Science.gov

Sample records for early transition metal

  1. The metal-rich sulfides and phosphides of the early transition metals

    SciTech Connect

    Franzen, H.F. |

    1996-06-01

    Early work on the preparation of refractory metal-rich compounds of the early transition metals resulted in the understanding that metal-metal bonding results in a structural variety that plays an important role in the high-temperature chemistry of these systems. The binary metal-rich systems have been thoroughly studied at high temperatures, and the structures of most, if not all, of the refractory sulfides and phosphides are known. More recently new ternary phases have been discovered, and these have been shown to result from distributed fractional site occupation of metal atom sites in complex structures. The extent of metal-metal bonding has been quantified by Extended-Hueckel Tight-Bonding calculations using Mullikan Overlap Populations. Correlations of site occupancy with MOP based upon the DFSO model have been observed. 44 refs.

  2. Structure of glassy early-transition-metal-late-transition-metal hydrides

    NASA Astrophysics Data System (ADS)

    Samwer, K.; Johnson, W. L.

    1983-09-01

    Hydrogen is used as a probe for obtaining structural information on metallic glasses. Results from experimental radial distribution functions of hydrided and unhydrided Zr3Rh and Zr2Pd glasses show a significant change in the nearest-neighbor distance of Zr atoms. The measured distance suggests that hydrogen occupies mainly tetrahedral sites defined by four Zr atoms under normal hydriding conditions (1 atm H2, ~200°C). A statistical model for these sites based on current dense-random-packing models is in good agreement with the observed absorption capacity for hydrogen. We predict that H-H interaction should limit the upper value of hydrogen content in Zr-based glasses to 2.5 (H/metal atom).

  3. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  4. Single-step preparation and consolidation of reduced early-transition-metal oxide/metal n-type thermoelectric composites

    NASA Astrophysics Data System (ADS)

    Gaultois, Michael W.; Douglas, Jason E.; Sparks, Taylor D.; Seshadri, Ram

    2015-09-01

    Reduced early transition metal oxides/metal composites have been identified here as interesting thermoelectric materials. Numerous compositions in the Nb-rich portion of the WO3-Nb2O5 system have been studied, in composite formulations with elemental W. Spark plasma sintering (SPS) has been employed to achieve rapid preparation and consolidation of composite materials containing W metal precipitates with characteristic length scales that range from under 20 nm to a few microns, that exhibit thermal conductivities that are constant from 300 K to 1000 K, approximately 2.5 W m-1 K-1. Thermoelectric properties of these n-type materials were measured, and the highest-performing compositions were found to reach figure of merit zT values close to 0.1 at 950 K. The measurements point to higher zT values at yet-higher temperatures.

  5. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J. (Evanston, IL); Luo, Lubin (Baton Rouge, LA); Yoon, Sung Cheol (Evanston, IL)

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  6. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  7. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J. (Evanston, IL); Luo, Lubin (Baton Rouge, LA); Yoon, Sung Cheol (Evanston, IL)

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  8. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  9. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  10. C?H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (.).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate C?H bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, C?H activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The C?H activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05)?%. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. PMID:26490554

  11. Early Transition Metal Oxides as Catalysts: Crossing Scales from Clusters to Single Crystals to Functioning Materials

    SciTech Connect

    Lai-Sheng Wang

    2009-07-07

    The overall goal of this program is to investigate the electronic structure and chemical bonding of early transition metal oxide clusters and use them as well-defined molecular models to obtain insight into properties and mechanisms of oxide catalysts, as well as to provide accurate spectroscopic and molecular information to verify theoretical methods used to predict materials properties. A laser vaporization cluster source is used to produce metal oxide clusters with different sizes, structures, and compositions. Well-defined inorganic polyoxometalate clusters in solution are transported in the gas phase using electrospray. Two state-of-the-art photoelectron spectroscopy apparatuses are used to interrogate the oxide clusters and polyoxometalate anions in the gas phase to obtain spectroscopic and electronic structure information. The experimental effort is assisted by theoretical calculations to understanding the structures, chemical bonding, and catalytical properties of the transition metal oxide clusters. The research approach combines novel and flexible experimental techniques and advanced theoretical/computational methodologies and seeks molecular-level information to aiding the design of new catalysts, as well as mechanistic understanding. We have focused on the investigation of tungsten oxide clusters containing three W atoms: W{sub 3}O{sub x}{sup -} (x = 7-11). A number of interesting findings have been made. We observed that the oxygen-poor W{sub 3}O8 cluster contains a localized W{sup 4+} center, which can be used as a molecular model for O-deficient defect sites. A chemisorption energy was obtained through density functional calculations for W{sub 3}O8 + O{sub 2} {yields} W{sub 3}O{sub 10} as -78 kcal/mol. We further found that the neutral stoichiometric W{sub 2}O{sub 6} and W{sub 3}O{sub 9} clusters do not react with O{sub 2} and they only form physi-sorbed complexes, W{sub 2}O{sub 6}(O{sub 2}) and W{sub 3}O{sub 9}(O{sub 2}). However, the negatively charged W{sub 2}O{sub 6}{sup -} and W{sub 3}O{sub 9}{sup -} clusters are found to form chemisorbed complexes due to the presence of the extra electron. Thus, the W{sub 2}O{sub 6}{sup -} and W{sub 3}O{sub 9}{sup -} negative clusters can be viewed as models for O{sub 2} interaction with a reduced W site (W{sup 5+}) on the oxide surface. These studies also led to the surprising observation of the first d-orbital aromatic clusters in W{sub 3}O{sub 9}{sup 2-} and Mo{sub 3}O{sub 9}{sup 2-}, which each contains a completely delocalized three-center two-electron bond made entirely made of the metal d orbitals. This last result was highlighted in both Chem & Eng. News and Nature. We further studied a series of small metalate anions using electrospray, including the hydroxo and methoxo oxometalate MO{sub 3}(OH){sup -} and MO{sub 3}(OCH{sub 3}){sup -}, and the dimetalates: M{sub 2}O{sub 7}{sup 2-}, MM{prime}O{sub 7}{sup 2-}, and M{sub 2}O{sub 7}{sup -} (M, M{prime} = Cr, Mo, and W).

  12. The electronic and geometric structures of various small molecules containing early transition metals

    NASA Astrophysics Data System (ADS)

    Edwards, Jesse, III

    1999-12-01

    Earlier work on Scandium Nitride and Scandium Imide has prompted the study of this unique class of compounds through ab-initio methods. Computationally, the transition-metal nitrides have been studied in some detail. In these studies the ScN molecule was found to possess a 1?+ ground state with a 3?+ state lying only about 7 kcal higher in energy. The triplet state comes about by decoupling the weak sigma bond in the singlet state, leaving a diradical with the two remaining ? bonds (.Sc=N.). The relative ordering of the low lying states predicted by Harrison and Kunze agrees extremely will with experiment. Coupling two of the diradicals leads to an alternating doubly-bonded dimer, .Sc=N- Sc=N . with a lone electron found in the ? symmetry orbitals to the rear of the terminal Sc and N atoms. These lone electrons are left available to form additional bonds. This work will cover the studies conducted investigating the electronic structure of the scandium nitride dimer. Ab-Initio studies of diatomic metal nitrides and phosphides provide a fundamental tool in understanding the bonding between nitrogen and phosphorus atoms and metals. The bond lengths, bond energies, dipole moments, and vibrational frequencies of the ground and several low-lying states of the YN and YP molecules, calculated using GVB (Generalized Valence Bond), GVB+1+2, MCSCF (Multiconfigurational Self-Consistent Field), and MCSCF+1+2 techniques will be reported. The basis sets used for the Y atom in the YN and YP calculations contained a relativistic effective core potential (RECP) to account for the relativistic effects on Y. There will be a comparison of the results of YP using two different all electron basis set on the phosphorus atom. The calculated ground states of YN, YP, and ScN1,2 and ScP5 are strongly bound 1?+ states at each level of theory. The calculated bond length of YN 1.8147 angstroms. The experimental value was reported as 1.8148 angstroms4. The ordering of states for the YN molecule was in agreement with experiment at each level of theory. The early transition metal methylidynes provide another unique class of compounds to study. The electronic structure of ScCH, TiCH, VCH, and CrCH, as well as, their positive cations will be presented for the ground and selected excited states. The geometries, energies, and dipole moments, and electron distributions (populations) were calculated using RHF, MCSCF, and MRCI techniques. Density Functional Theory was used to calculate the vibrational frequencies, along with the other properties mentioned on the ground and selected excited states. Our results are also in good agreement with the few experimental results available. The vibrational frequencies and bond lengths of TiCH in the 2?+ ground state are compared to experiment, along with the separation (energetically) between the 2? + and 2? states of the TiCH molecule. The vibrational frequencies and bond lengths of the VCH molecule in the 3? state are also compared to our calculated results.

  13. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    SciTech Connect

    Bercaw, John E.

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  14. Electronic and magnetic properties of early transition-metal substituted iron-cyclopentadienyl sandwich molecular wires: Parity-dependent half-metallicity

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang; Zhou, Gang; Wu, Jian; Duan, Wenhui

    2011-07-01

    Electronic and magnetic properties of early transition metals (V, Ti, Sc)-FekCpk + 1 sandwich molecular wires (SMWs) are investigated by means of ab initio calculations. It is found that all SMWs favor a ferromagnetic ground state. Significantly, V-FekCpk + 1 SMWs are either half-metallic or semiconducting, dependent upon the parity (even or odd) of the number (k) of Fe atoms in the unit cell of SMWs. This parity oscillation of conductive properties results from the combined effects of the band-folding and gap-opening at the Brillouin-zone boundary of one-dimensional materials. In contrast, Sc-FekCpk + 1 and Ti-FekCpk + 1 SMWs are always semiconducting. Our work may open up the way toward half metal/semiconductor heterostructures with perfect atomic interface.

  15. Ligand and initiator effect in late and early transition metal catalyzed living radical polymerizations

    NASA Astrophysics Data System (ADS)

    Moran, Isaac Webster

    This thesis was concerned with the development of novel catalysts and initiators for living radical polymerization (LRP). The effect of metal, ligand and initiator was studied in the LRP of styrene using transition metal porphyrins as well as a series of 18 Ti complexes with O, N as well as substituted cyclopentadienyl ligands in conjunction with epoxide and halide initiators. The nature of the metal center was first explored in a series of tetraphenyl porphyrins containing Cu, Ni, Pb, Pd, Pt, Zn, and Ag. Styrene polymerization in the presence of these catalysts showed a linear dependence of molecular weight (Mn) on conversion but also gave broad polydisperisties (PDI). This behavior was attributed to a copolymerization of the porphyrin with styrene. Subsequently, the Cp2TiCl-catalyzed radical ring opening (RRO) of epoxides was introduced as a novel initiating reaction for LRP mediated by the unprecedented reversible end-capping of the propagating chain by Ti(III). These results were supported by a combination of NMR, GPC and reinitiation experiments and generated polymers with very narrow PDI (<1.2) and functional OH chain ends. Ti(III) was also shown to be compatible with activated and unactivated halides yielding the first halide initiated LRP which does not follow an atom transfer polymerization mechanism. Further studies of the stereoelectronic ligand effects in RRO and LRP ranked these catalysts as: L = metallocene (eta5-RCp: R = H ˜ Et ˜ iPr ˜ tBu > Ind >> Cp*) >> O-ligands (alkoxides > bisketonates) >> N ligands (hydrotris(pyrazol-1-ylborato) > phthalocyanine), while X = Cl > Br >> F ˜ Me ˜ CO and LnTiCl m > Ln-1TiClm+1. Additional experimentation examined the effect of reaction conditions and optimum results were obtained with [St]/[epoxide]/[Ti]/[Zn] = 50/1/4/8 at 60 °C--90 °C in dioxane using a 1,4-butandiol diglycidyl ether. Finally, the first example of a dual concurrent polymerization of styrene and epsilon-caprolactone was demonstrated using a single catalyst/initiator system (Ti/epoxide) and new criteria for quantifying the livingness of the process were outlined.

  16. Early Transition Metal Oxides as Catalysts: Crossing Scales from Clusters to Single Crystals to Functioning Materials

    SciTech Connect

    Dixon, David A.; Dohnalek, Zdenek; Gutowski, Maciej S.; Hu, Jian Zhi; Iglesia, Enrique; Kay, Bruce D.; Liu, Jun; Peden, Charles HF; Wang, Lai; Wang, Yong; White, John M.; Bondarchuk, Oleksander A.; Herrera, Jose E.; Kim, J.; Kwak, Ja Hun; Stuchinskaya, T.; Zhai, Hua Jin; Chisolm, Claire N.; Macht, Josef

    2007-05-20

    The proportion of chemical industry processes using catalysts exceeds 80%. Current commercial heterogeneous catalysts are structurally and chemically complex and data gathered from them can seldom be interpreted with atomic-level precision. We seek to reduce the complexity of TMO catalysts to levels addressable and controllable at the atomic level, while maintaining intimate linkages with practical catalysis and catalytic materials. The focus of the proposed work is to gain a fundamental understanding of chemical transformations in order to design and construct new catalysts with more precise control of specific chemical reactions. We are employing an integrated experimental/theoretical approach to advance our current ability to understand, design, and control the catalytic and surface chemistry of transition metal oxides, specifically for redox and acid-base chemistries. The approach combines novel solid-state inorganic synthesis, surface science, experimental and theoretical/computational chemical physics, and mechanistic organic chemistry to address this complex and important challenge. Selected highlights from the results obtained in the last year are presented in the conference proceedings extended abstract.

  17. Low-Coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands

    NASA Astrophysics Data System (ADS)

    Boynton, Jessica Nicole

    The research in this dissertation is focused on the synthesis, structural, and magnetic characterization of two-coordinate open shell (d1-d4) transition metal complexes. Background information on this field of endeavor is provided in Chapter 1. In Chapter 2 I describe the synthesis and characterization of the mononuclear chromium (II) terphenyl substituted primary amido complexes and a Lewis base adduct. These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 muB owing to the fact that lambda (the spin orbit coupling parameter) is positive. The three-coordinated complex 2.3 had a magnetic moment of 3.77 muB. The synthesis and characterization of the first stable two-coordinate vanadium complexes are described in Chapter 3. The values suggest a significant spin orbital angular momentum contribution that leads to a magnetic moment that is lower than their spin only value of 3.87 muB. DFT calculations showed that the major absorptions in their UV-Vis spectra were due to ligand to metal charge transfer transitions. The titanium synthesis and characterization of the bisamido complex along with its three-coordinate titanium(III) precursor are described in Chapter 4. Compound 4.1 was obtained via the stoichiometric reaction of LiN(H)AriPr 6 with the Ti(III) complex TiCl3 *2NMe 3 in trimethylamine. The precursor 4.1 has trigonal pyramidal coordination at the titanium atom, with bonding to two amido nitrogens and a chlorine as well as a secondary interaction to a flanking aryl ring of a terphenyl substituent. Compound 4.2 displays a very distorted four-coordinate metal environment in which the titanium atom is bound to two amido nitrogens and to two carbons from a terphenyl aryl ring. This structure is in sharp contrast to the two-coordinate linear structure that was observed in its first row metal (V-Ni) analogs. The synthesis and characterization of mononuclear chromium(II) terphenyl primary substituted thiolate complexes are described in Chapter 5. Reaction of the terphenyl primary thiolate lithium derivatives LiSAriPr4 and LiSArMe6 with CrCl2THF2 in a 2:1 ratio afforded complexes 5.1 and 5.2, which are the very rare examples of chromium(II) thiolates with quasi-two-coordination at the metal center. Both deviate from linearity and have S-Cr-S angles of 111.02(3)° and 107.86(3) ° with secondary Cr-C(aryl ring) interactions of ca. 2.115 A and 1.971 A respectively. The initial work on titanium and vanadium terphenyl thiolates is described in Appendix I and II. In Chapter 6 I show that the reaction of K2COT (COT= 1,3,5,7-cyclooctatetraene, C8H8) with an aryl chromium(II) halide gave (CrAriPr 4)2(mu2-n3:n4-COT) (6.1) in which a non-planar COT ring is complexed between two CrAriPr4 moieties -- a configuration previously unknown for chromium complexes of COT. OneCr2+ ion is bonded primarily to three COT carbons (Cr--C= 2.22-2.30 A ) as well as an ipso carbon (Cr-C= ca. 2.47 A) from a flanking aryl ring of its terphenyl substituent. The otherCr2+ ion bonds to an ipso carbon (Cr-C= ca. 2.53 A) from its terphenyl substituent as well as four COT carbons (Cr--C= 2.24-2.32 A). The COT carbon-carbon distances display an alternating pattern, consistent with the non-planarity and non-aromatic character of the ring. The magnetic properties of 6.1 indicate that theCr2+ ions have a high-spin d4 configuration with S = 2. The temperature dependence of the magnetism indicates that their behavior is due to zero-field splitting of the S = 2 state. Attempts to prepare 6.1 by the direct reaction of quintuple-bonded (CrAriPr4)2 with COT were unsuccessful. (Abstract shortened by UMI.)

  18. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  19. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  20. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  1. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  2. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  3. Calixarene supported transition metal clusters 

    E-print Network

    Taylor, Stephanie Merac

    2013-06-29

    This thesis describes a series of calix[n]arene polynuclear transition metal and lanthanide complexes. Calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition metal ...

  4. Melting of Transition Metals

    SciTech Connect

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  5. Metal to semiconductor transition in metallic transition metal dichalcogenides

    SciTech Connect

    Li, Yan; Kang, Jun; Li, Jingbo; Tongay, Sefaattin; Wu, Junqiao; Yue, Qu

    2013-11-07

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX{sub 2} (M?=?Nb, Ta; X?=?S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ?13?Å and ?7?Å for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  6. Semiconducting transition metal oxides.

    PubMed

    Lany, Stephan

    2015-07-22

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO(2), and the high levels of hole doping in Co(2)ZnO(4) due to a self-doping mechanism that originates from the multivalence of Co. PMID:26126022

  7. Semiconducting transition metal oxides

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2015-07-01

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using as an example the diversity of possible atomic and magnetic configurations of the O vacancy in TiO2, and the high levels of hole doping in Co2ZnO4 due to a self-doping mechanism that originates from the multivalence of Co.

  8. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  9. Selenophene transition metal complexes

    SciTech Connect

    White, C.J.

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the {eta}{sup 1}(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  10. DFT+U study of electrical levels and migration barriers of early 3 d and 4 d transition metals in silicon

    NASA Astrophysics Data System (ADS)

    Marinopoulos, A. G.; Santos, P.; Coutinho, J.

    2015-08-01

    Owing to their strong interaction with carriers, early 3 d -row (Ti, V, and Cr) and 4 d -row (Zr, Nb, and Mo) transition metals (TMs) are undesired contaminants in solar- and electronic-grade Si. The increasing stringent control of contamination levels is urging an accurate picture of their electronic structure. In the present work, the electrical levels and migration energies of these TMs are determined by means of standard density-functional theory (DFT) and a rotationally invariant formulation of DFT+U . The latter approach improves on the treatment of electronic correlations at the TM sites and relies on on-site Hubbard Coulomb and Hund's exchange parameters U and J , respectively. These are calculated self-consistently from linear-response theory without fitting to experimental data. The effect of correlation was found more pronounced for Ti and V, with a strong impact on the location of their electrical levels. In most cases, the agreement with the experimental data is satisfactory allowing the identification of the type and character of the levels. For Cr and Mo in particular, the results resolve longstanding controversies concerning the type and position of the levels. The obtained migration barriers display moderate charge-state and correlation dependency. High barriers were found for all metals studied, with the exception of Cr, confirming them as slow diffusers in silicon among the whole TM family.

  11. Surface chemistry on transition metal carbides

    NASA Astrophysics Data System (ADS)

    Hwu, Henry Hanyuan

    The carbides of Groups IVB-VIB early transition metals have been shown to exhibit catalytic properties similar to those observed for Pt-Group metals in reactions with hydrocarbon molecules. Various electrochemical studies revealed tungsten carbides (WC and W2C) to be remarkably resistant to acidic corrosion at anodic potentials, though their effectiveness as electrocatalysts remained inconclusive. The first part of this research therefore focused on the fundamental mechanistic studies of the reactivity of the clean and carbide-modified W(111), W(110), and Mo(110) surfaces toward the direct methanol fuel cell (DMFC) molecules, methanol, water, and carbon monoxide. Temperature-programmed desorption and electron energy loss spectroscopy results showed that the carbide-modified surfaces were highly active toward the decomposition of methanol and water. Furthermore, the desorption of CO from both carbide surfaces occurred at near room temperature. To better characterize the carbide surfaces, the second part of this research concentrated on identifying the various parameters influencing the surface chemistry of carbides. Studies comparing the reaction of ethylene on carbide-modified W(111) and W(110) showed that, though both surfaces readily decomposed ethylene, only the C/W(110) surface was able to form the ethylidyne intermediate commonly observed on Pt-group metals. Additionally, the Pt-like reactivity of C/Mo(110) was modified after exposure to oxygen. Similar to many carbide-modified early transition metal surfaces, C/Ti(0001) also demonstrated Pt-like reactivity toward cyclohexene and ethylene. Lastly, the effects of carbon-modification was examined on Ni(111), a late transition metal surface. Although the carbide-modified Ni(111) surface was similar to other early transition metal carbide surfaces in the selective dehydrogenation of cyclohexene to benzene, the carbide layer converted to graphitic carbon at higher temperatures. This dissertation showed that tungsten carbide materials may be considered as a potential electrocatalyst for the direct methanol fuel cell on the basis that, when compared to Pt-group metal surfaces, they exhibited higher oxidation activity toward methanol and water, and that they were able to desorb carbon monoxide at lower temperatures. In addition, this study also demonstrated that substrate structure, surface modifications, and the position of the transition metal in the periodic table could influence the reactivity of the carbide surfaces.

  12. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  13. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  14. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  15. Approximating metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  16. Synthesis of transition metal carbonitrides

    DOEpatents

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  17. Family Perceptions of Transitions in Early Intervention

    ERIC Educational Resources Information Center

    Lovett, David L.; Haring, Kathryn A.

    2003-01-01

    This article explores three broad themes about transitions that have emerged in a naturalistic study of experiences of families with young children with disabilities. Generalizations regarding early transitions include families going through a birth crisis have difficulty understanding all the information they are provided. Not only is their role…

  18. Magnetochromism in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Musfeldt, Janice; Choi, Jongwoo; Haraldsen, Jason; Woodward, Jonathan; Wei, Xing; He, Jian; Mandrus, David; Landee, Chris; Turnbull, Mark; Suryanarayanan, Ramanathanan; Revcolevschi, Alex

    2004-03-01

    We discuss the discovery and mechanism of magnetic field-induced color changes in three different low-dimensional transition metal oxides: Li purple bronze, (CPA)_2CuBr_4, and Pr-substituted La_1.2Sr_1.8Mn_2O_7. In Li purple bronze, the field manipulates the density of states near E_F, altering O p to Mo d excitations. In the copper halide, the applied field rotates the CuBr4 chromophore units, yielding a strong magnetochromic effect. And in (La_0.4Pr_0.6_1.2Sr_1.8Mn_2O_7, the magnetic field acts on the Jahn-Teller-split Mn^3+ eg orbitals, with consequences of a substantial CMR effect, unusual magnetic relaxation behavior, and a change in orbital occupation.

  19. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  20. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  1. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  2. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  3. Late transition metal anions acting as p-metal elements

    NASA Astrophysics Data System (ADS)

    Köhler, Jürgen; Whangbo, Myung-Hwan

    2008-04-01

    A brief review is given for those extended solids of transition metal compounds in which their transition metal atoms are best described as existing as anions. Analyses of the electronic structures of metal-rich fluorides and oxides containing octahedral metallo-complexes [MIn 6- xSn x] (M = Fe, Ni, Ru, Os, Ir and Pt) indicate that their transition metal atoms M are present as anions with the valence electron configuration ( n + 1)s 2nd 10. In compounds RE 2M 2In (RE = rare earth element, M = Pt, Cu and Au), Ca 5Au 4, Ca 3Hg 2 and Ca 5M 3 (M = Cu, Au, Zn, Cd and Hg), the transition metal atoms exist as dimeric Zintl anions with the valence electron configuration ( n + 1)s 2nd 10( n + 1)p 1. Consequently, the frontier orbitals of these compounds are not described by the transition metal nd orbitals, but by the transition metal ( n + 1)p orbitals. A similar situation is found for most 18-electron half-Heusler compounds (e.g., ScAuSn), for which the valence electron configuration of the transition metal is given by ( n + 1)s 2nd 10( n + 1)p 2.

  4. Intercalation of Transition Metals into Stacked Benzene Rings: A Model Study of the Intercalation of Transition Metals into Bilayered Graphene.

    PubMed

    Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S

    2012-01-10

    Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by ? bonds which originate from the interaction of ?-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments. PMID:26592872

  5. 9 Metal to Non-metal Transitions in Solids and on Surfaces studied using Photoemission Spectroscopy

    E-print Network

    Redner, Sidney

    9 Metal to Non-metal Transitions in Solids and on Surfaces studied using Photoemission Spectroscopy of the electrical properties of a material between those of a metal and those of a non-metal (be it semiconducting metal to non-metal transitions. (Thephrase `metal to non-metal transition' is used in this paper

  6. Transition metal fluorides: from superconductors to multiferroics. 

    E-print Network

    Drathen, Christina

    2013-06-29

    Transition metal fluorides represent an important family of complex solids displaying a variety of different properties and interesting phenomena. Despite their remarkable behaviour, these classes of materials have not ...

  7. Structural transitions: 'Ferroelectricity' in a metal

    NASA Astrophysics Data System (ADS)

    Keppens, Veerle

    2013-11-01

    The discovery of a ferroelectric-like structural transition in metallic LiOsO3 identifies a new class of materials with unconventional properties, providing an exotic playground for theorists and experimentalists.

  8. Protein-Transition Metal Ion Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten showed increases of 2-3 times in modulus with addition of divalent transition metal ions Cu2+ and Zn2+. Increasing concentrations of ions resulted in increased stiffnes...

  9. PROTEIN-TRANSITION METAL ION NETWORKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten had low, medium, and high levels of aspartic and glutamic acid, respectively, and FT-IR showed that the divalent transition metal ions Mn2+, Cu2+, and Zn2+ were tightly ...

  10. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  11. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  12. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  13. Metal-Nonmetal Transition in Liquids

    NASA Astrophysics Data System (ADS)

    Endo, H.

    A brief review is presented on the aspects and mechanism of the metal-nonmetal transition in the disordered systems. The electronic and thermodynamic properties are discussed for expanded Hg and dilute amalgams near the liquid-gas critical point. In expanded liquid Hg a metal-nonmetal (M-NM) transition occurs at density near 9g/cm^3 and anomalous are found in the thermodynamic properties such as equation-of-state and isothermal compressibility. At low densities substantial volume contraction and large increase in conductivity are brought about by the addition of a small amount of the elements with high valency such as Bi and Pb to expanded liquid Hg. The semiconductor-metal transition is discussed for liquid and amorphous Se-Te mixtures. In the liquid mixture, the transition from Se-like loosely packed to Te-like densely packed structure occurs by changing the temperature, pressure and Te content. The transition may be associated with the change in the short-range order around Te atoms. In amorphous Se_{0.8}Te_{0.2} mixture a reproducible sharp semiconductor-metal transition is found under pressure. The semiconductor-metal transition near the liquid-liquid critical point is also described for liquid Tl-Se mixtures in the Se-rich region. The liquid-liquid two-phase region is diminished by the application of pressure. It is suggested that the metal-nonmetal transitions observed in the liquid and amorphous systems are closely related to the structural changes.

  14. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  15. Transition metal contacts to graphene

    NASA Astrophysics Data System (ADS)

    Politou, Maria; Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Lee, Chang Seung; Martens, Koen; Sayan, Safak; Huyghebaert, Cedric; Tokei, Zsolt; De Gendt, Stefan; Heyns, Marc

    2015-10-01

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  16. Metal-nonmetal transition in indium-alkali metal and aluminum-alkali metal melts

    NASA Astrophysics Data System (ADS)

    Kiselev, A. I.

    2012-02-01

    The electrical resistivities of indium-alkali metal and aluminum-alkali metal melts are calculated. The Ziman theory of the electrical conductivity of metallic melts is shown to successfully describe the experimental effects of an increase in the electrical resistivity during a metal-nonmetal transition in the indium-alkali metal systems. This theory also predicts similar qualitative effects of a change in the electrical resistivities of aluminum-alkali metal melts. The melts of aluminum-alkali metal systems are assumed to undergo a metal-nonmetal transition.

  17. Work Functions of the transition Metals and Metal Silicides

    SciTech Connect

    Drummond, T.J.

    1999-02-15

    The work functions of polycrystalline metals are often used to systematize Schottky barrier height data for rectifying contacts to semiconductors. Rectifying contacts to silicon devices are predominantly formed using conductive metal silicides with work functions which are not as well characterized as metal work functions. The present work has two objectives. First, it classifies the transition metals using correlations between the metal work function and the atomic chemical potential. Second, the available data for metal silicides is collected and interpreted using an average charge transfer (ACT) model. The ACT model accounts for the electronic hardness of the component elements in addition to their chemical potentials. New trends in the behavior of silicide work functions are identified.

  18. Holographic lattices and metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Ling, Yi

    2015-10-01

    This paper is an extension of the talk given at the conference on Gravitation and Cosmology/The Fourth Galileo-Xu Guangqi Meeting. We intend to present a short review on recent progress on the construction of holographic lattices and its application to metal-insulator transition (MIT), which is a fundamentally important phenomenon in condensed matter physics. We will firstly implement the Peierls phase transition by constructing holographic charge density waves which are induced by the spontaneous breaking of translational symmetry. Then we turn to the holographic realization of metal-insulator transition as a quantum critical phenomenon with many strongly correlated electrons involved. The holographic entanglement entropy as a diagnostic for such quantum phase transitions will be briefly mentioned.

  19. Metal-Insulator Transitions in Two Dimensions

    E-print Network

    Metal-Insulator Transitions in Two Dimensions A Thesis submitted to the Tata Institute and half years. It has been a great experience for me. I had chance to travel and enjoy seeing different friend within these years. Every day talking over tea and launch with other theory students, Ashik, Arti

  20. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  1. Orbital physics in transition-metal oxides

    PubMed

    Tokura; Nagaosa

    2000-04-21

    An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons. PMID:10775098

  2. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  3. Transition-Metal Solid-State Lasers Kenneth L. Schepler

    E-print Network

    Van Stryland, Eric

    but not as solid state lasers Important Transition Metal Lasers #12;Transition Metals vs. Rare Earths d orbitals f · Rare Earth Lasers ­ Specific wavelengths dependent on ion and host ­ High energy storage ­ EfficiencyTransition-Metal Solid-State Lasers Kenneth L. Schepler CREOL, The College of Optics & Photonics

  4. Topological crystalline insulators in transition metal oxides.

    PubMed

    Kargarian, Mehdi; Fiete, Gregory A

    2013-04-12

    Topological crystalline insulators possess electronic states protected by crystal symmetries, rather than time-reversal symmetry. We show that the transition metal oxides with heavy transition metals are able to support nontrivial band topology resulting from mirror symmetry of the lattice. As an example, we consider pyrochlore oxides of the form A2M2O7. As a function of spin-orbit coupling strength, we find two Z2 topological insulator phases can be distinguished from each other by their mirror Chern numbers, indicating a different topological crystalline insulators. We also derive an effective k·p Hamiltonian, similar to the model introduced for Pb(1-x)Sn(x)Te, and discuss the effect of an on-site Hubbard interaction on the topological crystalline insulator phase using slave-rotor mean-field theory, which predicts new classes of topological quantum spin liquids. PMID:25167290

  5. Lattice Location of Transition Metals in Semiconductors

    E-print Network

    2002-01-01

    %IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...

  6. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G. (Albuquerque, NM)

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  7. Lanthanoid-transition-metal bonding in bismetallocenes.

    PubMed

    Butovskii, Mikhail V; Oelkers, Benjamin; Bauer, Tobias; Bakker, Jacinta M; Bezugly, Viktor; Wagner, Frank R; Kempe, Rhett

    2014-03-01

    Bismetallocenes [Cp2 LuReCp2 ] and [Cp*2 LaReCp2 ] (Cp=cyclopentadienyl; Cp*=pentamethylcyclopentadienyl) were prepared using different synthetic strategies. Salt metathesis-performed in aromatic hydrocarbons to avoid degradation pathways caused by THF-were identified as an attractive alternative to alkane elimination. Although alkane elimination is more attractive in the sense of its less elaborate workup, the rate of the reaction shows a strong dependence on the ionic radius of Ln(3+) (Ln=lanthanide) within a given ligand set. Steric hindrance can cause a dramatic decrease in the reaction rate of alkane elimination. In this case, salt metathesis should be considered the better alternative. Covalent bonding interactions between the Ln and transition-metal (TM) cations has been quantified on the basis of the delocalization index. Its magnitude lies within the range characteristic for bonds between transition metals. Secondary interactions were identified between carbon atoms of the Cp ligand of the transition metal and the Ln cation. Model calculations clearly indicated that the size of these interactions depends on the capability of the TM atom to act as an electron donor (i.e., a Lewis base). The consequences can even be derived from structural details. The observed clear dependency of the Lu?Ru and interfragment Lu?C bonding on the THF coordination of the Lu atom points to a tunable Lewis acidity at the Ln site, which provides a method of significantly influencing the structure and the interfragment bonding. PMID:24500974

  8. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  9. Metal-insulator transition in holography

    E-print Network

    Aristomenis Donos; Sean A. Hartnoll

    2013-01-19

    We exhibit an interaction-driven metal-insulator quantum phase transition in a holographic model. Use of a helical lattice enables us to break translation invariance while preserving homogeneity. The metallic phase is characterized by a sharp Drude peak and a d.c. resistivity that increases with temperature. In the insulating phase the Drude spectral weight is transferred into a `mid-infrared' peak and to energy scales of order the chemical potential. The d.c. resistivity now decreases with temperature. In the metallic phase, operators breaking translation invariance are irrelevant at low energy scales. In the insulating phase, translation symmetry breaking effects are present at low energies. We find the near horizon extremal geometry that captures the insulating physics.

  10. Synthesis of arsenic transition metal sulfides and metal arsenides

    SciTech Connect

    Singhal, G.H.; Brown, L.D.; Ryan, D.F.

    1993-12-31

    One of the chief problems in upgrading shale oil is the presence of inherent arsenic which is known to poison downstream catalysts. Highly dispersed transition metal sulfides formed in situ from the decomposition of dithiocarbamate (DTC) complexes of transition metals show excellent potential as dearsenation agents. The authors have studied the reaction of these sulfides with various arsenic compositions and characterized the metal arsenides and arsenic metal sulfides formed as well as the ease of their formation. Thus, the reaction of bis(butyldithiocarbamato)Ni, (NiBuDTC) with model compounds was very facile and gave NiAs, NiAsS, and NiAs2=xSx. In general the effectiveness of the sulfides for dearsenation followed the sequence Ni>Mo{much_gt}Co, while iron sulfides were totally ineffective. Based upon these results, tests were run in autoclaves (as well as a fixed-bed flow-through unit) with NiBuDTC and shale oil having 73 ppm inherent As. Under optimum conditions, dearsenation down to les than 1 ppm was obtained.

