Science.gov

Sample records for earth doped integrated

  1. 40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Complex strontium aluminate, rare earth doped (generic...Substances § 721.10423 Complex strontium aluminate, rare earth doped (generic...substances identified generically as complex strontium aluminate, rare earth doped...

  2. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L. (Pleasanton, CA); Jacobs, Ralph R. (Livermore, CA); Krupke, William F. (Pleasanton, CA); Weber, Marvin J. (Danville, CA)

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  3. 40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23,...

  4. Mechanical stress in rare-earth-doped laser fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Müller, Hans Rainer; Grimm, Stephan; Bartelt, Hartmut

    2009-02-01

    Mechanical stress can significantly influence the optical and mechanical properties of fibers. We present results of nondestructive measurements of thermal stress in rare-earth-doped optical fibers, which are related to the doping variations across the fiber cross section and the preparation conditions. The samples are preforms and fibers with a large ytterbium doped core that were prepared by an alternative glass forming process, which is capable to realize bigger ratios of core to cladding diameter than the MCVD-method. To the best of our knowledge, this is the first time measurements of stresses and birefringence were made on such active optical fibers and their preforms. The results are compared to previous results on ytterbium-doped samples fabricated by the MCVD-technology. From the resultant stress profile, we could calculate the stress induced index changes that are relevant for the light propagation in optical fibers, and discuss the reasons for the observed mechanical stress. In addition, we could evaluate the samples regarding their changes in thermal expansion coefficient induced by doping with one or more oxides in several concentrations and different ratios. We confirmed our earlier result that the active doping component ytterbium generates much higher stress than other common dopants like aluminum, phosphorus or boron.

  5. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  6. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  7. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D. (Knoxville, TN); Modine, Frank A. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN); Alim, Mohammad A. (Medina, OH); Mahan, Gerald D. (Oak Ridge, TN); Bartkowiak, Miroslaw (Oak Ridge, TN)

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  8. Rare Earth Doped IR Fiber Lasers For Medical Applications

    NASA Astrophysics Data System (ADS)

    Esterowitz, Leon; Allen, Roger

    1989-06-01

    Trivalent rare earth doped lasers in fluorozirconate glasses and fibers that lase between 2 and 3 ?m are reviewed. There have been a large number of laser-fiber optic systems below 2pm developed for clinical microsurgery at a variety of sites. The required flexibility of the fiber optic waveguide varies with the clinical use, such as: intraocular (through a small diameter rigid tube), endoscopically accessible pulmonary and gastric mucosa (through a port of a fiber-optic endoscope of intermediate flexibility), and intra-arterial (as an integral part of a flexible catheter, which in the case of the coronaries must be very flexible so as to negotiate abrupt bends and bifurcations without damage to the vessels). Laser energy absorbed by tissue is capable of coagulation of tissue (denaturation of structural proteins), melting of fatty deposits or other structures (solid or gel to liquid phase transitions), as well as direct breakage of chemical bonds by high energy photons. It is of general interest to develop a pulsed laser system transmitted through flexible fiber optics that is capable of precise ablation of targeted tissue with minimal damage to the remaining tissue. Ideally, the device should be able to ablate any tissue because of the general absorptive properties of tissue, and not a specific chromophore such as melanin or hemoglobin, the concentration of which varies widely among tissues. Two obvious ubiquitous chromophores have been widely discussed: 1) proteins and nucleic acids whose high concentration and absorption coefficients lead to strong tissue absorption in the ultraviolet and 2) water whose strong infrared absorption bands have been widely utilized in CO2 laser surgery. Non-linear absorption occurring at very high power densities (~1 GW/cm2) has been shown to be very effective for non-invasive ocular (an optically transparent field) microsurgery at the image plane of a slit lamp, but this approach appears impractical in fiber optic systems because of similar non-linear damage mechanisms within the fiber.

  9. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  10. Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2005-01-01

    Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.

  11. White light emission from GaN stack layers doped by different rare-earth metals

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Chang

    2015-02-01

    Experimental progress of electroluminescence devices (ELDs) employing GaN doped with rare-earth metals had been significantly made targeting RGB displays. However, reports on the theoretical models to design the devices and the applications were limited. Our previous paper proposed a device model using the quantum collision theory and Judd-Ofelt approximation to design the ELDs for white light illumination. In the present study, the model is modified by considering the light extraction efficiency and optical loss during propagating in the films. To improve the luminous efficiency, an ELD with three stack layers of GaN:Tm/GaN:Er/GaN:Eu is proposed and designed. The model predicts that the color of the integrated light can be controlled by applied voltage, thickness of each doping layer and doping concentrations of the rare earth metals. The luminous efficacy of white light emission at a bias of -100 V is calculated to be 274 lm/W, which is much higher than that of fluorescent lumps. The proposed ELD will open a door to efficient solid-state lighting.

  12. Rare-earth doped polymer waveguides and light emitting diodes

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.

    2000-11-01

    Polymer-based optical waveguide amplifiers offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is almost similar to that of standard optical fibers, they can be easily coupled with existing fibers at low coupling losses. Doping the polymer with rare-earth ions that can yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This thesis studies two different approaches to dope a polymer waveguide with rare-earth ions. The first one is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide enough coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. Chapter 2 describes the optical properties of Er-doped organic polydentate cage complexes. The complexes show clear photoluminescence at 1.54 mm with a bandwidth of 70 nm, the highest reported for an erbium-doped material so far. The luminescence lifetime is very short (~1 ms) due to coupling to vibrational overtones of O-H and C-H bonds. Due to this short luminescence lifetime, high pump powers (~1 W) are needed for optical gain in a waveguide amplifier based on these complexes. The pump power can be reduced if the Er is excited via the aromatic part of the complex, which has a higher absorption cross section. In Chapter 3 a lissamine-functionalised neodymium complex is studied in which the highly absorbing lissamine acts as a sensitiser. The lissamine is first excited into the singlet state from which intersystem crossing to the triplet state can take place. From there it can transfer its energy to the Nd ion by a Dexter transfer mechanism. Room-temperature photoluminescence at 890, 1060, and 1340 nm from Nd is observed, together with luminescence from the lissamine sensitiser at 600 nm. Photodegradation of the lissamine sensitiser is observed, which is studied in more detail in Chapter 4. The observed change in time of the spectral shape of the lissamine luminescence can be explained by assuming that two types of complexes exist. One type in which energy transfer to the Nd3+ ion can take place, and one that is not coupled to Nd. The highly absorbing sensitiser makes the standard butt-end coupling of the pump light into a waveguide amplifier impractical. The pump power can be used more efficiently by using a novel coupled waveguide system as described in Chapter 5. This employs gradual evanescent field coupling between parallel pump and signal waveguides. An alternative approach to make a rare-earth doped polymer waveguide is by combining the excellent properties of SiO2 as a host for the rare-earth with the easy processing of polymers. The optical properties of Er-doped silica films made by an acid-catalysed sol-gel synthesis are reported in Chapter 6. The Er exhibits long luminescence lifetimes of 10-12 ms, which indicates that OH from the wet chemical synthesis is successfully removed during the vacuum anneal treatment. Using a base-catalysed sol-gel synthesis, silica colloidal spheres with diameters of 175 and 340 nm were grown. Chapter 7 describes the luminescence properties of the 340 nm spheres, implanted with Er up to concentrations of 1.0 at.%. The Er shows a very long luminescence lifetime of 17 ms, and the radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency. This long luminescence lifetime is partly due to the low local optical density of states (DOS) in the free standing silica colloids. Optical gain calculations are made for the colloid/polymer waveguide that predicts a net gain of 8.7 dB at a pump power of 30 mW, for a 15 cm long waveguide. Such a length can be rolled up on an area of 16 mm2. In Chapter 8, calculations of the DOS are described for thin films as well as the spherical colloids. By comparing the calculation with experimentally probed decay rates, radiative and non-radiative components in the decay of Er are determined. Besides optical pumping of planar waveguide amplifiers it would be interesting if electrical pumping could b

  13. Health Sensing Functions in Thermal Barrier Coatings Incorporating Rare-Earth-Doped Luminescent Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Singh, J.; Wolfe, D. E.

    2004-01-01

    Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.

  14. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    SciTech Connect

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-15

    The effect of partial substitution of alkaline earth (AE) ions, Sr{sup 2+} and Ca{sup 2+}, for the rare earth (RE) ions, La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, and Sm{sup 3+}, on the physical properties of REVO{sub 4} compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO{sub 4}-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H{sub 2} fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode. - Graphical abstract: Coulometric titration isotherms for ({open_square}) LaVO{sub 4}, ( White-Circle ) PrVO{sub 4}, ( Lozenge ) CeVO{sub 4}, ( Black-Up-Pointing-Triangle ) Ce{sub 0.7}Sr{sub 0.3}VO{sub 3.85}, and ( Black-Square ) Ce{sub 0.7}Ca{sub 0.3}VO{sub 3.85}, at 973 K. Highlights: Black-Right-Pointing-Pointer Infiltration procedures were used to prepare SOFC anodes from various vanadates. Black-Right-Pointing-Pointer Doping of Alkaline Earth to Rare Earth Vanadates showed to improve conductivity and chemical stability. Black-Right-Pointing-Pointer Alkaline Earth Doped Rare Earth Vanadates-YSZ composites showed conductivities as high as 5 S cm{sup -1} at 973 K. Black-Right-Pointing-Pointer As with other ceramic anodes, the addition of a catalyst was required to achieve low anode impedance.

  15. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    PubMed Central

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  16. Rare-earth-ion-doped waveguide lasers on a silicon chip

    NASA Astrophysics Data System (ADS)

    Pollnau, Markus

    2015-03-01

    Rare-earth-ion-doped materials are of high interest as amplifiers and lasers in integrated optics. Their longer excited-state lifetimes and the weaker refractive-index change accompanied with rare-earth-ion excitation compared to electron-hole pairs in III-V semiconductors provide spatially and temporally stable optical gain, allowing for high-speed amplification and narrow-linewidth lasers. Amorphous Al2O3 deposited onto thermally oxidized silicon wafers offers the advantage of integration with silicon photonics and electronics. Layer deposition by RF reactive co-sputtering and micro-structuring by chlorine-based reactive-ion etching provide low-loss channel waveguides. With erbium doping, we improved the gain to 2 dB/cm at 1533 nm and a gain bandwidth of 80 nm. The gain is limited by migration-accelerated energy-transfer upconversion and a fast quenching process. Since stimulated emission is even faster than this quenching process, lasers are only affected in terms of their threshold, allowing us to demonstrate diode-pumped micro-ring, distributed-feedback (DFB), and distributed-Bragg-reflector (DBR) lasers in Al2O3:Er3+ and Al2O3:Yb3+ on a silicon chip. Surface-relief Bragg gratings were patterned by laser-interference lithography. Monolithic DFB and DBR cavities with Q-factors of 1.35×106 were realized. In an Er-doped DFB laser, single-longitudinal-mode operation at 1545 nm was achieved with a linewidth of 1.7 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. A dual-phaseshift, dual-wavelength laser was achieved and a stable microwave signal at ~15 GHz was created via the heterodyne photo-detection of the two laser wavelengths.

  17. Earth System Science at Cornell Earth system sciences looks at the integrated whole of the planet,

    E-print Network

    Walter, M.Todd

    Earth System Science at Cornell Earth system sciences looks at the integrated whole of the planet for earth system science range from nm to 1000's of kilometers. Advancing earth system science requires whose work contributes to an understanding of earth system science. We think that organizing ourselves

  18. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; Tsang, Leung; Shams, Khawaja; Jaruwatanadilok, Sermsak; Oveisgharan, Shadi; Simard, Marc; Turk, Francis J.

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  19. Origin of enhanced magnetization in rare earth doped multiferroic bismuth ferrite

    SciTech Connect

    Nayek, C.; Thirmal, Ch.; Murugavel, P.; Tamilselvan, A.; Balakumar, S.

    2014-02-21

    We report structural and magnetic properties of rare earth doped Bi{sub 0.95}R{sub 0.05} FeO{sub 3} (R?=?Y, Ho, and Er) submicron particles. Rare earth doping enhances the magnetization and the magnetization shows an increasing trend with decreasing dopant ionic radii. In contrast to the x-ray diffraction pattern, we have seen a strong evidence for the presence of rare earth iron garnets R{sub 3}Fe{sub 5}O{sub 12} in magnetization measured as a function of temperature, in selected area electron diffraction, and in Raman measurements. Our results emphasised the role of secondary phases in the magnetic property of rare earth doped BiFeO{sub 3} compounds along with the structural distortion favoring spin canting by increase in Dzyaloshinskii-Moriya exchange energy.

  20. Feasibility of Integrated Insulation in Rammed Earth

    NASA Astrophysics Data System (ADS)

    Stone, C.; Balintova, M.; Holub, M.

    2015-11-01

    Building Codes in Europe stipulate strict thermal performance criteria which any traditional rammed earth recipe cannot meet. This does not infer that the material itself is inferior; it has many other face saving attributes such as low embodied energy, high workability, sound insulation, fire resistance, aesthetics, high diffusivity and thermal accumulation properties. Integrated insulation is experimented with, to try achieve a 0.22 [W/(m2.K)] overall coefficient of heat transfer for walls required by 2015 Slovak standards, without using external insulation or using technologically complex interstitial insulation. This has the added aesthetic benefit of leaving the earth wall exposed to the external environment. Results evaluate the feasibility of this traditional approach.

  1. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    SciTech Connect

    Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F.; Bischel, W.K.

    1997-07-26

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.

  2. Influence of rare earth doping on thermoelectric properties of SrTiO{sub 3} ceramics

    SciTech Connect

    Liu, J. Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.

    2013-12-14

    Thermoelectric properties of SrTiO{sub 3} ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO{sub 3} ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO{sub 3} ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr{sub 0.8}La{sub 0.18}Yb{sub 0.02}TiO{sub 3} ceramics were prepared, whose ZT value at 1?023?K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr{sub 0.8}La{sub 0.2}TiO{sub 3} (ZT?=?0.26)

  3. Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth Doped Crystal

    E-print Network

    Christopher O'Brien; Nikolai Lauk; Susanne Blum; Giovanna Morigi; Michael Fleischhauer

    2014-07-25

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of $\\pi$-pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare earth doped crystals, we make use of a special transfer protocol using staggered $\\pi$-pulses. We predict total transfer efficiencies on the order of 90%.

  4. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles

    E-print Network

    Derom, S; Pillonnet, A; Benamara, O; Jurdyc, A M; Girard, C; Francs, G Colas des

    2013-01-01

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) are achieved by tuning either the dipolar or quadrupolar particle resonance to the rare earth ions excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  5. Earth’s Nearest Neighbors: Dynamical integrations of NEO-Earth approaches in support of MANOS

    NASA Astrophysics Data System (ADS)

    Endicott, Thomas; Moskovitz, Nicholas; Binzel, Richard; Polishook, David; Burt, Brian

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded large survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). In support of this telescopic survey, we are performing a suite of orbital integrations to investigate the dynamical evolution of the near-Earth asteroid population.Using orbital information from the Lowell Observatory AstOrb database and the swift orbital integration package, we compute the orbital history of every known NEO from present day to five hundred thousand years in the past. This orbital history is used to identify the temporal evolution of each NEO's minimum orbital intersection distance (MOID) value, quantifying the physical distance between the orbits of a given NEO and that of a terrestrial planet. Due to the non-deterministic behavior of many NEO orbits beyond a few hundred years, these integrated MOIDs do not uniquely determine whether an NEO and a planet will actually encounter one another, bur rather provide a probabilistic metric for the proximity in which two objects can encounter one another. Integrated MOIDs can be a useful tool for correlating measured physical properties with high probabilities of planetary encounters (e.g. Binzel et al. 2010, Nature 463, 331).We will present the status of these orbital integrations. These integrations show a variety of dynamical histories, from objects that are stable over the integration limits to those that show chaotic behavior after approximately fifty to one hundred thousand years. These orbital integrations are being used to track the potentially hazardous object (PHA) population over time, to evaluate dynamical history for both specific objects and NEO sub-populations, and to estimate the evolution of NEO surface temperatures due to changing perihelion distances.

  6. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  7. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    E-print Network

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  8. Modifications in the electronic structure of Rare-Earth doped BiFeO3 multiferroic

    NASA Astrophysics Data System (ADS)

    Trivedi, Priyanka; Katba, Savan; Jethva, Sadaf; Udeshi, Malay; Vyas, Brinda; Vagadia, Megha; Gautam, S.; Chae, K. H.; Asokan, K.; Kuberkar, D. G.

    2015-11-01

    We report the modifications in the electronic structure of Rare Earth (RE) doped polycrystalline BiFeO3 (Bi0.9RE0.1FeO3 (RE= La, Pr, and Er)) synthesized using conventional solid state reaction method. Structural studies using XRD shows that all the samples possess rhombohedral symmetry. As compared to Er and Pr-doped BiFeO3, La-doping results in the improvement in P-E behavior. X-ray absorption studies at Fe L-edge shows the presence of mixed valence state of Fe ions in all the samples. Interestingly, O K-edge spectra of La-doped BiFeO3 shows enhancement in the intensity of the feature 'b' assigned to the hybridization of Bi 6s and O 2p orbital.

  9. Electrodynamics of rare-earth-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Xing, Zhen; Huffman, T. J.; Xu, Peng; Hollingshad, A. J.; Brooker, D. J.; Qazilbash, M. M.; Saha, Shanta; Drye, Tyler; Roncaioli, Connor; Paglione, J.

    2015-03-01

    Rare-earth substitution at alkaline-earth sites leads to the suppression of the spin density wave phase transition in CaFe2As2 without the emergence of bulk superconductivity. In this work, we perform cryogenic infrared reflectance spectroscopy and spectroscopic ellipsometry on Pr-doped and La-doped CaFe2As2 single crystals. In both Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 samples, the spin density wave transition is completely suppressed. The temperature dependence of the ab-plane optical conductivity of the La-doped CaFe2As2 crystal exhibits conventional metallic behavior consistent with the absence of any structural, magnetic, or superconducting instabilities. On the other hand, the Pr-doped CaFe2As2 crystal undergoes a structural transition about 70 K from a tetragonal lattice to a collapsed tetragonal lattice with the same symmetry but reduced volume. In the Pr-doped CaFe2As2 crystal, the ab-plane optical conductivity reveals subtle but distinct spectral changes upon cooling through the structural transition. We provide results on the influence of the structural collapse on the charge dynamics, correlation effects and the electronic configuration. This work was supported by NASA / Virginia Space Grant Consortium.

  10. Luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres as efficient labels in DNA microarrays

    NASA Astrophysics Data System (ADS)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Marinello, F.; Schiavuta, P.

    2009-08-01

    Luminescent nanoparticles are gaining more and more interest in bio-labeling and bio-imaging applications, like for example DNA microarray. This is a high-throughput technology used for detection and quantification of nucleic acid molecules and other ones of biological interest. The analysis is resulting by specific hybridization between probe sequences deposited in array and a target ss-DNA usually expressed by PCR and functionalized by a fluorescent dye. These organic labels have well known disadvantages like photobleaching and limited sensitivity. Quantum dots may be used as alternatives, but they present troubles like blinking, toxicity and excitation wavelengths out of the usual range of commercial instruments, lowering their efficiency. Therefore in this work we investigate a different strategy, based on the use of inorganic silica nanospheres incorporating standard luminescent dyes or rare earth doped nanocrystals. In the first case it is possible to obtain a high luminescence emission signal, due to the high number of dye molecules that can be accommodated into each nanoparticle, reduced photobleaching and environmental protection of the dye molecules thanks to the encapsulation in the silica matrix. In the second case, rare earths exhibit narrow emission bands (easy identification), large Stokes shifts (efficient discrimination of excitation and emission) and long luminescence lifetimes (possibility to perform time-delayed analysis) which can be efficiently used for the improvement of signal to noise ratio. The synthesis and characterization of good luminescent silica spheres either by organic dye-doping or by rare-earth-doping are investigated and reported. Moreover, their application in the DNA microarray technology in comparison to the use of standard molecular fluorophores or commercial quantum dots is discussed. The cheap and easy synthesis of these luminescent particles, the stability in water, the surface functionalization and bio-compatibility makes them very promising for present and future applications in bio-labeling and bio-imaging.

  11. Radioluminescence and thermoluminescence of rare earth element and phosphorus-doped zircon

    SciTech Connect

    Karali, T.; Can, N.; Townsend, P.D.; Rowlands, A.P.; Hanchar, J.M.

    2000-06-01

    The radioluminescence and thermoluminescence spectra of synthetic zircon crystals doped with individual trivalent rare earth element (REE) ions (Pr, Sm, Eu, Gd, Dy, Ho, Er, and Yb) and P are reported in the temperature range 25 to 673 K. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE{sup 3+} states. The shapes of the glow curves are different for each dopant, and there are distinct differences between glow peak temperatures for different rare-earth lines of the same element. Within the overall set of signals there are indications of linear trends in which some glow peak temperatures vary as a function of the ionic size of the rare earth ions. The temperature shifts of the peaks are considerable, up to 200{degree}, and much larger than those cited in other rare-earth-doped crystals of LaF{sub 3} and Bi{sub 4}Ge{sub 3}O{sub 12}. The data clearly suggest that the rare-earth ions are active both in the trapping and luminescence steps, and hence the TL occurs within localized defect complexes that include REE{sup 3+} ions.

  12. Modification of phonon processes in nano-structured rare-earth-ion-doped crystals

    E-print Network

    Thomas Lutz; Lucile Veissier; Charles W. Thiel; Rufus L. Cone; Paul E. Barclay; Wolfgang Tittel

    2015-09-11

    Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nanostructured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole-burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band, and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5, a widely-used material in current quantum memory research.

  13. Ab initio Disordered Local Moment Approach for a Doped Rare-Earth Magnet

    NASA Astrophysics Data System (ADS)

    Matsumoto, Munehisa; Banerjee, Rudra; Staunton, Julie B.

    Following the finite-temperature ab initio calculation framework based on the relativistic disordered local moments [J. B. Staunton et al., Phys. Rev. Lett. 93, 257204 (2004); Phys. Rev. B 74, 144411 (2006)], we computationally demonstrate the possibility of doping-enhanced coercivity at high-temperatures, taking YCo5 as a working material in order to extract the 3d-electron part of the electronic structure of the rare-earth permanent magnets. Alkaline-earth dopants are shown to be the candidates to realize the proposed phenomenon.

  14. Evidence of Dilute Ferromagnetism in Rare-Earth doped YAG

    E-print Network

    W. G. Farr; M. Goryachev; J. M. le Floch; P. Bushev; M. E. Tobar

    2015-09-15

    This work demonstrates strong coupling regime between an Erbium ion spin ensemble and microwave Hybrid Cavity-Whispering Gallery Modes in a Yttrium Aluminium Garnet dielectric crystal. Coupling strengths of $220$~MHz and mode quality factors in excess of $10^6$ are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of Rare Earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  15. Earth System Science: An Integrated Approach.

    ERIC Educational Resources Information Center

    Environment, 2001

    2001-01-01

    Details how an understanding of the role played by human activities in global environmental change has emerged. Presents information about the earth system provided by research programs. Speculates about the direction of future research. (DDR)

  16. Factsheet "Earth and Environment Program" General info: The Bachelor Programs in "Earth & Space Sciences" and "Integrated Environmental Studies" have

    E-print Network

    Pfander, Götz

    : "Earth and Environmental Sciences". On average 21 graduating students per year Research Foci2015 Factsheet "Earth and Environment Program" General info: The Bachelor Programs in "Earth & Space Sciences" and "Integrated Environmental Studies" have been merged into the single EES program

  17. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  18. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 9, SEPTEMBER 2002 1545 Rare-Earth-Doped GaN Switchable Color

    E-print Network

    Cincinnati, University of

    IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 9, SEPTEMBER 2002 1545 Rare-Earth-Doped Ga here are based on the rare earth-doped GaN phosphor system [12]. GaN has emerged as an excellent host [13] for visible [14] light emission from trivalent rare earths, which occupy substitutional sites

  19. Characterization and fabrication of rare-earth doped amplifying fibers based on atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolan; Dong, Yanhua; Li, Chao; Liu, Xiaohong; Li, Shuo

    2010-10-01

    Nano-Rare Earth Doped Fibers (NREDFs) have shown great application for optical fiber amplifiers, fiber lasers and sensors. The rapid development of fiber communication systems has a higher requirement on the NREDFs. Atomic layer deposition (ALD) is a chemical vapor deposition technique based on the sequential use of self-terminating gas-solid reactions. As a film deposition technique, ALD is known for its effective material utilization at low temperatures, accuracy thickness control, excellent step coverage, good uniformity and adhesion, good conformability. In this paper, ALD was used to fabricate high concentration alumina-erbium co-doped amplifying fibers. Based on Modified Chemical Vapor Deposition (MCVD) and ALD, using nanomaterials as a dopant, the alumina-erbium co-doped amplifying fibers were fabricated. The main advantages of this novel method include good uniformity, high dispersibility, and high doping concentration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) images and X-ray energy dispersive spectroscopy (EDS) showed the physical and chemical features of the deposited film upon a porous silica soot layer. Photoluminescence (PL) and absorption spectra were used to characterize the optical properties. The fibers have high gain, low noise, high power and are independent of polarization, which make them desirable for fiber devices.

  20. Meaningfully Integrating Big Earth Science Data

    NASA Astrophysics Data System (ADS)

    Pebesma, E. J.; Stasch, C.

    2014-12-01

    After taking the technical hurdles to deal with big earth observationdata, large challenges remain to avoid that operations are carried out that are not meaningful. Examples of this are summing things that should not be summed, or interpolating phenomena that shouldnot be interpolated. We propose a description of data at the level of their meaning, to allow for notifying data users whenmeaningless operations are being executed. We present a prototypicalimplementation in R.

  1. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ?c, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ?Tsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  2. Design of rare-earth-ion doped chalcogenide photonic crystals for enhancing the fluorescence emission

    NASA Astrophysics Data System (ADS)

    Zhang, Peiqing; Dai, Shixun; Niu, Xueke; Xu, Yinsheng; Zhang, Wei; Wu, Yuehao; Xu, Tiefeng; Nie, Qiuhua

    2014-07-01

    Rare-earth-ion doped chalcogenide glass is a promising material for developing mid-infrared light sources. In this work, Tm3+-doped chalcogenide glass was prepared and photonic crystal structures were designed to enhance its fluorescence emission at approximately 3.8 ?m. By employing the finite-difference time-domain (FDTD) simulation, the emission characteristics of the luminescent centers in the bulk material and in the photonic crystals were worked out. Utilizing analysis of the photon excitation inside the sample and the photon extraction on the sample surface, it was found that fluorescence emission can be significantly enhanced 260-fold with the designed photonic crystal structure. The results of this work can be used to realize high-efficiency mid-infrared light sources.

  3. Spectroscopic and electrical properties of Mg Ti ferrite doped with different rare-earth elements

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Ateia, E.; Salem, F. M.

    2006-05-01

    The dielectric constant ( ??), and the electric conductivity ( ?) for Mg 1+xTi xR yFe 2-2x-yO 4, 0.025? y?0.15 doped with different rare-earth ions, R=Er, Ce and Nd, were measured in the temperature range 300-750 K. The measurements were carried out as a function of frequency 50-1000 kHz X-ray diffractograms and IR spectra revealed that all the investigated samples posses the spinel structure. More than one conduction mechanism is used to interpret the electrical measurements. The most predominant one is the hopping mechanism that occurs between the ions of different valences existing on the same and different sites. All the ionic radii of the rare-earth used are too large to occupy the octahedral site. They form secondary phases on the grain boundaries. The electrical properties show that the pure sample has a larger dielectric constant as well as a larger valence exchange with respect to any doped one. This means that introducing rare-earth ions into the samples decreases ?? and increases the resistivity, owing to the decreasing Fe-Fe interaction. This feature can help to obtain well applicable ferrites.

  4. Properties and Applications of Laser-Induced Gratings in Rare Earth Doped Glasses.

    NASA Astrophysics Data System (ADS)

    Behrens, Edward Grady

    Scope and method of study. Four-wave-mixing techniques were used in an attempt to create permanent laser-induced grating in Pr^{3+}-, Nd ^{3+}-, Eu^ {3+}-, and Er^{3+ }-doped glasses. The permanent laser-induced grating signal intensity and build-up and erase times were investigated as function of the write beam crossing angle, write beam power, and temperature. Thermal lensing measurements were conducted on Eu^{3+} - and Nd^{3+}-doped glasses and room temperature Raman and resonant Raman spectra were obtained for Eu^{3+}-doped glasses. The permanent laser-induced grating signal intensity was studied in Eu^{3+} -doped alkali-metal glasses as a function of the alkali -metal network modifier ion and a model was developed by treating the sample as a two-level system. Optical device applications of the permanent laser-induced gratings were studied by creating some simple devices. Findings and conclusions. Permanent laser-induced gratings were created in the Pr^{3+ }- and Eu^{3+} -doped glasses. The permanent laser-induced grating is associated with a structural phase change of the glass host. The structural change is produced by high energy phonons which are emitted by radiationless relaxation processes of the rare earth ion. Nd^{3+} and Er^{3+} relax nonradiatively by the emission of phonons of much lower energy which are unable to produce the structural phase change needed to form a permanent laser-induced grating. The difference in energy of the emitted phonons is responsible for the differing characteristics of the thermal lensing experiments. The model does a good job of predicting the experimental results for the asymmetry and other parameters of the two-level system. The application of these laser -induced gratings for optical devices demonstrates their importance to optical technology.

  5. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation

    NASA Astrophysics Data System (ADS)

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-01

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03537f

  6. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    PubMed Central

    Schartner, Erik P.; Monro, Tanya M.

    2014-01-01

    We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C. PMID:25407907

  7. High quality factor nanophotonic resonators in bulk rare-earth doped crystals

    E-print Network

    Zhong, Tian; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelectronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling in bulk insulators, such as rare-earth doped yttrium orthosilicate and yttrium vanadate, are demonstrated. Operation in the visible, near infrared, and telecom wavelengths with quality factors up to 27,000 and optical mode volumes close to one cubic wavelength is measured. These devices enable new nanolasers, on-chip quantum optical memories, single photon sources, and non-linear devices at low photon numbers based on rare-earth ions. The techniques are also applicable to other luminescent centers and crystals.

  8. Demonstrating the possibility of implementing the Toffoli gate in crystals doped by rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, R. A.; Gushchin, L. A.; Zelensky, I. V.; Malakyan, Yu. P.; Sobgaida, D. A.

    2015-07-01

    A scheme for the implementation of the Toffoli gate in inorganic crystals doped by rare-earth metal ions is proposed. A numerical analysis of the factors affecting the fidelity of the Toffoli gate implementation is carried out, and estimates for the available experimental parameters are obtained. A demonstration experiment is set up in which behavior similar to the Toffoli gate is shown for ensembles of Pr3+ ions doped into a LaF3 crystal.

  9. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.

    PubMed

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-01

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. PMID:26400095

  10. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 ?s) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  11. The structure and energetics of $^3$He and $^4$He nanodroplets doped with alkaline earth atoms

    E-print Network

    A. Hernando; R. Mayol; M. Pi; M. Barranco; F. Ancilotto; O. B{ü}nermann; F. Stienkemeier

    2007-05-08

    We present systematic results, based on density functional calculations, for the structure and energetics of $^3$He and $^4$He nanodroplets doped with alkaline earth atoms. We predict that alkaline earth atoms from Mg to Ba go to the center of $^3$He drops, whereas Ca, Sr, and Ba reside in a deep dimple at the surface of $^4$He drops, and Mg is at their center. For Ca and Sr, the structure of the dimples is shown to be very sensitive to the He-alkaline earth pair potentials used in the calculations. The $5s5p\\leftarrow5s^2$ transition of strontium atoms attached to helium nanodroplets of either isotope has been probed in absorption experiments. The spectra show that strontium is solvated inside $^3$He nanodroplets, supporting the calculations. In the light of our findings, we emphasize the relevance of the heavier alkaline earth atoms for analyzing mixed $^3$He-$^4$He nanodroplets, and in particular, we suggest their use to experimentally probe the $^3$He-$^4$He interface.

  12. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.

    PubMed

    Zhong, Tian; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent (4)I(9/2)-(4)F(3/2) optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2?100??s) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces. PMID:26364586

  13. Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals

    PubMed Central

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light–matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2–4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2?100??s) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light–matter interfaces. PMID:26364586

  14. Catholuminescence properties of rare earth doped CaSnO3 phosphor.

    PubMed

    Canimoglu, A; Garcia-Guinea, J; Karabulut, Y; Ayvacikli, M; Jorge, A; Can, N

    2015-05-01

    The present study describes cathodoluminescence (CL) properties of CaSnO3 phosphors doped with Eu(3+), Tb(3+) and Dy(3+) synthesized by a solid-state method. X-ray diffraction (XRD) patterns confirm that CaSnO3 sintered at 1200°C exhibits orthorhombic structure. The evidence and rationale for two strong broad emission bands appeared at 360 and 780nm for undoped CaSnO3 are presented. The CL measurements exhibit that the 4f-4f emissions from (5)D4?(7)F6 (490nm), (5)D4 ?(7)F5 (544nm), (5)D4 ?(7)F4 (586nm) and (5)D4 ?(7)F3 (622nm), assigned to possible transitions of Tb(3+) ions are seen. The strongest one, observed at 544nm, due to its probability of both magnetic and electric transitions make the sample emission green. Emissions at 480, 574, 662 and 755nm were detected for the CaSnO3:Dy(3+) and attributed to the transitions from the (4)F9/2 to various energy levels (6)H15/2, (6)H13/2, (6)H11/2 and (6)H9/2+(6)F11/2 of Dy(3+), respectively. CL spectra of Eu doped CaSnO3 reveal that there is a strong emission peak appeared at 615nm due to the electric dipole transition (5)D0?(7)F2 (red). Finally, our results show that the rare earth doped CaSnO3 have remarkable potential for applications as optical materials since it exhibits efficient and sharp emission due to rare earth ions. PMID:25766113

  15. Structural transition in rare earth doped zirconium oxide: A positron annihilation study

    SciTech Connect

    Chakraborty, Keka; Bisoi, Abhijit

    2012-11-15

    Graphical abstract: New microstructural analysis and phase transition of rare earth doped mixed oxide compounds such as: Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where x = 0.0 ? x ? 2.0) that are potentially useful as solid oxide fuels, ionic conductors, optoelectronic materials and most importantly as radiation resistant host for high level rad-waste disposal, structural transition in the system is reported through positron annihilation spectroscopy as there is an indication in the X-ray diffraction analysis. Highlights: ? Zirconium oxide material doped with rare earth ions. ? The method of positron annihilation spectroscopy suggests a phase transition in the system. ? The crystal structure transformation from pure pyrochlore to defect fluorite type of structure is shown by X-ray diffraction results. -- Abstract: A series of compounds with the general composition Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where 0 ? x ? 2.0) were synthesized by chemical route and characterized by powder X-ray diffraction (XRD) analysis. The rare earth ion namely Sm{sup +3} in the compound was gradually replaced with another smaller and heavier ion, Dy{sup +3} of the 4f series, there by resulting in order–disorder structural transition, which has been studied by positron annihilation lifetime and Doppler broadening spectroscopy. This study reveals the subtle electronic micro environmental changes in the pyrochlore lattice (prevalent due to the oxygen vacancy in anti-site defect structure of the compound) toward its transformation to defect fluorite structure as found in Dy{sub 2}Zr{sub 2}O{sub 7}. A comparison of the changes perceived with PAS as compared to XRD analysis is critically assayed.

  16. Rare earth elements in synthetic zircon. 1. synthesis, and rare earth element and phosphorus doping.

    SciTech Connect

    Hanchar, J. M.; Finch, R. J.; Hoskin, W. O.; Watson, E. B.; Cherniak, D. J.; Mariano, A. N.; Chemical Engineering; George Washington Univ.; Univ. of Canterbury; Australian National Univ.; Rensselaer Polytechnic Inst.

    2001-05-01

    Sedimentary mineral assemblages commonly contain detrital zircon crystals as part of the heavy-mineral fraction. Age spectra determined by U-Pb isotopic analysis of single zircon crystals within a sample may directly image the age composition--but not the chemical composition--of the source region. Rare earth element (REE) abundances have been measured for zircons from a range of common crustal igneous rock types from different tectonic environments, as well as kimberlite, carbonatite, and high-grade metamorphic rocks, to assess the potential of using zircon REE characteristics to infer the rock types present in sediment source regions. Except for zircon with probable mantle affinities, zircon REE abundances and normalized patterns show little intersample and intrasample variation. To evaluate the actual variation in detrital zircon REE composition in a true sediment of known mixed provenance, zircons from a sandstone sample from the Statfjord Formation (North Sea) were analyzed. Despite a provenance including high-grade metasediment and granitoids and a range in zircon age of 2.82 b.y., the zircon REEs exhibit a narrow abundance range with no systematic differences in pattern shape. These evidences show zircon REE patterns and abundances are generally not useful as indicators of provenance.

  17. On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    Collins, Gary S.

    On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals.1088/0022-3727/45/1/015103 On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals C R Varney, D may appear in colour only in the online journal) 1. Introduction Rare-earth-(RE)-doped yttrium

  18. Silicon-germanium saturable absorbers and erbium-doped waveguides for integrated mode-locked lasers

    E-print Network

    Byun, Hyunil

    2006-01-01

    In this thesis, Silicon-Germanium (SiGe) Saturable Bragg Reflectors (SBR) and Erbium-doped waveguide chips are fabricated and characterized as crucial components for integration of a mode-locked laser on a Si-chip. The ...

  19. Hydrothermal Synthesis, Microstructure and Photoluminescence of Eu3+-Doped Mixed Rare Earth Nano-Orthophosphates

    PubMed Central

    2010-01-01

    Eu3+-doped mixed rare earth orthophosphates (rare earth = La, Y, Gd) have been prepared by hydrothermal technology, whose crystal phase and microstructure both vary with the molar ratio of the mixed rare earth ions. For LaxY1–xPO4: Eu3+, the ion radius distinction between the La3+ and Y3+ is so large that only La0.9Y0.1PO4: Eu3+ shows the pure monoclinic phase. For LaxGd1–xPO4: Eu3+ system, with the increase in the La content, the crystal phase structure of the product changes from the hexagonal phase to the monoclinic phase and the microstructure of them changes from the nanorods to nanowires. Similarly, YxGd1–xPO4: Eu3+, Y0.1Gd0.9PO4: Eu3+ and Y0.5Gd0.5PO4: Eu3+ samples present the pure hexagonal phase and nanorods microstructure, while Y0.9Gd0.1PO4: Eu3+ exhibits the tetragonal phase and nanocubic micromorphology. The photoluminescence behaviors of Eu3+ in these hosts are strongly related to the nature of the host (composition, crystal phase and microstructure). PMID:21170409

  20. Coherency strain enhanced dielectric-temperature property of rare-earth doped BaTiO{sub 3}

    SciTech Connect

    Jeon, Sang-Chae; Kang, Suk-Joong L.

    2013-03-18

    Core/shell-grained BaTiO{sub 3} samples were prepared with addition of rare earth elements. The core/shell interface was semi-coherent, and many misfit dislocations formed in Dy-doped samples. In contrast, a coherent interface and few dislocations were observed in Ho- and Er-doped samples. Dy-doped samples exhibited poor temperature stability, showing a peak with no frequency dispersion. Ho- and Er-doped samples exhibited a broad curve with frequency dispersion. This improved temperature stability is attributed to the coherency strain, which leads to the formation of polar nano-regions in the shell. Coherency at the core/shell interface is critical to improve the temperature stability of core/shell-structured BaTiO{sub 3}.

  1. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  2. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  3. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    E-print Network

    Zhong, Tian; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous...

  4. Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth Doped Crystal

    NASA Astrophysics Data System (ADS)

    Lauk, Nikolai; O'Brien, Christopher; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-05-01

    Superconducting qubits (SCQ) are promising candidates for scalable quantum computation. However, they are essentially stationary, which makes them less suitable for quantum information transport. Interfacing short telecom photons with SCQ's would enable the combination of SCQ with low loss optical fiber networks and a fast, reliable quantum network could be realized. To this end, we propose and theoretically analyze a scheme for coupling optical photons to a SCQ, using a rare earth doped crystal (REDC) coupled to the microwave cavity as an interface. The idea is first to store an optical photon by mapping it to a spin excitation in a REDC and then transfer this excitation to a SCQ via a microwave cavity. Due to intrinsic and engineered inhomogeneous broadening of the optical and spin transitions employed in REDC for the storage of short optical photon pulses, we suggest and optimize a special transfer protocol using staggered ?-pulses.

  5. Potential rare earth free permanent magnet: interstitial boron doped FeCo

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Hong, Jisang

    2014-10-01

    Using the full potential linearized augmented plane wave method, we investigated the structural and the magnetic properties of boron doped FeCo. After fully relaxing the lattice structure, the interatomic distances between boron and Fe atoms were found to be greatly enhanced and the tetragonal distortion was realized due to this increased interatomic distance. Nonetheless, both the unit cell volume and the total magnetic moment of the tetragonally distorted FeCo structure were weakly suppressed compared with those of ideal bulk FeCo. We found a magnetocrystalline anisotropy constant of 0.8 MJ m-3 and this was mainly due to the tetragonal distortion induced by boron impurity, not from the hybridization effect with Fe or Co, because no essential change in the magnetocrystalline anisotropy constant was found even without boron impurity in the lattice distorted system. Additionally, the estimated maximum energy product and coercive field were 100 MGOe and 745 kA m-1, respectively. These results may imply that the interstitial boron doped FeCo can be used for a potential rare earth free permanent magnet although those values are likely to be suppressed in real samples due to micromagnetic factors.

  6. Superparamagnetism and interfacial superconductivity in rare earth Pr-doped Ca122

    NASA Astrophysics Data System (ADS)

    Deng, L. Z.; Lv, B.; Wei, F. Y.; Xue, Y. Y.; Chu, C. W.

