

    2014-12-01

    We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.

  1. Primitive layered gabbros from fast-spreading lower oceanic crust.

    PubMed

    Gillis, Kathryn M; Snow, Jonathan E; Klaus, Adam; Abe, Natsue; Adrião, Alden B; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J; Faak, Kathrin; Falloon, Trevor J; Friedman, Sarah A; Godard, Marguerite; Guerin, Gilles; Harigane, Yumiko; Horst, Andrew J; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M; John, Barbara E; Koepke, Juergen; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E; McCaig, Andrew M; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P

    2014-01-01

    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt. PMID:24291793

  2. Continental crust beneath the Agulhas Plateau, Southwest Indian Ocean

    SciTech Connect

    Tucholke, B.E.; Houtz, R.E.; Barrett, D.M.

    1981-05-10

    The Agulhas Plateau lies 500 km off the Cape of Good Hope in the southwestern Indian Ocean. Acoustic basement beneath the northern one third of this large, aseismic structural high has rugged morphology, but basement in the south is anomalously smooth, excepting a 30- to 90-km-wide zone with irregular relief that trends south-southwest through the center of the plateau. Seismic refraction profiles across the southern plateau indicate that the zone of irregular acoustic basement overlies thickened oceanic crust and that continental crust, locally thinned and intruded by basalts, underlies several regions of smooth acoustic basement. Recovery of quartzo-feldspathic gneisses in dredge hauls confirms the presence of continental crust. The smoothness of acoustic basement probably results from erosion (perhaps initially subaerial) of topographic highs with depositions and cementation of debris in ponds to form high-velocity beds. Basalt flows and sills also may contribute locally to form smooth basement. The rugged basement of the northern plateau appears to be of oceanic origin. A plate reconstruction to the time of initial opening of the South Atlantic places the continental part of the southern plateau adjacent to the southern edge of the Falkland Plateau, and both abut the western Mozambique Ridge. Both the Agulhas and Falkland plateaus were displaced westward during initial rifting in the Early Cretaceous. Formation of an RRR triple junction at the northern edge of the Agulhas continental fragment during middle Cretaceous time may explain the origin of the rugged, thickened oceanic crust beneath plateau as well as the apparent extension of the continental crust and intrusion of basaltic magmas beneath the southern plateau.

  3. Climate during the Roman and early-medieval periods in North-western Europe: a review of climate reconstructions from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Reichelmann, Dana F. C.; Gouw-Bouman, Marjolein T. I. J.; Hoek, Wim Z.; van Lanen, Rowin J.; Stouthamer, Esther; Jansma, Esther

    2016-04-01

    High-resolution palaeoclimate reconstructions are essential to identify possible influences of climate variability on landscape evolution and landscape-related cultural changes (e.g., shifting settlement patterns and long-distance trade relations). North-western Europe is an ideal research area for comparison between climate variability and cultural transitions given its geomorphological diversity and the significant cultural changes that took place in this region during the last two millennia (e.g., the decline of the Roman Empire and the transition to medieval kingdoms). Compared to more global climate records, such as ice cores and marine sediments, terrestrial climate proxies have the advantage of representing a relatively short response time to regional climatic change. Furthermore for this region large quantity of climate reconstructions is available covering the last millennium, whereas for the first millennium AD only few high resolution climate reconstructions are available. We compiled climate reconstructions for sites in North-western Europe from the literature and its underlying data. All these reconstructions cover the time period of AD 1 to 1000. We only selected data with an annual to decadal resolution and a minimum resolution of 50 years. This resulted in 18 climate reconstructions from different archives such as chironomids (1), pollen (4), Sphagnum cellulose (1), stalagmites (6), testate amoebae (4), and tree-rings (2). The compilation of the different temperature reconstructions shows similar trends in most of the records. Colder conditions since AD 300 for a period of approximately 400 years and warmer conditions after AD 700 become apparent. A contradicting signal is found before AD 300 with warmer conditions indicated by most of the records but not all. This is likely the result of the use of different proxies, reflecting temperatures linked to different seasons. The compilation of the different precipitation reconstructions also show similar

  4. Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth

    NASA Technical Reports Server (NTRS)

    Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.

  5. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    PubMed

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo. PMID:25877203

  6. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Wood, Bernard J.

    2015-04-01

    Recent 142Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a `hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the `hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an 142Nd/144Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the `missing' heat source for the geodynamo.

  7. Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1985-01-01

    The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth.

  8. Plagioclase flotation and lunar crust formation

    NASA Technical Reports Server (NTRS)

    Walker, D.; Hays, J. F.

    1977-01-01

    Anorthitic plagioclase floats in liquids parental to the lunar highlands crust. The plagioclase enrichment that is characteristic of lunar highlands rocks can be the result of plagioclase flotation. Such rocks would form a gravitationally stable upper crust on their parental magma.

  9. Geo-neutrino Detection From the Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Dye, S.

    2006-05-01

    It is well established that radioactivity within the Earth contributes to terrestrial heat flow and dynamic activity of the planet. At present, the extent of the contribution is predicted by models rather than measured by observation. Radioactive heat is dominated by long-lived isotopes of uranium, thorium, and potassium. It is now demonstrated that uranium and thorium in the Earth can be measured by geo-neutrino detectors. Geo- neutrino detectors at both continental and oceanic locations are needed to determine the partitioning of uranium and thorium between the crusts and mantle. The key role of the marine geo-neutrino detector for measuring mantle radioactivity, searching for the putative geo-reactor, and monitoring nuclear activity is described.

  10. Terrestrial photovoltaic collector technology trend

    SciTech Connect

    Shimada, K.; Costogue, E.

    1984-08-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe/sub 2/ and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  11. High-resolution correlation of the late Triassic (Raetian) to the early Jurassic (Toarcian) between Pelagic sequence of Panthalassa and terrestrial sequence of Pangea using Milankovitch cycles

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Tada, R.; Sakuma, H.

    2009-12-01

    number series of chert bed thickness revealed ca. 5, 20, and 200beds cycles that correspond to ca. 100, 400, and ca. 3500 ky eccentricity cycles, respectively. The similarity in the hierarchy of dominant periodicities between Milankovitch cycles and chert bed thickness cycles strongly support the idea that the cyclicities in thickness of a chert bed of upper Triassic to lower Jurassic bedded chert sequence were paced by Milankovitch cycles. We try to import the astronomically calibrated cyclostratigraphy for the lacustrine sequence in Newark basin (Olsen & Kent, 1999; Whiteside et al., 2007) into the bedded chert sequence in Inuyama by using the T/J boundary as a datum level. This correlation suggests that the radiolarian faunal turnover in Panthalassa is almost synchronous (~ ca. 100 ky) with the faunal and floral turnover in Pangea. Such a cyclostratigraphic correlation between pelagic bedded chert sequence and terrestrial lacustrine sequence will also provide useful information on the detailed process and mechanism of environmental changes at the T/J boundary and its relation with mass extinction.

  12. 92Nb-(92)Zr and the Early Differentiation History of Planetary Bodies.

    PubMed

    Münker; Weyer; Mezger; Rehkämper; Wombacher; Bischoff

    2000-09-01

    The niobium-92-zirconium-92 ((92)Nb-(92)Zr) extinct radioactive decay system (half-life of about 36 million years) can place new time constraints on early differentiation processes in the silicate portion of planets and meteorites. Zirconium isotope data show that Earth and the oldest lunar crust have the same relative abundances of (92)Zr as chondrites. (92)Zr deficits in calcium-aluminum-rich inclusions from the Allende meteorite constrain the minimum value for the initial (92)Nb/(93)Nb ratio of the solar system to 0.001. The absence of (92)Zr anomalies in terrestrial and lunar samples indicates that large silicate reservoirs on Earth and the moon (such as a magma ocean residue, a depleted mantle, or a crust) formed more than 50 million years after the oldest meteorites formed. PMID:10968787

  13. The Lunar Highland Crust: Complex or Simple Petrogenesis?

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Koeberl, C.

    1992-07-01

    Following the general acceptance of the magma ocean hypothesis, models for the evolution of the highland crust of the Moon have become increasingly complicated, just as religious and philosophical systems have always diverged from the teachings of their founder. Three components make up the highland crust: the ferroan anorthosite, which crystallizes early from the magma ocean, depletes the deep interior in Eu, and adds a large Eu enrichment to the crust. KREEP, choked with incompatible trace elements from the residual 2% melt resulting from the crystallization of the magma ocean is pervasively mixed into the crust by cratering. KREEP adds a deep Eu depletion, with high abundances of the other REE parallel to those of the ferroan anorthosites. The third well-recognized component is the Mg Suite, commonly about 100-200 Ma younger, with intermediate REE patterns parallel to the ferroan anorthosites and KREEP (Fig. 1). If the highland crust were formed from many igneous events, in which the Mg suite comes from several separate plutons, crystallization and separation of mineral phases would surely result in REE patterns with diverse slopes, as is observed on Earth. This does not seem to have occurred. For example, the deep-seated troctolite 76535 has a well-established age of 4236 +- 15 Ma (Premo and Tatsumoto, 1992), much younger than the 4440 +- 20 Ma crystallization age of the lunar crust (Carlson and Lugmair, 1988), and the 4400-Ma closure ages for the source regions of the lunar mare basalts. If 76535 formed as a separate intrusion by partial melting during "serial magmatism" 200 Ma after the ferroan anorthosites crystallized, why is its REE pattern parallel to those of all the other highland rocks (Fig. 1)? Two explanations seem viable. The first possibility is that a diverse crust may have been homogenized by cratering. Alternatively, only one major igneous event produced the lunar highland crust. All subsequent complexity in ages and production of "igneous

  14. Biological soil crusts as soil stabilizers: Chapter 16

    USGS Publications Warehouse

    Belnap, Jayne; Buedel, Burkhard

    2016-01-01

    Soil erosion is of particular concern in dryland regions, as the sparse cover of vascular plants results in large interspaces unprotected from the erosive forces of wind and water. Thus, most of these soil surfaces are stabilized by physical or biological soil crusts. However, as drylands are extensively used by humans and their animals, these crusts are often disturbed, compromising their stabilizing abilities. As a result, approximately 17.5% of the global terrestrial lands are currently being degraded by wind and water erosion. All components of biocrusts stabilize soils, including green algae, cyanobacteria, fungi, lichens, and bryophytes, and as the biomass of these organisms increases, so does soil stability. In addition, as lichens and bryophytes live atop the soil surface, they provide added protection from raindrop impact that cyanobacteria and fungi, living within the soil, cannot. Much research is still needed to determine the relative ability of individual species and suites of species to stabilize soils. We also need a better understanding of why some individuals or combination of species are better than others, especially as these organisms become more frequently used in restoration efforts.

  15. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland

    NASA Astrophysics Data System (ADS)

    Sayle, Kerry L.; Cook, Gordon T.; Ascough, Philippa L.; Hastie, Helen R.; Einarsson, Árni; McGovern, Thomas H.; Hicks, Megan T.; Edwald, Ágústa; Friðriksson, Adolf

    2013-11-01

    Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used widely in archaeology to investigate palaeodiet. Sulphur stable isotope ratios (δ34S) have shown great promise in this regard but the potential of this technique within archaeological science has yet to be fully explored. Here we report δ34S, δ13C and δ15N values for 129 samples of animal bone collagen from Skútustaðir, an early Viking age (landnám) settlement in north-east Iceland. This dataset represents the most comprehensive study to date of its kind on archaeological material and the results show a clear offset in δ34S values between animals deriving their dietary resources from terrestrial (mean = +5.6 ± 2.8‰), freshwater (mean = -2.7 ± 1.4‰) or marine (mean = +15.9 ± 1.5‰) reservoirs (with the three food groups being significantly different at 2σ). This offset allows reconstruction of the dietary history of domesticated herbivores and demonstrates differences in husbandry practices and animal movement/trade, which would be otherwise impossible using only δ13C and δ15N values. For example, several terrestrial herbivores displayed enriched bone collagen δ34S values compared to the geology of the Lake Mývatn region, indicating they may have been affected by sea-spray whilst being pastured closer to the coast, before being traded inland. Additionally, the combination of heavy δ15N values coupled with light δ34S values within pig bone collagen suggests that these omnivores were consuming freshwater fish as a significant portion of their diet. Arctic foxes were also found to be consuming large quantities of freshwater resources and radiocarbon dating of both the pigs and foxes confirmed previous studies showing that a large freshwater radiocarbon (14C) reservoir effect exists within the lake. Overall, these stable isotope and 14C data have important implications for obtaining a fuller reconstruction of the diets of the early Viking settlers in Iceland, and may allow

  16. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs.

    PubMed

    Riding, R; Liang, L; Braga, J C

    2014-09-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. PMID:25040070

  17. Solar/terrestrial physics

    NASA Astrophysics Data System (ADS)

    Ivanov-Kholodnyi, G. S.; Lotova, N. A.; Obridko, V. N.; Fel'Dshtein, Ia. I.; Fomichev, V. V.

    The history of the development of solar/terrestrial physics research at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) is reviewed, and the activity of the Institute in organizing international solar/terrestrial physics research is examined. Particular attention is given to investigations of solar corpuscular radiation and its effect on the ionosphere; and to studies of auroras and the interplanetary medium.

  18. A molecular palaeobiological exploration of arthropod terrestrialization.

    PubMed

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R; Puttick, Mark N; Blaxter, Mark; Vinther, Jakob; Olesen, Jørgen; Giribet, Gonzalo; Edgecombe, Gregory D; Pisani, Davide

    2016-07-19

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325830

  19. Integrated Estimates of Global Terrestrial Carbon Sequestration

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

    2008-02-01

    Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

  20. A molecular palaeobiological exploration of arthropod terrestrialization

    PubMed Central

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  1. Felsic Magmatism through Intracrustal Melting of Previously Formed Volcanic-Arc Crust: Implications for Differentiation and Secular Evolution of the Continental Crust

    NASA Astrophysics Data System (ADS)

    G R, R. K.; C, S.

    2015-12-01

    The fundamental challenge in understanding the origin and evolution of the continental crust is to recognize how primary mantle source, and oceanic crust, which are essentially mafic to ultramafic in composition, could differentiate into a more or less felsic compositions. It is possible to understand growth and differentiation of the continental crust by constraining the interplay of magmatism, deformation, and high-grade metamorphism in the lower crust. Here, we apply this knowledge on the lower crustal granitoids of southern India and speculate on the variations in geochemistry as a consequence of differentiation and secular evolution of the continental crust.The major groups of granitoids of southern India are classified as metatonalites, comparable to typical Archaean TTGs with pronounced calc-alkaline affinity, and metagranites which are magmatic fractionation produced by reworking of early crust. Metatonalites are sodic-trondhjemites with slightly magnesian, moderate LREE (average LaN = 103) and low HREE (average YbN = 2) characerestics, where as metagranites are calc-alkaline ferroan types with enriched LREE (average LaN = 427) and HREE (average YbN = 23). Petrogenetic characteristics of granitoids illustrate continuous evolution of a primary crust into diverse magmatic units by multiple stages of intracrustal differentiation processes attributed to following tectonic scenarios: (1) formation of tonalitic magma by low- to moderate-degree partial melting of hydrated basaltic crust at pressures high enough to stabilize garnet-amphibole residue and (2) genesis of granite in a continental arc-accretion setting by an episode of crustal remelting of the tonalitic crust, within plagioclase stability field. The first-stage formed in a flat-subduction setting of an volcanic-arc, leading to the formation of tonalites. The heat budget required is ascribed to the upwelling of the mantle and/or basaltic underplating. Progressive decline in mantle potential temperature

  2. Continental Lower Crust: Wavespeeds, Composition, and Relamination

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kelemen, P. B.; Behn, M. D.

    2015-12-01

    The composition of much of Earth's lower continental crust is enigmatic. The available heat-flow and wavespeed constraints can be satisfied if lower continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2 (similar to andesite and dacite), with high to moderate concentrations of K, Th and U. Beneath shields and platforms, Vp suggests that 20-30% of lower crust is mafic. A large fraction of this material could be denser than peridotite. In these settings the underlying upper mantle is too cold to permit development of a convective instability. High Vp lithologies in these settings may be the result of mafic underplating, or slow metamorphic growth of large proportions of garnet. Vp from lower crust of Paleozoic-Mesozoic orogens indicates a smaller amount of mafic rock and little or no material that is denser than peridotite. Beneath rifts, arcs, and volcanic plateaux and beneath continent-collision zones, ~10-20% of lower crust is mafic, and about half that is denser than peridotite. The inferred gravitational instability and high Moho temperatures suggest that the mafic lower crust in these regions may be temporary. During sediment subduction, subduction erosion, arc subduction, and continent subduction, mafic rocks become eclogite and may continue to descend into the mantle, whereas more silica-rich rocks are transformed into felsic gneisses that are less dense than peridotite but more dense than continental upper crust. These more-felsic rocks may rise buoyantly, undergo decompression melting and melt extraction, and may be relaminated to the base of the crust. As a result of this refining/differentiation process, such relatively felsic rocks could form much of lower crust.

  3. Microphytic crusts: 'topsoil' of the desert

    USGS Publications Warehouse

    Belnap, Jayne

    1990-01-01

    Deserts throughout the world are the home of microphytic, or cryptogamic, crusts. These crusts are dominated by cyanobacteria, previously called blue-green algae, and also include lichens, mosses, green algae, microfungi and bacteria. They are critical components of desert ecosystems, significantly modifying the surfaces on which they occur. In the cold deserts of the Colorado Plateau (including parts of Utah, Arizona, Colorado, and New Mexico), these crusts are extraordinarily well-developed, and may represent 70-80% of the living ground cover.

  4. Models of a partially hydrated Titan interior with clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J.

    2012-04-01

    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  5. TERRESTRIAL ECOSYSTEM SIMULATOR

    EPA Science Inventory

    The Terrestrial Habitats Project at the Western Ecology Division (Corvallis, OR) is developing tools and databases to meet the needs of Program Office clients for assessing risks to wildlife and terrestrial ecosystems. Because habitat is a dynamic condition in real-world environm...

  6. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  7. The evolution of the early Martian climate and the initial emplacement of crustal H2O

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early Martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the Martian valley networks to terrestrial runoff channels and their almost exclusive occurrence in the planet's ancient (approximately 4-b.y.-old) heavily cratered terrain are often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was groundwater sapping, a process that does not require that surface water exists in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered here from two perspectives: (1) the early climate started warm and wet, but gradually cooled with time, and (2) the early climate never differed substantially from that of today.

  8. The early crust of the Volgo-Uralian segment of the East European Craton: Isotope-geochronological zirconology of metasedimentary rocks of the Bolshecheremshanskaya Formation and their Sm-Nd model ages

    NASA Astrophysics Data System (ADS)

    Bibikova, E. V.; Bogdanova, S. V.; Postnikov, A. V.; Fedotova, A. A.; Claesson, S.; Kirnozova, T. I.; Fugzan, M. M.; Popova, L. P.

    2015-01-01

    We present the results of isotope-geochronological study of metasedimentary rocks of the Bolshecheremshanskaya Formation of the Volgo-Uralian segment of the East European Craton carried out to identify their protoliths. 16 samples of high-alumina gneisses from well cores were studied using the Sm-Nd isotope method and TNd(DM) model ages. Accessory zircons were selected from rocks with the most ancient model ages (more 3.2 Ga) in three wells: Minnibaevskaya 20000, Novo-Elkhovskaya 20009, and Zai-Karatayskaya 12930 in South Tatarstan. The isotope U-Pb dating of 200 zircon grains was performed on a Cameca 1280 NORDSIM secondary ion mass spectrometer at the Natural History Museum (Stockholm, Sweden). The most applicable sites for analysis of zircon crystals were pre-selected based on cathodoluminescence images. The analytical results demonstrate the diversity of zircon groups in age from 3.8 to 2.6 Ga and together with geochemical features of metasedimentary rocks of the Bolshecheremshanskaya Formation suggest the heterogeneous composition and age of provenance areas under denudation. Occurrence of Eoarchean and Paleoarchean zircons in the clastic material of the protolith of the Bolshecheremshanskaya gneisses indicates the existence of Early Archean crustal terrains in Volgo-Uralia.

  9. A Large Buried Felsic Component in the Ancient Martian Crust?

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Monnereau, M.; Samuel, H.; Michaut, C.; Wieczorek, M. A.; Garcia, R.

    2014-12-01

    A new range of crustal density values for Mars was calculated from the major element chemistry of Martian meteorites
(3100 - 3700 kg/m3), igneous rocks at Gusev crater (3100 - 3600 kg/m3) and from the surface concentration of Fe, Al, Ca, Si, and K measured by the Gamma-Ray Spectrometer (GRS) (3250 - 3450 kg/m3) (Baratoux et al., 2014). Whereas a dense basaltic crust would be compatible with the moment of inertia factor of Mars, its thickness would exceed 100 km. Such a thick crust is not compatible with the geoid-to-topography ratios in the highlands, and would be unstable and prone to basal flow and/or crustal delamination. An alternative possibility is the existence of a buried light felsic or anorthositic component. A low-density crustal component in the highlands would be consistent with an isostatic compensation associated with a difference in elevation between the two hemispheres of Mars. This alternative is reinforced in the context of the findings of felsic or anorthositic material from visible/NIR spectroscopy (Carter and Poulet, 2013, Wray et al. 2013), and the identification of feldspar-rich rocks at Gale crater (Sautter et al., 2014), whereas felsic lithologies were already identified by Pathfinder. The recently identified outcrops could be either remnants of an ancient anorthositic crust or the result of local igneous differentiation of plutonic bodies. The latter interpretation is currently preferred as early Mars conditions should not be compatible with the formation of a plagioclase floatation crust (Elkins-Tanton et al., 2005). However, in light of the geophysical and petrological constraints discussed above, and given the absence of abundant light material at the surface, we advocate for the existence of a buried anorthositic crustal component that has been largely buried by volcanic material of basaltic composition in the late Noachian or Hesperian eras. Implications regarding the magma ocean scenario for Mars will be discussed.

  10. Constraints on the Composition and Petrogenesis of the Martian Crust

    NASA Technical Reports Server (NTRS)

    McSween, Harry Y., Jr.; Grove, Timothy L.; Wyatt, Michael B.

    2003-01-01

    Spectral interpretation that silicic rocks are widespread on Mars implies that Earth's differentiated crust is not unique. Evaluation of observations bearing on the composition of the Martian crust (Martian meteorite petrology and a possible crustal assimilant, analysis of Mars Pathfinder rocks, composition of Martian fines, interpretation of spacecraft thermal emission spectra, and inferred crustal densities) indicates that the crust can be either basalt plus andesite or basalt plus weathering products. New calculated chemical compositions for Thermal Emission Spectrometer (TES) global surface units indicate that surface type 1 has basaltic andesite composition and surface type 2 has the composition of andesite. If these materials represent volcanic rocks, their calc-alkaline compositions on a FeO*/MgO versus silica diagram suggest formation by hydrous melting and fractional crystallization. On Earth, this petrogenesis requires subduction, and it may suggest an early period of plate tectonics on Mars. However, anorogenic production of andesite might have been possible if the primitive Martian mantle was wet. Alternatively, chemical weathering diagrams suggest that surface type 2 materials could have formed by partial weathering of surface type 1 rocks, leading to depletion in soluble cations and mobility of silica. A weathered crust model is consistent with the occurrence of surface type 2 materials as sediments in a depocenter and with the alpha proton X-ray spectrometer (APXS) analysis of excess oxygen suggesting weathering rinds on Pathfinder rocks. If surface type 1 materials are also weathered or mixed with weathered materials, this might eliminate the need for hydrous melting, consistent with a relatively dry Martian mantle without tectonics.

  11. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  12. Drilling to gabbro in intact ocean crust.