  11. Pseudopotentials for quantum Monte Carlo calculations of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron; Santana, Juan; Kent, Paul; Reboredo, Fernando

    2015-03-01

    Quantum Monte Carlo calculations of transition metal oxides are partially limited by the availability of high quality pseudopotentials that are both accurate in QMC and compatible with major electronic structure codes, e.g. by not being overly hard in the standard planewave basis. Following insight gained from recent GW calculations, a set of neon core pseudopotentials with small cutoff radii have been created for the early transition metal elements Sc to Zn within the local density approximation of DFT. The pseudopotentials have been tested for energy consistency within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (TM) atoms and the binding curve of each TM-O dimer. The vast majority of the ionization potentials fall within 0.3 eV of the experimental values, with exceptions occurring mainly for atoms with multiple unpaired d electrons where multireference effects are the strongest. The equilibrium bond lengths of the dimers are within 1% of experimental values and the binding energy errors are typically less than 0.3 eV. Given the uniform treatment of the core, the larger deviations occasionally observed may primarily reflect the limitations of a Slater-Jastrow trial wavefunction. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. DOE. Research by PRCK was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  12. Transition Metal Nutrition: A Balance Between Deficiency and Toxicity

    E-print Network

    Hamel, Patrice

    333 Transition Metal Nutrition: A Balance Between Deficiency and Toxicity CHAPTER 10 CHAPTER CONTENTS I. Introduction 334 II. Components of the metal homeostasis network 335 A. Metal transporters 335 B. Metal chelation 349 C. Differences with other photosynthetic organisms 352 III. Metal tolerance

  13. Ultrafast photophysics of transition metal complexes.

    PubMed

    Chergui, Majed

    2015-03-17

    The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of interest. With the emergence of new instruments such as X-ray free electron lasers (XFELs), it is now possible to perform ultrafast laser pump/X-ray emission probe experiments. In this case, one probes the density of occupied states. These core-level spectroscopies and other emerging ones, such as photoelectron spectroscopy of solutions, are delivering a hitherto unseen degree of detail into the photophysics of metal-based molecular complexes. In this Account, we will give examples of applications of the various methods listed above to address specific photophysical processes. PMID:25646968

  14. Routines and Transitions: A Guide for Early Childhood Professionals

    ERIC Educational Resources Information Center

    Malenfont, Nicole

    2006-01-01

    In early childhood settings, children spend over 50 percent of their time on handwashing, dressing, napping, and other routines and transitions. "Routines and Transitions" is a guide to help turn these routine daily activities into learning experiences. By using transitions wisely, providers not only help children develop skills, but also run a…

  15. Diagnostic Transitions from Childhood to Adolescence to Early Adulthood

    ERIC Educational Resources Information Center

    Copeland, William E.; Adair, Carol E.; Smetanin, Paul; Stiff, David; Briante, Carla; Colman, Ian; Fergusson, David; Horwood, John; Poulton, Richie; Costello, E. Jane; Angold, Adrian

    2013-01-01

    Background: Quantifying diagnostic transitions across development is needed to estimate the long-term burden of mental illness. This study estimated patterns of diagnostic transitions from childhood to adolescence and from adolescence to early adulthood. Methods: Patterns of diagnostic transitions were estimated using data from three prospective,…

  16. Transitions for Young Children: Creating Connections across Early Childhood Systems

    ERIC Educational Resources Information Center

    Kagan, Sharon Lynn, Ed.; Tarrant, Kate, Ed.

    2010-01-01

    Smooth early childhood transitions are key to ensuring positive outcomes for young children the world over--but in today's fragmented early education systems, it's difficult to ensure continuity among programs and services. Early childhood professionals will help change that with this book, the first to propose a comprehensive, practical framework…

  17. Tunable magnetocaloric effect in transition metal alloys

    PubMed Central

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-01-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100?K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants. PMID:26507636

  18. Metal Insulator transition in Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador

    2012-02-01

    MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .

  19. Tunable magnetocaloric effect in transition metal alloys.

    PubMed

    Belyea, Dustin D; Lucas, M S; Michel, E; Horwath, J; Miller, Casey W

    2015-01-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based "high entropy alloys" in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100?K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants. PMID:26507636

  20. Tunable magnetocaloric effect in transition metal alloys

    NASA Astrophysics Data System (ADS)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100?K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  1. Solvation Effects on Transition Metal Hydricity.

    PubMed

    Tsay, Charlene; Livesay, Brooke N; Ruelas, Samantha; Yang, Jenny Y

    2015-11-11

    The free energy of hydride donation (hydricity) for [HNi(DHMPE)2][BF4] (DHMPE = 1,2-bis(dihydroxymethylphosphino)ethane was experimentally determined versus the heterolytic cleavage energy of hydrogen in acetonitrile, dimethyl sulfoxide, and water to be 57.4, 55.5, and 30.0 kcal/mol, respectively. This work represents the first reported hydricity values for a transition metal hydride donor in three different solvents. A comparison between our values and the hydricity of hydrogen and formate reveals a narrowing in the range of values with increasing solvent polarity. The thermochemical values also reveal solvation effects that impact the overall thermodynamic favorability of hydride generation from hydrogen and transfer to carbon dioxide. The quantitative solvation effects described herein have important consequences to the design and reactivity of catalysts for transformations that have hydride transfer steps throughout synthetic chemistry. PMID:26466014

  2. Polytypism in superhard transition-metal triborides

    PubMed Central

    Liang, Yongcheng; Yang, Jiong; Yuan, Xun; Qiu, Wujie; Zhong, Zheng; Yang, Jihui; Zhang, Wenqing

    2014-01-01

    The quest of novel compounds with special structures and unusual functionalities continues to be a central challenge to modern materials science. Even though their exact structures have puzzled scientists for decades, superhard transition-metal borides (TMBs) have long been believed to exist only in simple crystal structures. Here, we report on a polytypic phenomenon in superhard WB3 and MoB3 with a series of energetically degenerate structures due to the random stacking of metal layers amongst the interlocking boron layers. Such polytypism can create a multiphase solid-solution compound with a large number of interfaces amongst different polytypes, and these interfaces will strongly hinder the interlayer sliding movement within each polytype, thereby further increase the hardness of this particular material. Furthermore, in contrast to the conventional knowledge that intrinsically strong chemical bonds in superhard materials should lead to high lattice thermal conductivity, the polytypic TMB3 manifest anomalously low lattice thermal conductivity due to structural disorders and phonon folding. These findings promise to open a new avenue to searching for novel superhard materials with additional functionalities. PMID:24863493

  3. Transition Metal Phosphide Hydroprocessing Catalysts: A review

    SciTech Connect

    Oyama, S.; Gott, T; Zhao, H; Lee, Y

    2009-01-01

    The diminishing quality of oil feedstocks coupled with increasingly more stringent environmental regulations limiting the content of sulfur in transportation fuels have given rise to a need for improved hydroprocessing technology. This review begins with a summary of the major improvements in hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) catalysts and processes that have been reported in recent years. It then describes a new class of hydroprocessing catalysts, the transition metal phosphides, which have emerged as a promising group of high-activity, stable catalysts. The phosphides have physical properties resembling ceramics, so are strong and hard, yet retain electronic and magnetic properties similar to metals. Their crystal structures are based on trigonal prisms, yet they do not form layered structures like the sulfides. They display excellent performance in HDS and HDN, with the most active phosphide, Ni{sub 2}P, having activity surpassing that of promoted sulfides on the basis of sites titrated by chemisorption (CO for the phosphides, O{sub 2} for the sulfides). In the HDS of difficult heteroaromatics like 4,6-dimethyldibenzothiophene Ni{sub 2}P operates by the hydrogenation pathway, while in the HDN of substituted nitrogen compounds like 2-methylpiperidine it carries out nucleophilic substitution. The active sites for hydrogenation in Ni{sub 2}P have a square pyramidal geometry, while those for direct hydrodesulfurization have a tetrahedral geometry. Overall, Ni{sub 2}P is a promising catalyst for deep HDS in the presence of nitrogen and aromatic compounds.

  4. Alignment: A Missing Link in Early Childhood Transitions?

    ERIC Educational Resources Information Center

    Kagan, Sharon L.; Carroll, Jude; Comer, James P.; Scott-Little, Catherine

    2006-01-01

    Throughout the course of life, all adults make transitions, so do young children. Because young children are more vulnerable in general and they have experienced far fewer transitions than adults, they often experience greater challenges. As a result, the field of early childhood education has historically expended much effort in understanding and…

  5. Pristine and intercalated transition metal dichalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Klemm, Richard A.

    2015-07-01

    Transition metal dichalcogenides (TMDs) are quasi-two-dimensional layered compounds that exhibit strongly competing effects of charge-density wave (CDW) formation and superconductivity (SC). The weak van der Waals interlayer bonding between hexagonal layers of octahedral or trigonal prismatic TMD building blocks allows many polytypes to form. In the single layer 1 T polytype materials, one or more CDW states can form, but the pristine TMDs are not superconducting. The 2 H polytypes have two or more Fermi surfaces and saddle bands, allowing for dual orderings, which can be coexisting CDW and SC orderings, two SC gaps as in MgB2, two CDW gaps, and possibly even pseudogaps above the onset TCDW s of CDW orderings. Higher order polytypes allow for multiple CDW gaps and at least one superconducting gap. The CDW transitions TCDW s usually greatly exceed the superconducting transitions at their low Tc values, their orbital order parameters (OPs) are generally highly anisotropic and can even contain nodes, and the SC OPs can be greatly affected by their simultaneous presence. The properties of the CDWs ubiquitously seen in TMDs are remarkably similar to those of the pseudogaps seen in the high-Tc cuprates. In 2H-NbSe2, for example, the CDW renders its general s-wave SC OP orbital symmetry to be highly anisotropic and strongly reduces its Josephson coupling strength (IcRn) with the conventional SC, Pb. Hence, the pristine TMDs are highly "unconventional" in comparison with Pb, but are much more "conventional" than are the ferromagnetic superconductors such as URhGe. Applied pressure and intercalation generally suppress the TMD CDWs, allowing for enhanced SC formation, even in the 1 T polytype materials. The misfit intercalation compound (LaSe)1.14(NbSe2) and many 2 H -TMDs intercalated with organic Lewis base molecules, such as TaS2(pyridine)1/2, have completely incoherent c-axis transport, dimensional-crossover effects, and behave as stacks of intrinsic Josephson junctions. Except for the anomalously large apparent violation of the Pauli limit of the upper critical field of (LaSe)1.14(NbSe2), these normal state and superconducting properties of these intercalation compounds are very similar to those seen in the high-Tc superconductor, Bi2Sr2CaCu2O8+? and in the organic layered superconductor, ?-(ET)2Cu[N(CN)2]Br, where ET is bis(ethylenedithio) tetrathiafulvalene. Electrolytic intercalation of TMDs with water and metallic ions leads to compounds with very similar properties to cobaltates such as NaxCoO2 · y H2O.

  6. Transition to School from Pacific Islands Early Childhood Services.

    ERIC Educational Resources Information Center

    Sauvao, Le'autuli'ilagi M.; Mapa, Lia; Podmore, Valerie N.

    Noting the need for additional information on the transition of children from Pacific Islands early childhood services to primary school, this exploratory study was designed to provide an account of the experiences of children, parents, and teachers, focusing on language and other aspects of children's move from Pacific Islands early childhood…

  7. Quantum-Mechanical Force Laws for Transition Metals in Biomolecules.

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders E.

    1998-03-01

    Transition metal ions, complexed by ligand molecules, play crucial roles in all known forms of life. For example, the active sites in many proteins are transition metals. Simulation of protein structure and function, as well as the design of new functional biomolecules, requires force fields that can treat transition metals accurately. This paper describes a method for predicting the functional form of angular forces surrounding transition metals in biomolecules. The method begins with a quantum-mechanical ligand-field Hamiltonian for the transition-metal d-shell, that contains couplings resulting from interaction with the ligand orbitals. It is shown that the moments of the d-complex electron density of states are given rigorously as sums of two-body and higher-order interactions between the ligands. For most transition metals, two-ligand (angular) potential has minima at 90 and 180 degrees, corresponding to the commonly formed octahedral structure. The three-ligand interaction changes sign as a function of band filling, and for late transition metals such as copper and nickel favors square-planar coordination over tetrahedral coordination. The functional forms developed here are a suitable starting point for developing semi-empirical force fields that can treat transition metals in biomolecules.

  8. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  9. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  10. Nutritional immunity: transition metals at the pathogen-host interface

    PubMed Central

    Hood, M. Indriati; Skaar, Eric P.

    2013-01-01

    Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, while their heightened reactivity is harnessed for catalysis. However, the latter property renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate the levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This review will discuss established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface. PMID:22796883

  11. Electronic transitions and multiferroicity in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Zhou, Haidong

    Four systems have been studied for the localized-itinerant electronic transition in transition-metal oxides: (i) In CaV1- xTixO3, substitution of Ti(IV) introduces Anderson-localized states below a mobility edge mu c that increases with x, crossing epsilon F in the range 0.2 < x< 0.4 and also transforms the strong-correlation fluctuations to localized V(IV): t1e0 configurations for x ? 0.1. (ii) The properties of LaTiO3+delta reveal that a hole-poor, strongly correlated electronic phase coexists with a hole-rich, itinerant-electron phase. With delta ? 0.03, the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With delta ? 0.08, isolated hole-poor clusters are embedded in an itinerant-electron matrix. As delta > 0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to super-paramagnetic strong-correlation fluctuations by delta = 0.12. (iii) The data of Y1-xLaxTiO 3 appears to distinguish an itinerant-electron antiferromagnetic phase in the La-rich samples from a localized-electron ferromagnetic phase with a cooperative Jahn-Teller distortion in the Y-rich phase. (iv) The transition at Tt in Mg[Ti2]O4 is a semiconductor-semiconductor transition associated with Ti-Ti dimerization instabilities. The dimerization is caused by lattice instabilities resulting from a double-well Ti-Ti bond potential at a crossover from localized to itinerant electronic behavior. RMn1-xGaxO 3 (R = Ho, Y) and Ho1-xY xMnO3 have been studied for the multiferroicity of RMnO3. Ga doping raises the ferrielectric Curie temperature TC and the Mn-spin reorientation temperature TSR while lowering TN of the Mn spins and the Ho magnetic ordering temperature T 2. The data show an important coupling between the Mn3+-ion and HO3+-ion spins as well as a TSR that is driven by a cooperative MnO5 site rotation and R 3+-ion displacements that modify the c lattice parameter. The data also support an enhanced spin-lattice interaction in the geometrically frustrated (GF) Mn-spin system. Y doping enhances the temperature region for the P6'3cm' magnetic phase and thereby increases TSR for Ho1-xY xMnO3. The studies of several oxygen non-stoichiometric Fe4+/Fe 3+ oxoperovskite show that two mechanisms, the formation of Fe 3+-O-Fe4+ pair and the disproportionation reaction 2Fe(IV)O6/2 = Fe3+ + Fe(V)O6, dominate the electronic behavior. The properties of DyBaCo2O5.5 reveal a spin-state transition from the low-spin t 6e0 ground state to higher spin-state at octahedral-site Co3+, which is also accounted for the metamagnetism in the sample.

  12. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.; Kotarba, M. J.; Wi?c?aw, D.; Piestrzy?ski, A.

    2008-08-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977-984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. ? 13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of natural gas generation in these experiments is attributed to the metals not occurring in the proper form or the poisoning of potential catalytic microcosms by polar-rich bitumen, which impregnates the rock matrix during the early stages of petroleum formation.

  13. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. ?13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of natural gas generation in these experiments is attributed to the metals not occurring in the proper form or the poisoning of potential catalytic microcosms by polar-rich bitumen, which impregnates the rock matrix during the early stages of petroleum formation.

  14. Steam Reforming on Transition-metal Carbides from Density-functional Theory

    SciTech Connect

    Vojvodic, Aleksandra

    2012-05-11

    A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  15. Reentrant Metal-Insulator Transitions in Silicon -

    NASA Astrophysics Data System (ADS)

    Campbell, John William M.

    This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by considering a variety of samples with a wide range of mobilities and by varying the ratio of the carrier density (controlled by the applied gate voltage) to the impurity density (fixed during sample growth). A phase diagram showing the boundaries between the two dimensional electron gas, the Wigner solid, and the single particle localization induced insulator is established in terms of carrier density and sample mobility.

  16. Transition metal-free olefin polymerization catalyst

    DOEpatents

    Sen, Ayusman (State College, PA); Wojcinski, II, Louis M. (State College, PA); Liu, Shengsheng (State College, PA)

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  17. The local structure of transition metal doped semiconducting boron carbides

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Dowben, P. A.; Luo, Guangfu; Mei, Wai-Ning; Kizilkaya, Orhan; Shepherd, Eric D.; Brand, J. I.

    2010-03-01

    Transition metal doped boron carbides produced by plasma-enhanced chemical vapor deposition of orthocarborane (closo-1,2-C2B10H12) and metallocenes were investigated by performing K-edge extended X-ray absorption fine structure and X-ray absorption near edge structure measurements. The Mn, Fe and Co transition metal atoms dope boron carbide pairwise. The transition metal atom occupies one of icosahedral boron or carbon apical site atomic site within the icosahedral cage on adjacent icosahedral cages. There is good agreement between the experiment and theoretical modeling of the local structure two adjoined carborane cages each with a Mn, Fe and Co metal atom (forming the pair wise doping). The local spin configurations of transition metal doped boron carbides, from Ti to Cu, are compared.

  18. The local structure of transition metal doped semiconducting boron carbides

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Luo, Guangfu; Mei, Wai-Ning; Kizilkaya, Orhan; Shepherd, Eric D.; Brand, J. I.; Dowben, P. A.

    2010-03-01

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C2B10H12) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  19. Electronic properties of intercalation complexes of the transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Friend, R. H.; Yoffe, A. D.

    1987-11-01

    Intercalation of the layer type transition metal dichalcogenides by a variety of organic molecules, alkali metals, or ‘3d’ transition metals, provides a powerful way to finely tune the electron occupation of the relatively narrow ‘d’ bands met in these solids. These transition metal dichalcogenides are highly anisotropic solids, sometimes referred to as ‘two-dimensional’ solids, and the intercalant molecules which are electron donors enter between the layers. This can result in profound changes in the electronic properties of the host lattice, and these changes can be understood in terms of charge transfer and increased interlayer separation. The phenomena discussed include optical properties, transport properties, super-conductivity, order-disorder phenomena and phase changes, staging, magnetic properties, metal-insulator transitions, Anderson localization, and fast-ion conduction. Some possible practical applications are also considered.

  20. Preparation and use of high surface area transition metal catalysts

    SciTech Connect

    Atkinson, G.B.

    1981-03-17

    Highly active catalysts, suitable for use in hydrogenation and other reactions, are prepared from an alloy of one or more of the group VIII transition metals with yttrium or a rare earth metal. The alloy is ground to the desired particle size and is thereafter reacted with a gas containing carbon monoxide and hydrogen to form an intimate physical admixture of the group viii metal or its corresponding carbide with the oxide of yttrium or the rare earth metal.

  1. Critical Elements and Practices of Transition Programs Linking Early Childhood Education and Early Elementary School.

    ERIC Educational Resources Information Center

    Jang, Younghee

    This paper examines how various elements of five early- childhood-to-elementary school transition programs are being developed and carried out. Five transition programs were identified and investigated in regard to shared leadership and decisionmaking among stakeholders, comprehensive and integrated services, family involvement and empowerment,…

  2. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E. (Oak Ridge, TN)

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  3. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  4. Chiral phase transition in lattice QCD as a metal-insulator transition

    SciTech Connect

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2007-02-01

    We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.

  5. Atomic Natural Orbital Basis Sets for Transition Metals

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1993-01-01

    We show that atomic natural orbitals are an excellent way to contract transition-metal basis sets, even though the different low-lying electronic states may have very different basis set requirements.

  6. Mechanisms of transition-metal catalyzed additions to olefins 

    E-print Network

    Nowlan, Daniel Thomas

    2005-08-29

    Transition metal catalyzed reactions have an important place in synthetic chemistry, but the mechanistic details for many of these reactions remain undetermined. Through a combination of experimentally determined 13C kinetic ...

  7. Tribochemical properties of metastable states of transition metals 

    E-print Network

    Kar, Prasenjit

    2009-05-15

    challenges in directing the reaction kinetics. This dissertation studied the dynamics and kinetics of oxidation of transitional metals, particularly on tantalum through mechanical forces. This is a new area of research in surface science. Experimentally using...

  8. Charge, orbital and magnetic ordering in transition metal oxides 

    E-print Network

    Senn, Mark Stephen

    2013-06-29

    Neutron and x-ray diffraction has been used to study charge, orbital and magnetic ordering in some transition metal oxides. The long standing controversy regarding the nature of the ground state (Verwey structure) of the ...

  9. Nitrene transfer reactions by late transition metal complexes

    E-print Network

    Hamilton, Charles W., Ph. D. Massachusetts Institute of Technology

    2007-01-01

    This thesis presents nitrene transfer reactions that are catalyzed or mediated by late transition metal complexes. Sterically large, fluorinated supporting ligands are used to minimize potential side reactions. A new ...

  10. Photochemical reductive elimination of halogen from transition metal complexes

    E-print Network

    Cook, Timothy R. (Timothy Raymond), 1982-

    2010-01-01

    This thesis is focused on the synthesis and study of transition metal complexes that undergo halogen elimination when irradiated with UV and visible light. This chemistry is relevant for solar energy storage schemes in ...

  11. Optical properties of two-dimensional transition metal dichalcogenides

    E-print Network

    Lin, Yuxuan, S.M. Massachusetts Institute of Technology

    2014-01-01

    The re-discovery of the atomically thin transition metal dichalcogenides (TMDs), which are mostly semiconductors with a wide range of band gaps, has diversified the family of two-dimensional materials and boosted the ...

  12. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  13. Quantum Monte Carlo study of porphyrin transition metal complexes

    NASA Astrophysics Data System (ADS)

    Koseki, Jun; Maezono, Ryo; Tachikawa, Masanori; Towler, M. D.; Needs, R. J.

    2008-08-01

    Diffusion quantum Monte Carlo (DMC) calculations for transition metal (M) porphyrin complexes (MPo, M=Ni,Cu,Zn) are reported. We calculate the binding energies of the transition metal atoms to the porphin molecule. Our DMC results are in reasonable agreement with those obtained from density functional theory calculations using the B3LYP hybrid exchange-correlation functional. Our study shows that such calculations are feasible with the DMC method.

  14. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  15. Early Intervention, Positive Behavior Support, and Transition to School.

    ERIC Educational Resources Information Center

    Fox, Lise; Dunlap, Glen; Cushing, Lisa

    2002-01-01

    This article describes positive behavior support as it is applied in the context of early intervention and as children progress into elementary school. Variables that contribute to effective interventions are discussed, as are issues that must be considered in order to construct optimally beneficial transitions for children with behavioral…

  16. Be Prepared: Tips for Transitioning into Early Childhood Education

    ERIC Educational Resources Information Center

    Oliver, Laura Ann

    2008-01-01

    The first days of school can be scary for parents, too. As a child reaches an age where she is ready to begin school, the very thought can overwhelm any parent. As a parent of a child with a disability there are added considerations. Nonetheless, transitions through the early years of school can become relatively easier for both the parents and…

  17. Kansas Early Childhood Research Institute on Transitions: Executive Summary.

    ERIC Educational Resources Information Center

    Rice, Mabel L.; O'Brien, Marion

    This executive summary reviews activities over the past 5 years of the Kansas Early Childhood Research Institute (KECRI). The Institute has addressed transition issues faced by infants and young children (and their families) who have a disability or are at risk for developmental delay. KECRI goals are stated and the importance and impact of the…

  18. Facilitating Family Involvement in Early Intervention to Preschool Transition

    ERIC Educational Resources Information Center

    Pang, Yanhui

    2010-01-01

    Active family involvement and important family roles in the early intervention to preschool transition have been mandated by laws, recognized by the position statements of professional organizations, and validated through evidence-based research. In order to involve families in this process, reduce stresses, and conquer the challenges families may…

  19. West Virginia Early Childhood Transition Initiative: Operation Tadpole. 1995 Report.

    ERIC Educational Resources Information Center

    West Virginia State Dept. of Education, Charleston. Office of Special Education Programs and Assurances.

    The West Virginia Early Childhood Transition Initiative is an interagency systems change effort started in 1993 to develop a seamless system of service for children, ages birth to 5 years. The initiative's training and technical assistance component is known as Operation Tadpole. A state level steering committee coordinates the initiative on an…

  20. Configuring Bonds between First-Row Transition Metals.

    PubMed

    Eisenhart, Reed J; Clouston, Laura J; Lu, Connie C

    2015-11-17

    Alfred Werner, who pioneered the field of coordination chemistry, envisioned coordination complexes as a single, transition metal atom at the epicenter of a vast ligand space. The idea that the locus of a coordination complex could be shared by multiple metals held together with covalent bonds would eventually lead to the discovery of the quadruple and quintuple bond, which have no analogues outside of the transition metal block. Metal-metal bonding can be classified into homometallic and heterometallic groups. Although the former is dominant, the latter is arguably more intriguing because of the inherently larger chemical space in which metal-metal bonding can be explored. In 2013, Lu and Thomas independently reported the isolation of heterometallic multiple bonds with exclusively first-row transition metals. Structural and theoretical data supported triply bonded Fe-Cr and Fe-V cores. This Account describes our continued efforts to configure bonds between first-row transition metals from titanium to copper. Double-decker ligands, or binucleating platforms that brace two transition metals in proximity, have enabled the modular synthesis of diverse metal-metal complexes. The resulting complexes are also ideal for investigating the effects of an "ancillary" metal on the properties and reactivities of an "active" metal center. A total of 38 bimetallic complexes have been compiled comprising 18 unique metal-metal pairings. Twenty-one of these bimetallics are strictly isostructural, allowing for a systematic comparison of metal-metal bonding. The nature of the chemical bond between first-row metals is remarkably variable and depends on two primary factors: the total d-electron count, and the metals' relative d-orbital energies. Showcasing the range of covalent bonding are a quintuply bonded (d-d)(10) Mn-Cr heterobimetallic and the singly bonded late-late pairings, e.g., Fe-Co, which adopt unusually high spin states. A long-term goal is to rationally tailor the properties and reactivities of the bimetallic complexes. In some cases, synergistic redox and magnetic properties were found that are different from the expected sum of the individual metals. Intermetal charge transfer was shown in a Co-M series, for M = Mn to Cu, where the transition energy decreases as M is varied across the first-row period. The potential of using metal-metal complexes for multielectron reduction of small-molecules is addressed by N2 binding studies and a mechanistic study of a dicobalt catalyst in reductive silylation of N2 to N(SiMe3)3. Finally, metal-ion exchange reactions with metal-metal complexes can be selective under appropriate reaction conditions, providing an alternative synthetic route to metal-metal species. PMID:26492331

  1. The Interactions and Exchanges of Metal-bound Sulfur Containing Ligands with Various Transition Metals 

    E-print Network

    Foley, William

    2011-02-22

    and kinetic lability. 23 The examination of zinc ion exchanges with various other transition metal complexes proves enlightening for the further understanding of the function and properties of zinc in the proteins. My research encompasses the synthesis... AND EXCHANGES OF METAL-BOUND SULFUR CONTAINING LIGANDS WITH VARIOUS TRANSITION METALS A Thesis by WILLIAM SCOTT FOLEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  2. [Non-empirical interatomic potentials for transition metals

    SciTech Connect

    Not Available

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  3. [Non-empirical interatomic potentials for transition metals]. Progress report

    SciTech Connect

    Not Available

    1993-05-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  4. Electronic structure of noncrystalline transition metal silicate and aluminate alloys

    E-print Network

    Electronic structure of noncrystalline transition metal silicate and aluminate alloys G. Lucovsky metal TM noncrystalline silicate and aluminate alloys establishes that the lowest conduction band states approach, and have been measured by x-ray absorption spectroscopy for ZrO2 ­SiO2 alloys, and deduced from

  5. Route to transition metal carbide nanoparticles through cyanamide and metal oxides

    SciTech Connect

    Li, P.G. Lei, M.; Tang, W.H.

    2008-12-01

    We have designed an efficient route to the synthesis of transition metal carbide nanoparticles starting from an organic reagent cyanamide and transition metal oxides. Four technologically important metal carbide nanoparticles such as tungsten carbide, niobium carbide, tantalum carbide and vanadium carbide were synthesized successfully at moderate temperatures. It is found that cyanamide is an efficient carburization reagent and that the metal oxides are completely transmitted into the corresponding carbide nanoparticles. A possible mechanism is proposed to explain the results of the reaction between cyanamide and the metal oxides.

  6. The transition to the metallic state in low density hydrogen.

    PubMed

    McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results. PMID:26590549

  7. Metal - non-metal transition and the second critical point in expanded metals

    E-print Network

    V. B. Bobrov; S. A. Trigger; A. G. Zagorodny

    2013-02-16

    Based on the non-relativistic Coulomb model within which the matter is a system of interacting electrons and nuclei, using the quantum field theory and linear response theory methods, opportunity for the existence of the second critical point in expanded metals, which is directly related to the metal--nonmetal transition, predicted by Landau and Zeldovitch, is theoretically justified. It is shown that the matter at the second critical point is in the state of true dielectric with zero static conductivity. The results obtained are in agreement with recent experiments for expanded metals. The existence of the second critical point is caused by the initial multi-component nature of the matter consisting of electrons and nuclei and the long-range character of the Coulomb interaction. (Accepted in PTEP)

  8. Melting of bcc Transition Metals and Icosahedral Clustering

    SciTech Connect

    Ross, M; Boehler, R; Japel, S

    2006-05-26

    In contrast to polyvalent metals, transition metals have low melting slopes(dT/dP) that are due to partially filled d-bands that allow for a lowering of liquid phase energy through s-d electron transfer and the formation of local structures. In the case of bcc transition metals we show the apparent discrepancy of DAC melting measurements with shock melting of Mo can be understood by reexamining the shock data for V and Ta and introducing the presence of an icosahedral short range order (ISRO) melt phase.

  9. Chem. Rev. 1988, 86, 1049-1109 1049 Clusters of Transition-Metal Atoms

    E-print Network

    Morse, Michael D.

    Chem. Rev. 1988, 86, 1049-1109 1049 Clusters of Transition-Metal Atoms MICHAEL D. MORSE Department 1050 Transition-Metal Clusters A. Homonuclear Transition-Metal Diatomics 1. Scandium, Sc, 2. Titanium. Osmium, Os, 27. Iridium, Ir, 28. Platinum, Pt, 30. Mercury, Hg, 29. Gold, Au, B. Heteronuclear Transition-Metal

  10. Transit-Depth Metallicity Correlation: A Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Sarkis, P.; Nehmé, C.

    2015-12-01

    A negative correlation was previously reported between the transit depth of Kepler's Q1-Q12 gas giant candidates and the stellar metallicity. In this present work, we revisit this correlation to better understand the role of the stellar metallicity in the formation of giant planets, in particular, to investigate the effect of the metallicity on the transit depth. We selected the 82 confirmed giant planets from the cumulative catalogue. This is the first large and homogenous sample of confirmed giant planets used to study this correlation. Such samples are suitable to perform robust statistical analysis. We present the first hierarchical Bayesian linear regression model to revise this correlation. The advantages of using a Bayesian framework are to incorporate measurement errors in the model and to quantify both the intrinsic scatter and the uncertainties on the parameters of the model. Our statistical analysis reveals no correlation between the transit depth of confirmed giant planets and the stellar metallicity.

  11. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  12. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4+ ratio in fassaite and the presence of osbornite indicate that the Comet refractory minerals formed in the inner solar nebula and were later transported to the outer solar system where the comet formed. This implies a much more dynamic and perhaps more violent solar nebula than was previously suspected.

  13. Early warning of atmospheric regime transitions using transfer operators

    NASA Astrophysics Data System (ADS)

    Tantet, Alexis; Dijkstra, Henk

    2015-04-01

    The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  14. Quark-Hadron Phase Transitions in Viscous Early Universe

    E-print Network

    A. Tawfik; T. Harko

    2012-04-15

    Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about $1-10 \\mu$s old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density $\\rho$, temperature $T$, Hubble parameter $H$ and scale factor $a$ before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, $a$ and $H$ for instance, makes it clear that the time evolution varies from phase to phase. As the QCD era turns to be fairly accessible in the high-energy experiments and the lattice QCD simulations, the QCD equation of state is very well defined. In light of this, we introduce a systematic study of the {\\it cross-over} quark-hadron phase transition and an estimation for the time evolution of Hubble parameter.

  15. LABORATORY EXPERIMENT 6 TRANSITION METAL DETERMINATION USING

    E-print Network

    Nazarenko, Alexander

    Complexometric titration with EDTA is an easy and convenient way to determine metals in many inorganic reagents metal-indicators. Mn+ + EDTA4- MEDTA(n-4) Disodium salt of EDTA, Na2H2EDTA×2H2O, can be obtained of high indicator is added and solution is titrated with EDTA . Because of limited solubility of Na2H2EDTA in water

  16. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    SciTech Connect

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  17. Flexible metallic seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  18. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection

    PubMed Central

    Velusamy, Dhinesh Babu; Kim, Richard Hahnkee; Cha, Soonyoung; Huh, June; Khazaeinezhad, Reza; Kassani, Sahar Hosseinzadeh; Song, Giyoung; Cho, Suk Man; Cho, Sung Hwan; Hwang, Ihn; Lee, Jinseong; Oh, Kyunghwan; Choi, Hyunyoug; Park, Cheolmin

    2015-01-01

    The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based on the non-destructive modification of transition metal dichalcogenide sheets with amine-terminated polymers. The universal interaction between amine and transition metal resulted in scalable, stable and high concentration dispersions of a single to a few layers of numerous transition metal dichalcogenides. Our MoSe2 and MoS2 composites are highly photoconductive even at bending radii as low as 200??m on illumination of near infrared and visible light, respectively. More interestingly, simple solution mixing of MoSe2 and MoS2 gives rise to blended composite films in which the photodetection properties were controllable. The MoS2/MoSe2 (5:5) film showed broad range photodetection suitable for both visible and near infrared spectra. PMID:26333531

  19. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes).

    PubMed

    Anasori, Babak; Xie, Yu; Beidaghi, Majid; Lu, Jun; Hosler, Brian C; Hultman, Lars; Kent, Paul R C; Gogotsi, Yury; Barsoum, Michel W

    2015-10-27

    The higher the chemical diversity and structural complexity of two-dimensional (2D) materials, the higher the likelihood they possess unique and useful properties. Herein, density functional theory (DFT) is used to predict the existence of two new families of 2D ordered, carbides (MXenes), M'2M?C2 and M'2M?2C3, where M' and M? are two different early transition metals. In these solids, M' layers sandwich M? carbide layers. By synthesizing Mo2TiC2Tx, Mo2Ti2C3Tx, and Cr2TiC2Tx (where T is a surface termination), we validated the DFT predictions. Since the Mo and Cr atoms are on the outside, they control the 2D flakes' chemical and electrochemical properties. The latter was proven by showing quite different electrochemical behavior of Mo2TiC2Tx and Ti3C2Tx. This work further expands the family of 2D materials, offering additional choices of structures, chemistries, and ultimately useful properties. PMID:26208121

  20. Locally critical quantum phase transitions in strongly correlated metals.

    PubMed

    Si, Q; Rabello, S; Ingersent, K; Smith, J L

    2001-10-25

    When a metal undergoes a continuous quantum phase transition, non-Fermi-liquid behaviour arises near the critical point. All the low-energy degrees of freedom induced by quantum criticality are usually assumed to be spatially extended, corresponding to long-wavelength fluctuations of the order parameter. But this picture has been contradicted by the results of recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6-x Aux has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We propose local criticality to be a phenomenon of general relevance to strongly correlated metals. PMID:11677597

  1. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    SciTech Connect

    Striebel, Kathryn A.; Wen, Shi-Jie

    1998-12-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  2. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A. (Oakland, CA); Wen, Shi-Jie (Sunnyvale, CA)

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  3. Memristor using a transition metal nitride insulator

    SciTech Connect

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  4. Anderson localization effects near the Mott metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Bragança, Helena; Aguiar, M. C. O.; Vu?i?evi?, J.; Tanaskovi?, D.; Dobrosavljevi?, V.

    2015-09-01

    The interplay between Mott and Anderson routes to localization in disordered interacting systems gives rise to different transitions and transport regimes. Here, we investigate the phase diagram at finite temperatures using dynamical mean-field theory combined with typical medium theory, which is an effective theory of the Mott-Anderson metal-insulator transition. We mainly focus on the properties of the coexistence region associated with the Mott phase transition. For weak disorder, the coexistence region is found to be similar to that in the clean case. However, as we increase disorder, Anderson localization effects are responsible for shrinking the coexistence region, and at sufficiently strong disorder (approximately equal to twice the bare bandwidth) it drastically narrows, the critical temperature Tc abruptly goes to zero, and we observe a phase transition in the absence of a coexistence of the metallic and insulating phases. In this regime, the effects of interaction and disorder are found to be of comparable importance for charge localization.

  5. Magnetization Reversal in Transition Metal Doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mondal, Trisha; Tripathi, Ajay; Tiwari, Archana

    We report magnetic properties of transition metal (TM) doped ZnO nanoparticles and compare the doping effects of different transition metal ions into the ZnO matrix. Stoner-Wohlfarth model has been used to study the switching behavior of magnetic moments by observing energy diagram and hysteresis. Low magnetic anisotropy in Zn1-xMxO nanoparticles is observed where M=Fe, Co, Ni and x is the dopant amount. We have considered chemical precipitation technique for the preparation of Zn1-xMxO samples and have compared the reversal processes of magnetic moments with respect to time in the nanoparticles.

  6. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  7. Early warning signals of desertification transitions in semiarid ecosystems.