    2013-03-01

    To better understand the origin of the non-bulk superconductivity with an unusually high onset-Tc (49 K) and its superconducting behavior in the rare earth Pr-doped Ca122 [(Ca1-xPrx) Fe2As2], detailed chemical analyses and magnetization measurements on both the as-synthesized and annealed single crystals were carried out. A small but non-negligible As-deficiency and superparamagnetic clusters (SPCs) were detected in the superconducting as-synthesized crystals, suggesting that the SPCs originate from the As vacancies. The magnetic moment of the SPC were found to be insensitive to the doping level x, while the SPC density (n) is zero for x <0.05 in the non-superconducting region and increases monotonically with x for x >0.1 in the superconducting region. The superconducting volume fraction (f) was shown to be very closely related with n. Noticeable inter-cluster interactions, from antiferromagnetic for x <0.05 (non -SC region) to weakly ferromagnetic for x >0.1 (SC region) were found, suggesting that the defects are ordered. Systematically annealing the crystals over 500-920° simultaneously suppress both n and f. Therefore, we propose that the ordered vacancies, and the associated interfaces, are responsible for the rather high onset-Tc. The work at Houston is supported in part by US AFOSR, the State of Texas, T. L. L. Temple Foundation ans John and Rebecca Moores Endowment.

  7. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  8. The integrated Earth system model version 1: formulation and functionality

    DOE PAGESBeta

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore »iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  9. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  10. The integrated Earth system model version 1: formulation and functionality

    NASA Astrophysics Data System (ADS)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; Patel, P.; Zhou, Y.; Mao, J.; Shi, X.; Thornton, P. E.; Chini, L. P.; Hurtt, G. C.

    2015-07-01

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  11. Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Javed; Ahmad, Zahoor

    2008-05-01

    Substituted LiRxMn2 - xO4 (R = La3+, Ce3+, Pr3+ and x = 0.00 - 0.20) nanoparticles are prepared by the sol-gel method and the consequent changes in their lattice structure, dielectric and electrical parameters are determined by XRD, ED-XRF, SEM, LCR meter bridge and dc electrical resistivity measurements. Diffraction data show that the samples are single-phase spinel materials with crystallites sizes between 21 and 38 nm. The lattice parameter, cell volume and X-ray density are found to be affected by doping the Li-manganate with the rare-earth elements. The ED-XRF analysis confirms the stoichiometric composition of the synthesized samples and SEM reveals their morphology. Calculated values of the dielectric constant (?) and the dielectric loss (tan ?) decrease with the frequency of the applied field. This is attributed to Maxwell-Wagner polarization. Replacement of manganese by the rare-earth elements results in an improvement in the structural stability of the material, which is considered to be useful for enhancement of the cycleability of the compounds when used in lithium rechargeable batteries, and increases significantly the values of ? and tan ? (except for Ce). Lithium manganate nanomaterials with high ? and low tan ? may be attractive for application in memory storage devices.

  12. An OpenEarth Framework (OEF) for Integrating and Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Moreland, J. L.; Nadeau, D. R.; Baru, C.; Crosby, C. J.

    2009-12-01

    The integration of data is essential to make transformative progress in understanding the complex processes operating at the Earth’s surface and within its interior. While our current ability to collect massive amounts of data, develop structural models, and generate high-resolution dynamics models is well developed, our ability to quantitatively integrate these data and models into holistic interpretations of Earth systems is poorly developed. We lack the basic tools to realize a first-order goal in Earth science of developing integrated 4D models of Earth structure and processes using a complete range of available constraints, at a time when the research agenda of major efforts such as EarthScope demand such a capability. Among the challenges to 3D data integration are data that may be in different coordinate spaces, units, value ranges, file formats, and data structures. While several file format standards exist, they are infrequently or incorrectly used. Metadata is often missing, misleading, or relegated to README text files along side the data. This leaves much of the work to integrate data bogged down by simple data management tasks. The OpenEarth Framework (OEF) being developed by GEON addresses these data management difficulties. The software incorporates file format parsers, data interpretation heuristics, user interfaces to prompt for missing information, and visualization techniques to merge data into a common visual model. The OEF’s data access libraries parse formal and de facto standard file formats and map their data into a common data model. The software handles file format quirks, storage details, caching, local and remote file access, and web service protocol handling. Heuristics are used to determine coordinate spaces, units, and other key data features. Where multiple data structure, naming, and file organization conventions exist, those heuristics check for each convention’s use to find a high confidence interpretation of the data. When no convention or embedded data yields a suitable answer, the user is prompted to fill in the blanks. The OEF’s interaction libraries assist in the construction of user interfaces for data management. These libraries support data import, data prompting, data introspection, the management of the contents of a common data model, and the creation of derived data to support visualization. Finally, visualization libraries provide interactive visualization using an extended version of NASA WorldWind. The OEF viewer supports visualization of terrains, point clouds, 3D volumes, imagery, cutting planes, isosurfaces, and more. Data may be color coded, shaded, and displayed above, or below the terrain, and always registered into a common coordinate space. The OEF architecture is open and cross-platform software libraries are available separately for use with other software projects, while modules from other projects may be integrated into the OEF to extend its features. The OEF is currently being used to visualize data from EarthScope-related research in the Western US.

  13. Observational data preparation and availability for Integrated Earth System modeling

    NASA Astrophysics Data System (ADS)

    Corrigan, A.; Kleese van Dam, K.; Hibbard, K. A.; Williams, D. N.

    2010-12-01

    High-quality and well-characterized observational data sets form the foundation for assessing the current state of the climate, enabling reliable climate predictions, and supporting policy decisions. Many different observational data sources are used for developing parameters and for validating each of the major components of current climate models (e.g., atmosphere model, land-surface model, ocean model, and sea-ice model) as well as formulating extensive integrated assessment models (e.g. land-surface, impact assessment) for the study, analysis, and prediction of the Earth’s climate. As simulations grow both in complexity, number and size, it will be essential to automate many of the testing and parameterization tasks to keep up with (in particular) analysis and verification demands. With observational data playing a pivotal role in the process, it is therefore necessary that observational data is easily available and consumable within these simulation and testing environments. The major challenges in utilizing observational data for model evaluation are however: significant variability in spatial scale (remote sensing, area coverage, point observation, trajectories), temporal scales (minutes to hours, long term time series to intermittent or time limited observations), different data formats and variable names (between different observational data collections), structure (e.g. multiple independent streams versus gridded values) and representations (between simulation and observation). Solutions have to be found to overcome these differences, speed up the integration process, and enable the simulation community to flexibly assemble the required verification and parameterization data sets within their computational environment. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) and PNNL’s integrated Regional Earth Systems Modeling Initiative (iRESM) are collaborating to develop Earth System Grid (ESG) extensions related to regional work such as e.g. coastal river estuary modeling, land usage/coverage, ecological processes. Hereby they will investigate the flexible creation of observational data sets for iRESM’s modeling requirements and their publication into ESG, integration of observational data into the model testing and parameterization cycle through the ESG infrastructure and publication of modeling results back into the community utilizing the ESG infrastructure. This work will build on ongoing developments of the ESG Federation (including DOE, NASA, NOAA, BADC, DKRZ, etc.) on incorporating a range of specific observational data needs into the CF metadata convention.

  14. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  15. Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films

    NASA Astrophysics Data System (ADS)

    Pompilian, O. G.; Dascalu, G.; Mihaila, I.; Gurlui, S.; Olivier, M.; Nemec, P.; Nazabal, V.; Cimpoesu, N.; Focsa, C.

    2014-10-01

    Amorphous chalcogenide thin films are of high current interest for technological applications as optical storage media or waveguides for photonic integrated circuits. As part of a larger project including fs, ps and ns pulsed laser deposition regimes, Er- and Pr-doped GLS thin films were deposited by ns PLD, and their structural, chemical and optical properties were analyzed by optical and electronic microscopy, stylus profilometry, X-ray diffraction, Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), energy-dispersive X-ray spectroscopy, variable-angle spectroscopic ellipsometry and optical transmission. Films deposited at moderate fluence (~4 J/cm2) in UV (266 nm) presented a good surface quality, while exhibiting acceptable composition uniformity and deviations from stoichiometry in line with the literature. Composition and optical properties dependences on the deposition conditions were investigated and discussed with respect to previous studies on similar systems.

  16. Synthesis and characterization of alkali/alkaline earth-doped fiber optic silica preforms

    NASA Astrophysics Data System (ADS)

    Homa, Daniel Scott

    The search for an ultra-low loss optical fiber has been driven by the discovery that certain multicomponent glasses possessed lower Rayleigh scattering losses than silica. Typically, these glasses cannot be employed in fiber optic applications because they are fabricated by conventional melting and processing techniques that introduce large amounts of impurities into the materials. High purity processing techniques such as chemical vapor deposition are required to truly realize the potential of these glasses as fiber optic materials. The Modified Chemical Vapor Deposition (MCVD) process was employed in the thesis work because of the flexibility and species confinement available with this processing method. The multicomponent glass compositions investigated in the thesis work include: Na2O-Al2O3-SiO 2, CaO-Al2O3, & MgO-Al2O3 -SiO2. Novel vapor delivery approaches, based on the current organometallic and chloride vapor delivery of rare earth metals, were devised to fabricate the multicomponent glasses evaluated in this work. Thermodynamic data were used to predict the feasibility of the MCVD processing of the glasses. Initial work on the Na2O-Al2O3-SiO2 system was unsatisfactory. The minimal amounts, <0.40 mol%, of sodium achievable in doped preforms proved that the Na2OAl2O 3-SiO2 system could not be adequately synthesized by MCVD processing. However, the moderately high dopant levels, 1--5 mol% CaO & MgO, achieved in the MCVD fabrication of CaO-Al2O3-SiO 2 & MgO-Al2O3-SiO2, demonstrated the suitability of these latter systems as fiber optic materials. The first successful MCVD fabrication and fiberization of the alkaline earth doped silica glasses achieved in this thesis work represents a milestone in ultra-low loss glass research. The modification of the silica glass structure with minor dopant levels, <10 mol%, resulted in noticeable changes in the optical properties of the glass. The CaO-Al2O3-SiO 2 glass system produced waveguide properties superior to the current GeO2-SiO2 glass fiber including a smooth index profile, improved ability to tailor the index profile, comparable scattering losses, and a rare earth host glass with enhanced solubility. The MgO-Al2O 3-SiO2 possessed lower OH absorption at 1.39 mum than the Rutgers GeO2-SiO2 glass fiber due to the dampening of the fundamental OH vibration. The demonstration of alkaline earth aluminosilicate glass compositions as viable optical fiber compositions offers many areas of opportunity for future applications.

  17. BACHELOR OF SCIENCE IN EARTH SCIENCE / COMPOSITE TEACHING MAJOR THIS MAJOR MEETS STATE REQUIREMENTS FOR ENDORSEMENTS IN EARTH SCIENCE AND OR INTEGRATED SCIENCE

    E-print Network

    Johnson, Cari

    BACHELOR OF SCIENCE IN EARTH SCIENCE / COMPOSITE TEACHING MAJOR THIS MAJOR MEETS STATE REQUIREMENTS FOR ENDORSEMENTS IN EARTH SCIENCE AND OR INTEGRATED SCIENCE REQUIRED EARTH SCIENCE COURSES: Course Title Credits

  18. Integrating LiDAR Data into Earth Science Education

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Arrowsmith, R.; de Groot, R. M.; Crosby, C. J.; Whitesides, A. S.; Colunga, J.

    2010-12-01

    The use of high-resolution topography derived from Light Detection and Ranging (LiDAR) in the study of active tectonics is widespread and has become an indispensable tool to better understand earthquake hazards. For this reason and the spectacular representation of the phenomena the data provide, it is appropriate to integrate these data into the Earth science education curriculum. A collaboration between Arizona State University, the OpenTopography Facility, and the Southern California Earthquake Center are developing, three earth science education products to inform students and other audiences about LiDAR and its application to active tectonics research. First, a 10-minute introductory video titled LiDAR: Illuminating Earthquakes was produced and is freely available online through the OpenTopography portal and SCEC. The second product is an update and enhancement of the Wallace Creek Interpretive Trail website (www.scec.org/wallacecreek). LiDAR topography data products have been added along with the development of a virtual tour of the offset channels at Wallace Creek using the B4 LiDAR data within the Google Earth environment. The virtual tour to Wallace Creek is designed as a lab activity for introductory undergraduate geology courses to increase understanding of earthquake hazards through exploration of the dramatic offset created by the San Andreas Fault (SAF) at Wallace Creek and Global Positioning System-derived displacements spanning the SAF at Wallace Creek . This activity is currently being tested in courses at Arizona State University. The goal of the assessment is to measure student understanding of plate tectonics and earthquakes after completing the activity. Including high-resolution topography LiDAR data into the earth science education curriculum promotes understanding of plate tectonics, faults, and other topics related to earthquake hazards.

  19. The Characterization of Eu2+-Doped Mixed Alkaline-Earth Iodide Scintillator Crystals

    SciTech Connect

    Neal, John S; Boatner, Lynn A; Ramey, Joanne Oxendine; Wisniewski, D.; Kolopus, James A; Cherepy, Nerine; Payne, Stephen A.

    2011-01-01

    The high-performance inorganic scintillator, SrI2:Eu2+, when activated with divalent europium in the concentration range of 3 to 6%, has shown great promise for use in applications that require high-energy-resolution gamma-ray detection. We have recently grown and tested crystals in which other alkaline-earth ions have been partially substituted for Sr ions. Specifically, europium-doped single crystals have been grown in which up to 30 at % of the strontium ions have been substituted for either by barium, magnesium, or calcium ions. In the case of the strontium iodide scintillator host, a material that is characterized by an orthorhombic crystal structure, there are three other column IIA elements that are obvious choices for investigations whose purpose is to realize potential improvements in the performance of SrI2:Eu2+-based scintillators via the replacement of strontium ions with either Mg2+, Ca2+, or Ba2+. Light yields of up to 81,400 photons/MeV with an associated energy resolution of 3.7% (fwhm for 662 keV gamma-rays) have been observed in the case of a partial substitution of Ba2+ for Sr2+. The measured decay times ranged from 1.1 to 2.0 s, while the peak emission wavelengths ranged from 432 to 438 nm.

  20. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy.

    PubMed

    Furukawa, Taichi; Fukushima, Shoichiro; Niioka, Hirohiko; Yamamoto, Naoki; Miyake, Jun; Araki, Tsutomu; Hashimoto, Mamoru

    2015-05-01

    We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence(CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3?Eu, Y2O3?Tb) were sufficiently narrow to be distinguished. From CL images of RE-NPs on an elastic carbon-coated copper grid, the spatial resolution was beyond the diffraction limit of light.Y2O3?Tb and Y2O3?Eu RE-NPs showed a remarkable resistance against electron beam exposure even at high acceleration voltage (80 kV) and retained a CL intensity of more than 97% compared with the initial intensity for 1 min. In biological CL imaging with STEM, heavy-metal-stained cell sections containing the RE-NPs were prepared,and both the CL images of RE-NPs and cellular structures, such as mitochondria, were clearly observed from STEM images with high contrast. The cellular CL imaging using RE-NPs also had high spatial resolution even though heavy-metal-stained cells are normally regarded as highly scattering media. Moreover, since theRE-NPs exhibit photoluminescence (PL) excited by UV light, they are useful for multimodal correlative imaging using CL and PL. PMID:26000793

  1. Ceramics and amorphous thin films based on gallium sulphide doped by rare-earth sulphides

    NASA Astrophysics Data System (ADS)

    Popescu, M.; Sava, F.; L?rinczi, A.; Velea, A.; Simandan, I. D.; Badica, P.; Burdusel, M.; Galca, A. C.; Matei, E.; Preda, N.; Secu, M.; Socol, G.; Jipa, F.; Zamfirescu, M.; Balan, A.

    2015-04-01

    Bulk ceramics of Ga2S3 and rare-earth sulfides (EuS, Gd2S3, Er2S3) as well as combinations thereof have been prepared by spark plasma sintering (SPS). The disk-shaped ceramics were used as targets for pulsed laser deposition (PLD) experiments to obtain amorphous thin films. The properties of these new bulks and amorphous thin films have been investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), optical transmission spectroscopy, and atomic force microscopy (AFM). In order to test the photoexpansion effect in Ga2S3 and the possibility to create planar arrays of microlenses, the film was irradiated with femtosecond laser pulses at different powers. For low laser power pulses (up to 100 mW power per pulse) a photoexpansion effect was observed, which leads to formation of hillocks with a height of 40-50 nm. EuS doped Ga2S3 thin film shows luminescence properties, which recommend them for optoelectronic applications.

  2. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Furukawa, Taichi; Fukushima, Shoichiro; Niioka, Hirohiko; Yamamoto, Naoki; Miyake, Jun; Araki, Tsutomu; Hashimoto, Mamoru

    2015-05-01

    We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence (CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3:Eu, Y2O3:Tb) were sufficiently narrow to be distinguished. From CL images of RE-NPs on an elastic carbon-coated copper grid, the spatial resolution was beyond the diffraction limit of light. Y2O3:Tb and Y2O3:Eu RE-NPs showed a remarkable resistance against electron beam exposure even at high acceleration voltage (80 kV) and retained a CL intensity of more than 97% compared with the initial intensity for 1 min. In biological CL imaging with STEM, heavy-metal-stained cell sections containing the RE-NPs were prepared, and both the CL images of RE-NPs and cellular structures, such as mitochondria, were clearly observed from STEM images with high contrast. The cellular CL imaging using RE-NPs also had high spatial resolution even though heavy-metal-stained cells are normally regarded as highly scattering media. Moreover, since the RE-NPs exhibit photoluminescence (PL) excited by UV light, they are useful for multimodal correlative imaging using CL and PL.

  3. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    E-print Network

    Tian Zhong; Jonathan M. Kindem; Evan Miyazono; Andrei Faraon

    2015-07-03

    Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous broadening are measured for the cavity-coupled REIs, thus demonstrating their potential for on-chip scalable QLMIs.

  4. Rare-earth doped colour tuneable up-conversion ZBLAN phosphor for enhancing photocatalysis

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Sierra, M.; Redondas, A.; Ruggiero, E.; Salassa, L.; Borges, M. E.; Esparza, P.

    2015-03-01

    Rare-earth doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride glasses have been successfully synthesized showing outstanding UV-VIS up-conversion luminescence of Er3+ and Tm3+, sensitized by Yb3+ ions, under near-infrared excitation at 980 nm. The ratio between blue, green and red up-conversion emission bands can be adjusted by varying the pump power density of the incident infrared radiation, resulting in a controlled tuneability of the overall emitting colour from greenish to yellowish. Additionally, the observed high energy UV intense up-conversion emissions are suitable to enhance photocatalytic activity of main water-splitting semiconductor electrodes (such as TiO2) used in sustainable production of hydrogen. Photocatalysis and photolysis degradation of methylene blue in water under sun-like irradiation using benchmark photocatalyst (TiO2 Degussa P25) have been boosted by 20% and by a factor of 2.5 respectively, due to the enhancement of UV radiation that reaches the TiO2 particles by the addition of ZBLAN powder into a slurry-type photo-reactor. Hence, up-conversion ZBLAN phosphors contribute to demonstrate the possibility of transforming the incoming infrared radiation into the UV region needed to bridge the gap of photocatalytic semiconductors.

  5. Synthesis and structure of some nano-sized rare-earth metal ions doped potassium hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael; Nketsa, Pusetso F.; Manatha, Toka J.; Madhavi Thakurdesai, And

    2015-05-01

    Rare-earth ions doped potassium hexacyanoferrates (KR-HCF); with the general formula KRFe(CN)6 · 3H2 O [with, R?Y, Gd and Yb] nanoparticles were synthesized through precipitation. Characterization was done through particle-size analyzer, scanning electron microscopy (SEM), Fourier Transform infra-red (FTIR) and Raman spectroscopy, and powder X-ray diffraction (XRD). The XRD data was analyzed on FullProf Software Suite program and the unit-cell structure and lattice parameters of KR-HCF samples were determined from scratch and refined further. All the three KR-HCF nanoparticles seem to crystallize in the orthorhombic primitive PMMM space-group. Reasonably good agreement was found with the previously reported lattice constants of KGd-HCF and KYb-HCF orthorhombic single-crystals, except that they assume different space-groups. The observed dissimilarity of space-groups may be attributed to the different time scales involved in the synthesis process. Moreover, the crystal structure of KYFe(CN)6 · 3H2 O nanoparticles is being reported for the very first time.

  6. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-01

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases. PMID:25602735

  7. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-10-01

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln3+) activators because of its unique crystal structure, high Ln3+ solubility, low phonon energy and high photochemical stability, and Ln3+-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln3+-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this ``focusing'' of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca2+-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca2+ doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca2+-doped cores and therefore protection of Er3+ in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln3+) activators because of its unique crystal structure, high Ln3+ solubility, low phonon energy and high photochemical stability, and Ln3+-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln3+-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this ``focusing'' of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca2+-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca2+ doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca2+-doped cores and therefore protection of Er3+ in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. Electronic supplementary information (ESI) available: More TEM, STEM-HAADF, XRD, EDS and UC data of the prepared NCs (Tables S1 and S2 and Fig. S1-S24). See DOI: 10.1039/c3nr03497f

  8. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    PubMed Central

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  9. Development of an Integrated Earth System Model on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kawamiya, M.

    2005-12-01

    Frontier Research Center for Global Change (FRCGC) launched in FY 2002 a project to develop an integrated earth system model that operates on the Earth Simulator, in collaboration with the Center for Climate System Research of the University of Tokyo, National Institute of Environmental Studies. The project aims at development of a model where biological and chemical processes important for the global environment are included to interact with climate changes. The model is developed by adding individual component models to atmospheric and oceanic general circulation models (GCMs). The component models are terrestrial and oceanic carbon cycle models and an atmospheric chemistry model. Improvements of the physical climate model are required in order to extend the model top to the middle atmosphere. Preliminary results with fully-coupled climate - carbon cycle model show a significant positive feedback between climate change and carbon cycle, while another preceding model exhibits an even stronger feedback. Other foci of the project include: experiments with the atmospheric chemistry component model, which demonstrate that impact of climate change on other green house gases such as tropospheric ozone and methane could be significant; examination of resolution-dependence of momentum transfer to the stratosphere by gravity waves using high resolution Atmospheric GCMs which explicitly resolve gravity waves.

  10. Visualization of melanoma tumor with lectin-conjugated rare-earth doped fluoride nanocrystals

    PubMed Central

    Dumych, Tetiana; Lutsyk, Maxym; Banski, Mateusz; Yashchenko, Antonina; Sojka, Bartlomiej; Horbay, Rostyslav; Lutsyk, Alexander; Stoika, Rostyslav; Misiewicz, Jan; Podhorodecki, Artur; Bilyy, Rostyslav

    2014-01-01

    Aim To develop specific fluorescent markers for melanoma tumor visualization, which would provide high selectivity and reversible binding pattern, by the use of carbohydrate-recognizing proteins, lectins, combined with the physical ability for imaging deep in the living tissues by utilizing red and near infrared fluorescent properties of specific rare-earth doped nanocrystals (NC). Methods B10F16 melanoma cells were inoculated to C57BL/6 mice for inducing experimental melanoma tumor. Tumors were removed and analyzed by lectin-histochemistry using LABA, PFA, PNA, HPA, SNA, GNA, and NPL lectins and stained with hematoxylin and eosin. NPL lectin was conjugated to fluorescent NaGdF4:Eu3+-COOH nanoparticles (5 nm) via zero length cross-linking reaction, and the conjugates were purified from unbound substances and then used for further visualization of histological samples. Fluorescent microscopy was used to visualize NPL-NaGdF4:Eu3+ with the fluorescent emission at 600-720 nm range. Results NPL lectin selectively recognized regions of undifferentiated melanoblasts surrounding neoangiogenic foci inside melanoma tumor, PNA lectin recognized differentiated melanoblasts, and LCA and WGA were bound to tumor stroma regions. NPL-NaGdF4:Eu3+ conjugated NC were efficiently detecting newly formed regions of melanoma tumor, confirmed by fluorescent microscopy in visible and near infrared mode. These conjugates possessed high photostability and were compatible with convenient xylene-based mounting systems and preserved intensive fluorescent signal at samples storage for at least 6 months. Conclusion NPL lectin-NaGdF4:Eu3+ conjugated NC permitted distinct identification of contours of the melanoma tissue on histological sections using red excitation at 590-610 nm and near infrared emission of 700-720 nm. These data are of potential practical significance for development of glycans-conjugated nanoparticles to be used for in vivo visualization of melanoma tumor. PMID:24891277

  11. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    SciTech Connect

    Le Nguyen, An-Dien

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO{sub 4}, NdVO{sub 4}, ErVO{sub 4}, and TmVO{sub 4} crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F{sub 1}/F{sub 2} ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F{sub 1}/F{sub 2} and the predicted values using the second-order theory has been found.

  12. Microstructure and properties of in-flight rare-earth doped thermal barrier coatings prepared by suspension plasma spray

    NASA Astrophysics Data System (ADS)

    Gong, Stephanie

    Thermal barrier coatings with lower thermal conductivity improve the efficiency of gas turbine engines by allowing higher operating temperatures. Recent studies were shown that coatings containing a pair of rare-earth oxides with equal molar ratio have lower thermal conductivity and improved sintering resistance compared to the undoped 4-4.5 mol.% yttria-stabilized zirconia (YSZ). In the present work, rare-earth doped coatings were fabricated via suspension plasma spray by spraying YSZ powder-ethanol suspensions that contained dissolved rare-earth nitrates. The compositions of the coatings determined by inductively coupled plasma mass spectroscopy verified that 68 +/- 8% of the rare-earth nitrates added into the suspension was incorporated into the coatings. Two coatings containing different concentrations of the same dopant pair (Nd2O3/Yb2O3), and three coatings having similar concentrations of different dopant pairs (Nd 2O3/Yb2O3, Nd2O3/Gd 2O3, and Gd2O3/Yb2O 3) were produced and compared. The effect of dopant concentration and dopant pair type on the microstructure and properties of the coatings in the as-sprayed and heat treated conditions were investigated using XRD, SEM, TEM, STEM-EDX, and the laser flash method. The cross-sectional morphology of all coatings displayed columnar structure. The porosity content of the coating was found to increase with increasing dopant concentration, but did not significantly change with dopant pairs. Similarly, increasing the Nd2O3/Yb2O 3 concentration lowered the thermal conductivity of the as-sprayed coatings. Although the effect of changing dopant pair type is not as significant as increasing the dopant concentration, the coating that contained Gd2O 3/Yb2O3 exhibited the lowest conductivity compared to coatings that had other dopant pairs. Thermal conductivity measurement performed on the heat treated coatings indicated a larger conductivity increase for the rare-earth doped coatings. A detailed study on the microstructural change of the coatings after various heat treatments at 1200°C and 1300°C showed evidence of crack healing and grain growth. Comparison between the rare-earth dopant distribution of a selected coating before and after a 1300°C/50 hr heat treatment suggests the possibility of dopant rearrangement, which can further increase the thermal conductivity. An explanation on the difference in the properties of the rare-earth doped coatings produced by SPS and conventional processes was discussed.

  13. An integrated view of data quality in Earth observation

    PubMed Central

    Yang, X.; Blower, J. D.; Bastin, L.; Lush, V.; Zabala, A.; Masó, J.; Cornford, D.; Díaz, P.; Lumsden, J.

    2013-01-01

    Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot fulfil all user needs or cover all concepts of data quality. In this study, we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specifications on data quality, and propose an integrated model for data quality in the field of Earth observation (EO). We also propose a practical mechanism for applying the integrated quality information model to a large number of datasets through metadata inheritance. While our data quality management approach is in the domain of EO, we believe that the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research. PMID:23230156

  14. Direct Volumetric Integration of the Time-Dependent Moment of Inertia for a Compressible Viscoelastic Earth

    E-print Network

    Hanyk, Ladislav

    Viscoelastic Earth L. Hanyk1 , C. Matyska1 and D.A. Yuen2 1 Charles University in Prague, Czech Republic 2 principle in the Laplace-transformed domain to obtain the Earth's response to these processes. Our approach, based on direct integration of the Earth's deformation in time, has overcome difficult inversion

  15. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    SciTech Connect

    Katsumata, Toru Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.

  16. Frequency upconversion and imaging using rare-earth doped colloidal nanoprobes

    E-print Network

    Polman, Albert

    ) europium terbium erbium Electronic structure: ...4fn5s2p6 internal 4f transitions · excellent;Terbium-doped SiO2 colloids: photoluminescence =2.4 ms PL also for unannealed colloids Lifetime increases passivation =3900) #12;CONCLUSIONS: Silica colloids doped with optically active: terbium (550 nm) europium

  17. Novel kinds of down/up-conversion luminescent rare earth doped fluoride BaMgF{sub 4}: RE{sup 3+} microcrystals

    SciTech Connect

    Yan, Zhi-Yuan; Yan, Bing Jia, Li-Ping

    2013-10-15

    Graphical abstract: We achieve the liquid phase chemical synthesis of rare earth fluoride system BaMgF4: RE{sup 3+} microphosphors, which realize down/up-conversion luminescence. - Highlights: • Doped BaMgF{sub 4} microphosphors are firstly prepared by hydrothermal process. • Doped BaMgF{sub 4} nanosheets are firstly prepared by high temperature solution reaction. • The down-conversion luminescence is realized in the rare earth doped BaMgF{sub 4}. • The upconversion luminescence is realized in the rare earth doped BaMgF{sub 4}. - Abstract: In this paper, we realize the liquid-phase chemical synthesis of high-quality orthorhombic polycrystalline BaMgF{sub 4}: RE{sup 3+} (RE = Eu, Tb, Sm, Dy, Yb–Er/Tm) compounds with hydrothermal and high-temperature solution methods, respectively. The products from hydrothermal technology show the micrometer size while the products from hydrothermal technology present nanosheet morphology. The rare earth ions doped BaMgF{sub 4} from hydrothermal synthesis are discussed in details, which can realize the downconversion luminescence for doped Eu{sup 3+} or Tb{sup 3+} and upconversion luminescence for Yb{sup 3+}/Er{sup 3+} (Tm{sup 3+}), respectively. To our knowledge, the hydrothermal or high temperature solution synthesis and photoluminescence (Eu{sup 3+}, Tb{sup 3+} or Yb{sup 3+}/Er{sup 3+}(Tm{sup 3+})) of these fluoride systems are firstly reported.

  18. Integrating spacecraft and aircraft in Earth Observation System architectures

    E-print Network

    Suarez, Brandon H

    2011-01-01

    The Global Earth Observation System (GEOS) is the essential data gathering network that enables the advancement of Earth science. In recent years, efforts have been made to understand the major GEOS architectural tradeoffs. ...

  19. Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals

    SciTech Connect

    Wesenberg, Janus; Moelmer, Klaus

    2003-07-01

    We present a composite pulse controlled phase gate which, together with a bus architecture, improves the feasibility of a recent quantum computing proposal based on rare-earth-ion-doped crystals. The proposed gate operation is tolerant to variations between ions of coupling strengths, pulse lengths, and frequency shifts. In the absence of decoherence effects, it achieves worst case fidelities above 0.999 with relative variations in coupling strength as high as 10% and frequency shifts up to several percent of the resonant Rabi frequency of the laser used to implement the gate. We outline an experiment to demonstrate the creation and detection of maximally entangled states in the system.

  20. Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion doped crystals

    E-print Network

    Janus Wesenberg; Klaus Moelmer

    2003-01-09

    We present a composite pulse controlled phase gate which together with a bus architecture improves the feasibility of a recent quantum computing proposal based on rare-earth-ion doped crystals. Our proposed gate operation is tolerant to variations between ions of coupling strengths, pulse lengths, and frequency shifts, and it achieves worst case fidelities above 0.999 with relative variations in coupling strength as high as 10% and frequency shifts up to several percent of the resonant Rabi frequency of the laser used to implement the gate. We outline an experiment to demonstrate the creation and detection of maximally entangled states in the system.

  1. Reduction of magnetic damping constant of FeCo films by rare-earth Gd doping

    SciTech Connect

    Guo, Xiaobin; Xi, Li Li, Yue; Han, Xuemeng; Li, Dong; Wang, Zhen; Zuo, Yalu

    2014-08-18

    Magnetic damping constant (?) is one of the key parameters to determine the critical current density of spin-transfer-torque devices and the switching time of magnetization for ultra-high-frequency devices. In this work, Gd doped FeCo films were fabricated to investigate ? based on the ferromagnetic resonance technique. Gd doping not only can efficiently decrease the magnetic inhomogeneity and the extrinsic part of ? but also the Landé g-factor and intrinsic part of ?. The obtained ? was roughly proportional to (g-2){sup 2} and the magnetic anisotropic constant, indicating that the decreased spin-orbit interaction decreases ? by Gd doping.

  2. Chalcogenide glasses for infrared applications: New synthesis routes and rare earth doping

    NASA Astrophysics Data System (ADS)

    Hubert, Mathieu

    Chalcogenide glasses and glass-ceramics present a high interest for the production of thermal imaging lenses transparent in the 3--5 microm and 8--12 microm windows. However, chalcogenide glasses are conventionally synthesized utilizing expensive and single use silica ampoules sealed under vacuum. The present work addresses the development of innovative synthesis methods for chalcogenide glasses that can present an alternative to the silica tube route. The first approach assessed by melting the raw starting elements in reusable silica containers appears inadequate for synthesis of glasses from the system Ge-Ga-Se. The second synthesis approach consists of the preparation of amorphous chalcogenide powders by ball milling of raw elements (mechanosynthesis) followed by consolidation of the as-prepared powders. Hot Uniaxial Pressing is suitable for sintering of powders with compositions stable against crystallization but uncontrolled crystallization occurs for the unstable compositions. In contrast, consolidation through Spark Plasma Sintering (SPS) allows production of bulk glasses with large dimensions in a short duration and at relatively low temperatures. Moreover, increased SPS treatment duration yields infrared transparent glass-ceramics with enhanced mechanical properties. This innovative synthesis method combining mechanosynthesis and SPS has been patented in the framework if this study. The controlled etching of 80GeSe2-20Ga2Se 3 glass-ceramics in acid solution yields nanoporous materials with enhanced surface area. The porous layer created on the surface of the glass-ceramic plays the role of anti-reflection coating and increases the optical transmission in the infrared range by 10%. These materials present potential for the production of sensors with increased sensitivity. The influence of indium and lead addition on the thermal and optical properties of the 80GeSe2-20Ga2Se3 glass is also assessed. Increased In or Pb contents tend to decrease the Tg and shift the optical band gap toward higher wavelengths. A systematic ceramization study emphasizes the difficulty of controlling the crystallization for glasses in the systems GeSe2-Ga2Se3-In2Se 3 and GeSe2-Ga2Se3-PbSe. No crystallization of the In2Se3 and PbSe crystalline phase was obtained. Finally, the possibility of producing rare-earth doped 80GeSe2 -20Ga2Se3 glass-ceramics transparent in the infrared region up to 16 microm is demonstrated. Enhanced photoluminescence intensity and reduced radiative lifetimes are observed with increased crystallinity in these materials.

  3. Luminescence and scintillation properties of rare-earth-doped LuF3 scintillation crystals

    NASA Astrophysics Data System (ADS)

    Pejchal, Jan; Fukuda, Kentaro; Kurosawa, Shunsuke; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Nd-doped and Er-doped LuF3 single crystals were grown by the micro-pulling-down method to study their scintillation properties in the vacuum-ultraviolet (VUV) region. The doubly Nd-Er codoped single crystal was grown to study possibility of scintillation performance improvement by energy transfer from Er3+ to Nd3+ ions. The LiF flux was to avoid phase transition below melting temperature. The 1%Nd-doped sample showed the highest overall scintillation efficiency under X-ray excitation which was 7 times as high as that of the LaF3:Nd 8% standard. The leading Nd3+ 5d-4f emission was situated at 176 nm, while the Er3+ 5d-4f emission for Er-doped samples was observed at 163 nm, which better matches the sensitivity of some VUV-sensitive photodetectors. The optimum Er concentration was determined to be around 1-3 mol%. No Er3+ 5d-4f emission was observed for the doubly Er,Nd-codoped sample due to energy transfer from the Er3+ to Nd3+ ions. Slight improvement of the light yield was observed in the doubly-doped sample with respect to the Nd-only doped one.

  4. Synthesis and characterization of BaAl2O4:Eu2+ co-doped with different rare earth ions

    NASA Astrophysics Data System (ADS)

    Lephoto, M. A.; Ntwaeaborwa, O. M.; Pitale, Shreyas S.; Swart, H. C.; Botha, J. R.; Mothudi, B. M.

    2012-05-01

    Combustion method was used in this study to prepare BaAl2O4:Eu2+ phosphors co-doped with different trivalent rare-earths (Re3+=Dy3+, Nd3+, Gd3+, Sm3+, Ce3+, Er3+, Pr3+ and Tb3+) ions at an initiating temperature of 600 °C. The phosphors were annealed at 1000 °C for 3 h. As confirmed from the X-ray diffraction (XRD) data, both as prepared and post annealed samples crystallized in the well known hexagonal structure of BaAl2O4. All samples exhibited bluish-green emission associated with the 4f65d1?4f7 transitions of Eu2+ at ?500 nm. Although the highest intensity was observed from Er3+ co-doping, the longest afterglow (due to trapping and detrapping of charge carriers) was observed from Nd3+ followed by Dy3+ co-doping. The traps responsible for the long afterglow were studied using thermoluminescence (TL) spectroscopy.

  5. Investigation of thermal diffusivity dependence on temperature in a group of optical single crystals doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.

    2015-07-01

    The group of YAG, YVO4 and GdCOB single crystals was examined to determine the thermal diffusivity as a function of temperature in range from 30 °C to 300 °C. Further investigations concerned on analysis of the influence of dopants on these dependencies. The experimental setup based on thermal wave method with mirage detection was used. The samples represented different crystallographic systems such as cubic (YAG) tetragonal (YVO4) and monoclinic (GdCOB). The anisotropy of thermal conductivity of investigated samples was taken into account in the investigations. The crystals were doped with calcium ions, rare earth ions such as ytterbium, neodymium, and thulium, and also with transition metal vanadium. The results confirmed that influence of doping on the thermal diffusivity of investigated materials strongly depends on temperature. In general the thermal diffusivity decreases with increasing of sample temperature from 30 °C to 300 °C, however the drop in thermal diffusivity is the highest for pure single crystals. Doping is another factor reducing the heat transport in single crystals. Introduction of dopant ions into a crystal lattice leads to a significant decrease in the thermal diffusivity at lower temperatures in comparison with pure crystals. However, the influence of dopants becomes less pronounced with increasing temperature, and in case of weakly doped crystals it becomes negligible at higher temperatures. The interpretation of thermal diffusivity dependence on temperature for single crystals was based on the Debye model of lattice thermal conductivity of solids. The results allowed to conclude that the decrease of thermal diffusivity with temperature and increasing concentration of impurities is caused by shortening of the phonons mean free path due to phonon-phonon and phonon-point defect scatterings.

  6. Enhancement of thermopower of TAGS-85 high-performance thermoelectric materials by doping with the rare earth Dy

    SciTech Connect

    Levin, Evgenii; Budko, Serfuei; Schmidt-Rohr, Klaus

    2012-04-10

    Enhancement of thermopower is achieved by doping the narrow-band semiconductor Ag{sub 6.52}Sb{sub 6.52}Ge{sub 36.96}Te{sub 50} (acronym TAGS-85), one of the best p-type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X-ray diffraction and increased orientation-dependent local fields detected by {sup 125}Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f-electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by {sup 125}Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS-85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.3 in TAGS-85 to PF = 35 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.5 in TAGS-85 doped with 1 or 2% Dy for Ge. This makes TAGS-85 doped with Dy a promising material for thermoelectric power generation.

  7. The Role of Defect Complexes in the Magneto-Optical Properties of Rare Earth Doped Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon

    Wide band gap semiconductors doped with rare earth ions (RE) have shown great potential for applications in optoelectronics, photonics, and spintronics. The 1.54mum Erbium (Er) emission has been extensively utilized in optical fiber communications, and Europium (Eu) is commonly used as a red color component for LEDs and fluorescence lamps. For the realization of spintronic-type devices, a dilutely doped semiconductor that exhibits room temperature ferromagnetic behavior would be desirable. Such behavior has been observed in GaN:Er. Furthermore, it was demonstrated that strain may play an important role in the control of this ferromagnetism; however, this requires further investigation. One motivation of this work is the realization of an all solid state white light source monolithically integrated into III/V nitride semiconductor materials, ideally GaN. For this, the current AlGaAs-based LEDs need to be replaced. One approach for achieving efficient red emission from GaN is dilute doping with fluorescent ions. In this regard, Eu has consistently been the most promising candidate as a dopant in the active layer for a red, GaN based, LED due to the sharp 5D0 to 7F2 transitions that result in red emission around 620nm. The success of GaN:Eu as the active layer for a red LED is based on the ability for the Eu ions to be efficiently excited by electron hole pairs. Thus, the processes by which energy is transferred from the host to the Eu ions has been studied. Complications arise, however, from the fact that Eu ions incorporate into multiple center environments, the structures of which are found to have a profound influence on the excitation pathways and efficiencies of the Eu ion. Therefore the nature of Eu incorporation and the resulting luminescence efficiency in GaN has been extensively investigated. By performing a comparative study on GaN:Eu samples grown under a variety of controlled conditions and using a variety of experimental techniques, the majority site has been concluded to contain a nitrogen vacancy (V N) in its immediate structure. The nitrogen vacancy can appear in two symmetries, which has a profound impact on the luminescence and magnetic properties of the sample. The structure of the minority site has also been identified. For both sites, we give substantial evidence that the excitation efficiency of the red Eu emission is improved by the presence of donor-acceptor pairs in the vicinity of the Eu. Furthermore, when Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature. These have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H, while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels. We identify, experimentally, a two-step process in the dissociation of Mg-H complexes and propose, based on density functional theory, that the presence of minority carriers and the resulting charge states of complexes can also influence this process. In GaN:Er, we have given a more thorough overview of the optical and magneto-optical properties by extending to the 800nm excitation range and drastically improving the signal-to-noise ratio in the magnetic measurements, as well as applying a perpendicular magnetic field. This has allowed us to calculate g-factors for the parallel case, but revealed that the Zeeman interaction is not quite linear for perpendicular magnetic fields. We were able to assign crystal field numbers of mu = 3/2 to two crystal field levels. We have also given strong evidence that the strain in the sample, which results from lattice mismatch, enhances its magnetization, as seen through fluorescence line narrowing and asymmetry between the Zeeman transition intensities, under application of magnetic fields in anti-paralle

  8. Photoluminescence of the Eu-doped thin film heterojunction GaAs/SnO2 and rare-earth doping distribution

    NASA Astrophysics Data System (ADS)

    Bueno, C. F.; Scalvi, L. V. A.; Saeki, M. J.; Li, M. S.