    PubMed

    Wilson, Douglas S; Teagle, Damon A H; Alt, Jeffrey C; Banerjee, Neil R; Umino, Susumu; Miyashita, Sumio; Acton, Gary D; Anma, Ryo; Barr, Samantha R; Belghoul, Akram; Carlut, Julie; Christie, David M; Coggon, Rosalind M; Cooper, Kari M; Cordier, Carole; Crispini, Laura; Durand, Sedelia Rodriguez; Einaudi, Florence; Galli, Laura; Gao, Yongjun; Geldmacher, Jörg; Gilbert, Lisa A; Hayman, Nicholas W; Herrero-Bervera, Emilio; Hirano, Nobuo; Holter, Sara; Ingle, Stephanie; Jiang, Shijun; Kalberkamp, Ulrich; Kerneklian, Marcie; Koepke, Jürgen; Laverne, Christine; Vasquez, Haroldo L Lledo; Maclennan, John; Morgan, Sally; Neo, Natsuki; Nichols, Holly J; Park, Sung-Hyun; Reichow, Marc K; Sakuyama, Tetsuya; Sano, Takashi; Sandwell, Rachel; Scheibner, Birgit; Smith-Duque, Chris E; Swift, Stephen A; Tartarotti, Paola; Tikku, Anahita A; Tominaga, Masako; Veloso, Eugenio A; Yamasaki, Toru; Yamazaki, Shusaku; Ziegler, Christa

    2006-05-19

    Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D. PMID:16627698

  13. Frozen magma lenses below the oceanic crust.

    PubMed

    Nedimović, Mladen R; Carbotte, Suzanne M; Harding, Alistair J; Detrick, Robert S; Canales, J Pablo; Diebold, John B; Kent, Graham M; Tischer, Michael; Babcock, Jeffrey M

    2005-08-25

    The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of approximately 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies. PMID:16121179

  14. Oxygen consumption in subseafloor basaltic crust

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Wheat, C. G.; Hulme, S.; Edwards, K. J.; Bach, W.

    2012-12-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass, yet little is known about the form and function of life in this vast subseafloor realm that covers nearly two-thirds of the Earth's surface. A deep biosphere hosted in subseafloor basalts has been suggested from several lines of evidence; yet, empirical analysis of metabolic reaction rates in basaltic crust is lacking. Here we report the first measure of oxygen consumption in young (~ 8 Ma) and cool (<25 degrees C) basaltic crust, calculated from modeling oxygen and strontium profiles in basal sediments collected during Integrated Ocean Drilling Program (IODP) Expedition 336 to 'North Pond', a sediment 'pond' on the western flank of the Mid-Atlantic Ridge (MAR), where vigorous fluid circulation within basaltic crust occurs. Dissolved oxygen concentrations increased towards the sediment-basement interface, indicating an upward diffusional supply from oxic fluids circulating within the crust. A parametric reaction-transport model suggests oxygen consumption rates on the order of 0.5-500 nmol per cubic centimeter fluid per day in young and cool basaltic crust, providing sufficient energy to support a subsurface crustal biosphere.

  15. Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust

    NASA Astrophysics Data System (ADS)

    Kemp, A. I. S.; Hawkesworth, C. J.

    2003-12-01

    contrary arguments of Kelemen (1995) and Chapter 3.18). The average age of the continental crust is old, almost 2 Ga, the processes of crust generation may have changed with time, and the early crust may have been generated and destroyed more rapidly than in more recent times (Armstrong, 1991; Bowring and Housh, 1995).

  16. Transdomes sampling of lower and middle crust

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Whitney, D. L.; Roger, F.; Rey, P. F.

    2015-12-01

    Migmatite transdomes are formed by lateral and upward flow of partially molten crust in transtension zones (pull-apart structures). In order to understand the flow leading to this type of domes, 3D numerical models were set-up to simulate the general case of an extensional domain located between two strike-slip faults (pull-apart or dilational bridge). Results show that upper crust extension induces flow of the deep, low-viscosity crust, with rapid upward movement of transdome material when extension becomes localized. At this point a rolling hinge detachment allows rapid removal of upper crust. The internal structure of transdomes includes a subvertical high strain zone located beneath the zone of localized upper crust extension; this shear zone separates two elongate subdomes of foliation that show refolded/sheath folds. Lineation tends to be oriented dominantly subhorizontal when the amount of strike-slip motion is greater than the amount of upward flow of dome rocks. Models also predict nearly isothermal decompression of transdome material and rapid transfer of ~50 km deep rocks to the near surface. These model results are compared to the structural and metamorphic history of several transdomes, and in particular the Variscan Montagne Noire dome (French Massif Central) that consists of two domes separated by a complex high strain zone. The Montagne Noire dome contains ~315 Ma eclogite bodies (U-Pb zircon age) that record 1.4 GPa peak pressure. The eclogite bodies are wrapped in highly sheared migmatite that yield 314-310 Ma monazite ages interpreted as the metamorphism and deformation age. Based on these relations we conclude that the Montagne Noire transdome developed a channel of partially molten crust that likely entrained eclogite bodies from the deep crust (~50 km) before ascending to the near-surface. One implication of this work is that the flowing crust was deeply seated in the orogen although it remained a poor recorder of peak pressure of metamorphism

  17. Mars Primordial Crust: Unique Sites for Investigating Proto-biologic Properties

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Hartmann, William K.

    2006-12-01

    The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet’s environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal “missing link” proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.

  18. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 ga.

    PubMed

    Harrison, T M; Blichert-Toft, J; Müller, W; Albarede, F; Holden, P; Mojzsis, S J

    2005-12-23

    The long-favored paradigm for the development of continental crust is one of progressive growth beginning at approximately 4 billion years ago (Ga). To test this hypothesis, we measured initial 176Hf/177Hf values of 4.01- to 4.37-Ga detrital zircons from Jack Hills, Western Australia. epsilonHf (deviations of 176Hf/177Hf from bulk Earth in parts per 10(4)) values show large positive and negative deviations from those of the bulk Earth. Negative values indicate the development of a Lu/Hf reservoir that is consistent with the formation of continental crust (Lu/Hf approximately 0.01), perhaps as early as 4.5 Ga. Positive epsilon(Hf) deviations require early and likely widespread depletion of the upper mantle. These results support the view that continental crust had formed by 4.4 to 4.5 Ga and was rapidly recycled into the mantle. PMID:16293721

  19. Contraction or expansion of the Moon's crust during magma ocean freezing?

    PubMed Central

    Elkins-Tanton, Linda T.; Bercovici, David

    2014-01-01

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. PMID:25114310

  20. Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life

    USGS Publications Warehouse

    Kargel, J.S.; Kaye, J.Z.; Head, J. W., III; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.

    2000-01-01

    We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is

  1. Osmium Isotope Straigraphy of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Bolz, V.; Levasseur, S.; Frank, M.; Hein, J.; Halliday, A.

    2004-12-01

    To interpret the changes in isotopic compositions recorded in hydrogenetic ferromanganese (Fe-Mn) crusts over time it is essential to calibrate them in terms of time. The 10Be method is only reliable for the first 10 Myr. For older parts of the crusts the Co-constant flux method is used. Both approaches however, will fail to account for any growth hiatus or erosion in the sections older than 10 Ma. Attempts at using Sr isotope stratigraphy failed because of post-depositional exchange. For osmium (Os) isotopes on the other hand, calculations of the rate of post-depositional exchange suggest that long-term records in Fe-Mn crusts are reliable. This would allow the 187Os/188Os profile of any hydrogeneous Fe-Mn crust to be fitted against the 187Os/188Os seawater record established for the last 80 Myr. This stratigraphic method would determine the age of crusts at any depth and identify changes in growth rate, cessation of growth and/or intervals of crust erosion. We tested this hypothesis on the hydrogeneous crust CD29-2 from the Central Pacific Ocean which had been subject to many previous radiogenic isotope studies. CD29-2 is a 105mm thick crust with a growth rate of 2.1mm/Myr, as determined from 10Be/9Be ratios and the Co-constant flux method. This gives a minimum age of 50 Ma for the lowermost portions of the crust. Samples were taken every 2mm through the crust which results in a time-spacing of 1Myr assuming a constant growth. For each sample the 187Os/188Os ratio and the 187Os concentration ([187Os]) were determined by ID-NTIMS. The [187Re] was measured by MC-ICPMS, allowing correction for 187 Re-decay. The corrected 187Os/188Os ratios were compared to the seawater record. Using the Be and Co time scales, the 187Os/188Os curve obtained from the crust shows a distorted version of the established seawater record. A good match is found if three hiatuses are allowed. The first hiatus of 15 Myr is assigned to the period between 13 and 28 Ma, a second one of 3 Myr to

  2. Mammalian faunal response to the Early Eocene Climatic Optimum (~53.5-48.5 mya) and a new terrestrial record of the associated carbon isotope excursion from Raven Ridge in the Uinta Basin, Colorado-Utah

    NASA Astrophysics Data System (ADS)

    Dutchak, A. R.

    2010-12-01

    Raven Ridge straddles the Colorado-Utah border on the northeastern edge of the Uinta Basin and consists of intertonguing units of the fluvial Colton and lacustrine Green River Formations. Fossil vertebrate localities along the ridge have produced a diverse mammalian fauna comprising 64 genera in 34 families. Included are the index taxa Smilodectes, Omomys, Heptodon, and Lambdotherium which suggest an age range of mid-Wasatchian (Wa5, ~53.5mya) through mid Bridgerian (Br2, ~48.5mya) for the Raven Ridge fauna. Others have shown that this time interval coincides with the onset, peak, and decline of the Early Eocene Climatic Optimum (EECO), an extended interval of globally warm temperatures following the Paleocene-Eocene Thermal Maximum (PETM) that is coincident with a large negative carbon excursion. The Raven Ridge fauna provides an excellent opportunity to investigate the effects of a lengthy interval of global warmth on mammalian diversity and ecosystem structure. To study changes in the mammalian fauna that occurred during the EECO, it was necessary to constrain the onset, peak, and decline of the EECO at Raven Ridge through chemostratigraphic correlation with established marine isotope curves. This was accomplished by analysis of approximately 300 sediment samples for Total Organic Carbon (TOC) content. TOC has been used successfully in the Bighorn Basin to identify the stratigraphic occurrence of the Carbon Isotope Excursion (CIE) associated with the PETM, which has roughly the same amplitude as the negative excursion associated with the EECO. The Raven Ridge TOC data show a large negative carbon excursion that starts during the Wa6 biochron, peaks during the Wa7 biochron, and is followed by a positive excursion near the Wa-Br boundary. This terrestrial δ13C pattern is consistent with results seen in established marine isotope curves across the EECO interval. The minimum δ13C value of the negative excursion is -29.67‰, which is comparable to the Bighorn CIE

  3. Partial melting of subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Peacock, Simon M.; Rushmer, Tracy; Thompson, Alan Bruce

    1994-01-01

    The conditions under which partial melting of subducting oceanic crust occurs can be determined by combining a partial melting model for basaltic compositions with two-dimensional thermal models of subduction zones. For porosities of approximately 1% containing H2O the amount of partial melt generated at the wet basaltic solidus is limited to less than 5 vol%. At higher temperatures (approximately 1000 C at 1.5 GPa) large amounts of partial melt, up to 50 vol%, form by the breakdown of amphibole and the release of structurally bound H2O. In most subduction zones, substantial partial melting of subducting oceanic crust will only occur if high shear stresses (greater than approximately 100 MPa) can be maintained by rocks close to, or above, their melting temperatures. In the absence of high shear stresses, substantial melting of the oceanic crust will only occur during subduction of very young (less than 5 Ma) oceanic lithosphere. Partial melting of hydrated basalt (amphibolites) derived from the mid-ocean ridge has been proposed as being responsible for the generation of certain recent high-Al andesitic to dacitic volcanic rocks (adakites). Three of these volcanic suites (Mount St. Helens, southern Chile, and Panama) occur in volcanic arcs where oceanic crust less than 25 Ma is being subducted at rates of 1 - 3 cm/yr and the calculated thermal regime is several hundreds of degrees hotter than more typical subduction zone environments. However, oceanic lithosphere is not currently being subducted beneath Baja and New Guinea, where recent adakites are also present, suggesting that some adakite magmas may form by water-undersaturated partial melting of underplated mafic lower crust or previously subducted oceanic crust. Further experimental work on compositions representative of oceanic crust is required to define the depth of possible adakite source regions more accurately.

  4. Terrestrial photovoltaic measurements, 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following major topics are discussed; (1) Terrestrial solar irradiance; (2) Solar simulation and reference cell calibration; and (3) Cell and array measurement procedures. Numerous related subtopics are also discussed within each major topic area.

  5. Sr and Nd isotopic variations in ferromanganese crusts from the Central Pacific: Implications for age and source provenance

    USGS Publications Warehouse

    Futa, K.; Peterman, Z.E.; Hein, J.R.

    1988-01-01

    Isotopic analyses of two hydrogenetic ferromanganese (Fe-Mn) crusts from volcanic edifices in the central Pacific Ocean reveal systematic variations in 87Sr 86Sr and 143Nd 144Nd, with both ratios decreasing as a function of depth into the Fe-Mn crusts. Leaching experiments suggest that Sr in the crusts is contained in at least two discrete sites. A loosely bound Sr, dominated by modern marine Sr, is removed by leaching with a 10 percent acetic acid solution. The 87Sr 86Sr ratio of the residue is significantly less than the 87Sr 86Sr ratio of the unleached material. The Sr-isotope ratios of leached samples are compared with the temporal variation in seawater to provide ages for layers within the Fe-Mn crusts. These data suggest that the oldest crust layers began to accrete in the early to middle Miocene. Correlated to the 87Sr 86Sr variations, 143Nd 144Nd ratios suggest that the Nd-isotope composition of central Pacific Ocean seawater also changed systematically over this time interval, or that the Fe-Mn crusts simply incorporated Nd from various parts of an isotopieally heterogeneous ocean as the crusts were carried along with the oceanic plate. In contrast to the layered ferromanganese crust, the phosphatized volcaniclastic substrates have Sr and Nd isotope compositions that are consistent with their volcanic origin. ?? 1988.

  6. Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.

    2013-01-01

    New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.

  7. The formation processes and isotopic structure of continental crust of the Chingiz Range Caledonides (Eastern Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.; Shatagin, K. N.; Kovach, V. P.; Tretyakov, A. A.

    2015-11-01

    According to this paper, the juvenile crust of the Chingiz Range Caledonides (Eastern Kazakhstan) was formed due to suprasubduction magmatism within the Early Paleozoic island arcs developed on the oceanic crust during the Cambrian-Early Ordovician and on the transitional crust during the Middle-Late Ordovician, as well as to the attachment to the arcs of accretionary complexes composed of various oceanic structures. Nd isotopic compositions of the rocks in all island-arc complexes are very similar and primitive (ɛNd(t) from +4.0 to +7.0) and point to a short crustal prehistory. Further increase in the mass and thickness of the crust of the Chingiz Range Caledonides was mainly due to reworking of island-arc complexes in the basement of the Middle and Late Paleozoic volcanoplutonic belts expressed by the emplacement of abundant granitoids. All Middle and Late Paleozoic granitoids have high positive values of ɛNd(t) (at least +4), which are slightly different from Nd isotopic compositions of the rocks in the Lower Paleozoic island-arc complexes. Granitoids are characterized by uniform Nd isotopic compositions (<2-3 ɛ units for granites with a similar age), and thus we can consider the Chingiz Range as the region of the Caledonian isotope province with an isotopically uniform structure of the continental crust.

  8. The Continental Crust: A Geophysical Approach

    NASA Astrophysics Data System (ADS)

    Christensen, Nikolas I.

    Nearly 80 years ago, Yugoslavian seismologist Andrija Mohorovicic recognized, while studying a Balkan earthquake, that velocities of seismic waves increase abruptly at a few tens of kilometers depth , giving rise to the seismological definition of the crust. Since that discovery, many studies concerned with the nature of both the continental and oceanic crusts have appeared in the geophysical literature.Recently, interest in the continental crust has cascaded. This is largely because of an infusion of new data obtained from major reflection programs such as the Consortium for Continental Reflection Profiling (COCORP) and British Institutions Reflection Profiling Syndicate (BIRPS) and increased resolution of refraction studies. In addition, deep continental drilling programs are n ow in fashion. The Continental Crust: A Geophysical Approach is a summary of present knowledge of the continental crust. Meissner has succeeded in writing a book suited to many different readers, from the interested undergraduate to the professional. The book is well documented , with pertinent figures and a complete and up-to-date reference list.

  9. Growth of the lower continental crust

    NASA Technical Reports Server (NTRS)

    Rudnick, Roberta L.

    1988-01-01

    One of the largest uncertainties in crustal composition and growth models is the nature of the lower continental crust. Specifically, by what processes is it formed and modified, and when is it formed, particularly in reference to the upper crust? The main reason for this lack of information is the scarcity of lower crustal rock samples. These are restricted to two types: rocks which outcrop in granulite facies terrains and granulite facies xenoliths which are transported to the earth's surface by young volcanics. The important conclusions arising from the xenolith studies are: the majority of mafic lower crustal xenoliths formed through cumulate process, resitic xenoliths are rare; and formation and metamorphism of the deep crust is intimately linked to igneous activity and/or orogeny which are manifest in one form or another at the earth's surface. Therefore, estimates of crustal growth based on surface exposures is representative, although the proportion of remobilized pre-existing crust may be significantly greater at the surface than in the deep crust.

  10. Platinum stable isotopes in ferromanganese crust and nodules

    NASA Astrophysics Data System (ADS)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  11. Some Remarks on Terrestrial and Lunar Anorthosite Textures and Their Petrogenetic Significance

    NASA Astrophysics Data System (ADS)

    San-Miguel-Arribas, A.

    1994-07-01

    episodes. Due to the lack of information on field relations among pristine lunar anorthosites, it is difficult to make direct comparisons with their terrestrial analogs about their modes of emplacement. However, their textural resemblance suggests that they were formed by similar processes. Lunar tectonism, induced by the Earth's gravitational pull, may have been very significant during the early stages of evolution of the Earth-Moon system, when both planetary bodies were significantly closer. Such tectonic activity may have favored the intrusion of anorthositic masses in the lunar proto-crust in a way similar to the terrestrial case. Thus, a large diversity of pressure and temperature regimes can be envisioned to occur at different emplacement locations. As magma crystallization proceeds, new intruding bodies may collide with previously-formed crustal materials and may thus facilitate recrystallization and granulation of precursor igneous suites. These conditions are not unlike those achieved upon continental collisions in the terrestrial examples and, therefore, a similar evolution of such akin rock types can be expected. This model of anorthosite evolution constitutes an alternative to classical lunar magma ocean concepts.

  12. Astrobiological and Planetary Exploration Implications of Microbial Ichnofossils in Terrestrial Basaltic Glasses

    NASA Astrophysics Data System (ADS)

    Bridge, N. J.; Izawa, M. M.; Banerjee, N. R.; Flemming, R. L.; Schultz, C.

    2009-05-01

    Over the past decade, studies have demonstrated that terrestrial basaltic glass in pillow rims and hyaloclastites are suitable microbial habitats. Microbes rapidly begin colonizing the glassy surfaces along fractures and cracks that have been exposed to water. Microbial colonization of basaltic glass leads to the alteration and modification of the rocks to produce characteristic granular and/or tubular bioalteration textures. The early precipitation of sub-micron titanite grains within the biologically etched alteration structures serves as an agent for preservation that may persist for geologically extended periods of time in the absence of later penetrative deformation. These microbial alteration structures have been observed in several Archean greenstone belts including the Abitibi greenstone belt (2.7 Ga), Pilbara craton (3.35 Ga), and the Barberton greenstone belt (3.5 Ga). Archean subaqueous volcanic rocks provide an excellent analogue for a potential habitat for possible early Martian life, given that basaltic rocks are a major component of the Martian crust. A wide variety of recent evidence strongly suggests the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander, and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Beyond Mars, other solar system bodies, notably Europa, Enceladus, and other icy satellites, may well host subaqueous basaltic glasses. We will explore the implications of the newly discovered geological record of basaltic glass bioalteration and basaltic glass as a microbial habitat for planetary exploration and astrobiology.

  13. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2013-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  14. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-01

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars. PMID:19423810

  15. The crust of Iceland- a reassessment

    NASA Astrophysics Data System (ADS)

    Longhinos, Biju

    2014-05-01

    The evolving knowledge is at variance with the expectations build upon the idea of an island in making, around Iceland. Shallow thick crusted Shetland-Greenland ridge, extensive distribution of old and continental rocks along Mid Atlantic Ridge, granitic and dolomitic xenoliths in Quaternary Icelandic lava, rhyolitic to dacitic central volcanoes, voluminous pumice drifted onto eastern shores of Atlantic are a few among the valid reasons to consider that the Iceland bears a hidden continental crust. In present study, gravity, seismic and magnetic data over Iceland were scrutinized to pick up continental characteristics. To test the hypothesis here, Iceland is considered as remnant continent, which failed to be eaten up by mantle during Cenozoic basification. It denies any chance for lithospheric spreading centered to Iceland and looks at crustal- mantle hybridization processes resulting in basalt and its derivatives ( crustal basification) as alternative explanation to the exotic ( in terms of plate tectonics) geological and geophysical behaviour of Icelandic crust.

  16. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  17. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an

  18. Crusted scabies and multiple dosages of ivermectin.

    PubMed

    Ortega-Loayza, Alex G; McCall, Calvin O; Nunley, Julia R

    2013-05-01

    We present the case of a bone marrow transplant patient who was diagnosed with crusted scabies but did not respond to the usual approach with topical permethrin and ivermectin. The Centers for Disease Control and Prevention were contacted and suggested a 7-dose regimen of ivermectin. The patient started to improve remarkably after the third dose, and the skin eruption was resolved after 7 doses. This case supports the use of a more prolonged course of oral ivermectin for crusted scabies in those who fail the conventional approach. PMID:23652958

  19. Evolution of the lunar highland crust

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.; Bence, A. E.

    1975-01-01

    The evolution of three distinct element associations in the lunar highland crust is discussed in terms of the Taylor-Jakes model which involves melting of most of the moon during accretion. Sources for (1) high Ca, Al, Sr, Eu, (2) high Mg and Cr, and (3) high K, REE, Zr, Hf, Nb are suggested. Bombardment by large projectiles during the differentiation process causes melting and mixing, which produces a wide range of compositions in the crust. The formation of dunite, troctolite, high-, medium-, and low-K Fra Mauro basalts, and rocks close to the olivine-spinel-plagioclase peritectic point is considered.

  20. Towards self-consistent modelling of the Martian dichotomy: Coupled models of simultaneous core and crust formation

    NASA Astrophysics Data System (ADS)

    Keller, T.; Golabek, G.; Gerya, T. V.; Connolly, J.

    2009-04-01

    One of the most striking surface features on Mars is the crustal dichotomy. The crustal dichotomy, a large difference in elevation and crustal thickness between the southern highlands and the northern lowlands, is the oldest geological feature on Mars. It was formed more than 4.1 Ga ago [Solomon et al., 2005; Nimmo and Tanaka, 2005; Frey, 2006] owing to either exogenic [e.g. Nimmo et al., 2008; Andrews-Hanna et al., 2008] or endogenic processes [e.g. Zhong and Zuber, 2001; Roberts and Zhong, 2006; Keller and Tackley, 2009]. Based on the geochemical analysis of SNC meteorites it was suggested that a primordial crust with up to 45 km thickness can be formed already during the Martian core formation [Norman, 1999]. The final accretion stage of terrestrial planets is based on stochastically distributed impacts [e.g. Chambers, 2004; Rubie et al., 2007]. Therefore we suggest that the sinking of iron diapirs, delivered by late pre-differentiated impactors, might have induced shear heating-related temperature anomalies in the mantle, which fostered the formation of early Martian crust. In this study, we examine parameter sets that will likely cause an onset of hemispherical low-degree mantle convection directly after, and coupled to, an already asymmetrical core formation. To test this hypothesis we use a numerical model, where we self-consistently couple the formation of the Martian iron core to the onset of mantle convection and crust formation. We perform 2D spherical simulations using the code I2ELVIS applying the newly developed "spherical-Cartesian" methodology [Gerya and Yuen, 2007]. It combines finite differences on a fully staggered rectangular Eulerian grid and Lagrangian marker-in-cell technique for solving momentum, continuity and temperature equations as well as Poisson equation for gravity potential in a self-gravitating planetary body. In this model, the planet is surrounded by a low viscosity, massless fluid ("sticky air") to simulate a free surface

  1. MODIS-Derived Terrestrial Primary Production

    NASA Astrophysics Data System (ADS)

    Zhao, Maosheng; Running, Steven; Heinsch, Faith Ann; Nemani, Ramakrishna

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14-26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or

  2. Mass and Composition of the Continental Crust Estimated Using the CRUST2.0 Model

    NASA Astrophysics Data System (ADS)

    Peterson, B. T.; Depaolo, D. J.

