Science.gov

Sample records for earth atoms na

  1. Flattening Earth acceleration in atomic fountains

    SciTech Connect

    Bertoldi, Andrea

    2010-07-15

    A method to compensate for Earth's gravity tide over an extended axial region is reported. Flattening acceleration is important in experiments where the coupling of the dynamics of free-falling probes to the gravity gradient generates stochastic noise on the measurement. Optimized cylindrically symmetric mass distributions lower Earth's tidal effect over 10 cm by a factor 10{sup 3}. A multimass compensation system with comparable performance is devised for tall atom interferometers. Reducing the gravity gradient is essential in terrestrial experiments based on atom fountain configurations being developed to precisely test general relativity or the neutrality of matter.

  2. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  3. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  4. Atomic Oxygen Protection of Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Spacecraft polymeric materials as well as polymer-matrix carbon-fiber composites can be significantly eroded as a result of exposure to atomic oxygen in low Earth orbit (LEO). Several new materials now exist, as well as modifications to conventionally used materials, that provide much more resistance to atomic oxygen attack than conventional hydrocarbon polymers. Protective coatings have also been developed which are resistant to atomic oxygen attack and provide protection of underlying materials. However, in actual spacecraft applications, the configuration, choice of materials, surface characteristics and functional requirements of quasi-durable materials or protective coatings can have great impact on the resulting performance and durability. Atomic oxygen degradation phenomena occurring on past and existing spacecraft will be presented. Issues and considerations involved in providing atomic oxygen protection for materials used on spacecraft in low Earth orbit will be addressed. Analysis of in-space results to determine the causes of successes and failures of atomic oxygen protective coatings is presented.

  5. Low Earth Orbital Atomic Oxygen Interactions With Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen, formed in Earth s thermosphere, interacts readily with many materials on spacecraft flying in low Earth orbit (LEO). All hydrocarbon based polymers and graphite are easily oxidized upon the impact of approx.4.5 eV atomic oxygen as the spacecraft ram into the residual atmosphere. The resulting interactions can change the morphology and reduce the thickness of these materials. Directed atomic oxygen erosion will result in the development of textured surfaces on all materials with volatile oxidation products. Examples from space flight samples are provided. As a result of the erosive properties of atomic oxygen on polymers and composites, protective coatings have been developed and are used to increase the functional life of polymer films and composites that are exposed to the LEO environment. The atomic oxygen erosion yields for actual and predicted LEO exposure of numerous materials are presented. Results of in-space exposure of vacuum deposited aluminum protective coatings on polyimide Kapton indicate high rates of degradation are associated with aluminum coatings on both surfaces of the Kapton. Computational modeling predictions indicate that less trapping of the atomic oxygen occurs, with less resulting damage, if only the space-exposed surface is coated with vapor deposited aluminum rather than having both surfaces coated.

  6. Low earth orbital atomic oxygen simulation for materials durability evaluation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1989-01-01

    The erosion yields of numerous materials have been evaluated in low earth orbital space tests. There appears to be three classes of materials: materials of high erosion yield which include most of the hydrocarbon organic materials; materials which either do not react with atomic oxygen or form self-protecting oxides which allow the underlying material to appear durable to atomic oxygen, and materials with low but nonnegligeable erosion yields, such as fluoropolymers. A NASA atomic oxygen effects test program has been established to utilize collective data from a multitude of simulation facilities to promote an understanding of mechanism and erosion yield dependencies. Atomic oxygen protective coatings for Kapton polymide solar array blankets, fiberglass-epoxy composite mast structures, and solar dynamic power system concentrator surfaces have been identified and evaluated under atomic oxygen exposure in RF plasma asher laboratory tests. The control of defect density in protective coatings appears to be the key to the assurance of long-term protection of oxidizable materials in low earth orbit.

  7. Low Earth Orbital Atomic Oxygen Interactions With Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; deGroh, Kim K.

    2004-01-01

    Atomic oxygen is formed in the low Earth orbital environment (LEO) by photo dissociation of diatomic oxygen by short wavelength (< 243 nm) solar radiation which has sufficient energy to break the 5.12 eV O2 diatomic bond in an environment where the mean free path is sufficiently long ( 108 meters) that the probability of reassociation or the formation of ozone (O3) is small. As a consequence, between the altitudes of 180 and 650 km, atomic oxygen is the most abundant species. Spacecraft impact the atomic oxygen resident in LEO with sufficient energy to break hydrocarbon polymer bonds, causing oxidation and thinning of the polymers due to loss of volatile oxidation products. Mitigation techniques, such as the development of materials with improved durability to atomic oxygen attack, as well as atomic oxygen protective coatings, have been employed with varying degrees of success to improve durability of polymers in the LEO environment. Atomic oxygen can also oxidize silicones and silicone contamination to produce non-volatile silica deposits. Such contaminants are present on most LEO missions and can be a threat to performance of optical surfaces. The LEO atomic oxygen environment, its interactions with materials, results of space testing, computational modeling, mitigation techniques, and ground laboratory simulation procedures and issues are presented.

  8. Laboratory simulation of Low Earth Orbit (LEO) atomic oxygen effects

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.; Oakes, David B.

    1994-01-01

    A pulsed fast oxygen atom source has been used extensively over the last 7 years to investigate the effects of ambient oxygen atoms impacting materials placed in low Earth orbit. In this period, we irradiated well over 2000 material samples with 8 km/s oxygen atoms generated in our source. Typical irradiance level is 3 x 10(exp 20) O atoms/sq cm although some materials have been irradiated to fluence levels as high as 6 x 10(exp 21) O atoms/sq cm. The operating principles and characteristics of our source are reviewed along with diagnostic and handling procedures appropriate to material testing. Representative data is presented on the velocity dependence of oxygen atom erosion rates (the PSI source provides oxygen atoms tunable over the velocity range of 5 to 12 km/s) as well as the dependence on material temperature. Specific examples of non-linear oxidative effects related to surface contamination and test duration are also be provided.

  9. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  10. Atomic oxygen effects on POSS polyimides in low earth orbit.

    PubMed

    Minton, Timothy K; Wright, Michael E; Tomczak, Sandra J; Marquez, Sara A; Shen, Linhan; Brunsvold, Amy L; Cooper, Russell; Zhang, Jianming; Vij, Vandana; Guenthner, Andrew J; Petteys, Brian J

    2012-02-01

    Kapton polyimde is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen in low Earth orbit (LEO), Kapton is severely eroded. An effective approach to prevent this erosion is to incorporate polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerizing POSS monomers with the polyimide precursor. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During exposure of POSS polyimide to atomic oxygen, organic material is degraded, and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Laboratory and space-flight experiments have shown that POSS polyimides are highly resistant to atomic-oxygen attack, with erosion yields that may be as little as 1% those of Kapton. The results of all the studies indicate that POSS polyimide would be a space-survivable replacement for Kapton on spacecraft that operate in the LEO environment. PMID:22188314

  11. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  12. Orbital Feshbach Resonance in Alkali-Earth Atoms.

    PubMed

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-25

    For a mixture of alkali-earth atomic gas in the long-lived excited state ^{3}P_{0} and the ground state ^{1}S_{0}, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the ^{173}Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system. PMID:26451561

  13. Orbital Feshbach Resonance in Alkali-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-01

    For a mixture of alkali-earth atomic gas in the long-lived excited state 3P0 and the ground state 1S0, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the 173Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system.

  14. Deep optical trap for cold alkaline-Earth atoms.

    PubMed

    Cruz, Luciano S; Sereno, Milena; Cruz, Flavio C

    2008-03-01

    We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser. PMID:18542375

  15. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  16. Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca.

    PubMed

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of ;{40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of ;{40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2 x 10;{4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the ;{1}S-;{3}P asymptotes. PMID:19905493

  17. Neutral Atom Imaging of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Mura, A.; Plainaki, C.; Milillo, A.; Orsini, S.; Barabash, S.; Leoni, R.; Selci, S.; Dandouras, I.; Kallio, E.; Wurz, P.; De Angelis, A.

    2012-04-01

    In many planetary environments of the solar system (Mercury, Moon, icy satellites, and more), direct solar wind precipitation results in neutral particle release via ion-sputtering (IS) process, as well as plasma reflection and neutralization (Backscattering, BS). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth asteroid (NEA), acting together with other surface release processes, such as photon stimulated desorption, thermal desorption and micrometeoroid impact vaporization. Detection and analysis of high-energy sputtered atoms gives important information on surface-loss processes as well as on surface elemental composition. RAMON (Released Atoms and Ions MONitor) proposed as payload for the MarcoPolo-R Mission, consists of two neutral atom sensors and an ion monitor: 1) SHEAMON (Sputtered High-Energy Atoms MONitor) will investigate the ion-sputtering and backscattering process by detecting neutral atoms between ~10 eV and ~3 keV and determining their direction and velocity; 2) GASP (GAs SPectrometer) will analyse the mass of the low-energy (below 10 eV) neutral atoms released by different surface processes; 3) MIM (Miniaturized Ion Monitor) will measure the flux and energy spectra of precipitating and backscattered solar wind protons, which originate the Ion Sputtering and Backscattering processes investigated by SHEAMON. By combining the measurements made by all three units, RAMON experiment will investigate on a) the processes happening on the surface of the NEA as a result of its exposure to space environment and collisions, b) the role of the surface release processes in the body evolution, c) the surface mineralogy and chemistry, derived from the composition of the released material, d) the magnitude of the erosion due to space weathering, e) the efficiency of each process as a function of environment conditions, and f) the possible non-uniform over the surface efficiency in particle release

  18. Low energy neutral atoms in the earth`s magnetosphere: Modeling

    SciTech Connect

    Moore, K.R.; McComas, D.J.; Funsten, H.O.; Thomsen, M.F.

    1992-06-01

    Detection of low energy neutral atoms (LENAs) produced by the interaction of the Earth`s geocorona with ambient space plasma has been proposed as a technique to obtain global information about the magnetosphere. Recent instrumentation advances reported previously and in these proceedings provide an opportunity for detecting LENAs in the energy range of <1 keV to {approximately}50 keV. In this paper, we present results from a numerical model which calculates line of sight LENA fluxes expected at a remote orbiting spacecraft for various magnetospheric plasma regimes. This model uses measured charge exchange cross sections, either of two neural hydrogen geocorona models, and various empirical modes of the ring current and plasma sheet to calculate the contribution to the integrated directional flux from each point along the line of sight of the instrument. We discuss implications for LENA imaging of the magnetosphere based on these simulations. 22 refs.

  19. Low energy neutral atoms in the earth's magnetosphere: Modeling

    SciTech Connect

    Moore, K.R.; McComas, D.J.; Funsten, H.O.; Thomsen, M.F.

    1992-01-01

    Detection of low energy neutral atoms (LENAs) produced by the interaction of the Earth's geocorona with ambient space plasma has been proposed as a technique to obtain global information about the magnetosphere. Recent instrumentation advances reported previously and in these proceedings provide an opportunity for detecting LENAs in the energy range of <1 keV to {approximately}50 keV. In this paper, we present results from a numerical model which calculates line of sight LENA fluxes expected at a remote orbiting spacecraft for various magnetospheric plasma regimes. This model uses measured charge exchange cross sections, either of two neural hydrogen geocorona models, and various empirical modes of the ring current and plasma sheet to calculate the contribution to the integrated directional flux from each point along the line of sight of the instrument. We discuss implications for LENA imaging of the magnetosphere based on these simulations. 22 refs.

  20. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-01

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions. PMID:20831313

  1. Electronic structures and second hyperpolarizabilities of alkaline earth metal complexes end-capped with NA2 (A = H, Li, Na).

    PubMed

    Banerjee, Paramita; Nandi, Prasanta K

    2016-05-14

    The ground state structures and NLO properties of a number of alkaline earth metal complexes end-capped with NA2 groups (A = H, Li, Na) are calculated by employing the CAM-B3LYP, wB97XD and B2PLYP functionals along with MP2 and CCSD(T) for 6-311++G(d,p), 6-311++G(3df,3pd), aug-cc-pVTZ, aug-pc-2 and Hypol basis sets. The complexes are found to be significantly stable. The magnitude of second hyperpolarizability enhances appreciably with increase in the number of magnesium and calcium atoms in the chain, which has been indicated by the power law dependence γ = a + bn(c) with c values ranging from 2.4-4.3 for Mg and 2.4-3.7 for Ca complexes, respectively. The largest second-hyperpolarizability (10(9) au) is obtained for the complex Ca7(NNa2)2 at the CAM-B3LYP level. The two state model has been used to explain the variation of hyperpolarizabilities. PMID:27088138

  2. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  3. Magnetic properties of ternary sodium oxides Na LnO 2 ( Ln=rare earths)

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuta; Wakeshima, Makoto; Hinatsu, Yukio

    2003-11-01

    Magnetic properties of ternary sodium oxides Na LnO 2 ( Ln=rare earths) are investigated. Their crystal structures are grouped into three types of structures, which are α-LiFeO 2, β-LiFeO 2, and α-NaFeO 2, depending on the size of rare earths. Their magnetic susceptibilities and specific heats have been measured from 1.8 to 300 K. Among them, NaGdO 2, NaDyO 2, and NaHoO 2 show antiferromagnetic transitions at 2.4, 2.2, and 2.4 K, respectively, and NaNdO 2 transforms to the ferromagnetic state below 2.4 K. NaSmO 2, NaErO 2, and NaYbO 2 exhibit a magnetic anomaly below 1.8 K.

  4. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  5. Introduction to simulation of upper atmosphere oxygen satellite exposed to atomic oxygen in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Peplinski, D. R.; Arnold, G. S.; Borson, E. N.

    1984-01-01

    A brief review of atmospheric composition in low Earth orbit is presented. The flux of ambient atomic oxygen incident on a surface orbiting in this environment is described. Estimates are presented of the fluence of atomic oxygen to which satellite surfaces in various orbits are exposed.

  6. Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Zhang, Deping; Cheng, Yanting; Chen, Wei; Zhang, Peng; Zhai, Hui

    2016-04-01

    Alkaline-earth-metal atoms have a long-lived electronic excited state, and when atoms in this excited state are localized in the Fermi sea of ground-state atoms by an external potential, they serve as magnetic impurities, due to the spin-exchange interaction between the excited- and the ground-state atoms. This can give rise to the Kondo effect. However, in order to achieve this effect in current atomic gas experiments, it requires the Kondo temperature to be increased to a sizable portion of the Fermi temperature. In this paper we calculate the confinement-induced resonance (CIR) for the spin-exchanging interaction between the ground and the excited states of the alkaline-earth-metal atoms and propose that the spin-exchange interaction can be strongly enhanced by utilizing the CIR. We analyze this system by the renormalization-group approach and show that near a CIR, the Kondo temperature can be significantly enhanced.

  7. The effects of low earth orbit atomic oxygen on the properties of Polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Hooshangi, Zhila; Hossein Feghhi, Seyed Amir; Saeedzadeh, Rezgar

    2016-02-01

    Polymers are widely used in space systems as the structural materials. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen. Exposure of polymeric materials to atomic oxygen results in destructive effects on the chemical, electrical, thermal, optical and mechanical properties as well as surface degradation. In the present work, the effects of atomic oxygen on the mechanical, thermal, and optical properties of Polytetrafluoroethylene film have been investigated. The atomic oxygen density was calculated by SPENVIS tool. After the atomic oxygen exposure by using radio-frequency (RF) plasma source, the appearance of the samples changed, and the mass of the samples reduced because of outgassing. The results of thermal analysis showed that atomic oxygen flux does not affect thermal degradation of samples regarding TGA diagrams. By increasing the atomic oxygen flux, the amount of absorbance increased showing that atomic oxygen had damaged the surface of Polytetrafluoroethylene, and it had oxidized the surface of the polymer.

  8. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  9. Cold-Atom Clocks on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Lemonde, Pierre; Laurent, Philippe; Santarelli, Giorgio; Abgrall, Michel; Sortais, Yvan; Bize, Sebastien; Nicolas, Christophe; Zhang, Shougang; Clairon, Andre; Dimarcq, Noel; Petit, Pierre; Mann, Antony G.; Luiten, Andre N.; Chang, Sheng; Salomon, Christophe

    We present recent progress on microwave clocks that make use of laser-cooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 x10^5 detected atoms, the relative frequency stability is 4 x10^-14 &1/2circ, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ=2 x10^4s, the measured stability reaches 6 x10^-16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 x10^-15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10-15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.

  10. Sensitive Technique Developed Using Atomic Force Microscopy to Measure the Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim D.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Fine, Elizabeth; Marx, Laura

    2001-01-01

    A recession measurement technique has been developed at the NASA Glenn Research Center to determine the atomic oxygen durability of polymers exposed to the space environment for short durations. Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene, DuPont) are commonly used in spacecraft because of their desirable properties, such as flexibility, low density, and in the case of FEP, low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low- Earth-orbit environment are exposed to energetic atomic oxygen, resulting in erosion and potential structural loss. It is, therefore, important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data are rare and very costly, short-term exposures, such as on the space shuttles, are often relied on for atomic oxygen erosion determination. The most common technique for determining E is through mass-loss measurements. For limited-duration exposure experiments, such as shuttle flight experiments, the atomic oxygen fluence is often so small that mass-loss measurements are not sensitive enough. Therefore, a recession measurement technique has been developed at Glenn to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences.

  11. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  12. Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.

    1991-01-01

    Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.

  13. Equilibrium atomic properties of transition and rare-earth metals. (in Ukrainian)

    NASA Astrophysics Data System (ADS)

    Yakibchuk, P. M.

    Within the framework of the recently proposed nonlocal model potential the formulas for binding energy and equilibrium atomic radia of transition and rare--earth metals are received. Numerical calculation of the above characteristics for the 4d-transition metals is carried out for such an approach.

  14. The Effect of Low Earth Orbit Atomic Oxygen Exposure on Phenylphosphine Oxide-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    2000-01-01

    Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin film samples described herein were part of an atomic oxygen exposure experiment (AOE) and were exposed to primarily atomic oxygen (1 X 1019 atoms/cm2). The thin film samples consisted of three phosphine oxide containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, X-ray photoelectron spectroscopy, and weight loss data, it was found that atomic oxygen exposure of these materials efficiently produces a phosphate layer at the surface of the samples. This layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favorably with those obtained from samples exposed to atomic oxygen and or oxygen plasma in ground based exposure experiments. The results of the low Earth orbit atomic oxygen exposure on these materials will be compared with those of ground based exposure to AO.

  15. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Lenczewski, Mary; Demko, Rikako

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.

  16. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  17. Ultracold Fermionic gases of Li atoms and LiNa molecules

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb; Choi, Jae; Lee, Ye-Ryoung; Jo, Gyu-Boong; Ketterle, Wolfgang; Pritchard, Dave

    2010-03-01

    We present recent data on the stability and basic properties of ultracold gases of ^6Li and ^23Na, including fermionic LiNa molecules. A cold, dense mixture of atoms is produced in an IR optical dipole trap. The magnetic field is brought to the vicinity of Feshbach resonances, and short lived states are populated by driving RF transitions from noninteracting to interacting states. Absorption imaging of the atoms is used to study the formation and lifetime of Feshbach molecules. We also present recent work on the potential for a ferromagnetic state of a gas of lithium atoms.

  18. Atomic motions in an unusual molecular semiconductor: NaSn

    SciTech Connect

    Stoddard, R.D.; Conradi, M.S.; McDowell, A.F.; Saboungi, M.; Price, D.L.

    1995-11-15

    Recent investigations of the compound NaSn (1:1) have indicated that both fast conduction of Na{sup +} cations and rapid reorientations of (Sn{sub 4}){sup 4{minus}} anions are present in the high-temperature solid phase, {alpha}-NaSn. We have used {sup 23}Na and {sup 119}Sn nuclear magnetic resonance to separately monitor the motions of Na and Sn in the low-temperature ordered solid phase, {beta}-NaSn, where the correlation times of the motions are much longer. The Na{sup +} motions are evident in {ital T}{sub 1}, {ital T}{sub 1{rho}}, {ital T}{sub 2}, and {ital T}{sub 2}{sup *} (linewidth) {sup 23}Na data at magnetic fields of 8.0 and 2.0 T. The Na motions are described by a single time constant with thermal activation parameters {ital E}{sub {ital a}}/{ital k}{sub {ital B}}=9700 K and {omega}{sub {ital D}}({infinity})=1.7{times}10{sup 14} s{sup {minus}1}. Sn motions are evident in {ital T}{sub 2}, line shape, and stimulated echo data taken at 8.0 T. {sup 119}Sn stimulated echo data unequivocally show the Sn motion to be reorientations of Sn{sub 4} tetrahedra; any diffusion of Sn between tetrahedra is much slower. The combined {ital T}{sub 2} and stimulated echo data for {sup 119}Sn demonstrate that the Sn{sub 4} reorientations are thermally activated with {ital E}{sub {ital a}}/{ital k}{sub {ital B}}=13 800 K and {omega}{sub {ital R}}({infinity})=2.3{times}10{sup 15} s{sup {minus}1}. The temperature dependence of the {sup 119}Sn {ital T}{sub 1} fits an activation energy of 7000 K; the Sn {ital T}{sub 1} is believed to be due to thermally activated charge carriers.

  19. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  20. Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Snyder, Aaron; Miller, Sharon K.; Demko, Rikako

    2002-01-01

    Hydrocarbon based polymers that are exposed to atomic oxygen in low Earth orbit are slowly oxidized which results in recession of their surface. Atomic oxygen protective coatings have been developed which are both durable to atomic oxygen and effective in protecting underlying polymers. However, scratches, pin window defects, polymer surface roughness and protective coating layer configuration can result in erosion and potential failure of protected thin polymer films even though the coatings are themselves atomic oxygen durable. This paper will present issues that cause protective coatings to become ineffective in some cases yet effective in others due to the details of their specific application. Observed in-space examples of failed and successfully protected materials using identical protective thin films will be discussed and analyzed. Proposed approaches to prevent the failures that have been observed will also be presented.

  1. Surface location of alkaline-earth-metal-atom impurities on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Ren, Yanfei; Kresin, Vitaly V.

    2007-10-01

    There has been notable uncertainty regarding the degree of solvation of alkaline-earth-metals atoms, especially Mg, in free He4 nanodroplets. We have measured the electron energy dependence of the ionization yield of picked-up atoms. There is a qualitative shape difference between the yield curves of species solvated in the middle of the droplet and species located in the surface region; this difference arises from the enhanced role played by the Penning ionization process in the latter case. The measurements demonstrate that Mg, Ca, Sr, and Ba all reside at or near the droplet surface.

  2. Issues and Effects of Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Sechkar, Edward; Stueber, Thomas; Snyder, Aaron; deGroh, Kim; Haytas, Christy; Brinker, David

    2000-01-01

    The continued presence and use of silicones on spacecraft in low Earth orbit (LEO) has been found to cause the deposition of contaminant films on surfaces which are also exposed to atomic oxygen. The composition and optical properties of the resulting SiO(x)- based (where x is near 2) contaminant films may be dependent upon the relative rates of arrival of atomic oxygen, silicone contaminant and hydrocarbons. This paper presents results of in-space silicone contamination tests, ground laboratory simulation tests and analytical modeling to identify controlling processes that affect contaminant characteristics.

  3. Surface location of alkaline-earth-metal-atom impurities on helium nanodroplets

    SciTech Connect

    Ren Yanfei; Kresin, Vitaly V.

    2007-10-15

    There has been notable uncertainty regarding the degree of solvation of alkaline-earth-metals atoms, especially Mg, in free {sup 4}He nanodroplets. We have measured the electron energy dependence of the ionization yield of picked-up atoms. There is a qualitative shape difference between the yield curves of species solvated in the middle of the droplet and species located in the surface region; this difference arises from the enhanced role played by the Penning ionization process in the latter case. The measurements demonstrate that Mg, Ca, Sr, and Ba all reside at or near the droplet surface.

  4. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6.

    PubMed

    Get'man, Evgeni I; Loboda, Stanislav N; Ignatov, Alexey V; Prisedsky, Vadim V; Abdul Jabar, Mohammed A B; Ardanova, Lyudmyla I

    2016-03-01

    The substitution of rare-earth elements (REEs) for Pb in the lacunary apatite Pb8Na2(PO4)6 with void structural channels was studied by means of powder X-ray diffraction (including the Rietveld refinement), scanning electron microscopy, energy-dispersive X-ray microanalysis, and IR spectroscopy and also measurements of the electrical conductivity. The substitution limits (xmax in Pb8-xLnxNa2(PO4)6Ox/2) at 800 °C were found to decrease with the atomic number of the REE from 1.40 for La to 0.12 for Yb with a rapid drop from light to heavy lanthanides (between Gd and Tb). The REE atoms substitute for Pb predominantly at Pb2 sites of the apatite structure according to the scheme 2Pb(2+) + □ → 2Ln(3+) + O(2-), where □ is a vacancy in the structural channel. The substitution in lacunary apatite produces quite different changes in the structural parameters compared with broadly studied alkaline-earth hydroxyapatites. In spite of the much lower ionic radii of REE than that of Pb(2+), the mean distances ⟨Pb1-O⟩ somewhat increase, whereas the distances ⟨Pb2-Pb2⟩ and ⟨Pb2-O4⟩ do not change considerably with the degree of substitution. This implies control of the substitution by not only spatial and charge accommodation of REE ions but also the availability of a stereochemically active 6s(2) electron pair on Pb(2+). The high-temperature electrical conductivity shows dependence on the degree of substitution with a minimum at x = 0.2 indicative of a possible change of the type of conductivity. PMID:26871754

  5. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  6. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2004-11-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  7. Earth Time Variable Gravity from a Spaceborne Cold Atom Gravity Gradiometer

    NASA Astrophysics Data System (ADS)

    Luthcke, S. B.; Saif, B.; Black, A.; Rowlands, D. D.

    2014-12-01

    A gradiometer sensor based on the light-pulse atom (LPA) interferometry provides a technological path forward to significantly improve Earth time variable gravity observations from space. The development of a Cold Atom Gravity Gradiometer (CAGG) instrument for geodesy, based on the LPA measurement approach, was recently selected for funding under NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). The CAGG IIP development includes the design, build and testing of a high-performance, single-tensor-component gravity gradiometer applicable to Earth science studies on a satellite platform in low-Earth orbit. The gradiometer has a target gravity gradient noise floor of 7×10-5 E/Hz1/2 when extrapolated to operation in a low-noise microgravity environment. This is an improvement over the noise performance of ESA's Gravity field and steady-state Ocean Circulation Explorer (GOCE) gradiometers, whose short-term noise is approximately 3×10-3 E/Hz1/2. In contrast to NASA's Gravity Recovery and Climate Experiment (GRACE) mission, the instrument will be capable of high-precision geodesy from a single satellite platform. In contrast to previous gradiometers based on atom interferometry, the proposed instrument achieves orders-of-magnitude improvements in sensitivity by exploiting the advantages of the microgravity environment. The sensor incorporates an intrinsic method of compensation for rotation-induced errors in the gravity gradient measurement. We present the current status of the CAGG IIP development. We also present the current measurement performance estimate of the CAGG and the simulated performance of the space-based CAGG instrument in recovering Earth time variable gravity. We explore the accuracy, and spatial and temporal resolution of surface mass change observations from several space-based implementations of the CAGG instrument, including various orbit configurations and multi-satellite/multi-orbit configurations.

  8. Proceedings of the NASA Workshop on Atomic Oxygen Effects. [low earth orbital environment

    NASA Technical Reports Server (NTRS)

    Brinza, David E. (Editor)

    1987-01-01

    A workshop was held to address the scientific issues concerning the effects of atomic oxygen on materials in the low Earth orbital (LEO) environment. The program included 18 invited speakers plus contributed posters covering topics such as LEO spaceflight experiments, interaction mechanisms, and atomic oxygen source development. Discussion sessions were also held to organize a test program to evaluate atomic oxygen exposure facilities. The key issues raised in the workshop were: (1) the need to develop a reliable predictive model of the effects of long-term exposure of materials to the LEO environment; (2) the ability of ground-based exposure facilities to provide useful data for development of durable materials; and (3) accurate determination of the composition of the LEO environment. These proceedings include the invited papers, the abstracts for the contributed posters, and an account of the test program discussion sessions.

  9. Low Earth orbital atomic oxygen and ultraviolet radiation effects on polymers

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.

    1991-01-01

    Because atomic oxygen and solar ultraviolet radiation present in the low earth orbital (LEO) environment can alter the chemistry of polymers resulting in degradation, their effects and mechanisms of degradation must be determined in order to determine the long term durability of polymeric surfaces to be exposed on missions such as Space Station Freedom. The effects of atomic oxygen on polymers which contain protective coatings must also be explored, since unique damage mechanisms can occur in areas where the protective coatings has failed. Mechanisms can be determined by utilizing results from previous LEO missions, by performing ground based LEO simulation tests and analysis, and by carrying out focussed space experiments. A survey is presented of the interactions and possible damage mechanisms for environmental atomic oxygen and UV radiation exposure of polymers commonly used in LEO.