    2015-03-01

    Tin dioxide (SnO2) thin films doped with Eu3+ are deposited by the sol-gel-dipcoating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.

  9. Integrated Geophysical Support for the UK Earth Science Community

    NASA Astrophysics Data System (ADS)

    England, R. W.; Brisbourne, A. M.; Hawthorn, D.; Lane, V. S.

    2009-12-01

    The UK’s Natural Environment Research Council (NERC) has supported a Geophysical Equipment Facility for over 30 years. The primary role of this facility is to supply equipment (GPS, GPR, seismic and E-M) to the UK academic community for both land and marine experiments. The Facility therefore has the capacity to support integrated onshore-offshore and multi-observation experiments worldwide. Recent multinational experiments have addressed topics as diverse as continental rifting and the development of magmatic continental margins (The EAGLE Project and the Afar Consortium); the effect of tidal forcing on the flow of Antarctic Glaciers; mantle processes, lithospheric structure and the evolution of Hudson Bay; and the earthquake risk in Sumatra. Results from all of these experiments are causing us to change the way in which we look at planet Earth. Partly as a result of the IRIS success story, over the last 10 years significantly more emphasis has been placed on data management, archiving and distribution. In particular, the onshore seismic node of the facility (SEIS-UK) archives all of its data with IRIS DMC so that it subsequently becomes publicly available. The service provided by IRIS ensures that these new high-quality datasets are available worldwide in perpetuity. Data therefore have longevity far beyond the initial project funding period, augmenting and diversifying the initial scientific goals. This potentially adds considerable value to data and justifies continued support for large integrated facilities. It can also promote further international collaboration and scientific development at negligible cost. In the future, if their existence is to be justified, facilities will increasingly need to consider the impact their activities have on the science they support and the society supporting them. Facilities cannot afford to be passive in this endeavour. SEIS-UK is currently involved in the development of new technologies such as telemetry and low-power data logging systems to extend scientific observation to the furthest reaches of the planet. Also, an equipment upgrade process is in place to ensure users always have state of the art equipment to call on. Whilst maintaining links with IRIS, SEIS-UK is also developing links with European networks and groups which will ensure that its equipment and data are even more widely accessible and, more importantly, used.

  10. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  11. [Effect of bivalent alkaline earth fluorides introduction on thermal stability and spectroscopic properties of Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses].

    PubMed

    Hu, Yue-bo; Zhang, Xin-na; Zhou, Da-li; Jiao, Qing; Wang, Rong-fei; Huang, Jin-feng; Long, Xiao-bo; Qiu, Jian-bei

    2012-01-01

    Transparent Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses alone containing MgF2, CaF2, SrF2 or BaF2 and nano-glass-ceramics only containing BaF2 were prepared. The thermal stabilities and the up-conversion emission properties of the samples were investigated. Analyses of absorbance spectra reveal that the UV cutoff band moves slightly to shortwave band with the doping bivalent cation mass increasing. The results show that the emission color can be adjusted by changing the alkaline earth cation species in the glass matrixes, especially as Mg2+ is concerned, and the emission intensity can increase notably by heating the glass containing alkaline-earth fluoride into glass ceramic containing alkaline-earth fluoride nanocrystals or increasing the content of bivalent alkaline earth fluorides. PMID:22497127

  12. Numerical integration routines for near-earth operations

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1973-01-01

    Two general purpose numerical integration schemes were built into the NASA-JSC computer system. The state-of-the-art of numerical integration, the particular integrators built into the JSC computer system, and the use of the new integration packages are described. Background information about numerical integration and the variable-order, variable-stepsize Adams numerical integration technique is discussed. Results concerning the PEACE parameter optimization program are given along with recommendations and conclusions.

  13. Nitrogen-Doped Carbon Nanocoil Array Integrated on Carbon Nanofiber Paper for Supercapacitor Electrodes.

    PubMed

    Choi, Won Ho; Choi, Mi Jin; Bang, Jin Ho

    2015-09-01

    Integrating a nanostructured carbon array on a conductive substrate remains a challenging task that presently relies primarily on high-vacuum deposition technology. To overcome the problems associated with current vacuum techniques, we demonstrate the formation of an N-doped carbon array by pyrolysis of a polymer array that was electrochemically grown on carbon fiber paper. The resulting carbon array was investigated for use as a supercapacitor electrode. In-depth surface characterization results revealed that the microtextural properties, surface functionalities, and degree of nitrogen incorporated into the N-doped carbon array can be delicately controlled by manipulating carbonization temperatures. Furthermore, electrochemical measurements showed that subtle changes in these physical properties resulted in significant changes in the capacitive behavior of the N-doped carbon array. Pore structures and nitrogen/oxygen functional groups, which are favorable for charge storage, were formed at low carbonization temperatures. This result showed the importance of having a comprehensive understanding of how the surface characteristics of carbon affect its capacitive performance. When utilized as a substrate in a pseudocapacitive electrode material, the N-doped carbon array maximizes capacitive performance by simultaneously achieving high gravimetric and areal capacitances due to its large surface area and high electrical conductivity. PMID:26264641

  14. 980nm-1550nm vertically integrated duplexer for hybrid erbium-doped waveguide amplifiers on glass

    NASA Astrophysics Data System (ADS)

    Onestas, Lydie; Nappez, Thomas; Ghibaudo, Elise; Vitrant, Guy; Broquin, Jean-Emmanuel

    2009-02-01

    Ion-exchanged devices on glass have been successfully used to realize passive and active integrated optic devices for sensor and telecom applications. Nowadays, research is focused on the reduction of the chip dimensions with an increase of the number of different function integrated. In this paper we present how the use of two stacked optical layers can allow realizing efficient and compact pump duplexer for ion-exchanged hybrid erbium doped waveguide amplifier. Indeed our complete theoretical study of the device shows that excess losses lower than - 0.1 dB and crosstalk lower than -20 dB can be achieved.

  15. Information Technology Infusion Case Study: Integrating Google Earth into the A-Train Data Depot

    NASA Astrophysics Data System (ADS)

    Smith, P. M.; Kempler, S. J.; Leptoukh, G. G.; Chen, A.

    2010-12-01

    The purpose of the NASA funded project, ‘Utilizing 3 Dimensional Data Views to Access Data and Discover Relationships Between Multiple Heterogeneous Data Sets Along the A-Train Tracks’ (Kempler, PI, NASA ROSES NNH07ZDA001N ACCESS Proposal) was to employ the latest 3 dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets, ‘operationally’, along, and on either side of the A-Train tracks. Google Earth (tm) provides the foundation for organizing, visualizing, publishing, and synergizing Earth science data in virtual 3 dimensions, for this project. Successful integration of Google Earth (tm) into the A-Train Data Depot (ATDD), resulted in: a) visualizing two-, three- and four-dimensional Earth science data on Google Earth (tm); b) visualizing and synergizing analyzed results derived from the Giovanni online analysis system; and c) visualizing results derived from other standard web services (e.g. OGC WMS). These implementations produce KMZ files that can be opened and visualized via a Google Earth (tm). Integrating A-Train data on Google Earth (tm) through ATDD (http://disc.gsfc.nasa.gov/atdd) affords users the ability to more efficiently discover, access, manipulate and analyze A-Train atmospheric data. The integration of Google Earth (tm) into the ATDD came with anticipated and unanticipated challenges, and solutions, insulated far beneath the easily obtainable ATDD Google Earth (tm) images and data downloads. In addition, some components of integration went rather smoothly. This presentation will discuss the challenges and non-challenges encountered and innovative solutions implemented to enable displaying NASA vertical and horizontal Earth science data within Google Earth (tm) technology. Findings discussed, include: - Interoperability between ATDD and Google Earth (tm) - Required enhancements to existing systems - Reuse of infused technology - Making the total greater than the some of the parts It is hoped that lessons learned and presented can be directly applied or extrapolated to better understanding and overcoming information technology infusion roadblocks.

  16. Transition metal and rare earth-doped ZnO: a comparison of optical, magnetic, and structural behavior of bulk and thin films

    NASA Astrophysics Data System (ADS)

    Fenwick, W. E.; Kane, M. H.; Varatharajan, R.; Zaidi, T.; Fang, Z.; Nemeth, B.; Keeble, D. J.; El-Mkami, H.; Smith, G. M.; Nause, J.; Summers, C. J.; Ferguson, I. T.

    2007-02-01

    Recent theoretical predictions of ferromagnetic behavior in transition metal (TM)-doped ZnO have focused significant attention on these materials for use as spintronic materials. Moreover, rare earth (RE) elements in wide bandgap semiconductors would be useful not only in spintronics but also in optoelectronic applications. This work presents results obtained from an investigation into the optical, magnetic, and structural properties of transition-metal (TM)- doped ZnO and rare earth (RE) doped ZnO (TM = Mn, Co, Ni, and Fe; RE = Gd, Eu, and Tb) bulk crystals and thin films. Properties of TM- and RE-doped ZnO bulk crystals and thin films were studied and compared in order to better understand the nature of these dopant centers and their effects on the properties of the host crystal. Optical properties confirm the incorporation of substitutional transition metal ions on cation sites. While most thin film samples show ferromagnetic behavior, the magnetic response of the bulk crystals varies. This suggests that the magnetic behavior of TM-doped ZnO is highly dependent on growth conditions, and growth conditions which favor the formation of grain boundaries and interfaces may be more likely to result in ferromagnetic behavior. Origins of this ferromagnetic behavior are still under investigation. Defect luminescence observed in the RE-doped samples suggests that these materials may prove useful in optoelectonic applications as well.

  17. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    SciTech Connect

    Chen Daqin; Wang Yuansheng Yu Yunlong; Huang Ping; Weng Fangyi

    2008-10-15

    Transparent SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} bulk nano-composites triply doped with Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+} were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the {beta}-YF{sub 3} crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%. - Graphical abstract: Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light with CIE-X=0.351 and CIE-Y=0.306, can be easily tuned by adjusting the concentrations of the rare earth ions in the transparent oxyfluoride glass ceramics.

  18. Integrated assessment of packaging architectures in earth observing programs

    E-print Network

    Selva Valero, Daniel

    When designing Earth observation missions, it is essential to take into account the programmatic context. Considering individual missions as part of a whole enables overall program optimization, which may bring important ...

  19. Globally integrated measurements of the Earth's visible spectral albedo

    E-print Network

    P. Montanes-Rodriguez; E. Palle; P. R. Goode; J. Hickey; S. E. Koonin

    2005-05-04

    We report spectroscopic observations of the earthshine reflected from the Moon. By applying our photometry methodology to spectroscopy, we were able to precisely determine the Earth's reflectance, and its variation as a function of wavelength through a single night as the Earth rotates. These data imply that planned regular monitoring of earthshine spectra will yield valuable, new inputs for climate models, which would be complementary to those from the more standard broadband measurements of satellite platforms. The mean spectroscopic albedo over the visible is consistent with simultaneous broadband photometric measurements. We found no evidence for an appreciable "red" or "vegetation edge" in the Earth's spectral albedo, and no evidence for changes in this spectral region (700 -740 nm) over the 40 degrees of Earth's rotation covered by our observations.

  20. Exchange integrals in Mn- and Co-doped II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Savoyant, A.; D'Ambrosio, S.; Kuzian, R. O.; Daré, A. M.; Stepanov, A.

    2014-08-01

    Exchange integrals between nearest-neighbor (NN) transition metal ions in II-VI diluted magnetic semiconductors (DMSs) are calculated within a local superexchange model, which includes orbital-dependent transfer, on-site Coulomb repulsion and Hund's exchange between 3d electrons, and ligand field effects. This extended model gives a quantitative account for the available experimental data on the NN exchange constants in all II-VI DMS family (wurtzite and zinc-blende) doped by cobalt or manganese. As expected, all obtained exchange integrals are antiferromagnetic. Remarkably, the model input parameters are taken directly from the photoemission spectroscopy. We show that in the case of Co-doped compounds, as compared to Mn-doped ones, the exchange process has at least two salient features. The first one is that the electron transfer between NN Co2+3d orbitals strongly depends on their symmetry positions in the crystal lattice. The second one is related to a peculiar virtual process, involving empty and occupied Co2+3d orbitals, which leads to an additional ferromagnetic contribution to the exchange constant. We argue that our systematic study of the superexchange opens a pathway toward an understanding of other exchange mechanisms occurring in DMSs.

  1. Integrated visualization of remote sensing data using Google Earth

    NASA Astrophysics Data System (ADS)

    Castella, M.; Rigo, T.; Argemi, O.; Bech, J.; Pineda, N.; Vilaclara, E.

    2009-09-01

    The need for advanced visualization tools for meteorological data has lead in the last years to the development of sophisticated software packages either by observing systems manufacturers or by third-party solution providers. For example, manufacturers of remote sensing systems such as weather radars or lightning detection systems include zoom, product selection, archive access capabilities, as well as quantitative tools for data analysis, as standard features which are highly appreciated in weather surveillance or post-event case study analysis. However, the fact that each manufacturer has its own visualization system and data formats hampers the usability and integration of different data sources. In this context, Google Earth (GE) offers the possibility of combining several graphical information types in a unique visualization system which can be easily accessed by users. The Meteorological Service of Catalonia (SMC) has been evaluating the use of GE as a visualization platform for surveillance tasks in adverse weather events. First experiences are related to the integration in real-time of remote sensing data: radar, lightning, and satellite. The tool shows the animation of the combined products in the last hour, giving a good picture of the meteorological situation. One of the main advantages of this product is that is easy to be installed in many computers and does not need high computational requirements. Besides this, the capability of GE provides information about the most affected areas by heavy rain or other weather phenomena. On the opposite, the main disadvantage is that the product offers only qualitative information, and quantitative data is only available though the graphical display (i.e. trough color scales but not associated to physical values that can be accessed by users easily). The procedure developed to run in real time is divided in three parts. First of all, a crontab file launches different applications, depending on the data type (satellite, radar, or lightning) to be treated. For each type of data, the time of launching is different, and goes from 5 (satellite and lightning) to 6 minutes (radar). The second part is the use of IDL and ENVI programs, which search in each archive file the last images in one hour. In the case of lightning data, the files are generated for the procedure, while for the others the procedure searches for existing imagery. Finally, the procedure generates metadata information required by GE, kml files, and sends them to the internal server. At the same time, in the local computer where GE is running, there exists kml files which update the information referring to the server ones. Another application that has been evaluated is the analysis of past events. In this sense, further work is devoted to develop access procedures to archived data via cgi scripts in order to retrieve and convert the information in a format suitable for GE. The presentation includes examples of the evaluation of the use of GE, and a brief comparison with other existing visualization systems available within the SMC.

  2. Effect of temperature and rare-earth doping on charge-carrier mobility in indium-monoselenide crystals

    SciTech Connect

    Abdinov, A. Sh.; Babayeva, R. F.; Amirova, S. I.; Rzayev, R. M.

    2013-08-15

    In the temperature range T = 77-600 K, the dependence of the charge-carrier mobility ({mu}) on the initial dark resistivity is experimentally investigated at 77 K ({rho}d{sub 0}), as well as on the temperature and the level (N) of rare-earth doping with such elements as gadolinium (Gd), holmium (Ho), and dysprosium (Dy) in n-type indium-monoselenide (InSe) crystals. It is established that the anomalous behavior of the dependences {mu}(T), {mu}({rho}d{sub 0}), and {mu}(N) found from the viewpoint of the theory of charge-carrier mobility in crystalline semiconductors is related, first of all, to partial disorder in indium-monoselenide crystals and can be attributed to the presence of random drift barriers in the free energy bands.

  3. Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery.

    PubMed

    Yang, D L; Gong, H; Pun, E Y B; Zhao, X; Lin, H

    2010-08-30

    In Er(3+)/Yb(3+) codoped Na(2)O-ZnO-PbO-GeO(2)-TeO(2) (NZPGT) glass fiber, a clear and compact green upconversion amplified spontaneous emission (ASE) trace is observed, and the NZPGT glasses are proved to be a desirable candidate in fabricating low-phonon energy fiber. Intense green upconversion luminescence of Er(3+), balanced green and red upconversion emissions of Ho(3+), and dominant three-photon blue upconversion fluorescence of Tm(3+) have been represented. By varying the excitation power of 974 nm wavelength laser diode, a series of green and white fluorescences have been achieved in Tm(3+)/Er(3+)/Yb(3+) and Tm(3+)/Ho(3+)/Yb(3+) triply doped glass systems, respectively. These results reveal that high-intensity blue, green, and white upconversion ASE fluorescences, which can be adopted for lighting in minimally invasive photodynamic therapy and minimally invasive surgery, are reasonable to be expected in rare-earth doped NZPGT glass fibers. PMID:20940794

  4. Optical properties and size distribution of the nanocolloids made of rare-earth ion-doped NaYF4

    NASA Astrophysics Data System (ADS)

    Patel, Darayas N.; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wessley, Dennis; Sarkisov, Sergey; Darwish, Abdalla M.

    2015-03-01

    In this paper we investigate optical properties and size distribution of the nano-colloids made of trivalent rare-earth ion doped fluorides: holmium and ytterbium, thulium and ytterbium, and erbium and ytterbium co-doped NaYF4. These materials were synthesized by using simple co-precipitation synthetic method. The initially prepared micro-crystals had very weak or no visible upconversion fluorescence signals when being pumped with a 980-nm laser. The fluorescence intensity significantly increased after the crystals were annealed at a temperature of 400°C - 600°C undergoing the transition from cubic alpha to hexagonal beta phase of the fluoride host. Nano-colloids of the crystals were made in polar solvents using the laser ablation and ball milling methods. Size analyses of the prepared nano-colloids were conducted using a dynamic light scatterometer and atomic force microscope. The nano-colloids were filled in holey PCFs and their fluorescent properties were studied and the feasibility of new a type of fiber amplifier/laser was evaluated.

  5. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  6. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    NASA Astrophysics Data System (ADS)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0?5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  7. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  8. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    PubMed Central

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-01-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975?nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities. PMID:25297843

  9. Microhardness of silicon doped with isovalent or rare-earth impurities

    SciTech Connect

    Brinkevich, D.I.; Vabishchevich, S.A.

    1994-05-01

    When large-diameter silicon ingots are used in the production of semiconductor devices, severe requirements are imposed for the mechanical strength of the wafers produced. A convenient parameter for evaluating the mechanical strength is microhardness. Below, the authors report on a study of the microhardness of Czochralski-grown and floating-zone-grown silicon (Cz-Si and FZ-Si, respectively) doped with Er, Dy, and Ge, and of Si{sub 1-x}Ge{sub x} (x = 0.01-0.14) alloys.

  10. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    SciTech Connect

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  11. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  12. A magnetic pair-breaking effect in rare earth-doped manganites

    NASA Astrophysics Data System (ADS)

    Pierre, J.; Nossov, A.; Vassiliev, V.; Ustinov, V.

    1998-12-01

    The magnetic properties of La 0.60R 0.07Di 0.33MnO 3 ferromagnetic manganites (Di = Sr, Ba) are studied, where La is partly replaced by magnetic rare earths R. It is shown that (i) there is a ferromagnetic coupling between Mn and R spins, (ii) the Curie temperature is lowered compared to the parent La compound and (iii) its depression is correlated with the effective moment of the rare earth ion. This last relation is tentatively explained by a magnetic pair-breaking effect, where fluctuating R moments lower the double-exchange coupling between Mn atoms.

  13. Efficient dual-wavelength excitation of Tb3+ emission in rare-earth doped KYF4 cubic nanocrystals dispersed in silica sol-gel matrix

    NASA Astrophysics Data System (ADS)

    del-Castillo, J.; Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.

    2014-11-01

    Energy transfer from Ce3+ to Tb3+ ions under UV excitation, giving rise to visible emissions, is investigated in sol-gel derived transparent nano-glass-ceramics containing cubic KYF4 nanocrystals, for different doping concentrations of rare-earth ions. Moreover, visible emissions of Tb3+ are also obtained under near-infrared excitation through energy transfer from Yb3+ ions by means of cooperative up-conversion processes. Thus, Ce3+-Tb3+-Yb3+ doped nano-glass-ceramics can be activated in a dual-wavelength mode yielding efficient blue-green emissions of particular interest in photovoltaic silicon solar cells and white-light emitting diodes.

  14. Photoluminescence of rare-earth ion (Eu3+, Tm3+, and Er3+)-doped and co-doped ZnNb2O6 for solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Sen-Pei; Qian, Yan-Nan; Wang, Biao

    2015-08-01

    Visible converted emissions produced at an excitation of 286 nm in ZnNb2O6 ceramics doped with rare-earth ions (RE = Eu3+, Tm3+, Er3+ or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:ZnNb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped ZnNb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared NbO6 groups. Upon 286-nm excitation, Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of 5D0 ? 7FJ (J = 1-4) (Eu3+), 1G4 ? 3H6 (Tm3+), and 2H11/2/4S3/2 ? 4I15/2 (Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 are (0.50, 0.31), (0.14, 0.19), and (0.29, 0.56), respectively. RE ion-co-doped ZnNb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:ZnNb2O6, Eu/Er:ZnNb2O6, and Tm/Er:ZnNb2O6 were calculated to be (0.29, 0.24), (0.45, 0.37), and (0.17, 0.25). Project supported by the National Natural Science Foundation of China (Grant Nos. 10572155 and 10732100) and the Research Fund for the Doctoral Program of Ministry of Education, China (Grant No. 20130171130003).

  15. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  16. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    NASA Astrophysics Data System (ADS)

    Thiel, C. W.; Macfarlane, R. M.; Sun, Y.; Böttger, T.; Sinclair, N.; Tittel, W.; Cone, R. L.

    2014-10-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3H6 to 3H4 optical transition of three thulium-doped crystals, Tm3+:YAG, Tm3+:LiNbO3 and Tm3+:YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm3+:YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material.

  17. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.

  18. Low-temperature thermoluminescence spectra of rare-earth-doped lanthanum fluoride

    SciTech Connect

    Yang, B.; Townsend, P.D.; Rowlands, A.P.

    1998-01-01

    Lanthanum fluoride consistently shows two strong thermoluminescence glow peaks at low temperature in pure material near 90 and 128 K. A model is proposed in which these thermoluminescence peaks arise from the annealing of halogen defect sites, similar to the H and V{sub k} centers of the alkali halides. Relaxation and decay of these defects in the pure LaF{sub 3} lattice results in broad-band intrinsic luminescence. Addition of rare-earth-impurity ions has two effects. First, the broad-band emission is replaced by narrow-band line emission defined by the trivalent rare-earth dopants. Second, it preferentially determines the formation of the halogen defect sites at impurity lattice sites and such sites appear to increase in thermal stability since the glow peak temperature increases from 128 K in the intrinsic material up to 141 K through the sequence of rare-earth dopants from La to Er. The temperature movement directly correlates with the changes in ionic size of the rare-earth ions, when allowance is made for differences in effective coordination number of the impurity ions. The data suggest two alternative lattice sites can be occupied. The model emphasizes that the intense thermoluminescence signals arise from internal charge rearrangements and annealing of defect complexes, rather than through the more conventional model of separated charge traps and recombination centers. At higher temperatures there is a complex array of glow peaks which depend not only on the dopant concentration but also are specific to each rare earth. Such effects imply defect models giving thermoluminescence within localized complexes and possible reasons are mentioned. {copyright} {ital 1998} {ital The American Physical Society}

  19. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  20. Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Najmr, Stan; Paik, Taejong; Tenuto, Michael E.; Murray, Christopher B.; Finlay, Jarod C.; Friedberg, Joseph S.

    2015-03-01

    We investigated the optical properties of novel terbium (Tb3+)-doped nanophosphors with various host compounds irradiated by clinical electron, photon, and proton beams for their potential as optical probes. The emission spectra of nanophosphors embedded in tissue-mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph while the samples were irradiated with electron and photon beams generated by a medical linear accelerator and proton beams generated by a clinical cyclotron. We characterized the luminescence of such nanophosphors as a function of the beam energy and observed a dose dependency of the luminescence signal. We demonstrated x-ray luminescence, cathodoluminescence, and ionoluminescence of the nanophosphors in clinical ionizing radiation fields, which indicates their potential as downconverters of high-energy radiation into visible light.

  1. Narrow inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic

    NASA Astrophysics Data System (ADS)

    Ferrier, A.; Thiel, C. W.; Tumino, B.; Ramirez, M. O.; Bausá, L. E.; Cone, R. L.; Ikesue, A.; Goldner, Ph.

    2013-01-01

    Inhomogeneous and homogeneous linewidth are reported in a Eu3+ doped transparent Y2O3 ceramic for the 7F0-5D0 transition, using high-resolution coherent spectroscopy. The 8.7-GHz inhomogeneous linewidth is close to that of single crystals, as is the 59-kHz homogeneous linewidth at 3 K (T2 = 5.4 ?s). The homogeneous linewidth exhibits a temperature dependence that is typical of a crystalline environment, and additional dephasing observed in the ceramic is attributed to magnetic impurities or defects introduced during the synthesis process. The absence of Eu3+segregation at the grain boundaries, evidenced through confocal microfluorescence, further indicates that the majority of Eu3+ions in the ceramic experience an environment comparable to a single crystal. The obtained results suggest that ceramic materials can be competitive with single crystals for applications in quantum information and spectral hole burning devices, beyond their current applications in lasers and scintillators.

  2. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    PubMed

    Pisarski, W A; Pisarska, J; M?czka, M; Lisiecki, R; Grobelny, ?; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)?BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis. PMID:21093353

  3. Transition metal and rare earth quad-doped photovoltaic phosphate glasses toward raising a-SiC:H solar cell performance

    NASA Astrophysics Data System (ADS)

    Song, P.; Zhang, C. M.; Zhu, P. F.

    2016-01-01

    Efficiency enhancement of a hydrogenated amorphous-silicon carbide (a-SiC:H) solar cell using downshifting and upconversion of photovoltaic (PV) glasses doped with transition metal (TM) ions and rare earth (RE) ions are investigated. P2O5-Li2O-Al2O3-Sb2O3-MnO-Yb2O3-Er2O3 glass doped with Sb3+-Mn2+-Yb3+-Er3+ ions is prepared and the PV glass is placed on an a-SiC:H solar cell. The performance of the cell in combination with the PV glass is simulated and measured, and the results show that the theoretical and experimental efficiencies are both enhanced compared to the bare one. The potential of TM-RE quad-doped glasses for improving the efficiency of a-SiC:H PV modules are explored.

  4. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect

    Dargis, Rytis Clark, Andrew; Erdem Arkun, Fevzi; Grinys, Tomas; Tomasiunas, Rolandas; O'Hara, Andy; Demkov, Alexander A.

    2014-07-01

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  5. Integrating Diverse Geophysical and Geological Data to Construct Multi-Dimensional Earth Models: The Open Earth Framework

    NASA Astrophysics Data System (ADS)

    Baru, C.; Keller, R.; Wallet, B.; Crosby, C.; Moreland, J.; Nadeau, D.

    2008-12-01

    Currently, many large geoscientific efforts (e.g., EarthScope, Continental Dynamics, and GeoSwath) have emphasized that a crucial need in advancing our understanding of the structure and evolution of the continents is high-resolution, 3-D models of lithospheric structure. In addition, the geoscience community recognizes that our ultimate goal is the addition of the dimension of time to make the problem 4-D. Adding the dimension of time is a complex problem that is strongly dependent on the integration of a variety of geological data into our analyses (e.g., geochronology, paleontology, stratigraphy, pressure-time histories, structural geology, paleogeography, etc.). The geoscience community also recognizes that solutions to the scientific and societal questions that they seek to answer require innovative integration of many types of data so that many physical properties (x, y, z, P-wave velocity, S-wave velocity, density, electrical conductivity, etc.) are measured and included in 3-D models. The problem is, therefore, truly multidimensional in nature. We are developing an Open Earth Framework (OEF) as an open data model for integration of such multidimensional Earth Sciences data. In our work and interactions with the community on building and visualizing complex earth models, several issues have emerged on which there is consensus. First of all, integration efforts should work from the surface down because we have the most data there (e.g., geologic maps, remote sensing data such as LIDAR and ASTER, digital elevation models, gravity and magnetic measurements, etc.) and because the complex conditions near surface always have a potential to mask deeper features. Secondly since we cannot expect uniform coverage of a variety of high-resolution data in anything but special circumstances, a data integration effort should first establish a regional context using lower resolution (and usually wide coverage) data and then proceed to modeling the data sets with the highest spatial resolution. Finally, formal quantitative integration would logically begin with employing accepted relationships between physical properties (e.g., there are widely used empirical relationships between Vp and density) and then proceed to producing integrated models that facilitate the search for anomalies. Our workshops and community interactions have shown that both raster (voxels) and vector (surfaces) 3D data structures would be involved if we are to produce integrated models that have all of the properties that the community desires. These interactions also quickly revealed a consensus that building such models can only be achieved through a highly integrated approach that takes advantage of all of the geological and geophysical constraints available. Conceptually, the modeling would begin with a voxel-based approach of building a highly-integrated 3-D model at Time=0 by deriving physical properties such as Vp, Vs, density, magnetic properties, electrical properties, anisotropy, attenuation (Q), temperature, etc. for volume elements that could take on several forms. Then, interfaces that represent features such as the Moho, major faults, crystalline basement surface beneath sedimentary basins, magmatic bodies, etc. would be inserted into the model in order to properly characterize the region geologically.

  6. Concentration of dependence of radiative and nonradiative energy transfers in rare-earth-doped laser crystals grown from a new method based on gradient concentration fiber single crystals

    NASA Astrophysics Data System (ADS)

    Boulon, Georges; Laversenne, L.; Goutaudier, C.; Guyot, Y.; Cohen-Adad, Marie-Therese

    2003-04-01

    New and original monocrystalline samples having a continuous longitudinal concentration gradient are used to study dynamical processes of resonant transitions in rare earth doped laser crystals like Y2O3 sesquioxide and YAG garnet. This fast and simple method allows to measure the radiative lifetime, the influence of radiation trapping, impurity quenching and RE pairs or clusters on the excited-state lifetime as a functon of the dopant concentration. Examples in Yb3+, Er3+ and Ho3+ rare earth ions are presented.

  7. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    NASA Astrophysics Data System (ADS)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653 impact was analyzed. Requirements and architecture for space domain were defined [3][4] and System Executive platforms (based on Xtratum, Pike OS, and AIR) were developed with RTEMS as Guest OS. This paper focuses on the demonstrator developed by Astrium as part of IMA SP project. This demonstrator has the objective to confirm operational software partitioning feasibility above Xtratum System Executive Platform with acceptable CPU overhead.

  8. Evaluation of rare earth doped silica sub-micrometric spheres as optically controlled temperature sensors

    NASA Astrophysics Data System (ADS)

    Haro-González, P.; Martínez Maestro, L.; Trevisani, M.; Polizzi, S.; Jaque, D.; García Sole, J.; Bettinelli, M.

    2012-09-01

    We report on the evaluation of rare earth (Er3+, Eu3+, and Tb3+ ions) SiO2 sub-micrometric spheres as potential optically controllable temperature sensors. Details about fabrication, optical manipulation and spectroscopic characterization of the sub-micrometric spheres are presented. The fluorescence properties of the micros-spheres in the biological range (25-60 °C) have been systematically investigated. From this systematic study, the thermal resolution potentially achieved in each case has been determined and compared to previous works.

  9. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    NASA Astrophysics Data System (ADS)

    Farr, Warrick G.; Goryachev, Maxim; le Floch, Jean-Michel; Bushev, Pavel; Tobar, Michael E.

    2015-09-01

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 106 are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  10. Raman Spectroscopic Characterization of Rare Earth Ions Doped Bismuth-Based Glasses

    SciTech Connect

    Pop, L.; Culea, E.; Bosca, M.; Culea, M.

    2007-04-23

    The xReO(1-x)[3Bi2O3{center_dot}PbO] glass systems with diferent rare earth ions (ReO = CeO2, Tb4O7) have been prepared and examined with the aim of determining their structural characteristics. Raman sprectroscopy and density measurements were used to characterize the samples. Raman spectroscopy data permitted to identify some of the structural units that built up the lead bismuthate vitreous network. Density data were used to calculate the Poisson's ratio in terms of the Makishima-Mackenzie model.

  11. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  12. Rare earth ion (La, Ce, and Eu) doped ZnO nanoparticles synthesized via sol-gel method: Application in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pandey, Padmini; Kurchania, Rajnish; Haque, Fozia Z.

    2015-10-01

    Dye-sensitized solar cells (DSSCs) were fabricated by using ZnO nanoparticles as working electrode material synthesized via simple and cost effective sol-gel method. Crystallography and morphology was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM), respectively. Among various rare earth ions, 1.0 mol % La, Ce, and Eu doped ZnO nanoparticles based photoanodes were used to test DSSC performance. Lower efficiency (? = 1.14%) for La ion doped ZnO nanoparticles based cell was observed. A much lower photocurrent J sc = 2.52 mA/cm2 with 0.60% efficiency ( ?) for the Ce ion doped ZnO nanoparticles based prototype was observed as compared to that ( J sc = 3.86 mA/cm2 with ? = 1.24%) of the undoped one which may be due to the formation of opposite internal electric potential difference in the cell. Furthermore, the improvement in efficiency (? = 1.36%) and J sc = 3.99 mA/cm2 for Eu ion doped ZnO can be attributed to enhanced electron injection and transport abilities. This indicates that 1.0 mol % Eu ion doped ZnO film possesses better electrical conductivity probably due to the existence of high-valance Eu ions in the ZnO matrix which might be promising in ZnO-based dye sensitized solar cell.

  13. Product design issues relating to rare-earth doped fiber ring lasers and superfluorescence sources

    NASA Astrophysics Data System (ADS)

    Sousa, João M.; Melo, Miguel; Ferreira, Luís A.; Salcedo, José R.; Berendt, Martin O.

    2006-02-01

    The high gain offered by Erbium doped fiber amplifiers has, since its first demonstration, been explored in lasers and super fluorescence sources. Although such devices have been the topic for numerous scientific publications only a few configurations have resulted in commercial products. We have identified the principal reasons for this to be the difficulty in obtaining single longitudinal mode laser operation in the inherently long laser cavities and the tendency of superfluorescence fiber sources (SFS) to show spurious lasing in high power operation. In this manuscript we show some results of our effort to deal with these obstacles. A technique based on a saturable absorber (SA) grating filter is shown to assure stable single longitudinal mode lasing even when the laser cavity is subject to temperature variations. The saturable absorber filter has a narrow passband and dynamically tracks the lasing mode. An all- polarization maintaining (PM) fiber ring cavity in combination with a saturable absorber filter provides a solution for stable single mode, single polarization laser operation. Progress on amplified spontaneous emission (ASE) superfluorescence sources is fueled by improvements in available pump power ratings. However spurious lasing is limiting the spectral power density of the broadband emission. We present techniques based on tailored optical feedback using filtered ASE seeding or Faraday rotator (FR) mirror which increases lasing threshold and thus the achievable output power. These advances have allowed the manufacture of fiber optic sources which maintain their performance parameters over time even when subject to temperature and vibration perturbations found in real applications.

  14. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    NASA Astrophysics Data System (ADS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core.

  15. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    SciTech Connect

    Li, Jiawei; Huo, Juntao; Chang, Chuntao E-mail: dujun@nimte.ac.cn; Du, Juan E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei; Law, Jiayan

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE?=?Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120?K without significantly decreasing the magnetic entropy change (?S{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ?S{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  16. Synthesis and upconversion emission of rare earth-doped olive-like YF{sub 3} micro-particles

    SciTech Connect

    Lin, Hang; Chen, Daqin; Niu, Mutong; Yu, Yunlong; Huang, Ping; Wang, Yuansheng

    2010-01-15

    The olive-like YF{sub 3} micro-particles were fabricated via a two-step route. The precursor NH{sub 4}Y{sub 3}F{sub 10} nano-cages sized 8 nm with hollow interiors were first synthesized in a solid reaction at room temperature. In the course of subsequent hydrothermal treating, the unstable NH{sub 4}Y{sub 3}F{sub 10} nano-cages were decomposed, resulted in the formation of Y(OH){sub 1.63}F{sub 1.37} micro-tubes. Prolonging the hydrothermal reaction induced the further decomposition of Y(OH){sub 1.63}F{sub 1.37} to produce YF{sub 3} nano-crystals, which then aggregated together forming the final olive-like YF{sub 3} micro-particles. For the Er{sup 3+}/Yb{sup 3+} co-doped olive-like YF{sub 3} micro-particles, intense visible upconversion emissions were measured under 976 nm excitation owing to the partition of rare earth ions in the lattice, indicating this material a promising luminescent host.

  17. Adjustable up-conversion luminescence color in rare earth co-doped transparent oxyfluoride nano-glass-ceramics.

    PubMed

    Song, Zhiguo; Zhou, Dacheng; Qiu, Jianbei

    2010-03-01

    Transparent oxyfluoride nano-glass-ceramics with highly efficient up-conversion and adjustable color luminescence were developed in the 28SiO2 x 17Al2O3 28PbF2 x 22CdF2 x 0.1NdF3 x xYbF3 x yHoF3 zTmF3 x (4.9 - x - y - z)GdF3 composition, in mol%. X-ray diffraction and transmission electron microscopy measurements revealed that heat treatments of the oxyfluoride glasses cause the homogeneous precipitation of rare-earth ions co-doped fluorite-type Pb(x)Cd1-xF2 nanocrystals of about 10 nm in diameter in the glass matrix. Under single 808 nm laser excitation, intense red, green and blue up-conversion luminescences were simultaneously observed in these transparent nano-glass-ceramics owing to the successive energy transfer from Nd3+ ions to Ho3+ and Tm3+ via Yb3+ ions. Various colors of luminescence, including bright perfect white light, can be tuned by adjusting the concentrations of the Tm3+ ions in the material. A possible energy transfer process and up-conversion luminescence mechanism in the nano-glass-ceramics are proposed and discussed. PMID:20355610

  18. Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions

    SciTech Connect

    Sontakke, Atul D.; Annapurna, K.

    2012-07-01

    An investigation of donor-acceptor energy transfer kinetics in dual rare earths doped precursor oxy-fluoride glass and its glass-ceramics containing NaYF{sub 4} nano-crystals is reported here, using three different donor-acceptor ion combinations such as Nd-Yb, Yb-Dy, and Nd-Dy. The precipitation of NaYF{sub 4} nano-crystals in host glass matrix under controlled post heat treatment of precursor oxy-fluoride glasses has been confirmed from XRD, FESEM, and transmission electron microscope (TEM) analysis. Further, the incorporation of dopant ions inside fluoride nano-crystals has been established through optical absorption and TEM-EDX analysis. The noticed decreasing trend in donor to acceptor energy transfer efficiency from precursor glass to glass-ceramics in all three combinations have been explained based on the structural rearrangements that occurred during the heat treatment process. The reduced coupling phonon energy for the dopant ions due to fluoride environment and its influence on the overall phonon assisted contribution in energy transfer process has been illustrated. Additionally, realization of a correlated distribution of dopant ions causing clustering inside nano-crystals has also been reported.

  19. DECADE Web Portal: Integrating MaGa, EarthChem and GVP Will Further Our Knowledge on Earth Degassing

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Frigeri, A.; Lehnert, K. A.; Ash, J.; McCormick, B.; Chiodini, G.; Fischer, T. P.; Cottrell, E.

    2014-12-01

    The release of gases from the Earth's interior to the exosphere takes place in both volcanic and non-volcanic areas of the planet. Fully understanding this complex process requires the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. We are developing interoperability between three of those, which will support more powerful synoptic studies of degassing. The three data systems that will make their data accessible via the DECADE portal are: (1) the Smithsonian Institution's Global Volcanism Program database (GVP) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. These databases are developed and maintained by institutions or groups of experts in a specific field, and data are archived in formats specific to these databases. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing a web portal that will create a powerful search engine of these databases from a single entry point. The portal will return comprehensive multi-component datasets, based on the search criteria selected by the user. For example, a single geographic or temporal search will return data relating to compositions of emitted gases and erupted products, the age of the erupted products, and coincident activity at the volcano. The development of this level of capability for the DECADE Portal requires complete synergy between these databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at the DECADE web portal. The DECADE portal will enable new synoptic perspectives on the Earth degassing process. Other data systems can be easily plugged in using the existing framework. Our vision is to explore Earth degassing related datasets over previously unexplored spatial or temporal ranges.

  20. Optical amplification of Pr3+ -doped ZBLA channel waveguides for visible Laser emission.

    PubMed

    Olivier, M; Doualan, J-L; Camy, P; Lhermite, H; Pirasteh, P; Coulon, J N; Braud, A; Adam, J-L; Nazabal, V

    2012-10-22

    We report on the first observation of optical signal amplification in the visible range into praseodymium doped ZBLA glass channel waveguides obtained by ion exchange. Up to 30% signal amplification was obtained at 639 nm. This result shows the potential of rare earth doped fluoride glasses in the form of channel waveguides for integrated solid state visible laser sources. PMID:23187272

  1. Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²?-doped optical fiber.

    PubMed

    Liu, Zhengyong; Tse, Ming-Leung Vincent; Zhang, A Ping; Tam, Hwa-Yaw

    2014-10-15

    A novel microfluidic flowmeter integrated with microfiber Bragg grating (µFBG) is presented. Two glass capillaries and a short length of high-light-absorption Co²?-doped optical fiber were stacked inside a larger outer capillary tube. The stack was then drawn into a tapered device. Two microchannels with the diameter of ~50???m were formed inside the capillaries for flowing of microfluidics. An FBG was inscribed in the tapered Co²?-doped fiber with waist diameter of ~70???m, and acts as a flow-rate sensor. A pump laser with wavelength of 1480 nm was utilized to locally heat the µFBG, rendering the µFBG as miniature "hot-wire" flowmeter. The flow rate of the liquid in the microchannels is determined by the induced wavelength shift of the µFBG. The experimental results achieve a minimum detectable change of ~16??nL/s in flow rate, which is very promising in the use as part of biochips. PMID:25361108

  2. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the integrating RI elements. This integration requires a significant coordination between, among others, disciplinary (thematic) communities, national RIs policies and initiatives, as well as geo- and IT-scientists. The RIs that EPOS is coordinating include: i) regionally-distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services v) new services for natural and anthropogenic hazards. Here we present the successful story of the EPOS Preparatory Phase and the progress towards the implementation of both integrated core services (ICS) and thematic core services (TCS) for the different communities participating to the integration plan. We aim to discuss the achieved results and the approach followed to design the implementation phase. The goal is to present and discuss the strategies adopted to foster the implementation of TCS, clarifying their crucial role as domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS, and their integration to develop the new ICS. We will present the prototype of the ICS central hub as a key contribution for providing multidisciplinary services for solid Earth sciences as well as the glue to keep ICT aspects integrated and rationalized across EPOS. Finally, we will discuss the well-defined role of the EPOS-ERIC Headquarter to coordinate and harmonize national RIs and EPOS services (through ICS and TCS) looking for an effective commitment by national governments. It will be an important and timely opportunity to discuss the EPOS roadmap toward the operation of the novel multidisciplinary platform for discoveries to foster scientific excellence in solid Earth sciences.