    PubMed

    Corrado, Raffaele; Cherubini, Anna Maria; Pennetta, Cecilia

    2014-12-01

    The identification of early warning signals for regime shifts in ecosystems is of crucial importance given their impact in terms of economic and social effects. We present here the results of a theoretical study on the desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing on the role played by the strength of external stresses, measured by the mortality rate m, we followed the progressive degradation of the ecosystem for increasing m, identifying different stages: first, the fragmentation transition occurring at relatively low values of m, then the desertification transition at higher mortality rates, and finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete degradation of the soil, attained at the maximum value of m. For each transition we calculated the spanning probabilities as functions of m and the percolation thresholds according to different spanning criteria. The identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions, which are attained respectively inside the fragmentation interval, for the vegetated biggest cluster, and inside the desertification interval, for the nonvegetated cluster. PMID:25615127

  8. Metal-insulator transition in 2D quantum walks

    NASA Astrophysics Data System (ADS)

    Edge, Jonathan; Asboth, Janos

    2015-03-01

    We investigate the localisation properties due to disorder of several different two-dimensional quantum walks. We find that, contrary to claims in the literature, the Hadamard quantum walk does not localise. In a different quantum walk system we find a way to induce localisation. By tuning the parameters of the system we further manage to drive the quantum walk through a metal-insulator transition and show that the transition is related to the plateau transition of the integer quantum Hall effect. Hungarian National Office for Research.

  9. The Metallicities of Stars With and Without Transiting Planets

    E-print Network

    Buchhave, Lars A

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (Rp Earth). Importantly, both samples have been analyzed in a homogeneous manner using the same set of tools (Stellar Parameters Classification tool; SPC). We find the average metallicity of the sample of stars without detected transiting planets to be [m/H]_SNTP,dwarf = -0.02 +- 0.02 dex and the sample of stars hosting small planets to be [m/H]_STP = -0.02 +- 0.02 dex. The average metallicities of the two samples are indistinguishable within the uncertainties, and the two-sample...

  10. Nanosize Powders of Transition Metals Binary Systems

    NASA Astrophysics Data System (ADS)

    Zaharov, Yu A.; Pugachev, V. M.; Dodonov, V. G.; Popova, A. N.; Kolmykov, R. P.; Rostovtsev, G. A.; Vasiljeva, O. V.; Zyuzyukina, E. N.; Ivanov, A. V.; Prosvirin, I. P.

    2012-02-01

    The review of the results obtained by the authors in the field of synthesis of Fe-Co, Fe-Ni, Co-Ni and Cu-Ni nano-size binary systems (NBS) by the liquid-phase reducing of metal chlorides by hydrazine (pH>10) and sodium tetrahydroborate (NaBH4) (pH = 7-8) by the process conditions variation (temperature of reaction medium, concentration and input order of reagents) as well as NBS properties investigation is presented.

  11. Hall effect at a tunable metal-insulator transition 

    E-print Network

    Teizer, Winfried; Hellman, F.; Dynes, RC.

    2003-01-01

    Using a rotating magnetic field, the Hall effect in three-dimensional amorphous GdxSi1-x has been measured in the critical regime of the metal-insulator transition for a constant total magnetic field. The Hall coefficient R-0 is negative, indicating...

  12. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives.

    PubMed

    Eksik, Osman; Gao, Jian; Shojaee, S Ali; Thomas, Abhay; Chow, Philippe; Bartolucci, Stephen F; Lucca, Don A; Koratkar, Nikhil

    2014-05-27

    Emerging two-dimensional (2D) materials such as transition metal dichalcogenides offer unique and hitherto unavailable opportunities to tailor the mechanical, thermal, electronic, and optical properties of polymer nanocomposites. In this study, we exfoliated bulk molybdenum disulfide (MoS2) into nanoplatelets, which were then dispersed in epoxy polymers at loading fractions of up to 1% by weight. We characterized the tensile and fracture properties of the composite and show that MoS2 nanoplatelets are highly effective at enhancing the mechanical properties of the epoxy at very low nanofiller loading fractions (below 0.2% by weight). Our results show the potential of 2D sheets of transition metal dichalcogenides as reinforcing additives in polymeric composites. Unlike graphene, transition metal dichalcogenides such as MoS2 are high band gap semiconductors and do not impart significant electrical conductivity to the epoxy matrix. For many applications, it is essential to enhance mechanical properties while also maintaining the electrical insulation properties and the high dielectric constant of the polymer material. In such applications, conductive carbon based fillers such as graphene cannot be utilized. This study demonstrates that 2D transition metal dichalcogenide additives offer an elegant solution to such class of problems. PMID:24754702

  13. TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS

    E-print Network

    Jones, William D.

    TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS William D. Jones-H and C-C bond functionalization, and (4) carbon-fluorine bond activation. We have made progress in each in our proposal where we have had success. These include: (1) carbon-carbon bond cleavage reactions, (2

  14. Luminescent molecular rods - transition-metal alkynyl complexes.

    PubMed

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugated?-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only through?-bonding but also via?-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with good?-donor,?-donor and?-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes. PMID:22179333

  15. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  16. Theoretical studies of structural phase transitions in actinide metals

    SciTech Connect

    Wills, J.M.; Boring, A.M.; Eriksson, O.; Soederlind, P.

    1993-10-01

    Accurate full-potential, relativistic, total energy electronic structure calculations have been carried out over a range of volumes for selected rare-earth and actinide elements in crystal structures experimentally observed in these elements. Correct zero temperature crystal structures are obtained, and calculated equilibrium properties are in reasonable agreement with experiment. Results of these calculations suggest that the unusual equilibrium crystal structures occurring in the light actinides are characteristic of narrow band metals in general and that the light actinides will exhibit structural phase transitions to high symmetry structures under compression. A balance between one-electron bandwidths and band fillings and the electrostatic energy of the crystal lattice produces a tendency toward high-symmetry structures at broad bandwidths and low-symmetry structures at narrow bandwidths. Allowing for expansion as well as contraction, simple metals, transition metals and actinides can be ``stabilized`` in low- and high-symmetry crystal structures.

  17. Continuity and Respect for Diversity: Strengthening Early Transitions in Peru. Working Papers in Early Childhood Development, No. 56. Studies in Early Childhood Transitions

    ERIC Educational Resources Information Center

    Ames, Patricia; Rojas, Vanessa; Portugal, Tamia

    2010-01-01

    This working paper is part of a series on early transitions from "Young Lives," a 15-year longitudinal study of childhood poverty in Ethiopia, India, Peru and Vietnam. It explores the diverse experiences of 28 children from four contrasting communities in Peru as they start school. These detailed case studies highlight common problems: exclusion…

  18. Synthesis, characterization and reactivity of transition-metal-containing zeolites

    SciTech Connect

    Rossin, J.A.

    1986-01-01

    Transition metal containing zeolites (zeolite A and ZSM-5) were prepared by addition of various transition metal containing substrates to zeolite synthesis gels. Crystal growth data were recorded in order to determine the influence of the transition metal species on the rate of crystal growth. X-ray diffraction, oxygen adsorption, FTIR and SEM were utilized to evaluate crystal purity. X-ray photoelectron spectroscopy (XPS), chemical analysis and electron microprobe analysis were performed in order to ascertain the position (intrazeolitic versus surface) and homogeneity of the transition metal. It was concluded that intrazeolitic transition metals are produced by the novel procedure presented in this work. 1-Hexane hydroformylation by rhodium zeolite A showed intrazeolitic rhodium to migrate to the external surface of the zeolite. However, in the presence of a solution and surface rhodium poison, intrazeolitic rhodium was found to hydroformylate 1-hexene exclusively to heptanal. Ruthenium containing zeolite A was evaluated under CO-hydrogenation conditions. No migration of intrazeolitic ruthenium to the external surface of the zeolite was observed over the course of the reaction. The product distribution obtained for this catalyst did not follow a log normal behavior. Also, loss of zeolite crystallinity was observed following the reaction. Cobalt ZSM-5 was evaluated under CO-hydrogenation conditions. No migration of cobalt to the external surface of the zeolite occurred. XPS analysis of the catalyst following various stages of the reaction indicated that intrazeolitic cobalt was not reduced to the zero valent state. Consequently, the non-zero valent cobalt was not capable of hydrogenating carbon monoxide.

  19. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  20. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M. (Ames, IA); Chen, Jian (Ames, IA)

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  1. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  2. Crystal engineering of lanthanide transition-metal coordination polymers

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Xue, Dongfeng; Ratajczak, Henryk

    2008-09-01

    Crystal engineering allows us to predict and control the packing of molecular building units in solid state, which has been attracting much attention due to its exploitation for the synthesis of crystalline materials with novel structures and promising properties. The crystal engineering strategies toward the synthesis of high-nuclearity lanthanide clusters and three-dimensional (3D) lanthanide-transition-metal (Ln-M) coordination polymers were well discussed in the present work. It has shown that the high-nuclearity lanthanide clusters can be rationally synthesized by surface modification strategy. On the basis of the different coordination nature of lanthanide and transition-metal ions, the multifunctional organic ligands with mixed coordination sites such as isonicotinate have been elaborately selected to rationally construct a series of homochrial and achiral 3D Ln-M coordination frameworks built from inorganic heterometallic chains with improved thermal stability. Furthermore, novel 3D Ln-M coordination frameworks have been built from discrete lanthanide clusters (or cluster polymers) and transition-metal clusters (or cluster polymers) by faultlessly harmonizing the subtle relationship between these two different types of metal cluster or cluster polymer units. The current work offers us great potential toward the pursuit of rational synthesis of Ln-M coordination assemblies on the basis of crystal engineering principles.

  3. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.

    PubMed

    Fedoseeva, Marina; Delor, Milan; Parker, Simon C; Sazanovich, Igor V; Towrie, Michael; Parker, Anthony W; Weinstein, Julia A

    2015-01-21

    Understanding the dynamics of the initial stages of vibrational energy transfer in transition metal complexes is a challenging fundamental question which is also of crucial importance for many applications, such as improving the performance of solar devices or photocatalysis. The present study investigates vibrational energy transport in the ground and the electronic excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2, a close relative of the efficient "N3" dye used in dye-sensitized solar cells. Using the emerging technique of ultrafast two-dimensional infrared spectroscopy, we show that, similarly to other transition-metal complexes, the central Ru heavy atom acts as a "bottleneck" making the energy transfer from small ligands with high energy vibrational stretching frequencies less favorable and thereby affecting the efficiency of vibrational energy flow in the complex. Comparison of the vibrational relaxation times in the electronic ground and excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2 shows that it is dramatically faster in the latter. We propose to explain this observation by the intramolecular electrostatic interactions between the thiocyanate group and partially oxidised Ru metal center, which increase the degree of vibrational coupling between CN and Ru-N modes in the excited state thus reducing structural and thermodynamic barriers that slow down vibrational relaxation and energy transport in the electronic ground state. As a very similar behavior was earlier observed in another transition-metal complex, Re(4,4'-(COOEt)2-2,2'-bpy)(CO)3Cl, we suggest that this effect in vibrational energy dynamics might be common for transition-metal complexes with heavy central atoms. PMID:25463745

  4. Wetting Transition of Classical Gases on Alkali Metals

    NASA Astrophysics Data System (ADS)

    Cole, Milton W.

    1998-03-01

    This talk will review recent discoveries of wetting transitions of classical gases on alkali metals. The transitions occur because the adsorption potentials on these surfaces are less attractive than those on any other surface(A. Chizmeshya, M. W. Cole, and E. Zaremba, J. Low Temp. Phys., in press.). Hence, relatively little adsorption occurs at temperature (T) close to the triple temperature. At higher T, wetting transitions are expected to occur, according to general arguments of Cahn and Ebner and Saam. Indeed, these have been found for all inert light gases on Cs and Rb. The talk will focus on recent experiments and simulations for the case of Ne, the results of which include evidence of a drying transition(G. B. Hess, M. J. Sabatini and M. H. W. Chan, Phys. Rev. Lett. 78, 1739 (1997); M. J. Bojan, M. W. Cole, J. K. Johnson, W. A. Steele and Q. Wang, J. Low Temp. Phys., in press.). Experiments are proposed to test predictions of wetting transitions for Ar and Kr on alkali metals.

  5. A superconductor to superfluid phase transition in liquid metallic hydrogen

    E-print Network

    Egor Babaev; Asle Sudbo; N. W. Ashcroft

    2004-10-18

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report an analysis based on topological arguments of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  6. Mapping the Valence States of Transition-Metal Elements Using Energy-Filtered Transmission Electron Microscopy

    E-print Network

    Wang, Zhong L.

    forming a compound. Transition- and rare-earth-metal elements with mixed valences are unique determination.2-5 In EELS, the L ionization edges of transition-metal, rare-earth, and actinide compounds of transition- and rare-earth-metal elements. EELS analysis of the valence state is carried out in reference

  7. Phase Transitions in Metal Clusters and Cluster Catalysts R. S. Berry*,

    E-print Network

    Berry, R. Stephen

    Phase Transitions in Metal Clusters and Cluster Catalysts R. S. Berry*, and B. M. SmirnovVised Manuscript ReceiVed: May 2, 2009 Comparing the phase transitions of metal clusters with those of dielectric clusters shows that although the relative energies of the phase transitions for metals is typically less

  8. Vacancy hardening and softening in transition metal carbides and nitrides

    SciTech Connect

    Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.; Ihm, Jisoon

    2000-10-31

    The effects of vacancies on mechanical properties of the transition metal carbides and nitrides are studied using the ab initio pseudopotential approach. Calculated shear elastic stiffness and electronic structures show that the vacancy produces entirely different effects on the mechanical strength of groups IVb nitrides and Vb carbides. It is found that the occupation of shear-unstable metallic dd bonding states changes essentially in an opposite way for the carbides and nitrides in the presence of vacancies, resulting in different responses to shear stress. Our study provides an atomistic understanding of the anomaly in hardness for these substoichiometric materials.

  9. Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides

    SciTech Connect

    Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.; Ihm, Jisoon

    2001-04-09

    The effects of vacancies on mechanical properties of the transition metal carbides and nitrides are studied using the ab initio pseudopotential approach. Calculated shear elastic stiffness and electronic structures show that the vacancy produces entirely different effects on the mechanical strength of groups IVb nitrides and Vb carbides. It is found that the occupation of shear-unstable metallic dd bonding states changes essentially in an opposite way for the carbides and nitrides in the presence of vacancies, resulting in different responses to shear stress. Our study provides an atomistic understanding of the anomaly in hardness for these substoichiometric materials.

  10. Interaction-Driven Metal-Insulator Transition in Strained Graphene

    NASA Astrophysics Data System (ADS)

    Tang, Ho-Kin; Laksono, E.; Rodrigues, J. N. B.; Sengupta, P.; Assaad, F. F.; Adam, S.

    2015-10-01

    The question of whether electron-electron interactions can drive a metal to insulator transition in graphene under realistic experimental conditions is addressed. Using three representative methods to calculate the effective long-range Coulomb interaction between ? electrons in graphene and solving for the ground state using quantum Monte Carlo methods, we argue that, without strain, graphene remains metallic and changing the substrate from SiO2 to suspended samples hardly makes any difference. In contrast, applying a rather large—but experimentally realistic—uniform and isotropic strain of about 15% seems to be a promising route to making graphene an antiferromagnetic Mott insulator.

  11. The pressure-induced Mott Transition in transition-metal iodides

    SciTech Connect

    Pasternak, M.P. . School of Physics and Astronomy); Taylor, R.D. ); Jeanloz, R. . Dept. of Geology and Geophysics)

    1991-01-01

    Many of the Transition Metal (TM) compounds, because of exchange and correlation interactions within the narrow and poorly overlapping d-bands, become antiferromagnetic insulators, the Mott Insulators (MI). The properties of the MI and their gradual transition into the non-correlated metallic state (the Mott Transition) are of crucial important for the elucidation of HTS materials features in particular and to magnetism in general. The transition of the MI into a metal can be achieved either by doping or by high pressure. To yield the definitive data on the Mott transition high pressure work on well characterized materials should be sought. The present studies provide for the first time extensive information on the Mott-Hubbard gap closure induced by high pressure. High pressure studies using Diamond Anvil Cells were conducted in several (TM)I{sub 2} compounds. They all have layered structures and other antiferromagnetically at ambient pressure. {sup 129}I Moessbauer Spectroscopy (MS) was used to study the properties of the (TM){sup 2+} sublattice magnetization as a function of pressure and temperature, and X-ray diffraction was used to look for possible crystallographic transitions and to obtain the equation of state. Results show that the high pressure transition at P{sub c} from a magnetic to a non-magnetic state is not accompanied by crystallographic changes. Previous studies{sup 1} with NiI{sub 2} have confirmed the presence of a metallic state at P > P{sub c}. Inherent to the pressure behavior of the magnetic state is the gradual increase of T{sub N} in all cases and a slight increase in the TM{sup 2+} moments with pressure increase. The collapse of the magnetic state is abrupt for some cases (NiI{sub 2}) and gradual for others (CoI{sub 2}), indicative of different band-overlap mechanisms. 2 refs., 5 figs.

  12. Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity.

    PubMed

    Wu, Fang; Huang, Chengxi; Wu, Haiping; Lee, Changhoon; Deng, Kaiming; Kan, Erjun; Jena, Puru

    2015-12-01

    High-temperature ferromagnetic two-dimensional (2D) materials with flat surfaces have been a long-sought goal due to their potential in spintronics applications. Through comprehensive first-principles calculations, we show that the recently synthesized MoN2 monolayer is such a material; it is ferromagnetic with a Curie temperature of nearly 420 K, which is higher than that of any flat 2D magnetic materials studied to date. This novel property, made possible by the electron-deficient nitrogen ions, render transition-metal dinitrides monolayers with unique electronic properties which can be switched from the ferromagnetic metals in MoN2, ZrN2, and TcN2 to half-metallic ones in YN2. Transition-metal dinitrides monolayers may, therefore, serve as good candidates for spintronics devices. PMID:26575002

  13. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon germanium with various doping and Zintl phase materials. Such materials show promise for increased figures of merit, vital to making thermolectrics competitive with traditional power generation mechanisms.

  14. Recent Advances in Transition Metal-Catalyzed Glycosylation

    PubMed Central

    McKay, Matthew J.; Nguyen, Hien M.

    2012-01-01

    Having access to mild and operationally simple techniques for attaining carbohydrate targets will be necessary to facilitate advancement in biological, medicinal, and pharmacological research. Even with the abundance of elegant reports for generating glycosidic linkages, stereoselective construction of ?- and ?-oligosaccharides and glycoconjugates is by no means trivial. In an era where expanded awareness of the impact we are having on the environment drives the state-of-the-art, synthetic chemists are tasked with developing cleaner and more efficient reactions for achieving their transformations. This movement imparts the value that prevention of waste is always superior to its treatment or cleanup. This review will highlight recent advancement in this regard by examining strategies that employ transition metal catalysis in the synthesis of oligosaccharides and glycoconjugates. These methods are mild and effective for constructing glycosidic bonds with reduced levels of waste through utilization of sub-stoichiometric amounts of transition metals to promote the glycosylation. PMID:22924154

  15. Kinetic studies of reduction of some transition metal tungstates

    SciTech Connect

    Bustnes, J.A.; Du Sichen; Seetharaman, S.

    1996-10-01

    The present study deals with the kinetic studies of reduction of some selected transition metal tungstates with hydrogen. The measurements were carried out by the isothermal thermogravimetric method. Shallow powder beds were employed in order to avoid the effects due to transport phenomena affecting the reaction rate. In this way, the chemical reaction rates could be selectively studied. The experiments were carried out in the temperature range 873--1,173 K. From the experimental data, the activation energies were evaluated and were found to be around 88 kJ/mol in the case of both iron as well as cobalt tungstates indicating the similarities in W-O bonds in both cases. The activation energies obtained are discussed in the light of the position of the transition metal in the periodic table as well as the thermodynamic stabilities of the various tungstates.

  16. Chemical Trends for Transition Metal Compound Bonding to Graphene

    NASA Astrophysics Data System (ADS)

    Lange, Bjoern; Blum, Volker

    2015-03-01

    Transition metal compounds are of interest as catalysts for the hydrogen evolution reaction (HER). However, a perfect candidate to replace expensive platinum has not yet been identified. To tailor a specific compound, several properties come into play. One is the bonding to the underlying substrate, for which ?-bonded carbon nanostructures are promising candidates. Here we analyze the bonding of small transition metal compound nanoclusters to a graphene layer for a range of chemical compositions: MxAy (M = Mo, Ti; A = S, O, B, N, C). The clusters are generated by an unbiased random search algorithm. We perform total energy calculations based on density functional theory to identify lowest energy clusters. We calculate binding energies using the PBE and HSE functionals with explicit van der Waals treatment and benchmark those against RPA cluster calculations. Our results indicate that molybdenum-carbides and -nitrides tend to bond tightly to graphene. Mo-oxides and -sulfides show small binding energies, indicating van der Waals bonding.

  17. Tailoring magnetic skyrmions in ultra-thin transition metal films.

    PubMed

    Dupé, Bertrand; Hoffmann, Markus; Paillard, Charles; Heinze, Stefan

    2014-01-01

    Skyrmions in magnetic materials offer attractive perspectives for future spintronic applications since they are topologically stabilized spin structures on the nanometre scale, which can be manipulated with electric current densities that are by orders of magnitude lower than those required for moving domain walls. So far, they were restricted to bulk magnets with a particular chiral crystal symmetry greatly limiting the number of available systems and the adjustability of their properties. Recently, it has been experimentally discovered that magnetic skyrmion phases can also occur in ultra-thin transition metal films at surfaces. Here we present an understanding of skyrmions in such systems based on first-principles electronic structure theory. We demonstrate that the properties of magnetic skyrmions at transition metal interfaces such as their diameter and their stability can be tuned by the structure and composition of the interface and that a description beyond a micromagnetic model is required in such systems. PMID:24893652

  18. Exciton complexes in low dimensional transition metal dichalcogenides

    SciTech Connect

    Thilagam, A.

    2014-08-07

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter ?, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of ? is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  19. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  20. Wetting Transitions of Inert Gases on Alkali Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Bojan, M. J.; McDonald, I. A.; Cole, M. W.; Steele, W. A.

    1996-03-01

    Theoretical and experimental discoveries have been made recently of wetting and prewetting transitions of helium and hydrogen films on alkali metal surfaces [1,2]. New experiments show anomalous nonwetting behavior of Ne on Rb and Cs [3]. Building on earlier work [4], we have done and will describe results from the first Monte Carlo simulations showing wetting transitions for classical gases on alkali metal surfaces. * Research supported by an NSF Materials Research Group grant. 1. R. B.Hallock, J. Low Temp. Phys. 101, 31, 1995 2. M. W. Cole, J. Low Temp. Phys. 101, 25, 1995. 3. G. B. Hess, M. Sabatini, and M. H. W. Chan, unpublished 4. J. E. Finn and P. A. Monson, Phys. Rev. A 39, 6402, 1989.

  1. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  2. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  3. Multireference Character for 4d Transition Metal-Containing Molecules.

    PubMed

    Wang, Jiaqi; Manivasagam, Sivabalan; Wilson, Angela K

    2015-12-01

    Four diagnostic criteria have been examined to identify the suitability of single-reference wave function-based quantum chemistry methods for a set of 118 4d transition metal species. These diagnostics include the weight of the leading configuration of the CASSCF wave function, C0(2); the Frobenius norm of the coupled cluster amplitude vector related to single excitations, T1; the matrix 2-norm of the coupled cluster T1 amplitude vector arising from coupled cluster calculations, D1; and the percent total atomization energy, %TAE, corresponding to a relationship between energies determined with CCSD and CCSD(T) calculations. New criteria, namely, T1 ? 0.045, D1 ? 0.120, and %TAE ? 10%, are herein proposed as a gauge for 4d transition metal-containing molecules to predict the possible need to employ multireference (MR) wave function-based methods to describe energetic and spectroscopic properties. PMID:26642991

  4. Quantum phase transition from an antiferromagnet to a spin liquid in a metal

    E-print Network

    Grover, Tarun

    We study quantum phase transitions from easy-plane antiferromagnetic metals to paramagnetic metals in Kondo-Heisenberg lattice systems. If the paramagnetic metal is a fractionalized Fermi liquid then the universal critical ...

  5. Transition-Metal-Free Oxidative Aliphatic C-H Azidation.

    PubMed

    Zhang, Xiaofei; Yang, Haodong; Tang, Pingping

    2015-12-01

    The first example of a practical and selective azidation of unactivated aliphatic C-H bonds with easily handled sulfonyl azides as azide source without the use of transition metals has been explored. This method is operationally simple, scalable, and applicable to late-stage azidation of natural products and derivatives, which make it a valuable method for the synthesis of organic azides. PMID:26569439

  6. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    DOEpatents

    Bazan, Guillermo C. (Goleta, CA); Chen, Yaofeng (Shanghai, CN)

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  7. The chemistry and physics of transition metal clusters

    SciTech Connect

    Parks, E.K.; Jellinek, J.; Knickelbein, M.B.; Riley, S.J.

    1994-06-01

    In this program the authors study the fundamental properties of isolated clusters of transition metal atoms. Experimental studies of cluster chemistry include determination of cluster structure, reactivity, and the nature of cluster-adsorbate interactions. Studies of physical properties include measurements of cluster ionization potentials and photoabsorption cross sections. Theoretical studies focus on the structure and dynamics of clusters, including isomers, phases and phase changes, interactions with molecules, and fragmentation process.

  8. The development of a biological interface for transition metal implants

    NASA Astrophysics Data System (ADS)

    Melton, Kim R.

    The specific goal of this research was to develop an in vitro model for a root-form endosseous dental implant that contains a periodontal ligament and that is biologically integratable into alveolar bone. This objective was based on the following two hypotheses. (1) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the number of fibroblast cells attached to the surface of the metal. (2) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the strength of the fibroblast cell attachment to the surface of the metal. The model needed to have a well-controlled surface that was reproducible. Thus, a layer of Au was deposited over a Ti base, and dithiobis(succinimidylpropionate) (DSP) a chemical containing disulfide groups was adsorbed to the Au. Next, extracellular matrix proteins which are periodontal ligament components were attached to the free end group of the chemical that was adsorbed to the Au. This surface served as an attachment substrate on which additional periodontal ligament components such as fibroblast cells could grow. From this model a new implant interface may be developed. This model was tested using the following polypeptides; collagen type I, collagen type IV, fibronectin, and poly-D-lysine. L929 cells were grown on Ti, Ti + Au, Ti + Au + polypeptide, and Ti + Au + DSP + polypeptide. After 72 hours, the live cells were stained with neutral red. The substrates were then subjected to increasing centrifugal forces. The viable stained cells were fixed onto the substrates and cells were counted. The hypotheses were proven for three polypeptides: fibronectin, collagen type I, and poly-D-lysine. The strongest attachment was found with collagen type I. Collagen type IV did not provide any advantage for attachment over uncoated transition metals.

  9. Speed limit of the insulator-metal transition in magnetite

    NASA Astrophysics Data System (ADS)

    de Jong, S.; Kukreja, R.; Trabant, C.; Pontius, N.; Chang, C. F.; Kachel, T.; Beye, M.; Sorgenfrei, F.; Back, C. H.; Bräuer, B.; Schlotter, W. F.; Turner, J. J.; Krupin, O.; Doehler, M.; Zhu, D.; Hossain, M. A.; Scherz, A. O.; Fausti, D.; Novelli, F.; Esposito, M.; Lee, W. S.; Chuang, Y. D.; Lu, D. H.; Moore, R. G.; Yi, M.; Trigo, M.; Kirchmann, P.; Pathey, L.; Golden, M. S.; Buchholz, M.; Metcalf, P.; Parmigiani, F.; Wurth, W.; Föhlisch, A.; Schüßler-Langeheine, C.; Dürr, H. A.

    2013-10-01

    As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300?fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2?ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.

  10. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  11. Holographic metal/superconductor phase transitions with dark matter sector

    E-print Network

    Peng, Yan

    2015-01-01

    In this paper, we investigate the holographic phase transitions with dark matter sector in the AdS black hole background away from the probe limit. We firstly detect the formation of the scalar hair by examining the behaviors of the superconducting solutions and the effective mass of the scalar field. Then we study the condensation of the scalar operator with respect to the Hawking temperature T. As a further step, we disclose the properties of the phase transitions from the holographic topological entanglement entropy of the system. The holographic topological entanglement entropy is proved to be very useful in characterizing the difference between various phases. At last, we also derive the qualitative properties through the analytical methods. In summary, we find that the model parameters can provide rich physics in the general holographic metal/superconductor phase transitions.

  12. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  13. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  14. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA)

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  15. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  16. Negative ions of transition metal-halogen clusters

    NASA Astrophysics Data System (ADS)

    Pradhan, Kalpataru; Gutsev, Gennady L.; Jena, Purusottam

    2010-10-01

    A systematic density functional theory based study of the structure and spectroscopic properties of neutral and negatively charged MXn clusters formed by a transition metal atom M (M =Sc,Ti,V) and up to seven halogen atoms X (X =F,Cl,Br) has revealed a number of interesting features: (1) Halogen atoms are bound chemically to Sc, Ti, and V for n ?nmax, where the maximal valence nmax equals to 3, 4, and 5 for Sc, Ti, and V, respectively. For n >nmax, two halogen atoms became dimerized in the neutral species, while dimerization begins at n =5, 6, and 7 for negatively charged clusters containing Sc, Ti, and V. (2) Magnetic moments of the transition metal atoms depend strongly on the number of halogen atoms in a cluster and the cluster charge. (3) The number of halogen atoms that can be attached to a metal atom exceeds the maximal formal valence of the metal atom. (4) The electron affinities of the neutral clusters abruptly rise at n =nmax, reaching values as high as 7 eV. The corresponding anions could be used in the synthesis of new salts, once appropriate counterions are identified.

  17. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials. PMID:26256042

  18. Synthesis and X-ray characterization of 3D transition metal intercalates of transition metal dichalcogenides and their superlattices

    NASA Astrophysics Data System (ADS)

    Hughes, Thomas Abbott

    1998-12-01

    New superlattices of 3d transition metal intercalates of transition metal dichalcogenides have been synthesized by deposition and annealing of layered reactants. Sheets of atoms are the building blocks of transition metal dichalcogenides. Since the inter-sheet bonding is weak, guest atoms may be introduced between the sheets (intercalation) and sheets of differing atomic species may be stacked one atop the other (forming a superlattice), and, by intermingling such modifications, many different bulk materials may potentially be synthesized. FexNbSe 2/FexTiSe2 and CrxNbSe2/Cr xTiSe2 superlattices and NixMoSe2 intercalates have been grown and characterized with X-ray diffraction. These materials display anticipated atomic structures and are stable in a Nitrogen atmosphere at temperatures up to 500°C, testifying to the synthetic feasibility of this novel family of superlattices. The 3d transition metal intercalates order magnetically and exhibit other electron correlation effects which could potentially be tailored by rational superlattice design. However, preliminary investigations have not found evidence of such effects in the new superlattices; presumably, structural defects in the samples are inhibiting these phenomena. We demonstrate that standard X-ray diffraction structure analysis techniques are generally inapplicable to superlattices; these new materials are no exception. An original procedure for structural refinement, utilizing both conjugate gradient and simulated annealing optimization methods, is used to generate a model superlattice having a calculated X-ray diffraction profile which matches experimental measurements. This procedure satisfactorily fits X-ray diffraction peak shapes over a large range of scattering angles, and is demonstrated in determining the distribution of crystal sizes, the distribution of defects, and the average superlattice unit cell parameters for an (Fe0.3NbSe2)8/(Fe0.3TiSe 2)8 sample.

  19. Energy transitions in the early 21st Century

    SciTech Connect

    Paul Meakin

    2013-01-01

    We are in the early stages of a long and complex transition from a global economy based on fossil energy to an economy based on low carbon renewable energy. However, fossil fuel resources are abundant and widely distributed, and they will remain the dominant source of primary energy for at least the next quarter century. In the United States, displacement of coal by natural gas for electric power generation has done more to reduce CO2 emissions than all new renewables combined, and this may occur globally for the next decade or two, even if the European Union does not take advantage of its large unconventional natural gas resources. Greater energy efficiency (not including the efficiencies associated with displacement of coal by gas) will also be more important than new renewables. Cost/benefit ratios are important for sustainability of the transition, and some energy efficiency technologies and displacement of coal by natural gas have lower cost/benefit ratios than wind power, solar power or biofuels. Money spent on the large scale deployment of wind, solar and especially biofuels would be better spent on research, development and demonstration of a broader suite of technologies that would support the energy transition, with a focus on improving the cost benefit ratios of already deployed technologies and developing alternatives. Advanced nuclear reactors, engineered geothermal systems, fossil fuel recovery coupled with CO2 sequestration and pre-combustion or post-combustion decarbonation of fossil fuels with geological CO2 sequestration are among the technologies that might be more cost effective than wind, solar or biofuels, and biofuels have serious adverse societal and environment consequences.

  20. Control of Magnetic Properties Across Metal to Insulator Transitions

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose

    2013-03-01

    Controlling the magnetic properties of ferromagnetic (FM) thin films without magnetic fields is an on-going challenge in condensed matter physics with multiple technological implications. External stimuli and proximity effects are the most used methods to control the magnetic properties. An interesting possibility arises when ferromagnets are in proximity to materials that undergo a metal-insulator (MIT) and structural phase transition (SPT). The stress associated with the structural changes produces a magnetoelastic anisotropy in proximity coupled ferromagnetic films that allows controlling the magnetic properties without magnetic fields. Canonical examples of materials that undergo MIT and SPT are the vanadium oxides (VO2 and V2O3) . VO2 undergoes a metal/rutile to an insulator/monoclinic phase transition at 340 K. In V2O3 the transition at 160 K is from a metallic/rhombohedral to an insulating/ monoclinic phase. We have investigated the magnetic properties of different combinations of ferromagnetic (Ni, Co and Fe) and vanadium oxide thin films. The (0.32%) volume expansion in VO2 or the (1.4%) volume decrease in V2O3 across the MIT produces an interfacial stress in the FM overlayer. We show that the coercivities and magnetizations of the ferromagnetic films grown on vanadium oxides are strongly affected by the phase transition. The changes in coercivity can be as large as 168% and occur in a very narrow temperature interval. These effects can be controlled by the thickness and deposition conditions of the different ferromagnetic films. For VO2/Ni bilayers the large change in the coercivity occurring above room temperature opens the possibilities for technological applications. Work done in collaboration with Siming Wang, J. G. Ramirez, and Ivan K. Schuller. Funded by the US DoE, Office of Basic Energy Sciences, under Award FG03-87ER-45332 and the Air Force Office of Scientific Research No. FA9550-12-1-0381.

  1. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    SciTech Connect

    Ketolainen, T. Havu, V.; Puska, M. J.

    2015-02-07

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green’s function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  2. USANS investigation of early stages of metal foam formation

    NASA Astrophysics Data System (ADS)

    Bellmann, D.; Clemens, H.; Banhart, J.

    Metallic foams are on the verge of being used in industrial applications. However, the mechanism of foam creation, especially the early stages, are still unexplored. Ultra small-angle neutron scattering (USANS), performed with the double-crystal diffractometer (DCD) at the Geesthacht Neutron Facility (GeNF), is a promising method for obtaining a three-dimensional average of a pore size distribution in a wide size range from about 100 nm to about 20 ?m. Analysis of the neutron scattering curves yielded pore size distributions which conformed with the results obtained by microscopy.

  3. Environmental Effects on the Metallicities of Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Jones, Christine

    2004-01-01

    In this multi-year project to investigate the metal enrichment of early-type galaxies, we have used ROSAT, ASCA and now Chandra observations to study samples of galaxies. We have published two papers and a third paper that incorporates Chandra archival observations is nearing completion. Below, we briefly describe our findings. Our first paper "SN IA Enrichment in Virgo Early-type Galaxies from ROSAT and ASCA Observations" was published in the Astrophysical Journal (vol 539, 603) reported on the properties of nine X-ray bright elliptical galaxies in the Virgo cluster observed by ROSAT and ASCA. We measured iron abundance gradients as a function of radius in three galaxies. We found that the magnesium and silicon abundance gradients were in general flatter than those of iron. We suggest this is due to a metallicity dependence in the metal production rates of SN Ia's. We calculate SN Ia rates in the center of these galaxies that are comparable to those measured optically. Our second paper "ASCA Observations of Groups at Radii of Low Overdensity: Implications for Cosmic Preheating" also was published in the Astrophysical Journal (vol 578, 74). This paper reported on the ASCA spectroscopy of nine groups of galaxies. We found that the entropy profile in groups is driven by nongravitational heating processes, and could be explained by a short period of preheating by galactic winds. The third paper (in preparation) uses a sample of about 200 galaxies from both ROSAT and Chandra observations. In this paper we characterize both the nuclear and the extended X-ray emission for this sample. We will use these observations to determine the "on-time" of the X-ray emitting AGN and the fraction of "fossil groups" as well as to investigate how large AGN outbursts can sweep the galaxy of its hot ISM, thus leading to changes in the ISM metal enrichment.