  10. The effect of atomic oxygen on polysiloxane-polyimide for spacecraft applications in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Cooper, Jill M.; Olle, Raymond M.

    1991-01-01

    Polysiloxane-polyimide films are of interest as a replacement for polyimide Kapton in the Space Station Freedom solar array blanket. The blanket provides the structural support for the solar cells as well as providing transport of heat away from the back of the cells. Polyimide Kapton would be an ideal material to use; however, its high rate of degradation due to attack by atomic oxygen in low Earth orbit, at the altitudes Space Station Freedom will fly, is of such magnitude that if left unprotected, the blanket will undergo structural failure in much less than the desired 15 year operating life. Polysiloxane-polyimide is of interest as a replacement material because it should from its own protective silicon dioxide coating upon exposure to atomic oxygen. Mass, optical, and photomicrographic data obtained in the evaluation of the durability of polysiloxane-polyimide to an atomic oxygen environment are presented.

  11. Electronic binding energy and thermal relaxation of Li and LiNa atomic alloying clusters.

    PubMed

    Bo, Maolin; Guo, Yongling; Wang, Yan; Liu, Yonghui; Peng, Cheng; Sun, Chang Q; Huang, Yongli

    2016-05-11

    We examined the effects of atomic hetero- and under-coordination on the relaxation of the interatomic bonding and electronic binding energy of Li and LiNa cluster alloying using a combination of the bond-order-length-strength correlation and density functional theory calculations. We found that bond nature alteration by heterocoordination, bond relaxation by thermal excitation and atomic coordination contribute intrinsically to the core-level energy shifts with resolution of the binding energy at the atomic sites of terrace edges, facets, and bulk of the LiNa alloy nanoclusters. Our strategies may simplify the complexity of core electron binding energies in analyzing the experimental data of the irregularly coordinating atoms. PMID:27117008

  12. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  13. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  14. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs

    NASA Astrophysics Data System (ADS)

    Ren, Juan; Zhang, Ning-Chao; Wang, Peng; Ning, Chao; Zhang, Hong; Peng, Xiao-Juan

    2016-04-01

    Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom-doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5 d, 6 s, and B-2 p, N-2 p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.

  15. Magnetic-field-tunable Kondo effect in alkaline-earth cold atoms

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    2015-05-01

    We study quantum magnetism in strongly interacting fermionic alkaline-earth atoms (AEAs). Due to the decoupling of electronic and nuclear degrees of freedom, AEAs in two lowest electronic states (1S0 and 3P0) obey an accurate SU(N 2 I + 1) symmetry in their two-body collisions (I is the nuclear spin). We consider a system that realizes the simplest SU(2) case (for atoms prepared in two nuclear-spin states) in an optical lattice with two bands: one localized and one itinerant. For the fully filled narrow band (two atoms per lattice site) we demonstrate that an applied magnetic field provides an efficient control of the local ground state degeneracy due to mixing of spin and orbital two-body states. We derive an effective low-energy model that includes this magnetic-field effect as well as atomic interactions in the two optical lattice bands, and show that it exhibits a peculiar phenomenon of a magnetic field-induced Kondo effect, so far observed only in Coulomb blockaded quantum dots. We expect that our results can be tested with ultracold 173 Yb or 87 Sr atoms. Supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.

  16. Fermionic superfluidity with repulsive alkaline-earth atoms in optical superlattices

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    2016-05-01

    We propose a novel route to superfluidity in fermionic alkaline-earth atoms with repulsive interactions, that uses local kinetic-energy fluctuations as a ``pairing glue'' between the fermions. We exploit different polarizabilities of electronic 1S0 (g) and 3P0 (e) states of the atoms to confine the e- and g- species in different optical superlattices. For example, in a one-dimensional case the e-lattice can be implemented as an array of weakly-coupled double-wells (DWs) with large intra-DW tunneling, and contain one localized e-atom in each DW to avoid losses due to e- e collisions. On the contrary, the shallow g-lattice has a large bandwidth and an arbitrary filling. We consider a nuclear-spin polarized system and demonstrate how kinetic-energy fluctuations of the localized e-atoms mediate an attractive interaction between the g-fermions, thus leading to a p-wave superfluid. We derive a low-energy model and determine the stability of this state against charge-density wave formation and phase separation. Our results can be tested with Yb or Sr fermionic atoms and have a direct relevance for the physics of high-temperature superconductor materials. Work supported by NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  17. Magnetic-field-tunable Kondo effect in alkaline-earth cold atoms

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    We study quantum magnetism and emergent Kondo physics in strongly interacting fermionic alkaline-earth atoms in an optical lattice with two Bloch bands: one localized and one itinerant. For a fully filled narrow band (two atoms per lattice site) we demonstrate that an applied magnetic field provides an efficient control of the ground state degeneracy due to the field-induced crossing of singlet and triplet state of the localized atomic pairs. We exploit this singlet-triplet resonance, as well as magnetically tunable interactions of atoms in different electronic states via the recently-discovered inter-orbital Feshbach resonance, and demonstrate that the system exhibits a magnetic field-induced Kondo phase characterized by delocalization of local singlets and a large Fermi surface. We also determine the phase diagram of the system within an effective low-energy model that incorporates the above magnetic-field effect as well as atomic interactions in the two optical lattice bands. Our results can be tested with ultracold 173 Yb , and provide a model for the magnetic field-induced heavy-fermion state in filled skutterudites such as PrOs4Sb12 . This work was supported by the NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  18. Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit Studied

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2001-01-01

    Silicones have been widely used on spacecraft as potting compounds, adhesives, seals, gaskets, hydrophobic surfaces, and atomic oxygen protective coatings. Contamination of optical and thermal control surfaces on spacecraft in low Earth orbit (LEO) has been an ever-present problem as a result of the interaction of atomic oxygen with volatile species from silicones and hydrocarbons onboard spacecraft. These interactions can deposit a contaminant that is a risk to spacecraft performance because it can form an optically absorbing film on the surfaces of Sun sensors, star trackers, or optical components or can increase the solar absorptance of thermal control surfaces. The transmittance, absorptance, and reflectance of such contaminant films seem to vary widely from very transparent SiOx films to much more absorbing SiOx-based films that contain hydrocarbons. At the NASA Glenn Research Center, silicone contamination that was oxidized by atomic oxygen has been examined from LEO spacecraft (including the Long Duration Exposure Facility and the Mir space station solar arrays) and from ground laboratory LEO simulations. The findings resulted in the development of predictive models that may help explain the underlying issues and effects. Atomic oxygen interactions with silicone volatiles and mixtures of silicone and hydrocarbon volatiles produce glassy SiOx-based contaminant coatings. The addition of hydrocarbon volatiles in the presence of silicone volatiles appears to cause much more absorbing (and consequently less transmitting) contaminant films than when no hydrocarbon volatiles are present. On the basis of the LDEF and Mir results, conditions of high atomic oxygen flux relative to low contaminant flux appear to result in more transparent contaminant films than do conditions of low atomic oxygen flux with high contaminant flux. Modeling predictions indicate that the deposition of contaminant films early in a LEO flight should depend much more on atomic oxygen flux than

  19. Synthesis and thermoluminescence properties of rare earth-doped NaMgBO3 phosphor.

    PubMed

    Khan, Z S; Ingale, N B; Omanwar, S K

    2016-05-01

    Rare earth (Dy(3+) and Sm(3+))-doped sodium magnesium borate (NaMgBO3) is synthesized by solution combustion synthesis method keeping their thermoluminescence properties in mind. The reaction produced very stable crystalline NaMgBO3:RE (RE = Dy(3+), Sm(3+)) phosphors. The phosphors are exposed to (60)Co gamma-ray radiations dose of varying rate from 5 to 25 Gy, and their TL characteristics with kinetic parameters are studied. NaMgBO3:Dy(3+) phosphor shows two peaks for lower doping concentration of Dy(3+) while it reduced to single peak for the higher concentrations of activator Dy(3+). NaMgBO3:Dy(3+) shows the major glow peak around 200 °C while NaMgBO3:Sm(3+) phosphors show two well-separated glow peaks at 200 and 332 °C respectively. The thermoluminescence intensity of these phosphors was compare with the commercially available TLD-100 (Harshaw) phosphor. The TL responses for gamma-ray radiations dose were found to be linear from 5 to 25 Gy for both phosphors while the fading in each case is calculated for the tenure of 45 days. PMID:26178829

  20. Bose-Einstein Condensation of Alkaline Earth Atoms: {sup 40}Ca

    SciTech Connect

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of {sup 40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of {sup 40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2x10{sup 4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the {sup 1}S-{sup 3}P asymptotes.

  1. Ultrafine Na-4-mica: uptake of alkali and alkaline earth metal cations by ion exchange.

    PubMed

    Kodama, Tatsuya; Ueda, Masahito; Nakamuro, Yumiko; Shimizu, Ken-ichi; Komarneni, Sridhar

    2004-06-01

    The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms. PMID:15984251

  2. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  3. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  4. Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    SciTech Connect

    Santra, Robin; Christ, Kevin V.; Greene, Chris H.

    2004-04-01

    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp){sup 3}P{sub J}{sup o}(J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.

  5. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields With Those in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Dill, Grace C.; Loftus, Ryan J.; deGroh, Kim K.; Miller, Sharon K.

    2013-01-01

    The atomic oxygen erosion yields of 26 materials (all polymers except for pyrolytic graphite) were measured in two directed hyperthermal radio frequency (RF) plasma ashers operating at 30 or 35 kHz with air. The hyperthermal asher results were compared with thermal energy asher results and low Earth orbital (LEO) results from the Materials International Space Station Experiment 2 and 7 (MISSE 2 and 7) flight experiments. The hyperthermal testing was conducted to a significant portion of the atomic oxygen fluence similar polymers were exposed to during the MISSE 2 and 7 missions. Comparison of the hyperthermal asher prediction of LEO erosion yields with thermal energy asher erosion yields indicates that except for the fluorocarbon polymers of PTFE and FEP, the hyperthermal energy ashers are a much more reliable predictor of LEO erosion yield than thermal energy asher testing, by a factor of four.

  6. Adsorption of rare-earth atoms onl silicon carbide nanotube: a density-functional study

    NASA Astrophysics Data System (ADS)

    An, Zhiwei; Shen, Jiang

    2014-07-01

    In this paper, we investigate the adsorption of a series of rare-earth (RE) metal atoms (La, Pr, Nd, Sm and Eu) on the pristine zigzag (8, 0) silicon carbide nanotube (SiCNT) using density functional theory (DFT). Main focuses are placed on the stable adsorption sites, the corresponding binding energies, and the modified electronic properties of the SiC nanotubes due to the adsorbates. A single RE atom prefers to adsorb strongly at the hollow site with relatively high binding energy (larger than 1.0 eV). Due to the rolling effect of single-walled SiCNTs, the inside configurations are more stable than the outside ones. For RE-adsorbed systems, the adsorption of metal atoms induces certain impurity states within the band gap of the pristine SiCNT. Furthermore, we analyze there exists hybridizations between RE-5d, 6s, C-2p and Si-3p orbitals for the RE atom adsorption on the SiCNTs.

  7. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  8. Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard soft acid base approach

    NASA Astrophysics Data System (ADS)

    Deka, Ramesh Ch; Kinkar Roy, Ram; Hirao, Kimihiko

    2000-12-01

    The basicity of framework oxygen atoms of alkali and alkaline earth-exchanged zeolites has been studied using reactivity descriptors based on a local hard-soft acid-base (HSAB) concept. We have calculated the `local softness' and the `relative nucleophilicity' values of the framework oxygen atoms of zeolite clusters as the measure of basicity. The local softness and relative nucleophilicity appear to be more reliable descriptors to predict the experimental basicity trend, compared to the negative charge on the oxygen atom.

  9. Three-photon process for producing a degenerate gas of metastable alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Barker, D. S.; Pisenti, N. C.; Reschovsky, B. J.; Campbell, G. K.

    2016-05-01

    We present a method for creating a quantum degenerate gas of metastable alkaline-earth-metal atoms. This has yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum degenerate samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent three-photon process. Numerical integration of the density-matrix evolution for the fine structure of bosonic alkaline-earth-metal atoms shows that transfer efficiencies of ≃90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the three-photon process can be set up such that it imparts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing our scheme, including the minimization of differential ac Stark shifts between the four states connected by the three-photon transition.

  10. A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.

    2016-05-01

    We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.

  11. Lessons Learned From Atomic Oxygen Interaction With Spacecraft Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim, K.; Miller, Sharon K.; Waters, Deborah L.

    2008-01-01

    There have been five Materials International Space Station Experiment (MISSE) passive experiment carriers (PECs) (MISSE 1-5) to date that have been launched, exposed in space on the exterior of International Space Station (ISS) and then returned to Earth for analysis. An additional four MISSE PECs (MISSE 6A, 6B, 7A, and 7B) are in various stages of completion. The PECs are two-sided suitcase to size sample carriers that are intended to provide information on the effects of the low Earth orbital environment on a wide variety of materials and components. As a result of post retrieval analyses of the retrieved MISSE 2 experiments and numerous prior space experiments, there have been valuable lessons learned and needs identified that are worthy of being documented so that planning, design, and analysis of future space environment experiments can benefit from the experience in order to maximize the knowledge gained. Some of the lessons learned involve the techniques, concepts, and issues associated with measuring atomic oxygen erosion yields. These are presented along with several issues to be considered when designing experiments, such as the uncertainty in mission duration, scattering and contamination effects on results, and the accuracy of measuring atomic oxygen erosion.

  12. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  13. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  14. Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State

    NASA Astrophysics Data System (ADS)

    Hu, Qiu-Bo; Zhang, Yong-Sheng; Sun, Jin-Feng; Yu, Ke

    2011-04-01

    The elastic scattering properties between ultracold 23Na and 85Rb atoms for the triplet state (a3 Σ+u) are researched. The s-wave scattering lengths of 23Na and 85Rb are calculated by the Numerov and semiclassical method with two kinds of interatomic potentials, which are the interpolation potential and Lennard—Jones potential (LJ12,6) by the same phase Φ. Shape resonances appear clearly in the l = 5 partial waves for the a3 Σ+u state. Moreover, the s-wave scattering cross section, total cross section and energy positions of shape resonances are also discussed.

  15. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  16. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  17. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  18. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  19. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data. PMID:25921499

  20. Optical properties and size distribution of the nanocolloids made of rare-earth ion-doped NaYF4

    NASA Astrophysics Data System (ADS)

    Patel, Darayas N.; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wessley, Dennis; Sarkisov, Sergey; Darwish, Abdalla M.

    2015-03-01

    In this paper we investigate optical properties and size distribution of the nano-colloids made of trivalent rare-earth ion doped fluorides: holmium and ytterbium, thulium and ytterbium, and erbium and ytterbium co-doped NaYF4. These materials were synthesized by using simple co-precipitation synthetic method. The initially prepared micro-crystals had very weak or no visible upconversion fluorescence signals when being pumped with a 980-nm laser. The fluorescence intensity significantly increased after the crystals were annealed at a temperature of 400°C - 600°C undergoing the transition from cubic alpha to hexagonal beta phase of the fluoride host. Nano-colloids of the crystals were made in polar solvents using the laser ablation and ball milling methods. Size analyses of the prepared nano-colloids were conducted using a dynamic light scatterometer and atomic force microscope. The nano-colloids were filled in holey PCFs and their fluorescent properties were studied and the feasibility of new a type of fiber amplifier/laser was evaluated.

  1. Liquids in multiorbital SU(N) magnets made up of ultracold alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Xu, Cenke

    2010-04-01

    In this work we study one family of liquid states of k -orbital SU(N) spin systems, focusing on the case of k=2 which can be realized by ultracold alkaline-earth atoms trapped in optical lattices, with N as large as 10. Five different algebraic liquid states with selectively coupled charge, spin, and orbital quantum fluctuations are considered. The algebraic liquid states can be stabilized with large enough N and the scaling dimension of physical order parameters is calculated using a systematic 1/N expansion. The phase transitions between these liquid states are also studied and all the algebraic liquid states discussed in this work can be obtained from one “mother” state with SU(2)×U(1) gauge symmetry.

  2. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  3. A Comparison of Atomic Oxygen Degradation in Low Earth Orbit and in a Plasma Etcher

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Park, Gloria

    1997-01-01

    In low Earth orbit (LEO) significant degradation of certain materials occurs from exposure to atomic oxygen (AO). Orbital opportunities to study this degradation for specific materials are limited and expensive. While plasma etchers are commonly used in ground-based studies because of their low cost and convenience, the environment produced in an etcher chamber differs greatly from the LEO environment. Because of the differences in environment, the validity of using etcher data has remained an open question. In this paper, degradation data for 22 materials from the orbital experiment Evaluation of Oxygen Interaction with Materials (EOIM-3) are compared with data from EOIM-3 control specimens exposed in a typical plasma etcher. This comparison indicates that, when carefully considered, plasma etcher results can produce order-of-magnitude estimates of orbital degradation. This allows the etcher to be used to screen unacceptable materials from further, more expensive tests.

  4. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  5. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  6. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, J.B.; Sinha, S.P.; Kosynkin, V.D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  7. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  8. Low Earth orbital atomic oxygen environmental simulation facility for space materials evaluation

    NASA Technical Reports Server (NTRS)

    Stidham, Curtis R.; Banks, Bruce A.; Stueber, Thomas J.; Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.

    1993-01-01

    Simulation of low Earth orbit atomic oxygen for accelerated exposure in ground-based facilities is necessary for the durability evaluation of space power system component materials for Space Station Freedom (SSF) and future missions. A facility developed at the National Aeronautics and Space Administrations's (NASA) Lewis Research Center provides accelerated rates of exposure to a directed or scattered oxygen beam, vacuum ultraviolet (VUV) radiation, and offers in-situ optical characterization. The facility utilizes an electron-cyclotron resonance (ECR) plasma source to generate a low energy oxygen beam. Total hemispherical spectral reflectance of samples can be measured in situ over the wavelength range of 250 to 2500 nm. Deuterium lamps provide VUV radiation intensity levels in the 115 to 200 nm range of three to five equivalent suns. Retarding potential analyses show distributed ion energies below 30 electron volts (eV) for the operating conditions most suited for high flux, low energy testing. Peak ion energies are below the sputter threshold energy (approximately 30 eV) of the protective coatings on polymers that are evaluated in the facility, thus allowing long duration exposure without sputter erosion. Neutral species are expected to be at thermal energies of approximately .04 eV to .1 eV. The maximum effective flux level based on polyimide Kapton mass loss is 4.4 x 10 exp 6 atoms/((sq. cm)*s), thus providing a highly accelerated testing capability.

  9. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  10. Collisions of Sodium Atoms with Liquid Glycerol: Insights into Na Atom Solvation and Ionization and the Reactions of Near-Interfacial Electrons

    NASA Astrophysics Data System (ADS)

    Nathanson, Gilbert

    2014-03-01

    Over the last 70 years, thousands of reactions between solvated electrons and dissolved species have been investigated in water and other protic solvents. Electrons born at the surface of the solvent, however, may react differently than those created within it. We have explored this interfacial reactivity by directing sodium atoms at the surface of liquid glycerol in vacuum. Gas-liquid scattering experiments show that electrons generated from the Na atoms produce hydrogen atoms and hydrogen molecules, hydroxide ions and water, and glycerol fragments. Remarkably, nearly half the hydrogen atoms created near the surface escape into vacuum before reacting with the solvent. Complementary ab initio molecular dynamics simulations of Na striking a 17-molecule glycerol cluster indicate that the glycerol hydroxyl groups reorient around the Na atom as it makes contact with the cluster and begins to ionize on the picosecond timescale. The experiments and simulations together indicate that Na-atom deposition provides a low-energy pathway for generating solvated electrons in the near-interfacial region of protic liquids.

  11. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb)

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Wilkins, Branford O.; Chance, W. Michael; Smith, Mark D.; zur Loye, Hans-Conrad

    2016-01-01

    Crystals of Na2ScSiO4(OH) and Na2YbSiO4(OH) were synthesized at low temperatures using a sodium hydroxide based hydroflux, while crystals of NaLaSiO4 and NaYbSiO4 were grown at high temperatures using a sodium fluoride/sodium chloride eutectic flux. Both structure types were crystallized under reaction conditions that, when used for medium sized rare earths (RE = Pr, Nd, Sm - Tm) yield the Na5RE4X[SiO4]4 structure type, where X is OH in the hydroflux conditions and F in the eutectic flux conditions. Herein, we report the synthesis, structure, size effect, and magnetic properties of these compositions and introduce the new structure type of Na2RESiO4(OH), which crystallizes in the orthorhombic space group Pca21, of NaLaSiO4, which crystallizes in the orthorhombic space group Pna21, and of NaYbSiO4, which crystallizes in the orthorhombic space group Pnma, where both NaRESiO4 compounds have one silicon structural analog.

  12. Towards an atomic realization of the kilogram: The measurements of NA and NAh

    NASA Astrophysics Data System (ADS)

    Becker, P.

    2008-10-01

    An improved attempt of several national metrology institutes toreplace the present definition of the kilogram with the mass of acertain number of 12C atoms is described. This requires thedetermination of the Avogadro constant, NA, via the silicon routewith a relative uncertainty better than 2.10-8.Previously, the limiting factor is the measurement of the averagemolar mass. Consequently, a world-wide collaboration has been setup, to produce, approximately, 5 kg of ^{28}Si single-crystal withan enrichment factor greater than 99.985% to be used for animproved determination of NA. The first successful tests of alltechnological steps (enrichment of SiF4, purification and synthesisof silane, deposition of polycrystalline ^{28}Si , single crystalgrowth) for the production of high-purity ^{28}Si are described.

  13. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K.

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984)×1016at./cm2s at an oxygen pressure of 1.5Pa and rf power of 400W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  14. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  15. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    PubMed

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal. PMID:17979410

  16. Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Chu, Xinzhao; Gardner, Chester S.; Carrillo-Sánchez, Juan D.; Feng, Wuhu; Plane, John M. C.; Nesvorný, David

    2015-01-01

    downward fluxes of Fe and Na, measured near the mesopause with the University of Colorado lidars near Boulder, and a chemical ablation model developed at the University of Leeds, are used to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 17,200 ± 2800 atoms/cm2/s, which equals 298 ± 47 kg/d for the global input of Na vapor and 150 ± 38 t/d for the global influx of cosmic dust. The global mean Fe influx is 102,000 ± 18,000 atoms/cm2/s, which equals 4.29 ± 0.75 t/d for the global input of Fe vapor.

  17. Influence of rare-earth ions on SiO{sub 2}-Na{sub 2}O-RE{sub 2}O{sub 3} glass structure.

    SciTech Connect

    Johnson, J. A.; Benmore, C. J.; Holland, D.; Du, J.; Beuneu, B.; Mekki, A.

    2011-01-27

    Praseodymium and europium sodium silicate glasses of nominal composition (SiO{sub 2}){sub 0.70-x}(Na{sub 2}O){sub 0.30}(RE{sub 2}O{sub 3}){sub x}, where RE is the rare earth and 0 {le} x {le} 0.10, were studied by neutron and high-energy x-ray scattering and classical molecular dynamics simulations. The observation of a significant x-ray intensity in doped as compared to un-doped glasses is indicative of RE-RE correlations at a distance of {approx} 3.7-3.9 {angstrom}, much shorter than would be expected for a homogeneous distribution, suggesting that clustering of the rare-earth cations occurs in both these glass systems at low concentrations. Above x = 0.075 (nominal), minimal changes in this region indicate that the RE atoms are incorporated much more randomly into the glass structure. The molecular dynamics simulations suggest that the rare-earth ions enter the sodium-rich regions in the sodium silicate glasses and act as modifiers. A cluster analysis performed on the model systems indicates that the tendency for clustering is higher in praseodymium-containing glasses than in the europium glasses.

  18. Isotropic and anisotropic shear velocity model of the NA upper mantle using EarthScope data

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Clouzet, P.; French, S. W.; Yuan, H.; Romanowicz, B. A.

    2013-12-01

    The EarthScope TA deployment has provided dense array coverage across the continental US and with it, the opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in the continent. Building upon our previous work, we present a new 3D isotropic, radially and azimuthally anisotropic shear wave model of the North American (NA) lithospheric mantle, using full waveform tomography and shorter-period (40 s) waveform data. Our isotropic velocity model exhibits pronounced spatial correlation between major tectonic localities of the eastern NA continent, as evidenced in the geology, and seismic anomalies, suggesting recurring episodes of tectonic events not only are well exposed at the surface, but also leave persistent scars in the continental lithosphere mantle, marked by isotropic and radially anisotropic velocity anomalies that reach as deep as 100-150 km. In eastern North America, our Vs images distinguish the fast velocity cratonic NA from the deep rooted large volume high velocity blocks which are east of the continent rift margin and extend 200-300 km offshore into Atlantic. In between is a prominent narrow band of low velocities that roughly follows the south and eastern Laurentia rift margin and extends into New England. The lithosphere associated with this low velocity band is thinned likely due to combined effects of repeated rifting processes along the rift margin and northward extension of the Bermuda low-velocity channel across the New England region. Deep rooted high velocity blocks east of the Laurentia margin are proposed to represent the Proterozoic Gondwanian terranes of pan-African affinity, which were captured during the Rodinia formation but left behind during the opening of the Atlantic Ocean. The anisotropy model takes advantage of the up-to-date SKS compilation in the continent and new splitting results from Greenland. The new joint waveform and SKS splitting data inversion is carried out with a 2

  19. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  20. Charge transfers from Na atom in (H2O)n clusters and in water solution

    NASA Astrophysics Data System (ADS)

    Nozue, Takeshi; Hoshino, Junichi; Tsumuraya, Kazuo

    2006-03-01

    The charge state of sodium ions in water is an essential issue in both biophysical and physicochemical areas. Although the nominal charge state of sodium is +1 in water solution, the true charge is less than unity and will depend on the environments. We clarify the true charges states with ab initio density functional methods. There have been several methods to evaluate the charges that belong to each atom in molecules: Bader analysis divides up into regions where the dividing surfaces are at a minimum in the density. [1] The Bader charge analysis [2] has difficulty of finding all the critical points around the atom. Henkelman et al. have proposed a modified partition scheme. [3] We use a modified version of the Henkelman's scheme to integrate the core charge densities separately. The method gives the charge transfer from Na to H2O to be 0.167e and that to (H2O)2 to be 0.522e. The original Bader charge scheme gives 0.156e and 0.596e respectively. We present the transfers surrounded by a large number of water molecules and those in water solution in periodic system. [1]R.F.W.Bader, Atoms in Molecules: A Quantum Theory, Clarendon:Oxford. 1990. [2]C.F.Guerra, et al., J.Comp.Chem. 25, 189(2003). [3]G.Henkelman, et al., Comp. Mat. Sci. in press.

  1. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    SciTech Connect

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  2. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4 s 2) and Sr(5 s 2) atoms

    NASA Astrophysics Data System (ADS)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-01

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular ( l = | m| = n-1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ~ n-1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau-Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li( nlm) atom with given principal n, orbital l = n-1, and magnetic m quantum numbers at thermal collisions with the Ca(4 s 2) and Sr(5 s 2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l ( l ≪ n).

  3. Atom interferometry using Bose-Einstein condensates on Earth and in space

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Leonard, R. H.; Fallon, A.

    2015-03-01

    The Cold Atom Laboratory is a multipurpose ultracold gas experiment currently being developed for operation on the international space station. It will have the ability to demonstrate proof-of-principle atom interferometry experiments in space. By using microgravity, atom interferometry has the potential to achieve extremely good performance in sensing and navigation applications. Terrestrial experiments can be used to explore potential challenges and prior to launch. One issue of concern is the release of cold atoms from a magnetic trap into free space. Although the atoms will not fall, they can acquire relatively large velocities due to technical limitations such as stray magnetic fields. This can limit the time available for measurements and thus the atom interferometer performance.

  4. Resonant Rydberg Dressing of Alkaline-Earth Atoms via Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Gaul, C.; DeSalvo, B. J.; Aman, J. A.; Dunning, F. B.; Killian, T. C.; Pohl, T.

    2016-06-01

    We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay, and strong Rydberg-Rydberg atom interactions leads to the emergence of sizable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.