  3. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    ERIC Educational Resources Information Center

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  4. Fundamentals of laser cooling of rare-earth-ion doped solids and its enhancement using nanopowders

    NASA Astrophysics Data System (ADS)

    Ruan, Xiulin

    The Fermi golden rule is applied as the primary theory for laser cooling of solids, by recognizing that the absorption is a photon-induced, phonon-assisted, electronic transition. The limiting factors are identified as the coupling and population of the energy carriers (photon, electron, and phonon), which include the photon-electron coupling, electron-phonon coupling, ion-dopant concentration, phonon density of states, and the photon population. The photon-electron and electron-vibration coupling rates for ion-doped materials are calculated using ab initio methods for the first time. Using the calculated first-principle wavefunctions, the electric transition dipole moment between the ground and excited states is determined by its definition. The electron-phonon coupling is calculated by taking into account the modification of the electronic wavefunction in response to the nuclei motion, and the modifications of the vibrational modes before and after the transition. This ab initio approach does not require any fitting to experiment, providing a theoretical foundation for the optimal selection of laser cooling materials (both dopant and host). Nanostructure is proposed for the first time to enhance laser cooling performance, through the optimization of carrier populations using nanopowders. The concept of optimum dopant concentration is established and determined using the energy transfer theory, and is found to be larger than that currently used. The phonon density of states of nanopowders, calculated using molecular dynamics simulations, exhibits broadened modes, and extended tails at low and high frequencies. This is advantageous over the bulk material since more phonon modes are available in the desired range. The pumping field energy is calculated by solving the Maxwell equations in random nanopowder media. Photons are multiply scattered and do not propagate through the medium, and large field enhancement is observed. This leads to the trapping of more photons in nanopowder media, compared to the bulk material, implying more efficient absorption and cooling performance. Due to these enhancement effects, thermal predictions show that nanopowders can be cooled to the cryogenic temperature range, for the first time.

  5. Synthesis and characterization of rare earth doped barium fluoride nanoparticles and derivatized copper phthalocyanine nanoparticles

    NASA Astrophysics Data System (ADS)

    Bender, Christopher Mark

    1998-12-01

    Nanoparticles of neodymium doped barium fluoride (Nd:BaFsb2) were synthesized for use as the inorganic component of an optical amplifier composite. Microemulsions were used to maintain domain size in the nano-regime (˜100 nm), and decreasing the volume fraction of the aqueous content, while simultaneously increasing the volume fraction of the cosurfactant (methanol), gave a linear relationship between decreasing domain size and increasing volume fraction of alcohol. As Nd was added to the BaFsb2 host, direct incorporation was observed at low dopant levels (0-10 mol-%), a two-phase mixture was observed at intermediate dopant levels (10-50 mol-%), and a nearly amorphous product resulted with very high Nd-dopant levels (>50 mol-%). Fluorescence measurements of the solids showed that concentration quenching was delayed until unusually high levels, probably as a result of the lost crystallinity. Praseodymium and ytterbium codoped barium fluoride (Pr,Yb:BaFsb2) were also synthesized in microemulsions. Though as-prepared powders did not fluoresce, treatment with high temperatures (900sp°C) and dynamic vacuum resulted in products which would fluoresce at 1.3 mum. Lower temperature treatments (500-750sp°C) were used to decrease sintering, however this resulted in Ybsp{3+} products in which Ybsp{3+} fluorescence was quenched by exposure to air. Contamination due to water and hydroxide is believed to be the reason. Ethanolic microemulsions were used to make copper phthalocyanine (CuPc), which was modified with either zinc phthalocyanine (ZnPc) or copper phthalcyaninesulfonic acid by means of a flow system. The sulfonic acid derivative was lost upon aqueous washing. The zinc derivatized product gave a dispersion in n-hexylamine, which was stable for seven days. The mole ratio of Cu:Zn was 1:1 for the solids dispersed in n-hexylamine, and was 6:1 for the solids that were not dispersed. Because underivatized CuPc formed by the same method did not result in a dispersed product, the dispersion mechanism is postulated to be due to interaction between the ZnPc on the surface and the n-hexylamine.

  6. Excitation and luminescence of rare earth-doped lead phosphate glasses

    NASA Astrophysics Data System (ADS)

    Pisarska, J.; So?tys, M.; ?ur, L.; Pisarski, W. A.; Jayasankar, C. K.

    2014-09-01

    Excitation and luminescence properties of Eu3+, Tb3+ and Er3+ ions in lead phosphate glasses have been studied. From excitation spectra of Eu3+ ions, the electron-phonon coupling strength and phonon energy of the glass host were calculated and compared to that obtained by Raman spectroscopy. Main intense and long-lived luminescence bands are related to the 5D0-7F2 (red) transition of Eu3+, the 5D4-7F5 (green) transition of Tb3+ and the 4I13/2-4I15/2 (near-infrared) transition of Er3+. The critical transfer distances, the donor-acceptor interaction parameters and the energy transfer probabilities were calculated using the fitting of the luminescence decay curves from 5D0 (Eu3+), 5D4 (Tb3+) and 4I13/2 (Er3+) excited states. The energy transfer probabilities for Eu3+ (5D0), Tb3+ (5D4) and Er3+ (4I13/2) are relatively small, which indicates low self-quenching luminescence of rare earth ions in lead phosphate glasses.

  7. Facile fabrication and photoluminescence properties of rare-earth-doped Gd?O? hollow spheres via a sacrificial template method.

    PubMed

    Gao, Yu; Zhao, Qian; Fang, Qinghong; Xu, Zhenhe

    2013-08-21

    Rare-earth-doped gadolinium oxide (Gd?O?) hollow spheres were successfully fabricated on a large scale by using PS spheres as sacrificed templates and urea as a precipitating agent, which involved the deposition of an inorganic coating Gd(OH)CO3 on the surface of PS spheres and subsequent calcination in the air. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), as well as photoluminescence spectroscopies were used to characterize the samples. The results indicate that the sample is composed of uniform hollow Gd?O? spheres with a mean particle size of about 2.3 ?m and these hollow spheres have the mesoporous shell that are composed of a large amount of nanoparticles. The possible mechanism of evolution from PS spheres to the amorphous precursor and to the final hollow Gd?O? spheres have been proposed. The as-obtained samples show strong light emission with different colors corresponding to different Ln³? ions under ultraviolet-visible light and electron-beam excitation. Under 980 nm NIR irradiation, Gd?O?:Ln³? (Ln³? = Yb³?/Er³?, Yb³?/Tm³? and Yb³?/Ho³?) exhibit characteristic up-conversion (UC) emissions of red (Er³?, ²H11/2, ?S3/2, ?F9/2 ? ?I15/2), blue (Tm³?, ¹G? ? ³H?) and green (Ho³?, ?F?, ?S? ? ?I?), respectively. These merits of multicolor emissions in the visible region endow these kinds of materials with potential applications in the field of light display systems, lasers, optoelectronic devices, and MRI contrast agents. PMID:23801272

  8. Effects of fabrication and annealing methods on spin relaxation and crystallite quality in rare-earth-ion doped powders studied using spectral hole burning

    E-print Network

    Thomas Lutz; Lucile Veissier; Charles W. Thiel; Philip J. T. Woodburn; Rufus L. Cone; Paul E. Barclay; Wolfgang Tittel

    2015-09-25

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped Y$_2$Al$_5$O$_{12}$ (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centres in nano-structured diamond.

  9. 56.6 DB High Gain L-Band Edfa Utilizing Short-Length Highly-Doped Erbium Rare-Earth Material

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, M. H.; Al-Ghaithi, W. S.

    2014-07-01

    In this paper, we experimentally investigate the performance of an efficient high gain L-band erbium-doped fiber (EDF) amplifier structure utilizing short-length highly-doped erbium rare-earth material with a single pump source. The amplifier gain and noise figure variation for different amplifier structures have been investigated. A filter is used to reduce the self-saturation effect and suppress the C-band amplified spontaneous emission (ASE) noise. The amplifier achieves a signal gain of 56.6 dB with a low noise figure of 4.8 dB at -50 dBm input signal power using only 8 m of EDF length. The amplifier gain shows significant improvement of 6 dB with C/L band coupler and 13 dB with tunable-band pass filter compared to amplifier structure without ASE suppression.

  10. Synthesis and luminescent properties of rare earth (Sm3+ and Eu3+) Doped Gd2Ti2O7 pyrochlore nanopowders

    NASA Astrophysics Data System (ADS)

    ?ulubrk, Sanja; Anti?, Željka; Marinovi?-Cincovi?, Milena; Ahrenkiel, Phillip S.; Drami?anin, Miroslav D.

    2014-11-01

    This work describes the synthesis and photoluminescent properties of rare earth (Sm3+ and Eu3+) doped Gd2Ti2O7 pyrochlore nanopowders. Pure-phase rare earth-doped Gd2Ti2O7 nanoparticles of approximately 20-50 nm in diameter, as evidenced from X-ray diffraction and electron microscopy analysis, are produced via the mixed metal-citric acid complex method. A temperature of 880 °C is identified for the formation of the crystalline pyrochlore phase, based on a differential thermal analysis of Gd2Ti2O7 precursor gels. From photoluminescence excitation and emission spectra, measured at 10 K and room temperature, the energy levels of Sm3+ and Eu3+ ions in Gd2Ti2O7 nanoparticles are obtained. The dependence of luminescence emission intensity and emission decays on rare earth concentration are measured and discussed. The strongest Sm3+ orange-reddish emission is observed for samples containing 2.5 at.% of Sm3+ ions, while in the case of Eu3+, the most intense emission is found for 15 at.% Eu3+ doping. The 4G5/2 level lifetime decreases with an increase in Sm3+ concentration, from about 5 ms (for 0.1-0.2 at.% of Sm3+) to 2.4 ms (for 2.5 at.% of Sm3+). With an increase in Eu3+ concentration in the Gd2Ti2O7 nanoparticles, the Eu3+5D0 level lifetime decreases from ?5.9 ms (for 0.5 at.% of Sm3+) to 3.1 ms (for 15 at.% of Sm3+).

  11. Microstructural and ferroelectric properties of rare earth (Ce, Pr, and Tb)-doped Na0.5Bi4.5Ti3O15 thin films

    NASA Astrophysics Data System (ADS)

    Raghavan, Chinnambedu Murugesan; Kim, Jin Won; Song, Tae Kwon; Kim, Sang Su

    2015-11-01

    Pure Na0.5Bi4.5Ti4O15 and rare earth-doped Na0.5Bi4RE0.5Ti4O15 (RE = Ce, Pr, and Tb) thin films were prepared on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by using a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies revealed that the thin films are crystallized in a single-phase Aurivillius structure with no additional phases. The rare earth-doped Na0.5Bi4RE0.5Ti4O15 thin films exhibited improved electrical and ferroelectric properties. Among the studied rare earth metal ions, the Tb3+ ion leads to a remarkable improvement in the ferroelectric properties. The use of the Tb3+ ion for doping resulted in a well-saturated ferroelectric hysteresis loop with a large remnant polarization (2Pr) of 40 ?C/cm2 and a low coercive electric field (2Ec) of 176 kV/cm, measured at an applied electric field of 475 kV in the Na0.5Bi4Tb0.5Ti4O15 thin film. Furthermore, the leakage current density of the Na0.5Bi4Tb0.5Ti4O15 thin film was one order of magnitude lower than that of the Na0.5Bi4.5Ti4O15 thin film.

  12. Effect of transition element doping on crystal structure of rare earth borosilicides REB{sub 44}Si{sub 2}

    SciTech Connect

    Berthebaud, D.; Sato, A.; Michiue, Y.; Mori, T.; Nomura, A.; Shishido, T.; Nakajima, K.

    2011-07-15

    On a previous study on samples of doped-YB{sub 44}Si{sub 2}, an improvement of thermoelectric properties has been achieved. Regarding the interesting effect of the doping of transition elements on the thermoelectric properties, a single crystal study has been carried out on Zn doped, Rh doped and Ni doped samples to assess how the transition element doping affects the crystal structure. Refinements were carried out based on the structural model solution of YB{sub 44}Si{sub 2} reported in a previous study. Variations in the silicon contents were found in the doped single crystals. Splitting of partially occupied sites has also been detected for some of the doped samples. In this paper we present differences in the partial occupations of boron and silicon sites. Possibility of transition elements insertions based on the differences in crystal structures will be presented. - Graphical Abstract: New transition elements doped YB{sub 44}Si{sub 2} were synthesized and have nominal compositions YB{sub 41.1}Si{sub 1.1}Rh{sub 0.02} and YB{sub 41}Si{sub 1.3}Ni{sub 0.06}. Insertion of transition elements into the crystal structure of YB{sub 44}Si{sub 2} leads to the transformation of B{sub 12} icosahedra into B{sub 11} polyhedrons for a few percent of them. Highlights: > Differences in the partial occupations of boron and silicon sites{yields}Possibility of transition elements insertions. > Mixed occupancy of split positions. > Insertion of transition elements between B{sub 12} icosahedra.

  13. Information Requirements for Integrating Spatially Discrete, Feature-Based Earth Observations

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Lehnert, K. A.; Mayorga, E.; Hsu, L.; Song, L.; Zaslavsky, I.; Valentine, D. L.

    2014-12-01

    Several cyberinfrastructures have emerged for sharing observational data collected at densely sampled and/or highly instrumented field sites. These include the CUAHSI Hydrologic Information System (HIS), the Critical Zone Observatory Integrated Data Management System (CZOData), the Integrated Earth Data Applications (IEDA) and EarthChem system, and the Integrated Ocean Observing System (IOOS). These systems rely on standard data encodings and, in some cases, standard semantics for classes of geoscience data. Their focus is on sharing data on the Internet via web services in domain specific encodings or markup languages. While they have made progress in making data available, it still takes investigators significant effort to discover and access datasets from multiple repositories because of inconsistencies in the way domain systems describe, encode, and share data. Yet, there are many scenarios that require efficient integration of these data types across different domains. For example, understanding a soil profile's geochemical response to extreme weather events requires integration of hydrologic and atmospheric time series with geochemical data from soil samples collected over various depth intervals from soil cores or pits at different positions on a landscape. Integrated access to and analysis of data for such studies are hindered because common characteristics of data, including time, location, provenance, methods, and units are described differently within different systems. Integration requires syntactic and semantic translations that can be manual, error-prone, and lossy. We report information requirements identified as part of our work to define an information model for a broad class of earth science data - i.e., spatially-discrete, feature-based earth observations resulting from in-situ sensors and environmental samples. We sought to answer the question: "What information must accompany observational data for them to be archivable and discoverable within a publication system as well as interpretable once retrieved from such a system for analysis and (re)use?" We also describe development of multiple functional schemas (i.e., physical implementations for data storage, transfer, and archival) for the information model that capture the requirements reported here.

  14. Integrated optical amplifiers and microspherical lasers based on erbium-doped oxide glasses

    NASA Astrophysics Data System (ADS)

    Righini, G. C.; Arnaud, C.; Berneschi, S.; Bettinelli, M.; Brenci, M.; Chiasera, A.; Feron, P.; Ferrari, M.; Montagna, M.; Nunzi Conti, G.; Pelli, S.; Portales, H.; Siligardi, C.; Speghini, A.; Zampedri, L.

    2005-10-01

    Er3+-doped glasses have been a subject of great interest in the recent years for their application in the areas of guided wave optical amplifiers and lasers. Oxide-glass matrices, in particular, offer the advantage of relatively simple fabrication processes-both for bulk glasses and optical fibers-and have demonstrated quite good properties in the 1.5 ?m wavelength band. Here we present some results we have obtained in the development of different silica-based glasses and in their application to the production of integrated optical amplifiers and microspherical lasers. As to the former application, two classes of silica glasses have been produced and investigated, namely a melted soda-lime-alumino-silicate glass and a sol-gel silica-hafnia glass. Both of them exhibit a wide emission bandwidth and seem quite promising for broadband optical amplifiers. We also demonstrated low-threshold microlasers, based on whispering gallery mode spherical resonators, fabricated in different oxide glasses.

  15. Coupling earth system and integrated assessment models: the problem of steady state

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Calvin, K.; Jones, A. D.; Mao, J.; Patel, P.; Shi, X.; Thomson, A.; Thornton, P.; Zhou, Y.

    2014-02-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CESM, the Community Earth System Model) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to manipulate GCAM's assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. Carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, and as a result we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  16. The integrated Earth System Model (iESM): formulation and functionality

    DOE PAGESBeta

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-01-21

    The integrated Earth System Model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM projectmore »integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  17. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  18. Variability of Water and Oxygen Absorption Bands in the Disk-integrated Spectra of Earth

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Turner, Edwin L.; Suto, Yasushi

    2013-03-01

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H2O and O2 bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H2O and O2 bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H2O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  19. Practices of Integrating the Earth Charter into Education Activities in German Federal States of Hessen and Rheinland-Pfalz

    ERIC Educational Resources Information Center

    Mathar, Reiner

    2010-01-01

    The integration of Earth Charter into everyday practice of schools in Germany has to be combined with the curriculum development in different subjects. Two states of Germany started this process by organizing inservice training for primary and secondary teachers. Additionally they translated and adopted the Earth Charter Teachers Guidebook to…

  20. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    E-print Network

    Hibbard, Kathy; Janetos, Anthony; van Vuuren, Detlef P.; Pongtatz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

    2010-01-01

    . Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio...

  1. PHOTOMETRIC VARIABILITY OF THE DISK-INTEGRATED THERMAL EMISSION OF THE EARTH

    SciTech Connect

    Gomez-Leal, I.; Selsis, F.; Palle, E. E-mail: selsis@obs.u-bordeaux1.fr

    2012-06-10

    Here we present an analysis of the global-integrated mid-infrared emission flux of the Earth based on data derived from satellite measurements. We have studied the photometric annual, seasonal, and rotational variability of the thermal emission of the Earth to determine which properties can be inferred from the point-like signal. We find that the analysis of the time series allows us to determine the 24 hr rotational period of the planet for most observing geometries, due to large warm and cold areas, identified with geographic features, which appear consecutively in the observer's planetary view. However, the effects of global-scale meteorology can effectively mask the rotation for several days at a time. We also find that orbital time series exhibit a seasonal modulation, whose amplitude depends strongly on the latitude of the observer but weakly on its ecliptic longitude. As no systematic difference of brightness temperature is found between the dayside and the nightside, the phase variations of the Earth in the infrared range are negligible. Finally, we also conclude that the phase variation of a spatially unresolved Earth-Moon system is dominated by the lunar signal.

  2. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  3. From the Earth Summit to Rio+20: integration of health and sustainable development.

    PubMed

    Haines, Andy; Alleyne, George; Kickbusch, Ilona; Dora, Carlos

    2012-06-01

    In 2012, world leaders will meet at the Rio+20 conference to advance sustainable development--20 years after the Earth Summit that resulted in agreement on important principles but insufficient action. Many of the development goals have not been achieved partly because social (including health), economic, and environmental priorities have not been addressed in an integrated manner. Adverse trends have been reported in many key environmental indicators that have worsened since the Earth Summit. Substantial economic growth has occurred in many regions but nevertheless has not benefited many populations of low income and those that have been marginalised, and has resulted in growing inequities. Variable progress in health has been made, and inequities are persistent. Improved health contributes to development and is underpinned by ecosystem stability and equitable economic progress. Implementation of policies that both improve health and promote sustainable development is urgently needed. PMID:22682465

  4. INTEGRATION OF THE ROTATION OF AN EARTH-LIKE BODY AS A PERTURBED SPHERICAL ROTOR

    SciTech Connect

    Ferrer, Sebastian; Lara, Martin E-mail: mlara@roa.e

    2010-05-15

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  5. Time-integrated photoluminescence and pump-probe reflection spectroscopy of Si doped InN thin films

    SciTech Connect

    Mohanta, Antaryami; Jang, Der-Jun Wang, Ming-Sung; Tu, L. W.

    2014-01-28

    Temperature and excitation power dependent time-integrated photoluminescence of Si doped InN thin films are investigated. Photoluminescence (PL) spectra at low temperatures are described by single emission peak ensued due to “free-to-bound” recombination; whereas PL spectra at higher temperatures above 150?K are characterized by both “band-to-band” and “free-to-bound” transition. Carrier dynamics of Si doped InN thin films is studied using pump-probe reflection spectroscopy at room temperature. The hot electron cooling process is well described by electron-electron scattering. The dependence of the hot electron cooling rate on total electron density shows sublinear to linear behavior with increase of background electron density. The variation of the carrier recombination lifetime with total electron density implicates the dominance of the defect-related nonradiative recombination channel over other recombination processes.

  6. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    NASA Astrophysics Data System (ADS)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome that swirls around this remarkable arthropod, students are exposed to interactions between the hydrosphere, atmosphere, and geosphere and they examine ways in which climate change can affect this ecosystem.

  7. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  8. The Surface Temperatures of the Earth: Steps towards Integrated Understanding of Variability and Change

    NASA Astrophysics Data System (ADS)

    Matthiesen, Stephan; Merchant, Chris; Rayner, Nick; Remedios, John; Høyer, Jacob L.; Jones, Phil; Olesen, Folke; Roquet, Hervé; Sobrino, José; Thorne, Peter

    2013-04-01

    Surface temperature is a key aspect of weather and climate, relevant to human health, agriculture and leisure, ecosystem services, infrastructure development and economic activity. In a community-based activity, the EarthTemp Network brought together 55 researchers from 5 continents to improve the interaction between scientific communities who focus on particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The Network idenitified key needs for progress towards meeting societal needs for surface temperature understanding and information, which will be reviewed and discussed in this contribution. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships of different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information. Steps are also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.

  9. Integrating emerging earth science technologies into disaster risk management: an enterprise architecture approach

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.

  10. The surface temperatures of Earth: steps towards integrated understanding of variability and change

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.; Matthiesen, S.; Rayner, N. A.; Remedios, J. J.; Jones, P. D.; Olesen, F.; Trewin, B.; Thorne, P. W.; Auchmann, R.; Corlett, G. K.; Guillevic, P. C.; Hulley, G. C.

    2013-12-01

    Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.

  11. The surface temperatures of the earth: steps towards integrated understanding of variability and change

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.; Matthiesen, S.; Rayner, N. A.; Remedios, J. J.; Jones, P. D.; Olesen, F.; Trewin, B.; Thorne, P. W.; Auchmann, R.; Corlett, G. K.; Guillevic, P. C.; Hulley, G. C.

    2013-06-01

    Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.

  12. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  13. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  14. Towards a comprehensive model of Earth's disk-integrated Stokes vector

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2015-07-01

    A significant body of work on simulating the remote appearance of Earth-like exoplanets has been done over the last decade. The research is driven by the prospect of characterizing habitable planets beyond the Solar System in the near future. In this work, I present a method to produce the disk-integrated signature of planets that are described in their three-dimensional complexity, i.e. with both horizontal and vertical variations in the optical properties of their envelopes. The approach is based on Pre-conditioned Backward Monte Carlo integration of the vector Radiative Transport Equation and yields the full Stokes vector for outgoing reflected radiation. The method is demonstrated through selected examples inspired by published work at wavelengths from the visible to the near infrared and terrestrial prescriptions of both cloud and surface albedo maps. I explore the performance of the method in terms of computational time and accuracy. A clear strength of this approach is that its computational cost does not appear to be significantly affected by non-uniformities in the planet optical properties. Earth's simulated appearance is strongly dependent on wavelength; both brightness and polarization undergo diurnal variations arising from changes in the planet cover, but polarization yields a better insight into variations with phase angle. There is partial cancellation of the polarized signal from the northern and southern hemispheres so that the outgoing polarization vector lies preferentially either in the plane parallel or perpendicular to the planet scattering plane, also for non-uniform cloud and albedo properties and various levels of absorption within the atmosphere. The evaluation of circular polarization is challenging; a number of one-photon experiments of 109 or more is needed to resolve hemispherically integrated degrees of circular polarization of a few times 10-5. Last, I introduce brightness curves of Earth obtained with one of the Messenger cameras at three wavelengths (0.48, 0.56 and 0.63 ?m) during a flyby in 2005. The light curves show distinct structure associated with the varying aspect of the Earth's visible disk (phases of 98-107°) as the planet undergoes a full 24 h rotation; the structure is reasonably well reproduced with model simulations.

  15. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  16. From LACIE to GEOGLAM: Integrating Earth Observations into Operational Agricultural Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.

    2012-12-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through leveraging advances in the research domain and in satellite technologies, and integrating these into the existing operational monitoring systems.

  17. Integration of Google Maps/Earth with microscale meteorology models and data visualization

    NASA Astrophysics Data System (ADS)

    Wang, Yansen; Huynh, Giap; Williamson, Chatt

    2013-12-01

    The Google Maps/Earth GIS has been integrated with a microscale meteorological model to improve the system's functionality and ease of use. Almost all the components of the model system, including the terrain data processing, morphological data generation, meteorological data gathering and initialization, and displaying/visualizing the model results, have been improved by using this approach. Different from the traditional stand-along model system, this novel system takes advantages of enormous resources in map and image data retrieving/handling, four-dimensional (space and time) data visualization, overlaying, and many other advanced GIS features that the Google Maps/Earth platform has to offer. We have developed modular components for all of the model system controls and data processing programs which are glued together with the JavaScript language and KML/XML data. We have also developed small modular software using the Google application program interface to convert the model results and intermediate data for visualizations and animations. Capabilities such as high-resolution image, street view, and 3D buildings in the Google Earth/Map are also used to quickly generate small-scale vegetation and building morphology data that are required for the microscale meteorological models. This system has also been applied to visualize the data from other instruments such as Doppler wind lidars. Because of the tight integration of the internet based GIS and a microscale meteorology model, the model system is more versatile, intuitive, and user-friendly than a stand-along system we had developed before. This kind of system will enhance the user experience and also help researchers to explore new phenomena in fine-scale meteorology.

  18. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  19. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  20. 5d-4f emission of Eu2+ and electron-vibrational interaction in several alkaline earth sulfides doped with Eu2+ and Er3+

    NASA Astrophysics Data System (ADS)

    Kumar, G. A.; Liu, D.-X.; Tian, Y.; Brik, M. G.; Sardar, D. K.

    2015-12-01

    Several alkaline earth sulfides doped with Eu2+ and Er3+ ions have been synthesized and shown to be potential phosphors for applications in the visible spectral range. The excitation and emission spectra corresponding to the 4f-5d interconfigurational transitions of Eu2+ were analyzed with an aim of extraction of the main parameters of the electron-vibrational interaction. The values of the Huang-Rhys factor, effective phonon energies, and zero-phonon line positions were systematically compared for all studied materials; physical trends were discussed. As a test for the validity of the obtained parameters, the Eu2+ 5d-4f emission bands were modeled to yield good agreement with the experimental spectra.

  1. Using laser ablation to study the microhomogeneity and composition of rare-earth doped Ta2O5 Precursors and a LiTaO3 charge

    NASA Astrophysics Data System (ADS)

    Elizarova, I. R.; Masloboeva, S. M.

    2015-09-01

    The possibilities and aspects of using laser ablation (LA) to study the microhemogeneity and composition of tantalum pentoxides and a Ta2O5-based lithium tantalate charge doped with small concentrations of rare earth elements (TRs) are studied. It is shown that LA can be performed for Ta2O5 precursor and LiTaO3?TR> charge samples pelletized without a binder. The detection limits of TR are determined via inductively coupled plasma mass spectrometry (ICP-MS), and the conditions for quantitative analysis are found. Based on the calculated values of root-mean-square deviation S r , it is proved that the distribution of the dopant in the studied samples is chemically homogeneous.

  2. Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+

    NASA Astrophysics Data System (ADS)

    Wang, Rongping; Yan, Kunlun; Zhang, Mingjie; Shen, Xiang; Dai, Shixun; Yang, Xinyu; Yang, Zhiyong; Yang, Anping; Zhang, Bin; Luther-Davies, Barry

    2015-10-01

    We have annealed Ge28.125Ga6.25S65.625 glasses doped with 0.5% Dy to create glass-ceramics in order to examine the local chemical environment of the rare earth ions (REI). More than 12 times enhancement of the emission at 2.9 and 3.5 ?m was achieved in glass-ceramics produced using prolonged annealing time. Elemental mapping showed clear evidence that Ga2S3 crystalline grains with a size of 50 nm were dispersed in a Ge-S glass matrix in the glass-ceramics, and the REI could only be found near the Ga2S3 crystalline grains. From the unchanged lineshape of the emissions at 2.9 and 3.5 ?m and lack of splitting of the absorption peaks, we concluded that the REI were bonded to Ga on the surface of the Ga2S3 crystals.

  3. The EPOS e-Infrastructure: Integrating Solid Earth Science in Europe

    NASA Astrophysics Data System (ADS)

    Trani, L.; Bailo, D.; Jeffery, K. G.

    2014-12-01

    The European Plate Observing System (EPOS) is an ambitious long term integration plan addressing the major solid-earth research infrastructures in Europe. For its large scale and extent it is a unique initiative which will foster new scientific discoveries and enable scientists to investigate the solid earth system in unprecedented ways. A key aspect of EPOS is to provide end-users with homogeneous access to services and multidisciplinary data collected by monitoring infrastructures and experimental facilities as well as access to processing and visualization tools. Such a complex system requires a solid, scalable and reliable architecture in order to accommodate innovative features and to meet the evolving expectations of the heterogeneous communities involved. Within the FP7 EU project EPOS PP1 (Preparatory Phase), which is approaching its completion in October 2014, the goal of the infrastructure and virtual community working group (WG7) was to design and test a preliminary architecture. The EPOS e-infrastructure architecture has been systematically developed based on collected primary (user) and secondary (interoperation with other systems) requirements and through three distinct design refinement phases (Strawman, Woodman and Ironman). The EPOS architecture is constituted of Integrated Core Services (ICS), which provide access to thematic (domain-specific) services (Thematic Core Services - TCS) integrating national research infrastructures. The key component of the architecture is the metadata catalogue, which utilizes the CERIF2(Common European Research Information Format) standard. The metadata catalogue is conceived to effectively capture all the information needed and to make large (re-)use of existing domain specific standards. In this contribution we will present the lessons learned and the technical achievements of the EPOS Preparatory Phase. 1www.epos-eu.org 2www.eurocris.org

  4. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  5. Integrating Ecology and Environmental Ethics: Earth Stewardship in the Southern End of the Author(s): Ricardo Rozzi, Juan J. Armesto, Julio R. Gutirrez, Francisca Massardo, Gene E.

    E-print Network

    Integrating Ecology and Environmental Ethics: Earth Stewardship in the Southern End of the AmericasScience · March 2012 / Vol. 62 No. 3 www.biosciencemag.org Integrating Ecology and Environmental Ethics: Earth by the Chilean LTSER network to integrate ecological sciences and environmental ethics into graduate education

  6. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    NASA Astrophysics Data System (ADS)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is easily adapted to almost any campus setting. A number of factors contribute to self-guided explorations' success. For most students, these are novel, particularly memorable experiences. Interactive in nature, self-guided explorations are also relaxed, self-paced instruction without the pressures that can dominate other educational settings. Well designed explorations build on students' prior knowledge, allowing them to integrate new earth science concepts with familiar ideas and settings. By creating connections between geology and human society, these explorations also make earth science more relevant to students who had not previously considered their world from a geological perspective. By their very nature, explorations are place-centered education which helps ground instruction and makes it more relevant to students without strong science backgrounds. Further these explorations give students control over, and responsibility for, their own learning, which is always a pedagogically sound approach. Finally, self-guided explorations can integrate earth science education into students' social lives as most students choose to complete the explorations in groups, often with friends and family who are not enrolled in the course.

  7. Effect of knowledge integration activities on students' perception of the earth's crust as a cyclic system

    NASA Astrophysics Data System (ADS)

    Kali, Yael; Orion, Nir; Eylon, Bat-Sheva

    2003-08-01

    Systems thinking is regarded as a high-order thinking skill required in scientific, technological, and everyday domains. However, little is known about systems thinking in the context of science education. In the current research, students' understanding of the rock cycle system after a learning program was characterized, and the effect of a concluding knowledge integration activity on their systems thinking was studied. Answers to an open-ended test were interpreted using a systems thinking continuum, ranging from a completely static view of the system to an understanding of the system's cyclic nature. A meaningful improvement in students' views of the rock cycle toward the higher side of the systems thinking continuum was found after the knowledge integration activity. Students became more aware of the dynamic and cyclic nature of the rock cycle, and their ability to construct sequences of processes representing material transformation in relatively large chunks significantly improved. Success of the knowledge integration activity stresses the importance of postknowledge acquisition activities, which engage students in a dual process of differentiation of their knowledge and reintegration in a systems context. We suggest including such activities in curricula involving systems-based contents, particularly in earth science, in which systems thinking can bring about environmental literacy.

  8. Integration of external metadata into the Earth System Grid Federation (ESGF)

    NASA Astrophysics Data System (ADS)

    Berger, Katharina; Levavasseur, Guillaume; Stockhause, Martina; Lautenschlager, Michael

    2015-04-01

    International projects with high volume data usually disseminate their data in a federated data infrastructure, e.g.~the Earth System Grid Federation (ESGF). The ESGF aims to make the geographically distributed data seamlessly discoverable and accessible. Additional data-related information is currently collected and stored in separate repositories by each data provider. This scattered and useful information is not or only partly available for ESGF users. Examples for such additional information systems are ES-DOC/metafor for model and simulation information, IPSL's versioning information, CHARMe for user annotations, DKRZ's quality information and data citation information. The ESGF Quality Control working team (esgf-qcwt) aims to integrate these valuable pieces of additional information into the ESGF in order to make them available to users and data archive managers by (i) integrating external information into ESGF portal, (ii) integrating links to external information objects into the ESGF metadata index, e.g. by the use of PIDs (Persistent IDentifiers), and (iii) automating the collection of external information during the ESGF data publication process. For the sixth phase of CMIP (Coupled Model Intercomparison Project), the ESGF metadata index is to be enriched by additional information on data citation, file version, etc. This information will support users directly and can be automatically exploited by higher level services (human and machine readability).

  9. Magnetic nanoparticles-doped silica layer reported on ion-exchanged glass waveguide: towards integrated magneto-optical devices

    NASA Astrophysics Data System (ADS)

    Amata, Hadi; Royer, François; Choueikani, Fadi; Jamon, Damien; Broquin, Jean-Emmanuel; Plenet, Jean Claude; Rousseau, Jean Jaques

    2010-05-01

    In the framework of optical telecommunication systems, many functions are integrated on the same substrate. Nevertheless, one of the most important, such as isolation, is achieved using discrete components. It is based on magnetic materials which are always difficult to integrate with classical technologies. This is due to the annealing temperature of magnetic materials. In this paper we present another way for the realisation of such components. We use a dip coating process to report a magnetic nanoparticles doped silica layer on ion-exchanged glass waveguide. The advantages of this method is discussed and we demonstrate its compatibility with ion-exchanged technology. By varying the refractive index of the layer, we can adjust the interaction between the waveguide and the magneto-optical layer.

  10. Integrating Earth System Science Data Into Tribal College and University Curricula

    NASA Astrophysics Data System (ADS)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget, surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.

  11. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (principal investigators)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  12. CIM-EARTH: Community integrated model of economic and resource trajectories for humankind.

    SciTech Connect

    Elliott, J.; Foster, I.; Judd, K.; Moyer, E.; Munson, T.; Univ. of Chicago; Hoover Inst.

    2010-01-01

    Climate change is a global problem with local climatic and economic impacts. Mitigation policies can be applied on large geographic scales, such as a carbon cap-and-trade program for the entire U.S., on medium geographic scales, such as the NOx program for the northeastern U.S., or on smaller scales, such as statewide renewable portfolio standards and local gasoline taxes. To enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of mitigation policies, we are developing dynamic general equilibrium models capable of incorporating important climate impacts. This report describes the economic framework we have developed and the current Community Integrated Model of Economic and Resource Trajectories for Humankind (CIM-EARTH) instance.

  13. Rare earth doped LiYbF{sub 4} phosphors with controlled morphologies: Hydrothermal synthesis and luminescent properties

    SciTech Connect

    Huang, Wenjuan; Lu, Chunhua; Jiang, Chenfei; Jin, Junyang; Ding, Mingye; Ni, Yaru; Xu, Zhongzi

    2012-06-15

    Highlights: ? LiYbF{sub 4} microparticles as an excellent upconverting materials. ? High temperature and long time can favor high crystalline LiYbF{sub 4} microparticles. ? The shape of LiYbF{sub 4} microparticles can be tuned by the molar ratio of EDTA to Yb{sup 3+}. ? Bright green emission can be obtained by changing the doping concentration of Er{sup 3+}. -- Abstract: High quality monodisperse LiYbF{sub 4} microparticles with shape of octahedron had been prepared via a facile hydrothermal route. The crystalline phase, size, morphology and luminescence properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra and Commission Internationale de L’Eclairage (CIE 1931) chromaticity coordinates, respectively. The influences of reaction temperature, reaction time and the molar ratio of EDTA to Yb{sup 3+} on the crystal phases and shapes of as-prepared products had been investigated in detail. The upconversion (UC) luminescence properties of LiYb{sub 1?x}F{sub 4}:xEr{sup 3+} (x =0.1, 0.2, 0.5, 1, 2, 5 and 10 mol%) particles with octahedral microstructures were studied under 976 nm excitation. The results showed that the luminescence colors of the corresponding products could be tuned to bright green by changing the doping concentration of Er{sup 3+} ion. The luminescence mechanisms for the doped Er{sup 3+} ion were thoroughly analyzed, showing great potential in applications such as biolabels, displays and other optical technologies.

  14. DECADE web portal: toward the integration of MaGa, EarthChem and VOTW data systems to further the knowledge on Earth degassing

    NASA Astrophysics Data System (ADS)

    Cardellini, Carlo; Frigeri, Alessandro; Lehnert, Kerstin; Ash, Jason; McCormick, Brendan; Chiodini, Giovanni; Fischer, Tobias; Cottrell, Elizabeth

    2015-04-01

    The release of volatiles from the Earth's interior takes place in both volcanic and non-volcanic areas of the planet. The comprehension of such complex process and the improvement of the current estimates of global carbon emissions, will greatly benefit from the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing interoperability between three data systems that will make their data accessible via the DECADE portal: (1) the Smithsonian Institutionian's Global Volcanism Program database (VOTW) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. The DECADE web portal will create a powerful search engine of these databases from a single entry point and will return comprehensive multi-component datasets. A user will be able, for example, to obtain data relating to compositions of emitted gases, compositions and age of the erupted products and coincident activity, of a specific volcano. This level of capability requires a complete synergy between the databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at the DECADE web portal. The DECADE portal will enable new synoptic perspectives on the Earth degassing process allowing to explore Earth degassing related datasets over previously unexplored spatial or temporal ranges.

  15. Crystal-field study in rare-earth-doped semiconducting YBiPt P. G. Pagliuso and C. Rettori

    E-print Network

    Martins, George

    of the YBiPt intermetallic compound, a Dysonian ESR line shape with no g shift and Korringa broadening was observed. S0163-1829 99 10925-1 I. INTRODUCTION The series of intermetallic compounds RBiPt (R rare earths (A4) and sixth (A6) order crystal-field parameters for this compound. It is found

  16. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. PMID:24291626

  17. Svalbard Integrated Arctic Earth Observing System - A New Coordinated Foundation for Environmental Services in and around Svalbard

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    Svalbard Integrated Earth Observing System (SIOS) is an international infrastructure project. There were 28 partners from Europe and Asia involved in the preparatory phase of this ESFRI project. The essential objectives are to establish a mechanism for integration among the existing research institutions in Svalbard to create a joint state-of-the-art observing system in Earth System Science, and better coordinated services for the International Research community with respect to access, data and knowledge management, logistics and training. In addition to the SIOS members various data services, SIOS itself will provide a few new services such as processed satellite data (from Copernicus' Sentinels as well as others) and combined in-situ and satellite data. All in all SIOS represent a new capacity and foundation for more Earth System Science, including climate and environment, data services in and around Svalbard. A presentation of SIOS including time schedule for implementation of the basic services will be given.

  18. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. PMID:26025644

  19. Multicolor up-conversion emission in tellurite glasses co-doped with rare earth ions for white LED applications

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Pawe?; Palkowska, Anna; Pietrzycki, Marcin; Romanczuk, Patryk; Zmojda, Jacek; Kochanowicz, Marcin; Dorosz, Dominik

    2014-11-01

    In the article the glass with molar composition of 75TeO2-20ZnO-5Na2O co-doped with Yb3+/Tm3+/Ho3+ ions was fabricated by typical melt-quenching technique. Multicolour up-conversion emission at the wavelengths of 479 nm (blue), 546 nm (green) and 650 nm (red) corresponding to transitions 1G4 -->3H6 (Tm3+), 5F4-->5I8 (Ho3+) and 5F5-->5I8 (Ho3+), respectively have been observed under infrared excitation (?exc = 980 nm) at room temperature. Influence of molar ratio of active ions on the colour coordinates (CIE-1931) have been investigated.

  20. CIM-EARTH: Community Integrated Model of Economic and Resource Trajectories for Humankind

    NASA Astrophysics Data System (ADS)

    Foster, I.; Elliott, J.; Munson, T.; Judd, K.; Moyer, E. J.; Sanstad, A. H.