  4. Disorder and Metal-Insulator Transitions in Weyl Semimetals.

    PubMed

    Chen, Chui-Zhen; Song, Juntao; Jiang, Hua; Sun, Qing-Feng; Wang, Ziqiang; Xie, X C

    2015-12-11

    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice. PMID:26705648

  5. Criteria for identifying homogeneous transition metal cluster-catalyzed reactions

    SciTech Connect

    Laine, R.M.

    1980-01-01

    Four criteria were developed for distinguishing homogeneous cluster from mononuclear catalysis. A criterion based on reaction kinetics, which distinguishes catalysis by clusters from catalysis by mononuclear complexes in equilibrium with the clusters, is illustrated with the hydroformylation of 1-pentene by Ru/sub 3/(CO)/sub 12/ clusters in equilibrium with 3Ru(CO)/sub 5/ complexes in the presence of CO. A criterion based on selectivity is illustrated by the water gas shift and deuterium-exchange reactions catalyzed by ruthenium and rhodium carbonyl clusters in methanol and triethylamine; the scope of this criterion is limited to deuterium exchange reactions. A criterion based on mixed-metal catalysis, in which a mixed-metal system has higher catalytic activity than each transition metal cluster alone, is illustrated with hydroformylation of 1-pentene and the water gas shift reaction catalyzed by Ru/sub 3/(CO)/sub 12//Fe/sub 3/(CO)/sub 2/ and Rh/sub 6/(CO)/sub 16//Fe/sub 3/(CO)/sub 12/. A criterion based on changes in asymmetric induction is a special case of the selectivity criterion, in which specific starting metal complexes may produce either of two enantiomers. Catalysis by metal clusters is an analytical tool for modeling heterogeneous catalytic mechanisms.

  6. Catalytic Fusion and the Interface Between Insulators and Transition Metals

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot A.

    Cold fusion uses a catalyzed configuration change to replace plasma fusion's need for high-energy particle collisions.1 In radiationless cold fusion, the configuration change is a coherent partitioning of deuterons into fractional pieces within a set of potential wells provided by a hosting lattice.2 The coherently partitioned matter distribution is a Bloch wave function. Alpha addition transmutations3 require active deuterium in the form of Bloch function deuterons with 2-dimensional periodic symmetry.4,5 The configuration change to Bloch form has been modeled as occurring in the interface volume between a salt and Pd metal. In Arata and Zhang radiationless cold fusion6-8 reactive deuterons are modeled by Bloch ions with 3-dimensional periodic symmetry hosted in metallic nano crystals.5 The nano crystals are isolated by salt-metal interfaces. In both cases, the fusion process is modeled as a Li-Feshbach resonance transition to an excited nucleus state, with subsequent energy transfer to a metal lattice by phonon cascade.5 The lattice structure of the deuterons is preserved in the product nucleus until the energy transfer is completed. For the 2-dimensional symmetry case, the intermediate nucleus or many-body nuclear system can sometimes be observed in "flake" lattice form, providing insight about the process.5 Research on salt-metal interfaces could facilitate cold fusion technology.

  7. Comparative study of the synthesis of layered transition metal molybdates

    SciTech Connect

    Mitchell, S.; Gomez-Aviles, A.; Gardner, C.; Jones, W.

    2010-01-15

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O, where A=NH{sub 4}{sup +}, Na{sup +} or K{sup +}. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products. - Graphical abstract: Mixed metal oxides (MMOs) derived from layered double hydroxide precursors differ in their reactivity on exposure to aqueous molybdate containing solutions. We investigate the influence of the molybdate source, the rehydration pH and the ratio of T/Mo on the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates of general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O (where A{sup +}=NH{sub 4}{sup +}, K{sup +} or Na{sup +}).

  8. Structure Sensitivity of Methanol Electrooxidation on Transition Metals

    SciTech Connect

    Ferrin, Peter A.; Mavrikakis, Manos

    2009-10-14

    We have investigated the structure sensitivity of methanol electrooxidation on eight transition metals (Au, Ag, Cu, Pt, Pd, Ir, Rh, and Ni) using periodic, self-consistent density functional theory (DFTGGA). Using the adsorption energies of 16 intermediates on two different facets of these eight face-centeredcubic transition metals, combined with a simple electrochemical model, we address the differences in the reaction mechanism between the (111) and (100) facets of these metals. We investigate two separate mechanisms for methanol electrooxidation: one going through a CO* intermediate (the indirect pathway) and another that oxidizes methanol directly to CO2 without CO* as an intermediate (the direct pathway). A comparison of our results for the (111) and (100) surfaces explains the origin of methanol electrooxidation’s experimentally-established structure sensitivity on Pt surfaces. For most metals studied, on both the (111) and (100) facets, we predict that the indirect mechanism has a higher onset potential than the direct mechanism. Ni(111), Au(100), and Au(111) are the cases where the direct and indirect mechanisms have the same onset potential. For the direct mechanism, Rh, Ir, and Ni show a lower onset potential on the (111) facet, whereas Pt, Cu, Ag, and Au possess lower onset potential on the (100) facet. Pd(100) and Pd(111) have the same onset potential for the direct mechanism. These results can be rationalized by the stronger binding energy of adsorbates on the (100) facet versus the (111) facet. Using linear scaling relations, we establish reactivity descriptors for the (100) surface similar to those recently developed for the (111) surface; the free energies of adsorbed CO* and OH* can describe methanol electrooxidation trends on various metal surfaces reasonably well.

  9. Pressure-induced Mott transition in transition-metal iodides (invited)

    NASA Astrophysics Data System (ADS)

    Pasternak, M. P.; Taylor, R. D.; Jeanloz, Raymond

    1991-11-01

    Many of the transition-metal (TM) compounds, because of exchange and correlation interactions within the narrow and poorly overlapping d bands, become antiferromagnetic insulators, the Mott insulators (MI). The properties of the MI and their gradual transition into the noncorrelated metallic state (the Mott transition) are of crucial importance for the elucidation of high-temperature superconducting materials features in particular and to magnetism in general. The transition of the MI into a metal can be achieved either by doping or by high pressure. The first method is definitely inappropriate for studying the nature of the Mott transition; for the narrow-band materials the electronic and structural disorder inherent in doping has a strongly perturbing effect. To yield the definitive data on the Mott transition, high-pressure work on well-characterized materials should be sought. The present studies provide for the first time extensive information on the Mott-Hubbard gap closure induced by high pressure. High-pressure studies using diamond anvil cells were conducted with several (TM)I2 compounds. They all have layered structures and order antiferromagnetically at ambient pressure. 129I Mössbauer spectroscopy (MS) was used to study the properties of the (TM)2+ sublattice magnetization as a function of pressure and temperature, and x-ray diffraction was used to look for possible crystallographic transitions and to obtain the equation of state. Results show that the high-pressure transition at Pc from a magnetic to a nonmagnetic state is not accompanied by crystallographic changes. Previous studies [M. P. Pasternak et al., Phys. Rev. Lett. 65, 790 (1990)] with NiI2 have confirmed the presence of a metallic state at P ? Pc. Inherent to the pressure behavior of the magnetic state is the gradual increase of TN in all cases and a slight increase in the TM2+ moments with pressure increase. The collapse of the magnetic state is abrupt for some cases (NiI2) and gradual for others (CoI2), indicative of different band-overlap mechanisms.

  10. He-He and He-metal interactions in transition metals from first-principles

    NASA Astrophysics Data System (ADS)

    Zhang, Pengbo; Zou, Tingting; Zhao, Jijun

    2015-12-01

    We investigated the atomistic mechanism of He-He and He-metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He-He pair as function of distance within the host lattices. The strengths of He-He attraction in Cr, Mo, W, and Fe (0.37-1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06-0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He-He pair is <100> dumbbell in groups VB metals, whereas it adopts close <110> configuration in Cr, Mo, and Fe, and close <111> configuration in W. Overall speaking, the He-He equilibrium distances of 1.51-1.55 Å in the group VIB metals are shorter than 1.65-1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He-He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  11. Origin of Transitions between Metallic and Insulating States in Simple Metals.

    PubMed

    Naumov, Ivan I; Hemley, Russell J

    2015-04-17

    Unifying principles that underlie recently discovered transitions between metallic and insulating states in elemental solids under pressure are developed. Using group theory arguments and first-principles calculations, we show that the electronic properties of the phases involved in these transitions are controlled by symmetry principles. The valence bands in these systems are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms, and which are not necessarily all symmetrical. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multicenter chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as reentrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of behavior such as phases having band-contact lines. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been reported (e.g., Li, Na, and Ca). PMID:25933325

  12. TOPICAL REVIEW: Structural changes and the metal-non-metal transition in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Tamura, Kozaburo; Inui, Masanori

    2001-05-01

    Energy-dispersive x-ray diffraction (XD), small-angle x-ray scattering (SAXS) and x-ray absorption fine-structure (XAFS) measurements for metallic fluids up to the supercritical region were carried out using synchrotron radiation. We obtained the structure factor S(k) and the pair distribution functions g(r) for expanded fluid Hg from the liquid to the dense vapour region including the metal-non-metal (M-NM) transition region in the density range from 13.6 to 1.9 g cm-3 by means of XD measurements at SPring-8 in Japan. The density variations of the interatomic distance (r1) and coordination number (N1) obtained are discussed in relation to the M-NM transition in fluid Hg. To investigate structural change in the semiconductor-metal (SC-M) transition in expanded fluid Se, XD measurements, at SPring-8, and XAFS measurements, at the European Synchrotron Radiation Facility (ESRF) in France, were carried out at high temperatures and high pressures. It was found that the twofold-coordinated chain structure is preserved and contraction of the covalent bond occurs on the SC-M transition. XAFS measurements for dense Se vapour near the critical point were also carried out to study how dimers in the rarefied vapour condense to the metallic fluid. SAXS measurements were carried out to obtain information on the density fluctuation of fluid Se near the critical point. On the basis of the structural data obtained by XD, XAFS and SAXS measurements for fluid Se, we discuss how the density fluctuation affects the local structure and electronic properties of fluid Se near the critical point.

  13. Roles of transition metals interchanging with lithium in electrode materials.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Tokuda, Kazuya; Sakaida, Masashi; Ichitsubo, Tetsu; Oishi, Masatsugu; Mizuki, Jun'ichiro; Matsubara, Eiichiro

    2015-06-01

    Roles of antisite transition metals interchanging with Li atoms in electrode materials of Li transition-metal complex oxides were clarified using a newly developed direct labeling method, termed powder diffraction anomalous fine structure (P-DAFS) near the Ni K-edge. We site-selectively investigated the valence states and local structures of Ni in Li0.89Ni1.11O2, where Ni atoms occupy mainly the NiO2 host-layer sites and partially the interlayer Li sites in-between the host layers, during electrochemical Li insertion/extraction in a lithium-ion battery (LIB). The site-selective X-ray near edge structure evaluated via the P-DAFS method revealed that the interlayer Ni atoms exhibited much lower electrochemical activity as compared to those at the host-layer site. Furthermore, the present analyses of site-selective extended X-ray absorption fine structure performed using the P-DAFS method indicates local structural changes around the residual Ni atoms at the interlayer space during the initial charge; it tends to gather to form rock-salt NiO-like domains around the interlayer Ni. The presence of the NiO-like domains in the interlayer space locally diminishes the interlayer distance and would yield strain energy because of the lattice mismatch, which retards the subsequent Li insertion both thermodynamically and kinetically. Such restrictions on the Li insertion inevitably make the NiO-like domains electrochemically inactive, resulting in an appreciable irreversible capacity after the initial charge but an achievement of robust linkage of neighboring NiO2 layers that tend to be dissociated without the Li occupation. The P-DAFS characterization of antisite transition metals interchanging with Li atoms complements the understanding of the detailed charge-compensation and degradation mechanisms in the electrode materials. PMID:25959625

  14. Control of plasmonic nanoantennas by reversible metal-insulator transition.

    PubMed

    Abate, Yohannes; Marvel, Robert E; Ziegler, Jed I; Gamage, Sampath; Javani, Mohammad H; Stockman, Mark I; Haglund, Richard F

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15?nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  15. Surface entropy of liquid transition and noble metals

    NASA Astrophysics Data System (ADS)

    Gosh, R. C.; Das, Ramprosad; Sen, Sumon C.; Bhuiyan, G. M.

    2015-07-01

    Surface entropy of liquid transition and noble metals has been investigated using an expression obtained from the hard-sphere (HS) theory of liquid. The expression is developed from the Mayer's extended surface tension formula [Journal of Non-Crystalline Solids 380 (2013) 42-47]. For interionic interaction in metals, Brettonet-Silbert (BS) pseudopotentials and embedded atom method (EAM) potentials have been used. The liquid structure is described by the variational modified hypernetted chain (VMHNC) theory. The essential ingredient of the expression is the temperature dependent effective HS diameter (or packing fraction), which is calculated from the aforementioned potentials together with the VMHNC theory. The obtained results for the surface entropy using the effective HS diameter are found to be good in agreement with the available experimental as well as other theoretical values.

  16. Development of microstrain in aged lithium transition metal oxides.

    PubMed

    Lee, Eung-Ju; Chen, Zonghai; Noh, Hyung-Ju; Nam, Sang Cheol; Kang, Sung; Kim, Do Hyeong; Amine, Khalil; Sun, Yang-Kook

    2014-08-13

    Cathode materials with high energy density for lithium-ion batteries are highly desired in emerging applications in automobiles and stationary energy storage for the grid. Lithium transition metal oxide with concentration gradient of metal elements inside single particles was investigated as a promising high-energy-density cathode material. Electrochemical characterization demonstrated that a full cell with this cathode can be continuously operated for 2500 cycles with a capacity retention of 83.3%. Electron microscopy and high-resolution X-ray diffraction were employed to investigate the structural change of the cathode material after this extensive electrochemical testing. It was found that microstrain developed during the continuous charge/discharge cycling, resulting in cracking of nanoplates. This finding suggests that the performance of the cathode material can be further improved by optimizing the concentration gradient to minimize the microstrain and to reduce the lattice mismatch during cycling. PMID:24960550

  17. Dirac cones in transition metal doped boron nitride

    SciTech Connect

    Feng, Min; Cao, Xuewei; Shao, Bin; Zuo, Xu

    2015-05-07

    The transition metal (TM) doped zinc blende boron nitride (c-BN) is studied by using the first principle calculation. TM atoms fill in the interstitials in c-BN and form two-dimensional honeycomb lattice. The generalized gradient approximation and projector augmented wave method are used. The calculated density of states and band structures show that d electrons of TM atoms form impurity bands in the gap of c-BN. When the TM-BN system is in ferromagnetic or non-magnetic state, Dirac cones emerge at the K point in Brillouin zone. When TM is Ti and Co, the Dirac cones are spin polarized and very close to the Fermi level, which makes them promising candidates of Dirac half-metal [H. Ishizuka and Y. Motome, Phys. Rev. Lett. 109, 237207 (2012)]. While TM is Ni and Cu, the system is non-magnetic and Dirac cones located above the Fermi level.

  18. Kondo Effects in Single Layer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Aji, Vivek

    2015-03-01

    Inversion symmetry breaking and strong spin orbit coupling in two dimensional transition metal dichalcogenides leads to interesting new phenomena such as the valley hall and spin hall effects. They display optical circular dichroism and the ability to generate excitation with valley specificity. In this talk we report on the consequences of these properties on correlated states in hole doped systems focussing on the physics of the screening of magnetic impurities. Unlike typical metals, the breaking of inversion symmetry leads to the mixing of a triplet component to the Kondo cloud. Using a variational wave function approach we determine the nature of the many body state. With the ground state in hand we analyze the excitations generated by valley discriminating perturbations. Graduate Student.

  19. Computer Simulations of Wetting Transitions of Ne on Alkali Metals

    NASA Astrophysics Data System (ADS)

    Stan, G.; Bojan, M. J.; Cole, M. W.; Steele, W. A.

    1998-03-01

    The wetting properties of Ne on alkali metal surfaces are investigated using grand canonical Monte Carlo simulations. The values of the well depth of the gas-surface interaction potential considered here correspond roughly to those of Ne on alkali metals(A. Chizmeshya, M. W. Cole, and E. Zaremba, J. Low Temp. Phys., in press.). For a range of temperatures extending from slightly above the bulk triple point of the gas to 0.95 of the critical temperature (depending on the interaction strength), we find (apparently first order) prewetting transitions. The simulation results are consistent (as far as they go) with the behavior studied experimentally(G. B. Hess, M. J. Sabatini and M. H. W. Chan, Phys. Rev. Lett. 78, 1739 (1997).).

  20. Control of plasmonic nanoantennas by reversible metal-insulator transition

    PubMed Central

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; Gamage, Sampath; Javani, Mohammad H.; Stockman, Mark I.; Haglund, Richard F.

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15?nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  1. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  2. Steam reforming on transition-metal carbides from density-functional theory

    E-print Network

    Vojvodic, Aleksandra

    2009-01-01

    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  3. Templated Assembly of Metal-Anion Arrays within Layered Hosts; Synthesis and Characterization of New Transition-Metal Oxyhalide Perovskites

    E-print Network

    Spinu, Leonard

    ], and Ruddlesden- Popper [4-6] series, [A2An-1B3O3n+1] (A,A= alkali, alkaline earth or rare earth; B = transitionTemplated Assembly of Metal-Anion Arrays within Layered Hosts; Synthesis and Characterization of New Transition-Metal Oxyhalide Perovskites Gabriel Caruntu, Liliana Viciu, Leonard Spinu, Weilie Zhou

  4. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    E-print Network

    Kaplan, Alexander

    Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation A. L. Pokrovsky and A. E. Kaplana Electrical and Computer Engineering Department, The Johns nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed

  5. Correlated electron pseudopotentials for 3d-transition metals.

    PubMed

    Trail, J R; Needs, R J

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature. PMID:25681890

  6. Metal-insulator transition in graphene on boron nitride.

    PubMed

    Titov, M; Katsnelson, M I

    2014-08-29

    Electrons in graphene aligned with hexagonal boron nitride are modeled by Dirac fermions in a correlated random-mass landscape subject to a scalar- and vector-potential disorder. We find that the system is insulating in the commensurate phase since the average mass deviates from zero. At the transition the mean mass is vanishing and electronic conduction in a finite sample can be described by a critical percolation along zero-mass lines. In this case graphene at the Dirac point is in a critical state with the conductivity sqrt[3]e(2)/h. In the incommensurate phase the system behaves as a symplectic metal. PMID:25216000

  7. The nature of the bonding in the transition metal trimers

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Bauschlicher, Charles W., Jr.

    1986-01-01

    The electronic structure of the transition metal (TM) trimers was studied by comparing the bonding in the Ca3, Sc3, and Cu3 molecules. The complete active space SCF/externally contracted configuration interaction (CI) ratio for the low-lying states of Sc3 and Sc3(+) and the SCF/CI ratio for Ca3 and Cu3 trimers, all for near equilateral triangle geometries, were calculated. In addition, vertical excitation energies for Cu3 were computed, leading to a new assignment of the upper state in the resonant two-photon ionization spectrum. Based on these studies, bonding in other TM trimers was discussed.

  8. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  9. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA); Lincoln, Lanny P. (Woodward, IA)

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  10. Autocatalytic dissociation of water at stepped transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Pekoez, Rengin; Woerner, Swenja; Ghiringhelli, Luca M.; Donadio, Davide

    2014-03-01

    By means of density functional theory calculations, we investigate the adsorption and dissociation of water clusters on flat and stepped surfaces of several transition metals: Rh, Ir, Pd, Pt, and Ru. We find that water binds preferentially to the edge of the steps than to terrace sites, so that isolated clusters or one-dimensional water wires can be isolated by differential desorption. The enhanced reactivity of metal atoms at the step edge and the cooperative effect of hydrogen bonding enhance the chances of partial dissociation of water clusters on stepped surfaces. For example, water dissociation on Pt and Ir surface turns from endothermic at terraces to exothermic at steps. The interpretation of water dissociation is achieved by analyzing changes in the electronic structure of both water and metals, especially focusing on the interaction between the lone-pair electrons of water and the d-band of the metals. The shift in the energetics of water dissociation at steps is expected to play a prominent role in catalysis and fuel cells reactions, as the density of steps at surfaces could be an additional parameter to design more efficient anode materials or catalytic substrates.

  11. A continuous Mott transition between a metal and a quantum spin liquid Ryan V. Mishmash,1

    E-print Network

    A continuous Mott transition between a metal and a quantum spin liquid Ryan V. Mishmash,1 Iv-Thouless-like) quantum phase transition between a metal and a gapless spin liquid characterized by a spinon Fermi sea, i, the decep- tively simple question of whether the interaction-driven electronic metal-insulator tran- sition

  12. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    E-print Network

    of several processes. Due to its high productivity, gas metal arc welding (GMAW) is one of the most commonlyStudy of the spray to globular transition in gas metal arc welding: a spectroscopic investigation of the spray to globular transition in gas metal arc welding: a spectroscopic investigation F Valensi1

  13. Parents' Marital Distress, Divorce, and Remarriage: Links with Daughters' Early Family Formation Transitions

    ERIC Educational Resources Information Center

    Amato, Paul R.; Kane, Jennifer B.

    2011-01-01

    The authors used data from the Add Health study to estimate the effects of parents' marital status and relationship distress on daughters' early family formation transitions. Outcomes included traditional transitions (marriage and marital births) and nontraditional transitions (cohabitation and nonmarital births). Relationship distress among…

  14. Does Providing Transition Services Early Enable Students with ASD to Achieve Better Vocational Outcomes as Adults?

    ERIC Educational Resources Information Center

    Cimera, Robert Evert; Burgess, Sloane; Wiley, Andrew

    2013-01-01

    This study investigated whether receiving transition services early (i.e., by age 14) promoted better vocational outcomes than receiving transition services later (i.e., by age 16) for young adults with ASD. To do this, the outcomes achieved by two matched groups were examined--453 young adults from states requiring transition services be…

  15. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect

    Jung, Daniel; Kettemann, Stefan

    2014-08-20

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  16. Stabilization of Small Boron Cage by Transition Metal Encapsulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Lv, Jian; Wang, Yanchao; Ma, Yanming

    2015-03-01

    The discovery of chemically stable fullerene-like structures formed by elements other than carbon has been long-standing desired. On this aspect significant efforts have centered around boron, only one electron deficient compared with carbon. However, during the past decade a large number of experimental and theoretical studies have established that small boron clusters are either planar/quasi-planar or forming double-ring tubular structures. Until recently, two all-boron fullerenes have been independently discovered: B38 proposed by our structure searching calculations and B40 observed in a joint experimental and theoretical study. Here we extend our work to the even smaller boron clusters and propose an effective routine to stabilize them by transition metal encapsulation. By combining swarm-intelligence structure searching and first-principles calculations, we have systematically investigated the energy landscapes of transition-metal-doped MB24 clusters (M = Ti, Zr, Hf, Cr, Mo, W, Fe, Ru and Os). Two stable symmetric endohedral boron cages, MoB24 and WB24 are identified. The stability of them can be rationalized in terms of their unique 18-electron closed-shell electronic structures. Funded by Recruitment Program of Global Experts of China and China Postdoctoral Science Foundation.

  17. Ab initio tight-binding Hamiltonian for transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Fang, Shiang; Kuate Defo, Rodrick; Shirodkar, Sharmila N.; Lieu, Simon; Tritsaris, Georgios A.; Kaxiras, Efthimios

    2015-11-01

    We present an accurate ab initio tight-binding Hamiltonian for the transition metal dichalcogenides, MoS2, MoSe2, WS2, WSe2, with a minimal basis (the d orbitals for the metal atoms and p orbitals for the chalcogen atoms) based on a transformation of the Kohn-Sham density functional theory Hamiltonian to a basis of maximally localized Wannier functions. The truncated tight-binding Hamiltonian, with only on-site, first, and partial second neighbor interactions, including spin-orbit coupling, provides a simple physical picture and the symmetry of the main band-structure features. Interlayer interactions between adjacent layers are modeled by transferable hopping terms between the chalcogen p orbitals. The full-range tight-binding Hamiltonian can be reduced to hybrid-orbital k .p effective Hamiltonians near the band extrema that capture important low-energy excitations. These ab initio Hamiltonians can serve as the starting point for applications to interacting many-body physics including optical transitions and Berry curvature of bands, of which we give some examples.

  18. Wannier function analysis of charge states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren

    2015-03-01

    The charge (or oxidation) state of a cation has been a crucial concept in analyzing the electronic and magnetic properties of oxides as well as interpreting ``charge ordering'' metal-insulator transitions. In recent years a few methods have been proposed for the objective identification of charge states, beyond the conventional (and occasionally subjective) use of projected densities of states, weighted band structures (fatbands), and Born effective charges. In the past two decades Wannier functions (WFs) and particularly maximally localized WFs (MLWFs), have become an indispensable tool for several different purposes in electronic structure studies. These developments have motivated us to explore the charge state picture from the perspective of MLWFs. We will illustrate with a few transition metal oxide examples such as AgO and YNiO3 that the shape, extent, and location of the charge centers of the MLWFs provide insights into how cation-oxygen hybridization determines chemical bonding, charge distribution, and ``charge ordering.'' DOE DE-FG02-04ER46111.

  19. Exfoliation of large-area transition metal chalcogenide single layers

    NASA Astrophysics Data System (ADS)

    Magda, Gábor Zsolt; Pet?, János; Dobrik, Gergely; Hwang, Chanyong; Biró, László P.; Tapasztó, Levente

    2015-10-01

    Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically transition metal chalcogenides.

  20. Exfoliation of large-area transition metal chalcogenide single layers.

    PubMed

    Magda, Gábor Zsolt; Pet?, János; Dobrik, Gergely; Hwang, Chanyong; Biró, László P; Tapasztó, Levente

    2015-01-01

    Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically transition metal chalcogenides. PMID:26443185

  1. Exfoliation of large-area transition metal chalcogenide single layers

    PubMed Central

    Magda, Gábor Zsolt; Pet?, János; Dobrik, Gergely; Hwang, Chanyong; Biró, László P.; Tapasztó, Levente

    2015-01-01

    Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically transition metal chalcogenides. PMID:26443185

  2. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing.

    PubMed

    Sarkar, Deblina; Xie, Xuejun; Kang, Jiahao; Zhang, Haojun; Liu, Wei; Navarrete, Jose; Moskovits, Martin; Banerjee, Kaustav

    2015-05-13

    Transition metal dichalcogenides (TMDs), belonging to the class of two-dimensional (2D) layered materials, have instigated a lot of interest in diverse application fields due to their unique electrical, mechanical, magnetic, and optical properties. Tuning the electrical properties of TMDs through charge transfer or doping is necessary for various optoelectronic applications. This paper presents the experimental investigation of the doping effect on TMDs, mainly focusing on molybdenum disulfide (MoS2), by metallic nanoparticles (NPs), exploring noble metals such as silver (Ag), palladium (Pd), and platinum (Pt) as well as the low workfunction metals such as scandium (Sc) and yttrium (Y) for the first time. The dependence of the doping behavior of MoS2 on the metal workfunction is demonstrated and it is shown that Pt nanoparticles can lead to as large as 137 V shift in threshold voltage of a back-gated monolayered MoS2 FET. Variation of the MoS2 FET transfer curves with the increase in the dose of NPs as well as the effect of the number of MoS2 layers on the doping characteristics are also discussed for the first time. Moreover, the doping effect on WSe2 is studied with the first demonstration of p-type doping using Pt NPs. Apart from doping, the use of metallic NP functionalized TMDs for gas sensing application is also demonstrated. PMID:25723363

  3. Structures of Late Transition Metal Monoxides from Jahn-Teller Instabilities in the Rock Salt Lattice

    NASA Astrophysics Data System (ADS)

    Derzsi, Mariana; Piekarz, Przemys?aw; Grochala, Wojciech

    2014-07-01

    Most late transition metal (LTM) monoxides crystallize in other than a rock salt structure, which is so common in the earlier transition metal monoxides. Here we present theoretical evidence based on density functional theory that an electron-phonon coupling involving a single soft mode in the cubic cell is responsible for the onset of the experimentally observed structures of the late transition metal monoxides.

  4. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ?(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  5. Comparative study of the synthesis of layered transition metal molybdates

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.

  6. K-CO on transition metals: A local ionic interaction

    NASA Astrophysics Data System (ADS)

    Patterson, Charles H.; Schultz, Peter A.; Messmer, Richard P.

    1987-05-01

    The nature of the K-CO interaction on a transition metal surface is addressed when the K:CO stoichiometry is approx. 1. The interaction proposed is transfer of the K 4s electron to CO. A BORN-Haber cycle for this process on a surface has been calculated. The reference state is K plus CO, bound separately to the surface (a). A key point in the cycle is that removal of the electron from K bound to a metal surface (b) is less costly in energy (approx. metal/K surface, i.e., approx. +2.0 eV) than from K in the gas phase (IP = +4.3 eV). This means that the complex is significantly stabilized on the surface. The removed K electron is then transported to the isolated adsorbed CO (c) at a cost of the electron affinity of CO (approx. = 1.5 eV). When the isolated ions are brought together (d) the net stabilization at the equilibrium geometry is approx. - 1.8 eV.

  7. Discovery of elusive structures of multifunctional transition-metal borides.

    PubMed

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2015-12-23

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes. PMID:26660270

  8. Solar selective coatings based on carbon: transition metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Heras, Irene; Guillén, Elena; Krause, Matthias; Pardo, Ainhoa; Endrino, Jose L.; Escobar Galindo, Ramón

    2015-09-01

    The design of an efficient and stable solar selective coating for Concentrating Solar Power central receivers requires a complex study of the materials candidates that compose the coating. Carbon-transition metal nanocomposites were studied in this work as absorber materials because they show appropriate optical properties with high absorption in the solar region and low thermal emittance in the infrared. Furthermore metal carbides are thermal and mechanical stable in air at high temperatures. In this work a solar selective coating was grown by a dual source filtered cathodic vacuum arc. The complete stack consists on an infrared reflection layer, an absorber layer of carbon-zirconium carbide nanocomposites and an antireflection layer. The aim of this research is optimize the absorber layer and for that, the metal content was controlled by adjusting the pulse ratio between the two arc sources. The elemental composition was determined by Ion Beam Analysis, X-Ray diffraction measurements show the crystal structure and the optical properties were characterized by spectroscopic ellipsometry measurements. The reflectance spectra of the complete selective coating were simulated with the optical software CODE. Bruggeman effective medium approximation was employed to average the dielectric functions of the two components which constitute the nanocomposite in the absorber layer. The optimized coating exhibited a solar absorptance of 95.41% and thermal emittance of 3.5% for 400°C. The simulated results were validated with a deposited multilayer selective coating.

  9. Quantum Spin Liquids and the Metal-Insulator Transition in Doped Semiconductors

    E-print Network

    Potter, Andrew Cole

    We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons ...

  10. Electrochemical lithiation and delithiation for control of magnetic properties of nanoscale transition metal oxides

    E-print Network

    Sivakumar, Vikram

    2008-01-01

    Transition metal oxides comprise a fascinating class of materials displaying a variety of magnetic and electronic properties, ranging from half-metallic ferromagnets like CrO2, ferrimagnetic semiconductors like Fey's, and ...

  11. Transition metal interaction and Ni-Fe-Cu-Si phases in silicon T. Buonassisi,b

    E-print Network

    Transition metal interaction and Ni-Fe-Cu-Si phases in silicon M. Heuer,a T. Buonassisi,b A. A into the observed phases. Our results indicate that chemical reactions between metals and silicon during precipitation may reduce the lattice mismatch compared to single-metal precipitates, rendering mixed-metal

  12. Orbital-dependent singlet dimers and orbital-selective Peierls transitions in transition-metal compounds

    NASA Astrophysics Data System (ADS)

    Streltsov, Sergey V.; Khomskii, Daniel I.

    2014-04-01

    We show that in transition-metal compounds containing structural metal dimers there may exist in the presence of different orbitals a special state with partial formation of singlets by electrons on one orbital, while others are effectively decoupled and may give, e.g., long-range magnetic order or stay paramagnetic. A similar situation can be realized in dimers spontaneously formed at structural phase transitions, which can be called the orbital-selective Peierls transition. This can occur in the case of strongly nonuniform hopping integrals for different orbitals and small intra-atomic Hund's rule coupling JH. Yet another consequence of this picture is that for an odd number of electrons per dimer there exists competition between the double-exchange mechanism of ferromagnetism and the formation of a singlet dimer by the electron on one orbital, with the remaining electrons giving a net spin of a dimer. The first case is realized for strong Hund's rule coupling, typical for 3d compounds, whereas the second is more plausible for 4d-5d compounds. We discuss some implications of these phenomena, and consider examples of real systems, in which the orbital-selective phase seems to be realized.

  13. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    SciTech Connect

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  14. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  15. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.

    PubMed

    Heine, Thomas

    2015-01-20

    CONSPECTUS: After the discovery of graphene and the development of powerful exfoliation techniques, experimental preparation of two-dimensional (2D) crystals can be expected for any layered material that is known to chemistry. Besides graphene and hexagonal boron nitride (h-BN), transition metal chalcogenides (TMC) are among the most studied ultrathin materials. In particular, single-layer MoS2, a direct band gap semiconductor with ?1.9 eV energy gap, is popular in physics and nanoelectronics, because it nicely complements semimetallic graphene and insulating h-BN monolayer as a construction component for flexible 2D electronics and because it was already successfully applied in the laboratory as basis material for transistors and other electronic and optoelectronic devices. Two-dimensional crystals are subject to significant quantum confinement: compared with their parent layered 3D material, they show different structural, electronic, and optical properties, such as spontaneous rippling as free-standing monolayer, significant changes of the electronic band structure, giant spin-orbit splitting, and enhanced photoluminescence. Most of those properties are intrinsic for the monolayer and already absent for two-layer stacks of the same 2D crystal. For example, single-layer MoS2 is a direct band gap semiconductor with spin-orbit splitting of 150 meV in the valence band, while the bilayer of the same material is an indirect band gap semiconductor without observable spin-orbit splitting. All these properties have been observed experimentally and are in excellent agreement with calculations based on density-functional theory. This Account reports theoretical studies of a subgroup of transition metal dichalcogenides with the composition MX2, with M = Mo, or W and X = Se or S, also referred to as "MoWSeS materials". Results on the electronic structure, quantum confinement, spin-orbit coupling, spontaneous monolayer rippling, and change of electronic properties in the presence of an external electric field are reported. While all materials of the MoWSeS family share the same qualitative properties, their individual values can differ strongly, for example, the spin-orbit splitting in WSe2 reaches the value of 428 meV, nearly three times that of MoS2. Further, we discuss the effect of strain on the electronic properties (straintronics). While MoWSeS single layers are very robust against external electric fields, bilayers show a linear reduction of the band gap, even reaching a semiconductor-metal phase transition, and an increase of the spin-orbit splitting from zero to the monolayer value at rather small fields. Strain is yet another possibility to control the band gap in a linear way, and MoWSeS monolayers become metallic at strain values of ?10%. The density-functional based tight-binding model is a useful tool to investigate the electronic and structural properties, including electron conductance, of large MoS2 structures, which show spontaneous rippling in finite-temperature molecular dynamics simulations. Structural defects in MoS2 result in anisotropy of the electric conductivity. Finally, DFT predictions on the properties of noble metal dichalcogenides are presented. Most strikingly, 1T PdS2 is an indirect band gap semiconductor in its monolayer form but becomes metallic as a bilayer. PMID:25489917

  16. Comparative reactivities of two isoelectronic transition-metal hydrides with transition-metal carbonyls and alkyls

    SciTech Connect

    Jones, W.D.; Huggins, J.M.; Bergman, R.G.