    2007-12-01

    The mass, age, and chemical composition of the continental crust are fundamental data for understanding Earth differentiation. The inaccessibility of most of the volume of the crust requires that inferences be made about geochemistry using seismic and heat flow data, with additional constraints provided by scarce lower crustal samples (Rudnick and Fountain, Rev. Geophys., 1995; Rudnick and Gao, Treatise on Geochem., 2003). The global crustal seismic database CRUST2.0 (Bassin, et al., EOS, 2000; Mooney, et al., JGR, 1998; hereafter C2) provides a useful template with which the size and composition of the continents can be assessed, and may be a useful vehicle to organize and analyze diverse geochemical data. We have used C2 to evaluate the modern mass and composition of the continental crust and their uncertainties, and explored our results in the context of global mass balances, such as continents versus depleted mantle. The major source of uncertainty comes from the definition of "continent." The ultimate constraint is the total mass of Earth's crust (oceanic + continental), which, from C2, is 2.77 (in units of 1022 kg). Using crustal thickness as a definition of continent, the mass of continental crust (CC) is 2.195 if the minimum thickness is 12-18km, 2.085 for 22.5km, 2.002 for 25km, and 1.860 for 30km. These numbers include all sediment as continental crust. Using C2 definitions to distinguish oceanic and continental crust (and including oceanic plateaus which contain some continental crust), we calculate the CC mass as 2.171. To estimate chemical composition, we use the C2 reservoir masses. For minimum thickness of 22.5km, C2 yields the proportions 0.016 oceanic sediment, 0.038 continental sediment, 0.321 upper crust, 0.326 middle crust, 0.299 lower crust. Upper, middle, and lower crust are assigned compositions from Rudnick and Gao (2003), continental sediments are assigned upper crust composition, and oceanic sediments are assigned GLOSS composition (Plank

  3. Microbial Life of North Pacific Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep

  4. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.

    PubMed

    Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T

    2016-01-01

    Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. PMID:26917241

  5. Reconstruction of food webs in biological soil crusts using metabolomics.

    NASA Astrophysics Data System (ADS)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Nunes Da Rocha, Ulisses; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-04-01

    Biological soil crusts (BSCs) are communities of organisms inhabiting the upper layer of soil in arid environments. BSCs persist in a dessicated dormant state for extended periods of time and experience pulsed periods of activity facilitated by infrequent rainfall. Microcoleus vaginatus, a non-diazotrophic filamentous cyanobacterium, is the key primary producer in BSCs in the Colorado Plateau and is an early pioneer in colonizing arid environments. Over decades, BSCs proceed through developmental stages with increasing complexity of constituent microorganisms and macroscopic properties. Metabolic interactions among BSC microorganisms probably play a key role in determining the community dynamics and cycling of carbon and nitrogen. However, these metabolic interactions have not been studied systematically. Towards this goal, exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including many novel compounds. Overall, Microcoleus vaginatus was found to release and utilize a broad range of metabolites. Many of these metabolites were also taken up by heterotrophs but there were surprisingly few metabolites uptaken by all isolates. This points to a competition for a small set of central metabolites and specialization of individual heterotrophs towards a diverse pool of available organic nutrients. Overall, these data suggest that understanding the substrate specialization of biological soil crust bacteria can help link community structure to nutrient cycling.

  6. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  7. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  8. Terrestrial-Imaging Spectroscopy

    NASA Technical Reports Server (NTRS)

    Vane, Gregg A.; Goetz, Alexander F. H.

    1990-01-01

    Report reviews history and state of art of terrestrial imaging spectroscopy. Discusses history, design, and performance of Airborne Imaging Spectrometer (AIS), which is pioneering sensor for terrestrial high-resolution remote sensing. Also discusses recent developments described in literature of imaging spectroscopy from three points of view: techniques for handling and analysis of spectral-image data, geological research, and botanical research. This field encompasses use of airborne and spaceborne imaging spectrometers to generate specialized maps for use in agriculture, geology, ecology, and related disciplines.

  9. Collective excitations in neutron-star crusts

    NASA Astrophysics Data System (ADS)

    Chamel, N.; Page, D.; Reddy, S.

    2016-01-01

    We explore the spectrum of low-energy collective excitations in the crust of a neutron star, especially in the inner region where neutron-proton clusters are immersed in a sea of superfluid neutrons. The speeds of the different modes are calculated systematically from the nuclear energy density functional theory using a Skyrme functional fitted to essentially all experimental atomic mass data.

  10. Norwegian crusted scabies: an unusual case presentation.

    PubMed

    Maghrabi, Michael M; Lum, Shireen; Joba, Ameha T; Meier, Molly J; Holmbeck, Ryan J; Kennedy, Kate

    2014-01-01

    Scabies is a contagious condition that is transmitted through direct contact with an infected person and has been frequently associated with institutional and healthcare-facility outbreaks. The subtype Norwegian crusted scabies can masquerade as other dermatologic diseases owing to the heavy plaque formation. Successful treatment has been documented in published reports, including oral ivermectin and topical permethrin. Few case studies documenting the treatment of Norwegian crusted scabies have reported the use of surgical debridement as an aid to topical and/or oral treatment when severe plaque formation has been noted. A nursing home patient was admitted to the hospital for severe plaque formation of both feet. A superficial biopsy was negative for both fungus and scabies because of the severity of the plaque formation on both feet. The patient underwent a surgical, diagnostic biopsy of both feet, leading to the diagnosis of Norwegian crusted scabies. A second surgical debridement was then performed to remove the extensive plaque formation and aid the oral ivermectin and topical permethrin treatment. The patient subsequently made a full recovery and was discharged back to the nursing home. At 2 and 6 months after treatment, the patient remained free of scabies infestation, and the surgical wound had healed uneventfully. The present case presentation has demonstrated that surgical debridement can be complementary to the standard topical and oral medications in the treatment of those with Norwegian crusted scabies infestation. PMID:24370484

  11. Resonant shattering of neutron star crusts.

    PubMed

    Tsang, David; Read, Jocelyn S; Hinderer, Tanja; Piro, Anthony L; Bondarescu, Ruxandra

    2012-01-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (SGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ∼10{46}-10{47}  erg of energy seconds before the merger of a NS-NS or NS-black-hole binary. Such properties are consistent with Swift/BAT detections of SGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. PMID:22304251

  12. Lunar apatite with terrestrial volatile abundances.

    PubMed

    Boyce, Jeremy W; Liu, Yang; Rossman, George R; Guan, Yunbin; Eiler, John M; Stolper, Edward M; Taylor, Lawrence A

    2010-07-22

    The Moon is thought to be depleted relative to the Earth in volatile elements such as H, Cl and the alkalis. Nevertheless, evidence for lunar explosive volcanism has been used to infer that some lunar magmas exsolved a CO-rich and CO(2)-rich vapour phase before or during eruption. Although there is also evidence for other volatile species on glass spherules, until recently there had been no unambiguous reports of indigenous H in lunar rocks. Here we report quantitative ion microprobe measurements of late-stage apatite from lunar basalt 14053 that document concentrations of H, Cl and S that are indistinguishable from apatites in common terrestrial igneous rocks. These volatile contents could reflect post-magmatic metamorphic volatile addition or growth from a late-stage, interstitial, sulphide-saturated melt that contained approximately 1,600 parts per million H(2)O and approximately 3,500 parts per million Cl. Both metamorphic and igneous models of apatite formation suggest a volatile inventory for at least some lunar materials that is similar to comparable terrestrial materials. One possible implication is that portions of the lunar mantle or crust are more volatile-rich than previously thought. PMID:20651686

  13. Terrestrial and Reactor Antineutrinos in Borexino

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Calaprice, F. P.; Rothschild, C. G.

    1998-10-01

    The Earth is an abundant source of antineutrinos coming from the decay of radioactive elements in the mantle and crust. Detecting these antineutrinos is a challenge due to their small cross section and low energies. The Borexino solar neutrino experiment will also be an excellent detector for barν_e. With 300 tons of ultra-low-background liquid scintillator, surrounded by an efficient muon veto, the inverse-β-decay reaction: barνe + p arrow e^+ + n (Q = 1.8 MeV), can be exploited to detect terrestrial antineutrinos from the uranium and thorium decay chains, with little background. A direct measurement of the total uranium and thorium abundance would establish important geophysical constraints on the heat generation and thermal history of the Earth. Starting with the most recent uranium and thorium distribution and abundance data, and employing a global map of crustal type and thickness, we calculated the antineutrino fluxes for several sites. We estimate a terrestrial antineutrino event rate in Borexino of 10 events per year. This small signal can be distinguished over the neutrino background from the world's nuclear power reactors by measuring the positron energy spectrum from the barνe events. The possibility to perform a long-baseline oscillation experiment, reaching Δ m^2 ≈ 10-6 eV^2, using the nuclear reactors in Europe will also be discussed.

  14. Misho mafic complex - A part of paleotethyan oceanic crust or a magmatism in continental rift?

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Zohreh; Jahangiri, Ahmad; Saccani, Emilio; Dilek, Yildirim

    2013-04-01

    Misho Mafic Complex (NW Iran) represents a significant component of the West Cimmerian domain in Paleo-Tethys. The Misho Mafic Complex (MMC) consists of gabbro (mainly) and norıte,olivine gabbro, anorthosite and diorite with the east- west sereight. MMC has ıntrussıved ın Kahar sedımrtery Infta- Cambrıan rocks, crosscut by abundant basaltic dykes and the overlying basaltic sheeted dyke complex. Kahar sedimentary rocks are representing the northern margin of Gondwana. Misho mafic complex are covered by Permian sedimentary rocks. The gabbros and basaltic dykes have MORB affinities. MMC formed as a product of interactions between a depleted MORB-type asthenosphere and plume-type material. Mafic rocks represent an early Carboniferous magmatic event developed during the continental break-up of the northern edge of Gondwanaland that led to the opening of Paleotethys. Alternatively, these magmas may have been emplaced into the continental crust at the continental margin soon after the oceanic crust was formed (that is the oceanic crust was still narrow). There is no data for discriminating between these two hypotheses. In first hypothesis MMC is a part of ophiolites related to paleotethyan oceanic crust and the rocks that were above this crustal level should have necessarily been eroded. In another hypothesis Misho complex represents an aborted rift in a triple junction. Above a mantle plume, the continental crust breaks along three directions at 120 degrees. But, soon after, the extension proceeds along two of these three direction. Between them is formed the oceanic crust. The continental extension along the third direction is aborted. Here no oceanic crust if formed and there is only rifted, thinned continental crust. But, also in the aborted branch MORB magmatism can occur for short time. In this hypothesis, the Misho complex was never associated with oceanic crust, but was anyway associated with the opening of the Paleotethys. This magmatism was originally

  15. Terrestrial heat flow in the North Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Pandey, Om Prakash

    1981-07-01

    Large variations in terrestrial heat flow from 21 to 209 mW/m 2 have been observed over the North Island, New Zealand. This is generally in good agreement with the pattern of existing geological and geophysical observations. A high heat flow zone with a value of 92 ±3 mW/m 2, which corresponds to melting temperatures near the base of the crust, is delineated in the northern part of the Taranaki Basin. In the rest of the island, heat flow appears to be low to normal, but some isolated high values are also found. Observed results are interpreted in terms of crust and mantle structure in a region of plate subduction.

  16. Geophysical and geochemical nature of relaminated arc-derived lower crust underneath oceanic domain in southern Mongolia

    NASA Astrophysics Data System (ADS)

    Guy, Alexandra; Schulmann, Karel; Janoušek, Vojtěch; Å típská, Pavla; Armstrong, Robin; Belousova, Elena; Dolgopolova, Alla; Seltmann, Reimar; Lexa, Ondrej; Jiang, Yingde; Hanžl, Pavel

    2015-05-01

    The Central Asian Orogenic Belt (CAOB) in southern Mongolia consists of E-W trending Neoproterozoic cratons and Silurian-Devonian oceanic tectonic zones. Previous study revealed that the Early Paleozoic accretionary wedge and the oceanic tectonic zone are underlain by a layer giving a homogeneous gravity signal. Forward gravity modelling suggests that this layer is not formed of high-density material typical of lower oceanic crust but is composed of low- to intermediate-density rocks resembling continental crust. The nature of this lower crust is constrained by the whole-rock geochemistry and zircon Hf isotopic signature of abundant Late Carboniferous high-K calc-alkaline and Early Permian A-type granitoids intruding the two Early Paleozoic domains. It is possible to explain the genesis of these granitoids by anatexis of juvenile, metaigneous (tonalitic-gabbroic) rocks of Late Cambrian age, the source of which is presumed to lie in the "Khantaishir" arc (520-495 Ma) further north. In order to test this hypothesis, the likely modal composition and density of Khantaishir arc-like protoliths are thermodynamically modelled at granulite- and higher amphibolite-facies conditions. It is shown that the current average density of the lower crust inferred by gravity modelling (2730 ± 20 kg/m3) matches best metamorphosed leucotonalite to diorite. Based on these results, it is now proposed that Mongolian CAOB has an architecture in which the accretionary wedge and oceanic upper crust is underlain by allochthonous lower crust that originated in a Cambrian arc. A tectonic model explaining relamination of allochthonous felsic to intermediate lower crust beneath mafic upper crust is proposed.

  17. Geophysical and geochemical nature of relaminated arc-derived lower crust underneath oceanic domain in southern Mongolia

    NASA Astrophysics Data System (ADS)

    Guy, Alexandra; Schulmann, Karel; Janoušek, Vojtech; Štípská, Pavla; Armstrong, Robin; Belousova, Elena; Dolgopolova, Alla; Seltmann, Reimar; Lexa, Ondrej; Jiang, Yingde; Hanžl, Pavel

    2016-04-01

    The Central Asian Orogenic Belt (CAOB) in southern Mongolia consists of E-W trending Neoproterozoic cratons and Silurian-Devonian oceanic tectonic zones. Previous study revealed that the Early Paleozoic accretionary wedge and the oceanic tectonic zone are underlain by a layer giving a homogeneous gravity signal. Forward gravity modelling suggests that this layer is not formed of high-density material typical of lower oceanic crust but is composed of low- to intermediate-density rocks resembling continental crust. The nature of this lower crust is constrained by the whole-rock geochemistry and zircon Hf isotopic signature of abundant Late Carboniferous high-K calc-alkaline and Early Permian A-type granitoids intruding the two Early Paleozoic domains. It is possible to explain the genesis of these granitoids by anatexis of juvenile, metaigneous (tonalitic-gabbroic) rocks of Late Cambrian age, the source of which is presumed to lie in the "Khantaishir" arc (520-495Ma) further north. In order to test this hypothesis, the likely modal composition and density of Khantaishir arc-like protoliths are thermodynamically modelled at granulite- and higher amphibolite-facies conditions. It is shown that the current average density of the lower crust inferred by gravity modelling (2730 ±20kg/m3) matches best metamorphosed leucotonalite to diorite. Based on these results, it is now proposed that Mongolian CAOB has an architecture in which the accretionary wedge and oceanic upper crust is underlain by allochthonous lower crust that originated in a Cambrian arc. A tectonic model explaining relamination of allochthonous felsic to intermediate lower crust beneath mafic upper crust is proposed.

  18. Compositional dependence of sulfur speciation in Terrestrial and Martian magmas

    NASA Astrophysics Data System (ADS)

    Nash, William; Wood, Bernard; Smythe, Duane

    2016-04-01

    The capacity of magmas to transport sulfur from mantle to crust strongly influences a planet's surface chemistry. Sulfur is perhaps exceptional among the elements in the diversity of it's chemical speciation, exhibiting four redox species at geologically relevant conditions: sulfide (2-), elemental sulfur (0), sulfite (4+) and sulphate (6+). Furthermore, the solubility of sulfur in a magma (and hence the magma's capacity for delivering mantle-derived sulfur to the crust) depends critically on it's oxidation state. Our aim with this experimental study was to quantitatively determine the chemical speciation of sulfur within several common magmas, as a function of oxygen fugacity (fO2). We have performed a series of experiments on six sulfur-bearing silicate melts, which together represent a broad range of naturally occurring compositions: two putative Martian basalts, two terrestrial MORBs (one primitive, one evolved), an andesite, and a dacite. These melts were equilibrated together (at one-atmosphere pressure, 1300°C) with various CO-CO2-SO2 gas mixtures, which imposed a range of fO2s. This range spanned -2 to +1.6 log units (relative to the Quartz-Fayalite-Magnetite or QFM buffer), and the step-size was 0.25 log units. The quenched glasses were analyzed by X-ray Absorption Spectroscopy (specifically XANES) at the Diamond synchrotron (UK), and the spectra obtained were used to determine the species of sulfur present in each glass. The chemical composition of each glass (including their sulfur contents) was characterized by electron-probe microanalysis. Despite the generally low concentrations of sulfur in our glasses (never exceeding 0.24 wt%), we have clearly resolved the crossover between reduced (S2-) and oxidized (S6+) species for three of our basalts. The other three melts yielded more noisy XANES spectra, and as a result their redox crossovers are visible, but less clearly resolved. For every melt composition, the redox crossover is a continuous (though

  19. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  20. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations.

    PubMed

    Griffith, L L; Shock, E L

    1997-04-25

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential. PMID:11541456

  1. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations

    NASA Technical Reports Server (NTRS)

    Griffith, L. L.; Shock, E. L.

    1997-01-01

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.

  2. Melt flow and hypersolidus deformation in the lower ocean crust: Preliminary observations from IODP Leg 345

    NASA Astrophysics Data System (ADS)

    Snow, J. E.; Koepke, J.; Falloon, T.; Abe, N.; Hoshide, T.; Akizawa, N.; Maeda, J.; Jean, M. M.; Cheadle, M. J.

    2013-12-01

    Models for the construction of the fast-spreading lower ocean crust include the gabbro glacier model (GGM), in which most crystallization occurs within a shallow melt lens and the resulting crystal mush subsides downwards and outwards by crystal sliding. Second, the Sheeted Sill Model (SSM) predicts magmatic injection at many levels in the crust, and requires rapid cooling of the lithosphere. A second set of models seeks to reconcile the relatively unevolved nature of most MORB with the existence of an extensive lower crust with both layering (in the lower crust) and highly evolved gabbros (in the upper plutonic sequence). The mechanisms involved here are melt aggregation during vertical porous flow in the lower crust as opposed to lateral sill injection and in-situ crystallization. Here we report new observations from IODP Expedition 345 to the Hess Deep Rift, where propagation of the Cocos Nazca Ridge (CNR) into young, fast-spreading East Pacific Rise (EPR) crust exposes a dismembered lower crustal section. Drilling in ~4850 m water depth produced 3 holes of 35 to 100 mbsf with ~30% recovery of primitive (Mg# 79-87) plutonic lithologies including troctolite, olivine gabbro, and olivine gabbronorite, showing cumulate textures found in layered mafic intrusions and some ophiolite complexes including: 1. Spectacular modal layering 2. Orthopyroxene very early on the liquidus compared to canonical MORB. 3. Delicate large (2-5 cm) skeletal and hopper structures in olivine. 4. Oikocrystic clinopyroxene enclosing chadacrysts different from the host assemblage. These complex relationships are only hinted at in the existing observations from the ocean floor, and will require significant lab study, however some preliminary inferences can be drawn from the petrographic observations. First, the textures observed in olivine throughout the cores are consistent with rapid crystallization, possibly due to steep thermal gradients in the lower crust. They occur early in the

  3. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition

    NASA Astrophysics Data System (ADS)

    Palin, Richard M.; White, Richard W.

    2016-01-01

    The oldest blueschists--metamorphic rocks formed during subduction--are of Neoproterozoic age, and 0.7-0.8 billion years old. Yet, subduction of oceanic crust to mantle depths is thought to have occurred since the Hadean, over 4 billion years ago. Blueschists typically form under cold geothermal gradients of less than 400 °C GPa-1, so their absence in the ancient rock record is typically attributed to hotter pre-Neoproterozoic mantle prohibiting such low-temperature metamorphism; however, modern analogues of Archaean subduction suggest that blueschist-facies metamorphic conditions are attainable at the slab surface. Here we show that the absence of blueschists in the ancient geological record can be attributed to the changing composition of oceanic crust throughout Earth history, which is a consequence of secular cooling of the mantle since the Archaean. Oceanic crust formed on the hot, early Earth would have been rich in magnesium oxide (MgO). We use phase equilibria calculations to show that blueschists do not form in high-MgO rocks under subduction-related geothermal gradients. Instead, the subduction of MgO-rich oceanic crust would have created greenschist-like rocks--metamorphic rocks formed today at low temperatures and pressures. These ancient metamorphic products can hold about 20% more water than younger metamorphosed oceanic crust, implying that the global hydrologic cycle was more efficient in the deep geological past than today.

  4. CRUST1.0: An Updated Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. E.

    2012-04-01

    We present an updated global model of Earth's crustal structure. The new model, CRUST1.0, serves as starting model in a more comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0. CRUST1.0 is defined on a 1-degree grid and is based on a new database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially follows the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html). Crustal types representing properties in the crystalline crust are assigned according to basement age or tectonic setting. The classification of the latter loosely follows that of an updated map by Artemieva and Mooney (2001) (http://www.lithosphere.info). Statistical averages of crustal properties in each of these crustal types are extrapolated to areas with no local seismic or gravity constraint. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is essentially that of our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with several near-coastal updates. In the sediment cover and the crystalline crust, updated scaling relationships are used to assign compressional and shear velocity as well as density. In an initial step toward LITHO1.0, the model is then validated against our new global group velocity maps for Rayleigh and Love waves, particularly at frequencies between 30 and 40 mHz. CRUST1.0 is then adjusted in areas of extreme misfit where we suspect deficiencies in the crustal model. These currently include

  5. Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA)

    NASA Astrophysics Data System (ADS)

    Williams, Amanda J.; Buck, Brenda J.; Soukup, Deborah A.; Merkler, Douglas J.

    2013-08-01

    Biological soil crusts (BSCs) are bio-sedimentary features that play critical geomorphic and ecological roles in arid environments. Extensive mapping, surface characterization, GIS overlays, and statistical analyses explored relationships among BSCs, geomorphology, and soil characteristics in a portion of the Mojave Desert (USA). These results were used to develop a conceptual model that explains the spatial distribution of BSCs. In this model, geologic and geomorphic processes control the ratio of fine sand to rocks, which constrains the development of three surface cover types and biogeomorphic feedbacks across intermontane basins. (1) Cyanobacteria crusts grow where abundant fine sand and negligible rocks form saltating sand sheets. Cyanobacteria facilitate moderate sand sheet activity that reduces growth potential of mosses and lichens. (2) Extensive tall moss-lichen pinnacled crusts are favored on early to late Holocene surfaces composed of mixed rock and fine sand. Moss-lichen crusts induce a dust capture feedback mechanism that promotes further crust propagation and forms biologically-mediated vesicular (Av) horizons. The presence of thick biogenic vesicular horizons supports the interpretation that BSCs are long-lived surface features. (3) Low to moderate density moss-lichen crusts grow on early Holocene and older geomorphic surfaces that display high rock cover and negligible surficial fine sand. Desert pavement processes and abiotic vesicular horizon formation dominate these surfaces and minimize bioturbation potential. The biogeomorphic interactions that sustain these three surface cover trajectories support unique biological communities and soil conditions, thereby sustaining ecological stability. The proposed conceptual model helps predict BSC distribution within intermontane basins to identify biologically sensitive areas, set reference conditions for ecological restoration, and potentially enhance arid landscape models, as scientists address impacts

  6. Batteries for terrestrial applications

    SciTech Connect

    Kulin, T.M.