  5. Resonant Rydberg Dressing of Alkaline-Earth Atoms via Electromagnetically Induced Transparency.

    PubMed

    Gaul, C; DeSalvo, B J; Aman, J A; Dunning, F B; Killian, T C; Pohl, T

    2016-06-17

    We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay, and strong Rydberg-Rydberg atom interactions leads to the emergence of sizable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms. PMID:27367387

  6. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  7. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump. PMID:25269316

  8. High intensity 5 eV atomic oxygen source and Low Earth Orbit (LEO) simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Spangler, L. H.; Hoffbauer, M. A.; Archuleta, F. A.; Leger, Lubert; Visentine, James

    1987-01-01

    An atomic oxygen exposure facility has been developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in LEO. The studies that are being undertaken using the facility will provide: absolute reaction cross sections for use in engineering design problems; formulations of reaction mechanisms; and calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in LEO to ground based investigations. The facility consists of: (1) a CW laser sustained discharge source of O atoms having a variable energy up to 5 eV and an intensity between 10(15) and 10(17) O atoms s(-1) cm(-2); (2) an atomic beam formation and diagnostics system consisting of various stages of differential pumping, a mass spectrometer detector, and a time of flight analyzer; (3) a spinning rotor viscometer for absolute O atom flux measurements; and (4) provision for using the system for calibration of actual flight instruments. Surface analysis equipment is available for the characterization of material surfaces before and after exposure to O atoms.

  9. Storage of images in atomic coherences in a rare-earth-ion-doped solid

    SciTech Connect

    Heinze, G.; Rudolf, A.; Beil, F.; Halfmann, T.

    2010-01-15

    We report on storage of images in atomic coherences driven by electromagnetically induced transparency in a doped solid. We demonstrate image storage times up to the regime of milliseconds (i.e., more than two orders of magnitude larger than in gaseous media). Our data also reveal an improvement in the spatial resolution of the retrieved images by a factor of 40. The long storage times become possible by applying additional radio frequency pulse sequences to drive rephasing of the atomic coherences. Moreover, the perturbing effect of atomic diffusion (which significantly limits image storage times in gases) is absent in the solid. In addition, we monitored pronounced oscillations in the intensity of the retrieved image versus the storage time. These oscillations are due to the beating of dark-state polaritons. All of these results demonstrate the superior properties of coherently driven optical data storage in solids.

  10. Mental models or methodological artefacts? Adults' 'naïve' responses to a test of children's conceptions of the earth.

    PubMed

    Nobes, Gavin; Panagiotaki, Georgia

    2009-05-01

    Vosniadou and Brewer (1992) claim that children's drawings and answers to questions show that they have naive, theory-like 'mental models' of the earth; for example, they believe it to be flat, or hollow with people inside. However, recent studies that have used different methods have found little or no evidence of these misconceptions. The contrasting accounts, and possible reasons for the inconsistent findings, were tested by giving adults (N = 484) either the original task (designed for 5-year olds) or a new version in which the same drawing instructions and questions were rephrased and clarified. Many adults' responses to the original version were identical to children's 'naïve' drawings and answers. The new version elicited substantially fewer non-scientific responses. These findings indicate that even adults find the original instructions and questions ambiguous and confusing, and that this is the principal reason for their non-scientific drawings and answers. Since children must find the task even more confusing than adults, this explanation very probably applies to many of their non-scientific responses, too, and therefore accounts for the discrepant findings of previous research. 'Naïve' responses result largely from misinterpretation of Vosniadou and Brewer's apparently simple task, rather than from mental models of the earth. PMID:18680639

  11. Pressure effects on hydrogen atoms near the metal plane in the HCP phase of rare-earth metal trihydrides

    NASA Astrophysics Data System (ADS)

    Tunghathaithip, N.; Pakornchote, T.; Phaisangittisakul, N.; Bovornratanaraks, T.; Pinsook, U.

    2016-04-01

    Rare-earth metal trihydrides, REH3 (RE=Sc, Y, La), in the hcp phase were investigated under high pressure by the ab initio method. We concentrated on the behavior of hydrogen atoms which is affected by pressure. Two-thirds of the hydrogen atoms near the metal plane (Hm) were found to displace away from the metal plane as pressure increases. The trajectory of these squeezed hydrogen atoms is from a site near the metal plane, and moves past the plane of the tetragonal sites, and heads toward the nearest octahedral site. However, the rate of displacement depends on the local environment. LaH3 exhibits the least impediment on the Hm displacement while YH3 and ScH3 exhibit stronger impediment. Furthermore, our calculated Raman and IR active modes are in general agreement with the experimental data. The displacement of Hm can be used to explain the behavior of the Ov peak in Raman spectra, where it exists at low pressure and disappears at higher pressure in YH3 and ScH3.

  12. Laboratory simulations of energetic atom interactions occurring in low earth orbit

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1989-01-01

    The Space Shuttle flights provided the first significant data base on the environment experienced by a large space structure operating in LEO. A number of interesting and unanticipated effects were observed, including material erosion induced by ambient oxygen atoms, the visible Shuttle glow occurring above surfaces exposed to the ram flow, and large near-field perturbations and variability in the gaseous neutral and plasma environment about the Shuttle. This paper provides a brief overview of these observations and their phenomenological interpretation, and then discusses laboratory approaches to their investigation. The emphasis is on the state of the art in the development of energetic oxygen atoms sources and the variety of experiments presently being performed with such devices.

  13. Isomorphic Properties of Atoms, Molecules, Water, DNA, Crystals, Earth, SolarSystem and Galaxies

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Gareeva, G. F.; Zhidkova, I. E.

    2009-03-01

    We discuss the cooperative resonance synchronization enhancement mechanisms of Low Energy Nuclear Reactions (LENR). Some of the low energy external fields can be used as triggers for starting and enhancing exothermic LENR. Any external field shortening distances between protons in nuclei and electrons in atoms should enhance beta-decay (capture) or double-beta decay (capture). We have proposed a new mechanism of LENR: cooperative resonance synchronization processes in the whole system nuclei+atoms+condensed matter+gaseuos+plasma medium, which we suggest can occur at a smaller threshold than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy, and transmutations at LENR are the result of redistribution inner energy of the whole system.

  14. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.

    PubMed

    Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi; Nishikawa, Heisuke; Hitomi, Shuji; Okuyama, Ryoichi; Usui, Ryo; Yamada, Yasuhiro; Komaba, Shinichi

    2012-06-01

    Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials, such as LiMn(2)O(4) and LiFePO(4), are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth's crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g(-1). Herein, we report a new electrode material, P2-Na(2/3)[Fe(1/2)Mn(1/2)]O(2), that delivers 190 mAh g(-1) of reversible capacity in the sodium cells with the electrochemically active Fe(3+)/Fe(4+) redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature. PMID:22543301

  15. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    PubMed Central

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  16. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.

    PubMed

    Bonnes, Lars; Hazzard, Kaden R A; Manmana, Salvatore R; Rey, Ana Maria; Wessel, Stefan

    2012-11-16

    Ultracold fermionic alkaline earth atoms confined in optical lattices realize Hubbard models with internal SU(N) symmetries, where N can be as large as ten. Such systems are expected to harbor exotic magnetic physics at temperatures below the superexchange energy scale. Employing quantum Monte Carlo simulations to access the low-temperature regime of one-dimensional chains, we show that after adiabatically loading a weakly interacting gas into the strongly interacting regime of an optical lattice, the final temperature decreases with increasing N. Furthermore, we estimate the temperature scale required to probe correlations associated with low-temperature SU(N) magnetism. Our findings are encouraging for the exploration of exotic large-N magnetic states in ongoing experiments. PMID:23215502

  17. Atomic oxygen effects on SiO(x) coated Kapton for photovoltaic arrays in low earth orbit

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Olle, Raymond M.; Cooper, Jill M.

    1991-01-01

    Commercially applied SiOx was evaluated as a protective coating for the polyimide Kapton solar array blankets for Space Station Freedom. Three different rolls of coated material were tested in a plasma asher to determine their durability to attack by atomic oxygen. Mass loss data indicated that all of the coatings tested would structurally survive for 15 years in LEO (low earth orbit), except for one which had several uncoated lines across the sample which were caused by ridgelanes in the Kapton. It appears that the size rather than number of defects alone effects the mass loss the most. Careful handling of the material after coating and during processing may be critical for array survival.

  18. Muonium in stishovite: implications for the possible existence of neutral atomic hydrogen in the earth's deep mantle.

    PubMed

    Funamori, Nobumasa; Kojima, Kenji M; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  19. Ionic conductivity of alkaline (Li 2O, Na 2O) and alkaline-earth (BaO) borates in crystallization (vitrification) region

    NASA Astrophysics Data System (ADS)

    Solntsev, V. P.; Davydov, A. V.

    2011-11-01

    In this paper we report the existence of abnormal behavior of electric properties of alkaline (Li 2O,Na 2O) and alkaline-earth (BaO) borate in the melt—a crystal (glass) transition region. Results of measurement of conductivity in the mentioned interval evidence the existence of a strong variation of electric properties depending on the concentration of alkaline and alkaline-earth ions. The reasons of such behavior are discussed.

  20. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  1. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  2. Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaan-1/Sub-keV Atom Reflecting Analyzer instrument

    NASA Astrophysics Data System (ADS)

    Harada, Yuki; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Bhardwaj, Anil; Asamura, Kazushi; Saito, Yoshifumi; Yokota, Shoichiro; Tsunakawa, Hideo; Machida, Shinobu

    2014-05-01

    We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ˜100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <˜0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ˜50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.

  3. Rare earth-modified kaolin/NaY-supported Pd-Pt bimetallic catalyst for the catalytic combustion of benzene.

    PubMed

    Zuo, Shufeng; Sun, Xuejie; Lv, Ningning; Qi, Chenze

    2014-08-13

    A new type of porous kaolin/NaY composite (KL-NY) with a large specific surface area and large pore sizes was synthesized through a one-step crystallization process, and rare earth-modified KL-NY-supported Pd-Pt catalysts were studied for benzene combustion. The results indicated that the pore volume and specific surface area of KL-NY after calcination and crystallization were 0.298 cm(3)/g and 365 m(2)/g, respectively, exhibiting appropriate pore structure and good thermal stability. Catalysts with rare earth metals greatly enhanced the activity of Pd/KL-NY, and the addition of Pt and Ce into the Pd catalyst improved the catalytic activity as well as the stability. The catalyst with an optimal Ce content and Pt/Pd molar ratio (0.2%Pd-Pt (6:1)/6%Ce/KL-NY) demonstrated the best activity for the complete oxidation of benzene at 230 °C, and the catalyst above maintained the 100% benzene conversion for 960 h. PMID:25057756

  4. An Experiment to Study Sporadic Atom Layers in the Earth's Mesosphere and Lower Thermosphere (SAL)

    NASA Technical Reports Server (NTRS)

    Kelley, Michael C.

    1999-01-01

    The Sudden Atom Layer (SAL) Rocket was successfully launched in February 1998. All instruments worked well except those supplied by NASA Goddard Space Flight Center. (A dummy weight was launched for the neutral mass spectrometer and the ion version died shortly after lift-off.) A paper has already been published in GRL concerning the dust layer detected by an on board instrument and compared to ground-based observations made at the Arecibo Observatory by Cornell graduate student S. Collins (lidar) and Q. Zhou (radar). Collins presented a comparison of the sodium lidar data and onboard observations with a theoretical model by Plane and Cox at the Fan AGU Meeting. In addition Gelinas and Kelley presented a review paper dealing with the entire SAL instrument complement at the same meeting. An unexpected new explanation for the outer scale of E region plasma irregularities has come out of the data set. We anticipate at least a total of four papers will be published within a year of launch.

  5. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  6. A Potential Hydrogen-Storage Media: C2H4 and C5H5 Molecules Doped with Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Lei, Hong-Wen; Zhang, Hong; Gong, Min; Wu, Wei-Dong

    2012-12-01

    Using first-principles calculations, we predict that a single C2H4 or C5H5 molecule can form a stable complex with two rare earth metals such as La, Eu, and Ho. The La2C2H4 complex then absorbs up to sixteen hydrogen molecules, reaching a gravimetric storage capacity of 9.5wt% by adding a rare-earth metal atom, The results show that Eu-4f electrons have little impact on the hydrogen adsorption. The nature of bonding between Eu and H2 is due to the hybridization of Eu-5d with the H-1s orbital.

  7. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ün, Adem; Han, Ibrahim; Ün, Mümine

    2016-04-01

    Effective atomic (Zeff) and electron numbers (Neff) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Zeff and Neff for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  8. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  9. Magic-wave-induced {sup 1}S{sub 0}-{sup 3}P{sub 0} transition in even isotopes of alkaline-earth-metal-like atoms

    SciTech Connect

    Ovsiannikov, Vitaly D.; Pal'chikov, Vitaly G.; Taichenachev, Alexey V.; Yudin, Valeriy I.; Katori, Hidetoshi; Takamoto, Masao

    2007-02-15

    The circular polarized laser beam of the 'magic' wavelength may be used for mixing the {sup 3}P{sub 1} state into the long-living metastable state {sup 3}P{sub 0}, thus enabling the strictly forbidden {sup 1}S{sub 0}-{sup 3}P{sub 0} 'clock' transition in even isotopes of alkaline-earth-metal-like atoms, without a change of the transition frequency. In odd isotopes the laser beam may adjust to an optimum value the linewidth of the clock transition, originally enabled by the hyperfine mixing. We present a detailed analysis of various factors influencing resolution and uncertainty for an optical frequency standard based on atoms exposed simultaneously to the lattice standing wave and an additional 'state-mixing' wave, including estimations of the 'magic' wavelengths, Rabi frequencies for the clock and state-mixing transitions, ac Stark shifts for the ground and metastable states of divalent atoms.

  10. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  11. ATOMIC AND MOLECULAR PHYSICS: Interference Angle on Quantum Rotational Energy Transfer in Na + Na2 (A1 Σ+u, v = 8 ~ b3п0u, v = 14) Molecular Collision System

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Li; Miao, Gang; Li, Jian; Ma, Feng-Cai

    2009-12-01

    In order to study the collisional quantum interference (CQI) on rotational energy transfer in atom-diatom system, we have studied the relation of the integral interference angle and differential interference angle in Na + Na2 (A1 σ+u, v = 8 ~ b3п0u, v = 14) collision system. In this paper, based on the first-Born approximation of time-dependent perturbation theory and taking into accounts the anisotropic effect of Lennard-Jones interaction potentials, we present a theoretical model of collisional quantum interference in intramolecular rotational energy transfer, and a relationship between differential and integral interference angles.

  12. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  13. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    NASA Astrophysics Data System (ADS)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  14. Stability of the MgSiO[supscript 3] analog NaMgF[subscript 3] and its implication for mantle structure in super-Earths

    SciTech Connect

    Grocholski, B.; Shim, S.-H.; Prakapenka, V.B.

    2010-08-27

    First-principles calculations on MgSiO{sub 3} suggested a breakdown into MgO + SiO{sub 2} at pressure above 1000 GPa with an extremely large negative Clapeyron slope, isolating the lowermost mantles of larger super-Earths ({approx}10M{direct_sum}) from convection. Similar calculations predicted the same type of breakdown in NaMgF{sub 3} to NaF + MgF{sub 2} at 40 GPa, allowing for experimental examination. We found that NaMgF{sub 3} is stable to at least 70 GPa and 2500 K. In our measurements on MgF{sub 2} (an SiO{sub 2} analog), we found a previously unidentified phase ('phase X') between the stability fields of pyrite-type and cotunnite-type (49-53 GPa and 1500-2500 K). A very small density increase (1%) at the pyrite-type {yields} phase X transition would extend the stability of NaMgF{sub 3} relative to the breakdown products. Furthermore, because phase X appears to have a cation coordination number intermediate between pyrite-type (6) and cotunnite-type (9), entropy change ({Delta}S) would be smaller at the breakdown boundary, making the Clapeyron slope (dP/dT = {Delta}S/{Delta}V) much smaller than the prediction. If similar trend occurs in MgSiO{sub 3} and SiO{sub 2}, the breakdown of MgSiO{sub 3} may occur at higher pressure and have much smaller negative Clapeyron slope than the prediction, allowing for large-scale convection in the mantles of super-Earth exoplanets.

  15. Determination of yttrium and rare-earth elements in rocks by graphite-furnace atomic-absorption spectrometry.

    PubMed

    Gupta, J G

    1981-01-01

    With use of synthetic solutions and several international standard reference materials a method has been developed for determining traces of Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in rocks by electrothermal atomization in a pyrolytically-coated graphite furnace. Depending on the element, the sensitivity is of the order of 10(-9)-10(-12) g at 2500 degrees . To avoid matrix interferences the lanthanides are separated from the common elements by co-precipitation with calcium and iron as carriers. The data for Canadian reference rock SY-2 (syenite), U.S.G.S. reference rocks W-2 (diabase), DNC-1 (diabase) and BIR-1 (basalt), and South African reference rock NIM-18/69 (carbonatite) obtained by graphite-furnace atomization are compared with the values obtained by flame atomic-absorption. The results are in good agreement with literature values. PMID:18962852

  16. Neutron diffraction study of the atomic structure of cubic sodium-tungsten bronze (Na{sub 0.69}WO{sub 3}) single crystal

    SciTech Connect

    Isakov, I. V. Kalyukanov, A. I.; Volkov, V. L.; Ozerov, R. P.; Fykin, L. E.

    2011-05-15

    The atomic structure of a single crystal of one of four Na{sub 0.69}WO{sub 3} phases, which exist below 293 K, has been refined from neutron diffraction data (WWR-c reactor at the Karpov Institute of Physical Chemistry, Obninsk Branch; {lambda} = 1.168 Angstrom-Sign ; {lambda}/2 contribution < 0.8%; sin{theta}/{lambda} {<=} 0.810; T = 288 K; crystal sphere Empty-Set = 4.4 mm; cubic unit cell with a = 7.672 Angstrom-Sign , sp. gr. Im3, z = 8, {mu} = 1.9 mm{sup -1}). The Na{sub 0.69}WO{sub 3} atomic structure has been refined (198 independent reflections) taking into account the anisotropy of thermal vibrations (R{sub w} = 4.0%). The stoichiometric coefficient Na(0.69) is also refined. A structural distortion is revealed, which is characterized by the displacement of oxygen atoms (0, 0.2609(2), 0.2391(2)) from the ideal perovskite positions (0, 1/4, 1/4); this displacement doubles the ideal perovskite lattice period. The oxygen displacements can be described as rotations of oxygen octahedra by 3.58 Degree-Sign around the [111] direction. The structure remains cubic because the octahedra rotations with respect to all three perovskite cubic axes are identical.

  17. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    PubMed

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN < 0 N-heteroaromatics. It further revealed that QN was well-matched in the prediction of salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN < 0 and with Cl(-) for QN > 0. PMID:26490915

  18. Effect of γ-radiation on thermoluminescence in rare earths doped NaMgSO4Cl material

    NASA Astrophysics Data System (ADS)

    Choubey, S. R.; Gedam, S. C.; Dhoble, S. J.

    2015-01-01

    The thermoluminescence (TL) characteristics, effect of γ-radiation on NaMgSO4Cl: X (X = Tb; Ce, Tb; Dy; Dy, Eu) and trapping parameters in TL material prepared by wet chemical synthesis (WCS) method are studied. The intensity of these phosphors is compared with TLD CaSO4: Dy phosphor. The phosphor has a simple TL glow curve structure. The phosphors NaMgSO4Cl: Tb (between the range of 257-284°C); NaMgSO4Cl: Dy (173°C) and NaMgSO4Cl: Dy, Eu (156°C) have a single prominent peak, whereas NaMgSO4Cl: Ce, Tb has two peaks located at 154°C and 233°C indicating single and double trapping sites, respectively. It is found that intensity tends to be increase with increased concentrations of the activators. The TL glow curves of the phosphors have been recorded and irradiated at a rate of 0.99 kGyh-1 for 5 Gy γ-rays dose. The paper also discusses the kinetic parameters evaluated by Chen's half width method such as activation energy E (eV) and frequency factor S (s-1).

  19. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  20. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    NASA Astrophysics Data System (ADS)

    Davis, Barry M.; McCaffrey, John G.

    2016-01-01

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ṡ RG ground state interaction potentials. The y1P←a1S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ṡ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm-1). All of the M ṡ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  1. Experimental limits on the velocities of sodium atoms sputtered from solid surfaces by hydrogen ions. [Na cloud production around Io

    NASA Technical Reports Server (NTRS)

    Stoner, J. O., Jr.

    1976-01-01

    Optical emission at 589.0 nm by sodium atoms sputtered from solid targets by hydrogen molecular ions was observed, and no accompanying broadening or shifts of this line could be detected relative to that from a laboratory lamp. This allowed an upper limit of about 500,000 cm/sec on the mean speed of ejected sodium atoms to be calculated. The results are consistent with the hypothesis that the atomic sodium cloud surrounding Io is produced by this mechanism.

  2. Interactions of atomic oxygen with material surfaces in low Earth orbit: Preliminary results from experiment A0114

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Christl, Ligia C.; Raikar, Ganesh N.; Weimer, J. J.; Wiser, R.; Peters, Palmer N.

    1992-01-01

    The atomic oxygen experiment consisted of two trays (one-sixth of a Long Duration Exposure Facility (LDEF) tray each) of 64 one inch diameter solid samples. It was intended that the effects of atomic oxygen and solar ultraviolet irradiation on the surface properties of each material could be distinguished from each other and from the effects of aging. Sixteen of the samples were placed on a thermally isolated plate of highly polished aluminum, while the main plate was coated with the thermal control coating S13-GLO. Though the experiment was entirely passive, it was hoped that the effects of thermal activation might be observed, if present. The plates were expected to stabilize at temperatures differing by 20-30 C. The samples included thin films of metals Os, Ir, Pt, Ni, Mo, and Al coated onto silica optical flats, metal carbides (WC, SiC), solid carbons of various types, eight polymers, and some other coatings of various types. Analysis is essentially complete using stylus profilometry with high sensitivity Talystep and lower sensitivity Talysurf machines. Though the integrated fluence of O atoms on the LDEF was 30 times that of previous missions, etch depths of the polymers such as the polyimide Kapton show excellent agreement with extrapolations from previous flight data. However, some new effects were observed. We demonstrated on a previous experiment on STS-8 that profilometry of this kind can show steps of 50 A (for example those due to oxide film growth on metals) and this is now the preferred method for estimating etch depth (or mass loss) of erodible substances.

  3. Luminescence properties of Eu-activated alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}

    SciTech Connect

    Wang, Jing; Huang, Yanlin; Wang, Xigang; Qin, Lin; Seo, Hyo Jin

    2014-07-01

    Highlights: • A novel yellow-emitting alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was first developed. • Under excitation with UV or near UV light the silicate presents broad emission band centered at 580 nm. - Abstract: Yellow-emitting phosphors of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was prepared by wet chemistry sol–gel method. X-ray powder diffraction and SEM measurements were applied to characterize the structure and morphology, respectively. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve (lifetimes), CIE coordinates and the internal quantum efficiencies. The excitation spectra can match well with the emission light of near UV-LED chips (360–400 nm). Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} presents a symmetric emission band from 4f{sup 6}5d{sup 1} ⟶ 4f{sup 7}({sup 8}S{sub 7/2}) transitions of Eu{sup 2+} ions on doping below 3.0 mol%. On increasing Eu-doping levels, the sample contains two kinds of emission centers, i.e., Eu{sup 2+} and Eu{sup 3+} ions, which present the characteristic broad band (5d ⟶ 4f) and narrower (4f ⟶ 4f) luminescence lines, respectively. The energy transfer, the luminescence thermal stability (activation energy ΔE for thermal quenching) and luminescence mechanism of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} phosphors were discussed by analyzing the relationship between the luminescence characteristics and the crystal structure.

  4. Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and rare earth element ratios

    SciTech Connect

    Putirka, K.

    1999-02-01

    Mantle melting calculations are presented that place constraints on the mineralogy of the basalt source region and partial melting depths for oceanic basalts. Melting depths are obtained from pressure-sensitive mineral-melt partition coefficients for Na, Ti, Hf, and the rare earth elements (REE). Melting depths are estimated by comparing model aggregate melt compositions to natural basalts from Hawaii and the East Pacific Rise (EPR). Variations in melting depths in a peridotite mantle are sufficient to yield observed differences in Na/Ti, Lu/Hf, and Sm/Yb between Hawaii and the EPR. Initial melting depths of 95{endash}120 km are calculated for EPR basalts, while melting depths of 200{endash}400 km are calculated for Hawaii, indicating a mantle that is 300&hthinsp;{degree}C hotter at Hawaii. Some isotope ratios at Hawaii are correlated with Na/Ti, indicating vertical stratification to isotopic heterogeneity in the mantle; similar comparisons involving EPR lavas support a layered mantle model. Abundances of Na, Ti, and REE indicate that garnet pyroxenite and eclogite are unlikely source components at Hawaii and may be unnecessary at the EPR. The result that some geochemical features of oceanic lavas appear to require only minor variations in mantle mineral proportions (2{percent} or less) may have important implications regarding the efficiency of mantle mixing. Heterogeneity required by isotopic studies might be accompanied by only subtle differences in bulk composition, and material that is recycled at subduction zones might not persist as mineralogically distinct mantle components. {copyright} 1999 American Geophysical Union

  5. ESCA study of Kapton exposed to atomic oxygen in low earth orbit or downstream from a radio-frequency oxygen plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1988-01-01

    The ESCA spectra of Kapton polyimide film exposed to atomic oxygen O(3P), either in low earth orbit (LEO) on the STS-8 Space Shuttle or downstream from a radio-frequency oxygen plasma, were compared. The major difference in surface chemistry induced by the two types of exposure to O(3P), both of which caused surface recession (etching), was a much larger uptake of oxygen by Kapton etched in the O2 plasma than in LEO. This difference is attributed to the presence of molecular oxygen in the plasma reactor and its absence in LEO: in the former case, O2 can react with radicals generated in the Kapton molecule as it etches, become incorporated in the etched polymer, and thereby yield a higher steady-state 'surface oxidation' level than in LEO.

  6. Magnetocaloric effect of RM2 (R = rare earth, M = Ni, Al) intermetallic compounds made by centrifugal atomization process for magnetic refrigerator

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Asamato, K.; Nishimura, Y.; Zhu, Y.; Abe, S.; Numazawa, T.

    2012-12-01

    RM2 (R = rare earth, M = Al, Ni and Co) compounds have large entropy change and magnetic transition temperatures can be controlled by change of R and/or M so that are suitable to a magnetic refrigerator for hydrogen liquefaction under development. In order to improve refrigerator performance, spherical powdered HoAl2, DyAl2, and GdNi2 compounds with submillimeter diameter were synthesized by centrifugal atomization process. By measuring the magnetization and heat capacity, we obtained entropy change by magnetic fields and entropy as functions of temperature and magnetic field, which are essential for analysing the magnetic refrigeration cycle. All samples showed sharp magnetic transitions and had good potentials for use in magnetic refrigeration.

  7. Local atomic structure of K{sub x}Na{sub (1−x)}NbO{sub 3} by total x-ray diffraction

    SciTech Connect

    Gupta, Shashaank; Priya, Shashank; Petkov, Valeri

    2014-12-08

    Local atomic structure of K{sub x}Na{sub (1−x)}NbO{sub 3} with 0.0 ≤ x ≤ 1.0 was studied using atomic Pair Distribution Function analysis based on x-ray diffraction. Powdered crystals were found to exhibit a re-entrant behavior by being orthorhombic (Amm2) for x < 0.42, monoclinic (Pm) for 0.42 ≤ x ≤ 0.63 and again orthorhombic (Amm2) for x > 0.63. Non-centrosymmetric structure of NaNbO{sub 3} (Amm2) was also evident in the piezoresponse force microscopy analysis revealing the presence of the ferroelectric domains and switching behavior. Lowering of the crystallographic symmetry for 0.42 ≤ x ≤ 0.63 is discussed in terms of differences in the sizes of Na{sup +} and K{sup +} ions and Na–O and K–O bond lengths. Besides being a bridging phase, as suggested by the previous studies on lead-based compositions, present study suggests that lower symmetry monoclinic phase of compositionally disordered perovskite solid solutions could also be a manifestation of the difference in the sizes of constituent ions and bond lengths.