    2010-12-01

    We report here on the development of an open source software framework termed CIM-EARTH that is intended to aid decision-making in climate and energy policy. Numerical modeling in support of evaluating policies to address climate change is difficult not only because of inherent uncertainties but because of the differences in scale and modeling approach required for various subcomponents of the system. Economic and climate models are structured quite differently, and while climate forcing can be assumed to be roughly global, climate impacts and the human response to them occur on small spatial scales. Mitigation policies likewise can be applied on scales ranging from the better part of a continent (e.g. a carbon cap-and-trade program for the entire U.S.) to a few hundred km (e.g. statewide renewable portfolio standards and local gasoline taxes). Both spatial and time resolution requirements can be challenging for global economic models. CIM-EARTH is a modular framework based around dynamic general equilibrium models. It is designed as a community tool that will enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of both mitigation policies and unchecked climate change. Modularity enables both integration of highly resolved component sub-models for energy and other key systems and also user-directed choice of tradeoffs between e.g. spatial, sectoral, and time resolution. This poster describes the framework architecture, the current realized version, and plans for future releases. As with other open-source models familiar to the climate community (e.g. CCSM), deliverables will be made publicly available on a regular schedule, and community input is solicited for development of new features and modules.

  1. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2014-01-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit, a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities, challenges and successes, best practices, and opportunities for future work and collaboration.

  2. Integrated Earth Data Applications (IEDA) Tools for Data Management Plans and Data Compliance Reporting

    NASA Astrophysics Data System (ADS)

    Morton, J.; Ferrini, V.; Carbotte, S. M.; Lehnert, K. A.

    2012-12-01

    An important step in data stewardship is planning not only for how data will be acquired, processed and analyzed, but how data will be documented, preserved and shared. The Integrated Earth Data Applications (IEDA) Facility has developed multi-tiered web applications that assist investigators in both planning for data curation and demonstrating that their data has been made available. The IEDA Data Management Plan Tool is designed to help investigators create Data Management Plans for NSF proposals. It guides users through all relevant steps and allows them to provide relevant information about expected data types and products and select appropriate repositories for data curation. The product of the tool is a PDF that can be added to NSF proposals. A list of potential data repositories for a broad range of geoscience data types (geophysical, geochemical, climate, oceanographic, biological) is provided, but users can enter other repositories if desired. A dashboard interface allows users to manage multiple data management plans, retrieve previous versions, create new plans based on previous submissions, and link submitted plans to their funded NSF awards. A fully featured implementation of this tool is available at http://www.iedadata.org/compliance/plan. With an increasing focus on data compliance, IEDA is also developing a Data Compliance Reporting Tool. The Data Compliance Reporting Tool allows users to search for data inventoried within IEDA data systems (EarthChem and Marine Geoscience Data System) by award number and provides basic metadata and links to those data sets. In addition, links are provided to underway data acquired aboard the U.S. Academic Research Fleet (handled by the Rolling Deck to Repository Program), as well as related data that has been registered through the U.S. Antarctic Program Data Coordination Center. Future developments of this tool will include the ability for investigators to directly contribute additional information to update their Data Compliance Report.

  3. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Burks, J. E.; Camp, P.; McGrath, K.; Bell, J. R.

    2014-12-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit (DAT), a suite of applications used by meteorologists in the survey process. The DAT includes a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities, challenges and successes, best practices, and opportunities for future work and collaboration.

  4. Superconductivity by rare earth doping in the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) with RE=Y, La-Nd, Sm-Lu

    NASA Astrophysics Data System (ADS)

    Stürzer, Tobias; Derondeau, Gerald; Bertschler, Eva-Maria; Johrendt, Dirk

    2015-01-01

    We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) up to Tc=35 K with RE=Y, La-Nd, Sm, Gd-Lu. The critical temperatures are nearly independent of the trivalent rare earth element used, yielding a common Tc(xRE) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu2+ doped samples, as well as the close resemblance of (Ca1-xREx) 10(FeAs)10(Pt3As8) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with simpler crystal structures.

  5. Integration of lessons from recent research for “Earth to Mars” life support systems

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An "Earth to Mars" project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.

  6. An integrative 'omics' solution to the detection of recombinant human erythropoietin and blood doping.

    PubMed

    Pitsiladis, Yannis P; Durussel, Jérôme; Rabin, Olivier

    2014-05-01

    Administration of recombinant human erythropoietin (rHumanEPO) improves sporting performance and hence is frequently subject to abuse by athletes, although rHumanEPO is prohibited by the WADA. Approaches to detect rHumanEPO doping have improved significantly in recent years but remain imperfect. A new transcriptomic-based longitudinal screening approach is being developed that has the potential to improve the analytical performance of current detection methods. In particular, studies are being funded by WADA to identify a 'molecular signature' of rHumanEPO doping and preliminary results are promising. In the first systematic study to be conducted, the expression of hundreds of genes were found to be altered by rHumanEPO with numerous gene transcripts being differentially expressed after the first injection and further transcripts profoundly upregulated during and subsequently downregulated up to 4 weeks postadministration of the drug; with the same transcriptomic pattern observed in all participants. The identification of a blood 'molecular signature' of rHumanEPO administration is the strongest evidence to date that gene biomarkers have the potential to substantially improve the analytical performance of current antidoping methods such as the Athlete Biological Passport for rHumanEPO detection. Given the early promise of transcriptomics, research using an 'omics'-based approach involving genomics, transcriptomics, proteomics and metabolomics should be intensified in order to achieve improved detection of rHumanEPO and other doping substances and methods difficult to detect such a recombinant human growth hormone and blood transfusions. PMID:24627340

  7. Plotnick et al. -Integrated Course for Elementary Education Majors 152 An Integrated Earth Science, Astronomy, and Physics Course for

    E-print Network

    Plotnick, Roy E.

    the fundamental concepts, principles and interconnections of the life, physical and earth/space sciences earth and space science, environmental science, biology, chemistry, and physics. For example science, biology, and astronomy; in other words, it both uses the world to illustrate physics and looks

  8. CEOS WGISS Integrated Catalog, A Catalog for Earth Observation Satellite Data

    NASA Astrophysics Data System (ADS)

    Enloe, Y.; Yapur, M.

    2011-12-01

    The Committee on Earth Observation Satellites (CEOS) was formed in 1984 to coordinate the world's civil space-borne observations of the Earth. More recently, CEOS and its member agencies have committed to provide the implementation of the space-based component of the Group on Earth Observation (GEO) Global Earth Observation System of Systems (GEOSS) Common Infrastructure (GCI). In the case of CEOS, there are a number of challenges in directly connecting the components and services of its member agencies to the GCI. In many cases, the existing catalog systems of the member agencies do not support the OGC Catalog Service for the Web (CSW) that has been selected as the standard for the GCI. Another challenge is related to the fact that collections of satellite data products are extremely large and constantly growing with millions of individual products. Harvesting the associated metadata into the clearinghouse of the GCI is not a practical alternative. In addition, the collection/granule hierarchy and unique spatial/temporal characteristics of satellite data and the user registration and asynchronous access requirements of the agency systems pose additional challenges. The CEOS approach has been to design and implement a CEOS WGISS Integrated Catalog (CWIC) that will serve as a community catalog of the products and services that are offered through its member's systems. CWIC will be based on a distributed search architecture and serve as a gateway between the GEO portal or community portals and clients and the CEOS agency systems. CWIC will receive standard search queries from these portals or clients all using the GEO supported catalog standard, the OGC CSW 2.0.2 and the WGISS Search Criteria for granule search and translate them into the native protocols of the underlying catalogs. Likewise, the result sets from the CEOS agency catalogs will be converted to the form that will be compatible with the portals and clients. The CWIC data provider partners include NOAA, NASA, USGS, INPE (Brazil), and two Chinese data centers coordinated by the Chinese Academy of Science have joined the engineering team and their systems are accessible via CWIC. In addition, multiple other CEOS agencies are or plan to be members of the teams developing community portals and clients that will access CWIC. Recently, NASA initiated development of a prototype client to access CWIC. The ultimate goal of the CEOS WGISS effort is to make the satellite data and services of its member agencies more accessible and useful to the broad set of GEO research programs and applications and this is most effectively approached by harmonization within the satellite community. This kind of community-based development with the harmonization occurring first within the community and then being offered to the broader GEO systems fits the original GEO vision of becoming "a system of systems", clearly representing a contribution towards achieving full interoperability in a standards-based manner.

  9. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  10. Calcium tetraboride-does it exist? Synthesis and properties of a carbon-doped calcium tetraboride that is isotypic with the known rare earth tetraborides.

    PubMed

    Schmitt, Ruth; Blaschkowski, Björn; Eichele, Klaus; Meyer, H-Jürgen

    2006-04-01

    Crystalline samples of carbon-doped CaB4 were synthesized by solid-state reactions in sealed niobium ampules from the elements Ca, B, and C. The structure was determined by single-crystal X-ray diffraction (P4/mbm, Z = 4, a = 7.0989(7) A, c = 4.1353(5) A, R1 = 0.026, and wR2 = 0.058) revealing an atom arrangement containing a three-dimensional boron network built up from B6 octahedra and B2 dumbbells which is well-known from the structures of rare earth tetraborides. Crystals of CaB(4-x)Cx are black with a metallic luster and behave stable against mineral acids. Band structure calculations indicate that CaB4 is a stable semiconducting compound with a narrow band gap and that carbon should not necessarily be required for the stability of this compound. The presence of carbon in the crystalline samples of CaB(4-x)Cx was indicated by electron energy loss spectroscopy, but the carbon content in the samples was estimated to be less than 5% according to inductively coupled plasma-atomic emission spectrometry measurements. The distribution of boron and carbon atoms in the structure was investigated by means of 11B and 13C solid-state magic angle spinning NMR. Measurements of the magnetic susceptibility indicate a temperature-independent paramagnetism down to 20 K. PMID:16562963

  11. Fabrication and characterization of fluorescent rare-earth-doped glass-particle-based tips for near-field optical imaging applications.

    PubMed

    Aigouy, Lionel; De Wilde, Yannick; Mortier, Michel; Giérak, Jacques; Bourhis, Eric

    2004-07-01

    Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip. Then a tip approach is performed on a fragment that remains stuck near the tip extremity. To displace the particle and position it at the very end of the tip, a nanomanipulation is achieved by use of a second tip mounted on piezoelectric scanners. Afterward, the particle size is reduced by focused ion beam milling. These particles exhibit a strong green luminescence where excited in the near infrared by an upconversion mechanism. Images obtained near a metallic edge show a lateral resolution in the 180-200-nm range. Images we obtained by measuring the light scattered by 250-nm holes show a resolution well below 100 nm. This phenomenon can be explained by a local excitation of the particle and by the nonlinear nature of the excitation. PMID:15250549

  12. Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lv, Chunyan; Gao, Zhifei; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2015-09-01

    We report on multicolor and near-infrared electroluminescence (EL) from the devices using rare-earth doped TiO2 (TiO2:RE) films as light-emitting layers, which are ascribed to the impact excitation of RE3+ ions, with the EL onset voltages below 10 V. The devices are in the structure of ITO/TiO2:RE/SiO2/Si, in which the SiO2 layer is ˜10 nm thick and RE includes Eu, Er, Tm, Nd, and so on. With sufficiently high positive voltage applied on the ITO electrode, the conduction electrons in Si can tunnel into the conduction band of SiO2 layer via the trap-assisted tunneling mechanism, gaining the potential energy ˜4 eV higher than the conduction band edge of TiO2. Therefore, as the electrons in the SiO2 layer drift into the TiO2:RE layer, they become hot electrons. Such hot electrons impact-excite the RE3+ ions incorporated into the TiO2 host, leading to the characteristic emissions.

  13. Optical properties of macroporous Y 3Al 5O 12 crystals doped with rare earth ions synthesized via sol-gel process from ionic precursors

    NASA Astrophysics Data System (ADS)

    Murai, Shunsuke; Fujita, Koji; Iwata, Koji; Tanaka, Katsuhisa

    2010-12-01

    We have prepared macroporous Y 3Al 5O 12 (YAG) monoliths doped with rare earth (RE) ions (RE = Ce, Eu, Sm, and Pr) via the ionic precursor-derived sol-gel reaction accompanied by phase separation and investigated their fluorescence and scattering properties. YAG monoliths with well-defined bicontinuous macropores and skeletons were synthesized from the mixture of water and ethanol containing yttrium(III), aluminum(III), and RE(III) salts using propylene oxide as a gelation initiator and poly(ethylene oxide) as a phase separation inducer. X-ray diffraction measurements reveal that the sample as-dried and that heat-treated at 700 °C are amorphous, while a single crystalline phase of YAG is precipitated in the samples heat-treated at temperatures between 800 and 1100 °C. The macroporous YAG:RE ceramics heat-treated at 800 °C and higher temperatures exhibit fluorescence due to 4f-5d (Ce 3+) and 4f-4f (Eu 3+, Sm 3+, Pr 3+) electronic transitions characteristic of the RE ions occupying the eight-coordinated dodecahedral sites in YAG lattice. Coherent backscattering experiments indicate that the scattering strength is enhanced by the densification of skeletons in macroporous YAG monoliths, depending on the heat treatment temperature.

  14. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  15. High contrast in vivo bioimaging using multiphoton upconversion in novel rare-earth-doped fluoride upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N.

    2013-02-01

    Upconversion in rare-earth ions is a sequential multiphoton process that efficiently converts two or more low-energy photons, which are generally near infrared (NIR) light, to produce anti-Stokes emission of a higher energy photon (e.g., NIR, visible, ultraviolet) using continuous-wave (cw) diode laser excitation. Here, we show the engineering of novel, efficient, and biocompatible NIRin-to-NIRout upconversion nanoparticles for biomedical imaging with both excitation and emission being within the "optical transparency window" of tissues. The small animal whole-body imaging with exceptional contrast (signal-to-noise ratio of 310) was shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles. An imaging depth as deep as 3.2-cm was successfully demonstrated using thick animal tissue (pork) under cw laser excitation at 980 nm.

  16. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W

    2014-11-11

    A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.

  17. Potential Uses of EarthSLOT (an Earth Science, Logistics, and Outreach Terrainbase) for Education and Integration in the International Polar Year

    NASA Astrophysics Data System (ADS)

    Nolan, M.

    2004-12-01

    EarthSLOT is an internet-based, 3D, interactive terrain and data visualization system that may have many potential uses as an education and integration tool for International Polar Year projects. Recently funded by NSF's Office of Polar Programs for use in the Arctic, the global nature of the application lends itself well for use at both poles and everywhere in between. The application allows one to start with a spinning earth and zoom down to surface level. The highest resolution digital elevation models available provide the necessary 3D topographic perspective and a variety of possible high-resolution satellite and aerial imagery layers add surface realism; resolution can be down to the centimeter level for either type of data, and frequently acquired satellite imagery may be updated automatically as it arrives. Superimposed on this can be nearly any form of vector or annotation layers, such as shapefiles, polygons, point data, and 3D models (still and moving), which can be easily imported from existing GIS applications or spreadsheets. External databases can also be queried and the results served seamlessly. The entire application is served over the internet, and any connection with speeds over 300kps allows one to interactively fly with a minimum of performance lag. EarthSLOT stands for Earth Science, Logistics, and Outreach Terrainbase, targeting the user-groups of scientists, logisticians, and the public. Approved scientific users can add their own vector content to the application on their own, such that they can create their own custom applications featuring their data but using our underlying earth model with a minimum of interaction with us. For example, an oceanographer can add ship tracks or buoy locations to the model with links to data, host the link on his or her own web page, and invite collaborators to view the spatial relationship of their data to underlying bathymetry. Logisticians or program managers interested in understanding the spatial relationships between different projects for the purposes of coordinating or facilitating cost sharing of logistics can add layers that show the locations and timing of their projects. Educators or principle investigators interested in outreach can design and implement custom applications to share the motivation, rationale, and results of their work in a large variety of ways. Each of these applications can be freely-shared or password-protected, depending on their nature, on either project home pages or on a central IPY-EarthSLOT site. Our prototype application can be found on-line at www.earthslot.org. We already have substantial Landsat coverage of the Arctic, and in the near future plan to incorporate high resolution mosaics of Greenland and Antarctica. With modest additional funding, we propose that EarthSLOT could be used a central integration tool for projects related to the International Polar Year.

  18. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  19. Investigating the Near-Earth Object Population Using Numerical Integration Methods and LINEAR Data

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Morbidelli, A.; Jedicke, R.; Stuart, J. S.; Evans, J. B.; Stokes, G.

    2004-11-01

    The remarkable progress made in finding near-Earth objects (NEOs) over the last decade by dedicated NEO surveys has been accompanied by substantial numerical and theoretical work. Together, these advances have given us a much more profound understanding of the NEO population than we have had at any time in the past. Recent models of the NEO orbital and size distributions have been made using different techniques (e.g., Bottke et al. 2000, 2002; Stuart 2001). In Bottke et al., an NEO model was produced by combining numerical integration work with computations of observational biases. This model was calibrated by fitting model parameters to a relatively small sample of 138 NEOs detected by Spacewatch. In Stuart (2001), a NEO model was computed more directly by debiasing the more extensive NEO observations provided by LINEAR. While the results from each model were similar overall, we found that the Bottke et al. model could not reproduce several features of the Stuart model (e.g., specific bumps in the NEO inclination distribution; its somewhat ``flat" shape). To explore this mismatch, we modified our NEO model in two important ways: (i) we added several high inclination sources of NEOs that were excluded by Bottke et al. (2002) (e.g., Hungarias, Phocaeas), and (ii) we joined forces with the LINEAR survey team to explore their extensive NEO data set within our model. While our new results are consistent with previous work, they also indicate that the high inclination asteroid sources contribute to the NEO population at the ˜ 10% level; this may be enough to explain some of the features observed in Stuart (2001). Our latest results, as well as the implications of this work, will be discussed in our talk.

  20. Incorporating Stakeholder Decision Support Needs into an Integrated Regional Earth System Model

    SciTech Connect

    Rice, Jennie S.; Moss, Richard H.; Runci, Paul J.; Anderson, K. L.; Malone, Elizabeth L.

    2012-03-21

    A new modeling effort exploring the opportunities, constraints, and interactions between mitigation and adaptation at regional scale is utilizing stakeholder engagement in an innovative approach to guide model development and demonstration, including uncertainty characterization, to effectively inform regional decision making. This project, the integrated Regional Earth System Model (iRESM), employs structured stakeholder interactions and literature reviews to identify the most relevant adaptation and mitigation alternatives and decision criteria for each regional application of the framework. The information is used to identify important model capabilities and to provide a focus for numerical experiments. This paper presents the stakeholder research results from the first iRESM pilot region. The pilot region includes the Great Lakes Basin in the Midwest portion of the United States as well as other contiguous states. This geographic area (14 states in total) permits cohesive modeling of hydrologic systems while also providing gradients in climate, demography, land cover/land use, and energy supply and demand. The results from the stakeholder research indicate that iRESM should prioritize addressing adaptation alternatives in the water resources, urban infrastructure, and agriculture sectors, such as water conservation, expanded water quality monitoring, altered reservoir releases, lowered water intakes, urban infrastructure upgrades, increased electric power reserves in urban areas, and land use management/crop selection changes. Regarding mitigation alternatives, the stakeholder research shows a need for iRESM to focus on policies affecting the penetration of renewable energy technologies, and the costs and effectiveness of energy efficiency, bioenergy production, wind energy, and carbon capture and sequestration.

  1. Enhancement of Cerenkov Luminescence Imaging by Dual Excitation of Er3+, Yb3+-Doped Rare-Earth Microparticles

    PubMed Central

    Xu, Feng; Feng, Ailing; Zhao, Ying; Lu, Tianjian; Yang, Weidong; Wang, Zhe; Lin, Min; Wang, Jing

    2013-01-01

    Cerenkov luminescence imaging (CLI) has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs), which can be dually excited by Cerenkov luminescence (CL) resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration. Methods: Yb3+- and Er3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models. Results: the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results. Conclusions: this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future. PMID:24205030

  2. Magnetic properties of rare-earth doped YBa{sub 2}Cu{sub 3}O{sub 7} and YBa{sub 2}Cu{sub 4}O{sub 8}

    SciTech Connect

    Nichols, D.H.

    1993-12-31

    The normal state anisotropic magnetic properties of single crystal rare-earth (RE), doped REBa{sub 2}Cu{sub 4}O{sub s} have been measured where RE = Y, Yb, Gd, Er, Dy, Tm, Ho. A crystalline electric field analysis was performed to determine the energy splitting of the rare-earth dopants in the 124 structure along with the best fit crystal field parameters. From our results a scaling relation has been developed for the crystal field parameters vs radial moment across the rare-earth series. In addition to the above study, the electrical resistivity under high magnetic fields of thin films of Y{sub 1-x}Tb{sub x}Ba{sub 2}Cu{sub 3}O{sub 7} has been measured. The superconducting transition as a function field was studied in terms of fluctuations in the conductivity. From this analysis the upper critical fields for these systems have been determined.

  3. Developing a geographic information system (GIS) to integrate earth science data: Hygiene Quadrangle, Boulder county, Colorado 

    E-print Network

    Nonsung, Sawat

    1993-01-01

    The purpose of this research was to develop a methodology using a geographic information system (GIS) to map and model the best use of earth resources in Hygiene Quadrangle, Boulder County of Colorado. The Spatial Analysis System (SPANS GIS...

  4. Path Integral Monte Carlo Study Confirms a Highly Ordered Snowball in 4He Nanodroplets Doped with an Ar+ Ion

    NASA Astrophysics Data System (ADS)

    Tramonto, F.; Salvestrini, P.; Nava, M.; Galli, D. E.

    2015-07-01

    By means of the Path Integral Monte Carlo method, we have performed a detailed microscopic study of 4He nanodroplets doped with an argon ion, Ar, at K. We have computed density profiles, energies, dissociation energies, and characterized the local order around the ion for nanodroplets with a number of 4He atoms ranging from 10 to 64 and also 128. We have found the formation of a stable solid structure around the ion, a "snowball", consisting of three concentric shells in which the 4He atoms are placed at the vertices of platonic solids: the first inner shell is an icosahedron (12 atoms); the second one is a dodecahedron with 20 atoms placed on the faces of the icosahedron of the first shell; the third shell is again an icosahedron composed of 12 atoms placed on the faces of the dodecahedron of the second shell. The "magic numbers" implied by this structure, 12, 32, and 44 helium atoms, have been observed in a recent experimental study (Bartl et al., J Phys Chem A 118:8050, 2014) of these complexes; the dissociation energy curve computed in the present work shows jumps in correspondence with those found in the nanodroplets abundance distribution measured in that experiment, strengthening the agreement between theory and experiment. The same structures were predicted in Galli et al. (J Phys Chem A 115:7300, 2011) in a study regarding Na+@4He when ; a comparison between Ar+@4He and Na+@4He complexes is also presented.

  5. An integrated multifunctional platform based on biotin-doped conducting polymer nanowires for cell capture, release, and electrochemical sensing.

    PubMed

    Hong, Woo Young; Jeon, Seung Hyun; Lee, Eun Sook; Cho, Youngnam

    2014-12-01

    Here, we propose an integrated multifunctional system constructed by conductive disulfide-biotin-doped polypyrrole nanowires (SS-biotin-Ppy NWs) for capture, release, and in situ quantification of circulating tumor cells (CTCs). A well-ordered three-dimensional nanowire structure equipped with a monoclonal antibody offers a significant impact on the cell-capture efficiency, as well as on electrical- or glutathione (GSH)-mediated release of the captured cells. In addition, the electrochemical identification/detection of the captured cancer cells can be directly conducted on the same Ppy NW platform by using horseradish peroxidase (HRP)-labeled and anti-EpCAM-conjugated nanoparticles (HRP/anti-EpCAM Ppy NPs), showing very high sensitivity and specificity. The signal amplification can be clearly attributed to the catalytic response resulting from enzymatic reduction of hydrogen peroxide on Ppy NWs, consequently generating a greatly increased amperometric response with a detection range of 10 to 1 × 10(4) cells and a detection limit of as low as 10 cells. Overall, the proposed Ppy NWs not only present a promising platform for effective cell capture and release but also permit cytosensing capability for on-site analysis. PMID:25192586

  6. Space-Based Sensor Web for Earth Science Applications: An Integrated Architecture for Providing Societal Benefits

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Talabac, Stephen J.

    2004-01-01

    There is a significant interest in the Earth Science research and user remote sensing community to substantially increase the number of useful observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal, spectral, and spatial coverage of the area(s) under investigation. However, there is little analysis available in terms of the benefits, costs and the optimal set of sensors needed to make the necessary observations. Classic observing system solutions may no longer be applicable because of their point design philosophy. Instead, a new intelligent data collection system paradigm employing both reactive and proactive measurement strategies with adaptability to the dynamics of the phenomena should be developed. This is a complex problem that should be carefully studied and balanced across various boundaries including: science, modeling, applications, and technology. Modeling plays a crucial role in making useful predictions about naturally occurring or human-induced phenomena In particular, modeling can serve to mitigate the potentially deleterious impacts a phenomenon may have on human life, property, and the economy. This is especially significant when one is interested in learning about the dynamics of, for example, the spread of forest fires, regional to large-scale air quality issues, the spread of the harmful invasive species, or the atmospheric transport of volcanic plumes and ash. This paper identifies and examines these challenging issues and presents architectural alternatives for an integrated sensor web to provide observing scenarios driving the requisite dynamic spatial, spectral, and temporal characteristics to address these key application areas. A special emphasis is placed on the observing systems and its operational aspects in serving the multiple users and stakeholders in providing societal benefits. We also address how such systems will take advantage of technological advancement in small spacecraft and emerging information technologies, and how sensor web options may be realized and made affordable. Specialized detector subsystems and precision flying techniques may still require substantial innovation, development time and cost: we have presented the considerations for these issues. Finally, data and information gathering and compression techniques are also briefly described.

  7. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion of scientific instruments such as GPS and probeware, fostered additional student interest in earth science. IDGE has shown to have a lasting effect on the participating students who learn from the experience that science is a dynamic field in need of creative minds who want to make discoveries. Through relevant inquiry, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award 0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  8. Thermally deposited Ag-doped CdS thin film transistors with high-k rare-earth oxide Nd{sub 2}O{sub 3} as gate dielectric

    SciTech Connect

    Gogoi, P.

    2013-03-15

    The performance of thermally deposited CdS thin film transistors doped with Ag has been reported. Ag-doped CdS thin films have been prepared using chemical method. High dielectric constant rare earth oxide Nd{sub 2}O{sub 3} has been used as gate insulator. The thin film trasistors are fabricated in coplanar electrode structure on ultrasonically cleaned glass substrates with a channel length of 50 {mu}m. The thin film transistors exhibit a high mobility of 4.3 cm{sup 2} V{sup -1} s{sup -1} and low threshold voltage of 1 V. The ON-OFF ratio of the thin film transistors is found as 10{sup 5}. The TFTs also exhibit good transconductance and gain band-width product of 1.15 Multiplication-Sign 10{sup -3} mho and 71 kHz respectively.

  9. Laboratory Earth Under the Lens: Diachronic Evaluation of an Integrated Graduate-Level On-Line Earth System Science Course Series for K-12 Educators

    NASA Astrophysics Data System (ADS)

    Low, R.; Gosselin, D. C.; Haney, C.; Larson-Miller, C.; Bonnstetter, R.; Mandryk, C.

    2012-12-01

    Educational research strives to identify the pedagogies that promote student learning. However, the body of research identifying the characteristics of effective teacher preparation is "least strong for science," and is largely based on studies of the effectiveness of individual courses or workshops (NRC 2010). The National Research Council's "Preparing Teachers: Building Evidence for Strong Policy," (2010) provides a mandate for teacher education providers to conduct research on program-scale effectiveness. The high priority research agenda identified by the NRC is expected to elicit understanding of the aspects of teacher preparation that critically impact classroom student learning outcomes. The Laboratory Lens project is designed to identify effective practices in a teacher education program, with specific reference to the content domain of Earth science. Now in its fifth year, the Masters of Applied Science (MAS) program at UNL offers a variety of science courses, ranging from entomology to food science. The six-course Lab Earth series serves as the backbone of the Specialization for Science Educators within the MAS program, and provides comprehensive content coverage of all Earth science topics identified in the AAAS Benchmarks. "How People Learn," (NRC 2009) emphasizes that expert knowledge includes not only factual knowledge, but also the well-developed conceptual framework critical to the ability to, "remember, reason, and solve problems." A focus of our research is to document the process by which the transition from novice to expert takes place in Lab Earth's on-line teacher participants. A feature of our research design is the standardization of evaluation instruments across the six courses. We have used data derived from implementation of the Community of Inquiry Survey (COI) in pilot offerings to ensure that the course sequence is effective in developing a community of learners, while developing their content knowledge. A pre- and post- course Wilcoxan Signed Ranks Test is included in the battery of assessments to ensure that the courses achieve a statistically significant increase in participants' beliefs about their personal science teaching efficacy. The research design also includes the analysis of concept maps and content mastery assignments to assist in documentation of a teacher's transition from mastery of novice to expert knowledge. Content-based, course-specific pre and post knowledge surveys are included in the battery of assessments. In the analysis of on-line discussions, the project employs a textual analysis technique outlined in "The Rhetoric of Social Intervention," (RSI) (Opt and Gring 2009). RSI provides a promising analytical framework, especially when examining the development of understanding of scientific topics with societal implications, such as sustainability and climate change. The session provides a description of the integrated research design and data collection and analysis in the first year of this project.

  10. The EPOS e-Infrastructure: metadata driven integration of data products and services in solid Earth Science

    NASA Astrophysics Data System (ADS)

    Bailo, Daniele; Jeffery, Keith

    2015-04-01

    The European Plate Observing System (EPOS) is an ambitious long term integration plan addressing the major solid-earth research infrastructures in Europe. For its large scale and extent it is an unique initiative which will foster new scientific discoveries and enable scientists to investigate the solid earth system with unprecedented ways. A key aspect of EPOS is to provide end-users with homogeneous access to services and multidisciplinary data collected by monitoring infrastructures and experimental facilities as well as access to software, processing and visualization tools. Such a complex system requires a solid, scalable and reliable architecture in order to accommodate innovative features and to meet the evolving expectations of the heterogeneous communities involved.

  11. A Synergy Framework for the integration of Earth Observation technologies into Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Gaetani, Francesco; Petiteville, Ivan; Pisano, Francesco; Rudari, Roberto; St Pierre, Luc

    2015-04-01

    Earth observations and space-based applications have seen a considerable advance in the last decade, and such advances should find their way in applications related to DRR, climate change and sustainable development, including in the indicators to monitor advances in these areas. The post-2015 framework for disaster risk reduction, as adopted by the 3rd WCDRR is a action-oriented framework for disaster risk reduction that builds on modalities of cooperation linking local, national, regional and global efforts. Earth observations from ground and space platforms and related applications will play a key role in facilitating the implementation of the HFA2 and represent a unique platform to observe and assess how risks have changed in recent years, as well as to track the reduction in the level of exposure of communities. The proposed white paper focuses mainly on Earth Observation from space but it also addresses the use of other sources of data ( airborne, marine, in-situ, socio-economic and model outputs) in combination to remote sensing data. Earth observations (EO) and Space-based technologies can play a crucial role in contributing to the generation of relevant information to support informed decision-making regarding risk and vulnerability reduction and to address the underlying factors of disaster risk. For example, long series of Earth observation data collected over more than 30 years already contribute to track changes in the environment and in particular, environmental degradation around the world. Earth observation data is key to the work of the scientific community. Whether due to inadequate land-use policies, lack of awareness or understanding regarding such degradation, or inadequate use of natural resources including water and the oceans; Earth observation technologies are now routinely employed by many Ministries of Environment and Natural Resources worldwide to monitor the extent of degradation and a basis to design and enact new environmental management policies. This White Paper is the premise of a global partnership as a way to enhance the use of Earth observation and Space-based technologies worldwide in the context of the post-2015 disaster risk reduction framework. This document outlines several issues pertaining to such a global partnership including efforts conducted by international stakeholders, recent advances in the use of Earth observation and Space-based technologies, challenges that need to be addressed, policies, and potential aims.

  12. Structural and optical properties of rare earth-doped (Ba{sub 0.77}Ca{sub 0.23}){sub 1-x}(Sm, Nd, Pr, Yb){sub x}TiO{sub 3}

    SciTech Connect

    Moraes, A. P. A.; Filho, A. G. Souza; Freire, P. T. C.; Filho, J. Mendes; M'Peko, J. C.; Hernandes, A. C.; Antonelli, E.; Blair, Michael W.; Muenchausen, Ross E.; Jacobsohn, Luiz G.; Paraguassu, W.

    2011-06-15

    The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba{sub 0.77}Ca{sub 0.23}TiO{sub 3} (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 deg. C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO{sub 6} octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb{sup 3+} doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm{sup -1}, which is in agreement with lattice dynamics calculations.

  13. Use of Persistent Identifiers to link Heterogeneous Data Systems in the Integrated Earth Data Applications (IEDA) Facility

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Lehnert, K. A.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Walker, J. D.

    2012-12-01

    The Integrated Earth Data Applications (IEDA) facility maintains multiple data systems with a wide range of solid earth data types from the marine, terrestrial, and polar environments. Examples of the different data types include syntheses of ultra-high resolution seafloor bathymetry collected on large collaborative cruises and analytical geochemistry measurements collected by single investigators in small, unique projects. These different data types have historically been channeled into separate, discipline-specific databases with search and retrieval tailored for the specific data type. However, a current major goal is to integrate data from different systems to allow interdisciplinary data discovery and scientific analysis. To increase discovery and access across these heterogeneous systems, IEDA employs several unique IDs, including sample IDs (International Geo Sample Number, IGSN), person IDs (GeoPass ID), funding award IDs (NSF Award Number), cruise IDs (from the Marine Geoscience Data System Expedition Metadata Catalog), dataset IDs (DOIs), and publication IDs (DOIs). These IDs allow linking of a sample registry (System for Earth SAmple Registration), data libraries and repositories (e.g. Geochemical Research Library, Marine Geoscience Data System), integrated synthesis databases (e.g. EarthChem Portal, PetDB), and investigator services (IEDA Data Compliance Tool). The linked systems allow efficient discovery of related data across different levels of granularity. In addition, IEDA data systems maintain links with several external data systems, including digital journal publishers. Links have been established between the EarthChem Portal and ScienceDirect through publication DOIs, returning sample-level objects and geochemical analyses for a particular publication. Linking IEDA-hosted data to digital publications with IGSNs at the sample level and with IEDA-allocated dataset DOIs are under development. As an example, an individual investigator could sign up for a GeoPass account ID, write a proposal to NSF and create a data plan using the IEDA Data Management Plan Tool. Having received the grant, the investigator then collects rock samples on a scientific cruise from dredges and registers the samples with IGSNs. The investigator then performs analytical geochemistry on the samples, and submits the full dataset to the Geochemical Resource Library for a dataset DOI. Finally, the investigator writes an article that is published in Science Direct. Knowing any of the following IDs: Investigator GeoPass ID, NSF Award Number, Cruise ID, Sample IGSNs, dataset DOI, or publication DOI, a user would be able to navigate to all samples, datasets, and publications in IEDA and external systems. Use of persistent identifiers to link heterogeneous data systems in IEDA thus increases access, discovery, and proper citation of hard-earned investigator datasets.

  14. Continuous monitoring of a large active earth flow using an integrated GPS - automatic total station approach

    NASA Astrophysics Data System (ADS)

    Corsini, A.

    2009-04-01

    Landslide monitoring has evolved as a crucial tool in civil protection to mitigate and prevent disasters. The research presents an approach to continuous monitoring of a large-scale active earth flow using a system that integrates surface measurements obtained by a GPS and an automatic total station. With the data obtained from the system the landslide can be monitored in near-real-time and surface displacements can be directly utilized to provide early warning of slope movements and to study the behavior of the landslide, e.g. to predict timing and mechanisms of future failure. The Valoria landslide located in the northern Apennines of Italy was reactivated in 2001, 2005 and 2007 damaging roads and endangering houses. A monitoring system was installed in 2007-2008 in the frame of a civil protection plan aimed at risk mitigation. The system consists of an automatic total station measuring about 40 prisms located in the landslide to a maximum distance of 1.800 km; one double-frequency GPS receiver connects in streaming by wireless communication with 4 single-frequency GPS in side the flow. Until December 2007 the monitoring network was operated with periodic static surveying followed by the data post-processing. From September 2007 until March 2008 the landslide deformation was evaluated by periodic surveys with the total station and the GPS system. This first measure showed that the displacements were influenced by the rainfall events and by the snow melting. The total displacements measured vary from centimeter scale in the crown zone, where retrogressive movements were in progress, to over 50 m in the flow track zone. Starting in March 2008 data acquisition by the total station system and GPS were automated in order to allow continuous and near-real-time data processing. The displacement data collected in one and a half year of continuous operation show different acceleration and deceleration phases as a result of the pore water pressure distribution inside the landslide. From March 2008, the total station and the GPS receiver were predisposed for the continuous monitoring. The successive deformation continued constantly and some monitored points recorded decimeter of cumulative displacements in May. In June the displacements progressively decreased due to the absence of the precipitation. Abundant rainfalls in July 2008 (200 mm of rainfall in 50 days) drove a new instability in the landslide. As a result some landslide sectors experienced accelerations measuring total displacements between one decimeter and ten meters in 20 days. Following this event acceleration was recorded at the end of October 2008, when 550 mm of cumulative rain fell in 40 days. During this event the velocity of the material varied between cm/day to m/day and the maximum reacted displacement was 15 m. Through the monitoring with data acquisition every 3 hours it was also possible to evaluate the continuous transfer of mass from the upper part of the slope to lower part. Measurements showed the reactivation of a downslope portion only one day after reactivation occurred upslope at a distance 200 m. The utilized monitoring system has proven reliable for continuous monitoring of an active earth flow with large deformations ranging up to meters for day also during the paroxysmal phases. Moreover, the complex behavior of the flow in the active phase and in each acceleration and deceleration phase was highlighted. For instance, the timing and intensity of movement propagation downslope as an effect of mass transfer and successive loading of lower slope portions was evidenced many times. This information cannot be obtained with borehole monitoring systems which are normally damaged when displacement exceeds some decimeters, nor can it be computed with comparable spatial coverage and data availability timing using other high precision methods, such as laser scanners or ground-based SAR. Another advantage of the adopted monitoring approach over other techniques is the wide angle of operation provided by the strategically beneficial location of the master

  15. Integrating Undergraduate Research and Teaching in Environmental Education: Ohio State's Earth Day Project.

    ERIC Educational Resources Information Center

    Wright, Pamela A.; Floyd, Donald W.

    1992-01-01

    Presents the results of a survey administered by college students to the university community (n=313) as part of an earth week class project designed to merge research, teaching, and community outreach. Discusses the survey as a teaching tool, research, and community outreach program. (21 references) (MCO)

  16. CVT/GPL phase 2 integrated testing. [in earth observations, space physics, and material sciences

    NASA Technical Reports Server (NTRS)

    Shurney, R. E.; Maybee, G.; Schmitt, S.

    1974-01-01

    Experiments representing earth observations, space physics, and material sciences disciplines were installed in the General Purpose Laboratory (GPL). The experiments and the GPL are described. The experiments interfaces the GPL and GPL support systems are assessed. The experiments were cloud physics, ionospheric disturbances, material sciences, high energy astronomy, and superfluid helium.

  17. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    ERIC Educational Resources Information Center

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  18. A technique for modelling p- n junction depletion capacitance of multiple doping regions in integrated circuits

    NASA Astrophysics Data System (ADS)

    Pinkham, Raymond; Anderson, Daniel F.

    1986-08-01

    The continuing advancements in integrated circuit technology have placed new burdons on the circuit design engineer, who must rely extensively upon computer simulation to correctly predict circuit behavior. One challenge is to develop better modelling techniques to more accurately deal with complex p- n junction structures often used in modern VLSI designs. This paper presents an easily implemented method for deriving parameters which accurately model the behavior of MOS VLSI structures containing complex p- n junction capacitance components. The methodology is applicable to both planar and laterally diffused junctions, whether formed by direct ion implantation or by diffusion from a finite or infinite source. The theories behind the equations used and results of the application of this new technique are discussed. A flow chart for a fitter program based on the new method is presented and described. The corresponding program written for the TI-59 scientific programmable calculator is available. Final model parameters are given and are shown to produce a numerical capacitance model which is accurate to within 2%.

  19. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    SciTech Connect

    Jantzen, C.M.

    1992-08-30

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF.

  20. Modeling of optical amplifier waveguide based on silicon nanostructures and rare earth ions doped silica matrix gain media by a finite-difference time-domain method: comparison of achievable gain with Er3+ or Nd3+ ions dopants

    NASA Astrophysics Data System (ADS)

    Cardin, Julien; Fafin, Alexandre; Dufour, Christian; Gourbilleau, Fabrice

    2015-03-01

    A comparative study of the gain achievement is performed in a waveguide optical amplifier whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd3+) or erbium ions (Er3+). Due to the large difference between population levels characteristic times (ms) and finite-difference time step (10-17s), the conventional auxiliary differential equation and finite-difference time-domain (ADE-FDTD) method is not appropriate to treat such systems. Consequently, a new two loops algorithm based on ADE-FDTD method is presented in order to model this waveguide optical amplifier. We investigate the steady states regime of both rare earth ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 104 mW/mm2 . Furthermore, the three dimensional distribution of achievable gain per unit length has been estimated in this pumping range. The Nd3+ doped waveguide shows a higher gross gain per unit length at 1064 nm (up to 30 dB/cm-1) than the one with Er3+ doped active layer at 1532 nm (up to 2 dB/cm-1). Considering the experimental background losses found on those waveguides we demonstrate that a significant positive net gain can only be achieved with the Nd3+ doped waveguide. The developed algorithm is stable and applicable to optical gain materials with emitters having a wide range of characteristic lifetimes.

  1. Integrating Real-time, Real-world Geoscience Experiences into Classroom Instruction with EarthLabs and the JOIDES Resolution

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Cooper, S. K.; Ledley, T. S.

    2013-12-01

    Inspiring the next generation of geoscientists and preparing students for the 21st century workforce requires lifting science outside of the classroom and giving learners the opportunity to think critically about real-world geoscience problems. The EarthLabs suite of climate science modules challenges students with a variety of learning experiences including current scientific data analysis, computer visualizations, satellite imagery, and engaging videos. Each module includes a series of hands-on activities to allow students to explore Earth's complex and dynamic climate history, leading to a deeper understanding of present and future changes to our planet. A new EarthLabs module in development 'Climate Detectives: An Expedition on board the JOIDES Resolution," focuses on Integrated Ocean Drilling Program (IODP) Expedition 341 to Southern Alaska. The module is structured to allow students to work collaboratively, mimicking scientific research groups on the JOIDES Resolution. As students assume the role of a scientist, learn about data collection methods, and analyze authentic data, they learn about the climate history and tectonic processes of the Southern Alaska continental margin, as well as explore the relationship between climate, sedimentation, and tectonics. The Project Based Learning (PBL) approach used in the module teaches students how to analyze data and solve problems like scientists, strengthening the development of higher order thinking skills and preparing them for college coursework. The 'Climate Detectives' Module also provides students with opportunities to interact with scientists through live video conferencing and pre-recorded video presentations by scientists. In this presentation, Expedition 341 Education Officer, Alison Mote, describes the new module, which takes students on an educational journey as they learn about the scientific objectives, methods, and data collection tools scientists use to conduct research on sediment cores retrieved from beneath the seafloor in the Gulf of Alaska during summer 2013. Students discover how we know what we know about the Earth through the lens of scientific ocean drilling.