    1998-07-01

    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  7. Diterpenoids of terrestrial origin.

    PubMed

    Hanson, James R

    2015-12-19

    Covering January to December 2014. Previous review, Nat. Prod. Rep., 2015, 32, 76-87 This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes, labdanes, clerodanes, abietanes, pimaranes, kauranes, cembranes and their cyclization products. There are 200 references. PMID:26514379

  8. INTRODUCED TERRESTRIAL SPECIES (FUTURE)

    EPA Science Inventory

    These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are available for 8-digit HUCs. The data are a weighted proportion of appropriate habitat overlapped by the potential...

  9. The terrestrial silica pump.

    PubMed

    Carey, Joanna C; Fulweiler, Robinson W

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO(2) concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1), accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1)) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2) levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump. PMID:23300825

  10. The Terrestrial Silica Pump

    PubMed Central

    Carey, Joanna C.; Fulweiler, Robinson W.

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr−1, accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr−1) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump. PMID:23300825

  11. Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Providência, Constança

    2016-07-01

    The Vlasov formalism is extended to relativistic mean field hadron models with nonlinear terms up to fourth order and applied to the calculation of the crust-core transition density. The effect of the nonlinear ω ρ and σ ρ coupling terms on the crust-core transition density and pressure and on the macroscopic properties of some families of hadronic stars is investigated. For that purpose, six families of relativistic mean field models are considered. Within each family, the members differ in the symmetry energy behavior. For all the models, the dynamical spinodals are calculated, and the crust-core transition density and pressure and the neutron star mass-radius relations are obtained. The effect on the star radius of the inclusion of a pasta calculation in the inner crust is discussed. The set of six models that best satisfy terrestrial and observational constraints predicts a radius of 13.6 ±0.3 km and a crust thickness of 1.36 ±0.06 km for a 1.4 M⊙ star.

  12. Temporal dynamics of salt crust patterns on a sodic playa: implications for aerodynamic roughness and dust emission potential

    NASA Astrophysics Data System (ADS)

    Nield, Joanna; Bryant, Robert; Wiggs, Giles; King, James; Thomas, David; Eckardt, Frank; Washington, Richard

    2015-04-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development on part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant dust), based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. Ridge development can change surface topography as much as 30 mm/week on fresh pan areas that have recently been reset by flooding. The corresponding change aerodynamic roughness can be as much as 3 mm/week. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  13. Solar Terrestrial Observatory Space Station Workshop Report

    NASA Technical Reports Server (NTRS)

    Roberts, W. T. (Editor)

    1986-01-01

    In response to a need to develop and document requirements of the Solar Terrestrial Observatory at an early time, a mini-workshop was organized and held on June 6, 1985. The participants at this workshop set as their goal the preliminary definition of the following areas: (1) instrument descriptions; (2) placement of instrumentation on the IOC Space Station; (3) servicing and repair assessment; and (4) operational scenarios. This report provides a synopsis of the results of that workshop.

  14. Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    NASA Astrophysics Data System (ADS)

    Breuer, Doris; Labrosse, Stephane; Spohn, Tilman

    2010-05-01

    Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core

  15. The fate of Ceres' original crust

    NASA Astrophysics Data System (ADS)

    Roberts, James H.; Rivkin, Andrew S.

    2015-11-01

    The bulk density of Ceres implies that water ice comprises a substantial fraction of Ceres’ interior. However, water ice is not stable at Ceres orbital distance and if exposed would have a loss rate of 1 km Myr-1 or more. The near-hydrostatic shape of Ceres, and relatively low melting point of ice suggests that the interior is at least partly differentiated. Because Ceres’ surface remains exposed to space, it radiates very effectively, and models predicting differentiation retain an undifferentiated crust. This would be denser than the ice shell beneath it resulting in an unstable stratification. This has led to expectations that the crust would founder and the surface of Ceres might be very smooth and relaxed. But could the crust have remained to the present day?Here, we model global-scale overturn on Ceres using both analytical two-layer linear stability analyses, and numerical models to predict the most unstable wavelength, and growth timescales for Rayleigh-Taylor instabilities. We find that for a 10 km-thick crust above a 75 km-thick ice layer, instabilities grow fastest at spherical harmonic degree l=4. The growth timescale is a function of the viscosity of the upper layer. This timescale is less than the age of the solar system unless the effective viscosity of the crust is > 1024 Pa s. We conclude that the crust of Ceres could remain at the surface if it either has some finite elastic strength over a ~800 km length scale, or is an unconsolidated regolith with a large, (> 50%) macro-porosity, such that the regolith is buoyant relative to water ice.Neither end-member for the crustal strength precludes convective activity in the underlying ice layer. However we note that a thick, porous regolith is a fantastic insulator and may promote heating of the interior and potential foundering of the regolith if the top of the ice becomes too warm. This possibility can be evaluated by models of thermal evolution (e.g., Castillo-Rogez et al., 2010). An episode of

  16. Diffuse degassing through magmatic arc crust (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Ingebritsen, S.

    2013-12-01

    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  17. Recycling of ca 4.35 Ga KREEP-Like Crust in Western Australia 4.1 Gy ago

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, J.; Albarede, F.; Harrison, T. M.

    2007-12-01

    different from granites in their present form. Thus, remelting of either hydrous oceanic crust or granites with modern Lu/Hf characteristics does not seem to be how the JH granites formed. Rather, the early crust giving rise to the JH granites may have originated from either the residual liquids after magma ocean crystallization or from melts of the last magma ocean cumulates, both of which would have been extremely differentiated with very low Lu/Hf due to garnet having crystallized at depth. Interaction with the hydrosphere, known from oxygen isotopes in JH zircons to have existed in the Hadean, would have enhanced the hydrous nature of this crust so as to constitute a suitable reservoir for the JH granites. A Rayleigh fractionation model of the terrestrial magma ocean, assuming chondritic Lu/Hf of the magma and a partition coefficient for Lu of 4 between garnet and the liquid, demonstrates that removal of either 85% of a cumulate with 25% garnet or 99% of a cumulate with 10% garnet would have left a residual liquid with 176Lu/177Hf of 0.005. Once this extremely differentiated hydrous KREEP-like proto-crust was in place, the scene was set for plate tectonics to begin and thus modern-type granites to form. The JH zircon Hf model ages place this transition at a minimum of ~4.35 Ga. The loss ultimately of this early crust, either by impacts or foundering into the deep mantle, provides an explanation for the hidden reservoir required by Hf-Nd and 142Nd isotope systematics.

  18. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  19. Evolution of the depleted mantle and growth of the continental crust: improving on the imperfect detrital zircon record

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Kemp, A. I. S.; Patchett, P. J.

    2012-04-01

    One of the basic tenets of terrestrial geochemistry is that the continental crust has been extracted from the mantle leaving the latter depleted in incompatible elements. Nd and Hf isotopes have long shown that this process has been an essential feature of the Earth throughout its history. There is wide agreement on the general nature of this process, but the details of the isotopic record—and their implications for the depletion of the mantle and the extraction of continental crust—remain debated. Recently, much attention has been given to detrital zircons in both modern and ancient sediments. An advantage of this approach is the integration of the crystallization history of the zircon from the U-Pb chronometer with its Hf isotopic composition, which can provide important information on whether the zircons have been derived from juvenile or reworked crust. One essential requirement in this approach, however, is to unambiguously determine the crystallization ages of the zircons. We suggest that this represents an important—but generally ignored—source of uncertainty in the Hf isotopic record from detrital zircons. The quality filter most often used to assess the integrity of zircon U-Pb systematics is concordance; if a zircon is concordant, it is assumed that the U-Pb age is accurate. A concordance filter is less effective in old zircons, however, because ancient Pb loss, viewed today, parallels concordia. Without the benefit from the geological context of the host rock to the zircons, it is impossible to unambiguously determine it true crystallization age. Ancient Pb loss in zircons produces an apparent age less than the true magmatic age. The initial Hf isotopic composition of these zircons, as a result, will be calculated at the wrong age and will be anomalously low (by ~2.2 epsilon Hf units per 0.1 Ga). Hf model ages, calculated from these parameters, will be artificially old and spurious. The combination of unradiogenic Hf and Hf model ages > U-Pb ages

  20. Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Dufek, Josef

    2015-09-01

    Tectonic extension and magmatism often act in concert to modify the thermal, mechanical, and chemical structure of the crust. Quantifying the effects of extension and magma flux on melting relationships in the crust is fundamental to determining the rate of crustal melting versus fractionation, magma residence time, and the growth of continental crust in rift environments. In order to understand the coupled control of tectonic extension and magma emplacement on crustal thermal evolution, we develop a numerical model that accounts for extension and thermal-petrographic processes in diverse extensional settings. We show that magma flux exerts the primary control on melt generation and tectonic extension amplifies the volume of melt residing in the crustal column. Diking into an extending crust produces hybrid magmas composed of 1) residual melt remaining after partial crystallization of basalt (mantle-derived melt) and 2) melt from partial melting of the crust (crustal melt). In an extending crust, mantle-derived melts are more prevalent than crustal melts across a range of magma fluxes, tectonic extension rates, and magmatic water contents. In most of the conditions, crustal temperatures do not reach their solidus temperatures to initiate partial melting of these igneous lithologies. Energy balance calculations show that the total enthalpy transported by dikes is primarily used for increasing the sensible heat of the cold surrounding crust with little energy contributing to latent heat of melting the crust (maximum crustal melting efficiency is 6%). In the lower crust, an extensive mush region develops for most of the conditions. Upper crustal crystalline mush is produced by continuous emplacement of magma with geologically reasonable flux and extension rates on timescales of 106 yr. Addition of tectonic effects and non-linear melt fraction relationships demonstrates that the magma flux required to sustain partially molten regions in the upper crust is within the

  1. Eu Anomalies Constrain Recycling of Lower Continental Crust

    NASA Astrophysics Data System (ADS)

    Tang, M.; Rudnick, R. L.; McDonough, W. F.; Gaschnig, R. M.; Huang, Y.

    2014-12-01

    Europium is fractionated from Sm and Gd during intra-crustal differentiation since Eu (II) strongly partitions into feldspar. Statistical analysis of Sm-Eu-Gd concentrations in over 2000 samples from the continental crust reveal that the bulk continental crust has a negative Eu anomaly. Samples include (1) shales, loess, and tillites which represent upper continental crust (n = 415); (2) amphibolite facies rocks, which represent the middle continental crust (n = 1325) and (3) granulite facies rocks (n = 845), which represent the lower continental crust. The upper and middle continental crust have a significant negative Eu anomaly, while the lower continental crust has a significant positive Eu anomaly. The Eu deficit in the upper and middle continental crust, however, cannot be compensated by the Eu excess in the lower continental crust, leaving the bulk continental crust with a negative Eu anomaly (Eu/Eu* = 0.81 ± 0.04, 95% conf.). Since the building blocks of the continental crust (mantle-derived basalts or tonalitic slab melts) do not possess a negative Eu anomaly, removal of lower continental crust, which is the only crustal reservoir enriched in Eu, is required during crustal evolution. A mass balance model of the continents, based on Sm-Eu-Gd systematics, indicates that at least 2.2-3.0 crustal masses may have been added back to the mantle over Earth history via lower crustal recycling.

  2. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  3. Eleven years of itching: a case report of crusted scabies.

    PubMed

    Kutlu, Nurdan S; Turan, Enver; Erdemir, Asli; Gürel, Mehmet S; Bozkurt, Erol

    2014-08-01

    Crusted scabies is a rare and highly contagious form of scabies that is characterized by uncontrolled proliferation of mites in the skin, extensive hyperkeratotic scaling, crusted lesions, and variable pruritus. We report the case of a 48-year-old man with an 11-year history of pruritic, hyperkeratotic, psoriasiform plaques and widespread erythematous papules that was diagnosed as crusted scabies. PMID:25184648

  4. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  5. Density Sorting During the Evolution of Continental Crust

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  6. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  7. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  8. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties. PMID:24702357

  9. The ancient lunar crust, Apollo 17 region

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1992-01-01

    The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.

  10. Composition of weakly altered Martian crust

    NASA Technical Reports Server (NTRS)

    Mustard, J. F.; Murchie, S. L.; Erard, S.

    1993-01-01

    The mineralogic and chemical composition of weakly altered crust remains an unresolved question for Mars. Dark regions hold clues to the composition since they are thought to comprise surface exposures of weakly altered crustal materials. Understanding the in situ composition of relatively pristine crustal rocks in greater detail is important for investigating basic volcanic processes. Also, this will provide additional constraints on the chemical pathways by which pristine rocks are altered to produce the observed ferric iron-bearing assemblages and inferred clay silicate, sulphate, and magnetic oxide phases. Reflectance spectra of dark regions obtained with the ISM instrument are being used to determine the basic mineralogy of weakly altered crust for a variety of regions on Mars.

  11. Temperature distribution in the crust and mantle

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Morris, S.

    1986-01-01

    In an attempt to understand the temperature distribution in the earth, experimental constraints on the geotherm in the crust and mantle are considered. The basic form of the geotherm is interpreted on the basis of two dominant mechanisms by which heat is transported in the earth: (1) conduction through the rock, and (2) advection by thermal flow. Data reveal that: (1) the temperature distributions through continental lithosphere and through oceanic lithosphere more than 60 million years old are practically indistinguishable, (2) crustal uplift is instrumental in modifying continental geotherms, and (3) the average temperature through the Archean crust and mantle was similar to that at present. It is noted that current limitations in understanding the constitution of the lower mantle can lead to significant uncertainties in the thermal response time of the planetary interior.

  12. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    PubMed Central

    Dye, Stephen T.; Guillian, Eugene H.

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth. PMID:18172211

  13. Cyclic growth in Atlantic region continental crust

    NASA Technical Reports Server (NTRS)

    Goodwin, A. M.

    1986-01-01

    Atlantic region continental crust evolved in successive stages under the influence of regular, approximately 400 Ma-long tectonic cycles. Data point to a variety of operative tectonic processes ranging from widespread ocean floor consumption (Wilson cycle) to entirely ensialic (Ampferer-style subduction or simple crustal attenuation-compression). Different processes may have operated concurrently in some or different belts. Resolving this remains the major challenge.

  14. Interworking evolution of mobile satellite and terrestrial networks

    NASA Technical Reports Server (NTRS)

    Matyas, R.; Kelleher, P.; Moller, P.; Jones, T.

    1993-01-01

    There is considerable interest among mobile satellite service providers in interworking with terrestrial networks to provide a universal global network. With such interworking, subscribers may be provided a common set of services such as those planned for the Public Switched Telephone Network (PSTN), the Integrated Services Digital Network (ISDN), and future Intelligent Networks (IN's). This paper first reviews issues in satellite interworking. Next the status and interworking plans of terrestrial mobile communications service providers are examined with early examples of mobile satellite interworking including a discussion of the anticipated evolution towards full interworking between mobile satellite and both fixed and mobile terrestrial networks.

  15. Mesoscopic pinning forces in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Seveso, S.; Pizzochero, P. M.; Grill, F.; Haskell, B.

    2016-02-01

    The crust of a neutron star is thought to be comprised of a lattice of nuclei immersed in a sea of free electrons and neutrons. As the neutrons are superfluid, their angular momentum is carried by an array of quantized vortices. These vortices can pin to the nuclear lattice and prevent the neutron superfluid from spinning down, allowing it to store angular momentum which can then be released catastrophically, giving rise to a pulsar glitch. A crucial ingredient for this model is the maximum pinning force that the lattice can exert on the vortices, as this allows us to estimate the angular momentum that can be exchanged during a glitch. In this paper, we perform, for the first time, a detailed and quantitative calculation of the pinning force per unit length acting on a vortex immersed in the crust and resulting from the mesoscopic vortex-lattice interaction. We consider realistic vortex tensions, allow for displacement of the nuclei and average over all possible orientations of the crystal with respect to the vortex. We find that, as expected, the mesoscopic pinning force becomes weaker for longer vortices and is generally much smaller than previous estimates, based on vortices aligned with the crystal. Nevertheless, the forces we obtain still have maximum values of the order of fpin ≈ 1015 dyn cm-1, which would still allow for enough angular momentum to be stored in the crust to explain large Vela glitches, if part of the star is decoupled during the event.

  16. Thickness of the magnetic crust of Mars

    NASA Astrophysics Data System (ADS)

    Voorhies, Coerte V.

    2008-04-01

    To estimate the thickness of the magnetic crust of Mars, six observational magnetic spectra are fitted with the theoretical spectrum expected from a novel, bimodal distribution of magnetic sources. Observational spectra differ, for each comes from a different map or model of variously selected and analyzed Mars Global Surveyor Magnetometer/Electron Reflectometer measurements of the vector magnetic field around Mars. The new theoretical spectrum represents fields from both compact sources and extended, laterally correlated sources on a spherical shell, so the estimated shell depth can now be doubled to obtain layer thickness. This typical magnetic crustal thickness is put at 47.8 +/- 8.4 km. The extensive sources are enormous, typically 650 km across, and account for over half the magnetic energy at low degrees. There is some indication that these sources are relatively shallow, but the typical area remains about 330,000 km2. Granted such extended sources represent magnetization of Mars' ancient crust in a core source field dominated by a reversing, areocentric paleodipole, each one arguably formed during a single polarity chron. How did such vast regions of magnetic crust form? A survey of many eligible mechanisms suggests magnetization of cooling igneous rock at minimal rates of about 1 to 0.1 km3/a during superchrons of order 15 to 150 Ma long.

  17. Pyrolysis of waste plastic crusts of televisions.

    PubMed

    Liu, Xinmin; Wang, Zhen; Xu, Dongyan; Guo, Qingjie

    2012-09-01

    The disposal of waste plastic crusts of televisions is an issue that is gaining increasing interest around the world. In this investigation, the pyrolysis and catalytic cracking of the waste television crusts mainly composed of acrylonitrile--butadiene-styrene copolymer was studied. Thermogravimetric analysis was used for initial characterization of the pyrolysis of the waste plastic, but most of the investigations were carried out using a 600 mL tubing reactor. Effects of temperature, reaction time and catalyst on the pyrolysis of the waste television crusts were investigated. The results showed that the oil yield increased with increasing temperature or with prolongation of reaction time. With increasing temperature, the generating percentage of gasoline and diesel oil increased, but the heavy oil yield decreased. Zinc oxide, iron oxide and fluid catalytic cracking catalyst (FCC catalyst) were employed to perform a series of experiments. It was demonstrated that the liquid product was markedly improved and the reaction temperature decreased 100 degrees C when FCC was used. The composition ofpyrolysis oils was analysed using gas chromatography-mass spectrometry, and they contained 36.49% styrene, 19.72% benzenebutanenitrile, 12.1% alpha-methylstyrene and 9.69% dimethylbenzene. PMID:23240191

  18. Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle

    NASA Astrophysics Data System (ADS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.

    2015-02-01

    The range in density and compressibility of Mercurian melt compositions was determined to better understand the products of a possible Mercurian magma ocean and subsequent volcanism. Our experiments indicate that the only mineral to remain buoyant with respect to melts of the Mercurian mantle is graphite; consequently, it is the only candidate mineral to have composed a primary floatation crust during a global magma ocean. This exotic result is further supported by Mercury's volatile-rich nature and inexplicably darkened surface. Additionally, our experiments illustrate that partial melts of the Mercurian mantle that compose the secondary crust were buoyant over the entire mantle depth and could have come from as deep as the core-mantle boundary. Furthermore, Mercury could have erupted higher percentages of its partial melts compared to other terrestrial planets because magmas would not have stalled during ascent due to gravitational forces. These findings stem from the FeO-poor composition and shallow depth of Mercury's mantle, which has resulted in both low-melt density and a very limited range in melt density responsible for Mercury's primary and secondary crusts. The enigmatically darkened, yet low-FeO surface, which is observed today, can be explained by secondary volcanism and impact processes that have since mixed the primary and secondary crustal materials.

  19. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    PubMed

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. PMID:25809542

  20. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event.

    PubMed

    Angel, Roey; Conrad, Ralf

    2013-10-01

    Biological soil crusts (biocrusts) are photosynthetic mats formed through an association of prokaryotic and eukaryotic microorganisms with soil particles. Biocrusts are found in virtually any terrestrial ecosystem where vascular plant coverage is abiotically limited, with drylands comprising the primary habitat for them. We studied the dynamics of the active bacterial community in two biocrusts from an arid and a hyperarid region in the Negev Desert, Israel, under light-oxic and dark-anoxic incubation conditions after simulated rainfall. We used H2(18)O for hydrating the crusts and analysed the bacterial community in the upper and lower parts of the biocrust using an RNA-stable isotope probing approach coupled with 454-pyrosequencing. In both biocrusts, two distinct bacterial communities developed under each incubation condition. The active anaerobic communities were initially dominated by members of the order Bacillales which were later replaced by Clostridiales. The aerobic communities on the other hand were dominated by Sphingobacteriales and several Alphaproteobacteria (Rhizobiales, Rhodobacterales, Rhodospirillales and Rubrobacteriales). Actinomycetales were the dominant bacterial order in the dry crusts but quickly collapsed and accounted for < 1% of the community by the end of the incubation. Our study shows that biocrusts host a diverse community whose members display complex interactions as they resuscitate from dormancy. PMID:23648088

  1. Permian and Triassic Meliata-related rift and drift processes in Eastern Alps: middle and lower crust and its potential correlation with sedimentary units

    NASA Astrophysics Data System (ADS)

    Neubauer, Franz

    2016-04-01

    The poorly studied middle and lower crust (MLC) of passive continental margins, a key plate tectonic element, is often preserved in thick-skinned tectonic wedges of mountain belts. We studied the Permian to early Norian Meliata Ocean-related rift-characteristics of MLC and detached upper crust (UC) of the Austroalpine nappes of Eastern Alps (and Western Carpathians) with the aim to assess rift models, composition and temporal and spatial distribution of magmatism. We also compare the development of UC sedimentary units with similar successions of the eastern Southalpine unit. There, rifting started already during Early Permian, and a major extensional event occurred during late Early Permian separating Lower and Upper Permian carbonate platforms. In Austroalpine units, rifting occurred later, and the response of LMC to rifting includes acidic and subordinate, mostly earlier mafic magmatism, high-temperature/low-pressure metamorphism (ca. 0.46 GPa, 540 °C), and pure and simple shear deformation in shallow parts of MLC. In UC, the poorly dated rift-onset unconformity formed in Early or Middle Permian and resulted in N-S to NE-SW striking halfgrabens filled with up to 1.5 km thick terrestrial clastics. First marine ingressions occurred during latest Permian, since Anisian carbonate deposition dominated (loss of the clastic hinterland). We recently detected a break-up angular unconformity in central Northern Calcareous Alps (NCA) on top of tilted Lower Anisian Gutenstein Limestone and wedge-shaped Middle Triassic carbonates covered by Norian Dachstein Reef Limestone indicating the break-off and spreading in the Meliata oceanic tract. In Permian evaporites, polyhalite veins and grains crystallized between 235 and 225 Ma and at ca. 210 Ma testifying intense fluid flow along normal faults similar as Anisian/Ladinian strata-bound iron and Pb-Zn-Ba-F mineralizations do. In the underlying basement, we detected similar Permian to Triassic ductile shear zones with Ar

  2. Time Scales: Terrestrial

    NASA Astrophysics Data System (ADS)

    Petit, G.; Murdin, P.

    2000-11-01

    Terrestrial time is at present derived from atomic clocks. The SI second, the unit of time of the international system of units, has been defined since 1967 in terms of a hyperfine transition of the cesium atom and the best primary frequency standards now realize it with a relative uncertainty of a few parts in 1015, which makes it the most accurately measurable physical quantity. INTERNATIONAL A...

  3. Biological soil crusts: a fundamental organizing agent in global drylands

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the

  4. Highly Siderophile Elements in Terrestrial Planets: Evidence From Shergottite Meteorites

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Puchtel, I. S.; Walker, R. J.