  8. Comparison between Earth-based Na observations of Mercury's exosphere by THEMIS and in-situ magnetic field measurements by MESSENGER

    NASA Astrophysics Data System (ADS)

    Mangano, Valeria; Massetti, Stefano; Milillo, Anna; Plainaki, Christina; Orsini, Stefano; Rispoli, Rosanna; Leblanc, Francois

    2015-04-01

    The Na exosphere of Mercury is being studied since its discovery in mid '80s from Earth-based telescopes, and it has revealed a high dynamicity and variability. Though the processes and inter-relations at the basis of the Hermean exosphere dynamics are not still clearly understood, there is no doubt that a connection exists among the surface, the exosphere, the intrinsic magnetic field of the body and the Interplanetary Magnetic Field (IMF), which drives the Solar Wind ions into the Mercury's magnetosphere and surface, via the magnetic reconnection. In this work we analyze our dataset of images of the exospheric Na emission, collected from 2009 to 2013 by the THEMIS ground-based telescope, to perform a comprehensive statistical study of the recurrent patterns, and their relationship with the variability of the IMF. For this purpose, we take advantage of a subset (years 2011-2013) of contemporary in situ measurements of the IMF obtained by the MAG instrument onboard the MESSENGER spacecraft. We found that the mid-high latitude double peaks is the most common Na emission pattern, supporting the view that the solar wind ion precipitation through the polar cusps has an important role in the generation of the observed Na exospheric emission. Moreover, the lack of a statistically significant North-South asymmetry seems to disfavour the idea of an asymmetric and/or shifted magnetic dipole. By analysing a subset of quasi-full disk images, we found that most of the Na emission patterns seems to occur in the pre-noon sector (53%), about 1/3 is roughly aligned along the noon meridian (36%), while only 11% takes place in the post-noon sector. Finally, the comparison with the IMF data indicates that the contribution of the IMF Bx component to the magnetic reconnection is generally weak, even if we found a noticeable correlation between positive IMB Bx and symmetric double peaks pattern. Negative IMF Bz values are usually connected with double peaks emission (likely by widening

  9. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  10. Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst

    NASA Astrophysics Data System (ADS)

    Dudnik, Alexander S.; Weidner, Victoria L.; Motta, Alessandro; Delferro, Massimiliano; Marks, Tobin J.

    2014-12-01

    Developing earth-abundant, non-platinum metal catalysts for high-value chemical transformations is a critical challenge to contemporary chemical synthesis. Dearomatization of pyridine derivatives is an important transformation to access a wide range of valuable nitrogenous natural products, pharmaceuticals and materials. Here, we report an efficient 1,2-regioselective organolanthanide-catalysed pyridine dearomatization process using pinacolborane, which is compatible with a broad range of pyridines and functional groups and employs equimolar reagent stoichiometry. Regarding the mechanism, derivation of the rate law from NMR spectroscopic and kinetic measurements suggests first order in catalyst concentration, fractional order in pyridine concentration and inverse first order in pinacolborane concentration, with C=N insertion into the La-H bond as turnover-determining. An energetic span analysis affords a more detailed understanding of experimental activity trends and the unusual kinetic behaviour, and proposes the catalyst ‘resting’ state and potential deactivation pathways.

  11. First-principles determination of the structure of NaN and NaN- clusters with up to 80 atoms.

    PubMed

    Aguado, Andrés; Kostko, Oleg

    2011-04-28

    We have performed an extensive computational search for the global minimum (GM) structures of both neutral and anionic sodium clusters with up to 80 atoms. The theoretical framework combines basin hopping unbiased optimizations based on a Gupta empirical potential (EP) and subsequent reoptimization of many candidate structures at the density functional theory level. An important technical point is that the candidates are selected based on cluster shape descriptors rather than the relative stabilities of the EP model. An explicit comparison of the electronic density of states of cluster anions to experimental photoemission spectra suggests that the correct GM structures have been identified for all but two sizes (N = 47 and 70). This comparison validates the accuracy of the proposed methodology. Furthermore, our GM structures either match or improve over the results of previous works for all sizes. Sodium clusters are seen to accommodate strain very efficiently because: (a) many structures are based on polyicosahedral packing; (b) others are based on Kasper polyhedra and show polytetrahedral order; (c) finally, some (N + 1)-atom structures are obtained by incorporating one adatom into the outermost atomic shell of a compact N-atom cluster, at the cost of increasing the bond strain. GM structures of neutrals and anions differ for most sizes. Cluster stabilities are analyzed and shown to be dominated by electron shell closing effects for the smaller clusters and by geometrical packing effects for the larger clusters. The critical size separating both regimes is around 55 atoms. Some implications for the melting behavior of sodium clusters are discussed. PMID:21528957

  12. Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy.

    PubMed

    Bruzewicz, Derek A; Checco, Antonio; Ocko, Benjamin M; Lewis, Ernie R; McGraw, Robert L; Schwartz, Stephen E

    2011-01-28

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) has been characterized using non-contact environmental atomic force microscopy (e-AFM) to measure the heights of particles deposited on a prepared hydrophobic surface. Cubic NaCl nanoparticles with sides of 35 and 80 nm were found to take up water reversibly with increasing RH well below the bulk deliquescence relative humidity (DRH) of 75% at 23(∘)C, and to form a liquid-like surface layer of thickness 2 to 5 nm, with measurable uptake (>2 nm increase in particle height) beginning at 70% RH. The maximum thickness of the layer increased with increasing RH and increasing particle size over the range studied. The liquid-like behavior of the layer was indicated by a reversible rounding at the upper surface of the particles, fit to a parabolic cross-section, where the ratio of particle height to maximum radius of curvature increases from zero (flat top) at 68% RH to 0.7 ± 0.3 at 74% RH. These observations, which are consistent with a reorganization of mass on the solid NaCl nanocrystal at RH below the DRH, suggest that the deliquescence of NaCl nanoparticles is more complex than an abrupt first-order phase transition. The height measurements are consistent with a phenomenological model that assumes favorable contributions to the free energy of formation of a liquid layer on solid NaCl due both to van der Waals interactions, which depend partly upon the Hamaker constant, A(film), of the interaction between the thin liquid film and the solid NaCl, and to a longer-range electrostatic interaction over a characteristic length of persistence, ξ; the best fit to the data corresponded to A(film)= 1 kT and ξ = 2.33 nm. PMID:21280780

  13. The use of plasma ashers and Monte Carlo modeling for the projection of atomic oxygen durability of protected polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Auer, Bruce M.; Rutledge, Sharon K.; Degroh, Kim K.; Gebauer, Linda

    1992-01-01

    The results of ground laboratory and in-space exposure of polymeric materials to atomic oxygen has enabled the development of a Monte Carlo computational model which simulates the oxidation processes of both environments. The cost effective projection of long-term low-Earth-orbital durability of protected polymeric materials such as SiO(x)-coated polyimide Kapton photovoltaic array blankets will require ground-based testing to assure power system reliability. Although silicon dioxide thin film protective coatings can greatly extend the useful life of polymeric materials in ground-based testing, the projection of in-space durability based on these results can be made more reliable through the use of modeling which simulates the mechanistic properties of atomic oxygen interaction, and replicates test results in both environments. Techniques to project long-term performance of protected materials, such as the Space Station Freedom solar array blankets, are developed based on ground laboratory experiments, in-space experiments, and computational modeling.

  14. Evolution of the atomic order and valence state of rare-earth atoms and uranium in a new carbon-metal composite—diphthalocyanine pyrolysate C64H32N16 Me ( Me = Y, La, Ce, Eu, and U)

    NASA Astrophysics Data System (ADS)

    Sovestnov, A. E.; Kapustin, V. K.; Tikhonov, V. I.; Fomin, E. V.; Chernenkov, Yu. P.

    2014-08-01

    The structure of a metal-carbon composite formed by the pyrolysis of diphthalocyanine of some rare-earth elements (Y, La, Ce, Eu) and uranium in the temperature range T ann = 800-1700°C has been investigated for the first time by the methods of X-ray diffraction analysis and X-ray line shift. It has been shown that, in the general case, the studied pyrolysates consist of three phases. One phase corresponds to the structure of graphite. The second phase corresponds to nitrides, carbides, and oxides of basic metal elements with a crystallite size ranging from 5 to 100 nm. The third phase is amorphous or consisting of crystallites with a size of ˜1 nm. It has been found that all the basic elements (Y, La, Ce, Eu, U) and incorporated iodine atoms in the third phase are in a chemically bound state. The previously unobserved electronic configurations have been revealed for europium. The possibility of including not only atoms of elements forming diphthalocyanine but also other elements (for example, iodine) in the composite structure is of interest, in particular, for the creation of a thermally, chemically, and radiation resistant metal-carbon matrix for the radioactive waste storage.

  15. Microstructual investigation of mixed rar earth iron boron processed vis melt-spinning and high-pressure gas-atomization for isotrophic bonded permanent magnets

    SciTech Connect

    Buelow, Nicholas Lee

    2005-08-01

    A solid solution of three rare earths (RE) in the RE{sub 2}Fe{sub 14}B structure have been combined to create the novel mixed rare earth iron boron (MRE{sub 2}Fe{sub 14}B) alloy family. MRE{sub 2}Fe{sub 14}B exhibits reduced temperature dependent magnetic properties; remanence and coercivity. The desired form of MRE{sub 2}Fe{sub 14}B is a powder that can be blended with a polymer binder and compression or injection molded to form an isotropic polymer bonded permanent magnet (PBM). Commercially, Nd{sub 2}Fe{sub 14}B is the alloy of choice for PBMs. Powders of Nd{sub 2}Fe{sub 14}B are made via melt-spinning as can be MRE{sub 2}Fe{sub 14}B which allows for direct comparisons. MRE{sub 2}Fe{sub 14}B made using melt-spinning at high wheel speeds is overquenched and must be annealed to an optimal hard magnetic state. Due to the rare earth content in the MRE{sub 2}Fe{sub 14}B powders, they must be protected from the environment in which they operate. This protection is accomplished by using a modified fluidized bed process to grow a protective fluoride coating nominally 15nm thick, to reduce air oxidation. MRE{sub 2}Fe{sub 14}B has demonstrated reduced temperature dependent magnetic properties in ribbon and PBM form. The real challenge has been modifying alloy designs that were successfully melt-spun to be compatible with high-pressure gas-atomization (HPGA). The cooling rates in HPGA are lower than melt-spinning, as the powders are quenched via convective cooling, compared to melt-spinning, which quenches initially by conductive cooling. Early alloy designs, in gas atomized and melt-spun form, did not have similar phase compositions or microstructures. Alloy additions, such as the addition of zirconium as a nucleation catalyst, were successful in creating similar phases and microstructures in the HPGA powders and melt-spun ribbon of the same MRE{sub 2}Fe{sub 14}B composition.

  16. Production of NaCa+ molecular ions in the ground state from cold atom-ion mixtures by photoassociation via an intermediate state

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Montgomery, John A.; Michels, H. Harvey; Côté, Robin

    2016-07-01

    We present a theoretical analysis of optical pathways for formation of cold ground-state (NaCa) + molecular ions via an intermediate state. The formation schemes are based on ab initio potential energy curves and transition dipole moments calculated using effective-core-potential methods of quantum chemistry. In the proposed approach, starting from a mixture of cold trapped Ca+ ions immersed into an ultracold gas of Na atoms, (NaCa) + molecular ions are photoassociated in the excited E +1Σ electronic state and allowed to spontaneously decay either to the ground electronic state or an intermediate state from which the population is transferred to the ground state via an additional optical excitation. By analyzing all possible pathways, we find that the efficiency of a two-photon scheme, via either the B +1Σ or C +1Σ potential, is sufficient to produce significant quantities of ground-state (NaCa) + molecular ions. A single-step process results in lower formation rates that would require either a high-density sample or a very intense photoassociation laser to be viable.

  17. Reflectance spectroscopy of low atomic weight and Na-rich minerals: Borates, hydroxides, nitrates, nitrites, and peroxides

    NASA Astrophysics Data System (ADS)

    Cloutis, E.; Berg, B.; Mann, P.; Applin, D.

    2016-01-01

    We have measured reflectance spectra (0.35-20 μm) of a suite of minerals and synthetic compounds that contain low-Z (⩽Na) elements as the major cation and/or the major anion in oxides/oxyhydroxides, and are relevant to planetary geology and astrobiology. The suite comprises Na-borates, Na-, K-, Ca-hydroxides, nitrates, nitrites, and peroxides. Na-borate spectra exhibit B-O fundamental vibrations between 7 and 14 μm, and overtones/combinations of these bands in the 1.55, 1.75, 2.15, and 2.25 μm regions. Na-, K-, and Ca-hydroxide reflectance spectra are characterized by OH and metal-OH fundamental vibrations near 3, 8, and 18 μm, and a number of overtone and combination absorption bands at shorter wavelengths, and a characteristic metal-OH band near 2.35 μm. The nitrate and nitrite spectra exhibit fundamental N-O vibrations in the 7-14 μm region and numerous combinations and overtones that are still detectable to as low as ∼1.8 μm. Na-peroxide is largely spectrally featureless below 24 μm, making its detection problematic, while H-peroxide has many OH-related absorption features below 2.5 μm that differ in position from those of H2O ice and liquid. The results of this study indicate that the borates, hydroxides, nitrates, nitrite, and hydrogen peroxide can all be uniquely identified using characteristic absorption features that are present below 2.5 μm. However, some of these features are weak, and their detectability will depend on the types and abundances of any accessory phases that may be present.

  18. A low temperature ultrahigh vacuum scanning tunneling microscope with high-NA optics to probe optical interactions at the atomic scale

    NASA Astrophysics Data System (ADS)

    Zhang, Haigang; Smerdon, Joseph; Suzer, Ozgun; Kersell, Heath; Guest, Jeffrey

    2015-03-01

    The optical and photophysical properties of single molecules/atoms, defects, and nanoscale structures at surfaces hinge on structure at the atomic scale. In order to characterize and control this structure and unravel these correlations, we are developing a low temperature (LT) laser-coupled ultrahigh vacuum (UHV) scanning tunneling microscope (LT Laser UHV STM) based on the Pan-style STM scanner with integrated high-numerical-aperture (NA) optics for single particle spectroscopy measurements under the STM tip. Using slip-stick inertial piezo steppers, the sample stage can be coarsely translated in X and Y directions. For optical measurements, high-NA optics behind and above the sample focus laser excitation on and collect photons emitted from the tip-sample junction. The STM is cooled by a liquid helium bath surrounded by a liquid nitrogen jacket for operation near 5 K; two separate ultrahigh vacuum chambers are used for sample preparation and STM measurements, respectively. We will describe our progress in demonstrating this instrument and plans for experiments studying the correlation between structure and optical function in nanoscale systems. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  19. Determination of Ca, Mg, Na, Cd, Cu, Fe, K, Li and Zn in acid mine and reference water samples by inductively coupled plasma atomic fluorescence spectrometry

    USGS Publications Warehouse

    Sanzolone, R.F.; Meier, A.L.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric (ICP-AFS) method was used for the determination of nine elements in natural water. Reference and acid mine water samples were analysed by this method to demonstrate its usefulness for hydrogeochemical exploration. The elements were determined in two groups based on the compatibility of operating conditions and consideration of element abundance levels in natural water. Ca, Mg and Na were determined as a group using one set of instrumental conditions and a 1 + 99 dilution of the sample, and Cd, Cu, Fe, K, Li and Zn were determined using another set of conditions and the undiluted sample. The detection limits for the elements are as follows: Ca, 1.4; Mg, 1.7; Na, 2.0; Cd, 1.8; Cu, 6.2; Fe, 15.8; K, 3.5; Li, 0.3; and Zn, 1.2 ng m1-1. Each element has a linear range spanning about four orders of magnitude. The method has good precision and accuracy, as shown by statistics on replicate analyses and by the agreement between values obtained and those recommended for the reference water samples, and also those obtained by atomic absorption spectrometry for the acid mine water samples.

  20. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers.

    PubMed

    Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K

    2015-03-23

    In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1. PMID:25837082

  1. Formation and collision-induced dissociation of adduct ions [matrix + C]+ (C = Li, Na, Cs and NH4) produced under fast atom bombardment conditions

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo

    1994-09-01

    The formation of adduct ions of matrices B with organic/metallic cations C+, [B + C]+ (C = Li, Na, Cs and NH4), under fast atom bombardment (FAB) conditions has been examined. The cation affinity (CA) for various matrix materials, glycerol, thioglycerol, dithiothreitol, m-nitrobenzylalcohol and diethanolamine, was evaluated from the positive-ion FAB mass spectra obtained for the salts LiCl, NaCl, CsCl or NH4Cl added to matrix B. The order of the CA of matrices for relatively small cations Li+ and Na+ was in accordance with that of the proton affinity (PA) of the matrices used. The collision-induced dissociation (CID) spectra of [B + H]+ and [B + C]+ ions have been obtained. The PA differences between matrix B and ammonia (NH3) molecules were roughly estimated from the CID spectra of [B + NH4]+ ions. The CID spectra of [B + C]+ ions, which have different dissociation windows from [B + H]+ ions, were analyzed by proposing multidentate-binding structures of the adduct ions. Some dissociations of [B + C]+ ions could be explained by charge-remote fragmentations. The results obtained suggest that the binding energy for the coordination complex (B...C+) can be evaluated from the CID patterns.

  2. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    NASA Astrophysics Data System (ADS)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  3. Spin and orbital magnetic moments and spin anisotropy energies of light rare earth atoms embedded in graphene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Ya-Jing; Wang, Min; Tang, Meng-yu; Tian, Xing; Gao, Shan; He, Zhen; Li, Ying; Zhou, Tie-Ge

    2016-01-01

    The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are -0.941 μB, -1.663 μB, -3.239 μB, -3.276 μB and -3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are -0.928 meV, 20.941 meV, -8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.

  4. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. IX. Photoinduced atomic desorption from cleaved NaCl(100) surfaces

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.

    2005-07-01

    Neutral atomic sodium and chlorine emissions from cleaved, single-crystal NaCl(100) surfaces due to pulsed, 248-nm excimer laser irradiation have been characterized by time-resolved, quadrupole mass spectroscopy. At laser fluences below the threshold for optical breakdown, the resulting time-of-flight signals are consistent with particles emitted in thermal equilibrium with a laser-heated surface. Activation energy measurements made by varying the substrate temperature are consistent with F-H pair formation under UV excitation. By varying the laser fluence and estimating the effective surface temperature from the time-of-flight signals, additional activation energy measurements were made. The corresponding rate-limiting step is attributed to a thermally assisted, photoelectronic process involving atomic steps. Atomic force microscope images of surfaces irradiated at low fluences show monolayer islands that are created by the aggregation of material desorbed from steps. At somewhat higher fluences, monolayer pits due to F-center aggregation are also observed.

  5. Temperature dependence of energy dissipation on NaCl(001) in non-contact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Langewisch, G.; Fuchs, H.; Schirmeisen, A.

    2010-08-01

    The dissipative tip-sample interactions are measured by dynamic force spectroscopy for silicon tips on NaCl(001) in ultrahigh vacuum in the attractive and repulsive force regimes. Force and dissipation versus distance curves were obtained for different sample temperatures ranging from 35 to 285 K. Detailed comparison in different distance regimes shows that neither the force nor energy dissipation exhibits a systematic variation with sample temperature.

  6. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    SciTech Connect

    Gopakumar, Geetha Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  7. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  8. Atomic masses of {sup 6}Li,{sup 23}Na,{sup 39,41}K,{sup 85,87}Rb, and {sup 133}Cs

    SciTech Connect

    Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.

    2010-10-15

    The atomic masses of the alkali-metal isotopes {sup 6}Li,{sup 23}Na,{sup 39,41}K,{sup 85,87}Rb, and {sup 133}Cs have been obtained from measurements of cyclotron frequency ratios of pairs of ions simultaneously trapped in a Penning trap. The results, with one standard deviation uncertainty, are: M({sup 6}Li)=6.015 122 887 4(16)u,M({sup 23}Na)=22.989769 282 8(26)u,M({sup 39}K)=38.963 706 485 6(52)u,M({sup 41}K)=40.961 825 257 4(48)u,M({sup 85}Rb)=84.911 789739(9)u,M({sup 87}Rb)=86.909 180 535(10)u, and M({sup 133}Cs)=132.905 451 963(13)u. Our mass of {sup 6}Li yields an improved neutron separation energy for {sup 7}Li of 7251.1014(45) keV.

  9. Reviews Opera: Doctor Atomic DVD: Doctor Atomic Equipment: Digital stopclock with external trigger Book: I Cyborg Book: Flat Earth: The History of an Infamous Idea Book: Mere Thermodynamics Book: CGP revision guides Book: Hiding the Elephant: How Magicians Invented the Impossible Book: Back of the Envelope Physics Web Watch

    NASA Astrophysics Data System (ADS)

    2009-07-01

    WE RECOMMEND Doctor Atomic The new Doctor Atomic opera provkes discussion on ethics I Cyborg The world's first human cyborg shares his life story in I Cyborg Flat Earth: The History of an Infamous Idea Flat Earth gives us a different perspective on creationism Mere Thermodynamics An introductory text on the three laws CGP revision guides This revision guide suits all courses and every pocket Hiding the Elephant: How Magicians Invented the Impossible The mystery of many illusions are solved in this book Back of the Envelope Physics This reference deserves a place on your bookshelf WORTH A LOOK Doctor Atomic The DVD doesn't do justice to the live performance Digital stopclock with external trigger Use these stopclocks when you need an external trigger WEB WATCH Webcasts reach out to an online audience

  10. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  11. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  12. Structural and electronic properties of AB- and AA-stacking bilayer-graphene intercalated by Li, Na, Ca, B, Al, Si, Ge, Ag, and Au atoms

    NASA Astrophysics Data System (ADS)

    Tayran, Ceren; Aydin, Sezgin; Çakmak, Mehmet; Ellialtıoğlu, Şinasi

    2016-04-01

    The structural and electronic properties of X (=Li, Na, Ca, B, Al, Si, Ge, Ag, and Au)-intercalated AB- and AA-stacking bilayer-graphene have been investigated by using ab initio density functional theory. It is shown that Boron (Lithium)-intercalated system is energetically more stable than the others for the AB (AA) stacking bilayer-graphene systems. The structural parameters, electronic band structures, and orbital nature of actual interactions are studied for the relaxed stable geometries. It is seen that the higher the binding energy, the smaller is the distance between the layers, in these systems. The electronic band structures for these systems show that different intercalated atoms can change the properties of bilayer-graphene differently. For qualitative description of the electronic properties, the metallicities of the systems are also calculated and compared with each other. The Mulliken analysis and electron density maps clearly indicate that the interactions inside a single layer (intralayer interactions) are strong and highly covalent, while the interactions between the two layers (interlayer interactions) are much weaker.

  13. Development of a high flow source of energetic oxygen atoms for material degradation studies. [of Space Shuttles in low earth orbit environments

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Krech, R. H.

    1985-01-01

    A technique for the generation, in the laboratory, of thermally 'cold', high flux of energetic oxygen atoms is presented. The flux of nearly mono-energetic oxygen atoms is obtained after a laser-induced breakdown of oxygen molecules followed by a rapid expansion of the recombining plasma. The experimental apparatus, the optical and spectral measurements, the O-atom source characterization, and the material degradation studies are discussed. Average oxygen atom velocities of about 5 to 13 km/s are measured with an estimated flux of 10 to the 18th per pulse, over pulse durations of several microseconds. The flow of the O2 gas for about 200 microseconds before applying the laser pulse is found to give best results. It is also found that the energetic O-atom irradiation of sample targets such as Al, Fe, and polyethylene, induces mass removal. In addition, spectral scans of the radiation reveals the existence of two main spectral subsets.

  14. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  15. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  16. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. PMID:27591646

  17. Photoluminescence properties of rare earths (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+}) activated NaInW{sub 2}O{sub 8} wolframite host lattice

    SciTech Connect

    Asiri Naidu, S.; Boudin, S.; Varadaraju, U.V.; Raveau, B.

    2012-01-15

    The photoluminescence (PL) studies on NaIn{sub 1-x}RE{sub x}W{sub 2}O{sub 8}, with RE=Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+} phases have shown that the relative contribution of the host lattice and of the intra-f-f emission of the activators to the PL varies with the nature of the rare earth cation. In the case of Dy{sup 3+} and Tm{sup 3+} activators, with yellow and blue emission, respectively, the energy transfer from host to the activator plays a major role. In contrast for Eu{sup 3+}, with intense red emission, the host absorption is less pronounced and the intra-f-f transitions of the Eu{sup 3+} ions play a major role, whereas for Tb{sup 3+} intra-f-f transitions are only observed, giving rise to green emission. - Graphical abstract: NaInW{sub 2}O{sub 8} double tungstate doped with Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}and Tm{sup 3+} shows characteristic emission of intense red for Eu{sup 3+}, yellow for Dy{sup 3+}, green for Tb{sup 3+} and blue for Tm{sup 3+}. Highlights: Black-Right-Pointing-Pointer Characteristic emissions of rare earths (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+}) are observed NaInW{sub 2}O{sub 8} wolframite. Black-Right-Pointing-Pointer Energy transfer from host to the activators (Eu{sup 3+} Dy{sup 3+} Tm{sup 3+} is observed. Black-Right-Pointing-Pointer PL properties of rare earth ions depend on minor structural variations in the host lattice.

  18. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  19. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    PubMed

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  20. High-energy collision-induced dissociation of [M+Na]+ ions desorbed by fast atom bombardment of ceramides isolated from the starfish Distolasterias nipon.

    PubMed

    Yoo, Ji Sun; Park, Taeseong; Bang, Geul; Lee, Chulhyun; Rho, Jung-Rae; Kim, Young Hwan

    2013-02-01

    Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed-phase high-performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high-energy collision-induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N-acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C-4 position of the sphingoid chain and the presence of an α-hydroxy group on the N-acyl chain. The high-energy CID of the monosodiated ion, [M+Na](+), of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long-chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double-bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double-bond positions were also confirmed by the m/z values of abundant allylic even- and odd-electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources. PMID:23378088

  1. Free Energetics of Carbon Nanotube Association in Aqueous Inorganic NaI Salt Solutions: Temperature Effects using All-Atom Molecular Dynamics Simulations

    PubMed Central

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-01-01

    In this study we examine the temperature dependence of free energetics of nanotube association by using GPU-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intra-tube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation also shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of

  2. A Comparison of Atomic Oxygen Erosion Yields of Carbon and Selected Polymers Exposed in Ground Based Facilities and in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    A comparison of the relative erosion yields (volume of material removed per oxygen atom arriving) for FEP Teflon, polyethylene, and pyrolytic graphite with respect to Kapton HN was performed in an atomic oxygen directed beam system, in a plasma asher, and in space on the EOIM-III (Evaluation of Oxygen Interaction with Materials-III) flight experiment. This comparison was performed to determine the sensitivity of material reaction to atomic oxygen flux, atomic oxygen fluence, and vacuum ultraviolet radiation for enabling accurate estimates of durability in ground based facilities. The relative erosion yield of pyrolytic graphite was found not to be sensitive to these factors, that for FEP was sensitive slightly to fluence and possibly ions, and that for polyethylene was found to be partially VUV and flux sensitive but more sensitive to an unknown factor. Results indicate that the ability to use these facilities for material relative durability prediction is great as long as the sensitivity of particular materials to conditions such as VUV, and atomic oxygen flux and fluence are taken into account. When testing materials of a particular group such as teflon, it may be best to use a witness sample made of a similar material that has some available space data on it. This would enable one to predict an equivalent exposure in the ground based facility.

  3. Huge positive hyperfine fields for Sn impurity atoms on R sites of R T intermetallic compounds (R=rare-earth, T=Fe, Co)

    NASA Astrophysics Data System (ADS)

    Krylov, V. I.; Delyagin, N. N.

    2006-10-01

    The magnetic hyperfine field Bhf of the 119Sn impurity atom on the R site of the RFe 2 (R=Sm, Tb, Tm), TbCo 2, RCo 5 (R=Dy, Ho, Er), GdCo 3 and Gd 2Co 7 intermetallic compounds has been investigated by Mössbauer spectroscopy technique. At 5 K, very large hyperfine fields equal to 46-56 T were observed. The B values are several times larger than commonly observed for Sn in 3d-based magnetic hosts. The hyperfine fields are positive (that is parallel to the 3d magnetic moments direction). The results can be interpreted qualitatively in terms of the theory proposed for the impurity atoms in homogeneous ferromagnetic hosts [J. Kanamori, H. Katayama-Yoshida, K. Terakura, Hyperfine Interact. 8 (1981) 573; J. Kanamori, H. Katayama-Yoshida, K. Terakura, Hyperfine Interact. 9 (1981) 363; M. Akai, H. Akai, J. Kanamori, J. Phys. Soc. Jpn. 54 (1985) 4246; S. Blügel, H. Akai, R. Zeller, P.H. Dederichs, Phys. Rev. B 35 (1987) 3271], when it is considered that the splitting between bonding and antibonding hybrid states is strongly dependent on the interatomic distance. As the distance between the probe atom and neighboring magnetic atoms increases, the population of the antibonding states grows and, as a consequence, the corresponding positive contribution to the B increases sharply. For Sn atom the positive contribution to the B dominates when the interatomic distance exceeds 0.28-0.29 nm.