    1981-07-29

    The two isoelectronic hydrides PPN/sup +/CpV(CO)/sub 3/H/sup -/ (1) and -CpMo(CO)/sub 3/H (2) react with a variety of metal carbonyls and alkyls. Treatment of Fe(CO)/sub 5/, Cr(CO)/sub 6/, (CH/sub 3/C/sub 5/H/sub 4/)V(CO)/sub 4/, CH/sub 3/Re(CO)/sub 5/, and (CH/sub 3/CO)Re(CO)/sub 5/ with 1 produces HFe(CO)/sub 4//sup -/, HCr(CO)/sub 5//sup -/, (CH/sub 3/C/sub 5/H/sub 4/)V(CO)/sub 3/H/sup -/, (H)(CH/sub 3/)Re(CO)/sub 4//sup -/, and (H)(CH/sub 3/CO)Re(CO)/sub 4//sup -/, respectively, and CpV(CO)/sub 4/ (3). l also catalyzes ligand substitution reactions in 3 and CpFe(CO)(PPh/sub 3/)(COCH/sub 3/). In comparison 2 reacts only with CH/sub 3/Mn(CO)/sub 5/ and CpMo(CO)/sub 3/R(R = CH/sub 3/, C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) producing aldehydes and the dimers (CpMo(CO)/sub 3/)/sub 2/ (4a) and (CpMo(CO)/sub 2/)/sub 2/ (5a). Reaction of 2 with ethylene produces ethane and diethyl ketone. l is proposed to react by an electron-transfer mechanism, whereas 2 is proposed to react by hydrogen transfer to a vacant coordination site. The relationship of the molybdenum hydride/alkyl reaction to the final step in hydroformylation (oxo process) is discussed.

  17. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    SciTech Connect

    Ogihara, Hitoshi; Masahiro, Sadakane; Nodasaka, Yoshinobu; Ueda, Wataru

    2009-06-15

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen. - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.

  18. Early transitional metal alkyl, alkylidene, and alkylidyne chemistry

    E-print Network

    Tonzetich, Zachary John

    2007-01-01

    CHAPTER 1. Zirconium and hafnium complexes of several new unsymmetric diamide ligands have been prepared and their proficiency in olefin polymerization reactions evaluated. The first set of supporting ligands examined are ...

  19. Asymmetric capacitance and ambipolar metal insulator transition in black phosphorus

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Iwasa, Yoshihiro

    2015-03-01

    Black phosphorus is a van der Waals type semiconducting layered material with a puckered honeycomb structure where each phosphorus atom is covalently bonded with three adjacent phosphorus atoms and has a direct band gap of 0.3 (bulk) - 2 (monolayer) depending on the number of layers, which can be promising material for optoelectronics devices such as photodetector. In this presentation, by using ionic liquid gating method, we report the ambipolar transistor operation and the field effect controlled ambipolar metal-insulator transition in black phosphorus thin flake. We observed a large modulation of the sheet resistance by more than 4 orders of magnitude in both electron channel and hole channel. These results suggest black phosphorus will be a key material for not only understanding physics of the conduction channel produced by ionic gating, but also potential functions including formation of p-n junction and therefore lateral tunnel diode utilizing intrinsic narrow band gap.

  20. Intrinsic Exciton Linewidth in Monolayer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hao, Kai; Moody, Galan; Dass, Chandriker; Chen, Chang-Hsiao; Li, Lain-Jong; Singh, Akshay; Tran, Kha; Clark, Genevieve; Xu, Xiaodong; Bergäuser, Gunnar; Malic, Ermin; Knorr, Andreas; Li, Xiaoqin

    2015-03-01

    Excitons in monolayer transition metal dichalcogenides (TMDCs) exhibit exceptionally large binding energy, strong optical absorption, and spin valley coupling. These characteristics make TMDCs a promising system for optoelectronics and valleytronics. An important yet unknown property of excitons in TMDCs is the intrinsic homogeneous linewidth, which reflect radiative recombination and irreversible dissipative decay. Here, we use optical coherent two-dimensional spectroscopy to reveal the exciton homogeneous linewidth in monolayer CVD grown Tungsten Diselenide (WSe2). With excitation density and temperature dependent measurements, exciton-exciton interaction and exciton-phonon interactions are quantitatively evaluated. Extrapolating to zero density and temperature, we obtain a residual homogeneous linewidth of ~ 1.5 meV, which places a lower bound of 0.2 ps on the exciton radiative lifetime. This result is consistent with microscopic calculations, which suggest that fast radiative decay of delocalized excitons arises from their large oscillator strength. We acknowledge AFOSR and NSF for funding.

  1. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  2. Theory of strain in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Roldán, Rafael; Cappelluti, Emmanuele; Asgari, Reza; Guinea, Francisco

    2015-11-01

    Strain engineering has emerged as a powerful tool to modify the optical and electronic properties of two-dimensional crystals. Here we perform a systematic study of strained semiconducting transition metal dichalcogenides. The effect of strain is considered within a full Slater-Koster tight-binding model, which provides us with the band structure in the whole Brillouin zone (BZ). From this, we derive an effective low-energy model valid around the K point of the BZ, which includes terms up to second order in momentum and strain. For a generic profile of strain, we show that the solutions for this model can be expressed in terms of the harmonic oscillator and double quantum well models, for the valence and conduction bands respectively. We further study the shift of the position of the electron and hole band edges due to uniform strain. Finally, we discuss the importance of spin-strain coupling in these 2D semiconducting materials.

  3. Intrinsic disorder in graphene on transition metal dichalcogenide heterostructures

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew; Larentis, Stefano; Kim, Kyounghwam; Xue, Jiamin; McKenzie, Devin; Huang, Shengqiang; Paggen, Marina; Ali, Mazhar; Cava, Robert; Tutuc, Emanuel; Leroy, Brian J.

    2015-03-01

    Recently, semiconducting materials in the transition metal dichalcogenide (TMD) family have gained great popularity for use in novel graphene-based heterostructure devices such as tunneling transistors, highly efficient flexible photovoltaic devices, and nonvolatile memory cells. TMDs have also been explored as alternatives to hexagonal boron nitride (hBN) as substrates for pristine graphene devices. However, their quality has thus far been significantly worse than comparable hBN devices. We examine graphene on numerous TMD substrates (MoS2, WS2, WSe2, MoTe2) with scanning tunneling microscopy and spectroscopy and find that point and line defects intrinsic to all TMD crystals (both of natural and synthetic origin) result in scattering of electrons in graphene. Our findings suggest that the quality of graphene on TMD heterostructures is limited by the intrinsic crystalline quality of the TMDs.

  4. Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply

    PubMed Central

    O'Brien, Maria; McEvoy, Niall; Hallam, Toby; Kim, Hye-Young; Berner, Nina C.; Hanlon, Damien; Lee, Kangho; Coleman, Jonathan N.; Duesberg, Georg S.

    2014-01-01

    Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components. PMID:25487822

  5. Post-Growth Manipulation of Transition Metal Dichalcogenides Thin Film

    NASA Astrophysics Data System (ADS)

    Ma, Quan

    The intense interest in graphene as the prototype 2D electronic material has recently been complemented by the investigation of layered transition metal dichalcogenides (TMD), notably MoS2 and MoSe2. These materials provide the favorable mechanical properties of graphene, but exhibit a direct bandgap without the need for nanostructuring, chemical functionalization, or the application of a strong electric field to bilayers. As a monolayer, MoS2 becomes a direct-gap semiconductor with a gap of 1.8 eV. In this dissertation, X-ray photoelectron spectroscopy (XPS), photoluminescence, spectroscopy and high-resolution angle resolved photoemission spectroscopy (ARPES) have been used to investigate monolayer and alloy thin films grown on various substrates. My research focuses on the thin film modification and characterization, composition analysis, low-energy argon ion sputtering process and bandgap tuning.

  6. Continuously tunable electronic structure of transition metal dichalcogenides superlattices

    PubMed Central

    Zhao, Yong-Hong; Yang, Feng; Wang, Jian; Guo, Hong; Ji, Wei

    2015-01-01

    Two dimensional transition metal dichalcogenides have very exciting properties for optoelectronic applications. In this work we theoretically investigate and predict that superlattices comprised of MoS2 and WSe2 multilayers possess continuously tunable electronic structure with direct bandgaps. The tunability is controlled by the thickness ratio of MoS2 versus WSe2 of the superlattice. When this ratio goes from 1:2 to 5:1, the dominant K-K direct bandgap is continuously tuned from 0.14?eV to 0.5?eV. The gap stays direct against ?0.6% to 2% in-layer strain and up to ?4.3% normal-layer compressive strain. The valance and conduction bands are spatially separated. These robust properties suggest that MoS2 and WSe2 multilayer superlattice should be a promising material for infrared optoelectronics. PMID:25677917

  7. Optical Properties of Atomically Thin Layered Transition Metal Dichalchogenide

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazunari

    2015-12-01

    Semiconducting transition metal dichalcogenides (TMDs) called as “beyond graphene” will open new research fields of atomically thin layered materials. The optical properties of monolayer TMDs are dominated by strongly correlated bound states of electron–hole (excitons) and two-electrons–hole (charged exciton) due to the enhanced Coulomb interactions confined in atomically thin layered materials. Here, we review novel optical properties related to carriers, excitons, and charged excitons in monolayer TMDs, including features of optical absorption, photoluminescence (PL) spectra, control of PL by chemical doping, and nonlinear optical response, which have been studied by continuous-wave and time-resolved optical spectroscopy. The understanding of optical phenomena related to optically excited states including carriers, excitons, and charged excitons (trions) is critical for the development of future optoelectronic devices using TMDs.

  8. Phase stability and electronic structure of transition-metal aluminides

    SciTech Connect

    Carlsson, A.E.

    1992-12-31

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll{sub 2}-DO{sub 22} competition in Al{sub 3}T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al{sub 12}W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal`s magnetic behavior.

  9. Phase stability and electronic structure of transition-metal aluminides

    SciTech Connect

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll[sub 2]-DO[sub 22] competition in Al[sub 3]T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al[sub 12]W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior.

  10. Proximity-induced magnetism in transition-metal substituted graphene

    SciTech Connect

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.

  11. Proximity-induced magnetism in transition-metal substituted graphene

    DOE PAGESBeta

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore »the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less

  12. Proximity-induced magnetism in transition-metal substituted graphene

    PubMed Central

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-01-01

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646

  13. Generic trend of work functions in transition-metal carbides and nitrides

    SciTech Connect

    Yoshitake, Michiko

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1?y}N{sub y} (transition metal carbonitrides), and TM{sub 1?z}TM?{sub z}C (alloy carbides)

  14. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

    E-print Network

    Seo, Dong-Hwa

    Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of ...

  15. Electronic reorganization in the photoelectron spectra of transition metal compounds

    NASA Astrophysics Data System (ADS)

    Böhm, Michael C.

    1983-06-01

    The validity of Koopmans' theorem in a series of 16 transition metal compounds with a large variety of 3d centers (Ti, Cr, Mn, Fe, Co, Ni, and Zn) is investigated. The reorganization energies are determined by means of the Green's function method employed in a semiempirical INDO Hamiltonian. A self-energy approximation is used that allows a fragmentation of the calculated Koopmans' defects into relaxation increments as well as into correlation parameters that take into account the loss of pair correlation in the electronic ground state and the modification of the pair correlation in the cationic hole state. The magnitude and the importance of these parameters are studied as a function of the 3d occupation pattern, the oxidation state of the transition metal center, the nature of the orbital wave functions and the one-particle energies. It is demonstrated that pair relaxation energies in the various hole states are by no means negligible in comparison to the relaxational corrections that lead to the most pronounced deviations from IKv,j (IKv,j=- ?j). The limitations of purely relaxational models (e.g., ?SCF approach) are analyzed in detail. The gradual modifications of the calculated Koopman's defects within the 3d series are rationalized. The most pronounced reorganization energies are encountered in d6-d8 complexes. The magnitude of relaxation and correlation is reduced with a decreasing and an increasing number of 3d electrons. The physical background leading to the breakdown of Koopman's theorem in 3d derivatives is compared with the results of recent studies in various molecular species (e.g., small molecules, organic lone-pair systems).

  16. Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors

    PubMed Central

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-01-01

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications. PMID:24509565

  17. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors.

    PubMed

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-01-01

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications. PMID:24509565

  18. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  19. Organic carbonates as stabilizing solvents for transition-metal nanoparticles.

    PubMed

    Vollmer, Christian; Thomann, Ralf; Janiak, Christoph

    2012-08-28

    Biodegradable, non-toxic, "green" and inexpensive propylene carbonate (PC) solvent is shown to function as a stabilizing medium for the synthesis of weakly-coordinated transition-metal nanoparticles. Kinetically stable nanoparticles (M-NPs) with a small and uniform particle size (typically <5 ± 1 nm) have been reproducibly obtained by easy, rapid (3 min) and energy-saving 50 W microwave irradiation under an argon atmosphere from their metal-carbonyl precursors in PC. The M-NP/PC dispersions are stable for up to three weeks according to repeated TEM studies over this time period. The rhodium nanoparticle/PC dispersion is a highly active catalyst for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to and 1875 (mol product) (mol Rh)(-1) h(-1) and near quantitative conversion at 4 to 10 bar H(2) and 90 °C. From the PC dispersion the M-NPs can be coated with organic capping ligands such as 3-mercaptopropionic acid or trioctylphosphine oxide for further stabilization. PMID:22786622

  20. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-06-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

  1. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  2. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  3. Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates.

    PubMed

    Zhang, Liying; Zhao, Xingju; Xue, Xinlian; Shi, Jinlei; Li, Chong; Ren, Xiaoyan; Niu, Chunyao; Jia, Yu; Guo, Zhengxiao; Li, Shunfang

    2015-11-11

    Sub-surface alloying (SSA) can be an effective approach to tuning surface functionalities. Focusing on Rh(111) as a typical substrate for graphene nucleation, we show strong modulation by SSA atoms of both the energetics and kinetics of graphene nucleation simulated by first-principles calculations. Counter-intuitively, when the sub-surface atoms are replaced by more active solute metal elements to the left of Rh in the periodic table, such as the early transition metals (TMs), Ru and Tc, the binding between a C atom and the substrate is weakened and two C atoms favor dimerization. Alternatively, when the alloying elements are the late TMs to the right of Rh, such as the relatively inert Pd and Ag, the repulsion between the two C atoms is enhanced. Such distinct results can be well addressed by the delicately modulated activities of the surface host atoms in the framework of the d-band theory. More specifically, we establish a very simple selection rule for optimizing the metal substrate for high quality graphene growth: the introduction of an early (late) solute TM in the SSA lowers (raises) the d-band center and the activity of the top-most host metal atoms, weakening (strengthening) the C-substrate binding, meanwhile both energetically and kinetically facilitating (hindering) the graphene nucleation, and simultaneously promoting (suppressing) the orientation disordering the graphene domains. Importantly, our preliminary theoretical results also show that such a simple rule is also proposed to be operative for graphene growth on the widely invoked Cu(111) catalytic substrate. PMID:26257125

  4. Theoretical Studies on Layered Materials and Transition Metal Borides

    NASA Astrophysics Data System (ADS)

    Seong, Seeyearl

    From a geometrical point of view, a crystal structure may be described in terms of coordination polyhedra. The number of vertices of polyhedra, the coordination number, depends largely on the cation to anion radius ratio. It is obvious that a minimum coordination number is necessary for the formation of a layer structure. With a coordination number 2, only chain or finite molecules are possible. A high coordination number, on the other hand, will lead to a two, three dimensional or framework structure. We have studied several compounds which belong to the group of structures mentioned above. rm V_2O_5, Bi_2WO_6, LiBiPd_2O_4, Pd_3P_2S _8 and CuTe, have a two-dimensional layered structures whereas the hexagonal rm MT_3B _2 (M = rare earth metal or Ca, Sr, Ba. T = Fe, Ru, Os, Co, Rh, Ir, Pt) compounds and rm MT_4B_4(M = rare earth metal. T = Ru, Os, Co, Rh, Ir) are three dimensional expansions of polyhedra. Inside of these solid state crystals, electrons and atoms act collectively to create waves described as quasiparticles. They determine in part whether a crystal is an insulator, a semiconductor, a conductor or a superconductor. In analyzing the electronic structure and properties of our target compounds, we focus our study on structural distortions. These studies include the inter-layer interaction in a number of systems and the bonding and dynamics of transition metal boride superconductors. We rely heavily upon the LCAO approach of the chemist and the tight binding approach of solid state physicist.

  5. Early Warning Signals for Critical Transitions: A Generalized Modeling Approach

    E-print Network

    to be at risk of such transitions, including systems in ecology [2], climate research [3], economics [4], sociology [5] and human physiology [6]. Examples of critical transitions in ecology include shifts in food], both of which are caused by critical slowing down [16]. Other approaches consider warning signals based

  6. Inner-shell photodetachment of transition metal negative ions

    NASA Astrophysics Data System (ADS)

    Dumitriu, Ileana

    This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p?3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d?epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.

  7. [Photoreduction of Se (VI) by marine algae-transitional metals-light system].

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Deng, Nan-Sheng; Hong, Hua-Sheng; Zhu, Guo-Hui

    2005-07-01

    Seven marine phytoplankton, including five green algae (Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp. and Tetraselmis subcordiformis), one diatom (Phaeodactylum tricornutum), one red alga (Porphyridium purpureum), and three usual transitional metals (Fe(III), Cu(II), Mn(II)) were used to make up marine phytoplankton-light or transitional metals-light or marine phytoplankton-transitional metals-light system. In such system, Se(VI) could be transformed into Se(IV) by photoreduction. The species transformation of selenium could be photo-induced by redox reaction of transitional metals. The photochemical activity of marine phytoplankton was confirmed for the first time, because marine phytoplankton could adsorb and concentrated of selenium, transitional metals and organic substances (including the exudation of algae, as reducing agent) which redox potentials were changed. The ratios of Se(VI) to Se(IV) were dominated by the species, the concentration of marine phytoplankton and transitional metals, and it could be enhanced through increasing the concentration of marine algae or the combined effect from marine algae and transitional metals. After photoreduction by ternary system, the ratio of Se(VI) to Se(IV) ranges from 1.17 to 2.85, which is close to the actual value in euphotic layer of seawater. The photochemical process that is induced by marine algae and transitional metals dominative the leading effects on the distribution of oxidation states of selenium. PMID:16212166

  8. Electronic structure of high-k transition metal oxides and their silicate and aluminate alloys

    E-print Network

    Electronic structure of high-k transition metal oxides and their silicate and aluminate alloys G earth dielectrics and ii SiO2 and Si oxynitride alloys by presenting a systematic x-ray absorption alloys of: i group IIIB, IVB, and VB transition metal TM oxides and ii first row RE oxides with SiO2

  9. Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles

    E-print Network

    Wu, Zhigang

    Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first 2005 The elastic properties of selected transition-metal TM nitrides and carbides in B1 structure holds for all these materials, where B= C11+2C12 /3, G = C11-C12 /2, and G=C44 with Cij the elastic

  10. Transition Metal Dimer Internuclear Distances from Measured Force Constants Joseph L. Jules and John R. Lombardi*

    E-print Network

    Lombardi, John R.

    Transition Metal Dimer Internuclear Distances from Measured Force Constants Joseph L. Jules not enough available force constant data and accurate measurements of the internuclear distances distances, have been extended to the transition metal dimers to test which one gives the most accurate fit

  11. Fermi surfaces and electronic topological transitions in metallic solid solutions

    NASA Astrophysics Data System (ADS)

    Bruno, E.; Ginatempo, B.; Guiliano, E. S.; Ruban, A. V.; Vekilov, Yu. Kh.

    1994-12-01

    Notwithstanding the substitutional disorder, the Fermi surface of metallic alloys can be measured and computed. We show that, from the theoretical point of view, it is defined as the locus of the peaks of the Bloch Spectral Function (BSF). Such Fermi surfaces, on varying the atomic concentrations, may undergo changes of their topology, known as Electronic Topological Transitions (ETT). Thus, for instance, pockets of electrons or holes may appear or disappear, necks may open or close. ETTs cause anomalous behaviours of thermodynamic, transport and elastic properties of metals and constitute a fascinating field in the study of Fermi liquid systems. Although ETTs could be studied on pure systems as a function of the thermodynamic variables, nevertheless such a study would often require extreme conditions, and would lead to experimental difficulties. On the other hand, it is possible to explore the variations of atomic concentration, i.e. the valence electron per atom ratio, in metallic solid solutions with a relative experimental ease. In this paper we review the theoretical techniques for the determination of Fermi surfaces in metallic solid solutions and discuss some examples of ETTs, namely Li?Mg, Zr?Nb, Nb?Mo, Mo?Re, Ag?Pd, Cd?Mg, Ni?W and Ni?Ti alloys, also in connection with experimental data as thermoelectric power, resistivity, elastic constants and electron-phonon coupling and with the determinations of the electron momentum distribution function from Compton scattering and positron annihilation experiments. We show that the ab initio calculations of the electronic structure for the quoted systems, together with a careful determination of the BSF, are able to predict quantitatively ETTs at those concentrations where physical quantities display anomalies, so confirming directly ETT theory. Although it is not the purpose of the present review to give a full account of electronic structure calculation schemes, however, we briefly discuss the ideas and the main physical approximations underlying theories of substitutional disorder in alloys. We shall pay some more attention to the Coherent Potential Approximation (CPA) in the Korringa-Kohn-Rostoker (KKR) multiple scattering framework and the Hohenberg and Kohn Density Functional Theory in the Local Density Approximation (LDA) for the exchange-correlation potential. The above choice is supported by the numerical versatility of the LDA?KKR?CPA theory, and, more important, by the a fortiori evidence that essentially equivalent results are obtained from different theoretical frameworks, provided the same basic physical approximations are used. Accordingly, when convenient, we present new LDA?KKR?CPA determinations of the Fermi surfaces, as for the Zr?Nb?Mo?Re series.

  12. Early warning signs for saddle-escape transitions in complex networks

    PubMed Central

    Kuehn, Christian; Zschaler, Gerd; Gross, Thilo

    2015-01-01

    Many real world systems are at risk of undergoing critical transitions, leading to sudden qualitative and sometimes irreversible regime shifts. The development of early warning signals is recognized as a major challenge. Recent progress builds on a mathematical framework in which a real-world system is described by a low-dimensional equation system with a small number of key variables, where the critical transition often corresponds to a bifurcation. Here we show that in high-dimensional systems, containing many variables, we frequently encounter an additional non-bifurcative saddle-type mechanism leading to critical transitions. This generic class of transitions has been missed in the search for early-warnings up to now. In fact, the saddle-type mechanism also applies to low-dimensional systems with saddle-dynamics. Near a saddle a system moves slowly and the state may be perceived as stable over substantial time periods. We develop an early warning sign for the saddle-type transition. We illustrate our results in two network models and epidemiological data. This work thus establishes a connection from critical transitions to networks and an early warning sign for a new type of critical transition. In complex models and big data we anticipate that saddle-transitions will be encountered frequently in the future. PMID:26294271

  13. Early warning signs for saddle-escape transitions in complex networks

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian; Zschaler, Gerd; Gross, Thilo

    2015-08-01

    Many real world systems are at risk of undergoing critical transitions, leading to sudden qualitative and sometimes irreversible regime shifts. The development of early warning signals is recognized as a major challenge. Recent progress builds on a mathematical framework in which a real-world system is described by a low-dimensional equation system with a small number of key variables, where the critical transition often corresponds to a bifurcation. Here we show that in high-dimensional systems, containing many variables, we frequently encounter an additional non-bifurcative saddle-type mechanism leading to critical transitions. This generic class of transitions has been missed in the search for early-warnings up to now. In fact, the saddle-type mechanism also applies to low-dimensional systems with saddle-dynamics. Near a saddle a system moves slowly and the state may be perceived as stable over substantial time periods. We develop an early warning sign for the saddle-type transition. We illustrate our results in two network models and epidemiological data. This work thus establishes a connection from critical transitions to networks and an early warning sign for a new type of critical transition. In complex models and big data we anticipate that saddle-transitions will be encountered frequently in the future.

  14. Insulator/metal phase transition and colossal magnetoresistance in holographic model

    E-print Network

    Cai, Rong-Gen

    2015-01-01

    We construct a gravity dual for insulator/metal phase transition and colossal magnetoresistance (CMR) effect found in some manganese oxides materials. The computations shows a remarkable magnetic-field-sensitive DC resistivity peak appearing at the Curie temperature, where an insulator/metal phase transition happens and the magnetoresistance is scaled with the square of field-induced magnetization. We find that metallic and insulating phases coexist below the Curie point and the relation with the electronic phase separation is discussed.

  15. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases

    PubMed Central

    Kim, J. Dongun; Senn, Stefan; Harel, Arye; Jelen, Benjamin I.; Falkowski, Paul G.

    2013-01-01

    Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by ?-helices and the second by ?-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity. PMID:23754810

  16. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases.

    PubMed

    Kim, J Dongun; Senn, Stefan; Harel, Arye; Jelen, Benjamin I; Falkowski, Paul G

    2013-07-19

    Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this 'composome' analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by ?-helices and the second by ?-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity. PMID:23754810

  17. Virtual vs. Physical Materials in Early Science Instruction: Transitioning to an Autonomous

    E-print Network

    Klahr, David

    Virtual vs. Physical Materials in Early Science Instruction: Transitioning to an Autonomous Tutor and effects of virtual materials vs. physical materials in early science instruction. In this paper we first- senting instructional materials in laboratory science. The advantages of computer- based science

  18. A Qualitative Study of Early Family Histories and Transitions of Homeless Youth

    ERIC Educational Resources Information Center

    Tyler, Kimberly A.

    2006-01-01

    Using intensive qualitative interviews with 40 homeless youth, this study examined their early family histories for abuse, neglect, and other family problems and the number and types of transitions that youth experienced. Multiple forms of child maltreatment, family alcoholism, drug use, and criminal activity characterized early family histories…

  19. Changes in Paratethyan marine molluscs at the Early/Middle Miocene transition: diversity, palaeo-

    E-print Network

    Zuschin, Martin

    Changes in Paratethyan marine molluscs at the Early/Middle Miocene transition: diversity, palaeo: HARZHAUSER, M., MANDIC, O. & ZUSCHIN, M. 2003. Changes in Paratethyan marine molluscs at the Early for the development of mollusc faunas (gastropods and bivalves) in the Central Paratethys. Here, we first discuss

  20. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals. PMID:26215055

  1. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals. PMID:26215055

  2. Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1

    E-print Network

    Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1 , A Available online 18 September 2007 Abstract Formation mechanisms of precipitates containing multiple-metal-temperature annealing, co-localized single-metal silicide phases are observed, consistent with classical models

  3. Fingerprints of spin-orbital entanglement in transition metal oxides

    E-print Network

    Andrzej M. Ole?

    2012-07-12

    The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom. Even in cases where the ground states are disentangled, spin-orbital entanglement occurs in excited states and may become crucial for a correct description of physical properties at finite temperature. As an important example of this behaviour we present spin-orbital entanglement in the $R$VO$_3$ perovskites, with $R$=La,Pr,...,Yb,Lu, where such finite temperature properties of these compounds can be understood only using entangled states: ($i$) thermal evolution of the optical spectral weights, ($ii$) the dependence of transition temperatures for the onset of orbital and magnetic order on the ionic radius in the phase diagram of the $R$VO$_3$ perovskites, and ($iii$) dimerization observed in the magnon spectra for the $C$-type antiferromagnetic phase of YVO$_3$. Finally, it is shown that joint spin-orbital excitations in an ordered phase with coexisting antiferromagnetic and alternating orbital order introduces topological constraints for the hole propagation and will thus radically modify transport properties in doped Mott insulators where hole motion implies simultaneous spin and orbital excitations.

  4. Metal-nonmetal transition in dense hydrogen plasma

    SciTech Connect

    Reinholz, H.; Redmer, R.; Nagel, S.

    1995-12-31

    A quantum statistical approach to the equation of state and the transport properties of partially ionized hydrogen plasma is utilized to determine the region of thermodynamic instability and the location of the metal-nonmetal transition. The elementary electrons e and protons p as well as two-particle states are treated correctly within a physical picture. The influence of higher clusters such as dimers H{sub 2} and molecular ions H{sub 2}{sup +}, however, is studied within the chemical picture. For this, the two-particle partition function is calculated by means of an improved Beth-Uhlenbeck formula. Nonideality corrections due to the interaction between the various species are considered in the respective laws of mass action. A thermodynamic instability is found for the strongly coupled plasma domain. The critical point at T{sub c} = 16.5 x 10{sup 3} K, {wp}{sub c} = 0.42 g/cm{sup 3}, and p{sub c} = 57 GPa coincides with earlier results for this hypothetical plasma phase transition. Near the instability region, all species have strongly varying concentrations which indicates the significant influence of nonideality corrections on the thermodynamic functions. The transport properties are studied from the weakly coupled, nondegenerate region up to strongly coupled, degenerate domain. Such a universal approach which includes the Spitzer as well as the Ziman theory as limiting cases can be formulated within linear response theory. Again, two-particle correlations have been accounted for by the correct quantum cross sections for electron scattering at ions and free electrons. Electron scattering at neutral atoms was considered on T matrix level with respect to an effective optical potential. Strong ion-ion correlations are of special importance at high densities. The respective ion-ion structure factor was determined numerically within the HNC scheme, taking into account local-field corrections to the screening function of the effective ion-ion interaction potential.

  5. Theoretical studies on layered materials and transition metal borides

    SciTech Connect

    Seong, S.

    1993-01-01

    From a geometrical point of view, a crystal structural may be described in terms of coordination polyhedra. The number of vertices of polyhedra, the coordination number, depends largely on the cation to anion radius ratio. It is obvious that a minimum coordination number is necessary for the formation of a layer structure. With a coordination number 2, only chain or finite molecules are possible. A high coordination number, on the other hand, will lead to a two, three dimensional or framework structure. The author has studied several compounds which belong to the group of structures mentioned above. V[sub 2]O[sub 5], Bi[sub 2]WO[sub 6], LiBiPd[sub 2]O[sub 4], Pd[sub 3]P2S[sub 8] and CuTe, have a two-dimensional layered structures whereas the hexagonal MT[sub 3]B[sub 2] (M = rare earth metal or Ca, Sr, Ba. T = Fe, Ru, Os, Co, Rh, Ir) are three dimensional expansions of polyhedra. Inside of these solid state crystals, electrons and atoms act collectively to create waves described as quasiparticles. They determine in part whether a crystal is an insulator, a semiconductor, a conductor or a superconductor. In analyzing the electronic structure and properties of the target compounds, the focus is on the study of structural distortations. These studies include the inter-layer interaction in a number of systems and the bonding and dynamics of transition metal boride superconductors. The author relies upon the LCAO approach of the chemist and the tight binding approach of solid state physicist.

  6. Processing of transition metal silicides for high-temperature applications

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    The authors review and discuss recent developments in the processing and mechanical properties of MoSi{sub 2} and its composites. High-temperature creep rates of MoSi{sub 2} and its composites are compared to those of several intermetallics and discussed in relation to grain-size effects. Thermophysical properties of MoSi{sub 2} and Si{sub 3}N{sub 4} are compared, and the need for functionally graded composites of MoSi{sub 2}-Si{sub 3}N{sub 4} is discussed. This is followed by a discussion of combustion synthesis, reaction synthesis and densification, in-situ composite development, and reactive hot extrusion of metal-silicon mixtures. In combustion synthesis, a heterogeneous reaction occurs between liquid Si and Mo powder to form MoSi{sub 2}. This technique can be applied to obtain composites and alloys of MoSi{sub 2} and various other transition-metal silicides. In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. X-ray characterization of the products obtained at various temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2}, followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and a synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate-determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si, such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10. Reactive extrusion of metal-silicon mixtures of 3Ni-Si and Co-2Si results in a dense product with at least two phases.

  7. Improved Transition Probabilities for Fe-group Elements to Resolve Unexpected Trends in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Wood, Michael P.

    2014-01-01

    Stellar abundances as a function of metallicity provide valuable information regarding the nucleosynthetic history of chemical elements in the Galaxy. Of particular importance are old, metal-poor stars, whose abundances provide a “fossil record” of the nucleosynthetic processes at work in the early Galaxy. The relative abundances of iron (Fe)-group elements provide perhaps the best constraints on the supernova properties of the early generations of stars. Studies of Fe-group abundances in metal-poor stars have found unexpected trends in relative abundance ratios versus metallicity down to metallicities of -4. These results have not been reconciled with current models of Fe-group production in the early Galaxy, and while these trends may indicate a need to revisit these models, the possibility remains that they are manifestations of inaccurate atomic data and/or non-LTE and 3D effects in the photospheres of stars of interest. In order to address these possible explanations, an effort is underway to improve the quality of laboratory atomic transition probabilities for first and second spectra Fe-group lines. A new echelle spectrometer has been developed to complement existing Fourier transform spectrometer (FTS) data typically used in transition probability studies. This instrument is free from the multiplex noise of a FTS which can overwhelm the weak lines necessary for accurate abundance determinations on Fe-group elements. The use of this new spectrometer, combined with an independent calibration method, allows for the reduction of systematic uncertainties, which are often the dominant source of uncertainty for branching fraction measurements. Using this new more accurate laboratory atomic data will allow for searches of non-LTE effects using lines covering a wide range of wavelengths and line strengths. I will discuss the development of this new echelle spectrometer as well as highlight recent results in Ti and Ni, and point toward future work on V and other Fe-group elements. This work is supported by NASA grant NNX10AN93G.

  8. Defect-induced semiconductor to metal transition in graphene monoxide.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Cho, Sung Beom; Chung, Yong-Chae

    2014-07-14

    This study investigates the influence of point defects on the geometric and electronic structure of graphene monoxide (GMO) via density functional theory calculations. In aspects of defect formation energy, GMOs with oxygen vacancies and bridge interstitial defects are more likely to form when compared to GMOs with defects such as carbon vacancies and hollow interstitial defects. It was also found that the oxygen vacancy or the hollow interstitial defect induces local tensile strain around the defective site and this strain increases the band gap energy of the defective GMO. In addition, the band gaps of GMO with carbon vacancies or bridge interstitial defects decreased mainly due to the dangling bonds, not due to the strain effect. It is noted that the dangling bond derived from the defects forms the defect-level in the band gap of GMO. The semiconductor to metal transition by the band gap change (0-0.7 eV) implies the possibility for band gap engineering of GMO by vacancies and interstitial defects. PMID:24886723

  9. Correlations in rare-earth transition-metal permanent magnets

    NASA Astrophysics Data System (ADS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  10. Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Tongay, Sefaattin; Li, Jingbo; Wu, Junqiao

    2013-04-01

    The stability and band bowing effects of two-dimensional transition metal dichalcogenide alloys MX2(1-x)X'2x (M = Mo, W, and X, X' = S, Se, Te) are investigated by employing the cluster expansion method and the special quasi-random structure approach. It is shown that for (S, Se) alloys, there exist stable ordered alloy structures with concentration x equal to 1/3, 1/2, and 2/3, which can be explained by the small lattice mismatch between the constituents and a large additional charge exchange, while no ordered configuration exists for (Se, Te) and (S, Te) alloys at 0 K. The calculated phase diagrams indicate that complete miscibility in the alloys can be achieved at moderate temperatures. The bowing in lattice constant for the alloys is quite small, while the bowing in band gap, and more so in band edge positions, is much more significant. By decomposing the formation of alloy into multiple steps, it is found that the band bowing is the joint effect of volume deformation, chemical difference, and a low-dimensionality enhanced structure relaxation. The direct band gaps in these alloys continuously tunable from 1.8 eV to 1.0 eV, along with the moderate miscibility temperatures, make them good candidates for two-dimensional optoelectronics.

  11. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers

    PubMed Central

    Wang, Gang; Robert, Cedric; Suslu, Aslihan; Chen, Bin; Yang, Sijie; Alamdari, Sarah; Gerber, Iann C.; Amand, Thierry; Marie, Xavier; Tongay, Sefaattin; Urbaszek, Bernhard

    2015-01-01

    Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1?x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300?K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. PMID:26657930

  12. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides.

    PubMed

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10?cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 10(8). This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics. PMID:26725854

  13. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    SciTech Connect

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  14. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.

    PubMed

    Palummo, Maurizia; Bernardi, Marco; Grossman, Jeffrey C

    2015-05-13

    Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at low temperature (4 K) and room temperature (300 K) in TMD monolayers with the chemical formula MX2 (X = Mo, W, and X = S, Se), as well as in bilayer and bulk MoS2 and in two MX2 heterobilayers. Our results elucidate the time scale and microscopic origin of light emission in TMDs. We find radiative lifetimes of a few picoseconds at low temperature and a few nanoseconds at room temperature in the monolayers and slower radiative recombination in bulk and bilayer than in monolayer MoS2. The MoS2/WS2 and MoSe2/WSe2 heterobilayers exhibit very long-lived (?20-30 ns at room temperature) interlayer excitons constituted by electrons localized on the Mo-based and holes on the W-based monolayer. The wide radiative lifetime tunability, together with the ability shown here to predict radiative lifetimes from computations, hold unique potential to manipulate excitons in TMDs and their heterostructures for application in optoelectronics and solar energy conversion. PMID:25798735

  15. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    PubMed Central

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials. PMID:26235962

  16. Chemical contrast in STM imaging of transition metal aluminides

    SciTech Connect

    Duguet, T.; Thiel, Patricia A.