    2011-12-01

    Mechanisms for the emplacement of highly siderophile elements (HSE) in Earth's mantle have been debated for several decades. The chief conundrum is accounting for the high absolute and chondritic relative abundances of these elements in the terrestrial mantle, despite their strong tendency to partition into metal during core formation. Two end member models are most frequently discussed with respect to this issue. In the first model, abundances of HSE in planetary mantles are controlled by partitioning between segregating metal and silicate at high pressures, where some or all of the HSE may be considerably less siderophile, as may be appropriate for the base of a terrestrial magma ocean. A major weakness of this model is the generally chondritic HSE ratios in the mantle, which would require conditions under which the metal-silicate partitioning of all HSE would converge to approximately the same values. In the second model, termed late accretion, core extraction removes >99% of HSE from the Earth's mantle. The mantle is subsequently reseeded with HSE via continued accretion of 0.5 to 1% by mass of additional material. This model has been questioned because the timing of late accretion is poorly defined, and the mechanisms that can rapidly mix the late accreted materials to homogeneity within the mantle are difficult to envision. To examine this issue, 23 mafic to ultramafic shergottite meteorites from Mars, were measured for 187Re-187Os isotopes and HSE abundances. The objective is to gain insights on the early chemical evolution of the martian mantle to address the issue of HSE controls on the mantles of terrestrial bodies, with Mars serving as an important point of comparison to Earth. The shergottites display calculated initial 187Os/188Os ratios that correlate with the initial 143Nd/144Nd. Shergottites from mantle sources with long-term melt-depleted characteristics (initial ɛ143Nd of +36 to +40) have chondritic initial γ187Os ranging from -0.5 to +2

  5. Chemical analysis of black crust on the Angkor sandstone at the Bayon temple, Cambodia

    NASA Astrophysics Data System (ADS)

    Song, Wonsuh; Oguchi, Chiaki; Waragai, Tetsuya

    2014-05-01

    The Angkor complex is the one of the greatest cultural heritages in the world. It is constructed in the early 12th century, designated as a world cultural heritage by UNESCO in 1992. The temples at the Angkor complex are mainly made of sandstone and laterite. However, due to the tropical climate, plants, lichens and various microorganisms are growing well on the rock surface. Black crusts are also easily found on the stone surface. The 21st technical session of the International Coordinating Committee for the Safeguarding and Development of the Historic Site of Angkor (ICC-Angkor) held in 2012 recommended that to preserve both the biofilms and the forest cover and to prohibit the biocides (chlorine-based) and organic biocides. However, there are many reports that lichens and microorganisms accelerate rock weathering. It is important to clarify that how the biofilm on the Angkor temples affect Angkor sandstones. We sampled Angkor sandstone covered by black crust at the Bayon temple, Angkor complex, and observed the section and the surface of the rock sample by using SEM. Surfaces of the samples are not polished in order to observe the original condition. The samples are coated with gold for 180 seconds. The depth of the black crust is up to 1 mm. Many filamentous materials were found on the black crust. Average energy-dispersive X-ray spectroscopy data of the five areas of ca. 20 μm ×15 μm in the black crusts shows that over 80 % of the filamentous materials are compounds of carbon. It seems that these materials are hyphae. The shape of the hypha is like a thread and its size is few μm in diameter and up to several centimeters in length. Black crusts are consisted of elements and compounds of carbon, Na, Mg, Al, Si, Cl, K, Ca, and Fe. Further research has to be done to find out the better and proper way of conservation for the Angkor complex.

  6. Early Earth differentiation

    NASA Astrophysics Data System (ADS)

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation (t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10 15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally

  7. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle

    NASA Astrophysics Data System (ADS)

    Chopin, Christian

    2003-07-01

    velocities (1-2 cm/yr), especially during early stages of exhumation, and bear no relation to normal erosion rates. Important observations are that: (i) as a result of strain partitioning and fluid channelling, significant volumes of subducted crust may remain unreacted (i.e. metastable) even at conditions as high as 700°C and 3 GPa - with implications as to geophysical modeling; (ii) subducted continental crust shows no isotopic or geochemical evidence of interaction with mantle material. An unknown proportion of subducted continental crust must have escaped exhumation and effectively recycled into the mantle, with geochemical implications still to be explored, bearing in mind the above inefficiency of mixing. The repeated occurrence of UHP metamorphism, hence of continental subduction, through time and space since at least the late Proterozoic shows that it must be considered a common process, inherent to continental collision. Evidence of older, Precambrian UHP metamorphism is to be sought in high-pressure granulite-facies terranes.

  8. Evaluation of Terrestrial LIDAR for Monitoring Geomorphic Change at Archeological Sites in Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Brown, Kristin M.; Fairley, Helen C.

    2008-01-01

    This report presents the results of an evaluation of terrestrial light detection and ranging (LIDAR) for monitoring geomorphic change at archeological sites located within Grand Canyon National Park, Ariz. Traditionally, topographic change-detection studies have used total station methods for the collection of data related to key measurable features of site erosion such as the location of thalwegs and knickpoints of gullies that traverse archeological sites (for example, Pederson and others, 2003). Total station methods require survey teams to walk within and on the features of interest within the archeological sites to take accurate measurements. As a result, site impacts may develop such as trailing, damage to cryptogamic crusts, and surface compaction that can exacerbate future erosion of the sites. National Park Service (NPS) resource managers have become increasingly concerned that repeated surveys for research and monitoring purposes may have a detrimental impact on the resources that researchers are trying to study and protect. Beginning in 2006, the Sociocultural Program of the U.S. Geological Survey's (USGS) Grand Canyon Monitoring and Research Center (GCMRC) initiated an evaluation of terrestrial LIDAR as a new monitoring tool that might enhance data quality and reduce site impacts. This evaluation was conducted as one part of an ongoing study to develop objective, replicable, quantifiable monitoring protocols for tracking the status and trend of variables affecting archeological site condition along the Colorado River corridor. The overall study consists of two elements: (1) an evaluation of the methodology through direct comparison to geomorphologic metrics already being collected by total station methods (this report) and (2) an evaluation of terrestrial LIDAR's ability to detect topographic change through the collection of temporally different datasets (a report on this portion of the study is anticipated early in 2009). The main goals of the first

  9. Asteroids and Archaean crustal evolution: Tests of possible genetic links between major mantle/crust melting events and clustered extraterrestrial bombardments

    NASA Technical Reports Server (NTRS)

    Glikson, A. Y.

    1992-01-01

    Since the oldest intact terrestrial rocks of ca. 4.0 Ga and oldest zircon xenocrysts of ca. 4.3 Ga measured to date overlap with the lunar late heavy bombardment, the early Precambrian record requires close reexamination vis a vis the effects of megaimpacts. The identification of microtektite-bearing horizons containing spinals of chondritic chemistry and Ir anomalies in 3.5-3.4-Ga greenstone belts provides the first direct evidence for large-scale Archaean impacts. The Archaean crustal record contains evidence for several major greenstone-granite-forming episodes where deep upwelling and adiabatic fusion of the mantle was accompanied by contemporaneous crustal anatexis. Isotopic age studies suggest evidence for principal age clusters about 3.5, 3.0, and 2.7 (+/- 0.8) Ga, relics of a ca. 3.8-Ga event, and several less well defined episodes. These peak events were accompanied and followed by protracted thermal fluctuations in intracrustal high-grade metamorphic zones. Interpretations of these events in terms of internal dynamics of the Earth are difficult to reconcile with the thermal behavior of silicate rheologies in a continuously convecting mantle regime. A triggering of these episodes by mantle rebound response to intermittent extraterrestrial asteroid impacts is supported by (1) identification of major Archaean impacts from microtektite and distal ejecta horizons marked by Ir anomalies; (2) geochemical and experimental evidence for mantle upwelling, possibly from levels as deep as the transition zone; and (3) catastrophic adiabatic melting required to generate peridotitic komatites. Episodic differentiation/accretion growth of sial consequent on these events is capable of resolving the volume problem that arises from comparisons between modern continental crust and the estimated sial produced by continuous two-stage mantle melting processes. The volume problem is exacerbated by projected high accretion rates under Archaean geotherms. It is suggested that

  10. Synthesis of hydrocarbons in the earth's crust

    SciTech Connect

    Vanderborgh, N.E.

    1981-11-01

    This report suggests an alternative theory for the generation and migration of petroleums. Considerable evidence supports the conclusion that life processes persist deep within terrestrial and marine environments. Such in vivo processes may survive in photon-free ecologies using mechanisms that both reduce carbon dioxide and oxidize sulfides. These in vivo conversions create petroleums.

  11. Biodiversity of Klebsormidium (streptophyta) from alpine biological soil crusts (alps, tyrol, Austria, and Italy).

    PubMed

    Mikhailyuk, Tatiana; Glaser, Karin; Holzinger, Andreas; Karsten, Ulf

    2015-08-01

    Forty Klebsormidium strains isolated from soil crusts of mountain regions (Alps, 600–3,000 m elevation) were analyzed. The molecular phylogeny (internal transcribed spacer rDNA sequences) showed that these strains belong to clades B/C, D, E, and F. Seven main (K. flaccidum, K. elegans, K. crenulatum, K. dissectum, K. nitens, K. subtile, and K. fluitans) and four transitional morphotypes (K. cf. flaccidum, K. cf. nitens, K. cf. subtile, and K. cf. fluitans) were identified. Most strains belong to clade E, which includes isolates that prefer humid conditions. One representative of the xerophytic lineage (clade F) as well as few isolates characteristic of temperate conditions (clades B/C, D) were found. Most strains of clade E were isolated from low/middle elevations (<1,800 m above sea level; a.s.l.) in the pine-forest zone. Strains of clades B/C, D, and F occurred sporadically at higher elevations (1,548–2,843 m a.s.l.), mostly under xerophytic conditions of alpine meadows. Comparison of the alpine Klebsormidium assemblage with data from other biogeographic regions indicated similarity with soil crusts/biofilms from terrestrial habitats in mixed forest in Western Europe, North America, and Asia, as well as walls of buildings in Western European cities. The alpine assemblage differed substantially from crusts from granite outcrops and sand dunes in Eastern Europe (Ukraine), and fundamentally from soil crusts in South African drylands. Epitypification of the known species K. flaccidum, K. crenulatum, K. subtile, K. nitens, K. dissectum, K. fluitans, K. mucosum, and K. elegans is proposed to establish taxonomic names and type material as an aid for practical studies on these algae, as well as for unambiguous identification of alpine strains. New combination Klebsormidium subtile (Kützing) Mikhailyuk, Glaser, Holzinger et Karsten comb. nov. is made. PMID:26504252

  12. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    PubMed

    Mills, Benjamin; Lenton, Timothy M; Watson, Andrew J

    2014-06-24

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered--contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  13. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering

    PubMed Central

    Mills, Benjamin; Lenton, Timothy M.; Watson, Andrew J.

    2014-01-01

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered—contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500–500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  14. Application of Terrestrial Environments in Orion Assessments

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-earth orbit and is currently undergoing a series of tests including Exploration Test Flight (EFT) - 1. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  15. Antarctic terrestrial ecosystems

    SciTech Connect

    Walton, D.W.H.

    1987-01-01

    The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

  16. The terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1983-01-01

    The theory relating to the basic physics governing the behavior of the terrestrial ionosphere is reviewed. The review covers the coupling of the ionosphere to both the neutral atmosphere and magnetosphere, the creation and transport of ionization in the ionosphere, and the ionospheric thermal structure. The review also covers the variation of the ionosphere with altitude, latitude, longitude, universal time, season, solar cycle, and geomagnetic activity. In addition, some unique ionospheric features are discussed, such as the polar ionization hole, the main electron density trough, the ion temperature hot spots, the high-latitude ionization tongue, the equatorial fountain, Appleton's peaks, and the polar wind.

  17. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  18. Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, Gabi; Masters, Guy; Ma, Zhitu; Pasyanos, Mike

    2013-04-01

    Our new 1-by-1 degree global crustal model, CRUST1.0, was introduced last year and serves as starting model in a comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0 (Pasyanos et al., 2012). The Moho depth in CRUST1.0 is based on 1-degree averages of a recently updated database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially followed the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html) to assign elastic properties in the crystalline crust according to basement age or tectonic setting (loosely following an updated map by Artemieva and Mooney (2001; http://www.lithosphere.info). For cells with no local seismic or gravity constraints, statistical averages of crustal properties, including crustal thickness, were extrapolated. However, in places with constraints the depth to basement and mantle are given explicitly and no longer assigned by crustal type. This allows for much smaller errors in both. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3 sediment layers and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is based on our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with some near-coastal updates. In an initial step toward LITHO1.0, the model is then validated against new global surface wave disperison maps and adjusted in areas of extreme misfit. This poster presents the next validation step: compare the new Moho depths with in-situ active source and receiver function results. We also present comparisons with CRUST2.0. CRUST1.0 is

  19. Strange Star Surface: A Crust with Nuggets

    SciTech Connect

    Jaikumar, Prashanth; Reddy, Sanjay; Steiner, Andrew W.

    2006-02-03

    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient (10{sup 26} g/cm{sup 4}) and large electric fields at the surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.

  20. A crust-scale 3D structural model of the Beaufort-Mackenzie Basin (Arctic Canada)

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Scheck-Wenderoth, Magdalena; Lewerenz, Björn; Kroeger, Karsten Friedrich

    2013-04-01

    The Beaufort-Mackenzie Basin was initiated in the Early Jurassic as part of an Arctic rifted passive continental margin which soon after became overprinted by Cordilleran foreland tectonics. Decades of industrial exploration and scientific research in this petroliferous region have produced a wide spectrum of geological and geophysical data as well as geoscientific knowledge. We have integrated available grids of sedimentary horizons, well data, seismic reflection and refraction data, and the observed regional gravity field into the first crust-scale 3D structural model of the Beaufort-Mackenzie Basin. Many characteristics of this model reflect the complex geodynamic and tectonostratigraphic history of the basin. The Mesozoic-Cenozoic sedimentary part of the model comprises seven clastic units (predominantly sandy shales) of which the modelled thickness distributions allow to retrace the well-established history of the basin comprising a gradual north(east)ward shift of the main depocentres as well as diverse phases of localised erosion. As a result of this development, the present-day configuration of the basin reveals that the sedimentary units tend to be younger, more porous, and thus less dense towards the north at a constant depth level. By integrating three refraction seismic profiles and performing combined isostatic and 3D gravity modelling, we have modelled the sub-sedimentary basement of the Beaufort-Mackenzie Basin. The continental basement spans from unstretched domains (as thick as about 42 km) in the south to extremely thinned domains (of less than 5 km thickness) in the north where it probably represents transitional crust attached to the oceanic crust of the Canada Basin. The uppermost parts of the continental crust are less dense (ρ = 2710 kg/m3) and most probably made up by pre-Mesozoic meta-sediments overlying a heavier igneous and metamorphic crust (ρ = 2850 kg/m3). The presented crust-scale 3D structural model shows that the greatest

  1. Evidence for oceanic crust in the Herodotus Basin

    NASA Astrophysics Data System (ADS)

    Granot, Roi

    2016-04-01

    Some of the fundamental tectonic problems of the Eastern Mediterranean remain unresolved due to the extremely thick sedimentary cover (10 to 15 km) and the lack of accurate magnetic anomaly data. I have collected 7,000 km of marine magnetic profiles (2012-2014) across the Herodotus and Levant Basins, Eastern Mediterranean, to study the nature and age of the underlying igneous crust. The towed magnetometer array consisted of two Overhauser sensors recording the total magnetic anomaly field in a longitudinal gradiometer mode, and a fully oriented vector magnetometer. The total field data from the Herodotus Basin reveal a newly detected short sequence of long-wavelength NE-SW lineated anomalies that straddle the entire basin suggesting a deep two-dimensional magnetic source layer. The three components of the magnetic vector data indicate that an abrupt transition from a 2D to 3D magnetic structure occurs east of the Herodotus Basin, along where a prominent NE-SW gravity feature is found. Altogether, these new findings confirm that the Herodotus Basin preserves remnants of oceanic crust that formed along the Neotethyan mid-ocean ridge system. The continuous northward and counterclockwise motion of the African Plate during the Paleozoic and Mesozoic allow predicting the evolution of remanent magnetization directions, which in-turn dictate that shape of the anomalies. The shape of the Herodotus anomalies best fit Late Carboniferous to Early Permian (300±20 Myr old) magnetization directions. Finally, I will discuss the implications of these results on the tectonic architecture of the region as well as on various geodynamic processes.

  2. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-01-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  3. Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe

    USGS Publications Warehouse

    Dettweiler-Robinson, E.; Bakker, J.D.; Grace, J.B.

    2013-01-01

    Successional stage may determine strength and causal direction of interactions among abiotic and biotic factors; e.g., species that facilitate the establishment of other species may later compete with them. We evaluated multivariate hypotheses about abiotic and biotic factors shaping biological soil crusts (BSCs) in early and late successional stages. We surveyed vegetation and BSC in the shrub-steppe ecosystem of the Columbia Basin. We analyzed the relationships with bryophyte and lichen covers using structural equation models, and analyzed the relationships with BSC composition using Indicator Species Analysis and distance-based linear models. Cover, indicator species, and composition varied with successional stage. Increasing elevation and bryophyte cover had higher lichen cover early in succession; these relationships were negative in the later successional stage. Lichen cover did not appear to impede B. tectorum cover, but B. tectorum appeared to strongly negatively affect lichen cover in both stages. Biological soil crust composition varied with bunchgrass cover in the early successional stage, but with elevation and B. tectorum cover later in succession. Our findings support the hypotheses that as succession progresses, the strength and direction of certain community interactions shift, and B. tectorum leads to reductions in biological soil crust cover regardless of successional stage.

  4. The terrestrial uranium isotope cycle

    NASA Astrophysics Data System (ADS)

    Andersen, Morten B.; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W. W.; Niu, Yaoling; Kelley, Katherine A.

    2015-01-01

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high 238U/235U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have 238U/235U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years.

  5. The terrestrial uranium isotope cycle.

    PubMed

    Andersen, Morten B; Elliott, Tim; Freymuth, Heye; Sims, Kenneth W W; Niu, Yaoling; Kelley, Katherine A

    2015-01-15

    Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high (238)U/(235)U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have (238)U/(235)U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years. PMID:25592542

  6. Sensitivity of desert cryptograms to air pollutants: soil crusts and rock lichens

    USGS Publications Warehouse

    Belnap, J.

    1991-01-01

    Parks throughout the West are being faced with increasing air pollution threats from current or proposed industries near their boundaries. For this reason, it is important to understand the effects these industries may have on desert ecosystems. Rock lichens can be excellent biomonitors, acting as early warning systems of impending damage to other components of the desert ecosystem. Cryptogamic crusts, consisting mostly of cyanobacteria and lichens, may not only be excellent bioindicators, but also are an essential part of the desert ecosystem. Their presence is critical for soil stability as well as for the contribution of nitrogen to the ecosystem in a form available to higher plants. Air pollutants, such as emissions from coal-fired power plants, may threaten the healthy functioning of these non-vascular plants. The purpose of this study is to determine if, in fact, air pollutants do have an impact on the physiological functioning of cryptogamic crusts or rock lichens in desert systems and, if so, to what extent. Some results have already been obtained. Both rock lichens and cryptogamic crusts exhibit physiological damage in the vicinity of the Navajo Generating Station in Page, Arizona. Increased electrolyte leakage and chlorophyll degradation, along with reduced nitrogen fixation, have been found. Preliminary studies comparing sensitivity between substrates indicate that crusts on limestone and sandstone substrates may be more sensitive than those on gypsum.

  7. Remote sensing evidence for an ancient carbon-bearing crust on Mercury

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Klima, Rachel L.; Lawrence, David J.; Ernst, Carolyn M.; Denevi, Brett W.; Frank, Elizabeth A.; Goldsten, John O.; Murchie, Scott L.; Nittler, Larry R.; Solomon, Sean C.

    2016-04-01

    Mercury’s global surface is markedly darker than predicted from its measured elemental composition. The darkening agent, which has not been previously identified, is most concentrated within Mercury’s lowest-reflectance spectral unit, the low-reflectance material. This low-reflectance material is generally found in large impact craters and their ejecta, which suggests a mid-to-lower crustal origin. Here we present neutron spectroscopy measurements of Mercury’s surface from the MESSENGER spacecraft that reveal increases in thermal-neutron count rates that correlate spatially with deposits of low-reflectance material. The only element consistent with both the neutron measurements and visible to near-infrared spectra of low-reflectance material is carbon, at an abundance that is 1-3 wt% greater than surrounding, higher-reflectance material. We infer that carbon is the primary darkening agent on Mercury and that the low-reflectance material samples carbon-bearing deposits within the planet’s crust. Our findings are consistent with the formation of a graphite flotation crust from an early magma ocean, and we propose that the heavily disrupted remnants of this ancient layer persist beneath the present upper crust. Under this scenario, Mercury’s globally low reflectance results from mixing of the ancient graphite-rich crust with overlying volcanic materials via impact processes or assimilation of carbon into rising magmas during secondary crustal formation.

  8. Seismic imaging of deep crustal melt sills beneath Costa Rica suggests a method for the formation of the Archean continental crust

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; Rychert, Catherine A.

    2015-11-01

    Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.

  9. Terrestrial ecology of semi-aquatic giant gartersnakes (Thamnophis gigas)

    USGS Publications Warehouse

    Halstead, Brian J.; Skalos, Shannon M.; Wylie, Glenn D.; Casazza, Michael L.

    2015-01-01

    Wetlands are a vital component of habitat for semiaquatic herpetofauna, but for most species adjacent terrestrial habitats are also essential. We examined the use of terrestrial environments by Giant Gartersnakes (Thamnophis gigas) to provide behavioral information relevant to conservation of this state and federally listed threatened species. We used radio telemetry data collected 1995–2011 from adults at several sites throughout the Sacramento Valley, California, USA, to examine Giant Gartersnake use of the terrestrial environment. We found Giant Gartersnakes in terrestrial environments more than half the time during the summer, with the use of terrestrial habitats increasing to nearly 100% during brumation. While in terrestrial habitats, we found Giant Gartersnakes underground more than half the time in the early afternoon during summer, and the probability of being underground increased to nearly 100% of the time at all hours during brumation. Extreme temperatures also increased the probability that we would find Giant Gartersnakes underground. Under most conditions, we found Giant Gartersnakes to be within 10 m of water at 95% of observations. For females during brumation and individuals that we found underground, however, the average individual had a 10% probability of being located > 20 m from water. Individual variation in each of the response variables was extensive; therefore, predicting the behavior of an individual was fraught with uncertainty. Nonetheless, our estimates provide resource managers with valuable information about the importance of protecting and carefully managing terrestrial habitats for conserving a rare semiaquatic snake.

  10. Longitudinal photosynthetic gradient in crust lichens' thalli.

    PubMed

    Wu, Li; Zhang, Gaoke; Lan, Shubin; Zhang, Delu; Hu, Chunxiang

    2014-05-01

    In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens. PMID:24477924

  11. Crusted scabies in the burned patient.

    PubMed

    Berg, Jais Oliver; Alsbjørn, Bjarne

    2011-01-01

    The objectives of this study were 1) to describe a case of crusted scabies (CS) in a burned patient, which was primarily undiagnosed and led to a nosocomial outbreak in the burn unit; 2) to analyze and discuss the difficulties in diagnosing and treating this subset of patients with burn injury; and 3) to design a treatment strategy for future patients. Case analysis and literature review were performed. The index patient had undiagnosed crusted scabies (sive Scabies norvegica) with the ensuing mite hyperinfestation when admitted to the department with minor acute dermal burns. Conservative healing and autograft healing were impaired because of the condition. Successful treatment of the burns was only accomplished secondarily to scabicide treatment. An outbreak of scabies among staff members indirectly led to diagnosis. CS is ubiquitous, and diagnosis may be difficult. This is the first report of a burned patient with CS in the English language literature. CS is also highly contagious and may lead to a nosocomial outbreak. Furthermore, CS seems to have a detrimental impact on the burned patient's course of treatment. A scabicide treatment is necessary to guarantee successful treatment of the burns. PMID:21427595

  12. Surface coating for prevention of crust formation

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface.