  4. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  5. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  6. Viewing minerals, atom by atom

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    With state-of-the-art technology supported by scissors and bungy cords, Earth scientists are beginning to look at mineral surfaces and mineral-fluid interactions on an atomic scale.The instrument that can provide such a detailed view is the scanning tunneling microscope (STM), which made a great theoretical and practical splash when it was introduced in 1981 by Gerd Binnig and Heinrich Rohrer, physicists at IBM's laboratory in Zurich. They won a Nobel Prize in Physics for their work 5 years later.

  7. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  8. ESCA study of several fluorocarbon polymers exposed to atomic oxygen in low earth orbit or within or downstream from a radio-frequency oxygen plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of Tedlar, tetrafluoroethylene-hexafluoropropylene copolymer (in the form of a Teflon FEP coating on Kapton H, i.e., Kapton F), and polytetrafluoroethylene (Teflon or Teflon TFE), exposed to atomic oxygen O(3P) either in LEO on the STS-8 Space Shuttle or within or downstream from a radio-frequency oxygen plasma, were compared. The major difference in surface chemistry of Tedlar induced by the various exposures to O(3P) was a much larger uptake of oxygen when etched either in or out of the glow of an O2 plasma than when etched in LEO. In contrast, Kapton F exhibited very little surface oxidation during any of the three different exposures to O(3P), while Teflon was scarcely oxidized.

  9. Electronic structure of alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr3Be3B3O9F4 single crystal: DFT approach

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Kamarudin, H.; Auluck, S.

    2015-10-01

    The electronic band structure, total and angular momentum resolved projected density of states for NaSr3Be3B3O9F4 are calculated using the all-electron full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) method. The calculations are performed within four exchange correlations namely; local density approximation (LDA), general gradient approximation (PBE-GGA), Engel-Vosko generalized gradient approximation (EVGGA) and the recently modified Becke-Johnson potential (mBJ). Calculations suggest that NaSr3Be3B3O9F4 is a direct wide band gap semiconductor. The exchange correlations potentials exhibit significant influence on the value of the energy gap being about 4.82 eV (LDA), 5.16 eV (GGA), 6.20 (EVGGA) and 7.20 eV (mBJ). The mBJ approach succeed by large amount in bringing the calculated energy gap closer to the experimental one (7.28 eV). The angular momentum resolved projected density of states shows the existence of a strong hybridization between the various orbitals. In additional we have calculated the electronic charge density distribution in two crystallographic planes namely (1 0 1) and (0 0 -1) to visualized the chemical bonding characters.

  10. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    PubMed

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  11. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  12. Earth Resources

    ERIC Educational Resources Information Center

    Brewer, Tom

    1970-01-01

    Reviews some of the more concerted, large-scale efforts in the earth resources areas" in order to help the computer community obtain insights into the activities it can jointly particpate in withthe earth resources community." (Author)

  13. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.

    PubMed

    Kiran, K U; Ravindraswami, K; Eshwarappa, K M; Somashekarappa, H M

    2016-05-01

    Response function of a widely used 3in×3in NaI(Tl) detector is constructed to correct the observed pulse height distribution. A 10×10 inverse matrix is constructed using 7 mono-energetic gamma sources ((57)Co, (203)Hg, (133)Ba, (22)Na, (137)Cs, (54)Mn and (65)Zn) which are evenly spaced in energy scale to unscramble the observed pulse height distribution. Bin widths (E)(1/2) of 0.01 (MeV)(1/2) are used to construct the matrix. Backscattered photons for an angle of 110° are obtained from a well-collimated 0.2146GBq (5.8mCi) (137)Cs gamma source for carbon, aluminium, iron, copper, granite and Portland cement. For each observed spectrum, single scattered spectrum is constructed analytically using detector parameters like FWHM, photo-peak efficiency and peak counts. Response corrected multiple scattered photons are extracted from the observed pulse height distribution by dividing the spectrum into a 10 ×1 matrix. Saturation thicknesses of carbon, aluminium, iron, copper, granite and Portland cement are found out. Variation of multiple scattered photons as a function of target thickness are simulated using MCNP code. A relationship between experimental and simulated saturation thicknesses of carbon, aluminium, iron and copper is obtained as a function of atomic number. Using this relation, effective atomic numbers of granite and Portland cement are obtained from interpolation method. Effective atomic numbers of granite and Portland cement are also obtained by theoretical equation using their elemental composition and comparing with the experimental and simulated results. PMID:26926377

  14. Solubilities of NiO and LaNiO 3 in Li/Na eutectic carbonate with rare-earth oxide

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Koichi; Akinaga, Yoji; Mitsushima, Shigenori; Ota, Ken-ichiro

    For the commercial application of molten carbonate fuel cells (MCFCs) under high-pressure operation, the problem of Ni shorting should be solved that is closely related to the solubility of cathode material. In order to improve the MCFC cathode stability, effects of the addition of rare-earth metal oxides to the molten carbonates have been quantitatively investigated. Especially, La 2O 3 addition to the molten carbonate significantly decreased the solubility of NiO. Such low solubility of NiO was caused by effects of both the acid-base equilibrium of molten carbonate and the activity of Ni in solid by the formation of complex oxide. Solubilities of LaNiO 3 and Nd 2NiO 4 were also smaller than that of NiO in molten carbonate as the same reason as that of NiO in the molten carbonates with saturated La 2O 3. Based on the data of solubility, a new parameter was proposed to evaluate the solubility of metal ion in molten carbonates. This parameter concerned with the acid-base equilibrium of melts and the activity of solid for the metal oxide. A linear relationship with the measured solubility of metal oxide in molten carbonates was obtained by this parameter. It would be indicated that the parameter is useful for the prediction of metal oxide solubilities in molten carbonates.

  15. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mishra, S N

    2009-03-01

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the 111Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values Bhf(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component Vzz in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 1021 V m-2, 5.5 × 1021 V m-2 and 5.6 × 1021 V m-2, respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μB in CeScGe to ≈0.3 μB in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.

  16. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in

  17. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  18. The equilibrium of atmospheric sodium. [in atmospheres of Earth, Io, Mercury and Moon

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.

    1992-01-01

    We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres: Earth, Io, Mercury and the moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1 percent of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the moon is meteoroidal bombardment; at Mercury and perhaps the moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.

  19. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  20. Applications to particle transport in the Earth`s aurora

    SciTech Connect

    Jasperse, J.R.

    1994-12-31

    The visual display of light called the aurora borealis occurs when energetic (1 to 100-keV) electrons, protons, and hydrogen atoms from the Earth`s magnetosphere enter the Earth`s upper atmosphere and collide with the ambient neutral particles. Two kinds of auroras occur in nature: those excited by incident electrons and those excited by incident protons and hydrogen atoms. In this paper, we consider only the latter. The proton-hydrogen aurora may be divided into two altitude regions: high altitudes ({approximately}250 to {approximately}600 km) where charge-changing collisions dominate and energy-loss collisions may be neglected and low altitudes ({approximately}100 to {approximately}250 km) where energy-loss collisions also become important and cause rapid energy degradation. The focus of this review is on the high-altitude region where the one-group approximation is valid.

  1. Spin liquid phases of large spin Mott insulating ultracold atoms

    NASA Astrophysics Data System (ADS)

    Rutkowski, Todd C.; Lawler, Michael J.

    2015-03-01

    Understanding exotic forms of magnetism, primarily those driven by large spin fluctuations such as the quantum spin liquid state, is a major goal of condensed matter physics. But, the relatively small number of viable candidate materials poses a difficulty. We believe this problem can be solved by Mott insulating ultracold atoms with large spin moments that interact via whole-atom exchange. The large spin fluctuations of this exchange could stabilize exotic physics similar to condensed matter systems, all in an extremely tunable environment. We have approached the problem by performing a mean field theory for spin-f bosons in an optical lattice which is exact in the large-f limit. This setting is similar to that of SU(N) magnetism proposed for alkali-earth atoms but without the SU(N) symmetry. We find that states with long-range order, such as the spin nematic phase of f = 1 Na atoms, become highly entangled spin-liquid-like states for f = 3 Cr atoms. This is evidence that the magnetic phase diagram for Mott insulating atoms at larger spins generically contains exotic forms of magnetism.

  2. Rainbow Earth.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library and Archives, Phoenix.

    The environment is a great concern in the 1990s, and everyone needs to work at maintaining our planet. The 1992 Arizona State Library Reading Program, "Rainbow Earth," provides children with many techniques they can use to help the Earth. This reading program guide provides information on the following: goals, objectives, and evaluation; getting…

  3. Earth Wisdom.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    1985-01-01

    In our human-centered ignorance and arrogance we are rapidly destroying the earth. We must start helping people understand the big picture of ecological concepts. What these concepts mean for our own lives and how we must begin to change our lifestyles in order to live more harmoniously with the earth. (JHZ)

  4. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  5. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  6. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  7. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1996-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  8. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  9. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  10. Esperanzaite, NaCa2Al2(As5+O4)2F4(OH)*2H2O, a new mineral species from the La Esperanza mine, Mexico: descriptive mineralogy and atomic arrangement

    USGS Publications Warehouse

    Foord, E.E.; Hughes, J.M.; Cureton, F.; Maxwell, C.H.; Falster, A.U.; Sommer, A.J.; Hlava, P.F.

    1999-01-01

    Esperanzaite, ideally NaCa2Al2(As5+O4)2F4(OH)??2H2O, Z = 2, is a new mineral species from the La Esperanza mine, Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm in diameter. The Mohs hardness is 4 1/2 , and the specific gravity, 3.24 (obs.) and 3.36(3) (calc.). Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), X = Y = Z = colorless, ?? 1.580(1), ?? 1.588(1), and ?? 1.593(1); 2V(obs) is 74(1)??and 2V(calc) is 76.3??. The dispersion is medium, r < v, and the optic axes are oriented according to a ?? Z = +50.5??, b = Y, c ?? X = +35??. The strongest five X-ray-diffraction maxima in the powder pattern [d in A??(I)(hkl)] are: 2.966(100)(131, 311, 031), 3.527(90)(220), 2.700(90)(221,002,040), 5.364(80)(001,020) and 4.796(80)(011). Esperanzaite is monoclinic, a 9.687(5), b 10.7379(6), c 5.5523(7) A??, ?? 105.32(1)??, space group P21/m. The atomic arrangement of esperanzaite was solved by direct methods and Fourier analysis (R = 0.032). The Fundamental Building Block (FBB) is formed of [001] stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedra and two Al octahedra, corner-linked in four-member rings. The FBBs are linked by irregular Na??5 and Ca??8 polyhedra.

  11. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  12. Venus - Lessons for earth

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1992-01-01

    The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.

  13. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  14. NASA Benefits Earth

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  15. Liquid atomization

    NASA Astrophysics Data System (ADS)

    Bayvel, L.; Orzechowski, Z.

    The present text defines the physical processes of liquid atomization, the primary types of atomizers and their design, and ways of measuring spray characteristics; it also presents experimental investigation results on atomizers and illustrative applications for them. Attention is given to the macrostructural and microstructural parameters of atomized liquids; swirl, pneumatic, and rotary atomizers; and optical drop sizing methods, with emphasis on nonintrusive optical methods.

  16. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  17. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  18. Earth Flats

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Mack, J.; Hartig, G.; Sirianni, M.

    2005-10-01

    Since the last ISR 2003-02 on the use of Earth observations for a source of flat field illumination, several hundred more observations have been obtained with the full set of HRC standard filters and four narrow band WFC filters. While most of these observation show streaks or other nonuniform illumination, a significant subset are defect free and can be used to construct complete LP-flats. Many of the existing pipeline flats are confirmed to a precision of ~1%, which validates the stellar L-flat technique. Exceptions are the WFC, where a shutter light leak causes a systematic central contamination of a few percent and limits the verification accuracy to ~2%. Other exceptions are the four longest wavelength HRC filters, which show systematic differences with the pipeline flats. This discrepancy is apparently caused by stray light originating from the detector surface, where most of the longest wavelength photons are reflected and then scattered back from nearby focal plane structures. Because this complete set of HRC Earth flats is more appropriate than the pipeline flats for large diffuse objects such as the Moon, Jupiter, or the Orion Nebula, the set is now available on the STScI/ACS website. Earth flats also measure the small and intermediate scale P-flat structure. Due to slight deviations from OTA like illumination in the lab, the flat field corrections in the dust mote regions are 1-2% better with Earth flats. The trend found in ACS ISR 2005-09 for an increase toward the UV for more pixels with non-Poisson statistical distributions is confirmed for the F330W Earth flats, where up to 3% of the pixels are in error by >1%. Most of this newly discovered population of deviant pixels are dark with low responses; however, the effect of these erroneous P-flat values on stellar photometry is less than 0.1%.

  19. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  20. Retrieval of metal atom and ion number densities in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Langowski, Martin; Von Savigny, Christian; Burrows, John

    2016-07-01

    When meteoroids enter the Earth's atmosphere with velocities of several 10 km/s, they heat up due to frictional heating and meteoric material is ablated in the upper atmosphere at around 100 km. A certain part of this ablated material are metal atoms and ions, which form layers of about 10 km width at altitudes between 80 to 110 km. The metal atoms and ions are strong emitters of dayglow coming from resonance fluorescence. From satellite observations of these emission signature, densities of the metal atom and ion layers can be retrieved. From the densities of the metal layers in combination with model simulations the input rate of meteoric material can be estimated, which still shows a large uncertainty range between 1 to 300 tons per day. We will present results of the number density retrievals from the SCIAMACHY limb mesosphere and lower thermosphere measurements from 2008 to 2012 for Mg, Mg^{+} and Na.

  1. Communication: Angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets

    SciTech Connect

    Hernando, Alberto; Beswick, J. Alberto; Halberstadt, Nadine

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He){sub 200}, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe{sub 200} studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  2. Communication: angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets.

    PubMed

    Hernando, Alberto; Beswick, J Alberto; Halberstadt, Nadine

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe200 studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments. PMID:24329048

  3. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  4. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0100120.

  5. The Earth's Plamasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  6. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  7. A synchrotron study of Na2.27Ho7.73(SiO4)6O0.72

    PubMed Central

    Rosales, Ivonne; Orozco, Eligio; Bucio, Lauro; Fuentes, Maria E.; Fuentes, Luis

    2009-01-01

    A well crystallized powder sample of sodium holmium orthosilicate oxyapatite, Na2.27Ho7.73(SiO4)6O0.72, was obtained after mechanical milling and thermal treatment at 1123 K. Crystal structure analysis was performed from the results of Rietveld refinement of the synchrotron diffraction data. As in other rare-earth orthosilicate apatites, sodium cations appear located sharing with holmium the 4f Wyckoff position at the center of a tricapped trigonal prism. In its turn, holmium almost fully occupies the 6h position at the center of a seven-coordinated penta­gonal bipyramid. A small quantity of Na atoms was found at this site. No vacancies are present in the two independent crystallographic sites available for Ho and Na atoms. PMID:21583725

  8. Esperanzaite, NaCa(2)Al(2)(As(5+)O(4))[As(5+)O(3)(OH)](OH)(2)F(4)(H(2)O), A New Mineral From Mina La Esperanza, Mexico: Descriptive Mineralogy and Atomic Arrangement

    SciTech Connect

    Cureton, F.; Falster, A.U.; Foord, E.E.; Hlava, P.F.; Hughes, J.M.; Maxwell, C.H.

    1998-11-09

    Esperanzaite, ideally NaCazA12(As5+0.i)[As5+03 (OH)] (OH)2FJH20), Z =2, is a new mineral from the Mina h Esperarq Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm Y Deceased in diameter. Mobs hardness is 4.5, specific gravity 3.240h, and 3.36( 3)C.IC. Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), .Y= Y = Z= colorless, a 1.580(1), ~ 1.588( 1), and y 1.593(1 ); 2V0hs is 74(1 ~ and 2 }'CUIC is 76.3". Dispersion is medium, r < v, and optic axes are oriented as a A Z = +50.5o, b = Y, c P. X = +35". The five strongest X-ray diffraction maxima in the powder pattern are (~ /, hk~: 2.966,100, 13 i, 31 i, 031 ; 3.527,90, 220; 2.700,90,221,002, 040; 5.364>80, 001, 020; 4.796,80,011. Esperanzaite is monoclinic, u 9.687(5), b 10.7379(6), c 5.5523(7)& ~ 105.32( 1 )", space group P21/nz. The atomic arrangement of esperanzaite was solved by Direct Methods and Fourier analysis (R= 0.03 1). The Fundamental Building Block is formed of stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedral and two Al octahedra, comer-linked in 4-member rings. The Fundamental Building Blocks are linked by irregular lda~j and Ca@ polyhedra.

  9. Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.

    PubMed

    Li, Yongtao; Fang, Fang; Song, Yun; Li, Yuesheng; Sun, Dalin; Zheng, Shiyou; Bendersky, Leonid A; Zhang, Qingan; Ouyang, Liuzhang; Zhu, Min

    2013-02-01

    Bimetallic hydride NaMgH(3) is used for the first time as a vehicle to enhance hydrogen release and uptake from LiNH(2). The combination of NaMgH(3) with LiNH(2) at a molar ratio of 1 : 2 can release about 4.0 wt% of hydrogen without detectable NH(3) emission in the temperature range of 45 °C to 325 °C and exhibiting superior dehydrogenation as compared to individual NaH and/or MgH(2) combined with LiNH(2). A high capacity retention of about 75% resulting from the introduction of NaMgH(3) is also achieved in LiNH(2) as well as re-hydrogenation under milder conditions of 180 °C and 5 MPa H(2) pressure. These significant improvements are attributed to synergistic effects of in situ formed NaH and MgH(2)via the decomposition of NaMgH(3) where a succession of competing reactions from the cyclic consumption/recovery of NaH are involved and serve as a "carrier" for the ultra-rapid conveyance of the N-containing species between the [NH(2)](-) amide and the resulting [NH](2-) imide complexes. PMID:23165760

  10. O-atom degradation mechanisms of materials

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Liang, Ranty H.; Chung, Shirley Y.; Smith, Keri Oda; Gupta, Amitava

    1987-01-01

    The low Earth orbit environment is described and the critical issues relating to oxygen atom degradation are discussed. Some analytic techniques for studying the problem and preliminary results on the underlying degradation mechanisms are presented.

  11. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  12. Synchrotron radiation - Applications in the earth sciences

    NASA Technical Reports Server (NTRS)

    Bassett, W. A.; Brown, G. E., Jr.

    1990-01-01

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  13. Synchrotron radiation - Applications in the earth sciences

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Brown, G. E., Jr.

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  14. Spectrometry of the Earth using neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Taketa, Akimichi; Rott, Carsten

    2016-04-01

    Neutrinos have favorable properties for measuring the elemental composition deep inside the earth's interior. First, they propagate a long distance almost undisturbed through the earth due to their weak interactions with matter. Secondly, neutrino oscillations in matter are sensitive to the electron density of the medium traversed by them. Therefore, neutrinos can be used for a probe to determine the average atomic mass ratio Z/A of the earth's core by comparing with the earth's nucleus density distribution that is inferred from seismic observations. There is a little uncertainty in densities of the earth's core, but our knowledge of its main light element is still not fixed. With the advent of the new-generation megaton neutrino detectors, neutrino oscillation mass spectrometry will allow us to constrain directly the light elements in the earth's outer core. We report the detail of this novel technic and the sensitivity study.

  15. Competition Effect in Atomic-Molecular System

    NASA Technical Reports Server (NTRS)

    Jia, Suotang; Qin, Lijuan; Qian, Zuliang; Wang, Zugeng; Wang, Gang; Zhou, Guosheng

    1996-01-01

    The competition effects among the processes of atomic ionization, optical pumped stimulated radiation (OPSR), four-wave frequency mixing (FWFM) and molecular stimulated diffuse band radiation at the atomic two-photon resonance of 3S approaches 4D in Na2 - Na mixture were observed. The dip at the two-photon resonance in the excitation spectrum for the diffuse-band radiation was interpreted as suppression of population in 4D state.

  16. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  17. Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  18. Systematic variation of rare-earth elements in cerium-earth minerals

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J., Jr.; Carron, M.K.; Glass, J.J.

    1957-01-01

    In a continuation of a study reported previously, rare-earth elements and thorium have been determined in monazite, allanite, cerite, bastnaesite, and a number of miscellaneous cerium-earth minerals. A quantity called sigma (???), which is the sum of the atomic percentages of La, Ce, and Pr, is proposed as an index of composition of all cerium-earth minerals with respect to the rare-earth elements. The value of ??? for all of the minerals analysed falls between 58 and 92 atomic per cent. Monazites, allanites, and cerites cover the entire observed range, whereas bastnaesites are sharply restricted to the range between 80 and 92 atomic per cent. The minimum value of ??? for a cerium-earth mineral corresponds to the smallest possible unit-cell size of the mineral. In monazite, this structurally controlled minimum value of ??? is estimated to be around 30 atomic per cent. Neodymium, because of its abundance, and yttrium, because of its small size, have dominant roles in contraction of the structure. In the other direction, the limit of variation in composition will be reached when lanthanum becomes the sole rare-earth element in a cerium-earth mineral. Cerium-earth minerals from alkalic rocks are all characterized by values of ??? greater than 80 atomic per cent, indicating that the processes that formed these rocks were unusually efficient in fractionating the rare-earth elements-efficient in the sense that a highly selected assemblage is produced without eliminating the bulk of these elements. Analyses of inner and outer parts of two large crystals of monazite from different deposits show no difference in ??? in one crystal and a slightly smaller value of ??? in the outer part of the other crystal compared to the inner part. The ??? of monazites from pegmatites that intrude genetically related granitic rocks in North Carolina is found to be either higher or lower than the ??? of monazites in the intruded host rock. These results indicate that the fractionation of the

  19. Liquid atomization

    SciTech Connect

    Walzel, P. )

    1993-01-01

    A systematic review of different liquid atomizers is presented, accompanied by a discussion of various mechanisms of droplet formation in a gas atmosphere as a function of the liquid flow-regime and the geometry of the atomizer. Equations are presented for the calculation of the mean droplet-diameter. In many applications, details of the droplet size distribution are, also, important, e.g., approximate values of the breadth of the droplet formation are given. The efficiency of utilization of mechanical energy in droplet formation is indicated for the different types of atomizers. Atomization is used, in particular, for the following purposes: (1) atomization of fuels; (2) making granular products; (3) carrying out mass-transfer operations; and (4) coating of surfaces.

  20. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  1. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  2. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  3. Newton's Atom

    NASA Astrophysics Data System (ADS)

    Chaney, Andrea; Espinosa, James; Espinosa, James

    2006-10-01

    At the turn of the twentieth century, physicists and chemists were developing atomic models. Some of the phenomena that they had to explain were the periodic table, the stability of the atom, and the emission spectra. Niels Bohr is known as making the first modern picture that accounted for these. Unknown to much of the physics community is the work of Walter Ritz. His model explained more emission spectra and predates Bohr's work. We will fit several spectra using Ritz's magnetic model for the atom. The problems of stability and chemical periodicity will be shown to be challenges that this model has difficulty solving, but we will present some potentially useful adaptations to the Ritzian atom that can account for them.

  4. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  5. Nonthermal atoms in planetary, satellite, and cometary atmospheres

    NASA Astrophysics Data System (ADS)

    Kupperman, David Gerson

    1999-08-01

    The effect of nonthermal atoms is investigated in planetary, satellite, and cometary atmospheres. In the Earth's lower thermosphere, it is demonstrated that nonthermal N(4S) and O(3P) atoms increase the peak NO density, bringing closer model and observational (108 cm-3) densities. However, they are insufficient to remove the total NO deficit and only result in a peak NO density of approximately 3 × 107 cm-3 at 105 km. The loss of nonthermal N(4S) atoms from Titan and Triton are found to be 9 × 1024 and 1.5 × 1024 N atoms s-1, respectively. We find that the observational estimates of Strobel et al. [1992] are consistent with our modeling of escape from Titan. The loss of O atoms from Mars by nonthermal processes is a vital part of understanding the H2O and CO2 budgets in respect to how the Martian atmosphere has evolved. Anderson and Hord [1971] inferred the H escape flux to be approximately 1.8 × 108 cm -2 s-1 from Mariner 6 and 7 ultraviolet data. McElroy et al. [1977] initially calculated an 0 atom escape rate that was approximately half the H escape rate. However, with more sophisticated modeling this result was shown to be an order of magnitude too large [Lammer and Bauer, 1991; Fox, 1993; Luhmann, 1997]. In this work, we demonstrate that the O escape rate due to dissociative recombination of O2 + can be in stoichiometric balance with H escape over a solar cycle. Observations of comet Hale-Bopp reveal a third type of tail consisting of neutral sodium atoms. Using a point source of atomic sodium to model the observed tail, the sodium production is found to be 3.5 × 10 25 atoms s-1. This result suggests that the source of the sodium is either from the nucleus or inner coma. The production rates of water and carbon monoxide near perihelion are found to be 1031 s-1 and 2.7 × 1030 s-1 , respectively. The abundance of observed Na in the tail is inconsistent with cosmic abundances, suggesting that the majority of the sodium is trapped in the comet nucleus or

  6. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  7. The Lifeworld Earth and a Modelled Earth

    NASA Astrophysics Data System (ADS)

    Juuti, Kalle

    2014-08-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the Earth, science's view of the Earth as an object—a celestial body—has been applied. I reanalysed data published in Vosniadou and Brewer's (Cognit psychol 24:535-585, 1992) seminal paper. According to my reanalysis of their interview material, it is plausible to conclude that the Earth as an infinite surface is the way to experience the Earth. Further, the `dual Earth model' is the first model of the Earth as an object. I conclude that experiences in the lifeworld need to be taken into consideration more seriously in science education research.

  8. Controllable Atom Localization in Four-Level Atomic Systems

    SciTech Connect

    Jin Luling; Jin Shiqi; Gong Shangqing

    2007-12-26

    We propose controllable atom localization schemes for four-level atomic systems. In the alkaline earth atomic system we give the analytical expressions of the localization peak positions as well as the widths versus the parameters of the optical fields. We show that the probability of finding the atom at a particular position can be increased from 1/4 to 1/3 or 1/2 by adjusting the detuning of the probe field and the Rabi frequencies of the optical fields. Furthermore, the localization precision can be dramatically enhanced by increasing the intensity of the standing-wave field. In the ladder-type system, we use two standing-wave fields and find that the detecting probability can be increased to 1/2 by adjusting the Rabi frequencies of the standing-wave fields.

  9. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At

  10. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    magnetic field contours of the traps and the dynamics of atoms within those confining potentials. We also controlled the propagation along the atom chip guides by accelerating atoms with longitudinal magnetic gradients, and investigated an atom focusing scheme. While the atom chip wire guides perform a role analogous to optical fibers guiding light waves, "free space" cold atoms offer great opportunity for precision interferometry. We describe a second on-going atom optics experiment that measures gravity gradients using a pair of atom fountain interferometers separated by one meter. We have demonstrated Gravity Gradiometer resolution down to 4x10-9 g/m using a 40 kg test mass. The atomic physics subsystem is described in detail, including the vacuum, cold atom source, optics, magnetic coils and shields, and vibration isolation and compensation. The system is designed to be a compact, robust, transportable instrument, taking strides towards future gravity gradient measurements in the field. In the realm of space applications, there has been interest for micro-gravity science experiments aboard the International Space Station, along with instrument development for gravity mapping of Earth and planetary bodies with satellite-based instruments. Furthermore, there are ground-based applications for gravity imaging of local density distributions, precision measurement of gravity, as well as proposals for redefining the kilogram, detecting gravitational waves and determining the Gravitational constant.

  11. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  12. Atomic oxygen effects on materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.; Merrow, James E.

    1989-01-01

    Understanding of the basic processes of atomic oxygen interaction is currently at a very elementary level. However, measurement of erosion yields, surface morphology, and optical properties for low fluences have brought about much progress in the past decade. Understanding the mechanisms and those factors that are important for proper simulation of low Earth orbit is at a much lower level of understanding. The ability to use laboratory simulations with confidence to quantifiably address the functional performance and durability of materials in low Earth orbit will be necessary to assure long-term survivability to the natural space environment.

  13. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    SciTech Connect

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.

    2015-01-15

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.

  14. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  15. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  16. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  17. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  18. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  19. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  20. Earth Observing System, Introduction

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Much is known about the Earth, but the unifying concepts are still only beginning to be established. An exposition of the key issues in Earth science is neither simple or concise. From the scientific questions at hand there are many interconnections among them and the view of the Earth as a system is essential to their solution. The Earth science goals for the 1990's are presented for the following areas: hydrologic cycle; biogeochemical cycles; climatological processes; geophysical processes; oceanography; and solid earth.