  2. Integration of multi-discipline data processing for earth observing systems

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Chase, Robert

    1987-01-01

    The first steps taken to ensure the controlled evolution of existing facilities toward greater interoperability and sharing of resources among NASA-supported earth science and applications data systems (ESADS) are described. Recommendations made by the various panels during the 1987 ESADS Workshop are presented. The panels were concerned with directories and catalogs, data archives, data manipulation software, computational facilities, data storage media, database management, and networking. Consideration was also given to the tracking and tuning of overall development and management coordination issues.

  3. Sun-, Earth- and Moon-integrated simulation ray tracing for observation from space using ASAP

    NASA Astrophysics Data System (ADS)

    Breault, Robert P.; Kim, Sug-Whan; Yang, Seul-Ki; Ryu, Dongok

    2014-09-01

    The Space Optics Laboratory at Yonsei University, Korea, in cooperation with Breault Research Organization (BRO) in Tucson, Arizona, have invested significant research and development efforts into creating large scale ray tracing techniques for simulating "reflected" light from the earth with an artificial satellite. This presentation describes a complex model that combines the sun, the earth and an orbiting optical instrument combined into a real scale nonsequential ray tracing computation using BRO's Advanced Systems Analysis Program, ASAP®. The Sun is simulated as a spherically emitting light source of 695,500 km in diameter. The earth also is simulated as a sphere with its characteristics defined as target objects to be observed and defined with appropriate optical properties. They include the atmosphere, land and ocean elements, each having distinctive optical properties expressed by single or combined characteristics of refraction, reflection and scattering. The current embodiment has an atmospheric model consisting of 33 optical layers, a land model with 6 different albedos and the ocean simulated with sun glint characteristics. A space-based optical instrument, with an actual opto-mechanical prescription, is defined in an orbit of several hundreds to thousands of miles in altitude above the earth's surface. The model allows for almost simultaneous evaluations of the imaging and radiometric performances of the instrument. Several real-life application results are reported suggesting that this simulation approach not only provides valuable information that can greatly improve the space optical instrument performance but also provides a simulation tool for scientists to evaluate all phases of a space mission.

  4. Formation of an integrated holding company to produce rare-earth metal articles

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Grishaev, S. I.

    2013-12-01

    The possibility of formation of a Russian holding company for the production of rare-earth metal articles under conditions of its increasing demand on the world market is considered. It is reasonable to ensure stable business operation on the market under conditions of state-private partnership after the fraction of soled products is determined and supported by the competitive advantages of Russian products.

  5. Synchrotron X-Ray Topography Study of Structural Defects and Strain in Epitaxial Structures of Yb- and Tm-Doped Potassium Rare-Earth Double Tungstates and Their Influence on Laser Performance.

    SciTech Connect

    Raghothamachar, B.; Carvajal, J; Pujol, M; Mateos, X; Sole, R; Aguilo, M; Diaz, F; Dudley, M

    2010-01-01

    Monoclinic potassium rare-earth double tungstates [KRE(WO{sub 4}){sub 2}, RE = Y, Lu, Yb; KREW] are well suited as hosts for active lanthanide ion (Ln{sup 3+}) dopants for diode-pumped solid-state lasers, with particular interest in thin-disk laser configurations when they are grown as thin films. Using synchrotron white-beam x-ray topography, we have imaged defects and strain in top-seeded solution-grown (TSSG) bulk substrates of different rare-earth tungstates as well as within Yb{sup 3+}- and Tm{sup 3+}-doped epitaxies for thin-disk laser applications grown on these substrates by liquid-phase epitaxy. Higher structural stress in Yb:KYW/KYW epitaxies compared with Yb:KLuW/KLuW epitaxies is found to lower efficiency in laser operation. The quality of Tm:KLuW/KLuW epitaxial films is sensitive to doping level, film thickness, and growth rate. Inhomogeneous stresses within the layers are dominated by lattice-mismatch effects rather than by crystallographic anisotropy.

  6. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be spatially extensive, from sub-room-size scale to ten-kilometer scale. The DUSEL sites with vertical depth and lateral extent can accommodate many different experiments. Hydrologic studies can characterize the in-flow along drifts, ramps, and shafts. Geophysical and rock mechanics studies can have seismic and electromagnetic sensors stationed on site, for both local monitoring of excavations and long-term stability, and mine-scale network of sensors to form a large aperture for tomography imaging. The geo-biochemical studies can include the ecological evaluation of the effects of introduced materials and the search for the origin of life in isolated fluid pockets at depth. The muon flux can be measured underground to detect empty space (or lack of it) above detectors, as demonstrated at the Chephren pyramid, Egypt, in the 1970s and currently at the Pyramid of the Sun, Mexico. Conventional geophysical tomography, with wave propagation through rock mass, can be extended to include particle rays, with high-energy muon flux as an example. Muons interacting with atoms have implications for both geochemical and biological processes. This type of research can further promote collaboration between earth scientists with physicists. A deep laboratory can accommodate a deep campus for suites of physics detectors, and several campuses at different depths within the same site for earth science experiments in rock mechanics, hydrology, geochemistry, ecology, geo-microbiology, coupled processes, and many other branches of earth and planetary sciences.

  7. Optical and spectroscopic properties of a new erbium-doped soda-lime-alumino-silicate glass for integrated optical amplifiers

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Bettinelli, M.; Brenci, M.; Calzolai, R.; Chiasera, A.; Ferrari, M.; Matterelli, M.; Montagna, M.; Nunzi Conti, G.; Pelli, S.; Sebastiani, S.; Siligardi, S.; Speghini, A.; Righini, G. C.

    2006-01-01

    Silicate glasses are among the best hosts for rare-earth ions, especially for the development of integrated optic amplifiers and lasers, due to their chemical robustness and adaptability to different waveguide fabrication process. Their application to the manufacturing of optical amplifiers, however, may be limited by the relatively narrow fluorescence bandwidth. Here the results of an in-depth study of the effect of an increasing content of alumina on the broadening of the emission bandwidth are reported. We synthesized and characterized a new set of glasses: their basic composition was of the type SiO II - Na IIO - CaO - Al IIO 3, with small percentages of P IIO 5 and K IIO. Alumina content was varied from about 1% to 20 mol%. An almost constant concentration of erbium oxide ( ~ 0.4 mol% ) was also present. The spectroscopic properties of these glasses, namely absorption and emission spectra, radiative and experimental lifetimes, are discussed. The characterization of the optical waveguides, fabricated in these glasses by ion-exchange method, is presented as well.

  8. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  9. The effect of Ce3+ ions on the spectral and decay characteristics of luminescence phosphate-borate glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Polisadova, E. F.; Belikov, K. N.; Egorova, N. L.

    2014-05-01

    The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J ? 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.

  10. Integrating Plant Evolution into the Study of Fire in the Earth System

    NASA Astrophysics Data System (ADS)

    Lehmann, C.; Archibald, S.

    2014-12-01

    20% of the Earth's land surface burns annually representing a critical exchange of energy between the land and atmosphere via combustion. Fires range from small spreading surface fires to intense dramatic crown fire events, depending on the fuels and climate where they burn. Fire is a powerful selective force on plants: over the last 420 million years the plant traits required to tolerate fire, and in some cases to promote particular types of fire regimes have evolved. However, most Earth System studies focus on the links between climate and fire, ignoring the fact that these relationships are mediated by the fuels - by plant structure and function. We argue via multiple lines of evidence that the flammability of an ecosystem is influenced by the vegetation present, and that this vegetation is not a passive outcome of certain climate and fire properties, but is also the result of evolutionary forces, biological and biophysical feedbacks and biogeographic contingencies. Hence, understanding current patterns of fire and vegetation, as well as longer-term patterns of fire over deep time, requires a framework that can incorporate evolution and biogeography, and in particular, plant traits.

  11. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  12. Impact: an Integrated Approach (Space and Ground) for Monitoring the Threat of Earth Orbit Corssing Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Bussolino, L.; Somma, R.

    The threat of possible collision of asteroids and comets with our planet has reached an international stage since 1990 when U.S.A. Congress set up a dedicated committee for the analysis and the assessment of this problem.The U.N. organized a congress later on to summarize the current knowledge on this subject as well as the Europea Council recommended its member states to conduct studies to further deepen the understanding in terms of tackling and solving this kind of problem interesting the entire world. IMPACT is the acronym for " International Monitoring Program for Asteroids and Comets Threats " coming out as proposal from a study funded by the italian region PIEMONTE throughout the Civil Protection Bureau and performed by the Planetology Group of the Astronomical Observatory of Torino ( Italy ) and Alenia Spazio for the engineering part. They have carried out a series of analyses aimed at contributing in subsequent steps to the solution of the two fundamental problems associated to the potential impact threat : the assessment of the numbers of killers/terminators and the impact rates from one side and the development of the idea of considering space segments for supporting activities of discovery as well as the physical and mineralogical characterization using satellites in orbit around the Earth. other additional studies also funded by the European Space Agency where the space technology appears to offer a great contribution if conveniently integrated with the Earth networks for Potentially Hazardous Asteroids ( PHA ) detection. An international approach for monitoring this threat for the Earth is then proposed.

  13. Photoinduced phenomena in chalcogenide glasses doped with metals

    E-print Network

    Boolchand, Punit

    on relaxation of photodarkening in a-As2Se3 doped with Sn and rare-earth (RE) ions (Dy, Pr, Hon, Sm3 Nd, Er3 for chalcogenide glasses doped with rare-earth ions as perspective materials for fibre optics amplifiers operating and the kinetics ofphotodarkening in amonhous As2Se3:Sn thin films at %) and and AsSe3 doped with rare-earth ions

  14. Effect of Knowledge Integration Activities on Students' Perception of the Earth's Crust as a Cyclic System.

    ERIC Educational Resources Information Center

    Kali, Yael; Orion, Nir; Eylon, Bat-Sheva

    2003-01-01

    Characterizes students' understanding of the rock cycle system. Examines effects of a knowledge integration activity on their system thinking. Interprets answers to an open-ended test using a systems thinking continuum ranging from a completely static view of the system to an understanding of the system's cyclic nature. Reports meaningful…

  15. An integrated study of earth resources in the state of California based on ERTS-1 and supporting aircraft data

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Thorley, G. A.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, V. R.; Wildman, W. E.; Huntington, G. L. (principal investigators)

    1972-01-01

    There are no author-identified significant results in this report. Results of an integrated study of earth resources in the state of California using ERTS-1 and supporting aircraft data are presented. Areas of investigation cover (1) regional agricultural surveys; (2) solving water resource management problems; (3) resource management in Northern California using ERTS-1 data; (4) analysis of river meanders; (5) assessment and monitoring change in west side of the San Joaquin Valley and central coastal zone of state; (6) assessment and monitoring of changes in Southern California environment; (7) digital handling and processing of ERTS-1 data; (8) use of ERTS-1 data in educational and applied research programs of the Agricultural Extension Service; and (9) identification, classification, and mapping of salt affected soils.

  16. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 4, JULY/AUGUST 2002 749 Rare-Earth-Doped GaN: Growth, Properties, and

    E-print Network

    Cincinnati, University of

    by inductively coupled plasma etching is also reviewed, along with waveguide optical characterization. Index is carried out by solid-source molecular beam epitaxy, and a plasma N2 source. Growth mechanisms. It was shown by Favennec et al. [2] that the thermal quenching in Er-doped semiconductors decreases

  17. Rare Earth Ion Effects on the Pseudo-Gap in Electron-Doped Superconductors And Possible Nodeless D-Wave Gap

    SciTech Connect

    Park, S.R.; Leem, C.S.; Roh, Y.S.; Choi, K.J.; Kim, J.H.; Kim, B.J.; Koh, H.; Eisaki, H.; Lu, D.H.; Shen, Z.-X.; Armitage, N.P.; Kim, C.

    2009-05-21

    We report angle resolved photoemission (ARPES) studies on electron-doped cuprate superconductor Sm{sub 2-x}Ce{sub x}CuO{sub 4} (x = 0.14 and 0.18). A wide energy range scan shows clear 'waterfall' effect at an energy scale close to 500 meV which is consistent with the value found in Nd{sub 2-x}Ce{sub x}CuO{sub 4} (NCCO) but larger than that from hole-doped superconductors. High resolution results from both dopings show pseudo-gap effects that were observed in NCCO. However, the effects are found to be stronger than that observed in optimally doped NCCO. The overall electronic structure is well understood within a simple model in which a {radical}2 x {radical}2 static order is assumed. Both ARPES and optical measurements give the coupling strengths to the Q = ({pi}/2,{pi}/2) (due to the {radical}2 x {radical}2 order) to be about 0.1 eV, compatible with each other. The effect is strong enough to push the band near the nodal region below the Fermi energy, resulting in possible nodeless d-wave superconductivity where zero energy quasi-particle excitation is inhibited.

  18. Luminescent properties of rare-earth-metal ion-doped KLaNb{sub 2}O{sub 7} with layered perovskite structures

    SciTech Connect

    Kudo, Akihiko

    1997-03-01

    The photochemical properties of layered materials has been extensively studied, but the photochemical properties of two-dimensional oxides of layered compounds has not. This study examined the photoluminescence and thermoluminescence of lanthanide-metal-ion-doped KLaNb{sub 2}O{sub 7} with a layered perovskite structure. 16 refs., 5 figs.

  19. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  20. Distributed Earth observation data integration and on-demand services based on a collaborative framework of geospatial data service gateway

    NASA Astrophysics Data System (ADS)

    Xie, Jibo; Li, Guoqing

    2015-04-01

    Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.

  1. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    USGS Publications Warehouse

    Iverson, Richard M.; Chaojun Ouyang

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  2. Integrated propulsion for near-Earth space missions. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    The calculation approach is described for parametric analysis of candidate electric propulsion systems employed in LEO to GEO missions. Occultation relations, atmospheric density effects, and natural radiation effects are presented. A solar cell cover glass tradeoff is performed to determine optimum glass thickness. Solar array and spacecraft pointing strategies are described for low altitude flight and for optimum array illumination during ascent. Mass ratio tradeoffs versus transfer time provide direction for thruster technology improvements. Integrated electric propulsion analysis is performed for orbit boosting, inclination change, attitude control, stationkeeping, repositioning, and disposal functions as well as power sharing with payload on orbit. Comparison with chemical auxiliary propulsion is made to quantify the advantages of integrated propulsion in terms of weight savings and concomittant launch cost savings.

  3. MEOS Microsatellite Earth Observation using Miniature Integrated-Optic IR Spectrometers

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman

    Our planetary atmosphere helps to regulate the Earth's thermal budget and the resulting global climate by controlling the energy balance between the incident solar radiation and the thermal emission to space from the Earth's atmosphere and surface. Certain atmospheric gases, most importantly H2 O vapour and CO2 , can absorb some of the Earth's emitted IR radiation and trap it in the atmosphere to provide an atmospheric greenhouse effect that currently adds about 38 K to the Earth's mean surface temperature. The associated greenhouse gas (GHG) and water cycles are a complex balance of interactions among surface ecosystems and atmospheric processes. The natural water and carbon cycles are being measurably disrupted by anthropogenic activities. Since the industrial revolution, significant anthropogenic sources of greenhouse gases and aerosols have evolved, while natural sinks, such as forests and wetlands, are being destroyed. Changes in the land cover affect the balance of GHG sources and sinks, as well as the Albedo and resultant surface temperature. Water vapour, the most abundant GHG, is affected indirectly though the influence of aerosols on cloud formation and precipitation patterns, and directly through the influence of surface temperatures on the water evaporation rates. There is also positive feedback between the water and carbon cycles. For example, drought can result in desertification with subsequent release of stored carbon. It is clear that the common thread in all of these climate-related effects is the interaction between the surface ecosystems and the carbonand nitrogen-containing gases in the lower troposphere. Uptake of CO2 by growing vegetation, release of CH4 and N2 O by soil processes, and the effects of carbon and water cycle chemistry all interact strongly in a system that is both ex-tremely complex and poorly understood at the present time. In order to quantify these processes and provide a clearer prediction of their likely effects in the future, the MEOS Miniature Earth Observing Satellite will innovatively combine remote atmospheric/land-cover measurements with ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of surface ecosystems. MEOS will provide lower tropospheric CO2 , CH4 , CO, N2 O, H2 O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of miniature lineimaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 2.5-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. The separate limb and nadir instrument suites each feature two complementary NIR miniature spectrometers that will operate in parallel, alternating the collected optical signal between the high-resolution Fabry-Perot guided-wave FP-IOSPEC spectrometer with simultaneous multiple microchannels at 0.03 FWHM with SNR>400 and the 1220 to 2450 nm broad-band spectrometer with 1.2 nm FWHM such that one undergoes the illuminated segment of the processing while the other spectrometer undergoes its dark signal processing. This spectral region provides several harmonic optical absorption bands associated with CO2 , CH4 , CO, H2 O and N2 O. The innovative data synergy of the coarse resolution broad-band spectra with the scanned spectral measurements of the trace-gas fine features at 0.03 nm FWHM in multiple microchannels will be used to improve the accuracy of the trace gas retrievals relative to current missions. In addition, the mission will retrieve cloud top pressures to better than ±0.1 kPa from measurements of the 0.76 mm O2 A band with 0.02 nm resolution and will conta

  4. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  5. Integrated Solid Earth Science: the right place and time to discover the unexpected? (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd

    2013-04-01

    The fascination of learning more about the way system Earth operates has driven generations of Earth scientists. This has been the case for early pioneers such as Arthur Holmes, focusing on the geological record in continental settings, as well as for the founding fathers of plate tectonics, who built upon the results of exploring the ocean floor. Two years ago we celebrated the centenary of the discovery by Mohorovicic of the seismic discontinuity that separates the crust from the mantle, which now carries his name. Reading the rocks and mapping the (sub)surface of the Earth has provided the foundation for a great deal of what we conceptually pursue today in developing and validating coupled deep Earth and surface processes. The unexpected is probably characterizing most of my scientific career. It started in 1968 when, as a student, entering the geology program of Groningen University headed by Professor Philip Kuenen, a pioneer in marine geology and sedimentology, the textbook of Arthur Holmes just happened to be my first purchase. It was during those years that plate tectonics drastically changed everything we were learning. I was also privileged to enter a few years later as an MSc student the Utrecht geophysics school at a time where Nico Vlaar as a young professor was developing a vigorous research program with a focus on seismology, attracting and stimulating many talented students. When he and Rinus Wortel started research on Tectonophysics in Utrecht, I decided to go for a PhD research project tackling the problem of the initiation of subduction, a first order problem in geodynamics, with still many aspects to be resolved. This research and the joint work with Rinus Wortel on modeling intraplate stresses in the Faralon, Nazca and Indo-Australian plates led quite unexpectedly to exploring, together with Kurt Lambeck, intraplate stress fluctuations in the lithosphere as possible tectonic causes for the origin of third-order cycles in relative sea-level. Those cycles were detected as a result of the pioneering work on the stratigraphic record of sedimentary basins and continental margins from all over the world by Peter Vail, Bilal Haq and others from Exxon. It was at this time, that sedimentary basins became a frontier in the integration of quantitative geology and geophysics. Sedimentary basins do not only provide a powerful source of information on the evolution of the underlying lithosphere and climate fluctuations, but also contain mankind's main reservoirs of geo-energy and geo-resources. It was Peter Ziegler, head of global geology at Shell International, who was the prime mentor in my somewhat unexpected scientific journey in sedimentary basins. These became the main research target of the Tectonics research group I established in 1988 in Amsterdam. In these years it became increasingly evident that the rheology of the lithosphere exerts a crucial control on the evolution of basins, but also on continental topography. It is on this topic that the cooperation over more than two decades with Evgenii Burov, addressing issues like the rheological structure of Europe's lithosphere, rift shoulder uplift and the interplay of lithospheric folding and mantle-lithosphere interactions, has, been very fruitful. Another unexpected milestone has been the opportunity to build up, parallel to the research efforts in field studies and numerical modeling, an analogue tectonic laboratory in our group. This brings me to another issue, also completely unforeseen: the integration of earth science in Europe, particularly taking off after the disappearance of the Iron Curtain. For my group, the latter marked the beginning of a very fruitful cooperation in particular with the groups of Frank Horvath in Budapest and Cornel Dinu in Bucharest, addressing the fascinating solid Earth dynamics of the Carpathians and Pannonian basin. Over the last few years, it has been become evident that integration in the solid earth science is the way to go. Not only on a national level, such as pursued by the Netherlands Research School of Integrate

  6. Preparation and applications of germanium and fluorine doped microstructured fibers

    NASA Astrophysics Data System (ADS)

    Schuster, K.; Kobelke, J.; Schwuchow, A.; Leich, M.; Becker, M.; Rothhardt, M.; Röpke, U.; Kirchhof, J.; Bartelt, H.; Geernaert, T.

    2007-05-01

    The doping of silica yields additional degrees of freedom to vary the optical parameters of index guided and band gap controlled microstructured optical fibers (MOFs). Aside from the widely investigated rare earth doped microstructured fibers for lasers also the integration of conventionally doped structural elements with passive functions into MOFs allows to enhance effectively the optical performance of such fibers. We report on progress in preparation of microstructured fibers with air holes and solid structural elements composed of germanium and fluorine doped silica materials. The microstructured fibers were prepared by stack-and-draw technology. The starting materials are preform rods and tubes with graded dopant concentration prepared by MCVD and sintering technology. They were elongated to millimeter dimensions before packaging to final MOF preforms. We prepared MOFs with both holey core and holey cladding. The microstructuring of the holey cladding is achieved with fluorine doped capillaries. Several applications have been investigated. The high photosensitivity of germanium-silica MOFs makes possible the inscription of Bragg gratings with high efficiency. In fiber evanescent field sensors, such microstructured fibers improve the overlap between the propagating light field and the analyte and allow therefore an increased sensitivity e.g. for gas sensing with optical fibers. Solid MOFs with multiple cores in a highly precise array arrangement can been investigated as a model system for the study of nonlinear dynamics in discrete optics.

  7. The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth

    NASA Astrophysics Data System (ADS)

    Blossfeld, Mathis

    2015-01-01

    In 2007, the Global Geodetic Observing System (GGOS) was installed as a full component of the International Association of Geodesy (IAG). One primary goal of GGOS is the integration of geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. Thereby, GGOS is based on the data and services of the IAG. Besides the combination of different geodetic techniques, also the common estimation of the station coordinates (TRF), Earth Orientation Parameters (EOP) and coefficients of the Earth's gravitational field (Stokes coefficients) is necessary in order to reach this goal. However, the combination of all geometric and gravimetric observation techniques is not yet fully realized. A major step towards the GGOS idea of parameter integration would be the understanding of the existing correlations between the above mentioned fundamental geodetic parameter groups. This topic is the major objective of this thesis. One possibility to study the interactions is the use of Satellite Laser Ranging (SLR) in an intertechnique combination with Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) or the intra-technique combination of multiple SLR-tracked satellites. SLR plays a key role in this thesis since it is the unique technique which is sensitive to all parameter groups and allows an integrated parameter estimation with very high accuracy. The present work is based on five first-author publications which are supplemented by four co-author publications. In this framework, for the first time an extensive discussion of a refined global Terrestrial Reference Frame (TRF) estimation procedure, the estimation of so-called Epoch Reference Frames (ERFs) is presented. In contrast to the conventional linear station motion model, the ERFs provide frequently estimated station coordinates and Earth Orientation Parameters (EOP) which allow to approximate not modeled non-linear station motions very accurately. Thereby, SLR provides the origin information for the frequently estimated ERFs. The neglected non-linear station motions in the conventional TRF realizations are forced via the correlation of translations and rotations (due to a non-optimal ground station network) into the terrestrial pole coordinates. In contrast to this, the pole coordinates of the Epoch Reference Frame (ERF)s are only partly biased. However, due to the sparse and varying ground station network, the ERFs have a more unstable datum than the conventional TRFs. One possibility to improve the ERF datum stability is to enlarge the sampling interval (e.g., from one week to four weeks) which results in a decreased ability of the ERFs to monitor short-term station motions. Besides the pole coordinates, also significantly corrupted satellite-derived Length Of Day (LOD) values have been found. The reason for this systematic error is investigated in this thesis on the basis of SLR estimates. The theoretical relationship between the orbital elements, LOD and the Stokes coefficient C20 is worked out. To quantify this interaction, several time series using different a priori models for the Earth's gravitational field and different satellite constellations have been computed and compared. Furthermore, secular effects on the nodal precession due to relativistic effects and empirical accelerations are analyzed. In addition to the separate estimation of station coordinates and EOP, also the estimation of Stokes coefficients is analyzed. In order to further decorrelate the orbital elements and Stokes coefficients, the combination of up to ten different SLR-tracked satellites have been studied. Thereby, the impact of each satellite on the decorrelation of satellite orbit parameters and C20 is investigated. Afterwards, the resulting second-degree Stokes coefficients are validated w.r.t. other external state-of-the-art time series and datasets (e.g., equatorial excitation functions of polar motion, Antarctic ice mass trends). The last part of this thesis discusses in detail the interactions and correlations which have t

  8. Integration of lessons from recent research for "Earth to Mars" life support systems

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  9. Towards Designing an Integrated Earth Observation System for the Provision of Solar Energy Resource and Assessment

    NASA Technical Reports Server (NTRS)

    Stackouse, Paul W., Jr.; Renne, D.; Beyer, H.-G.; Wald, L.; Meyers, R.; Perez, R.; Suri, M.

    2006-01-01

    The GEOSS strategic plan specifically targets the area of improved energy resource management due to the importance of these to the economic and social viability of every nation of the world. With the world s increasing demand for energy resources, the need for new alternative energy resources grows. This paper overviews a new initiative within the International Energy Agency that addresses needs to better manage and develop solar energy resources worldwide. The goal is to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information of the solar radiation resources at the Earth's surface in easily-accessible formats and understandable quality metrics. The scope of solar resource assessment information includes historic data sets and currently derived data products using satellite imagery and other means. Thus, this new task will address the needs of the solar energy sector while at the same time will serve as a model that satisfies GEOSS objectives and goals.

  10. Visual-vestibular integration as a function of adaptation to space flight and return to Earth

    NASA Technical Reports Server (NTRS)

    Reschke, Millard R.; Bloomberg, Jacob J.; Harm, Deborah L.; Huebner, William P.; Krnavek, Jody M.; Paloski, William H.; Berthoz, Alan

    1999-01-01

    Research on perception and control of self-orientation and self-motion addresses interactions between action and perception . Self-orientation and self-motion, and the perception of that orientation and motion are required for and modified by goal-directed action. Detailed Supplementary Objective (DSO) 604 Operational Investigation-3 (OI-3) was designed to investigate the integrated coordination of head and eye movements within a structured environment where perception could modify responses and where response could be compensatory for perception. A full understanding of this coordination required definition of spatial orientation models for the microgravity environment encountered during spaceflight.

  11. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    SciTech Connect

    Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef; Pongratz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

    2010-11-15

    This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improved collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).

  12. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  13. Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing

    NASA Astrophysics Data System (ADS)

    Bernhardi, E. H.; de Ridder, R. M.; Wörhoff, K.; Pollnau, M.

    2013-03-01

    We report on diode-pumped distributed-feedback (DFB) and distributed-Bragg-reflector (DBR) channel waveguide lasers in Er-doped and Yb-doped Al2O3 on standard thermally oxidized silicon substrates. Uniform surface-relief Bragg gratings were patterned by laser-interference lithography and etched into the SiO2 top cladding. The maximum grating reflectivity exceeded 99%. Monolithic DFB and DBR cavities with Q-factors of up to 1.35×106 were realized. The Erdoped DFB laser delivered 3 mW of output power with a slope efficiency of 41% versus absorbed pump power. Singlelongitudinal- mode operation at a wavelength of 1545.2 nm was achieved with an emission line width of 1.70 0.58 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at wavelengths near 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. An Yb-doped dualwavelength laser was achieved based on the optical resonances induced by two local phase shifts in the DFB structure. A stable microwave signal at ~15 GHz with a -3-dB width of 9 kHz and a long-term frequency stability of +/- 2.5 MHz was created via the heterodyne photo-detection of the two laser wavelengths. By measuring changes in the microwave beat signal as the intra-cavity evanescent laser field interacts with micro-particles on the waveguide surface, we achieved real-time detection and accurate size measurement of single micro-particles with diameters ranging between 1 ?m and 20 ?m, which represents the typical size of many fungal and bacterial pathogens. A limit of detection of ~500 nm was deduced.

  14. Investigation of Interactions between the Doped Rare Earth Ions and Encaged Radicals in C12A7:RE3 + Using Optical and EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Layfield, Carter; Ma, Li; Wang, Xiao-Jun

    2015-03-01

    Doped calcium aluminates (C12A7) (C12A7:Eu3 + and C12A7:Mn2 +) have been prepared using solid state reaction methods. The Eu3 + and Mn2 + dopants can both occupy the Ca2 + positions in C12A7.The unique cage-like structure of C12A7 allows different anions, such as oxygen, hydrogen to be trapped in cage by modifying the sample preparation or treatment conditions. The effects of these encaged anions/radicals on the local symmetries of Ca2 + have been studied using photoluminescence from C12A7 doped with Eu3 +, which is a sensitive environmental probe. The effects can also be independently observed from the hyperfine structure of electron paramagnetic resonance spectra in C12A7 doped with Mn2 +. Our results showed: 1) the presence of 5D0 to 7F0 transition implies that Eu3 + is at a non-centrosymmetric site in all caged radical centers; 2) this singlet transition is doubled when superoxides are encaged in C12A7, indicating that the sites of calcium (or Eu2 +) ions are not identical due to the distortion of the encaged anions; 3) a blue shift of the transition occurred due to nephelauxetic effects in asymmetry sites. We have also observed double sets of EPR signals of sextet hyperfine splitting for Mn2 + in C12A7-O but single sets in C12A7-H. We conclude that the local symmetry around Ca2 + positions are distorted more when superoxide is encaged in C12A7. Finally, RE3 + doped C12A7 samples have been systematically prepared and the interactions between the encaged ions and RE3 + emission centers studied using EPR spectroscopy.

  15. The inner filter effect of Cr(VI) on Tb-doped layered rare earth hydroxychlorides: new fluorescent adsorbents for the simple detection of Cr(VI).

    PubMed

    Kim, Hyunsub; Lee, Byung-Il; Byeon, Song-Ho

    2015-01-14

    Terbium-doped layered yttrium hydroxychlorides (LYH:xTb) were explored for the simple and convenient detection of Cr(VI) in aqueous solution, where the effective overlap of excitation bands of LYH:xTb with absorption bands of Cr(VI) constructs a new inner filter effect system. The shielding of excitation light for LYH:xTb by adsorbed Cr(VI) was so effective that a feasible detection sensitivity could be achieved. PMID:25417807

  16. Tin oxide thick film by doping rare earth for detecting traces of CO{sub 2}: Operating in oxygen-free atmosphere

    SciTech Connect

    Xiong, Ya; Zhang, Guozhu; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2014-04-01

    Highlights: • La, Gd, and Lu doped SnO{sub 2} with their sensing properties toward CO{sub 2} were compared. • The microstructures of SnO{sub 2}-based nanoparticles were elaborately characterized. • La-SnO{sub 2} thick film shows superior response toward trace ppm CO{sub 2}. • Our sensing material can be recommended to employ in oxygen-free environment. - Abstract: SnO{sub 2} thick films doped with atomic ratios ranging from 0 up to 8 at.% La, 8 at.% Gd, 8 at.% Lu were fabricated, respectively, via hydrothermal and impregnation methods. The crystal phase, morphology, and chemical composition of the SnO{sub 2}-based nanoparticles were characterized by XRD, FE-SEM, EDX, HRTEM and XPS. Sensing properties of La-SnO{sub 2}, Gd-SnO{sub 2}, Lu-SnO{sub 2} films, as well as the pure SnO{sub 2} film, were analyzed toward CO{sub 2} in the absence of O{sub 2}. It was found that the optimal doping element was La and the best doping ratio was 4 at.%. The maximum response appeared at an operating temperature of 250 °C, on which condition the 4 at.% La-SnO{sub 2} exhibited a remarkable improvement of response from 5.12 to 29.8 when increasing CO{sub 2} concentration from 50 to 500 ppm. Furthermore, the working mechanism underlying such enhancement in CO{sub 2}-sensing functions by La additive in the absence of O{sub 2} was proposed and discussed.

  17. MODELING THE DYNAMICS OF THE INTEGRATED EARTH SYSTEM AND THE VALUE OF GLOBAL ECOSYSTEM SERVICES USING THE GUMBO MODEL. (R827169)

    EPA Science Inventory

    A global unified metamodel of the biosphere (GUMBO) was developed to simulate the integrated earth system and assess the dynamics and values of ecosystem services. It is a `metamodel' in that it represents a synthesis and a simplification of several existing dynamic gl...

  18. INTEGRATING EARTH OBSERVATION AND FIELD DATA INTO A LYME DISEASE MODEL TO MAP AND PREDICT RISKS TO BIODIVERSITY AND HUMAN HEALTH

    EPA Science Inventory

    DW-75-92243901
    Title: Integrating Earth Observation and Field Data into a Lyme Disease Model to Map and Predict Risks to Biodiversity and Human HealthDurland Fish, Maria Diuk-Wasser, Joe Roman, Yongtao Guan, Brad Lobitz, Rama Nemani, Joe Piesman, Montira J. Pongsiri, F...

  19. Effects of some rare earth and carbonate-based co-dopants on structural and electrical properties of samarium doped ceria (SDC) electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Anwar, Mustafa; Khan, Zuhair S.; Mustafa, Kamal; Rana, Akmal

    2015-09-01

    In the present study, samarium doped ceria (SDC) and SDC-based composite with the addition of K2CO3 were prepared by co-precipitation route and effects of pH of the solution and calcination temperature on microstructure of SDC and SDC-K2CO3, respectively, were investigated. Furthermore, experimentation was performed to investigate into the ionic conductivity of pure SDC by co-doping with yttrium i.e., YSDC, XRD and SEM studies show that the crystallite size and particle size of SDC increases with the increase in pH. The SEM images of all the samples of SDC synthesized at different pH values showed the irregular shaped and dispersed particles. SDC-K2CO3 was calcined at 600?C, 700?C and 800?C for 4 h and XRD results showed that crystallite size increases while lattice strain, decreases with the increase in calcination temperature and no peaks were detected for K2CO3 as it is present in an amorphous form. The ionic conductivity of the electrolytes increases with the increase in temperature and SDC-K2CO3 shows the highest value of ionic conductivity as compared to SDC and YSDC. Chemical compatibility tests were performed between the co-doped electrolyte and lithiated NiO cathode at high temperature. It revealed that the couple could be used up to the temperature of 700?C.

  20. TIGER-NET- Enabling An Earth Observation Capacity For Integrated Water Resource Management In Africa

    NASA Astrophysics Data System (ADS)

    Walli, A.; Tøttrup, C.; Naeimi, V.; Bauer-Gottwein, P.; Bila, M.; Mufeti, P.; Tumbulto, J. W.; Rajah, C.; Moloele, LS.; Koetz, B.

    2013-12-01

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost- effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir inventory, water quality monitoring, water demand planning as well as flood forecasting and monitoring.

  1. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation and preservation of long-tail data during its life-cycle; (ii) BrownDog, which enhances the machine interpretability of large unstructured and uncurated data; and (iii) CSDMS (Community Surface Dynamics Modeling System), which "componentizes" models by providing plug-and-play environment for models integration.

  2. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Walter, N.; Amils, R.; Rull, F.; Klingelhöfer, A. K.; Kviderova, J.; Sarrazin, P.; Foing, B.; Behar, A.; Fleischer, I.; Parro, V.; Garcia-Villadangos, M.; Blake, D.; Martin Ramos, J. D.; Direito, S.; Mahapatra, P.; Stam, C.; Venkateswaran, K.; Voytek, M.

    2011-07-01

    Recently reported results from latest Mars Orbiters and Rovers missions are transforming our opinion about the red planet. That dry and inhospitable planet reported in the past is becoming a wetter planet with high probabilities of water existence in the past. Nowadays, some results seem to indicate the presence of water beneath the Mars surface. But also mineralogy studies by NASA Opportunity Rover report iron oxides and hydroxides precipitates on Endurance Crater. Sedimentary deposits have been identified at Meridiani Planum. These deposits must have generated in a dune aqueous acidic and oxidizing environment. Similarities appear when we study Rio Tinto, and acidic river under the control of iron. The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the Universe, and as a consequence on Mars and other planetary bodies with astrobiological interest. The compilation of data produced by the ongoing missions offers an interested view for life possibilities to exist: signs of an early wet Mars and rather recent volcanic activity as well as ground morphological characteristics that seem to be promoted by liquid water. The discovery of important accumulations of sulfates and the existence of iron minerals such as jarosite in rocks of sedimentary origin has allowed specific terrestrial models to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of micro-organisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. Some particular protective environments should house the organic molecules and bacterial life forms in harsh environments such as Mars surface supporting microniches inside precipitated minerals or inside rocks. Terrestrial analogues could help us to afford the comprehension of habitability (on other planetary bodies). We are reporting here the multidisciplinary study of some endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Río Tinto shelter life forms that are difficult to visualize by eye. This interdisciplinary field analogue campaign was conducted in the framework of the CAREX FP7 EC programme.

  3. Svalbard Integrated Arctic Earth Observing System (sios): Facilitating Easy Access to Multidisciplinary Arctic Data Through the Brokering Approach.

    NASA Astrophysics Data System (ADS)

    Bye, B. L.; Godøy, Ø.

    2014-12-01

    Environmental and climate changes are important elements of our global challenges. They are observed at a global scale and in particular in the Arctic. In order to give better estimates of the future changes, the Arctic has to be monitored and analyzed by a multi-disciplinary observation system that will improve Earth System Models. The best chance to achieve significant results within a relatively short time frame is found in regions with a large natural climate gradient, and where processes sensitive to the expected changes are particularly important. Svalbard and the surrounding ocean areas fulfil all these criteria. The vision for SIOS is to be a regional observational system for long term acquisition and proliferation of fundamental knowledge on global environmental change within an Earth System Science perspective in and around Svalbard. SIOS will systematically develop and implement methods for how observational networks are to be construed. The distributed SIOS data management system (SDMS) will be implemented through a combination of technologies tailored to the multi-disciplinary nature of the Arctic data. One of these technologies is The Brokering approach or "Framework". The Brokering approach provides a series of services such as discovery, access, transformation and semantics support to enable translation from one discipline/culture to another. This is exactly the challenges the SDMS will have to handle and thus the Brokering approach is integrated in the design of the system. A description of the design strategy for the SDMS that includes The Brokering approach will be presented. The design and implementation plans for the SDMS are based on research done in the EU funded ESFRI project SIOS and examples of solutions for interoperable systems producing Arctic datasets and products coordinated through SIOS will be showcased. The reported experience from SIOS brokering approach will feed into the process of developing a sustainable brokering governance in the framework of Research Data Alliance. It will also support the Global Earth Observation System of Systems (GEOSS). This is a contribution to increase our global capacity to create interoperable systems that provide multi-disciplinary dataset and products.

  4. Expedition Earth and Beyond: Using NASA Data Resources and Integrated Educational Strategies to Promote Authentic Research in the Classroom

    NASA Technical Reports Server (NTRS)

    Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue

    2009-01-01

    Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and diverse research opportunities that are inspired by views of Earth from space taken by astronauts on board the International Space Station. The interest and connection to viewing our home planet from space will inevitably spark questions that will drive students to pursue their research investigations, as well as forming a basis for comparisons to the exploration of other planetary bodies in our solar system.

  5. Supplementary Figure 1| Fabrication procedure of hybrid CNT/IGZO complementary integrated circuits. a, Individual bottom-gate electrodes are patterned by photolithography on a highly doped p-Si

    E-print Network

    Zhou, Chongwu

    integrated circuits. a, Individual bottom-gate electrodes are patterned by photolithography on a highly doped to form the dielectric layer for the circuits. c, Incubation of 98% semiconducting enriched CNT solution by DC magnetron sputtering at 180 W. h, The circuit is completed by patterning the electrodes for the n

  6. On purpose in science, conservation and government. The functional integrity of the earth is at issue not biodiversity.

    PubMed

    Woodwell, George M

    2002-08-01

    The objectives of conservation have been focused ever more intensively for two decades on the preservation of "biodiversity." Emphasis has been on the losses of species through extinction. The cure has been the establishment of parks and reserves to protect "hot spots," especially in the tropics, where the diversity of species is high. The efforts in preservation have often extended to the development of connecting links among reserves to allow movements among them. The approach has been codified in law in the form of the Endangered Species Act in the United States and the Biodiversity Treaty, both of which address the issue species by species and each of which has obvious weaknesses. Such efforts may be appropriate but they are totally inadequate as the sum of activities in conservation in a world of 6 billion people with exploding technologies for exploiting virtually all of the earth for immediate human benefit. The biosphere is decaying rapidly as a habitat for all life, including people, not because of the extinction of species, but because of the progressive impoverishment of natural communities through human-induced chronic disruption that is now global and ubiquitous. The improverishment leads to progressive environmental dysfunction that is cumulative, but only in its later stages leads to extinction of species. Long before extinction becomes important, genetically distinct, local ecotypes are lost and the natural communities in which they were developed become improverished and dysfunctional. The most conspicuous disruption is that of climate, a global change in the environment of every ecosystem. The most elaborate and carefully interlinked array of natural reserves will succumb as climate is moved out from under them... and biodiversity will suffer the very extinctions the parks were established to avoid. But long before that, the human environment will suffer conspicuous and progressive impoverishment. The objective of conservation is the preservation of the integrity of function of landscapes (and waterbodies). Emphasis falls on forests in the normally naturally forested parts of the earth because forests are so large in area globally and have such a large influence on virtually every aspect of environment. Functional integrity requires structural integrity over 85% or more of the naturally forested zone in most areas. It also requires objective measurement and definition by the scientific community. Suddenly, conservation has become, not the preservation of biodiversity, honorable as that may be, but the preservation of the functional integrity of the human environment. That purpose is the central purpose that we assign to the governments that we establish in democracies to define and defend the public interest. It is past time for the scientific and conservation communities to recognize the urgency of this transition, join in defining competent new objectives for conservation, and to convey to the public the urgency of the need for governmental responsibility in protecting the public interest in a habitable biosphere. PMID:12374052

  7. Evaluating and improving hydrologic processes in the community land model for integrated earth system modeling

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Khamis, K.; Blaen, P. J.; Hainie, S.; Mellor, C.; Brown, L. E.; Milner, A. M.