  13. CHAMP Magnetic Anomalies of the Antarctic Crust

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo

    2003-01-01

    Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.

  14. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  15. Color characterization of Arctic Biological Soil Crusts

    NASA Astrophysics Data System (ADS)

    Mele, Giacono; Gargiulo, Laura; Ventura, Stefano

    2015-04-01

    Global climate change makes large areas lacking the vegetation coverage continuously available to primary colonization by biological soil crusts (BSCs). This happens in many different environments, included high mountains and Polar Regions where new areas can become available due to glaciers retreat. Presence of BSCs leads to the stabilization of the substrate and to a possible development of protosoil, with an increase of fertility and resilience against erosion. Polar BSCs can exhibit many different proportions of cyanobacteria, algae, microfungi, lichens, and bryophytes which induce a large variability of the crust morphology and specific ecosystem functions. An effective and easy way for identifying the BSCs in the field would be very useful to rapidly recognize their development stage and help in understanding the overall impact of climate change in the delicate polar environments. Color analysis has long been applied as an easily measurable physical attribute of soil closely correlated with pedogenic processes and some soil functions. In this preliminary work we used RGB and CIE-L*a*b* color models in order to physically characterize fourteen different BSCs identified in Spitsbergen island of Svalbard archipelago in Arctic Ocean at 79° north latitude. We found that the "redness parameter "a*" of CIE-L*a*b* model was well correlated to the succession process of some BSCs at given geomorphology condition. Most of color parameters showed, moreover, a great potential to be correlated to photosynthetic activity and other ecosystem functions of BSCs.

  16. Crusted Demodicosis in an Immunocompetent Pediatric Patient

    PubMed Central

    Gómez-Flores, Minerva; Ocampo-Candiani, Jorge

    2014-01-01

    Demodicosis refers to the infestation by Demodex spp., a saprophytic mite of the pilosebaceous unit. Demodex proliferation can result in a number of cutaneous disorders including pustular folliculitis, pityriasis folliculorum, papulopustular, and granulomatous rosacea, among others. We report the case of a 7-year-old female presenting with pruritic grayish crusted lesions over her nose and cheeks, along with facial erythema, papules, and pustules. The father referred chronic use of topical steroids. A potassium hydroxide mount of a pustule scraping revealed several D. folliculorum mites. Oral ivermectin (200 μg/kg, single dose) plus topical permethrin 5% lotion applied for 3 consecutive nights were administered. Oral ivermectin was repeated every week and oral erythromycin plus topical metronidazole cream was added. The facial lesions greatly improved within the following 3 months. While infestation of the pilosebaceous unit by Demodex folliculorum mites is common, only few individuals present symptoms. Demodicosis can present as pruritic papules, pustules, plaques, and granulomatous facial lesions. To our knowledge, this is the first reported case of facial crusted demodicosis in an immunocompetent child. The development of symptoms in this patient could be secondary to local immunosuppression caused by the chronic use of topical steroids. PMID:25371830

  17. Crusted demodicosis in an immunocompetent pediatric patient.

    PubMed

    Guerrero-González, Guillermo Antonio; Herz-Ruelas, Maira Elizabeth; Gómez-Flores, Minerva; Ocampo-Candiani, Jorge

    2014-01-01

    Demodicosis refers to the infestation by Demodex spp., a saprophytic mite of the pilosebaceous unit. Demodex proliferation can result in a number of cutaneous disorders including pustular folliculitis, pityriasis folliculorum, papulopustular, and granulomatous rosacea, among others. We report the case of a 7-year-old female presenting with pruritic grayish crusted lesions over her nose and cheeks, along with facial erythema, papules, and pustules. The father referred chronic use of topical steroids. A potassium hydroxide mount of a pustule scraping revealed several D. folliculorum mites. Oral ivermectin (200 μg/kg, single dose) plus topical permethrin 5% lotion applied for 3 consecutive nights were administered. Oral ivermectin was repeated every week and oral erythromycin plus topical metronidazole cream was added. The facial lesions greatly improved within the following 3 months. While infestation of the pilosebaceous unit by Demodex folliculorum mites is common, only few individuals present symptoms. Demodicosis can present as pruritic papules, pustules, plaques, and granulomatous facial lesions. To our knowledge, this is the first reported case of facial crusted demodicosis in an immunocompetent child. The development of symptoms in this patient could be secondary to local immunosuppression caused by the chronic use of topical steroids. PMID:25371830

  18. Does subduction zone magmatism produce average continental crust

    NASA Technical Reports Server (NTRS)

    Ellam, R. M.; Hawkesworth, C. J.

    1988-01-01

    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition.

  19. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean

    USGS Publications Warehouse

    Banakar, V.K.; Hein, J.R.

    2000-01-01

    A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher

  20. Crust-core coupling in rotating neutron stars

    SciTech Connect

    Glampedakis, Kostas; Andersson, Nils

    2006-08-15

    Motivated by their gravitational wave driven instability, we investigate the influence of the crust on r-mode oscillations in a neutron star. Using a simplistic model of an elastic neutron star crust with constant shear modulus, we carry out an analytic calculation with the main objective of deriving an expression for the slippage between the core and the crust. Our analytic estimates support previous numerical results and provide useful insights into the details of the problem.

  1. Phase separation in the crust of accreting neutron stars.

    PubMed

    Horowitz, C J; Berry, D K; Brown, E F

    2007-06-01

    Nucleosynthesis, on the surface of accreting neutron stars, produces a range of chemical elements. We perform molecular dynamics simulations of crystallization to see how this complex composition forms new neutron star crust. We find chemical separation, with the liquid ocean phase greatly enriched in low atomic number elements compared to the solid crust. This phase separation should change many crust properties such as the thermal conductivity and shear modulus. PMID:17677319

  2. Non-chondritic sulphur isotope composition of the terrestrial mantle.

    PubMed

    Labidi, J; Cartigny, P; Moreira, M

    2013-09-12

    Core-mantle differentiation is the largest event experienced by a growing planet during its early history. Terrestrial core segregation imprinted the residual mantle composition by scavenging siderophile (iron-loving) elements such as tungsten, cobalt and sulphur. Cosmochemical constraints suggest that about 97% of Earth's sulphur should at present reside in the core, which implies that the residual silicate mantle should exhibit fractionated (34)S/(32)S ratios according to the relevant metal-silicate partition coefficients, together with fractionated siderophile element abundances. However, Earth's mantle has long been thought to be both homogeneous and chondritic for (34)S/(32)S, similar to Canyon Diablo troilite, as it is for most siderophile elements. This belief was consistent with a mantle sulphur budget dominated by late-accreted chondritic components. Here we show that the mantle, as sampled by mid-ocean ridge basalts from the south Atlantic ridge, displays heterogeneous (34)S/(32)S ratios, directly correlated to the strontium and neodymium isotope ratios (87)Sr/(86)Sr and (143)Nd/(144)Nd. These isotope trends are compatible with binary mixing between a low-(34)S/(32)S ambient mantle and a high-(34)S/(32)S recycled component that we infer to be subducted sediments. The depleted end-member is characterized by a significantly negative δ(34)S of -1.28 ± 0.33‰ that cannot reach a chondritic value even when surface sulphur (from continents, altered oceanic crust, sediments and oceans) is added. Such a non-chondritic (34)S/(32)S ratio for the silicate Earth could be accounted for by a core-mantle differentiation record in which the core has a (34)S/(32)S ratio slightly higher than that of chondrites (δ(34)S = +0.07‰). Despite evidence for late-veneer addition of siderophile elements (and therefore sulphur) after core formation, our results imply that the mantle sulphur budget retains fingerprints of core-mantle differentiation. PMID:24005324

  3. Irreversible evolution of the terrestrial planets (geological and petrological data)

    NASA Astrophysics Data System (ADS)

    Sharkov, E.; Bogatikov, O.

    2008-09-01

    Abstract Comparative studying of tectonomagmatic evolution of the Earth and the Moon shows that cardinal irreversible change in character of tectonomagmatic processes occurred at middle stages of their evolution; very likely such changes took place on other terrestrial planets (Venus, Mars and Mercury). As a result, primordial crusts of the planets were in considerable degree replaced by secondary basaltic ones. The established succession of events on the Earth could be provided by a combination of two independent factors: (1) it was originally heterogeneous and 2) its downward heating was followed by the cooling of its outer shells. As a result the primary iron core material was long time remained untouched and was involved into global tectonomagmatic processes at ca. 2.4-2.3 Ga. We concluded about a similar scenario for the evolution of Moon and other terrestrial planets. Tectonomagmatic evolution of the terrestrial planets (Earth, Venus, Mars, Mercury and Moon) was studied. What did major stages of their irreversible evolution occur before they turned into "dead" stone balls? We discuss these problems on examples of the Earth and the Moon, which evolution studied the best. According to modern views, after accretion of these bodies, magma oceans of some hundreds km deep appeared on their surface. According to Jeffries [1], solidification of large molted bodies, because of the difference between adiabatic gradient in silicate melts (0.3oC/km) and gradient of their melting points (3oC/km), could be going only upwards, from the bottom to the surface. As a result a powerful crystallizing differentiation of the oceans' magmas occurred with accumulation of the most low-melting components to the surface. Due to different deep of the magma oceans on the Earth and the Moon, the primordial crusts on these bodies were rather different: sialic on the Earth and basic (anorthosite) on the Moon.

  4. Crust formation and its effect on the molten pool coolability

    SciTech Connect

    Park, R.J.; Lee, S.J.; Sim, S.K.

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  5. Biological Soil Crusts: Webs of Life in the Desert

    USGS Publications Warehouse

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  6. Thinning and flow of Tibetan crust constrained by seismic anisotropy.

    PubMed

    Shapiro, Nikolai M; Ritzwoller, Michael H; Molnar, Peter; Levin, Vadim

    2004-07-01

    Intermediate-period Rayleigh and Love waves propagating across Tibet indicate marked radial anisotropy within the middle-to-lower crust, consistent with a thinning of the middle crust by about 30%. The anisotropy is largest in the western part of the plateau, where moment tensors of earthquakes indicate active crustal thinning. The preferred orientation of mica crystals resulting from the crustal thinning can account for the observed anisotropy. The middle-to-lower crust of Tibet appears to have thinned more than the upper crust, consistent with deformation of a mechanically weak layer that flows as if confined to a channel. PMID:15247475

  7. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  8. Terrestrial impact of the galactic historical SNe

    NASA Astrophysics Data System (ADS)

    Iyudin, A. F.

    2002-03-01

    Galactic supernovae (SNe) of the last millennium have left their signatures in many energy domains, with the optical being the best known due to the absence of astronomical instruments before the 17th century being more sophisticated than the human eye. Alongside with these records found in the scriptes of the ancient eastern and western astronomers, quite recently other signatures were recognised as valuable tracers of historical SNe, for example, different ionic and/or molecular depositions in the polar ice, radioactive isotopes depositions, and the /γ-ray emission from the radioactive 44Ti produced in the SN explosion. While the ice depositions are expected to be the result of the supernova flash in the UV and soft X-rays, the 60Fe radioactive isotope deposition into the deep-ocean ferromanganese crust is the result of direct isotope transfer by cosmic rays dust grains originating in the SN blast wave. These and other impacts of the galactic SNe are important from the point of view of their possible influence on the terrestrial environment. In this paper we consider known tracers of historical SNe and compare them to the proposed new tracer based on the atmospheric response to the galactic supernova emission in the UV and X-rays. In addition to using the 44Ti radioactive decay line photons for uncovering hidden galactic supernova remnants by imaging /γ-ray telescopes, all such tracers form an important complement to the historical SNe record.

  9. Crust-mantle interaction beneath the Luxi Block, eastern North China Craton: Evidence from coexisting mantle- and crust-derived enclaves in a quartz monzonite pluton

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Guang; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Yang, Yue-Heng; Liu, Yongsheng

    2013-09-01

    The Laiwu quartz monzonite in the Luxi Block of eastern North China Craton (NCC) is characterized by the presence of abundant plagioclase amphibolite and gabbro-diorite enclaves. Here we present LA-ICPMS zircon U-Pb ages which show that the host quartz monzonite was emplaced at 129.8 ± 1.0 Ma, whereas the protolith of the plagioclase amphibolite enclaves formed during early Paleoproterozoic. The gabbro-diorite enclaves were produced simultaneously with or slightly earlier than the formation of the host quartz monzonite. Combined with the Archean and Paleoproterozoic zircons as well as the low εNd(0) values (- 18.4 to - 18.0) in the plagioclase amphibolite enclaves, the equilibrium temperature and pressure conditions (645-670 °C and 4.8-6.5 Kb) suggest that the plagioclase amphibolite enclaves are fragments of the middle crust. The gabbro-diorite enclaves mainly originated from an enriched lithospheric mantle metasomatized by melts/fluids derived from the continental crust, as indicated by their low SiO2 (54.4-54.7 wt.%) and high MgO (10.9-11.1 wt.%) contents as well as the negative εNd(t) values (- 13.5 to - 10.7) and enrichment of LILEs (e.g., Ba and Sr) and depletion of HFSEs (e.g., Nb, Ta, P and Ti). Compared with the ancient crustal rocks and the mafic plutons considered to have been derived from lithospheric mantle in the Luxi Block, the moderate εNd(t) (- 15.7 to - 15.1) and εHf(t) (- 20.7 to - 13.0) values of the quartz monzonite in our study suggest that both mantle- and crust-derived melts were involved in the magma generation. Thus we propose a model involving magma mixing between mantle- and crust-derived melts for the formation of the quartz monzonite. Since significant crust-mantle interaction is recorded not only in the quartz monzonite and its enclaves in the Luxi Block but also in the other granitoids widespread in the NCC, it is considered that large-scale crust-mantle interaction and magmatic underplating were associated with the Mesozoic

  10. Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean?

    NASA Astrophysics Data System (ADS)

    Kempe, Stephan; Kazmierczak, Jozef

    2002-03-01

    Recent discoveries about Europa - the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface - suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  11. Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance

    USGS Publications Warehouse

    Belnap, J.; Gillette, Dale A.

    1998-01-01

    Biological soil crusts, consisting of cyanobacteria, green algae, lichens, and mosses, are important in stabilizing soils in semi-arid and arid lands. Integrity of these crusts is compromised by compressional disturbances such as foot, vehicle, or livestock traffic. Using a portable wind tunnel, we found threshold friction velocities (TFVs) of undisturbed crusts well above wind forces experienced at these sites; consequently, these soils are not vulnerable to wind erosion. However, recently disturbed soils or soils with less well-developed crusts frequently experience wind speeds that exceed the stability thresholds of the crusts. Crustal biomass is concentrated in the top 3 mm of soils. Sandblasting by wind can quickly remove this material, thereby reducing N and C inputs from these organisms. This loss can result in reduced site productivity, as well as exposure of unprotected subsurface sediments to wind and water erosion. Actions to reduce impacts to these crusts can include adjustments in type, intensity, and timing of use.

  12. Optical SETI with NASA's Terrestrial Planet Finder

    NASA Astrophysics Data System (ADS)

    Howard, Andrew; Horowitz, Paul

    2001-03-01

    NASA's space-borne nulling interferometer (the Terrestrial Planet Finder—TPF) will look for the traces of early life in the infrared spectra of extrasolar planets, beginning in roughly 2010. We point out that this instrument, as currently envisioned, will also be sensitive to deliberate laser transmissions from a technologically advanced civilization. A kilowatt-class infrared laser with a 10-m beam director would produce a signal visible to TPF at a range of 15 pc that is distinguishable from astrophysical phenomena and noise.

  13. Terrestrial Coordinate Systems and Frames

    NASA Astrophysics Data System (ADS)

    Boucher, C.; Murdin, P.

    2000-11-01

    A terrestrial reference system (TRS) is a spatial reference system corotating with the Earth in its DIURNAL MOTION in space. In such a system, the positions of points anchored on the Earth's solid surface have coordinates which have only small variations with time, as a result of geophysical effects (tectonic or tidal deformations; see TECTONICS, EARTH'S INTERIOR, TIDES). A terrestrial reference ...

  14. Tectonomagmatic evolution of the Earth: from the primordial crust to Phanerozoic type of activit

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2010-05-01

    There are two dominating hypotheses about composition of the primordial Earth's crust now: basic or sialic. Both models require a global melting of primary chondritic material, and final result would depend on degree of melt differentiation during hardening of global magma ocean some hundreds km deep. Such solidification, due to difference in adiabatic and melting point gradients proceeded in bottom-top direction and resulted in accumulation of low-temperature derivates in outer shell of the planet. Geological data, namely granite-dominated Archean crust, composed mainly by tonalite-trondhjemite-granodiorite (TTG) rocks, and Hadean detrital zircons from Australia with U-Pb age 4.4-4.2 Ga supports the primordial-sialic crust hypothesis. Formation of the sialic crust was responsible for the depletion of the upper mantle matter. Tectonomagmatic activity in the Early Precambrian was rather different from the Phanerozoic. Granite-greenstone terranes (GGTs) and their separating granulite belts were major Archean tectonic structures. The GGTs consisting of irregular network of greenstone belts with high-Mg komatiite-basaltic and boninite-like magmatism, "submerged" in TTG granite-gneiss matrix, probably, strongly reworked primordial sialic crust. They were areas of extension, uplifting and denudation, whereas the granulite belts were dominated by compression, sinking and sedimentation. By the Proterozoic the crust became rigid resulting in formation of rift structures, huge dike swarms and large mafic-ultramafic layered intrusions. In early Paleoroterozoic character of the tectonomagmatic activity remained almost the same: cratons, separated by granulite belts, appeared on the place of GGTs. Magmatism was dominated by siliceous high-Mg (boninite-like) series (SHMS), which formed large igneous provinces. SHMS are close in composition to the Phanerozoic subduction-related magmas; however, instead of them, SHMS had intracontinental tectonic settings. Negative ɛNd in these

  15. Adjoint tomography of the southern California crust.

    PubMed

    Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen

    2009-08-21

    Using an inversion strategy based on adjoint methods, we developed a three-dimensional seismological model of the southern California crust. The resulting model involved 16 tomographic iterations, which required 6800 wavefield simulations and a total of 0.8 million central processing unit hours. The new crustal model reveals strong heterogeneity, including local changes of +/-30% with respect to the initial three-dimensional model provided by the Southern California Earthquake Center. The model illuminates shallow features such as sedimentary basins and compositional contrasts across faults. It also reveals crustal features at depth that aid in the tectonic reconstruction of southern California, such as subduction-captured oceanic crustal fragments. The new model enables more realistic and accurate assessments of seismic hazard. PMID:19696349

  16. Shear viscosity in magnetized neutron star crust

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Yakovlev, D. G.

    2015-12-01

    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  17. The velocity structure of the lunar crust.

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.

    1973-01-01

    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (1) velocity increases from 100 to 300 m/sec in the upper 100 m to about 4 km/sec at 5 km depth, (2) a more gradual increase from about 4 km/sec to about 6 km/sec at 25 km depth,(3) a discontinuity at a depth of 25 km, and (4) a constant value of about 7 km/sec at depths from 25 km to about 60 km.

  18. Physical constraints on dolomite crust formation, Ambergris Cay Belize

    SciTech Connect

    Birdwell, B.A.; Bischoff, W.D.; Mazzullo, S.J. )

    1990-05-01

    Dolomitic crusts forming on a peritidal flat on Ambergris Cay, Belize, occur beneath surface sediment adjacent to, but not within, small saline (60-90 ppt) ponds. Upper crusts, 2-12 cm thick forming at or slightly below the water table (approximately equivalent to lagoon water level) are areally restricted by (1) ponds where sediment lies below 20-50 cm of water, (2) high and relatively dry areas where sediment accumulation of more than 15 cm above water level supports diverse vegetation, and (3) low areas affected by mangrove encroachment where preexisting crusts are perforated by roots and displaced. The lower crusts occur immediately above the Pleistocene in lows beneath the Holocene sediment and on exposed Pleistocene surfaces. Estimates from x-ray diffraction analysis indicate 80-100% dolomite content within the upper crusts and 50-60% dolomite content in the lower crusts. Unlithified sediment above and below the upper crust contain up to 80% dolomite. Compositions range from Ca{sub 56}, Mg{sub 44} in the upper crusts to Ca{sub 60} Mg{sub 40} in the lower crusts. There is no correlation between stoichiometry and ordering in the dolomites; all are poorly ordered as indicated by very weak (015) and (021) superstructure peaks. Where crusts are not 100% dolomite, the dolomite is evident as euhedral cements within pores, especially within foraminiferal tests, and as micrite along algal laminations and walls of burrows. However, preliminary examinations with scanning electron microscopy and energy dispersive x-ray mapping show that magnesium enrichment is pervasive within these crusts and may represent Mg-enrichment of calcite as an intermediate stage in dolomite formation.

  19. Development of the earth-moon system with implications for the geology of the early earth

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1976-01-01

    Established facts regarding the basic features of the earth and the moon are reviewed, and some important problems involving the moon are discussed (extent of melting, time of crustal differentiation and nature of bombardment, bulk chemical composition, and nature and source of mare basins), with attention given to the various existing theories concerning these problems. Models of the development of the earth-moon system from the solar nebula are examined, with particular attention focused on those that use the concept of capture with disintegration. Impact processes in the early crust of the earth are briefly considered, with attention paid to Green's (1972) suggestion that Archaean greenstone belts may be the terrestrial equivalent of lunar maria.

  20. High resolution mapping of Normalized Difference Vegetation Indices (NDVI) of biological soil crusts

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Veste, M.; Eisele, A.; Bens, O.; Spyra, W.; Hüttl, R. F.

    2012-04-01

    . Perspectively, the new method could be used for field monitoring of both biological soil crusts and vascular vegetation. Literature: Fischer, T., Veste, M., Eisele, A., Bens, O., Spyra, W., Hüttl, R.F. (2012) Small Scale Spatial Heterogeneity of Normalized Difference Vegetation Indices (NDVI) and Hot Spots of Photosynthesis in Biological Soil Crusts. Flora (accepted) DOI: 10.1016/j.flora.2012.01.001 Spröte, R., Fischer, T., Veste, M., Raab, T., Wiehe, W., Lange, P., Bens, O., Hüttl, R.F. (2010): Biological topsoil crusts at early successional stages on Quaternary substrates dumped by mining in Brandenburg, NE Germany. Géomorphologie: relief, processus, environnement 4/2010: 359-370

  1. Martian mud volcanism: Terrestrial analogs and implications for formational scenarios

    USGS Publications Warehouse

    Skinner, J.A., Jr.; Mazzini, A.

    2009-01-01

    The geology of Mars and the stratigraphic characteristics of its uppermost crust (mega-regolith) suggest that some of the pervasively-occurring pitted cones, mounds, and flows may have formed through processes akin to terrestrial mud volcanism. A comparison of terrestrial mud volcanism suggests that equivalent Martian processes likely required discrete sedimentary depocenters, volatile-enriched strata, buried rheological instabilities, and a mechanism of destabilization to initiate subsurface flow. We outline five formational scenarios whereby Martian mud volcanism might have occurred: (A) rapid deposition of sediments, (B) volcano-induced destabilization, (C) tectonic shortening, (D) long-term, load-induced subsidence, and (E) seismic shaking. We describe locations within and around the Martian northern plains that broadly fit the geological context of these scenarios and which contain mud volcano-like landforms. We compare terrestrial and Martian satellite images and examine the geological settings of mud volcano provinces on Earth in order to describe potential target areas for piercement structures on Mars. Our comparisons help to evaluate not only the role of water as a functional component of geological processes on Mars but also how Martian mud volcanoes could provide samples of otherwise inaccessible strata, some of which could contain astrobiological evidence.