  1. Atomic ordering in the doped rare earth cobaltates Ln0.33Sr 0.67CoO 3- δ ( Ln=Y 3+, Ho 3+ and Dy 3+)

    NASA Astrophysics Data System (ADS)

    Withers, R. L.; James, M.; Goossens, D. J.

    2003-08-01

    The perovskite-based rare earth cobaltates ( Ln0.33Sr 0.67CoO 3- δ) ( Ln=Y 3+, Ho 3+ and Dy 3+) have been synthesized at 1100°C under 1 atm oxygen. A thermogravimetric study has determined the overall oxygen content in each case while a combined electron diffraction (ED) and synchrotron X-ray diffraction study has revealed the presence of a complex, previously unreported, perovskite-related superstructure phase. ED gave a resultant C1 c1 but most probably Cmcm ( a=2a p-2c p, b=4b p, c=2a p+2c p) perovskite-related superstructure, describable as a modulated I4/ mmm intermediate parent structure. Synchrotron X-ray data has been used to refine the intermediate parent structures of all three compounds. Coupled Ln/Sr and O/vacancy ordering and associated structural relaxation is shown to be responsible for the observed superstructure.

  2. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  3. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  4. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  5. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  6. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  7. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    SciTech Connect

    Perreault, John D.; Cronin, Alexander D.

    2005-09-23

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm.

  8. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  9. Absolute Geodetic Rotation Measurement Using Atom Interferometry

    SciTech Connect

    Stockton, J. K.; Takase, K.; Kasevich, M. A.

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity.

  10. Absolute geodetic rotation measurement using atom interferometry.

    PubMed

    Stockton, J K; Takase, K; Kasevich, M A

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity. PMID:22026848

  11. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  12. The NASA atomic oxygen effects test program

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.

    1988-01-01

    The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported.

  13. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  14. Interface structure and atomic bonding characteristics in silicon nitride ceramics.

    PubMed

    Ziegler, A; Idrobo, J C; Cinibulk, M K; Kisielowski, C; Browning, N D; Ritchie, R O

    2004-12-01

    Direct atomic resolution images have been obtained that illustrate how a range of rare-earth atoms bond to the interface between the intergranular phase and the matrix grains in an advanced silicon nitride ceramic. It has been found that each rare-earth atom bonds to the interface at a different location, depending on atom size, electronic configuration, and the presence of oxygen at the interface. This is the key factor to understanding the origin of the mechanical properties in these ceramics and will enable precise tailoring in the future to critically improve the materials' performance in wide-ranging applications. PMID:15576617

  15. Interactions between Rydberg atoms and ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Jayaseelan, Maitreyi; Haruza, Marek; Bigelow, Nicholas P.

    2015-05-01

    We investigate dipolar interactions arising in a hybrid system containing both ultracold polar molecules and atomic Rydberg states. Ultracold NaCs molecules are produced by photoassociation from laser cooled mixtures of sodium and cesium atoms and detected through resonant multi-photon ionization (REMPI). Rydberg atoms with large dipole moments are excited in the atomic cloud using a multi-photon process and detected via field-ionization. We look for evidence of the interactions in the observed spectra.

  16. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  17. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  18. Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Wynands, Robert

    Time is a strange thing. On the one hand it is arguably the most inaccessible physical phenomenon of all: both in that it is impossible to manipulate or modify—for all we know—and in that even after thousands of years mankind's philosophers still have not found a fully satisfying way to understand it. On the other hand, no other quantity can be measured with greater precision. Today's atomic clocks allow us to reproduce the length of the second as the SI unit of time with an uncertainty of a few parts in 1016—orders of magnitude better than any other quantity. In a sense, one can say [1

  19. Earth on the Move.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  20. Earth's changeable atmosphere

    NASA Astrophysics Data System (ADS)

    2016-06-01

    Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.

  1. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  2. Earth Science, K-12.

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Enochs, Larry G.

    1987-01-01

    Argues that the teaching of earth science is largely neglected in the elementary science curriculum. Provides examples of how more instruction in the earth sciences at all levels can enhance decision-making skills. Discusses the relationship between various learning theories and certain instructional strategies in earth science. (TW)

  3. Interior of the Earth

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1984-01-01

    Basic questions regarding the interior of the Earth in the 1990's are discussed. Research problems in the areas of plate tectonics, the Earth mantle the Earth core, and continental structure are discussed. Observational requirements of the GRAVSAT satellite mission are discussed.

  4. Hydrothermal synthesis and photoluminescence investigation of NaY(MoO4)2:Eu3+ nanophosphor.

    PubMed

    Park, Sung Wook; Noh, Hyeon Mi; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun; Yang, Hyun Kyoung

    2014-11-01

    An intense red-emitting NaY(MoO4)2:Eu3+ nanophosphor was developed using a hydrothermal technique. A highly pure and single-phase NaY(MoO4)2:Eu3+ nanopowder was obtained after sintering the as-prepared sample at 800 degrees C. The crystal structure and photoluminescence properties of this double molybdate were investigated. X-ray diffraction analysis showed that the NaY(MoO4)2 nanoparticles have a scheelite-type tetragonal structure, without mixed phases. Rietveld analysis provided the atomic coordinates and Mo-O-rare-earth angles. The morphology of the molybdate precursor was controlled by adjusting the synthesis conditions. The pH was found to play a crucial role in the particle size and morphology distribution. The crystalline powder phosphor exhibited intense and efficient red emissions attributed to efficient energy-transfer from MoO4(2-) to Eu3+. The chromaticity coordinates (x,y) of the NaY(MoO4)2:Eu3+ phosphor sample correspond to (0.662, 0.337). The NaY(MoO4)2:Eu3+ powder exhibited a deep-red emission under near-ultraviolet (UV) excitation, indicating a promising red phosphor for white-light-emitting diodes based on near-UV light-emitting diodes. PMID:25958592

  5. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.

    PubMed

    Kanai, Ryuta; Ogawa, Haruo; Vilsen, Bente; Cornelius, Flemming; Toyoshima, Chikashi

    2013-10-10

    Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail. PMID:24089211

  6. Color enhancement of ten-minute far ultraviolet exposure of Earth

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An artifically reproduced color enhancement of a ten-minute far-ultraviolet exposure of the Earth, taken with a filter which blocks the glow cause by atomic hydrogen but which transmits the glow caused by atomic oxygen and molecular nitrogen. Note that airglow emission bands are visible on the night side of the Earth, one roughly centered between the two polar auroral zones and one at an angle to this extending northward toward the sunlit side of the Earth.

  7. Synchrotron powder study of Na3V(PO3)3N.

    PubMed

    Kim, Minwoong; Kim, Seung-Joo

    2013-06-01

    Polycrystalline tris-odium vanadium(III) nitridotriphosphate, Na3V(PO3)3N, was prepared by thermal nitridation of a mixture of NaPO3 and V2O5. The title compound is isotypic with Na3Al(PO3)3N. In the crystal, the P-atom and the three O-atom sites are on general positions, whereas the Na-, V- and N-atom sites are located on threefold rotation axes. The P atom is coordinated by three O atoms and one N atom in form of a slightly distorted tetra-hedron. Three PO3N tetra-hedra build up a nitridotriphosphate group, (PO3)3N, by sharing a common N atom. The V atom is coordinated by six O atoms in form of a slightly distorted octa-hedron. The Na(+) ions occupy three crystallographically distinct sites. One Na(+) ion is situated in an irregular polyhedral coordination environment composed of six O atoms and one N atom, while the other two Na(+) cations are surrounded by six and nine O atoms, respectively. PMID:23794965

  8. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  9. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  10. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  11. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  12. Earth - Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by the Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. The color composite used images taken through the red, green and violet filters. The Pacific Ocean covers virtually all of the visible disk of the Earth in this picture. The glint of the Sun reflected from smooth water is near the center. This is a frame of the Galileo Earth spin movie, a 500-frame time-lapse motion picture showing a 25-hour period of Earths rotation and atmospheric dynamics.

  13. Atomic magnetometer

    DOEpatents

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  14. Soluble rare-earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Pernin, Christopher G.

    1999-11-01

    The cluster Eu8(DMF)13(mu4-O)(mu 3-OH)12(Se3)(Se4)2(Se 5)2 was synthesized from the reaction of EuCl3 dissolved in tetrahydrofaran with K2Se4 dissolved in N,N-dimethylformamide (DMF). The Eu8(O)(OH)12 10+ core is the first example such a polyoxometallo-core. The compound is further unusual in that it contains three different polyselenide chain lengths attaching adjacent Eu atoms. A similar reaction between Ln Cl3·6H2O and K2Se4 in DMF was found to produce the cluster compounds Gd8(DMF) 13(mu4-O)(mu3-OH)12(Se3)(Se 4)2(Se5)2, Yb8 (DMF) 11(mu4-O)(mu3-OH)12(Se4) 2(Se5)2Cl2·(DMF), and Y 8(DMF)12(mu4-O)(mu3-OH)12 (Se4)4Cl2·(DMF)6. Each of these clusters has a similar Ln8(mu 4-OH)(mu3-OH)1210+ core coordinated by a variety of polyselenide and chloride ligands. The organometallic rare-earth chalcogenide compounds (C5H 5)2Y [N( Q PPh2)2] ( Q = S, Se) have been prepared in good yield from the protonolysis reaction between CP3Y and HN( Q PPh2)2 in THF. In both compounds, the [N( Q PPh2)2]-- ligand is bound eta 3 to the Y center. The Y atom is also coordinated to two (C5 H5)-- ligands and so is formally 9-coordinate. 1H, 31P, 77Se, and 89Y NMR data indicate that the solid state connectivity is retained in solution. The compounds (C5H5)2Ln[N( Q PPh2)2] (Ln = La, Gd, Er, Yb, for Q = Se; Ln = Yb for Q = S) were synthesized. The series of compounds indicates that the smaller rare-earth elements cannot accommodate eta3-bonding from the imidodiphosphinochalcogenido ligand. The compounds Y[N( Q PPh2)2]3 ( Q = S (1), Se(2)) have been synthesized from the reactions between Y[N(SiMe3)2]3 and HN( Q PPh2)2. In 1, the Y atom is surrounded by three similar [N(SPPh2)2]-- ligands bound eta3 through two S atoms and an N atom. In 2 , the Y atom is surrounded again by three [N(SePPh2) 2]-- ligands, but two are bound eta2 through the two Se atoms and the other ligand is bound eta3 through the two Se atoms and an N atom. Although a fluxional process is detected in the 31P and 77Se NMR spectra

  15. Rotation Sensing with an Atom Interferometer

    SciTech Connect

    Lenef, A.; Hammond, T.D.; Smith, E.T.; Chapman, M.S.; Rubenstein, R.A.; Pritchard, D.E.

    1997-02-01

    We have measured the phase shift induced by rotation of an atom interferometer at rates of -2 to +2 earth rates and obtained 1{percent} agreement with the predicted Sagnac phase shift for atomic matter waves. The rotational rms noise of our interferometer was 42 milliearth rates for 1 sec of integration time, within 9{percent} of shot noise. The high sensitivity and agreement of predicted and measured behavior suggest useful future scientific applications of atom interferometers as inertial sensors. {copyright} {ital 1997} {ital The American Physical Society}

  16. Structural properties of rare earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ramakant; Bhardwaj, Purvee; Singh, Sadhna

    2016-05-01

    The pressure induced NaCl (B1) to CsCl (B2) structural phase transition of rare earth mono-chalcogenide (PuTe) has been investigated in this paper. A modified interaction potential model (MIPM) (including the covalency effect) has been developed. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from present potential model show a generally good agreement with available experimental data than others.

  17. Atom optics with permanent magnetic components

    NASA Astrophysics Data System (ADS)

    Meschede, Dieter; Bloch, Immanuel; Goepfert, A.; Haubrich, D.; Kreis, M.; Lison, F.; Schuetze, R.; Wynands, Robert

    1997-05-01

    We have fabricated and investigated efficient magnetic lenses, waveguides, and mirrors from rare earth permanent materials. They are affordable and maintenance free. In contrast to corresponding light force components they do not need any supplies, they have large apertures, high reflectivity, and there is no spontaneous emission. The cylindrical shape of magnetic components is furthermore well suited to steer atomic beams.

  18. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  19. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  20. Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.

  1. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology. PMID:26550871

  2. Scattered Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux scattered impingement can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymer interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion re1ative is compared between the various interior locations and the external surface of a LEO spacecraft.

  3. Sagnac Interferometry with a Single Atomic Clock

    NASA Astrophysics Data System (ADS)

    Stevenson, R.; Hush, M. R.; Bishop, T.; Lesanovsky, I.; Fernholz, T.

    2015-10-01

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology.

  4. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth

  5. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  6. SEPARATION OF RARE EARTHS BY SOLVENT EXTRACTION

    DOEpatents

    Peppard, D.F.; Mason, G.W.

    1960-10-11

    A process is given for separating lanthanide rare earths from each other from an aqueous mineral acid solution, e.g., hydrochloric or nitric acid of a concentration of above 3 M, preferably 12 to 16 M, by extraction with a water- immiscible alkyl phosphate, such as tributyl phosphate or a mixture of mono-, di- and tributyl phosphate, and fractional back-extraction with mineral acid whereby the lanthanides are taken up by the acid in the order of increasing atomic number.

  7. First gravity measurements using the mobile atom interferometer GAIN

    NASA Astrophysics Data System (ADS)

    Hauth, M.; Freier, C.; Schkolnik, V.; Senger, A.; Schmidt, M.; Peters, A.

    2013-10-01

    We present the compact Gravimetric Atom Interferometer (GAIN), based on laser-cooled 87Rb atoms, and discuss its first measurements of the local gravitational acceleration. In this context, we also describe an active vibration isolation system and a tip-tilt stage, which allow for a suppression of vibrational noise and systematic effects like the Coriolis force due to Earth's rotation.

  8. People and the Earth

    NASA Astrophysics Data System (ADS)

    Rogers, John James William; Feiss, P. Geoffrey

    1998-03-01

    People and the Earth examines the numerous ways in which this planet enhances and limits our lifestyles. Written with wit and remarkable insight, and illustrated with numerous case histories, it provides a balanced view of the complex environmental issues facing our civilization. The authors look at the geologic restrictions on our ability to withdraw resources--food, water, energy, and minerals--from the earth, the effect human activity has on the earth, and the lingering damage caused by natural disasters. People and the Earth examines the basic components of our interaction with this planet, provides a lucid, scientific discussion of each issue, and speculates on what the future may hold. It provides the fundamental concepts that will enable us to make wise and conscientious choices on how to live our day-to-day lives. People and the Earth is an ideal introductory textbook and will also appeal to anyone concerned with our evolving relationship to the earth.

  9. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  10. Earth - India and Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by the Galileo spacecraft on Dec. 11, 1990, when the spacecraft was about 1.5 million miles from the Earth. The color composite used images taken through the red, green and violet filters. India is near the top of the picture, and Australia is to the right of center. The white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Pacific, lower right. This is a frame of the Galileo Earth spin movie, a 500-frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  11. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  12. Capturing near-Earth asteroids around Earth

    NASA Astrophysics Data System (ADS)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  13. Mineral Physics Quest to the Earth's Core

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, Leonid; Lin, Jung-Fu

    2009-01-01

    Because of its remoteness, together with pressures from 140 to 360 gigapascals and temperatures from 4000 to 7000 K, most direct observations of the Earth's core properties have come from teleseismic studies, requiring large earthquake sources and well-positioned seismometers to detect weak wave signals that have traversed the Earth's deepest interior. The decoding of geochemical signatures of the core—potentially carried to the surface in plumes originating at the core-mantle boundary—faces numerous challenges of the debated integrity of this hypothesis. For these reasons, understanding the Earth's core requires multidisciplinary efforts. In the past two decades, deep-Earth scientists have unveiled a number of unusual and enigmatic phenomena of the core, including inner core anisotropy, differential rotation of the inner core, fine-scale seismic heterogeneity, and the possible existence of the prefer-oriented hexagonal close packed (hcp, in which two closely packed layers stack alternately along a crystallographic axis) and/or body-centered cubic (bcc, in which eight atoms reside at the corners and one atom resides at the center of the cubic cell) iron/nickel/light element alloys in the inner core (Figure 1). In this feature article, we summarize recent new findings and frontiers about the nature of the core from mineral physics research.

  14. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  15. Polymeric Materials Resistant to Erosion by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Thibeault, Sheila A.

    2004-01-01

    Polymer-matrix composites are ideally suited for space vehicles because of high strength to weight ratios. The principal component of the low earth orbit (LEO) is atomic oxygen. Atomic oxygen causes surface erosion to polymeric materials. Polymer films with an organometallic additive showed greater resistance to atomic oxygen than the pure polymer in laboratory experiments and in the OPM/MIR experiment. In MISSE, the film with the organometallic additive was still intact after the pure film had completely eroded.

  16. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (ENa metal cohesive energy (EcohDFT - D = - 1.21 eV) when dispersion correction is included (DFT-D), with Eb = -1.14 eV. Both DFT and DFT-D predict that the increase of Na concentration on graphene results in formation of Na complexes. This is evidenced by smaller Bader charge on Na atoms of Na dimer, 0.55e (0.48e for DFT) compared to 0.86e (for both DFT and DFT-D) for the single atom adsorption as well as by the formation of a Nasbnd Na bond identified by analysis of the electron density. These results suggest that ideal graphene is not a promising anode material for Na-ion batteries. Analysis of diffusion pathways for a Na dimer shows that the dimer remains stable during the diffusion, and computed migration barriers are significantly lower for the dimer than that for the single atom diffusion. This indicates that Na-Na interaction should be taken into account during the analysis of Na transport on graphene. Finally, we show that the typical defects (vacancy and divacancy) induce significant strengthening of the Nasbnd C interaction. In particular, the largest change to the interaction is computed for vacancy-defected graphene, where the found lowest binding energy (vs. the metal reference state) is about 1.15 eV (1.21 eV for DFT) lower than that for ideal graphene.

  17. Large momentum transfer atom interferometry with Coriolis force compensation

    NASA Astrophysics Data System (ADS)

    Kuan, Pei-Chen; Lan, Shau-Yu; Estey, Brian; Haslinger, Philipp; Mueller, Holger

    2012-06-01

    Light-pulse atom interferometers use atom-photon interactions to coherently split, guide, and recombine freely falling matter-waves. Because of Earth's rotation, however, the matter-waves do not recombine precisely, which causes severe loss of contrast in large space-time atom interferometers. I will present our recent progress in using a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation. Therefore, we improve the contrast and suppress systematic effects, also reach what is to our knowledge the largest spacetime area.

  18. First-Principles Study of the Electronic Structure and Bonding Properties of X8C46 and X8B6C40 (X: Li, Na, Mg, Ca) Carbon Clathrates

    NASA Astrophysics Data System (ADS)

    KoleŻyński, Andrzej; Szczypka, Wojciech

    2016-03-01

    Results from theoretical analysis of the crystal structure, electronic structure, and bonding properties of C46 and B6C40 carbon clathrates doped with selected alkali and alkaline earth metals cations (Li, Na, Mg, Ca) are presented. The ab initio calculations were performed by means of the WIEN2k package (full potential linearized augmented plane wave method (FP-LAPW) within density functional theory (DFT)) with PBESol and modified Becke-Johnson exchange-correlation potentials used in geometry optimization and electronic structure calculations, respectively. The bonding properties were analyzed by applying Bader's quantum theory of atoms in molecules formalism to the topological properties of total electron density obtained from ab initio calculations. Analysis of the results obtained (i.a. equilibrium geometry, equation of state, cohesive energy, band structure, density of states—both total and projected on to particular atoms, and topological properties of bond critical points and net charges of topological atoms) is presented in detail.

  19. The first single atom magnet

    NASA Astrophysics Data System (ADS)

    Donati, Fabio; Rusponi, Stefano; Wäckerlin, Christian; Singha, Aparajita; Baltic, Romana; Diller, Katharina; Patthey, François; Fernandes, Edgar; Brune, Harald; Dreiser, Jan; Sljivancanin, Zeljko; Kummer, Kurt; Stepanow, Sebastian; Persichetti, Luca; Nistor, Corneliu; Gambardella, Pietro

    The prime feature of a magnet is to retain a significant fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom would allow storing and processing information in the smallest unit of matter. Here we show that individual rare-earth atoms on ultrathin insulating layers grown on non-magnetic metal substrates exhibit magnetic remanence and, therefore, are the first magnets formed by a single surface adsorbed atom. These magnets have a magnetic lifetime of 1500 s and a coercive field of 3.7 T at 10 K. In addition, their hysteresis loop remains open up to 30 K. This first example of a single atom magnet shows bistability at a temperature which is significantly higher than the best single molecule magnets reported so far. Its extraordinary stability is achieved by a suitable combination of magnetic ground state and adsorption site symmetry, and by decoupling the 4 f spin from the underlying metal by a tunnel barrier.

  20. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  1. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  2. Atom Interferometry Measurements of Static and Dynamic Polarizability

    NASA Astrophysics Data System (ADS)

    Trubko, Raisa; Holmgren, Will; Hromada, Ivan; Ronan, Joe; Cronin, Alex

    2011-10-01

    We report progress towards new measurements of static and dynamic polarizabilities for several atomic species. We use a nanograting Mach-Zehnder atom interferometer with an electric field gradient to observe atomic de Broglie wave phase shifts that are proportional to the electric polarizability. These measurements provide tests of atomic structure calculations that are needed to improve the precision of atomic clocks. We explain the progress and challenges of measuring the dynamic polarizability of potassium, the static polarizability of strontium and ytterbium, and several polarizability ratios (e.g. αNa/αLi) with one part per thousand accuracy.

  3. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  4. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  5. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  6. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  7. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  8. The Earth Needs You!

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    Celebrated annually on April 22, schools and communities organize numerous activities during Earth Day to promote awareness. To help teachers plan their own initiatives and to learn more about what is happening around the world, they can join the Earth Day Network at: http://network.earthday.net/. Once they have joined, they can create a webpage…

  9. The Earth Charter

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2010

    2010-01-01

    Humanity is part of a vast evolving universe. Earth is alive with a unique community of life. The forces of nature make existence a demanding and uncertain adventure, but Earth has provided the conditions essential to life's evolution. The resilience of the community of life and the well-being of humanity depend upon preserving a healthy biosphere…

  10. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  11. Earth-Bonding.

    ERIC Educational Resources Information Center

    Norgaard, Jim

    1988-01-01

    Defines "earth bonding" as dynamic interaction between individual and physical environment. Examines methods and goals of traditional environmental education. Describes development of five-day camping workshop for 11 outdoor education teachers. Describes how workshop facilitated earth bonding for teachers. Calls for further research in "bonding…

  12. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  13. Skylab Explores the Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This book describes the Skylab 4 Earth Explorations Project. Photographs of the earth taken by the Skylab astronauts are reproduced here and accompanied by an analytical and explanatory text. Some of the geological and geographical topics covered are: (1) global tectonics - some geological analyses of observations and photographs from Skylab; (2)…

  14. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  15. Spaceship Earth Curriculum Project.

    ERIC Educational Resources Information Center

    McInnis, Noel; And Others

    Three separate papers from the Project are included in this document. One of these, by the Center staff, is entitled "Potentials of the Spaceship Earth Metaphor". It discusses static, dynamic, and analogic representations of spaceship earth and their educational value. A second paper, "Some Resources for Introducing Environmental Education Into…

  16. Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2 crystals: II. Pr3+ and Nd3+ ions in KRE(WO4)2 (RE = Y or Gd), Pr3+ ions in M+ Bi(XO4)2 (M+ = Li or Na and X = W or Mo), and Nd3+ ions in NaBi(WO4)2 and AgNd(WO4)2.

    PubMed

    Rudowicz, Czesław; Karbowiak, Mirosław; Gnutek, Paweł; Lewandowska, Monika

    2014-02-12

    In part I, the crystal-field (CF) parameter (CFP) sets for important potential solid state laser systems Tm(3+), Ho(3+), and Er(3+) ions in KGd(WO4)2 and Tm(3+) ions in KLu(WO4)2 were thoroughly revisited using a general framework for the analysis of CF levels and CFP modeling. In this part the non-standard CFP sets for Pr(3+) and Nd(3+) ions in KR(WO4)2 (R = Y or Gd) and the standard CFP sets for Pr(3+) ions in M(+)Bi(XO4)2 (M(+) = Li or Na and X = W or Mo) and Nd(3+) ions in the related systems NaBi(WO4)2 and AgNd(WO4)2 are analyzed. Due to structural similarity of the hosts, the CFP values for a given trivalent rare-earth (RE(3+)) ion should be quite close in these systems. However, the fitted (and model) CFP sets appear disparate for the systems in question. The standardization criteria are utilized to ensure direct comparability of the apparently disparate CFP sets reported in the literature. The CFP sets standardized by us are compared with the originally standard CFP sets for Pr(3+) and Nd(3+) ions in related AB(XO4)2 systems. Following part I, we argue that meaningful analysis of the mixed CFP sets, i.e. standard and non-standard ones, must take into account the intrinsic features of CF Hamiltonians for orthorhombic and lower symmetry cases, which have not been fully recognized in the literature as yet. The model or fitted CFP sets that belong to disparate regions in the CFP space are intrinsically incompatible, i.e. such sets should not be directly compared. The correlated alternative CFP sets are calculated using monoclinic standardization transformations. The closeness of the standardized CFP sets is assessed in a quantitative way using the closeness factors and the norms ratios. Comparative analysis of the monoclinic CFP sets reported for the titled ion-host systems is carried out and several inconsistencies in the previous studies are clarified. The CFP sets determined by standardization are utilized as starting sets for applications of the multiple

  17. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  18. Earth Science Week evolves

    NASA Astrophysics Data System (ADS)

    Earth Science Week, October 7-13, is an annual grassroots effort sponsored by the American Geological Institute (AGI) and its member societies, of which AGU is the largest. This year, for the first time, Earth Science Week has a general theme, evolution in Earth history. The Earth Science Week information kit for 2001, available from AGI, includes a variety of posters, bookmarks, and other materials that illustrate this concept. The kit contains a new 32-page “Ideas and Activities” booklet that emphasizes evolution in Earth history through an array of activities about rocks, fossils, and geologic time. It also has information on the upcoming Public Broadcasting Service series, “Evolution,” which is to be aired in late September.

  19. Alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} with large nonlinear optical properties in the deep-ultraviolet region

    SciTech Connect

    Reshak, A. H.; Huang, Hongwei; Kamarudin, H.; Auluck, S.

    2015-02-28

    The linear optical response and second harmonic generation (SHG) in alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} are investigated by means of density functional theory. Calculations are performed using four types of exchange correlations: Ceperley-Alder local density approximation, Perdew Burke and Ernzerhof general gradient approximation, Engel-Vosko generalized gradient approximation, and the recently modified Becke-Johnson potential (mBJ). The mBJ approach brings the calculated band gap (7.20 eV) in excellent agreement with the experimental one (7.28 eV). The calculated values of the uniaxial anisotropy δε=−0.076 and the birefringence Δn(0)=0.052 indicate considerable anisotropy in the linear optical properties, which makes it favorable for the second harmonic generation. The dominant component of the second harmonic generation is χ{sub 111}{sup (2)}(ω). The value of |χ{sub 111}{sup (2)}(ω)| is about 1.2 pm/V at λ = 1064 nm in agreement with previous calculations. To analyze the origin of the high SHG of NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} single crystals, we have correlated the features of |χ{sub 111}{sup (2)}(ω)| spectra with the features of ε{sub 2}(ω) spectra as a function of ω/2 and ω. From the calculated dominant component |χ{sub 111}{sup (2)}(ω)|, we find that the microscopic first hyperpolarizability, β{sub 111}, the vector components along the dipole moment direction is 0.5 × 10{sup −30} esu at static limit and 0.6 × 10{sup −30} esu at λ = 1064 nm.

  20. NaCaCo2F7: A single-crystal high-temperature pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Krizan, J. W.; Cava, R. J.

    2014-06-01

    We report the magnetic characterization of the frustrated transition metal pyrochlore NaCaCo2F7. This material has high spin Co2+ in CoF6 octahedra in a pyrochlore lattice and disordered nonmagnetic Na and Ca on the large-atom sites in the structure. Large crystals grown by the floating zone method were studied. The magnetic susceptibility is isotropic; the Co moment is larger than the spin-only value; and in spite of the large Curie Weiss theta (-140 K), freezing of the spin system, as characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until around 2.4 K. This yields a frustration index of f=-θCW/Tf≈56, an indication that the system is highly frustrated. The observed entropy loss at the freezing transition is low, indicating that magnetic entropy remains present in the system at 0.6 K. The compound may be the realization of a frustrated pyrochlore antiferromagnet with weak bond disorder. The high magnetic interaction strength, strong frustration, and the availability of large single crystals makes NaCaCo2F7 an interesting alternative to rare earth oxide pyrochlores for the study of geometric magnetic frustration in pyrochlore lattices.