    2011-12-01

    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This paper synthesises findings from previous and ongoing research in glacierized Alpine and Arctic river basins (located in the French Pyrenees, New Zealand, Swedish Lapland and Svalbard), which adopts an interdisciplinary approach to investigate the climate-cryosphere-hydrology-ecology cascade. Data are used to advance hypotheses concerning the consequences of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Using downscaled regional climate projections as inputs to a distributed hydrological model for a study basin in the French Pyrenees (i.e. an environment at the contemporary limit of valley glaciation), we show how shrinking snow and ice-masses may alter space-time dynamics in basin runoff. Notably, the timing of peak snow- and ice-melt may shift; and the proportion of stream flow sourced from rainfall-runoff (cf. meltwater) may increase. Across our range of Alpine and Arctic study basins, we quantify observed links between relative water source contributions (% meltwater : % groundwater), physico-chemical habitat (e.g. water temperature, electrical conductivity, suspended sediment and channel stability) and benthic communities. At the site scale, results point towards increased community diversity (taxonomic and functional) as meltwater contributions decline and physico-chemical habitat becomes less harsh. However, basin-scale biodiversity may be reduced due to less spatio-temporal heterogeneity in water source contributions and habitats, and the extinction of cold stenothermic specialists. Similar integrated, long-term research into hydroecological connections in other glacierized river basins is vital: (1) to enable robust projections of stream hydrology (water source contributions and physico-chemical habitat) and ecological response under scenarios of future climate/ variability, and (2) to develop conservation strategies for these fragile Alpine and Arctic freshwater ecosystems.

  8. An integrated, open-source set of tools for urban vulnerability monitoring from Earth observation data

    NASA Astrophysics Data System (ADS)

    De Vecchi, Daniele; Harb, Mostapha; Dell'Acqua, Fabio; Aurelio Galeazzo, Daniel

    2015-04-01

    Aim: The paper introduces an integrated set of open-source tools designed to process medium and high-resolution imagery with the aim to extract vulnerability indicators [1]. Problem: In the context of risk monitoring [2], a series of vulnerability proxies can be defined, such as the extension of a built-up area or buildings regularity [3]. Different open-source C and Python libraries are already available for image processing and geospatial information (e.g. OrfeoToolbox, OpenCV and GDAL). They include basic processing tools but not vulnerability-oriented workflows. Therefore, it is of significant importance to provide end-users with a set of tools capable to return information at a higher level. Solution: The proposed set of python algorithms is a combination of low-level image processing and geospatial information handling tools along with high-level workflows. In particular, two main products are released under the GPL license: source code, developers-oriented, and a QGIS plugin. These tools were produced within the SENSUM project framework (ended December 2014) where the main focus was on earthquake and landslide risk. Further development and maintenance is guaranteed by the decision to include them in the platform designed within the FP 7 RASOR project . Conclusion: With the lack of a unified software suite for vulnerability indicators extraction, the proposed solution can provide inputs for already available models like the Global Earthquake Model. The inclusion of the proposed set of algorithms within the RASOR platforms can guarantee support and enlarge the community of end-users. Keywords: Vulnerability monitoring, remote sensing, optical imagery, open-source software tools References [1] M. Harb, D. De Vecchi, F. Dell'Acqua, "Remote sensing-based vulnerability proxies in the EU FP7 project SENSUM", Symposium on earthquake and landslide risk in Central Asia and Caucasus: exploiting remote sensing and geo-spatial information management, 29-30th January 2014, Bishkek, Kyrgyz Republic. [2] UNISDR, "Living with Risk", Geneva, Switzerland, 2004. [3] P. Bisch, E. Carvalho, H. Degree, P. Fajfar, M. Fardis, P. Franchin, M. Kreslin, A. Pecker, "Eurocode 8: Seismic Design of Buildings", Lisbon, 2011. (SENSUM: www.sensum-project.eu, grant number: 312972 ) (RASOR: www.rasor-project.eu, grant number: 606888 )

  9. Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Weng, Bo; Tang, Zi-Rong; Xu, Yi-Jun

    2014-12-01

    A ternary hybrid structure of one-dimensional (1D) silver nanowire-doped reduced graphene oxide (RGO) integrated with a CdS nanowire (NW) network has been fabricated via a simple electrostatic self-assembly method followed by a hydrothermal reduction process. The electrical conductivity of RGO can be significantly enhanced by opening up new conduction channels by bridging the high resistance grain-boundaries (HGBs) with 1D Ag nanowires, which results in a prolonged lifetime of photo-generated charge carriers excited from the CdS NW network, thus making Ag NW-RGO an efficient co-catalyst with the CdS NW network toward artificial photosynthesis.A ternary hybrid structure of one-dimensional (1D) silver nanowire-doped reduced graphene oxide (RGO) integrated with a CdS nanowire (NW) network has been fabricated via a simple electrostatic self-assembly method followed by a hydrothermal reduction process. The electrical conductivity of RGO can be significantly enhanced by opening up new conduction channels by bridging the high resistance grain-boundaries (HGBs) with 1D Ag nanowires, which results in a prolonged lifetime of photo-generated charge carriers excited from the CdS NW network, thus making Ag NW-RGO an efficient co-catalyst with the CdS NW network toward artificial photosynthesis. Electronic supplementary information (ESI) available: Experimental details, photographs of the experimental setups for photocatalytic activity testing, SEM images of Ag NWs and CdS NWs, Zeta potential, Raman spectra, DRS spectra, PL spectra and PL decay time evolution, and photocatalytic performances of samples for reduction of 4-NA and recycling test. See DOI: 10.1039/c4nr04229h

  10. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    NASA Astrophysics Data System (ADS)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental satellite data would be utilized within a geobrowser in a near real-time setting, we present a demonstration from the 2007 hurricane season, developed within the Google Earth framework. A menu of imagery based sequential satellite overpasses (GOES and other geostationary satellites, TRMM, CloudSat, Terra, Aqua, DMSP, NOAA, QuikScat) during the storm lifecycle, are presented to the Earth client in an structured folder format. The remapping of these satellite data follows the hurricane track, enabling the user to view, animate, zoom, overlay and combine visible, infrared and passive microwave imagery and combine with other data (surface reports, forecasts, surface winds, ground and spaceborne radars, etc.) at various stages of the hurricane lifecycle. Pop-up balloons provide training that explains the properties and capabilities of the satellite datasets and what components of the underlying weather are represented. Future satellite overpass tracks are provided so that the user can anticipate imagery updates several days in advance (e.g., as a hurricane approaches landfall). This combination of geo-navigable data provides a convenient framework for efficiently demonstrating meteorological, oceanographic and weather and climate concepts to students, planners, and the public at large.

  11. carleton.ca Earth Sciences

    E-print Network

    Dawson, Jeff W.

    carleton.ca Earth Sciences #12;Earth is our home. It is a dynamic planet, integrating and recording spectrometers or electron microprobes--earth scientists investigate Earth's evolution to help understand future today and for the future is enhanced by the expertise of economic geologists. Knowledge of the Earth

  12. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  13. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  14. Improved infrared emissions of Er(3+)-Tm3+ co-doped Al2O3 thin films: the role of cross relaxation among rare earth ions.

    PubMed

    Zhou, Bo; Xiao, Zhisong; Yan, Lu; Zhu, Fang; Zhang, Feng; Huang, Anping; Wang, Jinliang

    2011-12-01

    We report the infrared emissions of Er(3+)-Tm3+ co-doped amorphous Al2O3 thin films pumped at 791 nm by a Ti:sapphire laser. The as-deposited films were annealed to improve the photoluminescence performance. Three cross relaxation channels among Er(3+)-Tm3+ and Tm(3+)-Tm3+ ions incorporated in the films were investigated as annealing temperature increases especially from 800 to 850 degrees C. In order to understand the Stark effect and cross relaxations, the photoluminescence spectra were deconvoluted by Gaussian fittings. Our results indicate that the luminescence intensity of 1.62 microm in comparison to 1.5 microm can be enhanced by the cross relaxation process [Er3+ (4I13/2) + Tm3+ (3H6) --> Er3+ (4I15/2) + Tm3+ (3F4)], and the longer-wavelength side of Er3+ emission can be improved by the CR process [Er3+ (4I15/2) + Tm3+ (3H4) --> Er3+ (4I3/2) + Tm3+ (3F4) at expense of the Tm3+ 1.47 microm emission which is also maybe quenched by the CR effect between themselves. These results suggest one possible approach to achieve broadband infrared emissions at the wavelength region of 1.45-1.65 microm from the Er(3+)-Tm3+ co-doped systems. PMID:22408971

  15. Blue, yellow and orange color emitting rare earth doped BaCa2Al8O15 phosphors prepared by combustion method

    NASA Astrophysics Data System (ADS)

    Yerpude, A. N.; Dhoble, S. J.; Reddy, B. Sudhakar

    2014-12-01

    Eu2+, Dy3+, Sm3+ activated BaCa2Al8O15 phosphors were prepared by the combustion method. The phosphor powders were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectrophotometer. Photoluminescence spectra of BaCa2Al8O15:Eu2+ phosphors show emission wavelength at 435 nm that corresponds to 4f65d1?4f7 transition of Eu2+ ion by keeping excitation wavelength extending broad-band from 270 to 400 nm centered at 334 nm. The Dy3+ doped BaCa2Al8O15 phosphors shows blue emission (485 nm) and yellow emission (566 nm) under the excitation of 347 nm, corresponding to the 4F9/2?6H15/2 transition and 4F9/2?6H13/2 transition of Dy3+ ions, respectively. The Sm3+ doped BaCa2Al8O15 phosphors have shown strong orange emission at 604 nm corresponding to the 4G5/2?6H7/2 transition of Sm3+ with intense excitation wavelength at 406 nm. Scanning electron microscopy has been used for exploring the size and morphological properties of the prepared phosphors. The obtained results show that the phosphors have potential application in the field of solid state lighting.

  16. Origins of conductivity improvement in fluoride-enhanced silicon doping of ZnO films.

    PubMed

    Rashidi, Nazanin; Vai, Alex T; Kuznetsov, Vladimir L; Dilworth, Jonathan R; Edwards, Peter P

    2015-06-01

    Fluoride in spray pyrolysis precursor solutions for silicon-doped zinc oxide (SiZO) transparent conductor thin films significantly improves their electrical conductivity by enhancing silicon doping efficiency and not, as previously assumed, by fluoride doping. Containing only earth-abundant elements, SiZO thus prepared rivals the best solution-processed indium-doped ZnO in performance. PMID:25879727

  17. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  18. Nonlinear single-crystal fibers of undoped and rare earth-doped niobates: growth by LHPG, spectroscopy and second harmonic generation

    NASA Astrophysics Data System (ADS)

    Foulon, Gisele; Ferriol, Michel; Brenier, Alain; Cohen-Adad, Marie-Therese; Boulon, Georges

    1997-11-01

    The renewal of second order non-linear crystals is very strong in laser materials optics. We are involved in the search of new systems based upon highly non-linear niobate crystal family. Among these crystals, Ba2NaNb5O15 (BNN) and K3Li2-xNb5+xO15+2x (KLN, 0.15 < x < 0.5) with a tungsten bronze-type structure are very efficient materials for the obtention of respectively green and blue laser light by frequency doubling or by self-frequency doubling after doping by Nd3+ ions. Unfortunately, BNN and KLN are difficult to grow by conventional techniques such as Czochralski without cracks caused by a strong lattice change occurring during cooling of the crystals. In addition, microtwins in BNN crystals and compositional inhomogeneities in KLN ones are often encountered. The obtention of good quality and crackless BNN and KLN single crystals doped with different amounts of Nd2O3 is reported. The crystals were grown by the laser heated pedestal growth technique. This method allowed to obtain good quality and homogeneous crystals of BNN and KLN overcoming the problems encountered with other growth techniques. More particularly, for BNN crystals, a structural transition between orthohombic and tetragonal symmetry was found to occur for a Nd3+ amount between 2 and 3 atomic percent avoiding the microtwinning which disturbs the optical properties of the crystals. Low temperature spectroscopy revealed that Nd3+ ions substitute both Ba2+ and Na+ ions in the pentagonal and square sites of the tungsten bronze-type structure of BNN whereas they substitute only K+ ions in the pentagonal sites of that of KLN. Non- critical phase matching at room temperature was also investigated for both materials.

  19. Why are the Tcs so high in rare-earth doped CaFe2As2 single crystals and ultrathin FeSe epi-films?

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2015-03-01

    Recent reports of non-bulk superconductivity with unexpectedly high onset-Tcs up to 49 K in the Pr-doped CaFe2As2 [(Ca,Pr)122] single crystals and up to 100 K in one-unit-cell (1UC) FeSe epi-films, respectively, offer an unusual opportunity to seek an answer to the question posed in the title. Through systematic compositional, structural, resistive, and magnetic investigations on (Ca,R)122 single crystals with R = La, Ce, Pr, and Nd, we have observed a doping-level-independent Tc, a large magnetic anisotropy, and the existence of mesoscopic-2D structures in these crystals, thus providing evidence consistent with the proposed interface-enhanced Tc in these naturally assembled Fe-based superconductors. Similar resistive and magnetic measurements were also made on the 1-4UC FeSe ultra thin epi-films. We have detected a Meissner state below 1 Oe with extensive weak-links up to ~ 20 K, unconnected small superconducting patches up to ~ 40 K, and an unusual dispersion of diamagnetic moment with frequency up to 80 K. The unusual frequency dependences of the diamagnetic moment observed in the films at different temperature ranges suggest that collective excitations of electron and/or spin nature may exist in the FeSe films below 20 K and 40-80 K. The experimental results will be presented and the implications discussed. Collaborators: Liangzi Deng, Bing Lv, Fengyan Wei, and Yu-Yi Xue, University of Houston; Li-Li Wang, Xu-Cun Ma, and Qi-Kun Xue, Tsinghua University, Beijing.

  20. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rice, Katherine P.; Russek, Stephen E.; Geiss, Roy H.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, ?, is remarkably low for the Tb-doped nanoparticles, with ? = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  1. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    SciTech Connect

    Rice, Katherine P.; Russek, Stephen E. Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-09

    High quality 5?nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50?K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, ?, is remarkably low for the Tb-doped nanoparticles, with ??=?0.024?±?0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  2. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  3. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  4. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    E-print Network

    E. Churazov; R. Sunyaev; M. Revnivtsev; S. Sazonov; S. Molkov; S. Grebenev; C. Winkler; A. Parmar; A. Bazzano; M. Falanga; A. Gros; F. Lebrun; L. Natalucci; P. Ubertini; J. -P. Roques; L. Bouchet; E. Jourdain; J. Knoedlseder; R. Diehl; C. Budtz-Jorgensen; S. Brandt; N. Lund; N. J. Westergaard; A. Neronov; M. Turler; M. Chernyakova; R. Walter; N. Produit; N. Mowlavi; J. M. Mas-Hesse; A. Domingo; N. Gehrels; E. Kuulkers; P. Kretschmar; M. Schmidt

    2007-02-12

    We study the spectrum of the cosmic X-ray background (CXB) in energy range $\\sim$5-100 keV. Early in 2006 the INTEGRAL observatory performed a series of four 30ksec observations with the Earth disk crossing the field of view of the instruments. The modulation of the aperture flux due to occultation of extragalactic objects by the Earth disk was used to obtain the spectrum of the Cosmic X-ray Background(CXB). Various sources of contamination were evaluated, including compact sources, Galactic Ridge emission, CXB reflection by the Earth atmosphere, cosmic ray induced emission by the Earth atmosphere and the Earth auroral emission. The spectrum of the cosmic X-ray background in the energy band 5-100 keV is obtained. The shape of the spectrum is consistent with that obtained previously by the HEAO-1 observatory, while the normalization is $\\sim$10% higher. This difference in normalization can (at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy release of supermassive black holes in the Universe and their growth at the epoch of the CXB origin.

  5. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  6. On the formulation of gravitational potential difference between the GRACE satellites based on energy integral in Earth fixed frame

    NASA Astrophysics Data System (ADS)

    Zeng, Y. Y.; Guo, J. Y.; Shang, K.; Shum, C. K.; Yu, J. H.

    2015-09-01

    Two methods for computing gravitational potential difference (GPD) between the GRACE satellites using orbit data have been formulated based on energy integral; one in geocentric inertial frame (GIF) and another in Earth fixed frame (EFF). Here we present a rigorous theoretical formulation in EFF with particular emphasis on necessary approximations, provide a computational approach to mitigate the approximations to negligible level, and verify our approach using simulations. We conclude that a term neglected or ignored in all former work without verification should be retained. In our simulations, 2 cycle per revolution (CPR) errors are present in the GPD computed using our formulation, and empirical removal of the 2 CPR and lower frequency errors can improve the precisions of Stokes coefficients (SCs) of degree 3 and above by 1-2 orders of magnitudes. This is despite of the fact that the result without removing these errors is already accurate enough. Furthermore, the relation between data errors and their influences on GPD is analysed, and a formal examination is made on the possible precision that real GRACE data may attain. The result of removing 2 CPR errors may imply that, if not taken care of properly, the values of SCs computed by means of the energy integral method using real GRACE data may be seriously corrupted by aliasing errors from possibly very large 2 CPR errors based on two facts: (1) errors of bar C_{2,0} manifest as 2 CPR errors in GPD and (2) errors of bar C_{2,0} in GRACE data-the differences between the CSR monthly values of bar C_{2,0} independently determined using GRACE and SLR are a reasonable measure of their magnitude-are very large. Our simulations show that, if 2 CPR errors in GPD vary from day to day as much as those corresponding to errors of bar C_{2,0} from month to month, the aliasing errors of degree 15 and above SCs computed using a month's GPD data may attain a level comparable to the magnitude of gravitational potential variation signal that GRACE was designed to recover. Consequently, we conclude that aliasing errors from 2 CPR errors in real GRACE data may be very large if not properly handled; and therefore, we propose an approach to reduce aliasing errors from 2 CPR and lower frequency errors for computing SCs above degree 2.

  7. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    NASA Technical Reports Server (NTRS)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  8. BaY{sub 2}F{sub 8} single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    SciTech Connect

    Pushkar', A A; Uvarova, T V; Molchanov, V N

    2008-04-30

    BaY{sub 2}F{sub 8} crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY{sub 2}F{sub 8} single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined. (active media)

  9. Large research infrastructure for Earth-Ocean Science: Challenges of multidisciplinary integration across hardware, software, and people networks

    NASA Astrophysics Data System (ADS)

    Best, M.; Barnes, C. R.; Johnson, F.; Pautet, L.; Pirenne, B.; Founding Scientists Of Neptune Canada

    2010-12-01

    NEPTUNE Canada is operating a regional cabled ocean observatory across the northern Juan de Fuca Plate in the northeastern Pacific. Installation of the first suite of instruments and connectivity equipment was completed in 2009, so this system now provides the continuous power and bandwidth to collect integrated data on physical, chemical, geological, and biological gradients at temporal resolutions relevant to the dynamics of the earth-ocean system. The building of this facility integrates hardware, software, and people networks. Hardware progress to date includes: installation of the 800km powered fiber-optic backbone in the Fall of 2007; development of Nodes and Junction Boxes; acquisition/development and testing of Instruments; development of mobile instrument platforms such as a) a Vertical Profiler and b) a Crawler (University of Bremmen); and integration of over a thousand components into an operating subsea sensor system. Nodes, extension cables, junction boxes, and instruments were installed at 4 out of 5 locations in 2009; the fifth Node is instrumented in September 2010. In parallel, software and hardware systems are acquiring, archiving, and delivering the continuous real-time data through the internet to the world - already many terabytes of data. A web environment (Oceans 2.0) to combine this data access with analysis and visualization, collaborative tools, interoperability, and instrument control is being released. Finally, a network of scientists and technicians are contributing to the process in every phase, and data users already number in the thousands. Initial experiments were planned through a series of workshops and international proposal competitions. At inshore Folger Passage, Barkley Sound, understanding controls on biological productivity help evaluate the effects that marine processes have on fish and marine mammals. Experiments around Barkley Canyon allow quantification of changes in biological and chemical activity associated with nutrient and cross-shelf sediment transport around the shelf/slope break and through the canyon to the deep sea. There and north along the mid-continental slope, instruments on exposed and shallowly buried gas hydrates allow monitoring of changes in their distribution, structure, and venting, particularly related to earthquakes, slope failures and regional plate motions. Circulation obviation retrofit kits (CORKs) at mid-plate ODP 1026-7 monitor real-time changes in crustal temperature and pressure, particularly as they relate to events such as earthquakes, hydrothermal convection or regional plate strain. At Endeavour Ridge, complex interactions among volcanic, tectonic, hydrothermal and biological processes are quantified at the western edge of the Juan de Fuca plate. Across the network, high resolution seismic information elucidates tectonic processes such as earthquakes, and a tsunami system allows determination of open ocean tsunami amplitude, propagation direction, and speed. The infrastructure has further capacity for experiments to expand from this initial suite. Further information and opportunities can be found at http://www.neptunecanada.ca

  10. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    PubMed

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  11. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-08-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  12. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    PubMed Central

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  13. Modeling of optical amplifier waveguide based on silicon nanostructures and rare earth ions doped silica matrix gain media by a finite-difference time-domain method: comparison of achievable gain with Er3+ or Nd3+ ions dopants

    E-print Network

    Cardin, Julien; Dufour, Christian; Gourbilleau, Fabrice

    2015-01-01

    A comparative study of the gain achievement is performed in a waveguide optical amplifier whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd 3+) or erbium ions (Er 3+). Due to the large difference between population levels characteristic times (ms) and finite-difference time step (10 --17 s), the conventional auxiliary differential equation and finite-difference time-domain (ADE-FDTD) method is not appropriate to treat such systems. Consequently, a new two loops algorithm based on ADE-FDTD method is presented in order to model this waveguide optical amplifier. We investigate the steady states regime of both rare earth ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 10 4 mW.mm-2. Furthermore, the three dimensional distribution of achievable gain per unit length has been estimated in this pumping range. The Nd 3+ doped waveguide shows a higher gross...

  14. Magnetic and microwave absorption properties of rare earth ions (Sm3+, Er3+) doped strontium ferrite and its nanocomposites with polypyrrole

    NASA Astrophysics Data System (ADS)

    Luo, Juhua; Xu, Yang; Mao, Hongkai

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm3+, Er3+) were prepared via a sol-gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2-38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50-100 nm after coating with PPy. In the magnetization for the PPy/SrSm0.3Fe11.7O19 (SrEr0.3Fe11.7O19) composites, the coercivity (Hc) of the composites both increased compared with the undoped composite while the saturation magnetization (Ms) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of -24.01 dB in 13.8 GHz at 3.0 mm. And its width (<-10 dB) has reached 7.2 GHz which has covered the whole Ku band.

  15. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Jonathan Huai-Tse

    A three-step solution-based process had been used synthesize powders of GaN, AlN and their alloys. The complete solid solubility and tunable nature of these nitride band gaps in the visible spectrum were the motivation of these studies due to their application in solid state lighting. Energy dispersive X-ray spectroscopy confirmed the reduction in oxygen content for the GaN powders to as low as 4 atom % with an 8 % oxygen to nitrogen ratio. Relative to commercial GaN powders, the bandedge of the powders synthesized by such approach also shifted to higher energy, which indicated fewer defects, as observed from reflectance measurements. Inspired by the use of rare-earth elements as color emitters in fluorescent lamp phosphors, these elements were also used as activators in our nitride material. Visible emission was demonstrated through photoluminescence measurements in AlN powders activated with rare-earth elements Eu3+, Tb3+, Tm3+. These ions showed emission in the red, green and blue regions of the visible spectrum, respectively. Eu3+ and Tb3+ co-activation was also observed in an AlN sample that indicated successful energy transfer from the host to sensitizer, and subsequently to another activator. Tb3+ emission was observed under cathodoluminescence in GaN powders synthesized by the same method, and a concentration study showed no effect of concentration quenching up to 8 atom %. Using the same source powder, a pulsed-laser deposited thin film was fabricated that showed both band gap emission and activator-related emission, suggesting a reduction of defects when the powders were deposited as thin films. Additionally, GaN:Tb3+ films were also fabricated using metallorganic vapor phase epitaxy using precursors with and without oxygen ligands. Tb3+ emission was only observed in the sample fabricated from the precursor with oxygen ligand, suggestion that oxygen may be required for effective rare earth luminescence. Finally, Ga1-xAl xN alloy powders (x=0.5) and Ga1-x-yAlxDy yN (x=0.10, 0.30, y=0.01) powders were synthesized using the solution method while incorporating a stainless steel pressure vessel, which increased the synthesis pressure and aided the formation of a single phase hydroxide precursor. This in turn produced a single phase alloy nitride in the final step. Dy3+ emission that was not observed in GaN powders was also observed in the Ga1-x-yAlxDyyN powder. This suggested that the incorporation of aluminum enabled rare-earth emission in the nitrides synthesized for these experiments. However, attempts to sputter nitride alloy thin films via radio frequency sputtering were unsuccessful; only very minor peak shifts in the X-ray diffraction patterns were observed. Nevertheless, energy dispersive X-ray spectroscopy indicates the presence of Al in the Ga0.5Al0.5N film deposited on a Si substrate. This suggested that Al atoms may have segregated from the alloy lattice during the deposition process, with only a small amount of Al atoms incorporated into the GaN lattice.

  16. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    Recent studies indicate that changes in surface climate and carbon fluxes caused by land management (i.e., modifications of vegetation structure without changing the type of land cover) can be as large as those caused by land cover change. Further, such effects may occur on substantial areas: while about one quarter of the land surface has undergone land cover change, another fifty percent are managed. This calls for integration of management processes in Earth system models (ESMs). This integration increases the importance of awareness and agreement on how to diagnose effects of land use in ESMs to avoid additional model spread and thus unnecessary uncertainties in carbon budget estimates. Process understanding of management effects, their model implementation, as well as data availability on management type and extent pose challenges. In this respect, a significant step forward has been done in the framework of the current IPCC's CMIP5 simulations (Coupled Model Intercomparison Project Phase 5): The climate simulations were driven with the same harmonized land use dataset that, different from most datasets commonly used before, included information on two important types of management: wood harvest and shifting cultivation. However, these new aspects were employed by only part of the CMIP5 models, while most models continued to use the associated land cover maps. Here, we explore the consequences for the carbon cycle of including subgrid-scale land transformations ("gross transitions"), such as shifting cultivation, as example of the current state of implementation of land management in ESMs. Accounting for gross transitions is expected to increase land use emissions because it represents simultaneous clearing and regrowth of natural vegetation in different parts of the grid cell, reducing standing carbon stocks. This process cannot be captured by prescribing land cover maps ("net transitions"). Using the MPI-ESM we find that ignoring gross transitions underestimates emissions substantially, for historical times by about 40%. Implementation of land management such as gross transitions is a step forward in terms of comprehensiveness of simulated processes. However, it has increased model spread in carbon fluxes, because land management processes have been considered by only a subset of recent ESMs contributing to major projects such as IPCC or the Global Carbon Project. This model spread still causes the net land use flux to be the most uncertain component in the global carbon budget. Other causes have previously been identified as differences in land use datasets, differing types of vegetation model, accounting of nutrient limitation, the inclusion of land use feedbacks (increase in atmospheric CO2 due to land use emissions causing terrestrial carbon uptake), and a confusion of whether the net land use flux in ESMs should be reported as instantaneous emissions, or also account for delayed carbon responses and regrowth. These differences explain a factor 2-6 difference between model estimates and are expected to be further affected by interactions with land management. This highlights the importance of an accurate protocol for future model intercomparisons of carbon fluxes from land cover change and land management to ensure comparison of the same processes and fluxes.

  17. Earth Sciences Environmental Earth Sciences,

    E-print Network

    Brierley, Andrew

    94 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint placement. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society

  18. Earth Sciences Environmental Earth Sciences,

    E-print Network

    Brierley, Andrew

    86 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society of London

  19. Multimodal bioimaging using rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties

    PubMed Central

    Ajithkumar, G.; Yoo, Benjamin; Goral, Dara E.; Hornsby, Peter J.; Lin, Ai-Ling; Ladiwala, Uma; Dravid, Vinayak P.; Sardar, Dhiraj K

    2013-01-01

    While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants provide the necessary features for optical imaging, the paramagnetic Gd ion also contributes to the magnetic imaging,thereby resulting in a system with bimodal imaging features. Results from imaging of the nanoparticles together with aggregates of cultured cells have suggested that imaging of the particles in living animals may be possible. In vitro tests revealed no signficant toxicity because no cell death was observed when the nanoparticles were in the presence of growing cells in culture. Measurement of the magnetization of the phosphor shows that the particles are strongly magnetic, thus making them suitable as an MRI agent. PMID:25191618

  20. Influence of rare-earth elements doping on thermoelectric properties of Ca0.98Dy0.02MnO3 at high temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanhu; Wang, Chunlei; Su, Wenbin; Liu, Jian; Li, Jichao; Zhang, Xinhua; Mei, Liangmo

    2015-05-01

    Ca0.98Dy0.02MnO3 and Ca0.96Dy0.02Re0.02MnO3 (Re=La, Pr, Sm, Eu, Ho, and Yb) have been synthesized by the solid state reaction method. Samples with relative densities all over 96% have been obtained. Thermoelectric properties are evaluated between 300 and 1000 K. The electrical resistivity shows a typical metal-like conductivity behavior, and at high temperature, 973 K, decreases from 36.1 m? cm for Ca0.98Dy0.02MnO3 to 8.6 m? cm for Ca0.96Dy0.02Yb0.02MnO3. Both the absolute values of Seebeck coefficient and thermal conductivity are reduced by the introduction of second rare-earth element. The highest power factor of 415 ?W/(K2m) is obtained for Ca0.96Dy0.02Yb0.02MnO3 sample, resulting in the highest dimensionless figure of merit (ZT) 0.25 at 973 K. This value shows an improvement of 144% compared with that of Ca0.98Dy0.02MnO3 ceramics at the same temperature.

  1. Three-dimensional cavity quantum electrodynamics with a rare-earth spin ensemble

    NASA Astrophysics Data System (ADS)

    Probst, S.; Tkal?ec, A.; Rotzinger, H.; Rieger, D.; Le Floch, J.-M.; Goryachev, M.; Tobar, M. E.; Ustinov, A. V.; Bushev, P. A.

    2014-09-01

    We present cavity QED experiments with an Er3+:Y2SiO5 crystal magnetically coupled to a three-dimensional (3D) cylindrical sapphire loaded copper resonator. Such waveguide cavities are promising for the realization of a superconducting quantum processor. Here, we demonstrate the coherent integration of a rare-earth spin ensemble with the 3D architecture. The collective coupling strength of the Er3+ spins to the 3D cavity is 21 MHz. The cylindrical sapphire loaded resonator allowed us to explore the anisotropic collective coupling between the rare-earth doped crystal and the cavity. This work shows the potential of spin doped solids in 3D quantum circuits for application as microwave quantum memories as well as for prospective microwave to optical interfaces.

  2. Correlation between rare-earth oscillator strengths and rare-earth-valence-band interactions in neodymium-doped YMO4 (M=V, P, As), Y3Al5O12, and LiYF4 matrices

    NASA Astrophysics Data System (ADS)

    Guillot-Noel, O.; Bellamy, B.; Viana, B.; Gourier, D.

    1999-07-01

    Nd3+:YVO4 is one of the more promising laser hosts for micro and diode-pumped solid-state lasers. At room temperature, Nd3+ ions in this matrix exhibit strong absorption cross sections sixfold higher than in Y3Al5O12. The neodymium oscillator strengths are measured in YMO4 (M=V, P, As), Y3Al5O12, and LiYF4 hosts, and they increase in the sequence Y3Al5O12earth occurs via the valence-band levels. This model shows that the oscillator strengths increase with the Nd 4f-valence-band interactions.

  3. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.

  4. Practicing ESD at School: Integration of Formal and Nonformal Education Methods Based on the Earth Charter (Belarusian Experience)

    ERIC Educational Resources Information Center

    Savelava, Sofia; Savelau, Dmitry; Cary, Marina Bakhnova

    2010-01-01

    The Earth Charter represents the philosophy and ethics necessary to create a new period of human civilization. Understanding and adoption of this new vision is the most important mission of education for sustainable development (ESD). This article argues that for successful implementation of ESD principles at school, the school education system…

  5. Effects of rare-earth (Tb, Yb, and Lu)-doping on the structural, electrical and ferroelectric properties of K0.5Bi4.5Ti4O15 thin films

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Raghavan, C. M.; Choi, J. Y.; Kim, S. S.

    2015-10-01

    The electrical and the ferroelectric properties of pure K0.5Bi4.5Ti4O15 and a series of rare-earth-doped K0.5 RE 0.5Bi4Ti4O15 (RE = Tb, Yb, and Lu) thin films deposited on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method have been investigated. Compared to the pure K0.5Bi4.5Ti4O15 thin film, there were no structural changes in the K0.5 RE 0.5Bi4Ti4O15 thin films while the leakage current and the ferroelectric properties were significantly improved. Among the thin films, the K0.5Lu0.5Bi4Ti4O15 thin film exhibited wellsaturated hysteresis loops with a large remnant polarization (2 P r) of 32 ?C/cm2 and a coercive field (2 E c) of 307 kV/cm at an applied electric field of 886 kV/cm. Furthermore, a low leakage current density of 2.95 × 10-9 A/cm2, which is about two orders of magnitude lower than that of the K0.5Bi4.5Ti4O15 thin film, was measured in the K0.5Lu0.5Bi4Ti4O15 thin film at an applied electric field of 100 kV/cm. The enhanced electrical and ferroelectric properties observed in the rare-earthdoped K0.5 RE 0.5Bi4Ti4O15 thin films can be correlated to a decrease in the number of ionic defects, such as bismuth and oxygen vacancies, structural distortion, and improved microstructure.

  6. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO network as a platform for ongoing research and hazard monitoring equipment may also continue to serve the needs of the research community and the public beyond the sun-setting and completion of EarthScope science plan in 2018.

  7. Advances in laser cooling of thulium-doped glass C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae

    E-print Network

    Sheik-Bahae, Mansoor

    suggested that rare-earth-doped crystals might provide a medium for solid-state cooling resulting from anti December 9, 2002 Recent developments in cooling thulium-doped heavy-metal fluoride glass are presented

  8. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D'Arcy, Jordan H.; Crittenden, Deborah L.; Jordan, Meredith J. T.

    2015-11-01

    Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ?Uads, and enthalpy, ?Hads, for H2 adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li+-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ?Uads and ?Hads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol-1, respectively.

  9. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials.

    PubMed

    Lindoy, Lachlan P; Kolmann, Stephen J; D'Arcy, Jordan H; Crittenden, Deborah L; Jordan, Meredith J T

    2015-11-21

    Finite temperature quantum and anharmonic effects are studied in H2-Li(+)-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ?Uads, and enthalpy, ?Hads, for H2 adsorption onto Li(+)-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling-coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li(+)-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ?Uads and ?Hads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol(-1), respectively. PMID:26590532

  10. Computational discovery of lanthanide doped and Co-doped Y3Al5O12 for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Mathew, Kiran; Bucholz, Eric W.; Phillpot, Simon R.; Sinnott, Susan B.; Hennig, Richard G.

    2015-09-01

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for efficient spectral up-conversion devices.

  11. Polar Misunderstandings: Earth's Dynamic Dynamo

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth

  12. Ray-tracing studies and path-integrated gains of ELF unducted whistler mode waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Goertz, C. K.

    1983-01-01

    Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.

  13. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1987-01-01

    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.

  14. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  15. Early Earth

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2015-05-01

    Earth has continents, subduction and mobile lid plate tectonics, but details of the early evolution are poorly understood. Here I summarize the Hadean-Archean record, review evidence for a hotter Earth and consider geodynamic models for early Earth.

  16. Earth's Three

    E-print Network

    Hacker, Randi

    2010-11-17

    Broadcast Transcript: From Mongolia, land of fermented mare's milk, comes this beguiling morsel of nomadic oral tradition. It's called yertonciin gorav or Earth's Three. Earth's three what? Well, Earth's three top things in a number of categories...

  17. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    NASA Technical Reports Server (NTRS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of water availability.

  18. Peru Water Resources: Integrating NASA Earth Observations into Water Resource Planning and Management in Perus La Libertad Region

    NASA Technical Reports Server (NTRS)

    Padgett-Vasquez, Steve; Steentofte, Catherine; Holbrook, Abigail

    2014-01-01

    Developing countries often struggle with providing water security and sanitation services to their populations. An important aspect of improving security and sanitation is developing a comprehensive understanding of the country's water budget. Water For People, a non-profit organization dedicated to providing clean drinking water, is working with the Peruvian government to develop a water budget for the La Libertad region of Peru which includes the creation of an extensive watershed management plan. Currently, the data archive of the necessary variables to create the water management plan is extremely limited. Implementing NASA Earth observations has bolstered the dataset being used by Water For People, and the METRIC (Mapping EvapoTranspiration at High Resolution and Internalized Calibration) model has allowed for the estimation of the evapotranspiration values for the region. Landsat 8 imagery and the DEM (Digital Elevation Model) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor onboard Terra were used to derive the land cover information, and were used in conjunction with local weather data of Cascas from Peru's National Meteorological and Hydrological Service (SENAMHI). Python was used to combine input variables and METRIC model calculations to approximate the evapotranspiration values for the Ochape sub-basin of the Chicama River watershed. Once calculated, the evapotranspiration values and methodology were shared Water For People to help supplement their decision support tools in the La Libertad region of Peru and potentially apply the methodology in other areas of need.

  19. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  20. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    SciTech Connect

    Di Vittorio, Alan; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  1. Electrical, magnetic, and magneto-electrical properties in quasi-two-dimensional K{sub 0.58}RhO{sub 2} single crystals doped with rare-earth elements

    SciTech Connect

    Zhang, Bin-Bin; Dong, Song-Tao; Yao, Shu-Hua E-mail: ybchen@nju.edu.cn; Zhang, Shan-Tao; Gu, Zheng-Bin; Zhou, Jian; Lu, Ming-Hui; Chen, Yan-Feng; Chen, Y. B. E-mail: ybchen@nju.edu.cn; Shi, Y. G.

    2014-08-11

    In this Letter, we studied the electrical transport, magnetic property, magnetoresistance and anomalous Hall properties of La-, Sm-, Ho-, and Dy-doped quasi-two dimensional K{sub 0.58}RhO{sub 2} single crystals. At low temperature (<10?K), a significant magnetoresistance (36%) can be observed in these samples. Accordingly, the “glassy ferromagnetism” is revealed by temperature-dependent magnetization in these samples. The significant magnetoresistance is related to the granular ferromagnetism. The unconventional anomalous Hall effect is also observed in magnetic atoms doped samples. Our finding shields more light on the magnetic, magnetoresistance, and anomalous Hall properties of quasi-two-dimensional material systems doped with magnetic ions.

  2. Effect of transition metal doping and carbon doping on thermoelectric properties of YB{sub 66} single crystals

    SciTech Connect

    Mori, Takao . E-mail: MORI.Takao@nims.go.jp; Tanaka, Takaho

    2006-09-15

    We have been investigating the high-temperature thermoelectric properties of some novel rare earth borides with a structure containing B{sub 12} icosahedra. Doping effects on the TE properties in such systems were investigated for the first time. A series of Nb-doped YB{sub 66} and C-doped YB{sub 66} single crystals were grown by the floating zone method. The Nb-doped compounds have approximate chemical formulas ranging from YNb{sub 0.30}B{sub 66} to YNb{sub 0.33}B{sub 66} while the C-doped compound has a formula of YB{sub 66}C{sub 0.6}. The effect of Nb-doping on the thermoelectric properties was not monotonic and appears to be complex. As a result of Nb-doping, the room temperature resistivity and the characteristic temperature T{sub 0} were considerably reduced. At room temperature the power factor of the Nb-doped YB{sub 66} sample with 89% site occupancy was three times greater than that of non-doped YB{sub 66}. However, in the important high-temperature region, the non-doped sample actually exhibited the highest power factor for T>550K. Furthermore, owing to a structural feature of YB{sub 66}, thermal conductivity actually increases with doping of transition metals. Taking into account all the thermoelectric properties, transition metal doping of YB{sub 66} is therefore not suitable for our purposes. On the other hand, doping of carbon, which is assumed not to go into the same sites as the transition metals, yielded a lowering of the thermal conductivity. Furthermore, contrary to Nb-doping, carbon doping did not result in a reversal of the relative magnitude of resistivity at extremely high temperatures and therefore, an increase in the figure of merit of factor 2 was realized at 1000K.

  3. From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Chini, L. P.; Bond-Lamberty, B.; Mao, J.; Shi, X.; Truesdale, J.; Craig, A.; Calvin, K.; Jones, A.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.; Thornton, P.; Thomson, A.

    2014-11-01

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the Intergovernmental Panel on Climate Change (IPCC) AR5 parallel process assumes consistent climate scenarios across integrated assessment and earth system models (IAMs and ESMs). The CMIP5 (Coupled Model Intercomparison Project Phase 5) project used a novel "land use harmonization" based on the Global Land use Model (GLM) to provide ESMs with consistent 1500-2100 land use trajectories generated by historical data and four IAMs. A direct coupling of the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: the lack of a corresponding land cover harmonization. For RCP4.5, CESM global afforestation is only 22% of GCAM's 2005 to 2100 afforestation. Likewise, only 17% of GCAM's 2040 afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled model. This is a problem because GCAM relied on afforestation to achieve RCP4.5 climate stabilization. GLM modifications and sharing forest area between GCAM and GLM within the directly coupled model did not increase CESM afforestation. Modifying the land use translator in addition to GLM, however, enabled CESM to include 66% of GCAM's afforestation in 2040, and 94% of GCAM's pasture loss as grassland and shrubland losses. This additional afforestation increases CESM vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, which demonstrates that CESM without additional afforestation simulates a different RCP4.5 scenario than prescribed by GCAM. Similar land cover inconsistencies exist in other CMIP5 model results, primarily because land cover information is not shared between models. Further work to harmonize land cover among models will be required to increase fidelity between IAM scenarios and ESM simulations and realize the full potential of scenario-based earth system simulations.