    2012-08-01

    The present manuscript reviews recent scanning tunnelling microscopy (STM) studies of transition metal (TM) aluminide surfaces. It provides a general perspective on the contrast between Al atoms and TM atoms in STM imaging. A general trend is the much stronger bias dependence of TM atoms, or TM-rich regions of the surface. This dependence can be attenuated by the local chemical arrangements and environments. Al atoms can show a stronger bias dependence when their chemical environment, such as their immediate subsurface, is populated with TM. All this is well explained in light of combined results of STM and both theoretical and experimental electronic and crystallographic structure determinations. Since STM probes the Fermi surface, the electronic structure in the vicinity of the Fermi level (EF) is essential for understanding contrast and bias dependence. Hence, partial density of states provides information about the TM d band position and width, s–p–d hybridization or interactions, or charge transfer between constituent elements. In addition, recent developments in STM image simulations are very interesting for elucidating chemical contrast at Al–TM alloy surfaces, and allow direct atomic identification, when the surface does not show too much disorder. Overall, we show that chemically-specific imaging is often possible at these surfaces.

  17. Optoelectronics of Transition Metal Dichalcogenide Monolayers and Heterostructures

    NASA Astrophysics Data System (ADS)

    Schaibley, John

    2015-03-01

    Monolayer transition metal dichalcogenides (TMDs) contain 2D valley excitons which reside in two degenerate momentum space valleys at the edges of the Brillouin zone. It is crucially important to understand fundamental 2D exciton properties in TMD monolayers and van der Waals heterostructures. By performing coherent nonlinear optical spectroscopy with high spectral resolution, we observe nanosecond decay dynamics in single monolayers of MoSe2, implying the presence of a previously unreported long-lived state that appears to trap the exciton population. In MoSe2-WSe2 vertical heterostructures, we observe intralayer excitons, where the electron and hole are confined to different monolayers, and show evidence of strong exciton-exciton interaction effects and long lifetimes. Based on TMD monolayer excitons, we have also investigated a variety of fundamental quantum devices, including a nano-cavity laser and a second-harmonic generation transistor. Finally, we report a new type of single quantum emitter, based on single localized excitons spatially confined to defects in monolayers of WSe2. The photoluminescence from these localized excitons is spectrally narrow and shows strong anti-bunching, demonstrating the single photon nature of the emission.

  18. Metal-insulator transitions in IZO, IGZO, and ITZO films

    NASA Astrophysics Data System (ADS)

    Makise, Kazumasa; Hidaka, Kazuya; Ezaki, Syohei; Asano, Takayuki; Shinozaki, Bunju; Tomai, Shigekazu; Yano, Koki; Nakamura, Hiroaki

    2014-10-01

    In this study, we measured the low-temperature resistivity of amorphous two- and three-dimensional (2D and 3D) indium-zinc oxide, indium-gallium-zinc oxide, and indium-tin-zinc oxide films with a wide range of carrier densities. To determine their critical characteristics at the metal-insulator transition (MIT), we used the Ioffe-Regel criterion. We found that the MIT occurs in a narrow range between k F ? = 0.13 and k F ? = 0.25, where k F and ? are the Fermi wave number and electron mean free path, respectively. For films in the insulating region, we analyzed ? ( T ) using a procedure proposed by Zabrodskii and Zinov'eva. This analysis confirmed the occurrence of Mott and Efros-Shklovskii (ES) variable-range hopping. The materials studied show crossover behavior from exp(TMott/T)1/4 or exp(TMott/T)1/3 for Mott hopping conduction to exp(TES/T)1/2 for ES hopping conduction with decreasing temperature. For both 2D and 3D materials, we found that the relationship between TMott and TES satisfies TES ? TMott2/3.

  19. Ambipolar light emitting transistors on transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Zhang, Yijin; Suzuki, Ryuji; Iwasa, Yoshihiro

    2014-03-01

    Transition-metal dichalcogenides (TMDs) are known to show ambipolar transistor operation, in which both electron and hole can transport through TMD channel materials. As widely investigated in organic transistors, ambipolar transistor has additional functionality of the efficient light emitting source by simultaneously introducing electron and hole in the channel, forming a bias tunable p-n junction. Recently, tunable yet stable p-n junction has been realized in MoS2 using a device structure of electric double layer transistor (EDLT), taking advantage of liquid gate dielectric. We fabricated EDLT devices with tungsten diselenide (WSe2), molybdenum diselenide (MoSe2), and molybdenum disulfide (MoS2) as channel materials, and observed electroluminescence (EL) from both monolayers and multilayers. The peak energy suggests that EL occurs at K point in the momentum space even in multilayer samples, in contrast with band modulation from monolayer to multilayers. Such a light emitting device will be a fundamental device in opto-valleytronics application.

  20. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  1. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  2. Spinodal nanodecomposition in semiconductors doped with transition metals

    NASA Astrophysics Data System (ADS)

    Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, Pham Nam; Katayama-Yoshida, H.

    2015-10-01

    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, codoping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear in the form of either nanodots (the dairiseki phase) or nanocolumns (the konbu phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.

  3. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    NASA Astrophysics Data System (ADS)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  4. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  5. Correlations in rare-earth transition-metal permanent magnets

    SciTech Connect

    Skomski, R. Manchanda, P.; Kashyap, A.

    2015-05-07

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo{sub 5}. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA?+?U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  6. Valency configuration of transition metal impurities in ZnO

    SciTech Connect

    Petit, Leon; Schulthess, Thomas C; Svane, Axel; Temmerman, Walter M; Szotek, Zdzislawa; Janotti, Anderson

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.

  7. Metal-insulator transitions in IZO, IGZO, and ITZO films

    SciTech Connect

    Makise, Kazumasa; Hidaka, Kazuya; Ezaki, Syohei; Asano, Takayuki; Shinozaki, Bunju; Tomai, Shigekazu; Yano, Koki; Nakamura, Hiroaki

    2014-10-21

    In this study, we measured the low-temperature resistivity of amorphous two- and three-dimensional (2D and 3D) indium-zinc oxide, indium-gallium-zinc oxide, and indium-tin-zinc oxide films with a wide range of carrier densities. To determine their critical characteristics at the metal-insulator transition (MIT), we used the Ioffe–Regel criterion. We found that the MIT occurs in a narrow range between k{sub F}??=0.13 and k{sub F}??=0.25, where k{sub F} and ? are the Fermi wave number and electron mean free path, respectively. For films in the insulating region, we analyzed ?(T) using a procedure proposed by Zabrodskii and Zinov'eva. This analysis confirmed the occurrence of Mott and Efros–Shklovskii (ES) variable-range hopping. The materials studied show crossover behavior from exp(T{sub Mott}/T){sup 1/4} or exp(T{sub Mott}/T){sup 1/3} for Mott hopping conduction to exp(T{sub ES}/T){sup 1/2} for ES hopping conduction with decreasing temperature. For both 2D and 3D materials, we found that the relationship between T{sub Mott} and T{sub ES} satisfies T{sub ES}?T{sub Mott}{sup 2/3}.

  8. First principles determinations of magnetostriction in transition metals (invited)

    SciTech Connect

    Wu, R.; Freeman, A.J.

    1996-04-01

    The mechanism of magnetostriction in transition metal bulk (fcc Co) and thin films [Co/Pd(001) and Co/Cu(001)] is investigated using the {ital ab} {ital initio} full potential linearized augmented plane wave method. With the aid of the state tracking and torque approaches the magnetocrystalline anisotropy energy, the essential ingredient of the magnetostriction, is found to be a linear function of the interlayer distances. The calculated magnetostrictive coefficients and magnetoelastic coupling constants for bulk fcc Co agree very well with experiment. The calculated {lambda}{sub 001} at the Co/Pd(001) interface is much larger in magnitude (+2.3{times}10{sup {minus}4}) and differs in sign compared to that for Co/Cu(001)({minus}5.7{times}10{sup {minus}5}). In these thin films, the hybridization between the Co- {ital d}{sub {ital xz}},{ital yz} and the underlying substrate {ital d} states is found to play the key role. {copyright} {ital 1996 American Institute of Physics.}

  9. New catalysts for hydroprocessing: Transition metal carbides and nitrides

    SciTech Connect

    Ramanathan, S.; Oyama, S.T. |

    1995-11-02

    A series of moderate surface area transition metal carbides and nitrides of molybdenum, tungsten, vanadium, niobium, and titanium were prepared by temperature-programmed reaction of the oxide precursor with a reactant gas (20% CH{sub 4}/H{sub 2} for the carbides and 100% NH{sub 3} for the nitrides). The phase purity and composition of the samples were established by X-ray diffraction photoelectron spectroscopy (XPS), while surface properties were determined by N{sub 2} BET and CO chemisorption measurements. The catalysts were tested in three-phase trickle-bed reactor for their activity in hydrodenitrogenation (HDN), hydrodesulfurization, and hydrodeoxygenation, with particular emphasis on HDN. The catalytic tests were carried out using a model liquid feed mixture containing 3000 ppm sulfur (dibenzothiophene), 2000 ppm nitrogen (quinoline), 500 ppm oxygen (benzofuran), 20 wt% aromatics (tetralin), and balance aliphatics (tetradecane). The carbides and nitrides were found to be active for HDN of quinoline with activity following the order group 6 > group 5 > group 4. Notably, Mo{sub 2}C showed superior areal HDN activity than a commercial sulfided Ni-Mo/Al{sub 2} O{sub 3} catalyst (shell 324). The XRD analysis of the spent catalysts indicated no change in the bulk structure, while XPS results showed little incorporation of sulfur in the surface region of the catalysts, suggesting that these materials are tolerant of sulfur. 42 refs., 11 figs., 7 tabs.

  10. Density functional localized orbital corrections for transition metals

    PubMed Central

    Rinaldo, David; Tian, Li; Harvey, Jeremy N.; Friesner, Richard A.

    2008-01-01

    This paper describes the development of the B3LYP localized orbital correction model which improves the accuracy of the B3LYP thermochemical predictions for compounds containing transition metals. The development of this model employs a large data set containing 36 experimental atomic energies and 71 bond dissociation energies. B3LYP calculations were carried out on these systems with different basis sets. Based on an electronic structure analysis and physical arguments, we built a set of 10 parameters to correct atomic data and a set of 21 parameters to correct bond dissociation energies. Using the results from our biggest basis set, the model was shown to reduce the mean absolute deviation from 7.7 to 0.4 kcal?mol for the atomic data and from 5.3 to 1.7 kcal?mol for the bond dissociation energies. The model was also tested using a second basis set and was shown to give relatively accurate results too. The model was also able to predict an outlier in the experimental data that was further investigated with high level coupled-cluster calculations. PMID:19045248

  11. Hybrid functional studies of defects in layered transition metal oxides

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    2014-03-01

    Layered oxides LiMO2 (M is a transition metal) have been studied extensively for Li-ion battery cathodes. It is known that defects have strong impact on the electrochemical performance. A detailed understanding of native point defects in LiMO2 is however still lacking, thus hindering rational design of more complex materials for battery applications. In fact, first-principles defect calculations in LiMO2 are quite challenging because standard density functional theory (DFT) calculations using the generalized gradient approximation (GGA) of the exchange-correlation functional fail to reproduce the correct physics. The GGA+U extension can produce reasonable results, but the transferability of U across the compounds is limited. In this talk, we present our DFT studies of defects in LiMO2 (M=Co, Ni) using the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. The dominant point defects will be identified and compared with experiment; and their impact on the structural stability and the charge (electronic and ionic) and mass transport will be addressed. We will also discuss possible shortcomings of the HSE functional in the study of these electron-correlated materials.

  12. Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

    PubMed Central

    Landelle, Grégory; Panossian, Armen; Pazenok, Sergiy; Vors, Jean-Pierre

    2013-01-01

    Summary In the last few years, transition metal-mediated reactions have joined the toolbox of chemists working in the field of fluorination for Life-Science oriented research. The successful execution of transition metal-catalyzed carbon–fluorine bond formation has become a landmark achievement in fluorine chemistry. This rapidly growing research field has been the subject of some excellent reviews. Our approach focuses exclusively on transition metal-catalyzed reactions that allow the introduction of –CFH2, –CF2H, –CnF2 n +1 and –SCF3 groups onto sp² carbon atoms. Transformations are discussed according to the reaction-type and the metal employed. The review will not extend to conventional non-transition metal methods to these fluorinated groups. PMID:24367416

  13. Photoinduced semiconductor-metal phase transition in the surface layer of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Semenov, A. L.

    2007-12-01

    The photoinduced semiconductor-metal phase transition occurring for a time ? t < 1 ps in the surface layer of vanadium dioxide is studied theoretically. A nonthermal mechanism of instability development is considered. An equation for the order parameter ? of the photoinduced semiconductor-metal phase transition is derived. It is shown that the transition of the surface layer of VO2 to the metallic state requires irradiation by a laser pulse whose energy density W exceeds a critical value W c. The phase transition is initiated at the surface, after which the interface propagates deep into the sample. The critical energy density W c, the velocity of propagation of the metal-semiconductor interface, the thickness z 0, and the characteristic time ? t of formation of the metal layer are calculated. The theoretical results obtained are in agreement with the experimental data on irradiation of vanadium dioxide single crystals by high-intensity laser pulses.

  14. Oxide Wizard: an EELS application to characterize the white lines of transition metal edges.

    PubMed

    Yedra, Lluís; Xuriguera, Elena; Estrader, Marta; López-Ortega, Alberto; Baró, Maria D; Nogués, Josep; Roldan, Manuel; Varela, Maria; Estradé, Sònia; Peiró, Francesca

    2014-06-01

    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space. PMID:24750576

  15. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-11-18

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  16. Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube

    E-print Network

    Maruyama, Shigeo

    Bond-order potential for transition metal carbide cluster for the growth simulation of a single for transition metal carbide cluster is developed in the form of the bond-order type potential function-order potential; Carbon nanotube; transition metal carbide cluster *Corresponding Author. Fax: +81-3-5841-8653 E

  17. Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data

    PubMed Central

    Dakos, Vasilis; Carpenter, Stephen R.; Brock, William A.; Ellison, Aaron M.; Guttal, Vishwesha; Ives, Anthony R.; Kéfi, Sonia; Livina, Valerie; Seekell, David A.; van Nes, Egbert H.; Scheffer, Marten

    2012-01-01

    Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data. PMID:22815897

  18. Theory of elastic phase transitions in metals at high pressures. Application to vanadium

    SciTech Connect

    Krasil'nikov, O. M. Vekilov, Yu. Kh.; Isaev, E. I.; Bondarenko, N. G.

    2011-02-15

    Structural transformations in elementary metals under high pressures are considered using the Landau theory of phase transitions, in which the finite strain tensor components play the role of the order parameter. As an example, the phase transition in vanadium observed at a pressure of 69 GPa is analyzed. It is shown that it is a first-order elastic phase transition, which is close to a second-order transition.

  19. The Early College Challenge: Navigating Disadvantaged Students' Transition to College

    ERIC Educational Resources Information Center

    Rosenbaum, James E.; Becker, Kelly Iwanaga

    2011-01-01

    Successful early college high schools (ECHSs) are formed through partnerships between high schools and colleges (usually community colleges). Think of it as preparation through acceleration. ECHSs enroll disadvantaged students who have not excelled with ordinary grade-level academic content and have them take college courses while still in high…

  20. Phase transition into the metallic state in hypothetical (without molecules) dense atomic hydrogen

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2013-10-15

    A simple physical model of the metal-dielectric (vapor-liquid) phase transition in hypothetical (without molecules) atomic hydrogen is proposed. The reason for such a transition is the quantum collective cohesive energy occurring due to quantum electron-electron exchange similar to the cohesive energy in the liquid-metal phase of alkali metals. It is found that the critical parameters of the transition are P{sub c} ? 41000 atm, ?{sub c} ? 0.1 g/cm{sup 3}, and T{sub c} ? 9750 K.

  1. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  2. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    SciTech Connect

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  3. Quantum phase transition between orbital-selective Mott states in Hund's metals

    NASA Astrophysics Data System (ADS)

    Rincón, Julián; Moreo, Adriana; Alvarez, Gonzalo; Dagotto, Elbio

    2014-12-01

    We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hund's metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density and Hubbard U , at robust Hund's coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase.

  4. Critical behavior at a dynamic vortex insulator-to-metal transition

    NASA Astrophysics Data System (ADS)

    Poccia, Nicola; Baturina, Tatyana I.; Coneri, Francesco; Molenaar, Cor G.; Wang, X. Renshaw; Bianconi, Ginestra; Brinkman, Alexander; Hilgenkamp, Hans; Golubov, Alexander A.; Vinokur, Valerii M.

    2015-09-01

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions.

  5. Critical behavior at a dynamic vortex insulator-to-metal transition.

    PubMed

    Poccia, Nicola; Baturina, Tatyana I; Coneri, Francesco; Molenaar, Cor G; Wang, X Renshaw; Bianconi, Ginestra; Brinkman, Alexander; Hilgenkamp, Hans; Golubov, Alexander A; Vinokur, Valerii M

    2015-09-11

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions. PMID:26359398

  6. Equity and Quality? Challenges for Early Childhood and Primary Education in Ethiopia, India and Peru. Working Papers in Early Childhood Development, No. 55. Studies in Early Childhood Transitions

    ERIC Educational Resources Information Center

    Woodhead, Martin; Ames, Patricia; Vennam, Uma; Abebe, Workneh; Streuli, Natalia

    2009-01-01

    Part of the "Studies in Early Transitions" series, this Working Paper draws on interviews and observations carried out as part of "Young Lives", a 15-year longitudinal study of childhood poverty in Ethiopia, India, Peru and Vietnam based at the University of Oxford's Department of International Development. This paper focuses on the challenges of…

  7. Increasing Choice or Inequality? Pathways through Early Education in Andhra Pradesh, India. Working Papers in Early Childhood Development, No. 58. Studies in Early Childhood Transitions

    ERIC Educational Resources Information Center

    Streuli, Natalia; Vennam, Uma; Woodhead, Martin

    2011-01-01

    This working paper is part of the Studies in Early Transitions series emerging from "Young Lives", a 15-year longitudinal study of childhood poverty in Ethiopia, India, Peru and Vietnam. It explores recent trends for children growing up in Andhra Pradesh, one of India's most populous states, based on Young Lives survey data collected for a sample…

  8. Electronic and geometric structure of transition-metal nanoclusters

    SciTech Connect

    Jennison, D.R.; Schultz, P.A.; Sears, M.P.; Klitsner, T.

    1996-08-01

    A massively-parallel ab initio computer code, which uses Gaussian bases, pseudopotentials, and the local density approximation, permits the study of transition-metal systems with literally hundreds of atoms. We present total energies and relaxed geometries for Ru, Pd, and Ag clusters with N = 55, 135, and 140 atoms; we also used the DMOL code to study 13-atom Pd and Cu clusters, with and without hydrogen. The N = 55 and 135 clusters were chosen because of simultaneous cubo-octahedral (fcc) and icosahedral (icos) sub-shell closings, and we find icos geometries are preferred. Remarkably large compressions of the central atoms are observed for the icos structures (up to 6% compared with bulk interatomic spacings), while small core compressions ({approx} 1 %) are found for the fcc geometry. In contrast, large surface compressive relaxations are found for the fcc clusters ({approx} 2-3% in average nearest neighbor spacing), while the icos surface displays small compressions ({approx} 1%). Energy differences between icos and fcc are smallest for Pd, and for all systems the single-particle densities of states closely resembles bulk results. Calculations with N = 134 suggest slow changes in relative energy with N. Noting that the 135-atom fcc has a much more open surface than the icos, we also compare N = 140 icos and fcc, the latter forming an octahedron with close packed facets. These icos and fcc clusters have identical average coordinations and the octahedron is found to be preferred for Ru and Pd but not for Ag. Finally, we compare Harris functional and LDA energy differences on the N = 140 clusters, and find fair agreement only for Ag.

  9. Intrinsic Electronically Active Defects in Transition Metal Elemental Oxides

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerald; Seo, Hyungtak; Lee, Sanghyun; Fleming, Leslie B.; Ulrich, Marc D.; Lüning, Jan; Lysaght, Pat; Bersuker, Gennadi

    2007-04-01

    Densities of interfacial and bulk defects in high-? dielectrics are typically about two orders of magnitude larger than those in Si-SiO2 devices. An asymmetry in electron and hole trapping kinetics, first detected in test capacitor devices with nanocrystalline ZrO2 and HfO2 dielectrics, is a significant potential limitation for Si device operation and reliability in complementary metal oxide semiconductor applications. There are two crucial issues: i) are the electron and hole traps intrinsic defects, or are they associated with processed-introduced impurities?, and ii) what are the local atomic bonding arrangements and electronic state energies of these traps? In this study, thin film nanocrystalline high-? gate dielectrics, TiO2, ZrO2, and HfO2 (group IVB TM oxides), are investigated spectroscopically to identify the intrinsic electronic structures of valence and conduction band states, as well as those of intrinsic bonding defects. A quantitative/qualitative distinction is made between crystal field and Jahn-Teller (J-T) d-state energy differences in nanocrystralline TM elemental oxides, and noncrystalline TM silicates and Si oxynitrides. It is experimentally shown and theoretically supported that a length scale for nanocrystallite size <2-3 nm i) eliminates J-T d-state term splittings in band edge ?-bonded d-states, and ii) represents a transition from the observation of discrete band edge defects to band-tail defects. Additionally, ?-state bonding coherence can also be disrupted with similar effects on band edge and defect states in HfO2 films which have been annealed in NH3 at 700 °C, and display Hf-N bonds in N atom K1 edge X-ray absorption spectra.

  10. Valley and spin currents in 2D transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yao, Wang

    2015-03-01

    In two-dimensional (2D) transition metal dichalcogenides (TMDs), carriers are indexed by both the spin and the valley pseudospin (labelling the degenerate band extrema in momentum space). 2D TMDs is therefore an ideal laboratory for exploring these internal quantum degrees of freedom for new electronics, and controlling the flow of spin and pseudospin is at the heart of such applications. We will discuss two mechanisms for generating spin and valley currents of electrons in 2D group-VIB TMDs: (I) the valley and spin Hall effects arising from the Berry curvatures; and (II) the nonlinear valley and spin currents arising from Fermi pocket anisotropy. The two effects have distinct scaling with the electric field, and different dependence of the current direction on the field direction and crystalline axis. We will discuss the possibility to observe and distinguish the two effects as distinct patterns of polarized electroluminescence at p-n junction in 2D TMDs. The nonlinear current response also makes possible the generation of pure spin and valley flows without net charge current, either by an AC bias or by an inhomogeneous temperature distribution. We will also discuss the valley Hall effect of charged excitons in monolayer TMDs, which arises from the effective coupling of the excitonic valley pseudospin to its center of mass motion by the exchange interaction between the electron and hole constituents. The work is supported by the Research Grant Council of Hong Kong SAR (HKU17305914P, HKU9/CRF/13G), and the Croucher Foundation under the Croucher Innovation Award.

  11. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles

    SciTech Connect

    Johnson, Lydia; Thurber, Aaron P.; Anghel, Josh; Sabetian, Maryam; Engelhard, Mark H.; Tenne, D.; Hanna, Charles; Punnoose, Alex

    2010-08-13

    Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants has been refuted in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn??xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn??xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn??xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies clearly showed that the difference in the ferromagnetic properties of Zn??xFexO nanoparticles with different surface structures originate from differences in the fraction of the doped Fe³? ions that are coupled ferromagnetically.

  12. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E. (Downers Grove, IL); Maroni, Victor A. (Naperville, IL)

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  13. Multi-body forces and the energetics of transition metals, alloys, and semiconductors

    SciTech Connect

    Carlsson, A.E.

    1992-01-01

    Progress over the past year is divided into 3 areas: potential-energy functions for transition-metal aluminides; electronic structure and energetics of complex structures and quasicrystals; and ceramic materials (PdO, PtO).

  14. Transition metal gettering studies and simulation for the optimization of silicon photovoltaic device processing

    E-print Network

    Smith, Aimée Louise, 1971-

    2002-01-01

    We use what is known about transition metal (TM) defect thermodynamic driving forces and kinetic responses to make predictive simulation of gettering during solar cell fabrication possible. We have developed a simulator ...

  15. Zwitterionic late transition metal alkene polymerisation catalysts containing aminofulvene-aldiminate (AFA) ligands 

    E-print Network

    Rahman, Mohammed Mahmudur

    2010-01-01

    Over recent years significant progress has been made in the design and development of late transition metal cationic catalysts for olefin polymerisation. Never-the-less, the activation of catalyst precursors and generation ...

  16. Synthesis and study of novel zwitterionic transition metal complexes and their application as olefin polymerisation catalysts 

    E-print Network

    Melchionna, Michele

    2007-06-25

    The synthesis, characterization and coordination chemistry of novel zwitterionic late transition metal complexes has been carried out, and an investigation of their ability to act as olefin polymerisation catalysts has ...

  17. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides

    E-print Network

    Ribeiro-Soares, J.

    Transition metal dichalcogenides (TMDCs) have emerged as a new two-dimensional material's field since the monolayer and few-layer limits show different properties when compared to each other and to their respective bulk ...

  18. Universal quantum criticality in the metal-insulator transition of two-dimensional interacting Dirac electrons

    E-print Network

    Otsuka, Yuichi; Sorella, Sandro

    2015-01-01

    The metal-insulator transition has been a subject of intense research since Nevil Mott has first proposed that the metallic behavior of interacting electrons could turn to the insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. We find thereby that the transition is continuous and determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. We furthermore discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: th...

  19. The Use of Soluble Polyolefins as Supports for Transition Metal Catalysts 

    E-print Network

    Hobbs, Christopher Eugene

    2012-10-19

    The use of polymer supports for transition metal catalysts are very important and useful in synthetic organic chemistry as they make possible the separation and isolation of catalysts and products quite easy. These ...

  20. First-principles density functional theory study of sulfur oxide chemistry on transition metal surfaces

    E-print Network

    Lin, Xi, 1973-

    2003-01-01

    In this thesis, the chemistry of sulfur oxides on transition metals is studied extensively via first-principles density functional theory (DFT) computations, focusing on the chemical reactivity and selectivity in sulfur ...

  1. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure. PMID:12240191

  2. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  3. Tin, Antimony, Bismuth, and Tellurium Lewis Acids in sigma-Accepting Ligands for Transition Metals 

    E-print Network

    Lin, Tzu-Pin

    2012-10-19

    The interactions between ligands and transition metals have been an essential subject in inorganic chemistry. Other than the commonly known L-type (two-electron donors) and X-type ligands (one-electron donors), Z-type ...

  4. Transition Metal-MoS2 Reactions: Review and Thermodynamic Predictions

    NASA Astrophysics Data System (ADS)

    Domask, A. C.; Gurunathan, R. L.; Mohney, S. E.

    2015-11-01

    Molybdenum disulfide is a layered transition-metal dichalcogenide semiconductor that is attracting renewed attention for its potential use in future nanoscale electronics, optoelectronics, catalysis, tribology, and other fields. In all of these cases, the interaction between MoS2 and various transition metals is very important. In this work we survey the thermodynamics of the metal-Mo-S systems and the anticipated reaction products from transition metals and MoS2. We examined over 200 references on the reactions between transitions metals (M) and MoS2, compiled thermodynamic data, and used the thermodynamic data to predict M-Mo-S ternary phase diagrams for systems without experimentally determined diagrams. Where possible, experimental literature on the interactions between metals and MoS2 was used to corroborate our predicted diagrams and stable reaction products. Both the previously reported and newly predicted M-Mo-S phase diagrams fall into three categories. In the first category, the metal is in thermodynamic equilibrium with MoS2. In another, there is a driving force for the metal to reduce MoS2, with tie lines to sulfides of the contact metal dominating the phase diagram. In a final category, there is a very stable solid solution or ternary phase that dominates the phase diagram. Better understanding of the phase equilibria in the M-Mo-S systems will aid research on the use of MoS2 in a variety of fields.

  5. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2006-10-25

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  6. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  7. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  8. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  9. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  10. Conversion and displacement reaction types of transition metal compounds for sodium ion battery

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Ying; Sun, Qian; Yue, Ji-Li; Shadike, Zulipiya; Yang, Yin; Ding, Fei; Sang, Lin; Fu, Zheng-Wen

    2015-06-01

    Transition metal compounds of FeSe and CuWO4 thin films have been successfully fabricated by using R.F. sputtering method. Although two kinds of transition metal compounds of FeSe and CuWO4 thin films can react with sodium electrochemically, they exhibit different electrochemical features. The nanosized metal Fe is highly dispersed into Na2Se matrix and metal Cu is extruded from Na2WO4 mixture after the FeSe/Na and CuWO4/Na cells are discharged, respectively. The conversion reaction mechanism between FeSe and Na2Se is proposed for the FeSe/Na cell. While the displacement reaction mechanism for CuWO4/Na cell is proposed for the first time based on the transmission electron microscopy (TEM) and selected area electron diffraction (SAED) data. These various mechanisms make transition metal compounds interesting materials for rechargeable sodium ion batteries.

  11. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  12. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  13. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  14. Automatic quantification of early transition points in biofilm formation

    NASA Astrophysics Data System (ADS)

    Thatcher, Travis; Bienvenu, Samuel; Strain, Shinji; Gordon, Vernita

    2010-10-01

    Biofilms are multicellular, dynamic communities of interacting single-cell organisms, like bacteria. Biofilms are responsible for many infectious diseases as well as for significant damage in industrial settings, yet many aspects of biofilm formation are not well understood. Identifying and quantifying the interactions leading to biofilm formation will not only be important for understanding the basic science of these and other multicellular systems, but it will also be essential for designing targeted strategies to prevent or disrupt biofilms. In particular, it is not clear what physical interactions, and corresponding biological mechanisms, are responsible for the early steps in biofilm formation. Because of this, we are developing high-throughput software techniques to analyze micrograph movies of biofilm formation, from attachment to surfaces through the development of microcolonies. This work will focus on developing software tools to identify and quantify key steps in biofilm formation, first in non-chemotacting systems and later in chemotacting (and autotacting) systems.

  15. Self-interstitial atom defects in bcc transition metals: Group-specific trends

    SciTech Connect

    Nguyen-Manh, D.; Dudarev, S. L.

    2006-01-01

    We present an investigation of systematic trends for the self-interstitial atom (SIA) defect behavior in body-centered cubic (bcc) transition metals using density-functional calculations. In all the nonmagnetic bcc metals the most stable SIA defect configuration has the <111> symmetry. Metals in group 5B of the periodic table (V, Nb, Ta) have significantly different energies of formation of the <111> and <110> SIA configurations, while for the group 6B metals (Cr, Mo, W) the two configurations are linked by a soft bending mode. The relative energies of SIA defects in the nonmagnetic bcc metals are fundamentally different from those in ferromagnetic bcc {alpha}-Fe. The systematic trend exhibited by the SIA defect structures in groups 5B and 6B transition metals correlates with the observed thermally activated mobility of SIA defects.

  16. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    ERIC Educational Resources Information Center

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  17. Compensation effect and volcano curve in toluene hydrogenation catalyzed by transition metal sulfides.

    PubMed

    Guernalec, N; Geantet, C; Cseri, T; Vrinat, M; Toulhoat, H; Raybaud, P

    2010-09-28

    Within the framework of volcano curves, a kinetic study of toluene hydrogenation catalyzed by transition metal sulfides highlights the variation of the apparent kinetic parameters as a function of the ab initio sulfur-metal bond energy descriptor and sulfo-reductive reaction conditions. PMID:20424734

  18. The calculation of metal conductivity in the process of transition from liquid to plasma

    NASA Astrophysics Data System (ADS)

    Apfelbaum, E.

    2004-03-01

    The method of metal conductivity calculation was offered on the base of Ziman theory and two-component model of medium with variable ion charge. This technique was applied to the description of metal conductivity in the process of transition from liquid to plasma state. The results of calculation were compared with calculations and measurements of other authors.

  19. The electronic structure of lithium transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kocher, Michael P.

    Currently, LiCoO2 is the cathode in the majority of the batteries used in cellular phones and laptop computers. Due to the low abundance of cobalt, thermal instability and environmental concerns, there has been a strong effort to find an alternative material. This dissertation focuses on ab initio calculations of the electronic structure of several lithium transition metal oxides used as cathode material in Li-ion batteries, especially layered LiMn1/2Ni1/2O2 and LiMn1/3,Ni 1/3,Co1/3O2, and olivine structure LiFePO 4 and FePO4. These materials offer substantial increases in energy density and cycle life, and could be used in electric vehicles. Density Functional Theory (DFT) was used to calculate the electronic structure of LixMn1/2Ni1/2O2 and LixMn1/3,Ni1/3,Co1/3O2. To understand the fundamental characteristics of these materials, the spherical integrated charge and spin density, and angular momentum projected density of states was calculated to investigate the effect of insertion of Li. The observed changes of the integrated spin density suggest Ni is changing valence state as Li is removed. However, the integrated charge density shows no dependence on the Li concentration, which suggests that Ni remains in the same charge state. The electronic density of states reveals that the hybridized O p near the Fermi level are key component to charge compensation mechanism. This provides evidence that the O has a key role in the charge regulation during delithiation/lithiation and Ni is not changing from Ni2+ to Ni4+. The calculated projected density of states was compared with EELS measurements to further validate these findings. The electronic structure of LiFePO4 and FePO4 was calculated using DFT and DFT+U. The spherically integrated spin and charge densities show a small dependency of the Li concentration, but do not suggest a change from Fealpha to Fealpha+1. The projected density of states shows an increase in the hybridization of the O p and Fe d states as Li is removed, suggesting the covalent bonding within the material is a key component to the charge compensation mechanism.

  20. Exploring the Early Universe with Extremely Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Thidemann Hansen, Terese; Christlieb, Norbert; Hansen, Camilla; Beers, Timothy C.

    2015-08-01

    The outer atmosphere of the first generation of low-mass stars retain to a great extend the original composition of the interstellar medium at the time and place of their birth. Hence the earliest phases of Galactical chemical evolution and nucleosynthesis can be investigated by means of studying the old metal-poor stars. It has been recognized that a large fraction of metal-poor stars possess significant over-abundances of carbon relative to iron. These so-called carbon enhanced metal-poor (CEMP) stars ([C/Fe] > +0.7) make up ~30% of the stars with [Fe/H] < -3.0, and ~80% of the stars with [Fe/H] < -4.5. The CEMP stars can be divided into a number of sub-classes based on the behavior of their neutron-capture elements. At the lowest metallicity the CEMP-no stars, showing no over-abundance of neutron-capture elements, is the dominant sub-class, hence these stars are most likely associated with elemental-abundance patterns that were produced by the very first generation of massive stars to form in the Galaxy.I will present the results of a 23-star homogeneously analyzed sample of metal-poor candidates from the Hamburg/ESO survey. We have derived abundances for a large number of elements ranging from Li to Pb, covering production processes from hydrostatic burning to neutron-capture. The sample includes four ultra metal-poor stars ([Fe/H] < -4.0), six CEMP-no stars, five CEMP-s stars, two CEMP-r stars and two CEMP-r/s stars. This broad variety of the sample stars gives us an unique opportunity to explore different abundance patterns atlow metallicity.

  1. Disordered electronic systems. II. Phase separation and the metal-insulator transition in metal-metalloid alloys

    NASA Astrophysics Data System (ADS)

    Sonntag, Joachim

    2005-03-01

    The electronic transport in the phase separated regime is determined by both the different local band structure in the phases (called phases A and B ) and electron redistribution (electron transfer) to the phase with the deeper average potential (phase B ). Equations for the dependence of the electronic conductivity ? on metalloid concentration x are derived. In amorphous metal-metalloid alloys the metal-insulator transition (M-I transition) characterized by the transition from ?>0 to ?=0 at temperature T=0 at x=xc takes place in the phase separated regime. The M-I transition in S1-xMx alloys is determined by the conduction band (phase A ), whereas in N1-xMx , and in many T1-xMx alloys, it is determined by the valence band (phase B ) ( N and T stand for a transition metal with completely and incompletely occupied d band, respectively, S for a simple metal as Al , Ga , In,… , and M for a metalloid element as Si or Ge ). (1) Granular structure, (2) rapid decrease of the average metal grain size with increasing x , and (3) relatively small xc are characteristic features for S1-xMx thin films deposited under extreme deposition conditions and are caused by the fact that a considerable part of electrons transferred occupy surface states leading to charged phase boundaries. The fractal structure found in Al1-xGex alloys after annealing is related with the formation of a maximum of phase boundary faces for acceptance of the transferred electrons. For strong scattering in a single phase, there are a minimum metallic conductivity ?min?(c*/6)(e2/h)(1/d) and mobility edges at density of states 4c*m/h2d , where c*=1/4 ( d is the average atomic distance. e and m are the elementary charge and effective mass of the electrons, respectively, and ?=h/2? is Plancks constant).