  1. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  2. 'Seeing' atoms: the crystallographic revolution.

    PubMed

    Schwarzenbach, Dieter

    2014-01-01

    Laue's experiment in 1912 of the diffraction of X-rays by crystals led to one of the most influential discoveries in the history of science: the first determinations of crystal structures, NaCl and diamond in particular, by W. L. Bragg in 1913. For the first time, the visualisation of the structure of matter at the atomic level became possible. X-ray diffraction provided a sort of microscope with atomic resolution, atoms became observable physical objects and their relative positions in space could be seen. All branches of science concerned with matter, solid-state physics, chemistry, materials science, mineralogy and biology, could now be firmly anchored on the spatial arrangement of atoms. During the ensuing 100 years, structure determination by diffraction methods has matured into an indispensable method of chemical analysis. We trace the history of the development of 'small-structure' crystallography (excepting macromolecular structures) in Switzerland. Among the pioneers figure Peter Debye and Paul Scherrer with powder diffraction, and Paul Niggli and his Zurich School with space group symmetry and geometrical crystallography. Diffraction methods were applied early on by chemists at the Universities of Bern and Geneva. By the 1970s, X-ray crystallography was firmly established at most Swiss Universities, directed by full professors. Today, chemical analysis by structure determination is the task of service laboratories. However, the demand of diffraction methods to solve problems in all disciplines of science is still increasing and powerful radiation sources and detectors are being developed in Switzerland and worldwide. PMID:24801690

  3. Atoms and Space

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L.

    1959-01-01

    The stated subject of this paper is so broad that it might include everything from the study of the infinitely small recesses of the atom to the vast infinity of galactic space. We will therefore begin by limiting the scope of the subject to a discussion of three questions: --- (1) What are the potentialities of the use of nuclear energy in the exploration of space? --- (2) What uses of nuclear energy in space exploration are expected in the next decade? - - - (3) What is likely to be the impact of space exploration on the development of other applications of nuclear energy? We will discuss these questions in relation to the space activities of the United States as set forth in the National Aeronautics and Space Act of 1958 and in the programs of the National Aeronautics and Space Administration, the agency established by Congress to carry out the policy established in that Act that activities in space should be devoted to peaceful purposes for the benefit of all mankind. Such activities include at present the exploration of space to gain greater knowledge and understanding of the earth and its atmosphere, the moon, planets, and the universe; the application of available knowledge to develop capabilities for other activities in space for the benefit of mankind; and the beginning of the exploration of space by man himself.

  4. Optically Pumped Atoms with Velocity- and Spin-Changing Collisions at Low Gas Pressures

    NASA Astrophysics Data System (ADS)

    Happer, William

    2010-03-01

    We discuss optical pumping when: (a) the collision rates of optically pumped atoms with atoms or molecules of the background gas are small enough that individual velocity groups can be preferentially excited by a monochromatic light beam, (b) the collision rates are still fast enough to partially transfer the spin polarization to other velocity groups, and (c) there are non-negligible losses of polarization due to collisional spin relaxation and Larmor precession. These conditions lead to a strong correlation between the velocity and the spin polarization of the atoms-that is, to ``spin-tagging'' of the different velocity groups. This regime is similar to that of optically pumped 23Na atoms of the earth's upper atmosphere, but it is seldom encountered in laboratory experiments. For cooling and trapping experiments, the collision rates with background gas are negligible. For gas-cell experiments the velocity-changing rates are normally so fast compared to spin relaxation or Larmor precession rates, that the atoms have a Maxwellian velocity distribution with negligible correlation between the spin-polarization and the velocity. We analyze the limiting cases of strong and weak collisions, which change the velocity by a large or small fraction, respectively, of the mean thermal velocity. The Keilson-Storer model (J. Keilson and A. E. Storer, Q. Appl. Math. 10, 243 (1952)) is used to discuss strong collisions, with memory parameter =0, and weak collisions with $-> 1. For weak collisions, the physics can be modelled by coupled Fokker-Planck equations, identical to those for forced diffusion in a harmonic-oscillator potential well. In this limit there are solutions analogous to the quantum-mechanical coherent states of a harmonic oscillator.

  5. Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures

    SciTech Connect

    Morgan, Steven W.; Happer, William

    2010-04-15

    We discuss optical pumping when (a) the collision rates of optically pumped atoms with atoms or molecules of the background gas are small enough that individual velocity groups can be preferentially excited by a monochromatic light beam, (b) the collision rates are still fast enough to partially transfer the spin polarization to other velocity groups, and (c) there are nonnegligible losses of polarization due to collisional spin relaxation and Larmor precession. These conditions lead to a strong correlation between the velocity and the spin polarization of the atoms - that is, to 'spin-tagging' of the different velocity groups. This regime is similar to that of optically pumped {sup 23}Na atoms of the Earth's upper atmosphere, but it is seldom encountered in laboratory experiments. For cooling and trapping experiments, the collision rates with background gas are negligible. For gas-cell experiments the velocity-changing rates are normally so fast compared to spin relaxation or Larmor precession rates that the atoms have a Maxwellian velocity distribution with negligible correlation between the spin polarization and the velocity. We analyze the limiting cases of strong and weak collisions, which change the velocity by a large or small fraction, respectively, of the mean thermal velocity. The Keilson-Storer model [J. Keilson and A. E. Storer, Q. Appl. Math. 10, 243 (1952)] is used to discuss strong collisions, with memory parameter {alpha}=0 and weak collisions with {alpha}{yields}1. For weak collisions, the physics can be modeled by coupled Fokker-Planck equations, identical to those for forced diffusion in a harmonic-oscillator potential well. In this limit there are solutions analogous to the quantum mechanical coherent states of a harmonic oscillator.

  6. Assembling Ultracold Polar Molecules From Single Atoms

    NASA Astrophysics Data System (ADS)

    Liu, Lee R.; Hutzler, Nicholas R.; Yu, Yichao; Zhang, Jessie T.; Ni, Kang-Kuen

    2016-05-01

    Ultracold polar molecules are promising candidates for studying quantum many-body phenomena and building quantum information systems, due to their long-range, anisotropic, and tunable interactions. This calls for a technique to create low entropy samples of ultracold polar molecules with a large dipole moment. The lowest entropy molecular gas to date was created from atomic quantum gases in bulk or in optical lattices. The entropy is limited by that of the constituent atomic gases. We propose a method that addresses this limitation by assembling sodium cesium (NaCs) molecules from individually manipulated atoms. First, we load single Na and Cs atoms in separate optical tweezers from MOTs. We will cool them to their motional ground state using Raman sideband cooling and then merge them into a single tweezer. The tweezer confinement provides enhanced wavefunction overlap between the atom pair and molecule states. Using coherent two-photon techniques, we will then transfer the atom pair into a molecule. Our method offers reduced apparatus complexity and cycle time, single-site manipulation and imaging resolution, and should be readily extended to different species.

  7. Catalytic processes in the atmospheres of Earth and venus.

    PubMed

    Demore, W B; Yung, Y L

    1982-09-24

    Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (CIOx) act as catalysts in the two atmospheres. On Earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of CIOx catalysis and sulfur dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere. PMID:17837628

  8. Effect of pressure on the lattice structure and dynamics of elpasolites Cs2Na RF6 ( R = Y, Yb): ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.

    2015-06-01

    The effect of hydrostatic compression on the lattice structure and dynamics of elpasolites Cs2NaYbF6 and Cs2NaYF6 (sp. gr. 225) has been investigated ab initio. The frequencies and types of fundamental oscillations are determined, and elastic constants are calculated. The computation is performed within the molecular orbitals-linear combinations of atomic orbitals (MO LCAO) approach using the density functional theory (DFT) method with hybrid functionals B3LYP and PBE0 in the CRYSTAL09 program. The rare-earth ion was described by representing the inner (in particular, 4 f) orbitals in the form of a pseudopotential. The outer 5 s and 5 p orbitals, which determine chemical bonding, were described using valence basis sets.

  9. Astronomy at School: Measurements of the Earth-Moon Distance. (Spanish Title: Astronomía en la Escuela: Medición de la Distancia Tierra-Luna.) Astronomia na Escola: Medida da Distância Terra-Lua

    NASA Astrophysics Data System (ADS)

    Paolantonio, Santiago; Pintado, Olga I.

    2006-12-01

    The aim of this project is to approach High School students to Science. We propose to measure the Earth-Moon distance using the parallax. The observation and measurements techniques and all the calculations needed are described in this paper. The results obtained in a test experience realized during 2003 are presented. This test shows that this is a feasible project and also shows which things needed to be improved. Se plantea la propuesta de un proyecto educativo dirigido al Nivel Medio de enseñanza, consistente en la determinación de la distancia Tierra - Luna por paralaje. Se describen las técnicas de observación, mediciones y cálculos. Se proporcionan a continuación los resultados obtenidos en la experiencia piloto realizada en el 2003, la que permitió comprobar la factibilidad de llevar a cabo la propuesta, así como perfeccionar los diferentes aspectos involucrados en la misma. Propomos neste trabalho um projeto educativo dirigido ao Ensino Médio que consiste na determinação da distância Terra-Lua pelo efeito da paralaxe. As técnicas de observação, medidas e cálculos auxiliares são descritos, e os resultados obtidos numa experiência-teste realizada no ano de 2003 apresentados. Este último teste permitiu comprovar a viabilidade de execução da proposta e aperfeiçoar diversos aspectos da mesma.

  10. Large atom number Bose-Einstein condensate machines

    SciTech Connect

    Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.; Boyd, Micah; Torii, Yoshio; Schneble, Dominik; Campbell, Gretchen K.; Pritchard, David E.; Ketterle, Wolfgang

    2006-02-15

    We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.

  11. A comparative analysis of microgravity and earth grown thermostable T1 lipase crystals using HDPCG apparatus.

    PubMed

    Abd Rahman, Raja N Z R; Ali, Mohd S Mohamad; Sugiyama, Shigeru; Leow, Adam T C; Inoue, Tsuyoshi; Basri, Mahiran; Salleh, Abu B; Matsumura, Hiroyoshi

    2015-01-01

    Geobacillus zalihae sp. nov., which produces a putative thermostable lipase, represents a novel species, with type strain T1. The characterisation of this intrinsically thermostable T1 lipase either physicochemically or structurally is an important task. The crystallisation of T1lipase in space was carried out using a High-Density Protein Crystal Growth (HDPCG) apparatus with the vapour diffusion method, and X-ray diffraction data were collected. The microgravity environment has improved the size and quality of the crystals as compared to earth grown crystal. The effect of microgravity on the crystallisation of T1 lipase was clearly evidenced by the finer atomic details at 1.35 A resolution. Better electron densities were observed overall compared with the Earth-grown crystals, and comparison shows the subtle but distinct conformations around Na(+) ion binding site stabilized via cation-π interactions. This approach could be useful for solving structure and function of lipases towards exploiting its potentials to various industrial applications. PMID:25329331

  12. Earth as art three

    USGS Publications Warehouse

    U.S. Geological Survey

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  13. NASA's Earth observation programs

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Hammer, Theodore F.

    2006-09-01

    The purpose of NASA's Science Mission Directorate's Earth Science Division (ESD) is to develop a scientific understanding of Earth's system and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. ESD conducts and sponsors research, collects new observations from space, develops technologies and extends science and technology education to learners of all ages. We work closely with our global partners in government, industry, and the public to enhance economic security, and environmental stewardship, benefiting society in many tangible ways. We conduct and sponsor research to answer fundamental science questions about the changes we see in climate, weather, and natural hazards, and deliver sound science that helps decision-makers make informed decisions. Using the view from space to study the Earth, researchers can better predict critical changes to Earth and its space environment. ESD has a critical role in implementing three major national directives: •Climate Change Research through the Climate Change Science Program •Global Earth Observation System of Systems through the Interagency Working Group on Earth Observations (IWGEO) •U.S Ocean Action Plan. NASA's ESD currently has a system of spacecraft collecting observations of the Earth system and in the months and years ahead will deploy new satellites and constellations with advanced measurement capabilities.

  14. Earths, Super-Earths, and Jupiters

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Lee, Eve J.

    2015-12-01

    We review and add to the theory of how planets acquire atmospheres from parent circumstellar disks. We derive (in real time) a simple and general analytic expression for how a planet's atmosphere grows with time, as a function of the underlying core mass and nebular conditions, including the gas metallicity. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. The theory can be applied in any number of settings --- gas-rich vs. gas-poor nebulae; dusty vs. dust-free atmospheres; close-in vs. far-out distances --- and is confirmed against detailed numerical models for objects ranging in mass from Mars (0.1 Mearth) to the most extreme super Earths (10--20 Mearth). We explain why heating from planetesimal accretion, commonly invoked in models of core accretion, is irrelevant. This talk sets the stage for another presentation, "Breeding Super-Earths and Birthing Super-Puffs".

  15. Homocoordination preference in NaCs and LiNa liquid alloys by first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Costa Cabral, B. J.; Martins, J. L.

    1999-09-01

    We present structural and dynamics results based on Hellman-Feynman molecular dynamics for the liquid phase of the NaCs alloy at two Na concentrations (cNa=0.6 and 0.8) and for the Li0.61Na0.39 zero alloy at two temperatures (T=590 K and 690 K). For NaCs the calculated structure factor S(k) is in very good agreement with data from neutron scattering experiments and the partial structure factors are compared to semiexperimental, theoretical and classical molecular dynamics predictions. We predict similar values for the self-diffusion coefficients of Na and Cs atoms in the Na0.6Cs0.4 alloy. For LiNa the concentration-concentration structure factor is in good agreement with experimental data and our results for the dynamics are compared with data from classical molecular dynamics simulations.

  16. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2016-01-01

    Spherically symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to nonvanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for 133Cs atomic clocks, the spatial gradients of electric fields must be smaller than 30 V /cm2 to guarantee fractional inaccuracies below 10-16.

  17. Earth from Above

    NASA Astrophysics Data System (ADS)

    Parkinson, Claire L.

    Earth from Above provides an easy introduction to understanding and interpreting satellite images, using illustrative examples to instruct on the fantastically informative new global data sets. Beginning with two short chapters on visible satellite images and radiation, the book then covers six key Earth-atmosphere variables on such environmentally important topics as the Antarctic ozone hole, El Nino, deforestation, the missing carbon dilemma, and the effects of sea ice, snow cover, and volcanoes on atmospheric temperatures. A final chapter broadens the discussion to consider satellite Earth observations in general.

  18. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  19. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  20. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase.

    PubMed

    Mahmmoud, Yasser A

    2008-02-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K(+). Studies with purified membranes revealed that CPZ reduced Na(+)-dependent phosphorylation by interference with Na(+) binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K(+). Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, indirectly measured interaction with ADP was much increased, which suggests that composite regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive (22)Na(+) influx into K(+)-loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump. Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na(+) cycle from an Na(+)/K(+) cycle in the pump. The Na(+) cycle possibly involves transport through the recently characterized Na(+)-specific site. A shift to such an uncoupled mode is believed to produce pumps mediating uncoupled Na(+) efflux by modifying the transport stoichiometry of single pump units. PMID:18230728

  1. Cold Atom Gravity Gradiometer for Geodesy

    NASA Astrophysics Data System (ADS)

    Sugarbaker, Alex; Black, Adam; Ledbetter, Micah; Hong, Tao; Kasevich, Mark; Saif, Babak; Luthcke, Scott; Seery, Bernard; Feinberg, Lee; Mather, John; Keski-Kuha, Ritva

    2015-05-01

    We are developing an atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit. The target sensitivity of the gradiometer is 7 ×10-5 E/Hz1/2 when extrapolated to operation in microgravity. This is two orders of magnitude beyond ESA's Gravity field and steady-state Ocean Circulation Explorer (GOCE), and would improve our ability to understand and monitor ocean currents, the thinning of ice sheets, magma flows, and other geophysical phenomena. Many of the techniques employed in this sensor were developed in the Stanford 10 m drop tower. Supported by NASA's Instrument Incubator Program (IIP).

  2. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  3. Inelastic processes in Na+-Ne, Na+-Ar, Ne+-Na, and Ar+-Na collisions in the energy range 0.5-14 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, R. A.; Gochitashvili, M. R.; Kezerashvili, R. Ya.

    2015-12-01

    Absolute cross sections for charge-exchange, ionization, and excitation in Na+-Ne and Na+-Ar collisions were measured in the ion energy range 0.5 -10 keV using a refined version of a capacitor method and collision and optical spectroscopy methods simultaneously in the same experimental setup. Ionization cross sections for Ne+-Na and Ar+-Na collisions are measured at energies of 2 -14 keV using a crossed-beam spectroscopy method. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. For the charge-exchange process in Na+-Ar collisions two nonadiabatic regions are revealed and mechanisms responsible for these regions are explained. Structural peculiarity on the excitation function for the resonance lines of argon atoms in Na+-Ar collisions are observed and the possible mechanisms of this phenomenon are explored. The measured ionization cross sections for Na+-Ne and Ne+-Na collisions in conjunction with the Landau-Zener formula are used to determine the coupling matrix element and transition probability in a region of pseudocrossing of the potential curves.

  4. NASA 2014: Earth

    NASA Video Gallery

    For the first time in more than a decade, five NASA Earth science missions will be launched into space in the same year, opening new and improved remote eyes to monitor our changing planet. The lau...

  5. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  6. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  7. Beautiful Earth with GPM

    NASA Video Gallery

    This is a musical and visual tour of Earth from space followed by a discussion with scientists from NASA's new rain and snow satellite. During this one-hour event, students and teachers from across...

  8. Earth Reconnect -- July 2012

    NASA Video Gallery

    A visualization of Earth's magnetosphere on July 15-16, 2012, shows how constant magnetic reconnection caused by an arriving coronal mass ejection, or CME, from the sun disrupted the magnetosphere,...

  9. Energy for Planet Earth.

    ERIC Educational Resources Information Center

    Davis, Ged R.

    1990-01-01

    Examined is the world society's ability to meet energy needs without destroying the earth. Supply and demand issues are examined. International per capita energy use is compared. Historical trends are described. (CW)

  10. LANL Studies Earth's Magnetosphere

    ScienceCinema

    Daughton, Bill

    2014-08-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  11. Mapping Earth Science Concepts.

    ERIC Educational Resources Information Center

    McDuffie, Thomas E., Jr.; Van Dine, William E.

    1978-01-01

    Presents two experiments concerned with mapping skills. Directions are given for calculating the circumference of the earth and for developing a model of the solar system using familiar territory as a frame of reference. (MA)

  12. Down to earth relativity

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1978-01-01

    The basic concepts of the special and general theories of relativity are described. Simple examples are given to illustrate the effect of relativity on measurements of time and frequency in the near-earth environment.

  13. The Whole Earth Dialogue.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1988-01-01

    Discusses the trend toward more "earth-as-a-system" approaches in research and teaching about global science. Uses the "greenhouse effect" as a prototypical global change problem that requires interdisciplinary problem-solving approaches. (TW)

  14. Geophysics: Earth's core problem

    NASA Astrophysics Data System (ADS)

    Dobson, David

    2016-06-01

    Measurements of the electrical resistance and thermal conductivity of iron at extreme pressures and temperatures cast fresh light on controversial numerical simulations of the properties of Earth's outer core. See Letters p.95 & 99

  15. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  16. LANL Studies Earth's Magnetosphere

    SciTech Connect

    Daughton, Bill

    2011-04-15

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  17. Welcome Back to Earth

    NASA Video Gallery

    NASA astronaut Scott Kelly is interviewed by public affairs officer Rob Navias just after returning to Earth aboard a Soyuz spacecraft on March 1, 2016 (March 2, local Kazakh time) following a 340 ...

  18. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  19. Earth study from space

    NASA Technical Reports Server (NTRS)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  20. Skylab Earth Observation Studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  1. Earth's variable rotation

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  2. Reversible Bergman cyclization by atomic manipulation

    NASA Astrophysics Data System (ADS)

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  3. Solar System Portrait - Earth

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image of the Earth is one of 60 frames taken by the Voyager 1 spacecraft on Feb. 14, 1990 from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. This image the Earth is a mere point of light, a crescent only 0.12 pixel in size. Our planet was caught in the center of one of the scattered light rays resulting from taking the image so close to the sun.

  4. NASA Earth science missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  5. Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1999-01-01

    Workshop for middle and high school teachers to enhance their knowledge of the Earth as a system. NASA data and materials developed by teachers (all available via the Internet) will be used to engage participants in hands-on, investigative approaches to the Earth system. All materials are ready to be applied in pre-college classrooms. Remotely-sensed data will be used in combination with familiar resources, such as maps, to examine global climate change.

  6. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  7. Guided earth boring tool

    SciTech Connect

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.; Wasson, M.R.; Herben, W.C.

    1987-09-22

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe, a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.

  8. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  9. Biosignatures of Early Earths

    NASA Astrophysics Data System (ADS)

    Pilcher, Carl B.

    2003-11-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1½ billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH3SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-μm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  10. Toward other Earths

    NASA Astrophysics Data System (ADS)

    Hatzes, Artie P.

    2016-04-01

    How common are habitable Earth-like planets? This is a key question that drives much of current research in exoplanets. To date, we have discovered over one thousand exoplanets, mostly through the transit method. Among these are Earth-size planets, but these orbit very close to the star (semi-major axis approximately 0.01 Astronomical Units). Potentially rocky planets have also been discovered in a star's habitable zone, but these have approximately twice the radius of the Earth. These certainly do not qualify as Earth "twins". Several hundreds of multi-planet systems have also been discovered, but these are mostly ultra-compact systems with up to seven planets all with orbital distances less than that of Mercury in our solar system. The detection of a planetary system that is the direct analog of our solar system still eludes us. After an overview of the current status of exoplanet discoveries I will discuss the prospects and challenges of finding such Earth analogs from the ground and from future space missions like PLATO. After over two decades of searching, we may well be on the brink of finding other Earths.

  11. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  12. Atomic Oxygen Used to Restore Artworks

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2004-01-01

    Techniques developed at the NASA Glenn Research Center to produce atomic oxygen in order to simulate the low-Earth-orbit environment for spacecraft materials testing can also be applied in the field of art restoration. Defaced or fire-damaged artwork can be treated with atomic oxygen to remove the damage and enable restoration that could not be accomplished with conventional methods. The process has been patented (U.S. Patents 5,560,781 and 5,693,241) and has been used to restore several works of art.

  13. Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Kohel, J.; Klipstein, W. M.; Seidel, D. J.; Maleki, L.

    2000-01-01

    The goals of the Glovebox Laser-cooled Atomic Clock Experiment (GLACE) are: (1) first utilization of tunable, frequency-stabilized lasers in space, (2) demonstrate laser cooling and trapping in microgravity, (3) demonstrate longest 'perturbation-free' interaction time for a precision measurement on neutral atoms, (4) Resolve Ramsey fringes 2-10 times narrower than achievable on Earth. The approach taken is: the use of COTS components, and the utilization of prototype hardware from LCAP flight definition experiments. The launch date is scheduled for Oct. 2002. The Microgravity Science Glovebox (MSG) specifications are reviewed, and a picture of the MSG is shown.

  14. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  15. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.

    1982-01-01

    Laser induced fluorescence techniques were developed for the containerless study of high temperature processes, material properties, levitation, and heating techniques for containerless earth-based experimentation. Experiments were performed in which fluorescence of atomic aluminum, mercury, or tungsten were studied. These experiments include measurements of: (1) Al atom evaporation from CW CO2 laser heated and aerodynamically levitated sapphire and alumina spheres, and self-supported sapphire filaments, (2) Al atom reaction with ambient oxygen in the wake of a levitated specimen, (3) Hg atom concentrations in the wake of levitated alumina and sapphire spheres, relative to the ambient Hg atom concentration, (4) Hg atom concentrations in supersonic levitation jets, and (5) metastable, electronically excited W atom concentrations produced by evaporation of an electrically heated tungsten filament.

  16. Na2MoO2As2O7

    PubMed Central

    Jouini, Raja; Zid, Mohamed Faouzi; Driss, Ahmed

    2012-01-01

    Disodium molybdenum dioxide diarsenate, Na2MoO2As2O7, has been synthesized by a solid-state reaction. The structure is built up from MoAs2O12 linear units sharing corners to form a three-dimensional framework containing tunnels running along the a-axis direction in which the Na+ cations are located. In this framework, the AsV atoms are tetra­hedrally coordinated and form an As2O7 group. The MoVI atom is displaced from the center of an octa­hedron of O atoms. Two Na+ cations are disordered about inversion centres. Structural relationships between different compounds: A 2MoO2As2O7 (A = K, Rb), AMOP2O7 (A = Na, K, Rb; M = Mo, Nb) and MoP2O7 are discussed. PMID:23468669

  17. High Temperature Chemistry of Rare Earth Compounds: Dramatic Examples of Periodicity.

    ERIC Educational Resources Information Center

    Cater, E. David

    1978-01-01

    Reports that energy required to promote a 4f electron to the 5d level has a profound and predictable influence on the systematics of reactions involving conversion of rare earth atoms from combined to free states. (Author/MA)

  18. Peierls distortion of endohedral atoms in clathrate I

    NASA Astrophysics Data System (ADS)

    Tomono, Hidekazu; Tsumuraya, Kazuo

    2008-03-01

    The guest atom displacements in type II clathrates have been reported on experimental and theoretical points of view. The displacements are reported to be 0.6 å from the cage center of the Si28 cage to the hexagonal in the hydrogen terminated double caged Si28 cluster [1]. The distortion can be expected to occur in the type I clathrate which forms with bamboo structures in the x, y, and z directions. The guest atoms show Peiels distortion when we calculate the equilibrium distances between the two Na atoms which locate at the neighboring Si24 cages in the bamboo structure using periodic density functional calculation. The binding energy between the guest atoms is -0.10 eV/Na2. We also confirm the tendency of the Peierls distotion from the force directions of guest atoms in the double unit cells that contain four Na atoms in one dimension; We will propose the cohesion mechanism of the clathrates that the clathrates are precipitated states of the connecting endohedral atoms in the 14 group atoms. So are the hydroclathrates in which the guest molecules bind each other with chains. [1] H. Takenaka and K. Tsumuraya, Mater. Trans. 47, 63 (2006).

  19. Na-ion dynamics in Quasi-1D compound NaV2O4

    NASA Astrophysics Data System (ADS)

    Månsson, M.; Umegaki, I.; Nozaki, H.; Higuchi, Y.; Kawasaki, I.; Watanabe, I.; Sakurai, H.; Sugiyama, J.

    2014-12-01

    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV2O4. By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above Tdiff ≈ 250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above Tdiff. Such results make this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV2O4 and related compounds in energy related applications.

  20. Global Images of Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Global images of Earth from Galileo. In each frame, the continent of Antarctica is visible at the bottom of the globe. South America may be seen in the first frame (top left), the great Pacific Ocean in the second (bottom left), India at the top and Australia to the right in the third (top right), and Africa in the fourth (bottom right). Taken at six-hour intervals on December 11, 1990, at a range of between 2 and 2.7 million kilometers (1.2 to 1.7 million miles). P-37630

    These images were taken during Galileo's first Earth flyby. This gravity assist increased Galileo's speed around the Sun by about 5.2 kilometers per second (or 11,600 miles per hour) and substantially redirected Galileo as required for its flybys of the asteroid Gaspra in October 1991 and Earth in 1992. Galileo's closest approach (960 kilometers, or 597 miles, above the Earth's surface) to the Earth was on December 8, 1990, 3 days before these pictures were taken.

    Each of these images is a color composite, made up using images taken through red, green, and violet filters. The four images are part of the Galileo Earth spin movie, a 256-frame time-lapse motion picture that shows a 25-hour period of Earth's rotation and atmospheric dynamics. The movie gives scientists a unique overall view of global weather patterns, as opposed to the limited view of weather satellite images.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  1. CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS

    SciTech Connect

    Schaefer, Laura; Fegley, Bruce E-mail: bfegley@levee.wustl.ed

    2009-10-01

    We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds such as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.