  2. Neodymium-142 evidence for Hadean mafic crust.

    PubMed

    O'Neil, Jonathan; Carlson, Richard W; Francis, Don; Stevenson, Ross K

    2008-09-26

    Neodymium-142 data for rocks from the Nuvvuagittuq greenstone belt in northern Quebec, Canada, show that some rock types have lower 142Nd/144Nd ratios than the terrestrial standard (epsilon142Nd = -0.07 to -0.15). Within a mafic amphibolite unit, 142Nd/144Nd ratios correlate positively with Sm/Nd ratios and produce a 146Sm-142Nd isochron with an age of 4280(-81)(+53) million years. These rocks thus sample incompatible-element-enriched material formed shortly after Earth formation and may represent the oldest preserved crustal section on Earth. PMID:18818357

  3. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases

    NASA Technical Reports Server (NTRS)

    Schindler, T. L.; Kasting, J. F.

    2000-01-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  4. Diapirs and cantaloupes: Layering and overturn of Triton's crust

    NASA Technical Reports Server (NTRS)

    Schenk, P.; Jackson, M. P. A.

    1993-01-01

    It has recently been proposed that cantaloupe terrain formed as a result of instability and overturn (i.e., diapirism) of Triton's crust. Morphologic evidence implicates compositional layering within Triton's crust as the driving mechanism for the overturn. Here, we review the morphologic evidence for this origin and evaluate some of the implications.

  5. Measurement of palladium crust thickness on catalyst by EPMA

    NASA Astrophysics Data System (ADS)

    Sorbier, L.; Gay, A.-S.; Fécant, A.; Moreaud, M.; Brodusch, N.

    2012-03-01

    Selective hydrogenation is a key process in petrochemistry to obtain good feedstock for polymers synthesis. Common catalysts for this process consist in metallic palladium deposited with an eggshell distribution on porous alumina. For this system, the catalytic activity is known to be in strong relation with the thickness of the palladium crust. Typical catalyst consists of 2 - 4 mm diameter spherical beads having a 200 - 400 μm thick palladium crust and a total palladium amount of about 0.3 to 0.5 wt%. The palladium distribution in the catalyst bead can be easily characterized by electron probe microanalysis (EPMA) using polished cross-sections of the beads trough their diameter. By measuring the local concentration of palladium on several points along the bead diameter we obtain the distribution profile of palladium in the bead. Two strategies are proposed to measure this palladium crust thickness by EPMA. First the crust thickness is defined by the distance to the catalyst bead surface containing a fixed amount of total palladium (for example 95 % or 98 %). Second, the palladium profile is modelled by a parameterized analytical function from which a crust thickness can be extracted. Catalytic tests on four samples having different palladium crust thicknesses confirm the strong relation between activity and crust thickness. However the crust thickness containing 98 % of the palladium content shows the best correlation with activity.

  6. Continental crust composition constrained by measurements of crustal Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Zandt, George; Ammon, Charles J.

    1995-03-01

    DECIPHERING the geological evolution of the Earth's continental crust requires knowledge of its bulk composition and global variability. The main uncertainties are associated with the composition of the lower crust. Seismic measurements probe the elastic properties of the crust at depth, from which composition can be inferred. Of particular note is Poisson's ratio,Σ ; this elastic parameter can be determined uniquely from the ratio of P- to S-wave seismic velocity, and provides a better diagnostic of crustal composition than either P- or S-wave velocity alone1. Previous attempts to measure Σ have been limited by difficulties in obtaining coincident P- and S-wave data sampling the entire crust2. Here we report 76 new estimates of crustal Σ spanning all of the continents except Antarctica. We find that, on average, Σ increases with the age of the crust. Our results strongly support the presence of a mafic lower crust beneath cratons, and suggest either a uniformitarian craton formation process involving delamination of the lower crust during continental collisions, followed by magmatic underplating, or a model in which crust formation processes have changed since the Precambrian era.

  7. Composition of the crust beneath the Kenya rift

    USGS Publications Warehouse

    Mooney, W.D.; Christensen, N.I.

    1994-01-01

    We infer the composition of the crust beneath and on the flanks of the Kenya rift based on a comparison of the KRISP-90 crustal velocity structure with laboratory measurements of compressional-wave velocities of rock samples from Kenya. The rock samples studied, which are representative of the major lithologies exposed in Kenya, include volcanic tuffs and flows (primarily basalts and phonolites), and felsic to intermediate composition gneisses. This comparison indicates that the upper crust (5-12 km depth) consists primarily of quartzo-feldspathic gneisses and schists similar to rocks exposed on the flanks of the rift, whereas the middle crust (12-22 km depth) consists of more mafic, hornblende-rich metamorphic rocks, probably intruded by mafic rocks beneath the rift axis. The lower crust on the flanks of the rift may consist of mafic granulite facies rocks. Along the rift axis, the lower crust varies in thickness from 9 km in the southern rift to only 2-3 km in the north, and has a seismic velocity substantially higher than the samples investigated in this study. The lower crust of the rift probably consists of a crust/mantle mix of high-grade metamorphic rocks, mafic intrusives, and an igneous mafic residuum accreted to the base of the crust during differentiation of a melt derived from the upper mantle. ?? 1994.

  8. Precipitation pulse size effects on Sonoran Desert soil microbial crusts.

    PubMed

    Cable, Jessica M; Huxman, Travis E

    2004-10-01

    Deserts are characterized by low productivity and substantial unvegetated space, which is often covered by soil microbial crust communities. Microbial crusts are important for nitrogen fixation, soil stabilization and water infiltration, but their role in ecosystem production is not well understood. This study addresses the following questions: what are the CO2 exchange responses of crusts to pulses of water, does the contribution of crusts to ecosystem flux differ from the soil respiratory flux, and is this contribution pulse size dependent? Following water application to crusts and soils, CO2 exchange was measured and respiration was partitioned through mixing model analysis of Keeling plots across treatments. Following small precipitation pulse sizes, crusts contributed 80% of soil-level CO2 fluxes to the atmosphere. However, following a large pulse event, roots and soil microbes contributed nearly 100% of the soil-level flux. Rainfall events in southern Arizona are dominated by small pulse sizes, suggesting that crusts may frequently contribute to ecosystem production. Carbon cycle studies of arid land systems should consider crusts as important contributors because of their dynamic responses to different pulse sizes as compared to the remaining ecosystem components. PMID:14669007

  9. Evidence of extinct 244Pu in ancient terrestrial zircons

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; Turner, G.; Holland, G.; Gilmour, J. D.; Mojzsis, S. J.

    2003-04-01

    The Pu/U ratio of the early Earth is an important parameter in models of mantle evolution based on noble gas isotopes. Current estimates assume the Earth accreted with a chondritic Pu/U and are based on analyses of the chondrite St Severin and the achondrite Angra dos Reis. These estimates are poorly constrained, ranging from 0.004 to 0.008. On account of its short, 82 Ma, half-life, 244Pu was essentially extinct 3,900 Ma ago, and consequently there exists no reliable measurement of Pu/U for the Earth. The discovery of zircons dating from the period when 244Pu was "live" offers the first opportunity to measure the former terrestrial abundance of 244Pu directly. Xenon isotopes are produced by spontaneous fission and, in principle, are readily distinguishable from those produced by 238U-fission (e.g. 131Xe/136Xe = 0.24 and 0.08 respectively). However the expected levels of fission xenon in individual zircons, weighing 1 - 2 μg and containing 100 - 200 ppm U, are below, or at best comparable to, the Xe blank levels (˜10-15 ccSTP) typical of conventional noble gas mass spectrometers. In order to analyse these minute amounts of xenon we have made use of a uniquely sensitive instrument, developed in Manchester, based on the principle of laser resonance ionisation. RELAX (Refrigerator Enhanced Laser Analyser for Xenon) is capable of analysing samples of only a few thousand atoms, some two orders of magnitude smaller than conventional mass spectrometers. We have carried out preliminary analyses of 4 individual 4,150 Ma zircons and one 3,600 Ma zircon from Jack Hills, Western Australia, and obtained five clear fission spectra. All but one were essentially free from significant atmospheric blank (the average 130Xe blank was 3× 10-18 ccSTP, i.e. 80 atoms). The spectra of the older zircons clearly demonstrated the presence of varying amounts of 244Pu fission xenon. The highest 131Xe/136Xe, 0.136 ± 0.003, corresponds to an initial Pu/U ratio of 0.0057. The lower ratios

  10. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  11. Biological soil crusts as an organizing principle in drylands: Chapter 1

    USGS Publications Warehouse

    Belnap, Jayne; Weber, Bettina; Büdel, Burkhard

    2016-01-01

    Biological soil crusts (biocrusts) have been present on Earth’s terrestrial surfaces for billions of years. They are a critical part of ecosystem processes in dryland regions, as they cover most of the soil surface and thus mediate almost all inputs and outputs from soils in these areas. There are many intriguing, but understudied, roles these communities may play in drylands. These include their function in nutrient capture and transformation, influence on the movement and distribution of nutrients and water within dryland soils, ability to structure vascular plant communities, role in creating biodiversity hotspots, and the possibility that they can be used as indicators of soil health. There are still many fascinating aspects of these communities that need study, and we hope that this chapter will facilitate such efforts.

  12. Utility terrestrial biodiversity issues

    SciTech Connect

    Breece, G.A.; Ward, B.J.

    1996-11-01

    Results from a survey of power utility biologists indicate that terrestrial biodiversity is considered a major issued by only a few utilities; however, a majority believe it may be a future issue. Over half of the respondents indicated that their company is involved in some management for biodiversity, and nearly all feel that it should be a goal for resource management. Only a few utilities are funding biodiversity research, but a majority felt more research was needed. Generally, larger utilities with extensive land holdings had greater opportunities and resources for biodiversity management. Biodiversity will most likely be a concern with transmission rights-of-way construction and maintenance, endangered species issues and general land resource management, including mining reclamation and hydro relicensing commitments. Over half of the companies surveyed have established voluntary partnerships with management groups, and biodiversity is a goal in nearly all the joint projects. Endangered species management and protection, prevention of forest fragmentation, wetland protection, and habitat creation and protection are the most common partnerships involving utility companies. Common management practices and unique approaches are presented, along with details of the survey. 4 refs.

  13. Terrestrial locomotion in arachnids.

    PubMed

    Spagna, Joseph C; Peattie, Anne M

    2012-05-01

    In this review, we assess the current state of knowledge on terrestrial locomotion in Arachnida. Arachnids represent a single diverse (>100,000 species) clade containing well-defined subgroups (at both the order and subordinal levels) that vary morphologically around a basic body plan, yet exhibit highly disparate limb usage, running performance, and tarsal attachment mechanisms. Spiders (Araneae), scorpions (Scorpiones), and harvestmen (Opiliones) have received the most attention in the literature, while some orders have never been subject to rigorous mechanical characterization. Most well-characterized taxa move with gaits analogous to the alternating tripod gaits that characterize fast-moving Insecta - alternating tetrapods or alternating tripods (when one pair of legs is lifted from the ground for some other function). However, between taxa, there is considerable variation in the regularity of phasing between legs. Both large and small spiders appear to show a large amount of variation in the distribution of foot-ground contact, even between consecutive step-cycles of a single run. Mechanisms for attachment to vertical surfaces also vary, and may depend on tufts of adhesive hairs, fluid adhesives, silks, or a combination of these. We conclude that Arachnida, particularly with improvements in microelectronic force sensing technology, can serve as a powerful study system for understanding the kinematics, dynamics, and ecological correlates of sprawled-posture locomotion. PMID:22326455

  14. Space or terrestrial energy?

    NASA Astrophysics Data System (ADS)

    Boulet, L.

    Consideration is given to the possibility of generating sufficient energy at acceptable costs on earth to offset the need to build solar power satellite systems (SPS). Electricity usage, one of the basic driving forces of developed nations, grows with the population. Currently comprising 33 pct of the total world energy used, electricity is projected to grow to a 50-55 pct share in the 21st century. Future terrestrial electrical energy sources include carbon-based fuels, nuclear (fusion or fission), and the renewable solar technologies. Carbon-based fuel supplies can last until 2030 AD, about the same as fission plants with recycled fuel. Breeder reactors would stretch the nuclear fuels to the year 3000. Solar technologies offer more immediate solutions than fusion reactors and can produce 50 pct of the power available from the construction of the maximum number of nuclear power plants. The addition of SPS would further augment the total. Combinations of all the technologies are recommended, with local research for the most appropriate technology for each nation.

  15. Has 7% of Continental Crust been Lost since Pangea Broke Up?

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.; Stern, R. J.

    2012-12-01

    After modern plate tectonics began, the net growth or loss of continental crust predominantly involved the mass balance at subduction zones (SZs) between the yin of adding mantle-sourced arc igneous rocks and the subtracting yang of recycling existing crust back into the mantle. Field observations suggest that during Mesozoic and Cenozoic time, a rough long-term balance existed at ocean-margin SZs (e.g., W. N. America, Andes). But a different picture, one of net loss, emerges when additions and losses at collisional or crust-suturing SZs (e.g., India-Tibet) are considered. GAINS AND LOSSES SINCE ~200 Ma Because Mesozoic and Cenozoic convergent margins can be field inspected, the net growth of continental crust after the breakup of Pangea at ~200 Ma can be estimated. Pangea breakup also marked the beginning of the present supercontinent cycle. Newly established (Eocene) ocean-margin SZs (e.g., IBM, Tonga-Kermadec) added juvenile arc crust for at least 10-15 Myr at rates ~10-15 times higher than later and elsewhere at long-established SZs (~30 km3/Myr/km). During the Cenozoic, at colliding SZs (e.g., Alps, India-Tibet, Arabia-Eurasia) tomographic and geological data document losses of subducted continental crust sustained for 15-50 Myr at rates ~15 times that typical from the upper plate at ocean-margin SZs (~70 km3/Myr/km). For additions, we considered that as the Atlantic opened in early Jurassic time, new, prodigiously productive SZs were initiated along the western margin of North and Middle America but not along western South America and the eastern margin of Eurasia. In the Cretaceous, new SZs formed along much of the northern margin of the Tethys, along western Sumatra and southern Java, and at the great arc of the Caribbean. In the early Eocene, in the offshore, a lengthy (~20,000 km) curtain of new, voluminously productive intra-oceanic SZs formed from the Aleutian Islands southward to the Kermadec Islands. For subtractions, we applied subduction losses (~70

  16. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust.

    PubMed

    Cabral, Rita A; Jackson, Matthew G; Rose-Koga, Estelle F; Koga, Kenneth T; Whitehouse, Martin J; Antonelli, Michael A; Farquhar, James; Day, James M D; Hauri, Erik H

    2013-04-25

    Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials. However, the residence time of these subducted materials in the mantle is uncertain and model-dependent, and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust. Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago. Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur--probably derived from hydrothermally altered oceanic crust--was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Δ(33)S values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions. This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots. PMID:23619695

  17. Shock-Induced Melting of Martian Basalts: Insights on Subducting Oceanic Crust Melting Processes

    NASA Astrophysics Data System (ADS)

    Beck, P.; Gillet, P.; Barrat, J.-A.; Gautron, L.; Daniel, I.; El Goresy, A.

    2003-04-01

    Experiments carried out on rocks at upper and lower mantle P-T conditions have produced series of candidate minerals for the Earth mantle mineralogical model. Basaltic compositions can also suffer ultra high-pressure and temperature when subducting in the mantle. The phase diagram of basalts has been studied to characterize potential chemical and mineralogical heterogeneities produced by partial melting and phase transformations of the oceanic crust. Shergottites that represent the most important sub-class of Martian meteorite have compositions close to terrestrial basalts and gabbros. During their extraction from Mars, they were severely shocked with pressures up to 50 GPa. These shocks induced partial melting. These melt pocket are an opportunity to study melting phenomena of basaltic compositions (i.e. oceanic crust) under high-pressure. We have performed a Raman spectroscopy investigation to determine the mineralogy of the melt pockets. Four shergottites were studied, NWA 480, NWA 856, NWA 1068 and Zagami. In each meteorite, abundant "large" minerals in melt pockets are hollandite (both Ca-Na and K-Na hollandite), stishovite, amorphous pyroxene and high-pressure phosphate. Meltpocket matrix seems to have a similar mineralogy as "megacrysts". In NWA 856 we observed at a melt pocket rim that maskelynite successively transforms into hollandite, and a polycrystalline aggregate. This aggregate was identified as a mixture of stishovite and a calcium aluminosilicate phase (CAS), a phase previously described in high-pressure experiments, but never observed in natural samples. The Raman spectra identifies unambiguously this silicate of composition CaAl_4Si_2O11 and of Ba-ferrite type structure. Such a phase is supposed to be present in basalt subsolidus melting experiments for pressures above 25 GPa and temperatures between 2500 and 2700 K. Its discovery reinforces the proposition that this CAS phase is a valuable candidate for hosting Al in subducting oceanic crust.

  18. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates.

    PubMed

    Reisz, Robert R; Fröbisch, Jörg

    2014-01-01

    The origin and early evolution of amniotes (fully terrestrial vertebrates) led to major changes in the structure and hierarchy of terrestrial ecosystems. The first appearance of herbivores played a pivotal role in this transformation. After an early bifurcation into Reptilia and Synapsida (including mammals) 315 Ma, synapsids dominated Paleozoic terrestrial vertebrate communities, with the herbivorous caseids representing the largest vertebrates on land. Eocasea martini gen. et sp. nov., a small carnivorous caseid from the Late Carboniferous, extends significantly the fossil record of Caseidae, and permits the first clade-based study of the origin and initial evolution of herbivory in terrestrial tetrapods. Our results demonstrate for the first time that large caseid herbivores evolved from small, non-herbivorous caseids. This pattern is mirrored by three other clades, documenting multiple, independent, but temporally staggered origins of herbivory and increase in body size among early terrestrial tetrapods, leading to patterns consistent with modern terrestrial ecosystem. PMID:24739998

  19. The Oldest Caseid Synapsid from the Late Pennsylvanian of Kansas, and the Evolution of Herbivory in Terrestrial Vertebrates

    PubMed Central

    Reisz, Robert R.; Fröbisch, Jörg

    2014-01-01

    The origin and early evolution of amniotes (fully terrestrial vertebrates) led to major changes in the structure and hierarchy of terrestrial ecosystems. The first appearance of herbivores played a pivotal role in this transformation. After an early bifurcation into Reptilia and Synapsida (including mammals) 315 Ma, synapsids dominated Paleozoic terrestrial vertebrate communities, with the herbivorous caseids representing the largest vertebrates on land. Eocasea martini gen. et sp. nov., a small carnivorous caseid from the Late Carboniferous, extends significantly the fossil record of Caseidae, and permits the first clade-based study of the origin and initial evolution of herbivory in terrestrial tetrapods. Our results demonstrate for the first time that large caseid herbivores evolved from small, non-herbivorous caseids. This pattern is mirrored by three other clades, documenting multiple, independent, but temporally staggered origins of herbivory and increase in body size among early terrestrial tetrapods, leading to patterns consistent with modern terrestrial ecosystem. PMID:24739998

  20. Crust-mantle interactions and crustal deformations, some geological observations

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Clerc, Camille; Sternai, Pietro; Bellahsen, Nicolas; Faccenna, Claudio; Ringenbach, Jean-Claude; Gorini, Christian; Leroy, Sylvie; Pik, Raphaël

    2015-04-01

    Crustal deformations at plate boundaries or intracontinental are governed by the relative movements of plates, and most published models consider the lithosphere as the main stress guide in extensional or compressional contexts. The possible contribution of the underlying asthenospheric flow to crustal deformation through viscous coupling is often neglected. Since the early days of plate tectonics, and even earlier, two schools of thought have been developed in parallel whether mantle convection is considered or not. This reflects nowadays in the difficulty of reconciling lithospheric-scale models and global-scale convection models to explain tectonic features observed at the surface. Still, recent studies reemphasized the role of mantle convection in shaping mountain belts or rifts and the consequences of different styles of convection on the geometry and kinematics of mountain belts. We present here a number of geological observations in convergent or divergent contexts that may suggest a strong coupling between asthenospheric flow and crustal deformation. Several of these examples, especially in extensional contexts, show a deformation distributed over wide zones, accommodated by shallow-dipping shear zones and with a constant asymmetry over large distances. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea or the Alboran domain, where extension is taken up by shallow-dipping extensional shear zones and normal faults with a constant asymmetry. A similar image is also observed across the Gulf of Lion passive margin that also belongs to the Mediterranean back-arc basins. Such is also the case of some of the Atlantic passive margins where shallow-dipping normal faults and extensional shear zones control the extraction of the lower crust and the mantle with a constant asymmetry across the entire margin. Finally, the distribution and geometry of normal faults across the Afar region also show a constant

  1. Oceanic crust of the Grenada Basin in the Southern Lesser Antilles Arc Platform

    NASA Astrophysics Data System (ADS)

    Speed, R. C.; Walker, J. A.

    1991-03-01

    Seismic refraction data permit the southern Lesser Antilles arc and surrounding regions to be divided by the velocity of their basement. We propose that high-velocity basement of the arc platform beneath the Grenadine islands and below a part of the Tobago Trough forearc basin is oceanic and continuous and was originally connected with oceanic crust of the Grenada Basin. Low-velocity basements of the Tobago terrane and the arc platform from St. Vincent north lie south and north, respectively, of the high-velocity basement of the arc platform. An oceanic origin of this high-velocity crust in the Grenadines is argued to be more plausible than an origin as unroofed lower arc crust. The segment of probable oceanic crust in the arc platform was greatly uplifted during development of the present island arc, mainly in late Neogene time, relative to the Grenada Basin and Tobago Trough. Accepting the proposition of shallow oceanic crust in the Grenadines, early middle Eocene and possibly older pillow basalts of Mayreau, the oldest rock unit of the southern Lesser Antilles arc platform, may be an exposure of such basement. Major and minor element compositions of Mayreau Basalt are indicative of a spreading rather than arc origin. The stratigraphy of the pillow basalts indicates extrusion in an open marine environment, distant or shielded from sources of arc or continental sediment, followed by a period of pelagic sedimentation above the carbonate compensation depth. The Eocene basalt and pelagic cover formed a relatively deep floor of a marine basin in which arc-derived turbidites and pelagic sediments accumulated over the succeeding 25-30 ma. Such basalts thus indicate a probable spreading origin of the Grenada Basin and an age of cessation of spreading in the region of Mayreau in Eocene time. The configuration of the Eocene basin and the direction of spreading, however, are unknowns. Regional structural relationships imply the spreading was probably backarc, an origin also

  2. Are high p-wave velocity sediments on thin Tethyan crust, deep-water carbonates?

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-Andre; Graindorge, David; Klingelhoefer, Frauke; Dellong, David; Kopp, Heidrun; Sallares, Valenti; Bartolome, Rafael; Gallais, Flora

    2016-04-01

    Seismic reflection profiles from the Central Mediterranean and Gulf of Cadiz regions indicate the widespread presence of a seismic unit, marked by strong continuous reflectors, directly overlying the basement. Seismic velocity analysis from seismic reflection and refraction studies indicate high p-wave velocities of 3.5 - 4.5 km/s in this layer. These same seismic studies image a thin crust, typically 6-9 km thick, in most cases thought to be oceanic in nature and related to the Tethys oceanic domain separating Africa (Gondwana) from Laurussia. We interpret this 2-3 km thick reflective layer to be carbonates, deposited in the late Triassic, Jurassic and early Cretaceous in the Tethys Ocean, in deep marine basins. Few drilling studies have penetrated into this layer. In one case (DSDP site 135, drilled at 4152 m water depth on Coral Patch Ridge in the western Gulf of Cadiz), Aptian (early Cretaceous) marls and limestone were drilled (560-689 m sub-seafloor depth). The Calcite compensation depth during the Jurassic to Early Cretaceous was about 4000 m to 3500 m according to compilations from the Atlantic and Indian Oceans and is consistent with deposition of deep-water carbonates. For the NW Moroccan margin (Mazagan transect near El Jadida) there is a 2 km thick sedimentary layer with p-wave velocities of 4.0 - 4.5 km/s at the base of a 4 - 6 km thick sedimentary section. This layer extends from seafloor thought to be oceanic crust (west of the West African Coast magnetic anomaly) across a domain of thin/transitional crust with abundant Triassic salt diapirs to the foot of the margin. This reflective basal layer is also observed in reflection and refraction profiles from the Seine abyssal plain, below the toe of the Cadiz accretionary wedge (S. Algarve margin), in the Ionian abyssal plain and below the toe of the Calabrian accretionary wedge, all regions floored by this thin Tethyan crust. Work is in progress to determine the exact nature of this crust.