  2. Metal transport and chemical heterogeneity in early star forming systems

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Sluder, Alan; Safranek-Shrader, Chalence; Milosavljevi?, Miloš; Bromm, Volker

    2015-08-01

    To constrain the properties of the first stars with the chemical abundance patterns observed in metal-poor stars, one must identify any non-trivial effects that the hydrodynamics of metal dispersal can imprint on the abundances. We use realistic cosmological hydrodynamic simulations to quantify the distribution of metals resulting from one Population III supernova and from a small number of such supernovae exploding in close succession. Overall, supernova ejecta are highly inhomogeneously dispersed throughout the simulations. When the supernova bubbles collapse, quasi-virialized metal-enriched clouds, fed by fallback from the bubbles and by streaming of metal-free gas from the cosmic web, grow in the centres of the dark matter haloes. Partial turbulent homogenization on scales resolved in the simulation is observed only in the densest clouds where the vortical time-scales are short enough to ensure true homogenization on subgrid scales. However, the abundances in the clouds differ from the gross yields of the supernovae. Continuing the simulations until the cloud have gone into gravitational collapse, we predict that the abundances in second-generation stars will be deficient in the innermost mass shells of the supernova (if only one has exploded) or in the ejecta of the latest supernovae (when multiple have exploded). This indicates that hydrodynamics gives rise to biases complicating the identification of nucleosynthetic sources in the chemical abundance spaces of the surviving stars.

  3. Symmetry analysis of complex oxides of transition metals

    NASA Astrophysics Data System (ADS)

    Men'shenin, V. V.

    2014-11-01

    Some specific properties of antiferromagnetically ordered crystals, such as the antiferromagnetic photovoltaic effect, interaction of spin waves with polar optical phonons, and the effect of this interaction on the structural phase transitions and magnetic transitions into incommensurate structures, have been considered based on the group-theoretical approach.

  4. Metal insulator transition in the In/Si(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Riikonen, S.; Ayuela, A.; Sánchez-Portal, D.

    2006-09-01

    The metal-insulator transition observed in the In/Si(1 1 1)-4 × 1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [C. González, J. Ortega, F. Flores, New J. Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.

  5. A Vanadium Dioxide Metamaterial Disengaged from Insulator-to-Metal Transition.

    PubMed

    Jeong, Young-Gyun; Han, Sanghoon; Rhie, Jiyeah; Kyoung, Ji-Soo; Choi, Jae-Wook; Park, Namkyoo; Hong, Seunghun; Kim, Bong-Jun; Kim, Hyun-Tak; Kim, Dai-Sik

    2015-10-14

    We report that vanadium dioxide films patterned with ?/100000 nanogaps exhibit an anomalous transition behavior at millimeter wavelengths. Most of the hybrid structure's switching actions occur well below the insulator to metal transition temperature, starting from 25 °C, so that the hysteresis curves completely separate themselves from their bare film counterparts. It is found that thermally excited intrinsic carriers are responsible for this behavior by introducing enough loss in the context of the radically modified electromagnetic environment in the vicinity of the nanogaps. This phenomenon newly extends the versatility of insulator to metal transition devices to encompass their semiconductor properties. PMID:26352780

  6. Resin-assisted solvothermal synthesis of transition metal-organic frameworks.

    PubMed

    Du, Yi; Thompson, Amber L; Russell, Nicola; O'Hare, Dermot

    2010-04-14

    Cation-exchanged polymer resin beads have been used as a heterogeneous controlled-release source of metal cations in phase pure and/or high yielding solvothermal syntheses of novel transition metal-organic frameworks. The introduction of the resin beads has a dramatic effect on the outcome of solvothermal reactions. We report the syntheses of a series of transition metal-containing MOFs via the resin-assisted solvothermal methods, four novel MOFs are reported that could not be synthesised by traditional methods. These MOFs have been characterized using elemental analysis, powder XRD, single crystal XRD, FESEM, EPR, B.E.T. surface analysis, and solid state magnetic measurements. PMID:20379531

  7. Insulator/metal phase transition and colossal magnetoresistance in holographic model

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Yang, Run-Qiu

    2015-11-01

    Within massive gravity, we construct a gravity dual for the insulator/metal phase transition and colossal magnetoresistance effect found in some manganese oxides materials. In the heavy graviton limit, a remarkable magnetic-field-sensitive DC resistivity peak appears at the Curie temperature, where an insulator/metal phase transition happens and the magnetoresistance is scaled with the square of field-induced magnetization. We find that metallic and insulating phases coexist below the Curie point and the relation with the electronic phase separation is discussed.

  8. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  9. Insulator/metal phase transition and colossal magnetoresistance in holographic model

    E-print Network

    Rong-Gen Cai; Run-Qiu Yang

    2015-07-27

    Within massive gravity, we construct a gravity dual for insulator/metal phase transition and colossal magnetoresistance (CMR) effect found in some manganese oxides materials. In heavy graviton limit, a remarkable magnetic-field-sensitive DC resistivity peak appears at the Curie temperature, where an insulator/metal phase transition happens and the magnetoresistance is scaled with the square of field-induced magnetization. We find that metallic and insulating phases coexist below the Curie point and the relation with the electronic phase separation is discussed.

  10. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Cocker, T. L.; Titova, L. V.; Fourmaux, S.; Holloway, G.; Bandulet, H.-C.; Brassard, D.; Kieffer, J.-C.; El Khakani, M. A.; Hegmann, F. A.

    2012-04-01

    We use time-resolved terahertz spectroscopy to probe the ultrafast dynamics of the insulator-metal phase transition induced by femtosecond laser pulses in a nanogranular vanadium dioxide (VO2) film. Based on the observed thresholds for characteristic transient terahertz dynamics, a phase diagram of critical pump fluence versus temperature for the insulator-metal phase transition in VO2 is established for the first time over a broad range of temperatures down to 17 K. We find that both Mott and Peierls mechanisms are present in the insulating state and that the photoinduced transition is nonthermal. We propose a critical-threshold model for the ultrafast photoinduced transition based on a critical density of electrons and a critical density of coherently excited phonons necessary for the structural transition to the metallic state. As a result, evidence is found at low temperatures for an intermediate metallic state wherein the Mott state is melted but the Peierls distortion remains intact, consistent with recent theoretical predictions. Finally, the observed terahertz conductivity dynamics above the photoinduced transition threshold reveal nucleation and growth of metallic nanodomains over picosecond time scales.

  11. Theory of quantum metal to superconductor transitions in highly conducting systems

    SciTech Connect

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  12. Universal quantum criticality in the metal-insulator transition of two-dimensional interacting Dirac electrons

    E-print Network

    Yuichi Otsuka; Seiji Yunoki; Sandro Sorella

    2015-10-29

    The metal-insulator transition has been a subject of intense research since Nevil Mott has first proposed that the metallic behavior of interacting electrons could turn to the insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. We find thereby that the transition is continuous and determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. We furthermore discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: the metal-insulator transition is triggered only by the vanishing of the quasiparticle weight but not the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture, but is rather consistent with the low energy behavior of the Gross-Neveu model.

  13. Encapsulation of transition metal catalysts by ligand-template directed assembly.

    PubMed

    Slagt, Vincent F; Kamer, Paul C J; van Leeuwen, Piet W N M; Reek, Joost N H

    2004-02-11

    Encapsulated transition metal catalysts are presented that are formed by templated self-assembly processes of simple building blocks such as porphyrins and pyridylphosphine and phosphite ligands, using selective metal-ligand interactions. These ligand assemblies coordinate to transition metals, leading to a new class of transition metal catalysts. The assembled catalyst systems were characterized using NMR and UV-vis spectroscopy and were identified under catalytic conditions using high-pressure infrared spectroscopy. Tris-3-pyridylphosphine binds three mesophenyl zinc(II) porphyrin units and consequently forms an assembly with the phosphorus donor atom completely encapsulated. The encapsulated phosphines lead exclusively to monoligated transition metal complexes, and in the rhodium-catalyzed hydroformylation of 1-octene the encapsulation of the catalysts resulted in a 10-fold increase in activity. In addition, the branched aldehyde was formed preferentially (l/b = 0.6), a selectivity that is highly unusual for this substrate, which is attributed to the encapsulation of the transition metal catalysts. An encapsulated rhodium catalyst based on ruthenium(II) porphyrins and tris-meta-pyridyl phosphine resulted in an even larger selectivity for the branched product (l/b = 0.4). These encapsulated catalysts can be prepared easily, and various template ligands and porphyrins, such as tris-3-pyridyl phosphite and ruthenium(II) porphyrins, have been explored, leading to catalysts with different properties. PMID:14759211

  14. Mexican American Birthweight and Child Overweight: Unraveling a Possible Early Life Course Health Transition

    ERIC Educational Resources Information Center

    Hamilton, Erin R.; Teitler, Julien O.; Reichman, Nancy E.

    2011-01-01

    Mexican American children have a weight distribution that categorizes them as relatively healthy at birth but relatively unhealthy by age 3. This early life course transition in health based on weight raises the question of whether Mexican American children "outgrow" the epidemiologic paradox of favorable birth outcomes despite social disadvantage…

  15. Fragmentation Phase Transition in Atomic Clusters IV -- Liquid-gas transition in finite metal clusters and in the bulk --

    E-print Network

    D. H. E. Gross; M. E. Madjet

    1997-07-25

    Within the micro-canonical ensemble phase transitions of first order can be identified without invoking the thermodynamic limit. We show for the liquid-gas transition of sodium, potassium, and iron at normal pressure that the transition temperature, the latent heat as well as the interface surface tension approach for some 1000 atoms the experimental bulk values. No excursion to the thermodynamic limit is neccessary. It is often easier to identify the transition in mesoscopic systems than in the infinite system. It is shown that the microcanonical T(E) contains important information about the transition which becomes suppressed in the canonical ensemble. The implications for our understanding of phase transitions in general are discussed. For these finite metallic systems it is essential to allow for a fragmentation of the system. Our result demonstrates further that microcanonical Metropolis Monte Carlo sampling (MMMC) is well suited to establish the link between the fragmentation phase transition in small systems like nuclei and atomic clusters and the liquid-gas transition of infinite matter.

  16. Nonmetal-metal transition in molecular fluids under high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Chau, Ricky; Bastea, Marina; Nellis, William J.

    2001-03-01

    Diatomic molecular fluids such as liquid hydrogen, oxygen, and nitrogen are normally wideband gap insulators at ambient. Under high pressures and temperatures, fluid hydrogen was observed to undergo a nonmetal-metal transition at 140 GPa and 3000 K. We would like to report recent measurements of the electrical conductivity of nitrogen up to 180 GPa. We find that nitrogen exhibits a nonmetal-metal transition near 120 GPa. The behavior of nitrogen is identical to the behavior previously observed in both hydrogen and oxygen. The nonmetal-metal transition in these diatomic fluids will be discussed in terms of a Mott transition. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  17. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-01

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  18. Phase stability of transition metal dichalcogenide by competing ligand field stabilization and charge density wave

    NASA Astrophysics Data System (ADS)

    C, Santosh K.; Zhang, Chenxi; Hong, Suklyun; Wallace, Robert M.; Cho, Kyeongjae

    2015-09-01

    Transition metal dichalcogenides (TMDs) have been investigated extensively for potential application as device materials in recent years. TMDs are found to be stable in trigonal prismatic (H), octahedral (T), or distorted octahedral (Td) coordination of the transition metal. However, the detailed understanding of stabilities of TMDs in a particular phase is lacking. In this work, the detailed TMD phase stability using first-principles calculations based on density functional theory (DFT) has been investigated to clarify the mechanism of phase stabilities of TMDs, consistent with the experimental observation. Our results indicate that the phase stability of TMDs can be explained considering the relative strength of two competing mechanisms: ligand field stabilization of d-orbitals corresponding to transition metal coordination geometry, and charge density wave (CDW) instability accompanied by a periodic lattice distortion (PLD) causing the phase transition in particular TMDs.

  19. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

    NASA Astrophysics Data System (ADS)

    Knudson, M. D.; Desjarlais, M. P.; Becker, A.; Lemke, R. W.; Cochrane, K. R.; Savage, M. E.; Bliss, D. E.; Mattsson, T. R.; Redmer, R.

    2015-06-01

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

  20. Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition

    PubMed Central

    2014-01-01

    We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. PACS 71.30. + h; 73.21.La; 78.47.jd PMID:25404877

  1. Gas-phase activation of methane by ligated transition-metal cations

    PubMed Central

    Schröder, Detlef; Schwarz, Helmut

    2008-01-01

    Motivated by the search for ways of a more efficient usage of the large, unexploited resources of methane, recent progress in the gas-phase activation of methane by ligated transition-metal ions is discussed. Mass spectrometric experiments demonstrate that the ligands can crucially influence both reactivity and selectivity of transition-metal cations in bond-activation processes, and the most reactive species derive from combinations of transition metals with the electronegative elements fluorine, oxygen, and chlorine. Furthermore, the collected knowledge about intramolecular kinetic isotope effects associated with the activation of C–H(D) bonds of methane can be used to distinguish the nature of the bond activation as a mere hydrogen-abstraction, a metal-assisted mechanism or more complex reactions such as formation of insertion intermediates or ?-bond metathesis. PMID:18955709

  2. Cosmological QCD phase transition in steady non-equilibrium dissipative Ho?ava–Lifshitz early universe

    SciTech Connect

    Khodadi, M. Sepangi, H.R.

    2014-07-15

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 ?s old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Ho?ava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Ho?ava–Lifshitz gravity, ?, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (?)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Ho?ava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.

  3. Electronic Structure and Properties of Transition Metal-Benzene Ravindra Pandey, Bijan K. Rao,*, Purusottam Jena, and Miguel Alvarez Blanco

    E-print Network

    Pandey, Ravi

    Electronic Structure and Properties of Transition Metal-Benzene Complexes Ravindra Pandey, Bijan Kd transition metal atoms (M) interacting with benzene molecules (Bz) is carried out using density. The variation of the metal-benzene distances, dissociation energies, ionization potentials, electron affinities

  4. Ternary rare earth and actinoid transition metal carbides viewed as carbometalates

    SciTech Connect

    Dashjav, Enkhtsetseg; Kreiner, Guido; Schnelle, Walter; Wagner, Frank R.; Kniep, Ruediger Jeitschko, Wolfgang

    2007-02-15

    Ternary carbides A{sub x}T{sub y}C{sub z} (A=rare earth metals and actinoids; T=transition metals) with monoatomic species C{sup 4-} as structural entities are classified according to the criteria (i) metal to carbon ratio, (ii) coordination number of the transition metal by carbon atoms, and (iii) the dimensionality of the anionic network [T{sub y}C{sub z}]{sup n-}. Two groups are clearly distinguishable, depending on the metal to carbon ratio. Those where this ratio is equal to or smaller than 2 may be viewed as carbometalates, thus extending the sequence of complex anions from fluoro-, oxo-, and nitridometalates to carbometalates. The second group, metal-rich carbides with metal to carbon ratios equal to or larger than 4 is better viewed as typical intermetallics (''interstitial carbides''). The chemical bonding properties have been investigated by analyzing the Crystal Orbital Hamilton Population (COHP). The chemical bonding situation with respect to individual T-C bonds is similar in both classes. The main difference is the larger number of metal-metal bonds in the crystal structures of the metal-rich carbides.

  5. Solid state tetrachloroaluminate storage battery having a transition metal chloride cathode

    NASA Astrophysics Data System (ADS)

    Vaughn, R. L.

    1983-12-01

    In accordance with this invention, it has been found that highly efficient, lightweight, thermally activated power sources can be fabricated by utilizing a transition metal chloride such as cupric chloride, ferric chloride, or molybdenum chloride as the cathode; and a lithium metal or lithium-aluminum or lithium-silicon alloy as the anode in combination with an alkali metal tetrachloroaluminate solid electrolyte. The power source may comprise a single cell or a stack of individual cells. A typical cell is a three layered pellet composed of a lithium alloy anode, a separating alkali metal tetrachloroaluminate solid electrolyte sandwiched between the anode and a cathode which, in turn, is composed of a mixture of the transition metal chloride and graphite. The cell is totally inert until raised to its operating temperature by any conventional heating means.

  6. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect

    Paul, Sanhita Ghosh, Anirudha Raj, Satyabrata

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  7. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    SciTech Connect

    Marks, Tobin J.; Rodriguez, Brandon A.; Delferro, Massimiliano

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  8. Adhesion and friction of single-crystal diamond in contact with transition metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    An investigation was conducted to examine the adhesion and friction of single-crystal diamond in contact with various transition metals and the nature of metal transfer to diamond. Sliding friction experiments were conducted with diamond in sliding contact with the metals yttrium, titanium, zirconium, vanadium, iron, cobalt, nickel, tungsten, platinum, rhenium and rhodium. All experiments were conducted with loads of 0.05 to 0.3 N, at a sliding velocity of 0.003 m per minute, in a vacuum of 10 to the -8th Pa, at room temperature, and on the (111) plane of diamond with sliding in the 110 line type direction. The results of the investigation indicate that the coefficient of friction for diamond in contact with various metals is related to the relative chemical activity of the metals in high vacuum. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of diamond in sliding.

  9. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. PMID:25984984

  10. Differential tolerance of Sulfolobus strains to transition metals

    USGS Publications Warehouse

    Miller, K.W.; Sass, Risanico S.; Risatti, J.B.

    1992-01-01

    Sulfolobus acidocaldarius strains 98-3 and B12, and S. solfataricus ATCC 35091 were evaluated for tolerance to Cd, Co, Cu, Ni, Zn and Mg. The tolerance of strains 98-3 and ATCC 35091 to these metals was Mg > Zn > Cd > Cu ??? Co > Ni. For B12, however, the order of tolerance was Mg > Cd > Zn = Co > Ni > Cu. Tolerance to these metals is also presented as a potentially useful taxonomic indicator.

  11. The correlation between shear elastic modulus and glass transition temperature of bulk metallic glasses

    SciTech Connect

    Lu Zhibin; Li Jiangong; Shao Hang; Ni Xia; Gleiter, H.

    2009-03-02

    Based on Varshni equation, the shear elastic modulus at the glass transition temperature [G(T{sub g})] and the shear elastic modulus at 0 K [G(0)] were calculated from the elastic modulus measured at room temperature for various bulk metallic glasses (BMGs). The G(T{sub g})/G(0) ratios for various BMGs are almost the same and have a value around 0.85. This unique correlation implies that the glass transition occurs when the shear modulus of a BMG decreases to about 85% of G(0). This correlation between shear modulus and glass transition is of significance in understanding the glass transition of BMGs.

  12. Early surveillance of ceramic-on-metal total hip arthroplasty.

    PubMed

    Hill, J C; Diamond, O J; O'Brien, S; Boldt, J G; Stevenson, M; Beverland, D E

    2015-03-01

    Ceramic-on-metal (CoM) is a relatively new bearing combination for total hip arthroplasty (THA) with few reported outcomes. A total of 287 CoM THAs were carried out in 271 patients (mean age 55.6 years (20 to 77), 150 THAs in female patients, 137 in male) under the care of a single surgeon between October 2007 and October 2009. With the issues surrounding metal-on-metal bearings the decision was taken to review these patients between March and November 2011, at a mean follow-up of 34 months (23 to 45) and to record pain, outcome scores, radiological analysis and blood ion levels. The mean Oxford Hip Score was 19.2 (12 to 53), 254 patients with 268 hips (95%) had mild/very mild/no pain, the mean angle of inclination of the acetabular component was 44.8(o) (28(o) to 63(o)), 82 stems (29%) had evidence of radiolucent lines of > 1 mm in at least one Gruen zone and the median levels of cobalt and chromium ions in the blood were 0.83 ?g/L (0.24 ?g/L to 27.56 ?g/L) and 0.78 ?g/L (0.21 ?g/L to 8.84 ?g/L), respectively. The five-year survival rate is 96.9% (95% confidence interval 94.7% to 99%). Due to the presence of radiolucent lines and the higher than expected levels of metal ions in the blood, we would not recommend the use of CoM THA without further long-term follow-up. We plan to monitor all these patients regularly. PMID:25737511

  13. Reactivity of first-row transition metal monocations (Sc+, Ti+, V+, Zn+) with methyl fluoride: a computational study.

    PubMed

    Redondo, Pilar; Varela-Álvarez, Adrián; Rayón, Víctor Manuel; Largo, Antonio; Sordo, José Ángel; Barrientos, Carmen

    2013-04-11

    The gas-phase reactivity of methyl fluoride with selected first-row transition metal monocations (Sc(+), Ti(+), V(+), and Zn(+)) has been theoretically investigated. Our thermochemical and kinetics study shows that early transition-metal cations exhibit a much more active chemistry than the latest transition metal monocation Zn(+). The strong C-F bond in methyl fluorine can be activated by scandium, titanium, and vanadium monocations yielding the metal fluorine cation, MF(+). However, the rate efficiencies vary dramatically along the period 0.73 (Sc), 0.91 (Ti), and 0.028 (V) in agreement with the experimental observation. The kinetics results show the relative importance of the entrance and exit channels, apart from the "inner" bottleneck, to control the global rate constant of these reactions. At the mPW1K/QZVPP level our computed kglobal (at 295 K), 1.99 × 10(-9) cm(3) molecule(-1) s(-1) (Sc(+)), 1.29 × 10(-9) cm(3) molecule(-1) s(-1) (Ti(+)), and 3.46 × 10(-10) cm(3) molecule(-1) s(-1) (V(+)) are in good agreement with the experimental data at the same temperature. For the reaction of Zn(+) and CH3F our predicted value for kouter, at 295 K, 3.79 × 10(-9) cm(3) molecule(-1) s(-1), is in accordance with the capture rate constant. Our study suggests that consideration of the lowest excited states for Ti(+) and V(+) is mandatory to reach agreement between calculations and experimental measurements. PMID:23438107

  14. Pinball liquid phase from Hund's coupling in frustrated transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Merino, Jaime; Fratini, Simone

    2015-04-01

    The interplay of nonlocal Coulomb repulsion and Hund's coupling in the d -orbital manifold in frustrated triangular lattices is analyzed by a multiband extended Hubbard model. We find a rich phase diagram with several competing phases, including a robust pinball liquid phase, which is an unconventional metal characterized by threefold charge order, bad metallic behavior, and the emergence of high-spin local moments. Our results naturally explain the anomalous charge-ordered metallic state observed in the triangular layered compound AgNiO2. The potential relevance to other triangular transition-metal oxides is discussed.

  15. Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology

    SciTech Connect

    Appy, David; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C; Liu, Da-Jiang; Evans, James W; Thiel, Patricia A

    2014-08-01

    In this article, we review basic information about the interaction of transition metal atoms with the (0 0 0 1) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out.

  16. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    NASA Astrophysics Data System (ADS)

    Bhobe, P. A.; Kumar, A.; Taguchi, M.; Eguchi, R.; Matsunami, M.; Takata, Y.; Nandy, A. K.; Mahadevan, P.; Sarma, D. D.; Neroni, A.; ?a??o?lu, E.; Ležai?, M.; Oura, M.; Senba, Y.; Ohashi, H.; Ishizaka, K.; Okawa, M.; Shin, S.; Tamasaku, K.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Hasegawa, K.; Isobe, M.; Ueda, Y.; Chainani, A.

    2015-10-01

    Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16 , which exhibits a temperature-dependent (T -dependent) paramagnetic-to-ferromagnetic-metal transition at TC=180 K and transforms into a ferromagnetic insulator below TMI=95 K . We observe clear T -dependent dynamic valence (charge) fluctuations from above TC to TMI , which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4 +?Cr3 + states in a 3 ?1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T -dependent BCS-type energy gap, with 2 G (0 )˜3.5 (kBTMI)˜35 meV . First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U ˜4 eV , establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d -electrons/Cr ) and the half-metallic ferromagnetism in the t2 g up-spin band favor a low-energy Peierls metal-insulator transition.

  17. Electronic properties of transition metal atoms on Cu2N /Cu (100 )

    NASA Astrophysics Data System (ADS)

    Ferrón, A.; Lado, J. L.; Fernández-Rossier, J.

    2015-11-01

    We study the nature of spin excitations of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co, and Ni) deposited on a Cu2N /Cu (100 ) surface using both spin-polarized density functional theory (DFT) and exact diagonalization of an Anderson model derived from DFT. We use DFT to compare the structural, electronic, and magnetic properties of different transition metal adatoms on the surface. We find that the average occupation of the transition metal d shell, main contributor to the magnetic moment, is not quantized, in contrast with the quantized spin in the model Hamiltonians that successfully describe spin excitations in this system. In order to reconcile these two pictures, we build a zero bandwidth multi-orbital Anderson Hamiltonian for the d shell of the transition metal hybridized with the p orbitals of the adjacent nitrogen atoms, by means of maximally localized Wannier function representation of the DFT Hamiltonian. The exact solutions of this model have quantized total spin, without quantized charge at the d shell. We propose that the quantized spin of the models actually belongs to many-body states with two different charge configurations in the d shell, hybridized with the p orbital of the adjacent nitrogen atoms. This scenario implies that the measured spin excitations are not fully localized at the transition metal.

  18. Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kim, Soo Young; Baik, Jeong Min; Yu, Hak Ki; Lee, Jong-Lam

    2005-11-01

    We report on the advantage of interlayers using transition-metal oxides, such as iridium oxide (IrOx) and ruthenium oxide (RuOx), between indium tin oxide (ITO) anodes and 4'-bis[N-(1-naphtyl)-N-phenyl-amino]biphenyl (?-NPD) hole transport layers on the electrical and optical properties of organic light-emitting diodes (OLEDs). The operation voltage at a current density of 100 mA/cm2 decreased from 17 to 11 V for OLEDs with 3-nm-thick IrOx interlayers and from 17 to 14 V for OLEDs with 2-nm-thick RuOx ones. The maximum luminance value increased about 50% in OLED using IrOx and 108% in OLED using RuOx. Synchrotron radiation photoelectron spectroscopy results revealed that core levels of Ru 3d and Ir 4f shifted to high binding energies and that the valence band was splitting from metallic Fermi level as the surface of the transition metal was treated with O2 plasma. This provides evidence that the transition-metal surface transformed to a transition-metal oxide. The surface of the transition metal became smoother with the O2 plasma treatment. The thickness was calculated to be 0.4 nm for IrOx and 0.6 nm for RuOx using x-ray reflectivity measurements. Secondary electron emission spectra showed that the work function increased by 0.6 eV for IrOx and by 0.4 eV for RuOx. Thus, the transition-metal oxides lowered the potential barrier for hole injection from ITO to ?-NPD, reducing the turn-on voltage of OLEDs and increasing the quantum efficiency.

  19. Barium distributions in teeth reveal early life dietary transitions in primates

    PubMed Central

    Austin, Christine; Smith, Tanya M.; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J.; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-01-01

    Early life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations1,2. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth3. Uncovering early life dietary history in fossils is hampered by the absence of prospectively-validated biomarkers that are not modified during fossilisation4. Here we show that major dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively-recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother’s milk and through the weaning process. We also document transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, suggesting an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history. PMID:23698370

  20. Some palynological aspects of Oligocene to Early Miocene transition Southern Alaska

    SciTech Connect

    Wiggins, V.D.

    1985-04-01

    The Oligocene to early Miocene transition in southern Alaska perhaps represents one of the most dramatic floristic changes in the entire Tertiary of Alaska. The basic modification is from a dominant deciduous, broadleaved forest biome in the late Eocene - early Oligocene (early Zemorrian) to a dominant moist, temperate, coniferous forest biome in the early Miocene (Saucesian). A similar change can be seen between the deciduous broad-leaved forests and the montane boreal coniferous forest of China today. This change in flora - and from a palynological perspective this change in microflora - reflects the onset of global cooling in the Neogene and the concurrent change from a dominant marine transgressive to a dominant nonmarine regressive mode of sedimentation.

  1. A general holographic metal/superconductor phase transition model

    E-print Network

    Yan Peng; Yunqi Liu

    2015-03-03

    We study the scalar condensation of a general holographic superconductor model in AdS black hole background away from the probe limit. We find the model parameters together with the scalar mass and backreaction can determine the order of phase transitions completely. In addition, we observe two types of discontinuities of the scalar operator in the case of first order phase transitions. We analyze in detail the effects of the scalar mass and backreaction on the formation of discontinuities and arrive at an approximate relation between the threshold model parameters. Furthermore, we obtain superconductor solutions corresponding to higher energy states and examine the stability of these superconductor solutions.

  2. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  3. Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Cotton, F. Albert; Chisholm, Malcolm H.

    1982-01-01

    Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)

  4. Early Childhood Teachers' Perceived Competence during Transition from Teacher Education to Work: Results from a Longitudinal Study

    ERIC Educational Resources Information Center

    Mischo, Christoph

    2015-01-01

    The transition from education to work is a challenge for early childhood teachers. In this study, competence self-ratings of 348 German early childhood teachers were investigated one year before, at the end of and four months after early childhood teacher education at universities and vocational schools. Perceived competence was assessed by means…

  5. Thermal diffusion in metal-sulfide liquids - Early results

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1991-01-01

    Experiments were carried out to evaluate the Soret effect in liquid Fe-Ni-S-P alloys in order to gain a better understanding of the physical and thermodynamic properties of metallic liquids and to assess the possibility of systematic errors in Czochralski growth techniques. The metal-sulfide liquids were found to show a substantial Soret effect and, contrary to previous expectation, can be as large as that seen in the silicate system. The segregation is largely produced by S-Fe interactions. The P redistribution occurs to reduce activity gradients in P consequent upon S gradients, and P segregation can be approximately predicted in Fe-Ni-S liquids using the activity model of Jones and Malvin (1990). It is inferred that the sense of the Soret segregation, with P going to the cold end and S going to the hot end, is in accordance with the prediction of Malvin et al. (1986), who speculated that the crystal-pulling experiments of Sellamuthu and Goldstein (1985) was influenced by the Soret effect.

  6. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGESBeta

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more »The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  7. Development of new pseudopotential methods: improved model core potentials for the first-row transition metals.

    PubMed

    Lovallo, Christopher C; Klobukowski, Mariusz

    2003-07-15

    We have recently developed new nonrelativistic and scalar-relativistic pseudopotentials for the first-row transition metal and several main-group elements. These improved Model Core Potentials were tested on a variety of transition metal complexes to determine their accuracy in reproducing electronic structures, bond lengths, and harmonic vibrational frequencies with respect to both all-electron reference data as well as experimental data. The new potentials are also compared with the previous model core potentials available for the first-row transition metals. The new potentials do a superior job at reproducing atomic data, reproduce molecular data as well as the previous version, and in conjunction with new main-group pseudopotentials that have L-shell structure of the valence basis set, they are slightly faster. PMID:12759901

  8. 2D crystals of transition metal dichalcogenide and their iontronic functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Yoshida, M.; Suzuki, R.; Iwasa, Y.

    2015-12-01

    2D crystals based on transition metal dichalcogenides (TMDs) provide a unique platform of novel physical properties and functionalities, including photoluminescence, laser, valleytronics, spintronics, piezoelectric devices, field effect transistors (FETs), and superconductivity. Among them, FET devices are extremely useful because of voltage-tunable carrier density and Fermi energy. In particular, high density charge accumulation in electric double layer transistor (EDLT), which is a FET device driven by ionic motions, is playing key roles for expanding the functionalities of TMD based 2D crystals. Here, we report several device concepts which were realized by introducing EDLTs in TMDs, taking the advantage of their extremely unique band structures and phase transition phenomena realized simply by thinning to the monolayer level. We address two kinds of TMDs based on group VI and group V transition metals, which basically yield semiconductors and metals, respectively. For each system, we first introduce peculiar characteristics of TMDs achieved by thinning the crystals, followed by the related FET functionalities.

  9. Band gap tuning in transition metal oxides by site-specific substitution

    SciTech Connect

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  10. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    SciTech Connect

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion of paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.

  11. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    NASA Technical Reports Server (NTRS)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  12. STABILITY IN BCC TRANSITION METALS: MADELUNG AND BAND-ENERGY EFFECTS DUE TO ALLOYING

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A; Peil, O; Vitos, L

    2009-08-28

    The phase stability of the bcc Group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the bcc phase. This counterintuitive behavior is explained by competing mechanisms that dominate depending on particular dopand. We show that band-structure effects dictate stability when a particular Group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons, destabilize and stabilize bcc, respectively. When alloying with neighbors of different d-transition series, electrostatic Madelung energy dominates over the band energy and always stabilizes the bcc phase.

  13. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Sun, Ziqi; Liao, Ting; Dou, Yuhai; Hwang, Soo Min; Park, Min-Sik; Jiang, Lei; Kim, Jung Ho; Dou, Shi Xue

    2014-05-01

    Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.

  14. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOEpatents

    Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  15. Atomic and Electronic Structures of Tilt Grain Boundaries in BCC Transition Metals

    NASA Astrophysics Data System (ADS)

    Masuda, Kin-ichi; Hashimoto, Minoru; Ishida, Yoichi; Yamamoto, Ryoichi; Doyama, Masao

    1982-12-01

    A tight-binding type electronic theory is used to calculate the configurational and electronic structures of coincidence-related tilt grain boundaries in bcc transition metals ?-Fe, Mo and W. To obtain the atomic configurations near the grain boundaries, both electronic (d-band) and repulsive energies are calculated and minimized: The change in the d-band energy \\varDelta Ed is obtained using the second moment Gaussian approximation for the d-density of states (DOS), while the Born-Mayer potential is used to estimate the change in the short-range repulsive energies. It is shown that the grain boundary structures depend sensitively on the species of transition metals, and the asymmetric grain boundaries can be stabilized for certain transition metals. We also present the local DOS of d-electrons, calculated using the recursion method, on the atomic sites near the tilt grain boundaries.

  16. Metal-insulator transition in silicon MOSFETs: new viewpoint

    E-print Network

    Fominov, Yakov

    State Physics RAS, Chernogolovka,142432 Russia LQT #12;Unexpected (T) behavior. MIT as a quantum phase;· If we want to get information about "clean" 2D system, we need to investigate properties of the liquid in a metallic 2D electron system. A.A. Shashkin, S.V. Kravchenko, V.T. Dolgopolov, and T.M. Klapwijk, PRB, 66

  17. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    ERIC Educational Resources Information Center

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  18. Giant Intrinsic Spin Hall Effect in Transition Metal Compounds

    E-print Network

    Katsumoto, Shingo

    - nomenon that an electric field induces a spin current (not a charge current) in a tranverse direction an electric field to a paramagnetic metal. Inversely, spin current is converted to the electric field) in ferromagnets [1], which is the phe- nomenon that an electric field induces a trans- verse charge current

  19. A macrocyclic approach to transition metal and uranyl Pacman complexes 

    E-print Network

    Love J.B.

    2009-01-01

    Multielectron redox chemistry involving small molecules such as O-2, H2O, N-2, CO2, and CH4 is intrinsic to the chemical challenges surrounding sustainable, low-carbon energy generation and exploitation. Compounds with more than one metal reaction...

  20. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  1. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  2. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  3. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  4. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  5. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide

    SciTech Connect

    Freeman, Eugene Shukla, Nikhil; Datta, Suman; Stone, Greg; Engel-Herbert, Roman; Gopalan, Venkatraman; Paik, Hanjong; Moyer, Jarrett A.; Cai, Zhonghou; Wen, Haidan; Schlom, Darrell G.; Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853

    2013-12-23

    The structural evolution of tensile strained vanadium dioxide thin films was examined across the electrically driven insulator-to-metal transition by nanoscale hard X-ray diffraction. A metallic filament with rutile (R) structure was found to be the dominant conduction pathway for an electrically driven transition, while the majority of the channel area remained in the monoclinic M1 phase. The filament dimensions were estimated using simultaneous electrical probing and nanoscale X-ray diffraction. Analysis revealed that the width of the conducting channel can be tuned externally using resistive loads in series, enabling the M1/R phase ratio in the phase coexistence regime to be tuned.

  6. Investigation of metal-insulator like transition through the ab initio density matrix renormalization group approach

    E-print Network

    Fertitta, E; Barcza, G; Legeza, Ö

    2014-01-01

    We have studied the Metal-Insulator like Transition (MIT) in lithium and beryllium ring-shaped clusters through ab initio Density Matrix Renormalization Group (DMRG) method. Performing accurate calculations for different interatomic distances and using Quantum Information Theory (QIT) we investigated the changes occurring in the wavefunction between a metallic-like state and an insulating state built from free atoms. We also discuss entanglement and relevant excitations among the molecular orbitals in the Li and Be rings and show that the transition bond length can be detected using orbital entropy functions. Also, the effect of different orbital basis on the effectiveness of the DMRG procedure is analyzed comparing the convergence behavior.