  2. Structural Properties and Phase Transition of Na Adsorption on Monolayer MoS2.

    PubMed

    He, Hai; Lu, Pengfei; Wu, Liyuan; Zhang, Chunfang; Song, Yuxin; Guan, Pengfei; Wang, Shumin

    2016-12-01

    First-principles calculations are performed to investigate the structural stability of Na adsorption on 1H and 1T phases of monolayer MoS2. Our results demonstrate that it is likely to make the stability of distorted 1T phase of MoS2 over the 1H phase through adsorption of Na atoms. The type of distortion depends on the concentration of adsorbed Na atoms and changes from zigzag-like to diamond-like with the increasing of adsorbed Na atom concentrations. Our calculations show that the phase transition from 1H-MoS2 to 1T-MoS2 can be obtained by Na adsorption. We also calculate the electrochemical properties of Na adsorption on MoS2 monolayer. These results indicate that MoS2 is one of potential negative electrodes for Na-ion batteries. PMID:27416903

  3. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor Fuel…

  4. Atomic Fisher information versus atomic number

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Sen, K. D.

    2006-12-01

    It is shown that the Thomas Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gáspár provides a qualitatively correct expression for the Fisher information: Gáspár's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number.

  5. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  6. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  7. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  8. Monitoring the Earth

    NASA Astrophysics Data System (ADS)

    Vita-Finzi, Claudio

    2003-02-01

    Monitoring the Earth is the first book to review the recent advances in satellite technology, computing and mass spectrometry that are opening up completely new avenues of enquiry to Earth scientists. Among the geological changes that were previously considered too slow or too extensive for direct measurements and that can now be monitored directly are continental displacements, mountain uplift, the growth and decay of icesheets and glaciers, the faulting and folding of rocks, the progress of weathering and sedimentation, and the growth of coral reefs. In addition to these developments, the book assesses progress in fields not normally considered part of physical geology, such as the shape and orbit of the gravity and the terrestrial magnetic field. The results from the new findings are already helping Earth scientists analyze and explain the underlying mechanisms, notably with regard to the storage and release of strain during earthquakes and the interaction of glacial history with the Earth's rate of rotation. The outcoe is a foretaste of the physical geology of the space age.^Fully illustrated with line drawings and photographs, and with a bibliography that encompasses the scattered and disparate litarature, Monitoring the Earth is intended for undergraduates in geology, geomorphology, geomatic engineering and planetary science, but it should also be of interest to astronomers and historians of science.

  9. Earth - Moon Conjunction

    NASA Technical Reports Server (NTRS)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  10. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  11. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  12. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  13. Crescent Earth and Moon

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  14. Trisodium citrate, Na3(C6H5O7)

    PubMed Central

    Rammohan, Alagappa; Kaduk, James A.

    2016-01-01

    The crystal structure of anhydrous tris­odium citrate, Na3(C6H5O7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na+ and one six-coordinate Na+ cations in the asymmetric unit. The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intra­molecular one between the hy­droxy group and one of the terminal carboxyl­ate O atoms and an intermolecular one between a methylene group and the hydroxyl O atom. PMID:27308044

  15. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3

    NASA Astrophysics Data System (ADS)

    Yahia, H. Ben; Essehli, R.; Avdeev, M.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-06-01

    The new compounds NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 crystallize with a stuffed α-CrPO4-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 a statistical disorder Ni2+/Cr3+ was observed on both the 8g and 4a atomic positions, whereas in NaCoCr2(PO4)3 the statistical disorder Co2+/Cr3+ was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 delivered specific capacities of 352, 385, and 368 mA h g-1, respectively, which attests to the electrochemical activity of sodium in these compounds.

  16. Polarizability measurements of the alkalis using an atom interferometer

    NASA Astrophysics Data System (ADS)

    Hromada, Ivan; Holmgren, William; Trubko, Raisa; Ronan, Joseph; Cronin, Alexander

    2011-10-01

    We discuss our latest static DC polarizability measurements of the alkalis: Li through Cs. Our Mach-Zehnder atom interferometer uses nanogratings to diffract and recombine any atom or molecular beam. Because we use the same machine to measure polarizability of different atoms, we are able to report polarizability ratios (e.g., αNa/αLi) with 0.1% precision. To achieve this precision, we also describe a novel technique called phase chopping to measure the atom beam velocity with 0.05% precision.

  17. Dagik Earth and IUGONET

    NASA Astrophysics Data System (ADS)

    Ebisawa, K.; Koyama, Y.; Saito, A.; Sakamoto, S.; Ishii, M.; Kumano, Y.; Hazumi, Y.

    2015-09-01

    In this paper we introduce two independent projects in progress in Japan. Dagik Earth is a visualization project of the Earth and planets on a spherical screen using only a standard PC and a projector. Surface images of the Earth or planets (or whatever having spherical shape) in the equirectangular (plate carre) projection are projected on a spherical screen in the orthographic projection. As a result, the spherical screen becomes a virtual digital globe, which can be rotated using mouse or remote controller. Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a collaboration of five Japanese institutes to build a comprehensive database system for the metadata of the upper-atmospheric data taken by these institutes. We explain the IUGONET metadata database and iUgonet Data Analysis Software (UDAS) for upper atmospheric research.

  18. Better Than Earth

    NASA Astrophysics Data System (ADS)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  19. Earth's Trojan asteroid.

    PubMed

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-28

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years. PMID:21796207

  20. Helium in Earth's Early Core

    NASA Astrophysics Data System (ADS)

    Jephcoat, A. P.; Bouhifd, M. A.; Heber, V.; Kelley, S. P.

    2006-12-01

    of incorporation is determined at the atomic scale by the detailed composition and structure of silicate liquids that act as an important control of the level of incompatibility of noble gases under pressure. The time evolution of this core source of helium through to the present is yet another factor to be considered in making sense of 3He/4He ratios for the Earth, together with partitioning trends to higher pressure. Similar studies with other rare gases (and ultimately other isotopic systems) will help assess the level of consistency for the core as an active, present-day source of trace elements in the Earth, and the magnitudes of core- mantle chemical exchange.

  1. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  2. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  3. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  4. UV resonance line dayglow emissions on earth and Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    1988-01-01

    The similarities and differnces between atomic resonance line emissions on earth and Jupiter are studied. For earth, the scattering of the conservative atomic oxygen triplet transition at 1304 A and the nonconservative atomic oxygen sextuplet at 989 A is considered. For Jupiter, the scattering of the conservative atomic hydrogen doublet at 1216 A and the nonconservative atomic hydrogen doublet at 1026 A are addressed. Models are presented for the intensities of the emission features as seen from a distance of several planetary radii, using the same observational geometry for both earth and Jupiter. Variations of the line-integrated emissions across the disk and near the limb of each planet are examined in detail. Line profiles for the emission near the limb and at disk-center are also studied. The models reveal the importance of including inhomogeneities and temperature variations of the atmosphere in scattering models, and indicate that outer planet emissions previously interpreted as 'electroglow' may be solely due to resonant scattering of solar emissions.

  5. Raman Investigations of Rare-Earth Orthovanadates

    SciTech Connect

    Santos, C. C.; Silva, E. N.; Ayala, A. P.; Guedes, I.; Pizani, P. S.; Loong, C. K.; Boatner, Lynn A

    2007-01-01

    Polarized Raman spectroscopy has been used to obtain the room-temperature phonon spectra of the series of rare earth orthovanadate single crystals: SmVO4, HoVO4, YbVO4 and LuVO4. The observed Raman frequencies follow the overall mode distribution expected for RVO4 compounds with the tetragonal zircon structure. The variation of the mode frequency with atomic number across the lanthanide orthovanadate series was investigated, and the trend exhibited by the internal modes was explained by considering the force constants of VO4 tetrahedron.

  6. Raman investigations of rare earth orthovanadates

    NASA Astrophysics Data System (ADS)

    Santos, C. C.; Silva, E. N.; Ayala, A. P.; Guedes, I.; Pizani, P. S.; Loong, C.-K.; Boatner, L. A.

    2007-03-01

    Polarized Raman spectroscopy has been used to obtain the room-temperature phonon spectra of the series of rare earth orthovanadate single crystals: SmVO4, HoVO4, YbVO4, and LuVO4. The observed Raman frequencies follow the overall mode distribution expected for REVO4 compounds with the tetragonal zircon structure. The variation of the mode frequency with atomic number across the lanthanide orthovanadate series was investigated, and the trend exhibited by the internal modes was explained by considering the force constants of VO4 tetrahedron.

  7. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho, (Edited By); Diggles, M.F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  8. Blowing up the Earth

    NASA Astrophysics Data System (ADS)

    Benge, Raymond

    2006-10-01

    An occasional theme in science fiction involves blowing up a planet. In ``Star Wars,'' the Death Star blows up Alderan. In ``The Hitchhiker's Guide to the Galaxy,'' a Vorgon destructor fleet blows up Earth to make room for a cosmic bypass. So, as an exercise for upper division students, or the more advance first year calculus based physics students, the energy needed to disassemble Earth can be computed. Assuming that advanced scifi aliens get their energy from matter-antimatter interactions, students can then compute the amount of antimatter needed to accomplish the task.

  9. The wooing of earth

    SciTech Connect

    Dubos, R.

    1981-02-01

    Reckless use of energy by industrial nations has begun to alter the global climate. Each year more arable land is lost to desertification and erosion due to anthropogenic activities. Air pollutants carried by winds contaminate ecosystems in many parts of the globe. Various kinds of wilderness are being spoiled by overexploitation or permanent occupation. However, human interventions into nature have often revealed potentialities of the earth that would have remained unexpressed in the state of wilderness. With knowledge and a sense of responsibility for the welfare of the earth, human intervention into nature can be ecologically sound, aesthetically satisfying, and economically rewarding.

  10. Gaining control over rare earth valence fluctuations

    SciTech Connect

    Wohlleben, D.

    1987-05-31

    This paper briefly deals with the problem of narrow band materials. It addresses a new theoretical approach to the fluctuation of valence electrons in rare earth elements. It is believed that the phenomena of interest arize from an instability of the partially filled d or f shell of certain atoms when they are put into a metallic host. The theoretical models which dominate the scene work with two local d or f states on one hand and a structureless sea of free conduction electrons on the other. This procedure ignores at least half of the essential physics; the other held is kept alive in the term valence fluctuation. Basically, what the prevalent models ignore is that, in all these systems, the entire atoms as the source of the anomalies are being dealt with, not just their f shells. In other words, there is important structure in the sea of conduction electrons.

  11. Low earth simulation and materials characterization

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1993-01-01

    Oxygen plasma ashers and an electron cyclotron resonance (ECR) sources are currently being used for low Earth orbit (LEO) simulation. The suitability of each of these simulation techniques is considered. Thin film coatings are characterized by optical techniques, including variable-angle spectroscopic ellipsometry, optical spectrophotometry, and laser light scatterometry. Atomic force microscopy (AFM) has been used to characterize the surface morphology of thin aluminum films as a function of substrate temperature during deposition. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated atomic oxygen (AO) exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible as Kapton to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  12. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  13. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  14. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  15. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  16. Cosmochemical fractionation by collisional erosion during the Earth's accretion

    NASA Astrophysics Data System (ADS)

    Boujibar, Asmaa; Andrault, Denis; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed Ali; Monteux, Julien

    2015-09-01

    Early in the Solar System's history, energetic collisions of differentiated bodies affected the final composition of the terrestrial planets through partial destruction. Enstatite chondrites (EC) are the best candidates to represent the primordial terrestrial precursors as they present the most similar isotopic compositions to Earth. Here we report that collisional erosion of >15% of the early Earth's mass can reconcile the remaining compositional differences between EC and the Earth. We base our demonstration on experimental melting of an EC composition at pressures between 1 bar and 25 GPa. At low pressures, the first silicate melts are highly enriched in incompatible elements Si, Al and Na, and depleted in Mg. Loss of proto-crusts through impacts raises the Earth's Mg/Si ratio to its present value. To match all major element compositions, our model implies preferential loss of volatile lithophile elements and re-condensation of refractory lithophile elements after the impacts.

  17. Cosmochemical fractionation by collisional erosion during the Earth's accretion

    PubMed Central

    Boujibar, Asmaa; Andrault, Denis; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed Ali; Monteux, Julien

    2015-01-01

    Early in the Solar System's history, energetic collisions of differentiated bodies affected the final composition of the terrestrial planets through partial destruction. Enstatite chondrites (EC) are the best candidates to represent the primordial terrestrial precursors as they present the most similar isotopic compositions to Earth. Here we report that collisional erosion of >15% of the early Earth's mass can reconcile the remaining compositional differences between EC and the Earth. We base our demonstration on experimental melting of an EC composition at pressures between 1 bar and 25 GPa. At low pressures, the first silicate melts are highly enriched in incompatible elements Si, Al and Na, and depleted in Mg. Loss of proto-crusts through impacts raises the Earth's Mg/Si ratio to its present value. To match all major element compositions, our model implies preferential loss of volatile lithophile elements and re-condensation of refractory lithophile elements after the impacts. PMID:26395157

  18. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    NASA Technical Reports Server (NTRS)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  19. Cosmochemical fractionation by collisional erosion during the Earth's accretion.

    PubMed

    Boujibar, Asmaa; Andrault, Denis; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed Ali; Monteux, Julien

    2015-01-01

    Early in the Solar System's history, energetic collisions of differentiated bodies affected the final composition of the terrestrial planets through partial destruction. Enstatite chondrites (EC) are the best candidates to represent the primordial terrestrial precursors as they present the most similar isotopic compositions to Earth. Here we report that collisional erosion of >15% of the early Earth's mass can reconcile the remaining compositional differences between EC and the Earth. We base our demonstration on experimental melting of an EC composition at pressures between 1 bar and 25 GPa. At low pressures, the first silicate melts are highly enriched in incompatible elements Si, Al and Na, and depleted in Mg. Loss of proto-crusts through impacts raises the Earth's Mg/Si ratio to its present value. To match all major element compositions, our model implies preferential loss of volatile lithophile elements and re-condensation of refractory lithophile elements after the impacts. PMID:26395157

  20. Anisotropy of the energetic neutral atom flux in the heliosphere

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1992-01-01

    Characteristics of the energetic neutral atoms born at the heliospheric interface are considered for plasma flow structure resulting from a two-shock model of the interaction between the solar wind and the interstellar medium. The energy distributions of heliospheric energetic neutral atoms (HELENAs) are calculated and it is shown that the HELENA flux is highly anisotropic at the earth's orbit. The characteristics of the HELENA flux are highly sensitive to the size of the heliosphere. This supports the conclusion that measurements of HELENAs from the earth's orbit would provide an efficient tool to remotely study the heliosphere.

  1. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  2. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  3. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  4. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    A pulsed high flux source of nearly monoenergetic atomic oxygen was designed, built, and successfully demonstrated. Molecular oxygen at several atmospheres pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. An 18 J pulsed CO2 TEA laser is focused to intensities greater than 10(9) W/sq cm in the nozzle throat to generate a laser-induced breakdown. The resulting plasma is heated in excess of 20,000 K by a laser supported detonation wave, and then rapidly expands and cools. Nozzle geometry confines the expansion to provide rapid electron-ion recombination into atomic oxygen. Average O atom beam velocities from 5 to 13 km/s were measured at estimated fluxes to 10(18) atoms per pulse. Preliminary materials testing has produced the same surface oxygen enrichment in polyethylene samples as obtained on the STS-8 mission. Scanning electron microscope examinations of irradiated polymer surfaces reveal an erosion morphology similar to that obtained in low Earth orbit, with an estimated mass removal rate of approx. 10(-24) cu cm/atom. The characteristics of the O atom source and the results of some preliminary materials testing studies are reviewed.

  5. Atomic frequency standard relativistic Doppler shift experiment

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  6. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  7. "Galileo Calling Earth..."

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  8. The earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1976-01-01

    The following aspects of the earth's magnetosphere were discussed: general structure, magnetic field merging and magnetospheric convection, time-varying convection and magnetospheric substorms, magnetic storms, and comparative magnetospheres. Solar flares and the magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, and Uranus were also described.

  9. How life shaped Earth.

    PubMed

    Gross, Michael

    2015-10-01

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet. PMID:26726334

  10. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  11. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  12. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  13. Earth View, Art View

    ERIC Educational Resources Information Center

    Dambekalns, Lydia

    2005-01-01

    Educational practice today encourages interdisciplinary teaching as teachers address important basic themes from a variety of angles. In this article, the author talks about one of her successful projects that focuses on "sense of place" as one such theme, with the more specific charge of viewing Earth from both scientific and artistic…

  14. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  15. Earth as art 4

    USGS Publications Warehouse

    U.S. Geologic Survey

    2016-01-01

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  16. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  17. Exploring the Earth's Past

    ERIC Educational Resources Information Center

    Lindaman, Arnold D.; And Others

    1972-01-01

    Describes three approaches to a study of the earth's past: (1) development of a time line of the ages; (2) a study of rocks and how each was formed; and (3) a study of fossils as found in certain kinds of stone. (Editor)

  18. Earth flyby anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    In the planet-centric system, a spacecraft should have the same initial and final energies, even though its energy and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small energy changes.

  19. Earth System science

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.

    1992-01-01

    Recent research has solidified a view of the Earth as a global-scale interactive system with complex chemical, physical, biological and dynamical processes that link the ocean, atmosphere, land (soils, ice, snow) and marine and terrestrial living organisms. These processes both within and between the major parts of the system help determine global and regional climate and control the biogeochemical and hydrologic cycles essential to life. The study of the Earth System requires measurements ranging from the scales of the smallest processes to the global scale. An ambitious satellite observational program, the Earth Observing System (EOS), carried out along with the complementary and ongoing World Climate Research Program (WCRP) and International Geosphere-Biosphere Program (IGBP) represents a major international effort to understand this System and predict its future changes. The complex and intriguing nature of the Earth System is discussed along with a number of closely coupled processes occurring within it. These are: clouds, precipitation and vegetation; ocean circulation, sea-surface temperature and phytoplankton; coupled oceanic and atmospheric circulation (the Southern Oscillation); biological activity, atmospheric chemistry and climate; and biological emissions and the ozone layer.

  20. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  1. Mission: New Earth.

    ERIC Educational Resources Information Center

    Sparks, David

    1997-01-01

    Describes an interdisciplinary unit on the environment and space travel in which students plan a fictional departure from Earth which is on the brink of destruction from environmental waste and neglect. Students travel through concepts in environmental education, math, art, English, and astronomy before reaching their destination with a clearer…

  2. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following…

  3. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  4. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  5. Earth's magnetic environment

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1988-10-01

    The nature of the earth's magnetosphere is outlined. The magnetosphere is illustrated and its regions and features are discussed, including solar wind, bow shock, and the magnetopause. The formation process and characteristics of the magnetotail are presented. The plasmasphere, Van Allen belts, auroras, whistlers, and micropulsations are examined. Effects of the magnetosphere, including problems for communications lines, spacecraft electronics, and communication satellites are considered.

  6. Understanding Earth's Albedo Effect

    ERIC Educational Resources Information Center

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  7. Earth's City Lights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  8. Beyond Earth's Boundaries

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Kennedy Space Center, FL. John F. Kennedy Space Center.

    This resource for teachers of elementary age students provides a foundation for building a life-long interest in the U.S. space program. It begins with a basic understanding of man's attempt to conquer the air, then moves on to how we expanded into near-Earth space for our benefit. Students learn, through hands-on experiences, from projects…

  9. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  10. Sun-Earth Day

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Michael Sandras, a member of the Pontchartrain Astronomical Society, explains his solar telescope to students of Second Street in Bay St. Louis, Hancock County and Nicholson elementary schools in StenniSphere's Millennium Hall on April 10. The students participated in several hands-on activities at Stennis Space Center's Sun-Earth Day celebration.

  11. The Island Earth

    ERIC Educational Resources Information Center

    Mead, Margaret

    1970-01-01

    Dr. Mead, the world-renowned anthropologist and expert behavioral scientist, is associated with the American Museum of Natural History, which acts as her headquarters as she documents her observations on Man, society and technology. She discusses the need to develop specialists with concern for saving the endangered planet earth. (Editor/GR)

  12. Google Earth Science

    ERIC Educational Resources Information Center

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  13. The Earth & Moon

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During its flight, the Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. The Galileo spacecraft took the images in 1992 on its way to explore the Jupiter system in 1995-97. The image shows a partial view of the Earth centered on the Pacific Ocean about latitude 20 degrees south. The west coast of South America can be observed as well as the Caribbean; swirling white cloud patterns indicate storms in the southeast Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The lunar dark areas are lava rock filled impact basins. This picture contains same scale and relative color/albedo images of the Earth and Moon. False colors via use of the 1-micron filter as red, 727-nm filter as green, and violet filter as blue. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  14. The Earth and Moon

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During its flight, the Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. The Galileo spacecraft took the images in 1992 on its way to explore the Jupiter system in 1995-97. The image shows a partial view of the Earth centered on the Pacific Ocean about latitude 20 degrees south. The west coast of South America can be observed as well as the Caribbean; swirling white cloud patterns indicate storms in the southeast Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The lunar dark areas are lava rock filled impact basins. This picture contains same scale and relative color/albedo images of the Earth and Moon. False colors via use of the 1-micron filter as red, 727-nm filter as green, and violet filter as blue. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  15. Early Earth differentiation

    NASA Astrophysics Data System (ADS)

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation (t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10 15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally

  16. Laboratory Astrophysics for Super-Earths

    NASA Astrophysics Data System (ADS)

    Bernath, Peter

    The discovery of hot super-Earth planets surprised many astronomers because they should not exist according to current models of planet formation. The theme of this proposal is the laboratory spectroscopy of molecules of importance in the atmospheres of super-Earth exoplanets including SO2, KOH, NaOH, NaCl and KCl. We will deliver spectroscopic line lists based on both experiment and ab initio calculation for these species. Our data can be used for identification of molecules and simulation of exoplanet spectra. In the Origins of Solar Systems program, the proposal fits in the category of Characterization of extra-solar planets to&explain observations of extra-solar planets. More generally our laboratory data are needed to model cool objects and contribute to our understanding of the properties and evolution of stars, brown dwarfs and planets. We note that current NASA missions such as Kepler, SOFIA, Spitzer (warm phase), HST and WISE are used to study these cool objects. In the future JWST will result in the characterization of large numbers of cool substellar objects such as brown dwarfs and exoplanets, and a number of proposed missions such as FINESSE (Fast Infrared Exoplanet Spectroscopy Explorer, Swain, JPL), WFIRST and TPF (Terrestrial Planet Finder) also target exoplanets.

  17. The Earth's Biosphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  18. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  19. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG

  20. TOPICAL REVIEW: Theory and applications of atomic and ionic polarizabilities

    NASA Astrophysics Data System (ADS)

    Mitroy, J.; Safronova, M. S.; Clark, Charles W.

    2010-10-01

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards.

  1. In-Vacuum Dissociator for Atomic-Hydrogen Masers

    NASA Technical Reports Server (NTRS)

    Vessot, R. F.

    1987-01-01

    Thermal control and vacuum sealing achieved while contamination avoided. Simple, relatively inexpensive molecular-hydrogen dissociator for atomic-hydrogen masers used on Earth or in vacuum of space. No air cooling required, and absence of elastomeric O-ring seals prevents contamination. In-vacuum dissociator for atomic hydrogen masers, hydrogen gas in glass dissociator dissociated by radio-frequency signal transmitted from surrounding 3-turn coil. Heat in glass conducted away by contacting metal surfaces.

  2. Atomic hydrogen and nitrogen distributions from atmosphere explorer measurements

    NASA Technical Reports Server (NTRS)

    Breig, Edward L.

    1992-01-01

    We were selective as to our approach to research activities, and devoted primary attention to two investigations concerning the global behavior of atomic hydrogen in the Earth's upper atmosphere. We derive the thermospheric concentration of H by applying the condition of charge-exchange equilibrium between hydrogen and oxygen atoms and ions to in-situ measurements of F-region composition and temperature from the series of Atmosphere Explorer (AE) aeronomy satellites. Progress and accomplishments on these chosen research projects are summarized.

  3. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock

    SciTech Connect

    Chang, D.E.; Lukin, M.D.; Ye Jun

    2004-02-01

    Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.

  4. Survival of atoms in strong microwave fields

    NASA Astrophysics Data System (ADS)

    Arakelyan, Alexandr; Gallagher, Thomas F.

    2014-05-01

    Recent experimental work on the ionization of atoms by intense laser and microwave fields has shown that bound atoms in highly excited states remain after the intense radiation pulse, even though the orbital period of the detected atoms exceeds the duration of the laser or microwave pulse. In both cases the fields are orders of magnitude larger than required for static field ionization of the highly excited atoms. Here we report a large population (10-25%) left bound in the states with n >350, when atoms are exposed to strong 16.9-GHz microwave fields in the presence of a well-controlled static field of 6 mV/cm. A production of such extremely high lying states is observed for a wide range of initial Rydberg states, as low as n = 21, for Li and Na, and is, in fact, a general feature of microwave ionization. As well as the survival of the highly excited states in quasi stable orbits, threshold ionization fields also appear to depend strongly on the static field during the experiment. We observe the 1/3n5 dependence only if the static fields are non-zero, and larger fields are required to ionize 50% of atoms if the static field is canceled out.

  5. Primary mass standard based on atomic masses

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Gläser, Michael

    2006-04-01

    The paper summarises the activities of several national and international Metrology Institutes in replacing the kilogram artefact, the unit of mass, by the mass of a certain number of atoms, in particular the atomic masses of silicon or bismuth. This task is based on two different experiments: a very accurate determination of the Avogadro constant, NA, measuring the density and lattice parameter of an enriched silicon-28 crystal, and the accumulation of decelerated bismuth-209 ions by using a mass separator. The relative measurement uncertainties reached so far are in the first case 2 parts in 107, and in the latter several part in 104. The bismuth experiment is still in an early state of the work. The ratios between the masses of 28Si or 209Bi, respectively, and the present atomic mass standard, the mass of 12C, can be determined with an accuracy now approaching 10-10 using high precision Penning traps mass spectrometers.

  6. Mission to Planet Earth - The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Lee, Robert B., III

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth.

  7. Mission to Planet Earth - The Earth Observing System

    SciTech Connect

    Carruthers, G.R.; Lee, R.B. III NASA, Langley Research Center, Hampton, VA )

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth. 18 refs.

  8. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  9. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  10. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  11. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  12. From the Cover: Revealing the hidden atom in graphite by low-temperature atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hembacher, Stefan; Giessibl, Franz J.; Mannhart, Jochen; Quate, Calvin F.

    2003-10-01

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for "seeing atoms." Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom.

  13. Revealing the hidden atom in graphite by low-temperature atomic force microscopy.

    PubMed

    Hembacher, Stefan; Giessibl, Franz J; Mannhart, Jochen; Quate, Calvin F

    2003-10-28

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for "seeing atoms." Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom. PMID:14504395

  14. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  15. Electronic property of Na-doped epitaxial graphenes on SiC

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Myeong; Jhi, Seung-Hoon

    2009-04-01

    The electronic property of epitaxial graphenes with Na adsorption or intercalation is studied with the use of pseudopotential density functional method. It is found that the charge transfer and the Na binding energy show strong coverage dependence. Calculated energetics shows that Na prefers the intercalation between the buffer and top graphene layers to the adsorption on top graphene layer. The buffer layer is inert to Na adsorption on top graphene layer but it is charged when Na atoms are intercalated. This indicates that the conduction of epitaxial graphenes can be affected significantly by Na intercalation.

  16. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  17. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  18. Earth resources data processor

    NASA Technical Reports Server (NTRS)

    Phillips, M. R.

    1972-01-01

    The recent development of manned and unmanned space vehicles has brought about an almost unprecedented advance in studies concerned with remotely sensed earth observations. With this advance comes an unprecedented amount of data. The problem arises of how to efficiently analyze and compress unmanageable amounts of data into manageable amounts of useful information. A recently developed computer program is proposed as a partial solution to the above problem. The computer program is designed to determine the ground scene location and distribution of features extracted from remotely sensed earth observation data without human involvement in the data processing or a priori knowledge of ground truth. Human involvement and judgement are reserved for identification of the features presented in the compressed data.

  19. Monitoring Earth's Ecosystems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Partnered with Goddard Space Flight Center, Sensit Technologies Inc. developed a third-generation Portable Apparatus for Rapid Acquisitions of Bidirectional Observations of Land and Atmosphere, or PARABOLA III for short. Now commercially available, PARABOLA III is designed to measure the reflected signature of a variety of Earth surface types, from rangeland vegetation to ice and snow. It can rapidly acquire data for almost the complete sky and ground-looking hemispheres, with no missing data and sufficient dynamic range to measure direct solar radiance. The instrument was actively used in the Boreal Ecosystem- Atmosphere Study which provided useful information in designing a Multi-angle Imaging SpectroRadiometer, a small satellite being built by the Jet Propulsion Laboratory that will measure sunlight reflected by the Earth into space.

  20. Physics of the Earth

    NASA Astrophysics Data System (ADS)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.