  3. Lichen-moss interactions within biological soil crusts

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Williams, Laura; Büdel, Burkhard; Weber, Bettina

    2015-04-01

    Biological soil crusts (biocrusts) create well-known hotspots of microbial activity, being important components of hot and cold arid terrestrial regions. They colonize the uppermost millimeters of the soil, being composed of fungi, (cyano-) bacteria, algae, lichens, bryophytes and archaea in varying proportions. Biocrusts protect the (semi-) arid landscape from wind and water erosion, and also increase water holding capacity and nutrient content. Depending on location and developmental stage, composition and species abundance vary within biocrusts. As species live in close contact, they are expected to influence each other, but only a few interactions between different organisms have so far been explored. In the present study, we investigated the effects of the lichen Fulgensia fulgens whilst growing on the moss Trichostomum crispulum. While 77% of Fulgensia fulgens thalli were found growing associated with mosses in a German biocrust, up to 95% of Fulgensia bracteata thalli were moss-associated in a Swedish biocrust. In 49% (Germany) and in 78% (Sweden) of cases, thalli were observed on the moss T. crispulum and less frequently on four and three different moss species. Beneath F. fulgens and F. bracteata thalli, the mosses were dead and in close vicinity to the lichens the mosses appeared frail, bringing us to the assumption that the lichens may release substances harming the moss. We prepared a water extract from the lichen F. fulgens and used this to water the moss thalli (n = 6) on a daily basis over a time-span of three weeks. In a control setup, artificial rainwater was applied to the moss thalli (n = 6). Once a week, maximum CO2 gas exchange rates of the thalli were measured under constant conditions and at the end of the experiment the chlorophyll content of the moss samples was determined. In the course of the experiment net photosynthesis (NP) of the treatment samples decreased concurrently with an increase in dark respiration (DR). The control samples

  4. Contaminant Exposure in Terrestrial Vertebrates

    EPA Science Inventory

    Manuscript is a critical review of the state of the science for quantifying exposures of terrestrial wildlife species to chemical contamination. It describes the unique aspects of birds, mammals, reptiles, amphibians and threatened and endangered species. Fate and transport of ...

  5. USING TERRESTRIAL PLANTS IN BIOMONITORING

    EPA Science Inventory

    Terrestrial plants have been used as monitors of environmental pollutants since at least the beginning of this century & have recently received attention in response to the need for ecological assessments at hazardous waste sites & monitoring pesticide damage to nontarget plants....

  6. Radiocarbon dating of terrestrial carbonates

    USGS Publications Warehouse

    Pigati, Jeffrey S.

    2014-01-01

    Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.

  7. Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Strati, Virginia; Mantovani, Fabio; Shirey, Steven B.; McDonough, William F.

    2014-10-01

    SNO+ detector that is currently under construction in Ontario, Canada, will be a new kiloton-scale liquid scintillation detector with the capability of recording geoneutrino events that can be used to constrain the strength of the Earth's radiogenic power, and in turn, to test compositional models of the bulk silicate Earth (BSE). We constructed a detailed 3-D model of the regional crust centered at SNO+ from compiled geological, geophysical, and geochemical information. Crustal cross sections obtained from refraction and reflection seismic surveys were used to characterize the crust and assign uncertainties to its structure. The average Moho depth in the study area is 42.3 ± 2.6 km. The upper crust was divided into seven dominant lithologic units on the basis of regional geology. The abundances of U and Th and their uncertainties in each upper crustal lithologic unit were determined from analyses of representative outcrop samples. The average chemical compositions of the middle and lower crust beneath the SNO+ region were determined by coupling local seismic velocity profiles with a global compilation of the chemical compositions of amphibolite and granulite facies rocks. Monte Carlo simulations were used to predict the geoneutrino signal originating from the regional crust at SNO+ and to track asymmetrical uncertainties of U and Th abundances. The total regional crust contribution of the geoneutrino signal at SNO+ is predicted to be 15.6-3.4+5.3 TNU (a Terrestrial Neutrino Unit is one geoneutrino event per 1032 target protons per year), with the Huronian Supergroup near SNO+ dominantly contributing 7.3-3.0+5.0 TNU to this total. Future systematically sampling of this regional unit and denser seismic surveys will better model its composition and structure, and thus reduce the uncertainty on geoneutrino signal at SNO+. The bulk crustal geoneutrino signal at SNO+ is estimated to be 30.7-4.2+6.0 TNU, which is lower than that predicted in a global-scale reference

  8. Anorthositic oceanic crust in the Archean Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Dawson, J. B.; Hoernes, S.; Spettel, B.; Waenke, H.

    1985-01-01

    Ultrapure minerals separated from eclogite inclusions in kimberlites were analyzed for Sm, Nd, Sr, and oxygen isotopes and for major and trace elements. Clinopyroxene (cpx) and garnet (gnt) are the only primary mineral phases in these rocks, and mineral phases and their alteration products. The WR sub calc. is the reconstructed bulk composition excluding all the contamination influences. Two groups of eclogites: are distinguished: (1) type A Noritic-anorthositic eclogites; and (2) type B Ti-ferrogabbroic eclogites. The oxygen isotopes are primary mantle-derived features of these rocks and are not caused by posteruption processes, as they were measured on unaltered, clean mineral separates and show a correlation with REE pattern and Sr and Nd isotopes. It is suggested that the variation of the oxygen isotopes are caused by crustal-level fluid-rock interaction at relatively low temperature. It is shown that oxygen isotopes variation in MORB basalts caused by the hydrothermal system are in the same range as the observed oxygen isotope variation in eclogites. A model to explain the new set of data is proposed. It is thought that some of these eclogites might be emplaced into the upper lithosphere or lower crust at the time corresponding to their internal isochron age. The calculated WR composition was used to estimate model ages for these rocks.

  9. Velocity model of the shallow lunar crust

    NASA Technical Reports Server (NTRS)

    Gangi, A. F.

    1980-01-01

    The travel times of the seismic waves obtained for the Apollo-14 and -16 active seismic experiments and the Apollo-16 grenade launches are shown to be consistent with a powder-layer model of the shallow lunar crust. The velocity variation with depth determined from these data is: V(z) = approximately 110 z to the 1/6 power m/sec for z less than 10 meters and V(z) is nearly = to 250 m/sec for z greater than 10 meters. The velocity values found for the 10 meter depth are similar to those found by Kovach, et al. (1972). The z to the 1/6 power depth dependence for the velocity of the topmost layer is that predicted on the basis of a powder layer (Gangi, 1972). The Amplitude variation of the direct waves as a function of source-to-receiver separation, x, is A(x) = A(o)x to the -n power exp(-ax) where 1.5 n 2.2 and a is nearly = to 0.047 neper/m. Velocity-spectra analyses of the direct, surface-reflected, bottom-reflected and refracted waves give results that are consistent with the velocity model inferred from the traveltime data.

  10. The dual role of soil crusts in desertification

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Thompson, S. E.; Chen, L.; Svoray, T.; Sela, S.; Katul, G. G.

    2015-10-01

    Vegetation cover in dry regions is a key variable in determining desertification. Soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here it is shown how physical crusts can act as either drivers of or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  11. The terrestrial impact cratering record.

    NASA Astrophysics Data System (ADS)

    Grieve, R. A. F.; Pesonen, L. J.

    1992-12-01

    Approximately 130 terrestrial hypervelocity impact craters are currently known. The rate of discovery of new craters is 3 - 5 craters per year. Although modified by erosion, terrestrial impact craters exhibit the range of morphologies observed for craters on other terrestrial planetary bodies. Due to erosion and its effects on form, terrestrial craters are recognized primarily by the occurrence of shock metamorphic effects. Terrestrial craters have a set of geophysical characteristics which are largely the result of the passage of a shock wave and impact-induced fracturing. Much current work is focused on the effects of impact on Earth evolution. Previous work on shock metamorphism and the contamination of impact melt rocks by meteoritic siderophile elements provides a basis for the interpretation of the physical and chemical evidence from Cretaceous-Tertiary boundary sites as resulting from a major impact. By analogy with the lunar record and modelling of the effects of very large impacts, it has been proposed that biological and atmospheric evolution of the Earth could not stabilize before the end of the late heavy bombardment ≡3.8 Ga ago. The present terrestrial cratering rate is 5.4±2.7×10-15 km-2a-1 for a diameter ≥20 km. On a gobal scale, a major impact sufficient to cripple human civilization severely will occur on time scales of ≡106a.

  12. Large-Scale Impact Cratering and Early Earth Evolution

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Cintala, M. J.

    1997-01-01

    largest impacts, where the melt volume would have reached well into the mantle. Any contribution from adiabatic melting or shock heating of the asthenosphere would have had similar mafic compositions. The depth of the melt sheets is unknown but would have been in the multilkilometer range. Bodies of basaltic melt > or = 300 m thick differentiate in the terrestrial environment, with the degree of differentiation being a function of the thickness of the body. We therefore expect that these thick, closed-system melt pools would have differentiated into an ultramafic-mafic base and felsic top. If only 10% of the impact melt produced in a single event creating a 400-km diameter transient cavity evolved into felsic differentiates, they would be comparable in volume to the Columbia River basalts. It has been estimated that at least 200 impact events of this size or larger occurred on the early Earth during a period of heavy bombardment. We speculate that these massive differentiated melt sheets may have had a role in the formation of the initial felsic component of the Earth's crust. Additional information is contained in the original.

  13. Cenozoic analogues support a plate tectonic origin for the Earth’s earliest continental crust

    NASA Astrophysics Data System (ADS)

    Hastie, A. R.; Kerr, A. C.; Mitchell, S. F.; McDonald, I.; Pearce, J. A.; Millar, I. L.; Wolstencroft, M.

    2009-12-01

    Eocene rhyodacite lavas from the Wagwater Basin in eastern Jamaica have adakitic-like major element compositions, low Y and heavy rare Earth element (REE) concentrations and negative Nb and Ta anomalies on a normal mid-ocean ridge basalt normalised multi-element diagram. They also have lower Sr (<400 ppm), MgO (≤2.0 wt.%), Ni (mostly ≤30 ppm) and Cr (mostly ≤40 ppm) concentrations compared to other modern adakites and middle-late Archaean (3.5-2.5 Ga) trondhjemite, tonalite and granodiorite/dacites (TTGs). ɛNd(i) and ɛHf(i) values indicate that the adakites can not been formed by assimilation and fractional crystallisation processes involving any other igneous rock in the area and so the composition of the adakites is the result of the residual mineralogy in the source region. Low Sr and Al2O3 contents indicate a fluid/vapour-absent source with residual plagioclase, and REE systematics point to residual amphibole and garnet in the source region. The plagioclase and garnet residue implies that the Newcastle magmas were derived from partially melting a metabasic protolith at 1.0-1.6 GPa, which would intersect the amphibole dehydration partial melt solidus at ~ 850-900oC. Radiogenic isotopes along with the low MgO, Ni and Cr concentrations in the adakites demonstrate that the garnet amphibolite source region can not be part of (1) the lower Jamaican arc crust, (2) delaminated lower crust or (3) subducted Proto-Caribbean “normal” oceanic crust that may, or may not, have detached. This data, in addition to partial melting models involving a theoretical garnet-amphibolite source region for the Newcastle lavas, shows that the adakites are derived from metamorphosed Caribbean oceanic plateau crust that underthrust Jamaica in the early Tertiary. The underplated oceanic plateau crust partially melted by either (1) influx of basaltic magma during lithospheric extension in the early Tertiary or (2) direct partial melting of the underthrusting (subducting) plateau

  14. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    NASA Astrophysics Data System (ADS)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon

  15. An elderly long-term care resident with crusted scabies.

    PubMed

    Sandre, Matthew; Ralevski, Filip; Rau, Neil

    2015-01-01

    Crusted scabies is a highly contagious form of scabies. Altered immune response, nutritional deficiencies and modified host response are all risk factors for crusted scabies. The authors report a case involving a patient found to have a chronic maculopapular, erythematous rash with large hyperkeratotic, white and grey plaques on the soles of both feet. An ultimate diagnosis of crusted scabies was reached after a delay in diagnosis suspected to be caused by the similarity in appearance to more common skin conditions such as psoriasis. After topical permethrin was unsuccessful, intermittent dosing of oral ivermectin resulted in a rapid reduction in cutaneous plaques. PMID:25798153

  16. An elderly long-term care resident with crusted scabies

    PubMed Central

    Sandre, Matthew; Ralevski, Filip; Rau, Neil

    2015-01-01

    Crusted scabies is a highly contagious form of scabies. Altered immune response, nutritional deficiencies and modified host response are all risk factors for crusted scabies. The authors report a case involving a patient found to have a chronic maculopapular, erythematous rash with large hyperkeratotic, white and grey plaques on the soles of both feet. An ultimate diagnosis of crusted scabies was reached after a delay in diagnosis suspected to be caused by the similarity in appearance to more common skin conditions such as psoriasis. After topical permethrin was unsuccessful, intermittent dosing of oral ivermectin resulted in a rapid reduction in cutaneous plaques. PMID:25798153

  17. Alpha Ridge: Oceanic or Continental Crust? Constraints from Crustal Thickness Mapping using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Alvey, A.

    2010-12-01

    The ocean basins of the Arctic formed during the Late Jurassic, Cretaceous and Tertiary as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The structure and origin of the Alpha and Mendeleev Ridges within the Amerasia Basin are contentious; possibilities include thick oceanic crust formed by ocean ridge - mantle plume interaction, micro-continents or thinned continental crust with mantle plume volcanic addition. We use gravity inversion, incorporating a lithosphere thermal gravity anomaly correction, to map Moho depth, crustal thickness and continental lithosphere thinning factor for the Amerasia Basin in order to determine the distribution of oceanic and continental lithosphere and the ocean-continent transition location. Data used in the gravity inversion are gravity data from the NGA (U) Arctic Gravity Project, IBCAO bathymetry and sediment thickness from Laske et al. (1997). Our gravity inversion predicts thin crust (5-10 km thickness) and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20-30 km, are predicted for the Alpha, Mendeleev and Lomonosov Ridges. Moho depths predicted by gravity inversion compare well with estimates from the TransArctica-Arctica seismic profiles. Moho depths from the gravity inversion are dependent on the age of oceanic lithosphere and continental breakup because of the lithosphere thermal gravity anomaly correction; these ages are uncertain for the Amerasia Basin. Gravity inversion sensitivities to break-up ages between 150 Ma (late Jurassic Triassic) and 60 Ma (early Tertiary) have been examined. Alpha Ridge has in its centre a crustal thickness of 25-30 km and possesses sharp angular edges. While Alpha Ridge has been compared with Iceland for structure and

  18. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  19. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust.

    PubMed

    Rajeev, Lara; da Rocha, Ulisses Nunes; Klitgord, Niels; Luning, Eric G; Fortney, Julian; Axen, Seth D; Shih, Patrick M; Bouskill, Nicholas J; Bowen, Benjamin P; Kerfeld, Cheryl A; Garcia-Pichel, Ferran; Brodie, Eoin L; Northen, Trent R; Mukhopadhyay, Aindrila

    2013-11-01

    Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. PMID:23739051

  20. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust

    PubMed Central

    Rajeev, Lara; da Rocha, Ulisses Nunes; Klitgord, Niels; Luning, Eric G; Fortney, Julian; Axen, Seth D; Shih, Patrick M; Bouskill, Nicholas J; Bowen, Benjamin P; Kerfeld, Cheryl A; Garcia-Pichel, Ferran; Brodie, Eoin L; Northen, Trent R; Mukhopadhyay, Aindrila

    2013-01-01

    Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. PMID:23739051

  1. Rapid dewatering of the crust deduced from ages of mesothermal gold deposits

    USGS Publications Warehouse

    Goldfarb, R.J.; Snee, L.W.; Miller, L.D.; Newberry, R.J.

    1991-01-01

    The large-scale migration of fluids through the continental crust has been well documented, but there is no consensus regarding the timing of fluid migration relative to erogenic episodes, or rates of crustal dewatering1. Here we present 40Ar/39Ar dates for muscovites from quartz veins along a major shear zone in southeast Alaska, which show that the veins were emplaced in the early Eocene, during the late stages of orogenic deformation. Hydrothermal activity took place for only about 1 Myr and along a distance of at least 200 km. The fluids were generated by metamorphic reactions in subducted crust along the North American plate margin, and were apparently trapped in the crust by the low permeabilities accompanying a convergent tectonic regime until 56 Myr ago. The rapid dewatering event coincided with a change in plate motion at 56-55 Myr, which caused a shift from convergent to partly transcurrent tectonics. We suggest that this change in tectonic regime led to increased crustal permeabilities and hence the possibility of large-scale fluid migration.

  2. IODP Expedition 345: Primitive Layered Gabbros From Fast-Spreading Lower Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Ildefonse, Benoit; Gillis, Kathryn M.; Snow, Jonathan E.; Klaus, Adam

    2014-05-01

    , sheeted dikes and lavas, provides the best constrained estimate to date of the bulk composition of crust formed at a fast-spreading ridge. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the composition of both the lavas and plutonics. However, the recovered plutonic rocks show unanticipated early crystallization of orthopyroxene, challenging current models of melt extraction from the mantle and mid-ocean ridge basalt differentiation. The core recovered at Site U1415 originated at a stratigraphic level at least 2 km beneath the sheeted dike-plutonic transition, representing intervals of the lower half to one third of the EPR plutonic crust. A more precise depth cannot be assigned as the results of Expedition 345 (e.g., magnetic inclinations) and site survey indicate that the sampled units are tilted, mass-wasted blocks. However, sampling four large blocks of relatively fresh rocks proved facilitated observations of the wide variety and complexity of rock types and textures present in fast spread primitive lowermost crust.

  3. Neodymium, strontium, and oxygen isotopic variations in the crust of the western United States: Origin of Proterozoic continental crust and tectonic implications

    SciTech Connect

    Bennett, V.C.

    1989-01-01

    Initial Nd isotopic ratios of crystalline rocks from an area of about 1.5 {times} 10{sup 6} km{sup 2} of the western United States have been determined in order to map Precambrian age province boundaries and thus document the growth and modification of the North American continent in the Proterozoic. Three age provinces have been delineated. It is demonstrated that large regions of Early Proterozoic continental crust were formed with anomalous isotopic compositions ({sup 143}Nd/{sup 144}Nd ratios lower than Early Proterozoic depleted-mantle). The variations in the initial {epsilon}{sub Nd} and {delta}{sup 18}O values correlate with each other, and correspond to the previously determined Nd isotopic provinces. The Pelona, Rand, Chocolate Mountain and Orocopia Schists are represented by 15 lithologically and structurally similar schist bodies exposed along the San Andreas and Garlock faults in southern California. The grayschists have measured {epsilon}{sub Nd} values from -1.7 to -11.7 with depleted-mantle model ages of 0.9 to 1.7 Ga. The Nd isotopic compositions can be modeled as variable mixtures of Early Proterozoic continental crust with a Mesozoic are component. The measured {sup 87}Sr/{sup 86}Sr ratios are from 0.7087 to 0.7129 and reflect the presence of an old continental source. Independent of age, the high initial {epsilon}{sub Nd} values ({sup +}9 {plus minus} 1.5) are consistent with derivation at an oceanic spreading center, either at a MORB or in a back-arc basin environment. The presence of both Early Proterozoic continental detritus and a younger sedimentary component in the grayschist protolith, and the MORB affinity of the metabasalts are compatible with formation of the protoliths of the Pelona and related schists in a Mesozoic basin adjacent to the southwestern United States continental margin.

  4. Continued Evidence for Input of Chlorine into the Martian Crust from Degassing of Chlorine-Rich Martian Magmas with Implications for Potential Habitability

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Gross, J.

    2014-12-01

    The chlorine-concentration (or salinity) of a fluid affects the potential for that fluid to be a habitable environment, with most known terrestrial organisms preferring low salinity fluids [1, 2]. The Martian crust (as analyzed by the Gamma Ray Spectrometer) is chlorine-rich with up to 0.8 wt% Cl; while the MER rovers Spirit and Opportunity as well as MSL Curiosity have analyzed rocks with even higher chlorine concentrations [e.g., 3]. This suggests that any potential fluid flowing through the crust would have high chlorine concentrations and therefore high salinity. Here we investigate the bulk and mineral chemistry of the SNC meteorites to constrain the pre-eruptive chlorine concentrations of Martian magmas as the potential source of chlorine in the Martian crust. Bulk SNC meteorites have Cl concentrations similar to terrestrial Mid Ocean Ridge Basalts which would suggest a Cl content of the Martian interior similar to that of the Earth [4]. However, based on Cl/La ratios, the Martian interior actually has 2-3 times more Cl than the Earth [5]. This is also reflected in the composition of Cl-rich minerals within the SNC meteorites [5, 6] and suggests that the pre-eruptive parental magmas to the SNC meteorites were Cl-rich. Eruption and degassing of such Cl-rich magmas would have delivered Cl to the Martian crust, thereby increasing the salinity of any fluids within the crust. [1] Rothschild L.J. and R.L. Mancinelli (2001) Nature. 409: 1092-1101. [2] Sharp Z.D. and D.S. Draper (2013) EPSL. 369-370: 71-77. [3] Taylor G.J. et al. (2010) GRL. 37: L12204. [4]. Burgess R. et al (2013) GCA 77: 793. [5] Filiberto J. and A.H. Treiman (2009) Geology. 37: 1087-1090. [6] McCubbin F.M. et al. (2013) MaPS. 48: 819-853.

  5. Noble gases in meteorites and terrestrial planets

    NASA Technical Reports Server (NTRS)

    Wacker, J. F.

    1985-01-01

    Terrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.

  6. Enrichment mechanisms of tellurium in ferromanganese crusts

    NASA Astrophysics Data System (ADS)

    Sakaguchi, A.; Sugiyama, T.; Usui, A.; Takahashi, Y.

    2012-04-01

    Marine ferromanganese crusts (FMCs) consist of iron (Fe) hydroxides and manganese (Mn) oxides with various minor and trace elements. Especially for tellurium (Te), which is recognized as one of the rare metals, it has been reported that this element is concentrated about 105 times in FMCs compared with earth's crust, and the host phase might be Fe (oxy)hydroxide (Hein et al., 2003). Actually, in our previous study, the high concentration of Te in very surface layers of FMCs was found from the top to halfway down of a seamount in the Pacific Ocean. However, the concentration of Te in surface layers through the seamount showed good correlation with that of Mn instead of Fe. In this study, we attempted to clarify the enrichment mechanism of Te in FMCs with some methods including X-ray absorption fine structure (XAFS) technique for synthesised /natural samples. Seventeen FMC samples were collected from the Takuyo-Daigo seamount, from 950 m (summit) to 3000 m in water depth, with hyper-dolphin (remotely operated vehicle) equipped with live video camera and manipulators. The growth rates of all FMC samples were estimated to be about 3 mm/Ma. Very surface layer (less than 1 mm) of all FMC was analyzed with XRD and XAFS to confirm the mineral composition and speciation of Te. Furthermore, to serve as an aid to clarify the adsorption mechanism of Te on FMCs, distribution coefficients (Kd) and oxidation states were determined through the adsorption experiments of Te(IV) and Te(VI) on ferrihydrite and δ-MnO2. In all the experiments, pH and ionic strength were adjusted to pH 7.5 and 0.7 M, respectively. The oxidation state of Te in water phase was determined with HPLC-ICP-MS. As for the analysis of oxidation and adsorption states on the solid phase, XAFS was employed. The major mineral composition of Fe and Mn had no significant variation through the water depth of Takuyo-Daigo seamount. The oxidation state of Te in all samples showed hexavalent, and there was no significant

  7. Early Earth differentiation [rapid communication