  7. Surface Metal-Insulator Transition on a Vanadium Pentoxide (001) Single Crystal

    NASA Astrophysics Data System (ADS)

    Blum, R.-P.; Niehus, H.; Hucho, C.; Fortrie, R.; Ganduglia-Pirovano, M. V.; Sauer, J.; Shaikhutdinov, S.; Freund, H.-J.

    2007-11-01

    In situ band gap mapping of the V2O5(001) crystal surface revealed a reversible metal-to-insulator transition at 350 400 K, which occurs inhomogeneously across the surface and expands preferentially in the direction of the vanadyl (V=O) double rows. Supported by density functional theory and Monte Carlo simulations, the results are rationalized on the basis of the anisotropic growth of vanadyl-oxygen vacancies and a concomitant oxygen loss driven metal-to-insulator transition at the surface. At elevated temperatures irreversible surface reduction proceeds sequentially as V2O5(001)?V6O13(001)?V2O3(0001).

  8. Metal insulator transitions in perovskite SrIrO{sub 3} thin films

    SciTech Connect

    Biswas, Abhijit; Jeong, Yoon Hee; Kim, Ki-Seok

    2014-12-07

    Understanding of metal insulator transitions in a strongly correlated system, driven by Anderson localization (disorder) and/or Mott localization (correlation), is a long standing problem in condensed matter physics. The prevailing fundamental question would be how these two mechanisms contrive to accomplish emergent anomalous behaviors. Here, we have grown high quality perovskite SrIrO{sub 3} thin films, containing a strong spin orbit coupled 5d element Ir, on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), SrTiO{sub 3} (001), and NdGaO{sub 3} (110) with increasing lattice mismatch, in order to carry out a systematic study on the transport properties. We found that metal insulator transitions can be induced in this system; by either reducing thickness (on best lattice matched substrate) or changing degree of lattice strain (by lattice mismatch between film and substrates) of films. Surprisingly these two pathways seek two distinct types of metal insulator transitions; the former falls into disorder driven Anderson type whereas the latter turns out to be of unconventional Mott-Anderson type with the interplay of disorder and correlation. More interestingly, in the metallic phases of SrIrO{sub 3}, unusual non-Fermi liquid characteristics emerge in resistivity as ?? ? T{sup ?} with ? evolving from 4/5 to 1 to 3/2 with increasing lattice strain. We discuss theoretical implications of these phenomena to shed light on the metal insulator transitions.

  9. Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo

    PubMed Central

    Ferrer-vaquer, Anna; Viotti, Manuel

    2010-01-01

    Multicellular organisms arise from the generation of different cell types and the organization of cells into tissues and organs. Cells of metazoa display two main phenotypes, the ancestral epithelial state and the recent mesenchymal derivative. Epithelial cells are usually stationary and reside in twodimensional sheets. By contrast mesenchymal cells are loosely packed and can move to new positions, thereby providing a vehicle for cell rearrangement, dispersal and novel cell-cell interactions. Transitions between epithelial and mesenchymal states drive key morphogenetic events in the early vertebrate embryo, including gastrulation, germ layer formation and somitogenesis. The cell behaviors and molecular mechanisms promoting transitions between these two states in the early mouse embryo are discussed in this review. PMID:20200481

  10. Low-frequency impedance in thin films near the metal-semiconductor phase transition

    NASA Astrophysics Data System (ADS)

    Kompan, M. E.; Klimov, V. A.; Nikitin, S. E.; Kompan, F. M.; Goffman, V. G.; Terukov, E. I.

    2015-09-01

    The impedance of thin VO2 films at temperatures near the metal-semiconductor phase transition has been studied. It has been found that, in the low-temperature region, there is an abrupt change in the impedance. It has been demonstrated that the nature of this phenomenon is connected with thermoinertial processes in the film. From the experimental data, the heat conductivity of the film/substrate transition layer has been evaluated.

  11. A novel method to enhance the conductance of transitional metal oxide electrodes.

    PubMed

    Wang, Ranran; Chen, Zheng; Yu, Hang; Jia, Xilai; Gao, Lian; Sun, Jing; Hicks, Robert F; Lu, Yunfeng

    2014-04-01

    Transitional metal oxides hold great potential for high capacity anodes. However, the low electron conductivity of such materials leads to poor cycling stability and inferior rate capability. We reported herein the use of a novel hydrogen plasma technology to improve the conductance of metal oxides, which leads great success in improving the rate performance of CuO nanotube based anodes. This method has the potential to be widely adopted in the field of lithium ion batteries and supercapacitors. PMID:24577667

  12. Metal to Insulator Quantum-Phase Transition in Few-Layered ReS2.

    PubMed

    Pradhan, Nihar R; McCreary, Amber; Rhodes, Daniel; Lu, Zhengguang; Feng, Simin; Manousakis, Efstratios; Smirnov, Dmitry; Namburu, Raju; Dubey, Madan; Hight Walker, Angela R; Terrones, Humberto; Terrones, Mauricio; Dobrosavljevic, Vladimir; Balicas, Luis

    2015-12-01

    In ReS2, a layer-independent direct band gap of 1.5 eV implies a potential for its use in optoelectronic applications. ReS2 crystallizes in the 1T'-structure, which leads to anisotropic physical properties and whose concomitant electronic structure might host a nontrivial topology. Here, we report an overall evaluation of the anisotropic Raman response and the transport properties of few-layered ReS2 field-effect transistors. We find that ReS2 exfoliated on SiO2 behaves as an n-type semiconductor with an intrinsic carrier mobility surpassing ?i ? 30 cm(2)/(V s) at T = 300 K, which increases up to ?350 cm(2)/(V s) at 2 K. Semiconducting behavior is observed at low electron densities n, but at high values of n the resistivity decreases by a factor of >7 upon cooling to 2 K and displays a metallic T(2)-dependence. This suggests that the band structure of 1T'-ReS2 is quite susceptible to an electric field applied perpendicularly to the layers. The electric-field induced metallic state observed in transition metal dichalcogenides was recently claimed to result from a percolation type of transition. Instead, through a scaling analysis of the conductivity as a function of T and n, we find that the metallic state of ReS2 results from a second-order metal-to-insulator transition driven by electronic correlations. This gate-induced metallic state offers an alternative to phase engineering for producing ohmic contacts and metallic interconnects in devices based on transition metal dichalcogenides. PMID:26599563

  13. Transition metal noble gas bonding: the next frontier

    NASA Astrophysics Data System (ADS)

    Lovallo, Christopher C.; Klobukowski, Mariusz

    2003-01-01

    Recently developed well-tempered model core potentials were reparameterized and used to study the interactions between the coinage metal monohalides and a heavier rare gas atom RgMX (Rg=Ar, Kr, Xe; M=Cu, Ag, Au; X=F, Cl). Geometries and binding energies were calculated for these systems at the MP2 level of theory in order to aid in spectroscopic identification of these compounds.

  14. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers.

    PubMed

    Liu, Rui; Chen, Pei; Aihara, Kazuyuki; Chen, Luonan

    2015-01-01

    Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical transition is not traditional state-transition but probability distribution-transition when the noise is not sufficiently small, which, however, is a ubiquitous case in real systems. We present a model-free computational method to detect the warning signals before such transitions. The key idea behind is a strategy: "making big noise smaller" by a distribution-embedding scheme, which transforms the data from the observed state-variables with big noise to their distribution-variables with small noise, and thus makes the traditional criteria effective because of the significantly reduced fluctuations. Specifically, increasing the dimension of the observed data by moment expansion that changes the system from state-dynamics to probability distribution-dynamics, we derive new data in a higher-dimensional space but with much smaller noise. Then, we develop a criterion based on the dynamical network marker (DNM) to signal the impending critical transition using the transformed higher-dimensional data. We also demonstrate the effectiveness of our method in biological, ecological and financial systems. PMID:26647650

  15. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers

    PubMed Central

    Liu, Rui; Chen, Pei; Aihara, Kazuyuki; Chen, Luonan

    2015-01-01

    Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical transition is not traditional state-transition but probability distribution-transition when the noise is not sufficiently small, which, however, is a ubiquitous case in real systems. We present a model-free computational method to detect the warning signals before such transitions. The key idea behind is a strategy: “making big noise smaller” by a distribution-embedding scheme, which transforms the data from the observed state-variables with big noise to their distribution-variables with small noise, and thus makes the traditional criteria effective because of the significantly reduced fluctuations. Specifically, increasing the dimension of the observed data by moment expansion that changes the system from state-dynamics to probability distribution-dynamics, we derive new data in a higher-dimensional space but with much smaller noise. Then, we develop a criterion based on the dynamical network marker (DNM) to signal the impending critical transition using the transformed higher-dimensional data. We also demonstrate the effectiveness of our method in biological, ecological and financial systems. PMID:26647650

  16. Metal ion dependence of cooperative collapse transitions in RNA.

    PubMed

    Moghaddam, Sarvin; Caliskan, Gokhan; Chauhan, Seema; Hyeon, Changbong; Briber, R M; Thirumalai, D; Woodson, Sarah A

    2009-10-30

    Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R(g)) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multivalent cations induced the collapse of both ribozymes more efficiently than did monovalent ions. Thus, the cooperativity of the collapse transition depends on the counterion charge density. Singular value decomposition of the scattering curves showed that folding of the smaller and more thermostable Azoarcus ribozyme is well described by two components, whereas collapse of the larger Tetrahymena ribozyme involves at least one intermediate. The ion-dependent persistence length, extracted from the distance distribution of the scattering vectors, shows that the Azoarcus ribozyme is less flexible at the midpoint of transition in low-charge-density ions than in high-charge-density ions. We conclude that the formation of sequence-specific tertiary interactions in the Azoarcus ribozyme overlaps with neutralization of the phosphate charge, while tertiary folding of the Tetrahymena ribozyme requires additional counterions. Thus, the stability of the RNA structure determines its sensitivity to the valence and size of the counterions. PMID:19712681

  17. Metal Ion Dependence of Cooperative Collapse Transitions in RNA

    SciTech Connect

    Moghaddam, Sarvin; Caliskan, Gokhan; Chauhan, Seema; Hyeon, Changbong; Briber, R.M.; Thirumalai, D.; Woodson, Sarah A.

    2010-10-12

    Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R{sub g}) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multivalent cations induced the collapse of both ribozymes more efficiently than did monovalent ions. Thus, the cooperativity of the collapse transition depends on the counterion charge density. Singular value decomposition of the scattering curves showed that folding of the smaller and more thermostable Azoarcus ribozyme is well described by two components, whereas collapse of the larger Tetrahymena ribozyme involves at least one intermediate. The ion-dependent persistence length, extracted from the distance distribution of the scattering vectors, shows that the Azoarcus ribozyme is less flexible at the midpoint of transition in low-charge-density ions than in high-charge-density ions. We conclude that the formation of sequence-specific tertiary interactions in the Azoarcus ribozyme overlaps with neutralization of the phosphate charge, while tertiary folding of the Tetrahymena ribozyme requires additional counterions. Thus, the stability of the RNA structure determines its sensitivity to the valence and size of the counterions.

  18. Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.

    1993-01-01

    Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.

  19. Controlled incorporation of mid-to-high Z transition metals in CVD diamond

    SciTech Connect

    Biener, M M; Biener, J; Kucheyev, S O; Wang, Y M; El-Dasher, B; Teslich, N E; Hamza, A V; Obloh, H; Mueller-Sebert, W; Wolfer, M; Fuchs, T; Grimm, M; Kriele, A; Wild, C

    2010-01-08

    We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the doping level were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.

  20. Anisotropic metal-insulator transition in epitaxial thin films.

    PubMed

    Altfeder, I B; Liang, X; Yamada, T; Chen, D M; Narayanamurti, V

    2004-06-01

    By comparing the properties of In and Pb quantum wells in a scanning tunneling microscopy subsurface imaging experiment, we found the existence of lateral bound states, a 2D Mott-Hubbard correlation gap, induced by transverse confinement. Its formation is attributed to spin or charge overscreening of quasi-2D excitations. The signature of the 2D confinement-deconfinement transition is also experimentally observed, with the correlation gap being pinned in the middle of the conduction band. A self-organized 2D Anderson lattice is suggested as a new ground state. PMID:15245244

  1. Electrical permittivity driven metal-insulator transition in heterostructures of nonpolar Mott and band insulators

    NASA Astrophysics Data System (ADS)

    Omori, Yukiko; Rüegg, Andreas; Sigrist, Manfred

    2014-10-01

    Metallic interfaces between insulating perovskites are often observed in heterostructures combining polar and nonpolar materials. In these systems, the polar discontinuity across the interface may drive an electronic reconstruction inducing free carriers at the interface. Here, we theoretically show that a metallic interface between a Mott and a band insulator can also form in the absence of a polar discontinuity. The condition for the appearance of such a metallic state is consistent with the classical Mott criterion: the metallic state is stable if the screening length falls below the effective Bohr radius of a particle-hole pair. In this case, the metallic state bears a remarkable similarity to the one found in polar/nonpolar heterostructures. On the other hand, if the screening length approaches the size of the effective Bohr radius, particles and holes are bound to each other resulting in an overall insulating phase. We analyze this metal-insulator transition, which is tunable by the dielectric constant, in the framework of the slave-boson mean-field theory for a lattice model with both on-site and long-range Coulomb interactions. We discuss ground-state properties and transport coefficients, which we derive in the relaxation-time approximation. Interestingly, we find that the metal-insulator transition is accompanied by a strong enhancement of the Seebeck coefficient in the band-insulator region in the vicinity of the interface. The implications of our theoretical findings for various experimental systems such as nonpolar (110) interfaces are also discussed.

  2. Enzymatic antioxidants in erythrocytes following heavy metal exposure: Possible role in early diagnosis of poisoning

    SciTech Connect

    Gupta, A.; Shukla, G.S.

    1997-02-01

    Occupational and environmental exposure to heavy metals such as cadmium, mercury, nickel, and lead is known to cause health hazards due to their toxic action on the biological system. Metals have the potential to cause oxidative damage to various tissues, including erythrocytes. Since erythrocytes are likely to be the primary target site for metal-induced damage, they may be useful as an early diagnostic tool. Erythrocytes are equipped with a variety of biochemical mechanisms operating against cellular damage. One such line of defense is provided by the enzymatic and non-enzymatic antioxidant system which helps to detoxify highly reactive species such as superoxide anion radicals, hydrogen peroxide, and hydroxyl radicals that are being generated during oxidative stress. Therefore, in the present study cadmium (Cd), chromium (Cr), nickel (Ni), mercury (Hg), lead (Pb), manganese (Mn), and zinc (Zn) were chosen to make a comparative evaluation of the metal-induced alterations in antioxidative enzymes of RBC`s. Specifically, superoxide dismutase, catalase, and glutathione reductase activity in RBC was assessed following exposure to metals at 5, 15, and 30 ppm in drinking water for 30 days. The authors also determined if these RBC parameters are exclusively sensitive for any metal so that they can be used for early diagnosis and toxicity evaluation purposes. 16 refs., 3 figs.

  3. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect

    Jian, Jie; Chen, Aiping; Zhang, Wenrui; Wang, Haiyan

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (?4.3?°C) at a near bulk transition temperature of ?68.4?°C with an electrical resistance change as high as 3.2?×?10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  4. Sharp semiconductor-to-metal transition of VO2 thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Jian, Jie; Chen, Aiping; Zhang, Wenrui; Wang, Haiyan

    2013-12-01

    Outstanding phase transition properties of vanadium dioxide (VO2) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (˜4.3 °C) at a near bulk transition temperature of ˜68.4 °C with an electrical resistance change as high as 3.2 × 103 times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO2 films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  5. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  6. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  7. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  8. Chemical bonding of hydrogen molecules to transition metal complexes

    SciTech Connect

    Kubas, G.J.

    1990-01-01

    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.

  9. Coherent/incoherent metal transition in a holographic model

    E-print Network

    Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin

    2014-12-13

    We study AC electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities in a holographic model, which is based on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation due to massless scalar fields linear to spatial coordinate. The model has three field theory parameters: temperature($T$), chemical potential($\\mu$), and effective impurity($\\beta$). At low frequencies, if $\\beta metal). The parameters of this modified Drude peak are obtained analytically. In particular, if $\\beta \\ll \\mu$ the relaxation time of electric conductivity approaches to $2\\sqrt{3} \\mu/\\beta^2$ and the modified Drude peak becomes a standard Drude peak. If $\\beta > \\mu$ the shape of peak deviates from the Drude form(incoherent metal). At intermediate frequencies($T<\\omega<\\mu$), we have analysed numerical data of three conductivities($\\sigma, \\alpha, \\bar{\\kappa}$) for a wide variety of parameters, searching for scaling laws, which are expected from either experimental results on cuprates superconductors or some holographic models. In the model we study, we find no clear signs of scaling behaviour.

  10. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films

    E-print Network

    Cirkva, Vladimir

    Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide reports the preparation of thin nanoparticulate films of titanium dioxide and its modified ver- sion doped­gel method using titanium n-butoxide, acetylacetone, and transition metal acetylacetonates as precursors

  11. PHYSICAL REVIEW B 91, 235140 (2015) Continuous Mott transition between a metal and a quantum spin liquid

    E-print Network

    2015-01-01

    (Kosterlitz-Thouless-like) quantum phase transition between a metal and a gapless spin liquid characterizedPHYSICAL REVIEW B 91, 235140 (2015) Continuous Mott transition between a metal and a quantum spin liquid Ryan V. Mishmash,1,2 Iv´an Gonz´alez,3 Roger G. Melko,4,5 Olexei I. Motrunich,6 and Matthew P. A

  12. Electrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase Separated Manganite Wires

    E-print Network

    Tennessee, University of

    , electrophoretic switching, transition metal oxides Resistive switching is observed across many different material with new degrees of functionality. Resistive switching has been achieved in several of these systems using to exhibit controllable metal-insulator transitions under local electric fields. The switching

  13. Synthesis of Aromatic Ketones by a Transition Metal-Catalyzed Tandem Jing Zhao, Colin O. Hughes, and F. Dean Toste*

    E-print Network

    Toste, Dean

    investigated.3 On the other hand, transition metal catalysis of the related Myers- Saito cyclization of enyne- lyzed by transition metal-promoted alkyne activation; however, the utility of this reaction recent success employing Ph3PAuCl with AgSbF6 in methylene chloride for carbon-carbon bond formation,5 we

  14. In-Situ Analysis of Valence Conversion in Transition Metal Oxides Using Electron Energy-Loss Spectroscopy

    E-print Network

    Wang, Zhong L.

    in a solid solution of Fe2O3 and Mn2O3 as well. Transition and rare earth metal oxides are the fundamental and rare-earth compounds usually display sharp peaks at the near edge region, which are known as whiteLETTERS In-Situ Analysis of Valence Conversion in Transition Metal Oxides Using Electron Energy

  15. Exponent relations at quantum phase transitions with applications to metallic quantum ferromagnets

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Belitz, D.

    2015-06-01

    Relations between critical exponents, or scaling laws, at both continuous and discontinuous quantum phase transitions are derived and discussed. In general there are multiple dynamical exponents at these transitions, which complicates the scaling description. Some rigorous inequalities are derived, and the conditions needed for these inequalities to be equalities are discussed. Scaling laws involving the specific-heat exponents that are specific to quantum phase transitions are derived and contrasted with their counterparts at classical phase transitions. We also generalize the ideas of Fisher and Berker and others for applying (finite-size) scaling theory near a classical first-order transition to the quantum case. We then apply and illustrate all of these ideas by using the quantum ferromagnetic phase transition in metals as an explicit example. This transition is known to have multiple dynamical scaling exponents, and in general it is discontinuous in clean systems but continuous in disordered ones. Furthermore, it displays many experimentally relevant crossover phenomena that can be described in terms of fixed points, originally discussed by Hertz, that ultimately become unstable asymptotically close to the transition and give way to the asymptotic fixed points. These fixed points provide a rich environment for illustrating the general scaling concepts and exponent relations. We also discuss the quantum-wing critical point at the tips of the tricritical wings associated with the discontinuous quantum ferromagnetic transition from a scaling point of view.

  16. Super hard cubic phases of period VI transition metal nitrides: First principles investigation

    E-print Network

    Khare, Sanjay V.

    Super hard cubic phases of period VI transition metal nitrides: First principles investigation S July 2008 Keywords: Coatings Elastic properties Hardness Nitrides We report a systematic studyN in rocksalt phase has a bulk modulus of 380 GPa making them candidates for super hardness. Based on the bulk

  17. Performance of transition metal-carbon multilayer mirrors from 80 to 350 eV

    SciTech Connect

    Kania, D.R.; Bartlett, R.J.; Trela, W.J.; Spiller, E.; Golub, L.

    1984-03-01

    We report measurements and theoretical calculations of the reflectivity and resolving power of multilayer mirrors made of alternate layers of a transition metal (Co, Fe, V, and Cr) and carbon (2d approx. = 140 A) from 80 to 350 eV.

  18. Degenerate nDoping of Few-Layer Transition Metal Dichalcogenides by Potassium

    E-print Network

    Javey, Ali

    Degenerate nDoping of Few-Layer Transition Metal Dichalcogenides by Potassium Hui Fang,,,§ Mahmut semiconductors by surface charge transfer using potassium. High-electron sheet densities of 1.0 × 1013 cm-2 and 2: Degenerate doping, few-layer, TMDCs, MoS2, WSe2, potassium, surface charge transfer The desire for enhanced

  19. Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum(111)

    E-print Network

    Lin, Xi

    Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum at the highest coverages and sulfur oxidation states. Calculated vibrational spectra are used to assign observed the preferred SOx species on Pt(111), consistent with observation. I. Introduction The chemistry of sulfur

  20. Preparation, Analysis, and Characterization of Some Transition Metal Complexes--A Holistic Approach

    ERIC Educational Resources Information Center

    Blyth, Kristy M.; Mullings, Lindsay R.; Philips, David N.; Pritchard, David; van Bronswijk, Wilhelm

    2005-01-01

    The chemical and instrumental methods used in the study of transition-metal complexes provide a complete determination of their structure, bonding, and properties. It unites concepts of analytical, inorganic, and physical chemistry in a way that students might appreciate that these areas of chemistry are not different.

  1. Transition-Metal-Free ?-Arylation of Enolizable Aryl Ketones and Mechanistic Evidence for a Radical Process.

    PubMed

    Pichette Drapeau, Martin; Fabre, Indira; Grimaud, Laurence; Ciofini, Ilaria; Ollevier, Thierry; Taillefer, Marc

    2015-09-01

    The ?-arylation of enolizable aryl ketones can be carried out with aryl halides under transition-metal-free conditions using KOtBu in DMF. The ?-aryl ketones thus obtained can be used for step- and cost-economic syntheses of fused heterocycles and Tamoxifen. Mechanistic studies demonstrate the synergetic role of base and solvent for the initiation of the radical process. PMID:26136406

  2. Ambipolar Transport and Gate-Induced Superconductivity in Layered Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Shi, Wu; Ye, Jianting; Zhang, Yijing; Suzuki, Ryuji; Saito, Yu; Iwasa, Yoshihiro

    2014-03-01

    Transition metal dichalcogenides (TMDs) are well known van der Waals layered materials that are easy to be exfoliated into atomically flat nano scale flakes. Owing to high efficiency of electrical double layer (EDL) dielectrics, thin flakes of TMDs have achieved high performance ambipolar transistor operation and established metallic states with high mobility, which are ideal for inducing superconductivity. Here, we report a comprehensive study of ambipolar transport behaviors in the EDL transistors (EDLTs) of MoS2, MoSe2 and MoTe2 thin flakes down to 2 K. In comparison, MoSe2 EDLT displayed a well-balanced ambipolar transistor operation while the other two showed opposite predominance in electron and hole accumulation, respectively. By modulation of carrier densities, the metal insulator transition (MIT) was observed in both electron and hole transport measurements. Particularly, superconducting transitions were reached after the formation of metallic states in the electron side. The phase diagram of transition temperature-carrier density was established and a dome-shaped structure was confirmed, revealing a universal feature of gate-induce superconductivity in layered band insulators. Present address: University of Groningen.

  3. Two-dimensional exciton-polariton - light guiding by transition metal dichalcogenide monolayers

    E-print Network

    Khurgin, Jacob B

    2015-01-01

    A monolayer of transition metal dichalcogenide (TMDC) is shown to be capable of supporting a guided optical mode below the exciton resonance, a two-dimensional exciton polariton. This visible or near IR mode is confined roughly within a micrometer from the monolayer and has propagation length exceeding 100 micrometers. The light guiding ability makes TMDC monolayers more versatile and potentially attractive photonic platform.

  4. Electronic-band structures and optical properties of transition metal doped Zinc oxide

    NASA Astrophysics Data System (ADS)

    Esakki muthuraju, M.; Mahesh, R.; Sreekanth, T.; Venugopal Reddy, P.

    2014-05-01

    Wide band gap Oxide based diluted magnetic semiconductors (ODMS) exhibit unique magnetic, magneto-optical and magneto-electrical effects and can be exploited as spintronic devices. Theoretical studies of transition metal (TM) doped zinc oxide which belongs to these class of materials has been attracting significant research interest in the recent years. In this paper, the electronic band structures, and band gap energies of ZnO doped with transition metal have been analyzed by ab initio calculations based on the density functional theory using quantum espresso PWscf code. For the band gap calculations, we have used both local density approximation (LDA) and generalized gradient approximation (GGA). The magnetic and optical properties of the materials have been studied using the above method. For all the theoretical calculations, the model structures of transition metal-doped ZnO were constructed by using the 16 atom supercell with one Zn atom replaced by a transition metal atom. The results are useful in understanding the band gap variations with doping and other related properties in oxide based diluted magnetic semiconductors such as ZnO.

  5. Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes

    E-print Network

    Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar, Syracuse, NY 13244, USA Received 31 October 1997; accepted 5 February 1998 Abstract Two new vanadium oxide compounds, which contain interlamellar transition metal complexes bound to vanadium oxide sheets, were

  6. First-principles study on transition metal-doped anatase TiO2

    PubMed Central

    2014-01-01

    The electronic structures, formation energies, and band edge positions of anatase TiO2 doped with transition metals have been analyzed by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The model structures of transition metal-doped TiO2 were constructed by using the 24-atom 2?×?1?×?1 supercell of anatase TiO2 with one Ti atom replaced by a transition metal atom. The results indicate that most transition metal doping can narrow the band gap of TiO2, lead to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. Under O-rich growth condition, the preparation of Co-, Cr-, and Ni-doped TiO2 becomes relatively easy in the experiment due to their negative impurity formation energies, which suggests that these doping systems are easy to obtain and with good stability. The theoretical calculations could provide meaningful guides to develop more active photocatalysts with visible light response. PMID:24472374

  7. Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation.

    PubMed

    Yuwen, Lihui; Yu, Huan; Yang, Xiangrong; Zhou, Jiajia; Zhang, Qi; Zhang, Yuqian; Luo, Zhimin; Su, Shao; Wang, Lianhui

    2016-01-11

    In this report, we have developed a rapid and versatile ultrasonication enhanced lithium intercalation (ULI) method to prepare single-layer transition metal dichalcogenide nanosheets (TMDC NSs, including MoS2, WS2, and TiS2) by using n-butyllithium (n-BuLi). PMID:26535783

  8. Novel alkoxide cluster topologies featuring rare seesaw geometry at transition metal centers.

    PubMed

    Bellow, James A; Fang, Dong; Kovacevic, Natalija; Martin, Philip D; Shearer, Jason; Cisneros, G Andrés; Groysman, Stanislav

    2013-09-01

    Caution! Chemists playing: Novel clusters of the form [M2Li2Cl2(OR)4] featuring rare seesaw geometry at the transition metal centers were synthesized for M=Cr-Co. The use of sterically hindering alkoxide ligands, as well as the inclusion of lithium ions in the structures enforces this highly unusual configuration. PMID:23934604

  9. Deep Hydrodesulfurization in Homogeneous Solution: Access to a Transition-Metal Insertion Complex of

    E-print Network

    Jones, William D.

    Deep Hydrodesulfurization in Homogeneous Solution: Access to a Transition-Metal Insertion Complex has been focused on the problems of "deep" hydrodesulfurization (HDS) or production of gas oils is to find more active catalysts for deep HDS, and this challenge can be stated without much

  10. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  11. Periodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters

    E-print Network

    Lombardi, John R.

    across the periodic table in an attempt to extract the effect of the atomic origin of bonding electronsPeriodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters John R and Dissociation Energies 2446 B. Dimer Optical Spectra and Calculations 2447 C. Periodic Properties 2448 VI

  12. Phase transition and magnetotransport properties of ball-milled half-metallic CrO2

    E-print Network

    Spinu, Leonard

    . In this article, we report the effects of ball milling on the size and structure of CrO2 nano- particlesPhase transition and magnetotransport properties of ball-milled half-metallic CrO2 K.-Y. Wang, L polarization of the ball-milled CrO2 . Intrinsic high-field magnetoresistance is found to increase

  13. DEVELOPMENT OF TRANSITION METAL OXIDE-ZEOLITE CATALYSTS TO CONTROL CHLORINATED VOC AIR EMISSIONS

    EPA Science Inventory

    The paper discusses the development of transition metal oxide (TMO)-zeolite oxidation catalysts to control chlorinated volatile organic compound (CVOC) air emissions. esearch has been initiated to enhance the utility of these catalysts by the development of a sorption-catalyst sy...

  14. Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure, Dynamics and Reactivity

    E-print Network

    Guidoni, Leonardo

    Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure). We have recently developed a QM/MM extension of a Car-Parrinello scheme [5]. These hybrid Car functional theory embedded in a classical force field description. The power of such a combined Car

  15. Synthesis and characterization of volatile, thermally stable, reactive transition metal amidinates.

    PubMed

    Lim, Booyong S; Rahtu, Antti; Park, Jin-Seong; Gordon, Roy G

    2003-12-01

    A series of homoleptic metal amidinates of the general type [M(R-R'AMD)(n)](x) (R = (i)Pr, (t)Bu, R' = Me, (t)Bu) has been prepared and structurally characterized for the transition metals Ti, V, Mn, Fe, Co, Ni, Cu, Ag, and La. In oxidation state 3, monomeric structures were found for the metals Ti(III), V(III), and La(III). Bridging structures were observed for the metals in oxidation state 1. Cu(I) and Ag(I) are held in bridged dimers, and Ag(I) also formed a trimer that cocrystallized with the dimer. Metals in oxidation state 2 occurred in either monomeric or dimeric form. Metals with smaller ionic radii (Co, Ni) were monomeric. Larger metals (Fe, Mn) gave monomeric structures only with the bulkier tert-butyl-substituted amidinates, while the less bulky isopropyl-substituted amidinates formed dimers. The new compounds were found to have properties well-suited for use as precursors for atomic layer deposition (ALD) of thin films. They have high volatility, high thermal stability, and high and properly self-limited reactivity with molecular hydrogen, depositing pure metals, or water vapor, depositing metal oxides. PMID:14632513

  16. Transition metal complexes of phyllobilins – a new realm of bioinorganic chemistry

    PubMed Central

    Li, Chengjie

    2015-01-01

    Natural cyclic tetrapyrroles feature outstanding capacity for binding transition metal ions, furnishing Nature with the important metallo-porphyrinoid ‘Pigments of Life’, such as heme, chlorophyll (Chl) and vitamin B12. In contrast, linear tetrapyrroles are not generally ascribed a biologically relevant ability for metal-binding. Indeed, when heme or Chl are degraded to natural linear tetrapyrroles, their central Fe- or Mg-ions are set free. Some linear tetrapyrroles are, however, effective multi-dentate ligands and their transition metal complexes have remarkable chemical properties. The focus of this short review is centred on such complexes of the linear tetrapyrroles derived from natural Chl-breakdown, called phyllobilins. These natural bilin-type compounds are massively produced in Nature and in highly visible processes. Colourless non-fluorescing Chl-catabolites (NCCs) and the related dioxobilin-type NCCs, which typically accumulate in leaves as ‘final’ products of Chl-breakdown, show low affinity for transition metal-ions. However, NCCs are oxidized in leaves to give less saturated coloured phyllobilins, such as yellow or pink Chl-catabolites (YCCs or PiCCs). YCCs and PiCCs are ligands for various biologically relevant transition metal-ions, such as Zn(ii)-, Ni(ii)- and Cu(ii)-ions. Complexation of Zn(ii)- and Cd(ii)-ions by the effectively tridentate PiCC produces blue metal-complexes that exhibit an intense red fluorescence, thus providing a tool for the sensitive detection of these metal ions. Outlined here are fundamental aspects of structure and metal coordination of phyllobilins, including a comparison with the corresponding properties of bilins. This knowledge may be valuable in the quest of finding possible biological roles of the phyllobilins. Thanks to their capacity for metal-ion coordination, phyllobilins could, e.g., be involved in heavy-metal transport and detoxification, and some of their metal-complexes could act as sensitizers for singlet oxygen or as plant toxins against pathogens. PMID:25923782

  17. Observation of a first-order metal-to-nonmetal phase transition in fluid iron

    NASA Astrophysics Data System (ADS)

    Korobenko, V. N.; Rakhel, A. D.

    2012-01-01

    Measurements of electrical resistivity and caloric equation of state have been performed for fluid iron to investigate the metal-to-nonmetal transition induced by thermal expansion. The resistivity results published earlier [V. N. Korobenko and A. D. Rakhel, JETPJTPHES1063-776110.1134/S1063776111020178, 112, 649 (2011)] have revealed the transition occurring at a density 4-5 times lower than ambient solid since in this density range the isochoric temperature coefficient of resistivity becomes negative when the magnitude of resistivity exceeds the minimum metallic conductivity range. The equation of state results reported here provide strong evidence for the existence of a first-order phase transition with a critical point located near the metal-to-nonmetal transition threshold. In particular, the isentropes plotted in the pressure-specific volume plane demonstrate pronounced kinks located on a convex line with a maximum at about 5 GPa. This suggests the presence of a critical point with the pressure of about one order of magnitude higher than that expected for the liquid-vapor transition. Arguments are given that the phase diagram of iron has the structure predicted in the well-known work [Ya. B. Zel'dovich and L. D. Landau, Zh. Eksp. Teor. Fiz. 14, 32 (1944)] but has not been observed yet.

  18. Intra-shell luminescence of transition-metal-implanted zinc oxide nanowires.

    PubMed

    Müller, Sven; Zhou, Minjie; Li, Quan; Ronning, Carsten

    2009-04-01

    Zinc oxide nanowires were grown by vapor transport using the vapor-liquid-solid growth mechanism. The zinc oxide nanowires were implanted with transition metals (Co, Fe or Ni) and subsequently annealed in air at 700 degrees C for 30 min. Energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy measurements reveal a successful incorporation of the desired transition metals. Transmission electron microscopy analysis of implanted and annealed zinc oxide nanowires shows a strongly damaged zinc oxide lattice but no formation of transition metal-rich secondary phases. The as-grown nanowires show a strong and intensive near-band edge emission and a moderately structured green luminescence band. After ion implantation, the structured green luminescence band increases in intensity and new sharp luminescence lines appear in the red luminescence region. Those sharp transitions are due to intra-shell 3d transitions of iron and cobalt in the corresponding Fe- and Co-doped ZnO samples. PMID:19420513

  19. Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides.

    PubMed

    Zhou, Yungang; Yang, Chengfei; Xiang, Xia; Zu, Xiaotao

    2013-09-14

    Motivated by recent investigations of semi-decorated two dimensional honeycomb structures, we demonstrated, via spin-polarized molecular-dynamics simulations and density-functional-theory calculations, that semi-sulfuretted transition-metal dichalcogenides of MX type (M = V, Nb, Ta; X = S, Se, Te) are stable and display remarkable magnetism. The unpaired d electron of the transition-metal atom arising from the breakage of the M-X bond is the mechanism behind the induction of the magnetism. The remarkable magnetism of the transition-metal atoms is caused by ferromagnetic coupling due to the competitive effects of through-bond interactions and through-space interactions. This implies the existence of an infinite ferromagnetic sheet with structural integrity and magnetic homogeneity. The estimated Curie temperatures suggest that the ferromagnetism can be achieved above room temperature in the VS, VSe, VTe, NbTe and TaTe sheets. Depending on the species of the M and X atoms, the MX sheet can be a magnetic metal, magnetic semiconductor or half-metal. Furthermore, in contrary to the recently reported semi-hydrogenated and semi-fluorinated layered materials consisting of B, C, N, etc., the MX sheets with many unpaired d electrons can offer a much stronger spin polarization and possess a more stable ferromagnetic coupling, which is critical for practical nanoscale device applications. PMID:23873448

  20. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.