  4. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    NASA Astrophysics Data System (ADS)

    Di Vittorio, Alan; Chini, Louise; Bond-Lamberty, Ben; Mao, Jiafu; Shi, Xiaoying; Truesdale, John; Craig, Anthony; Calvin, Kate; Jones, Andrew; Collins, William; Edmonds, Jae; Hurtt, George; Thornton, Peter; Thomson, Allison

    2015-04-01

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). The CMIP5 project used a novel "land use harmonization" based on the Global Land use Model (GLM) to provide ESMs with consistent 1500-2100 land use trajectories generated by historical data and four IAMs. A direct coupling of the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: the lack of a corresponding land cover harmonization. For RCP4.5, CESM global afforestation is only 22% of GCAM's 2005 to 2100 afforestation. Likewise, only 17% of GCAM's 2040 afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled model. This is a problem because GCAM relied on afforestation to achieve RCP4.5 climate stabilization. GLM modifications and sharing forest area between GCAM and GLM within the directly coupled model did not increase CESM afforestation. Modifying the land use translator in addition to GLM, however, enabled CESM to include 66% of GCAM's afforestation in 2040, and 94% of GCAM's pasture loss as grassland and shrubland losses. This additional afforestation increases CESM vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, which demonstrates that CESM without additional afforestation simulates a different RCP4.5 scenario than prescribed by GCAM. Similar land cover inconsistencies exist in other CMIP5 model results, primarily because land cover information is not shared between models. Further work to harmonize land cover among models will be required to increase fidelity between IAM scenarios and ESM simulations and realize the full potential of scenario-based earth system simulations.

  5. Integration of Multiple OGC Standards for Delivery of Earth Science Information - Presentation of Time-Enabled WMS Through KML as Implemented by the PHAiRS Project

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Benedict, K. K.

    2008-12-01

    Since 2004 the Earth Data Analysis Center has, in collaboration with researchers from the University of Arizona and George Mason University, with funding from NASA, developed a services oriented architecture (SOA) designed for the delivery of historic and current dust forecast data products to the public health user community. This system has generated nearly three years of daily 48-hour dust forecasts, ultimately representing over 289,000 individual hourly forecast rasters for ground surface dust concentrations in four model particle size classes and PM 2.5 and PM 10 size classes. This large collection of model outputs is published as a time-enabled Open Geospatial Consortium (OGC) Web Map Service (WMS) that allows for the efficient retrieval of a single hourly forecast map image for each of these particle size classes, for the entire collection of model outputs. While this WMS service has proven effective in meeting the specific project goals of providing services that support the integration of project products into existing public health decision support systems, the development of an alternative visualization capability that takes advantage of virtual globe technologies was also seen as a valuable complementary capability for making these model outputs accessible to a greater audience of environmental public health users. This paper presents the results of a development effort that produced a system that automatically generates time-enabled KML that enables sequential acquisition of hourly model outputs (via time-enabled WMS) in time-enabled virtual globe applications (e.g. Google Earth). While this effort has proven very successful, it has also highlighted areas where support for time-enabled WMS could be improved, both within the KML standard, and within clients that implement time-enabled viewers.

  6. Assessing environmental drivers of vegetation greenness by integrating multiple earth observation data in the LPJmL dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Carvalhais, Nuno; Schaphoff, Sibyll; von Bloh, Werner; Thurner, Martin; Thonicke, Kirsten

    2014-05-01

    Recently produced satellite datasets of vegetation greenness demonstrate a widespread greening of the earth in the last three decades. These positive trends in vegetation greenness are related to changes in leaf area, vegetation cover and photosynthetic activity. Climatic changes, CO2 fertilization, disturbances and other land cover changes are potential drivers of these greening trends. Nevertheless, different satellite datasets show different magnitudes and trends in vegetation greenness. This fact raises the question about the reliability of these datasets. On the other hand, global vegetation models can be potentially used to assess the effects of environmental drivers on vegetation greenness and thus to explore the environmental reliability of these datasets. Unfortunately, current vegetation models have several weaknesses in reproducing observed temporal dynamics in vegetation greenness. Our aim is to integrate multiple earth observation data sets in a dynamic global vegetation model in order to 1) improve the model's capability to reproduce observed dynamics and spatial patterns of vegetation greenness and 2) to assess the spatial and temporal importance of environmental drivers for the seasonal to decadal variability of vegetation greenness. For this purpose, we developed a data integration system for the LPJmL dynamic global vegetation model (LPJmL-DIS). We implemented a new phenology scheme in LPJmL to better represent observed temporal dynamics of FAPAR (fraction of absorbed photosynthetic active radiation). Model parameters were globally optimized using a genetic optimization algorithm. The model optimization was performed globally against 30 year FAPAR time series (GIMMS3g dataset), against 10 year albedo time series (MODIS) and global patterns of gross primary production as up-scaled from FLUXNET eddy covariance measurements. Additionally, we directly prescribed satellite observations of land and tree cover in LPJmL to better represent global vegetation distribution by still keeping major processes of vegetation dynamics like mortality and competition among plant functional types. We prescribed observed burnt areas from the GFED dataset as well as from the Alaskan and Canadian national fire databases in LPJmL to better reproduce observed fire dynamics. We evaluated LPJmL with optimized parameters against independent data streams. LPJmL with a new phenology scheme and optimized parameters better represents spatial patterns of gross primary production, biomass, soil organic carbon, evapotranspiration and tree cover than the original model. LPJmL-DIS is able to reproduce spatial patterns and observed temporal dynamics of FAPAR from seasonal to decadal scales in all major biomes. We performed several model experiments to disentangle the spatial and temporal importance of temperature, radiation, water availability, CO2 fertilization, fire activity and permafrost changes on the seasonal to decadal variability of vegetation greenness. Our results indicate that water availability is a major driver for the seasonal to decadal variability of vegetation greenness in tropical, temperate and boreal biomes. The developed LPJmL data integration system enables to reanalyse recent trends in vegetation greenness and their environmental drivers by combining earth observation data of multiple environmental variables in a consistent process-based global vegetation model framework.

  7. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  8. Integration

    ERIC Educational Resources Information Center

    Kalyn, Brenda

    2006-01-01

    Integrated learning is an exciting adventure for both teachers and students. It is not uncommon to observe the integration of academic subjects such as math, science, and language arts. However, educators need to recognize that movement experiences in physical education also can be linked to academic curricula and, may even lead the…

  9. Cathodoluminescence Study of GadoliniumDoped Yttrium Oxide Thin Films Deposited By RadioFrequency Magnetron Sputtering

    E-print Network

    Zhigilei, Leonid V.

    Cathodoluminescence Study of Gadolinium­Doped Yttrium Oxide Thin Films Deposited By Radio A multi­layer gadolinium­doped yttrium oxide thin film was deposited in a combinatorial fashion on a Si-particle detection units. Previous work on rare­earth doped yttrium oxide materials have shown emission from the blue

  10. Integration of light attenuation measurements from Earth Observation into 3D Geobiochemical models of the North Sea.

    NASA Astrophysics Data System (ADS)

    van der Woerd, Hans; Blaas, Meinte; Peters, Steef W. M.; Eleveld, Marieke; Garcia Triana, Ivan D. T. F.

    2013-04-01

    The FP7 CoBiOS project aims to develop a near-real-time information system to diagnose high-biomass blooms in the Baltic Sea and North Sea. The core information in such a system will result from integration of ocean colour remote sensing with 3D geobiochemical modelling. A key parameter is the description of available solar energy in these complex waters, where optically active substances such as silt, algae and dissolved organic material all contribute to the light extinction. A new approach is presented to consistently define the light extinction coefficient Kd of the downward irradiance over PAR from an EO perspective and a numerical modelling perspective. An analysis of a few hundred in-situ Kd-profiles in the North Sea demonstrates that irradiance extinction by the various substances as a function of their PAR-representative absorption and scattering properties works better than a linear model of 'specific extinction' coefficients. In addition to adopting consistent coefficients, it is recommended to apply a nonlinear approach to couple absorption and scattering properties for deriving Kd [1,2]. This approach enables obtaining a consistently defined set of Kd values that will facilitate assimilation of geobiochemical models with ocean colour observations. [1] Lee, Z.P., Du, K.P., Arnone, R. 2005. A model for the diffuse attenuation coefficient of downwelling irradiance J. Geophys. Res., 110, C02016, doi:10.1029/2004JC002275, 2005 [2] Van der Woerd, H.J., Pasterkamp, R. 2008. HYDROPT: A fast and flexible method to retrieve chlorophyll-a from multi-spectral satellite observation of optical-complex coastal waters. Rem. Sens. Env. 112, 1795-1807

  11. High Temperature Thermoelectric Properties of Gd doped InGaAs Thin Films

    NASA Astrophysics Data System (ADS)

    Koltun, Rachel; Need, Ryan; Meginnis, Ashton; Schultz, Brian; Palmstrom, Chris; Bowers, John

    2014-03-01

    Doping III-As thin films with rare earths has been shown to increase the thermoelectric figure of merit (ZT) at high temperatures. Above the solubility limit, rare earth - arsenide nanoparticles precipitate out of molecular beam epitaxy grown films. These particles scatter phonons to reduce the thermal conductivity and act as a source of thermally activated carriers at high temperature. In this study, we compare the thermoelectric properties of Gd doped InGaAs to traditional doping methods (Si). Gd doped samples were grown to explore the doping effects below and above the solubility limit in InGaAs. This range also captures the peak ZT for these structures. Electrical conductivity and Seebeck coefficient were measured as a function of temperature. Gd doped InGaAs shows a higher doping efficiency than Er doped InGaAs, leading to better thermoelectric performance. However, Si has a much higher doping efficiency than any of the rare earths, leading to overall peak room temperature thermoelectric performance of Si doped InGaAs. Temperature dependent hall suggests that there may be a crossover point where enough carriers are thermally generated from nanoparticles to surpass the thermoelectric performance of Si doped InGaAs. This work was supported by the Center for Energy Efficient Materials (CEEM), an Energy Frontier Research Center (EFRC) funded at UCSB by the Office of Basic Energy Sciences of the US Department of Energy under award number DE-SC0001009.

  12. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

    PubMed Central

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar

    2015-01-01

    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021?cm?3, the reported glass exhibits an absolute negative Faraday rotation of ~120?rad/T/m at 632.8?nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500?nm is found for a Tb3+ concentration of ~6.5 × 1021?cm?3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100?K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2?ms at a stimulated emission cross-section ?em of ~1.1 × 10?21?cm2 for ~ 5.0 × 1021?cm?3 Tb3+. This results in an optical gain parameter ?em*? of ~2.5 × 10?24?cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819

  13. Integrating Ideas for International Data Collaborations Through The Committee on Earth Observation Satellites (CEOS) International Directory Network (IDN)

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2006-01-01

    The capabilities of the International Directory Network's (IDN) version MD9.5, along with a new version of the metadata authoring tool, "docBUILDER", will be presented during the Technology and Services Subgroup session of the Working Group on Information Systems and Services (WGISS). Feedback provided through the international community has proven instrumental in positively influencing the direction of the IDN s development. The international community was instrumental in encouraging support for using the IS0 international character set that is now available through the directory. Supporting metadata descriptions in additional languages encourages extended use of the IDN. Temporal and spatial attributes often prove pivotal in the search for data. Prior to the new software release, the IDN s geospatial and temporal searches suffered from browser incompatibilities and often resulted in unreliable performance for users attempting to initiate a spatial search using a map based on aging Java applet technology. The IDN now offers an integrated Google map and date search that replaces that technology. In addition, one of the most defining characteristics in the search for data relates to the temporal and spatial resolution of the data. The ability to refine the search for data sets meeting defined resolution requirements is now possible. Data set authors are encouraged to indicate the precise resolution values for their data sets and subsequently bin these into one of the pre-selected resolution ranges. New metadata authoring tools have been well received. In response to requests for a standalone metadata authoring tool, a new shareable software package called "docBUILDER solo" will soon be released to the public. This tool permits researchers to document their data during experiments and observational periods in the field. interoperability has been enhanced through the use of the Open Archives Initiative s (OAI) Protocol for Metadata Harvesting (PMH). Harvesting of XML content through OAI-MPH has been successfully tested with several organizations. The protocol appears to be a prime candidate for sharing metadata throughout the international community. Data services for visualizing and analyzing data have become valuable assets in facilitating the use of data. Data providers are offering many of their data-related services through the directory. The IDN plans to develop a service-based architecture to further promote the use of web services. During the IDN Task Team session, ideas for further enhancements will be discussed.

  14. First steps of integrated spatial modeling of titanium, zirconium, and rare earth element resources within the Coastal Plain sediments of the southeastern United States

    USGS Publications Warehouse

    Ellefsen, Karl J.; Van Gosen, Bradley S.; Fey, David L.; Budahn, James R.; Smith, Steven M.; Shah, Anjana K.

    2015-01-01

    The Coastal Plain of the southeastern United States has extensive, unconsolidated sedimentary deposits that are enriched in heavy minerals containing titanium, zirconium, and rare earth element resources. Areas favorable for exploration and development of these resources are being identified by geochemical data, which are supplemented with geological, geophysical, hydrological, and geographical data. The first steps of this analysis have been completed. The concentrations of lanthanum, yttrium, and titanium tend to decrease as distance from the Piedmont (which is the likely source of these resources) increases and are moderately correlated with airborne measurements of equivalent thorium concentration. The concentrations of lanthanum, yttrium, and titanium are relatively high in those watersheds that adjoin the Piedmont, south of the Cape Fear Arch. Although this relation suggests that the concentrations are related to the watersheds, it may be simply an independent regional trend. The concentration of zirconium is unrelated to the distance from the Piedmont, the equivalent thorium concentration, and the watershed. These findings establish a foundation for more sophisticated analyses using integrated spatial modeling.

  15. Reducing Loss of Life and Property from Disasters: A Societal Benefit Area of the Strategic Plan for U.S. Integrated Earth Observation System (IEOS)

    USGS Publications Warehouse

    Helz, Rosalind L.; Gaynor, John E.

    2007-01-01

    Natural and technological disasters, such as hurricanes and other extreme weather events, earthquakes, volcanic eruptions, landslides and debris flows, wildland and urban-interface fires, floods, oil spills, and space-weather storms, impose a significant burden on society. Throughout the United States, disasters inflict many injuries and deaths, and cost the nation $20 billion each year (SDR, 2003). Disasters in other countries can affect U.S. assets and interests overseas (e.g. the eruption of Mt. Pinatubo in the Philippines, which effectively destroyed Clark Air Force Base). Also, because they have a disproportionate impact on developing countries, disasters are major barriers to sustainable development. Improving our ability to assess, predict, monitor, and respond to hazardous events is a key factor in reducing the occurrence and severity of disasters, and relies heavily on the use of information from well-designed and integrated Earth observation systems. To fully realize the benefits gained from the observation systems, the information derived must be disseminated through effective warning systems and networks, with products tailored to the needs of the end users and the general public.

  16. Meeting on Earth System History

    NASA Astrophysics Data System (ADS)

    Barron, Eric J.

    The geologic record preserves the integrated response of the Earth system to many perturbations. The study of Earth system history provides unique information on natural variability, the coupling of the components of the Earth system, the biosphere response to global change, and the global and regional response to abrupt changes. Earth system history also has the potential to supply case studies of past global change which are essential to assess the response of climate models to altered boundary conditions. For these reasons, Earth system history has become a key element of the U.S. Global Change Research Program (USGCRP).

  17. Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions

    NASA Astrophysics Data System (ADS)

    Dorosz, Dominik; Zmojda, Jacek; Kochanowicz, Marcin

    2014-07-01

    Antimony-germanate glasses co-doped with Er/Tm ions as a material for active waveguides application have been investigated. In result of optimizations of rare earths, concentration wide (??FWHM=420 nm) luminescence emission in the range of 1.4 to 1.9 ?m was obtained for molar composition of 1%Er2O3: 0.25%TmO. The influence of the molar ratio of active ions on the luminescence spectra has been investigated. Luminescent properties of fabricated glass indicate that elaborated glass is promising material for broad tunable integrated laser sources and broadband optical amplifiers.

  18. Synthesis and evaluation of ultra-pure rare-earth-coped glass for laser refrigeration

    SciTech Connect

    Patterson, Wendy M; Hehlen, Markus P; Epstein, Richard I; Sheik-bahae, Mansoor

    2009-01-01

    Significant progress has been made in synthesizing and characterizing ultra-pure, rare-earth doped ZIBLAN (ZrF{sub 4}-InF{sub 3}BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass capable of laser refrigeration. The glass was produced from fluorides which were purified and subsequently treated with hydrofluoric gas at elevated temperatures to remove impurities before glass formation. Several Yb3 +-doped samples were studied with degrees of purity and composition with successive iterations producing an improved material. We have developed a non-invasive, spectroscopic technique, two band differential luminescence thermometry (TBDLT), to evaluate the intrinsic quality of the ytterbium doped ZIBLAN used for laser cooling experiments. TBDLT measures local temperature changes within an illuminated volume resulting solely from changes in the relative thermal population of the excited state levels. This TBDLT technique utilizes two commercially available band pass filters to select and integrate the 'difference regions' of interest in the luminescence spectra. The goal is to determine the minimum temperature to which the ytterbium sample can cool on the local scale, unphased by surface heating. This temperature where heating and cooling are exactly balanced is the zero crossing temperature (ZCT) and can be used as a measure for the presence of impurities and the overall quality of the laser cooling material. Overall, favorable results were obtained from 1 % Yb3+-doped glass, indicating our glasses are desirable for laser refrigeration.

  19. Measurements of defect structures by positron annihilation lifetime spectroscopy of the tellurite glass TeO2-P2O5-ZnO-LiNbO3 doped with ions of rare earth elements: Er3+, Nd3+ and Gd3+

    NASA Astrophysics Data System (ADS)

    Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.

    2015-12-01

    The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components ?1 and ?2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.

  20. Large core Yb-doped optical fiber through vapor phase doping technique

    NASA Astrophysics Data System (ADS)

    Saha, Maitreyee; Pal, Atasi; Pal, Mrinmay; Sen, Ranjan

    2013-05-01

    Rare earth (RE) doped optical fibers have shown tremendous progress for producing high power fiber lasers for industrial, medical and strategic applications. However, fabrication of large core, high Yb-doped fiber is still a challenge through conventional process due to poor repeatability and limitation regarding core size. This paper presents successful fabrication of Yb-doped fibers through vapor phase doping technique. Preform fabrication was carried out using a specially constructed MCVD system containing High Temperature Vapor Delivery Unit with sublimators for Al and Yb precursors. The novelty of the present work lies in deposition of Al2O3 and Yb2O3 in vapor phase simultaneously with silica during formation of sintered core layer which result in uniform dopants distribution in the preform. The fibers exhibited lasing efficiency of 76% with low `photodarkening effect'.

  1. Determination of monomethylhydrazine with a high-throughput, all-fiber near-infrared spectrometer based on an integrated acoustooptic tunable filter and an erbium-doped fiber amplifier.

    PubMed

    Tran, C D; Gao, G H

    1997-04-01

    A novel integrated acoustooptic tunable filter (IAOTF) has been developed. This tunable filter is based on the Bragg interactions between waveguide and surface acoustic waves. Compared to (bulk) AOTF, its advantage include all-fiber construction, smaller size, narrower spectral resolution (1.7 nm), higher diffraction efficiency (37%), and lower rf power requirement (150 mW). A relatively narrow spectral tuning range (about 80 nm) is the only drawback for this integrated tunable filter. However, this disadvantage was overcome by judiciously using the filter for measurements in which its tuning range is coincident with the light source and also with absorption bands of analytes. In fact, an all-fiber, compact, high-throughput near-infrared spectrophotometer has been successfully constructed by synergistic use of this integrated AOTF and the erbium-doped fiber amplifier (EDFA), which has been shown to provide high intensity and wide spectral band-width in the near-infrared region from 1500 to 1600 nm. This spectral region is particularly useful for the determination of samples which have O-H and/or N-H groups. The all-fiber nature, compactness, high throughput, and high sensitivity of this spectrophotometer make it particularly suitable for on-line and real-time detection of trace gases in hostile environments, including leak detection of monomethylhydrazine (at a limit of detection of 191 ppm), which is often used as the hypergolic propellant for the space shuttle thruster systems. PMID:9105182

  2. Critical Zone Observatories (CZOs): Integrating measurements and models of Earth surface processes to improve prediction of landscape structure, function and evolution

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Anderson, S. P.; Bales, R. C.; Duffy, C.; Scatena, F. N.; Sparks, D. L.; White, T.

    2012-12-01

    The "Critical Zone" - that portion of Earth's land surface that extends from the outer periphery of the vegetation canopy to the lower limit of circulating groundwater - has evolved in response to climatic and tectonic forcing throughout Earth's history, but human activities have recently emerged as a major agent of change as well. With funding from NSF, a network of currently six CZOs is being developed in the U.S. to provide infrastructure, data and models that facilitate understanding the evolution, structure, and function of this zone at watershed to grain scales. Each CZO is motivated by a unique set of hypotheses proposed by a specific investigator team, but coordination of cross-site activities is also leading to integration of a common set of multi-disciplinary tools and approaches for cross-site syntheses. The resulting harmonized four-dimensional datasets are intended to facilitate community-wide exploration of process couplings among hydrology, ecology, soil science, geochemistry and geomorphology across the larger (network-scale) parameter space. Such an approach enables testing of the generalizability of findings at a given site, and also of emergent hypotheses conceived independently of an original CZO investigator team. This two-pronged method for developing a network of individual CZOs across a range of watershed systems is now yielding novel observations and models that resolve mechanisms for Critical Zone change occurring on geological to hydrologic time-scales. For example, recent advances include improved understanding of (i) how mass and energy flux as modulated by ecosystem exchange transforms bedrock to structured, soil-mantled and/or erosive landscapes; (ii) how long-term evolution of landscape structure affects event-based hydrologic and biogeochemical response at pore to catchment scales; (iii) how complementary isotopic measurements can be used to resolve pathways and time scales of water and solute transport from canopy to stream, and (iv) how feedbacks between the Critical Zone, changing climate and changing land use are occurring on timescales relevant to human decisions and policy making.

  3. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NASA Astrophysics Data System (ADS)

    Sefunc, Mustafa Akin; Segerink, Frans; Garcia-Blanco, Sonia

    2015-02-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (earth ions were conventionally fabricated on layers overgrown onto undopedKY(WO4)2 substrates. Such amplifiers exhibit a refractive index contrast between the doped and undoped layer of typically <0.02, leading to large devices not suited for the high degree of integration required in photonic applications. Furthermore, the large mode diameter in the waveguide core requires high pump input powers to fully invert the material. In this study, we experimentally demonstrate high index contrast waveguides in crystalline KY(WO4)2, compatible with the integration onto passive photonic platforms. Firstly, a layer of KY(WO4)2 is transferred onto a silicon dioxide substrate using bonding with UV curable optical adhesive. A subsequent polishing step permits precise control of the transferred layer thickness, which defines the height of the waveguides. Small-footprint (in the order of few microns) high index contrast waveguides were patterned using focused ion beam milling. When doped with rare-earth ions, for instance, Er3+ or Yb3+, such high contrast waveguides will lead to very efficient amplifiers, in which the active material can be efficiently pumped by a confined mode with very good overlap with the signal mode. Consequently, lower pump power will be required to obtain same amount of gain from the amplifier leading to power efficient devices.

  4. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  5. An integrated study of earth resources in the state of California using remote sensing techniques. [planning and management of water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (principal investigators)

    1973-01-01

    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.

  6. Erbium-doped nanoparticles in silica-based optical fibres

    E-print Network

    Blanc, Wilfried; Dussardier, Bernard; 10.1504/IJNT.2012.045350

    2012-01-01

    Developing of new rare-earth (RE)-doped optical fibres for power amplifiers and lasers requires continuous improvements in the fibre spectroscopic properties (like shape and width of the gain curve, optical quantum efficiency, resistance to spectral hole burning and photodarkening...). Silica glass as a host material for fibres has proved to be very attractive. However, some potential applications of RE-doped fibres suffer from limitations in terms of spectroscopic properties resulting from clustering or inappropriate local environment when doped into silica. To this aim, we present a new route to modify some spectroscopic properties of RE ions in silica-based fibres based on the incorporation of erbium ions in amorphous dielectric nanoparticles, grown in-situ in fibre preforms. By adding alkaline earth elements, in low concentration into silica, one can obtain a glass with an immiscibility gap. Then, phase separation occurs under an appropriate heat treatment. We investigated the role of three alkaline-earth...

  7. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    SciTech Connect

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng E-mail: qjr@zju.edu.cn; Zhang, Junpei; Han, Junbo; Qiu, Jianrong E-mail: qjr@zju.edu.cn

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  8. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  9. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.

  10. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.

  11. Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process

    E-print Network

    Carmon, Tal

    with erbium implanted silica layers,3 low threshold rare- earth-doped microlasers on-a-chip have been for preparing silica and silicate from a metal alkoxide precursor provides a versatile and cost-effective way

  12. Nanoparticle doping process for improved fibre amplifiers and lasers

    NASA Astrophysics Data System (ADS)

    Pastouret, A.; Gonnet, C.; Collet, C.; Cavani, O.; Burov, E.; Chaneac, C.; Carton, A.; Jolivet, J. P.

    2009-02-01

    Manufacture fiber amplifiers and lasers in a versatile and cost effective way while controlling rare-earths chemical environment becomes a real technology differentiator. A MCVD compatible Nanoparticle Doping Process has been developed to master with a higher accuracy rare earth amplifier and ytterbium laser fibers. Improved doped erbium fibers with C-band gain shape were obtained with much less aluminum content and unprecedented low background attenuation losses. This process should better show its merits in high power regime paving the way to fiber amplifiers and lasers for low cost new performances.

  13. Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fiber

    E-print Network

    Saglamyurek, Erhan; Veissier, Lucile; Hedges, Morgan P; Thiel, Charles W; Cone, Rufus L; Tittel, Wolfgang

    2015-01-01

    Long-lived population storage in optically pumped levels of rare-earth ions doped into solids, referred to as persistent spectral hole burning, is of significant fundamental and technological interest. Despite numerous observations of deep and persistent holes in various cryogenically cooled rare-earth ion doped crystals, the demonstration of their existence in rare-earth ion doped amorphous hosts, e.g. glasses, has remained an open challenge since many decades. Here we report the first observation and detailed characterization of such holes in an erbium-doped silica glass fiber cooled to below 1 K. We demonstrate population storage in electronic Zeeman-sublevels of the erbium ground state with lifetimes up to 30 seconds and 80\\% spin polarization. Our investigation improves the understanding of the fundamental interaction between impurities and vibrational modes in glassy hosts, and reveals a potential technological application of rare-earth ion doped amorphous materials, including at telecommunication wavel...

  14. Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fiber

    E-print Network

    Erhan Saglamyurek; Thomas Lutz; Lucile Veissier; Morgan P. Hedges; Charles W. Thiel; Rufus L. Cone; Wolfgang Tittel

    2015-07-10

    Long-lived population storage in optically pumped levels of rare-earth ions doped into solids, referred to as persistent spectral hole burning, is of significant fundamental and technological interest. Despite numerous observations of deep and persistent holes in various cryogenically cooled rare-earth ion doped crystals, the demonstration of their existence in rare-earth ion doped amorphous hosts, e.g. glasses, has remained an open challenge since many decades. Here we report the first observation and detailed characterization of such holes in an erbium-doped silica glass fiber cooled to below 1 K. We demonstrate population storage in electronic Zeeman-sublevels of the erbium ground state with lifetimes up to 30 seconds and 80\\% spin polarization. Our investigation improves the understanding of the fundamental interaction between impurities and vibrational modes in glassy hosts, and reveals a potential technological application of rare-earth ion doped amorphous materials, including at telecommunication wavelength.

  15. From land use to land cover: restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Chini, L. P.; Bond-Lamberty, B.; Mao, J.; Shi, X.; Truesdale, J.; Craig, A.; Calvin, K.; Jones, A.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.; Thornton, P.; Thomson, A.

    2014-05-01

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). The CMIP5 project used a novel "land use harmonization" based on the Global Land use Model (GLM) to provide ESMs with consistent 1500-2100 land use trajectories generated by historical data and four IAM projections. A direct coupling of the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: the lack of a corresponding land cover harmonization. The CMIP5 CESM global afforestation is only 22% of GCAM's 2005 to 2100 RCP4.5 afforestation. Likewise, only 17% of GCAM's 2040 RCP4.5 afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled model. This is a problem because afforestation was relied upon to achieve RCP4.5 climate stabilization. GLM modifications within the directly coupled model did not increase CESM afforestation. Modifying the land use translator in addition to GLM, however, enabled CESM to simulate 66% of GCAM's afforestation in 2040, and 94% of GCAM's pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different RCP4.5 climate scenarios between CMIP5 GCAM and CESM. Although the IAMs and ESMs were not expected to have exactly the same climate forcing, due in part to different terrestrial carbon cycles and atmospheric radiation algorithms, the ESMs were expected to project climates representative of the RCP scenarios. Similar land cover inconsistencies exist in other CMIP5 model results, primarily because land cover information is not shared between models. High RCP4.5 afforestation might also contribute to inconsistencies as some ESMs might impose bioclimatic limits to potential forest area and have different rates of forest growth than projected by RCP4.5. Further work to harmonize land cover among models will be required to address this problem.

  16. From Land Use to Land Cover: Restoring the Afforestation Signal in a Coupled Integrated Assessment - Earth System Model and the Implications for CMIP5 RCP Simulations

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Chini, L. P.; Bond-Lamberty, B. P.; Mao, J.; Shi, X.; Truesdale, J. E.; Craig, A.; Calvin, K. V.; Jones, A. D.; Collins, W.; Edmonds, J.; Hurtt, G. C.; Thornton, P. E.; Thomson, A. M.

    2014-12-01

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). The CMIP5 project used a novel "land use harmonization" based on the Global Land use Model (GLM) to provide ESMs with consistent 1500-2100 land use trajectories generated by historical data and four IAM projections. A direct coupling of the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: the lack of a corresponding land cover harmonization. The CMIP5 CESM global afforestation is only 22% of GCAM's 2005 to 2100 RCP4.5 afforestation. Likewise, only 17% of GCAM's 2040 RCP4.5 afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled model. This is a problem because afforestation was relied upon to achieve RCP4.5 climate stabilization. GLM modifications within the directly coupled model did not increase CESM afforestation. Modifying the CESM land use translator in addition to GLM, however, enabled CESM to simulate 66% of GCAM's afforestation in 2040, and 94% of GCAM's pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different RCP4.5 climate scenarios between CMIP5 GCAM and CESM. Although the IAMs and ESMs were not expected to have exactly the same climate forcing, due in part to different terrestrial carbon cycles and atmospheric radiation algorithms, the ESMs were expected to project climates representative of the RCP scenarios. Similar land cover inconsistencies exist in other CMIP5 model results, primarily because land cover information is not shared between IAM and ESM models. High RCP4.5 afforestation might also contribute to inconsistencies as some ESMs might impose bioclimatic limits to potential forest area and have different rates of forest growth than projected by RCP4.5. Further work to harmonize land cover among models will be required to address this problem.

  17. Doped Colloidal Artificial Ice

    E-print Network

    A. Libal; C. J. Olson Reichhardt; C. Reichhardt

    2015-07-02

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  18. Optical properties and chemical composition analyses of mixed rare earth oxyorthosilicate (R2SiO5, R=La, Gd and Y) doped Dy3+ phosphors prepared by urea-assisted solution combustion method

    NASA Astrophysics Data System (ADS)

    Ogugua, S. N.; Shaat, S. K. K.; Swart, H. C.; Ntwaeaborwa, O. M.

    2015-08-01

    Dysprosium (Dy3+) doped lanthanum gadolinium oxyorthosilicate (LaGdSiO5), lanthanum yttrium oxyorthosilicate (LaYSiO5) and gadolinium yttrium oxyorthosilicate (GdYSiO5) phosphors (in powder form) were synthesized by urea-assisted combustion method. The X-ray diffractometer analysis confirmed that the LaGdSiO5, LaYSiO5 and GdYSiO5 crystalized in monoclinic phases. The chemical composition of the phosphors was analyzed by measuring the atomic and molecular ionic species using the time of flight secondary ion mass spectroscopy (ToF SIMS). In addition, ToF SIMS imaging technique was used to determine the distribution of the Dy3+ dopant ions on the surface on the phosphors. The average crystallite sizes and lattice strains of the phosphor were increased by Dy3+ doping. The field emission scanning electron microscope images showed that the powders were made up of an agglomeration of particles with no regular shape. The photoluminescence data showed narrow line emission peaks at the wavelengths of 485 nm (minor emission) and 573 nm (major emission) associated with the f?f transitions of Dy3+. The photoluminescence (PL) measurements showed that the emission peak of LaGdSiO5:Dy3+ was ~3× more intense than those of LaYSiO5:Dy3+ and GdYSiO5:Dy3+ when excited using monochromatic xenon lamp with a wavelength of 241 nm. However, when the powders were excited using a 325 nm He-Cd laser, the highest PL emission intensity was observed from GdYSiO5:Dy3+.

  19. Celebrate the Earth...Every Day!

    ERIC Educational Resources Information Center

    Laubenthal, Gail

    1995-01-01

    Discusses the importance of teaching young children to appreciate and care for the earth and how to integrate earth activities into the curriculum. Includes a year-round curriculum with ideas for hands-on activities appropriate to each month, an integrated unit called "Flowers Blooming," tips for evaluating science experiences, and a list of…

  20. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1996-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  1. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  2. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  3. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    NASA Astrophysics Data System (ADS)

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x?=?0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  4. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection.

    PubMed

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-01-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x?=?0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials. PMID:26202946

  5. Earth’s Earliest Atmospheres

    PubMed Central

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  6. Photosynthesis and early Earth.

    PubMed

    Shih, Patrick M

    2015-10-01

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. PMID:26439346

  7. Doped golden fullerene cages.

    PubMed

    Baletto, Francesca; Ferrando, Riccardo

    2015-11-14

    A first-principles investigation of the effect of the doping of golden cages of 32 atoms is proposed. It is shown that Ag and Cu doping affects the geometrical stability of the icosahedral fullerene Au32 cage, where Ag-doping leads to a new, low symmetric, and prolate motif while Cu-doping leads to a lump, incomplete decahedral shape. Most significantly, the HOMO-LUMO gap depends strongly on the cluster geometry while its dependence on the cluster chemical composition seems to be weaker. PMID:25920946

  8. Earth albedo effects in the motion of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Lala, P.

    Different models of the earth albedo values and geographical distribution are compared. Effects of the local cloud cover on the satellite perturbing acceleration are investigated. Resulting changes of the satellite orbit obtained by the method of numerical integration in the spherical coordinate system are given. It is shown that a sufficiently sensitive microaccelerometer on board a special satellite could significantly improve existing models of the earth albedo.

  9. Photoacoustic Study of -, - , and -Doped Zinc Oxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Gao, B.; Yang, Y. T.; Liu, X. J.; Zhang, S. Y.

    2015-06-01

    In this study, a sonochemical approach is developed to prepare rare-earth (Y, Tb, or Er-doped zinc oxide nanocrystals in an ionic liquid: 1-butyl-3-methylimidazolium tetrafluoroborate. The nanomaterials are characterized by transmission electron microscopy and X-ray diffraction. The results show that the crystalline samples have a spherical shape with a diameter around 7.5 nm. In the band-edge transition region, the photoacoustic (PA) intensity of the samples changes remarkably. Different PA intensities of the samples are interpreted by comparison with their luminescence spectra. The results indicate that the luminescence properties of zinc oxide can be tuned by rare-earth doping. The luminescence quantum yields have been determined to be 12 %, 9.3 %, and 1.1 % for Tb-, Y-, and Er-doped ZnO samples, respectively. Moreover, a possible mechanism is proposed to interpret the formation of the nanocrystals.

  10. Transmission Electron Microscopy (TEM) Characterization of doped -Alumina

    E-print Network

    Psaltis, Demetri

    configurational entropy in this case. In the last few decades efforts have been made to obtain transparent during the sintering process which is done mainly by doping the ceramics with rare earth elements such as La and Y. Therefore, distribution of these elements in microstructure of the ceramic should

  11. Hybrid quantum nanophotonic devices for coupling to rare-earth ions

    NASA Astrophysics Data System (ADS)

    Miyazono, Evan; Hartz, Alex; Zhong, Tian; Faraon, Andrei

    2015-03-01

    With an assortment of narrow line-width transitions spanning the visible and IR spectrum and long spin coherence times, rare-earth doped crystals are the leading material system for solid-state quantum memories. Integrating these materials in an on-chip optical platform would create opportunities for highly integrated light-matter interfaces for quantum communication and quantum computing. Nano-photonic resonators with high quality factors and small mode volumes are required for efficient on-chip coupling to the small dipole moment of rare-earth ion transitions. However, direct fabrication of optical cavities in these crystals with current nanofabrication techniques is difficult and unparallelized, as either exotic etch chemistries or physical milling processes are required. We fabricated hybrid devices by mechanically transferring a nanoscale membrane of gallium arsenide (GaAs) onto a neodymium-doped yttrium silicon oxide (Y2SiO5) crystal and then using electron beam lithography and standard III-V dry etching to pattern nanobeam photonic crystal cavities and ring resonator cavities, a technique that is easily adapted to other frequency ranges for arbitrary dopants in any rare earth host system. Single crystalline GaAs was chosen for its low loss and high refractive index at the transition wavelength. We demonstrated the potential to evanescently couple between the cavity field and the 883 nm 4I9/2- 4F3/2 transition of nearby neodymium impurities in the host crystal by examining transmission spectra through a waveguide coupled to the resonator with a custom-built confocal microscope. The prospects and requirements for using this system for scalable quantum networks are discussed.

  12. Coherent properties of single rare-earth spin qubits

    NASA Astrophysics Data System (ADS)

    Siyushev, P.; Xia, K.; Reuter, R.; Jamali, M.; Zhao, N.; Yang, N.; Duan, C.; Kukharchyk, N.; Wieck, A. D.; Kolesov, R.; Wrachtrup, J.

    2014-05-01

    Rare-earth-doped crystals are excellent hardware for quantum storage of photons. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here we present experimental results on high-fidelity optical initialization, effcient coherent manipulation and optical readout of a single-electron spin of Ce3+ ion in a yttrium aluminium garnet crystal. Under dynamic decoupling, spin coherence lifetime reaches T2=2?ms and is almost limited by the measured spin-lattice relaxation time T1=4.5?ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce3+ emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.

  13. Computer modelling of the reduction of rare earth dopants in barium aluminate

    SciTech Connect

    Rezende, Marcos V. dos S; Valerio, Mario E.G.; Jackson, Robert A.

    2011-08-15

    Long lasting phosphorescence in barium aluminates can be achieved by doping with rare earth ions in divalent charge states. The rare earth ions are initially in a trivalent charge state, but are reduced to a divalent charge state before being doped into the material. In this paper, the reduction of trivalent rare earth ions in the BaAl{sub 2}O{sub 4} lattice is studied by computer simulation, with the energetics of the whole reduction and doping process being modelled by two methods, one based on single ion doping and one which allows dopant concentrations to be taken into account. A range of different reduction schemes are considered and the most energetically favourable schemes identified. - Graphical abstract: The doping and subsequent reduction of a rare earth ion into the barium aluminate lattice. Highlights: > The doping of barium aluminate with rare earth ions reduced in a range of atmospheres has been modelled. > The overall solution energy for the doping process for each ion in each reducing atmosphere is calculated using two methods. > The lowest energy reduction process is predicted and compared with experimental results.

  14. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  15. Ferritin protein encapsulated photoluminescent rare earth nanoparticle

    NASA Astrophysics Data System (ADS)

    Harada, T.; Yoshimura, H.

    2013-07-01

    Rare earth (yttrium (Y), europium (Eu), and terbium (Tb)) nanoparticles and Eu and Tb doped Y nanoparticles are synthesized in an apoferritin cavity. They exhibit a narrow size distribution and a high stability in an aqueous solution at pH 8.5. Eu and Eu doped Y (Y:Eu) nanoparticles exhibit red photoluminescence (emission peaks: 590 and 614 nm), while Tb and Tb doped Y (Y:Tb) nanoparticles exhibit green photoluminescence (emission peaks: 488, 544, 582, and 618 nm). High-resolution electron microscopy observations reveal that about 5% of the nanoparticles have a lattice structure, while the remaining nanoparticles are amorphous. Electron diffraction of the Y nanoparticles gives lattice spacings corresponding to the cubic structure of yttrium oxide (Y2O3). The most optimal dopant content for luminescence of Y:Eu and Y:Tb nanoparticles in apoferritin cavity are about 60% and 40%, respectively.

  16. [Doping and sports].

    PubMed

    Lippi, G; Guidi, G

    1999-09-01

    Doping is widely known as the use of banned substances and practices by athletes in an attempt to improve sporting performances. The term doping likely derives from "dope", an ancient expression referred to a primitive alcoholic drink that was used as a stimulant in South African ceremonial dances; gradually, the term was extended and finally adopted his current significance. There are at least two essential reasons to support the fight against doping: the potential harmful effects on athletes and the depth corruption of the fair competition. An exhaustive list of banned substances and methods has been drawn by the International Olympic Committee and further accepted by other International Sport Authorities and Federations. This list, regularly updated, is basically divided into doping substances (stimulants, narcotic analgesics, anabolic agents, diuretics, peptide and glycoprotein hormones and analogues), doping methods (blood doping, pharmacological, chemical and physical manipulation) and drugs subjected to certain restrictions (alcohol, marijuana, local anesthetics, corticosteroids and beta-blockers). Although there might be some medical conditions, which could legitimate the need of these substances or methods, there is no place for their use in sport. Thus, an athlete's consume of any of these substances or methods will result in disqualification. Aim of the present review is to provide a synthetic description of both the desirable effects and the potentially harmful consequences of the use of some of the major doping substances and methods. PMID:10719440

  17. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  18. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  19. Blue emission from Tm-doped GaN electroluminescent devices A. J. Steckl,a)

    E-print Network

    Cincinnati, University of

    N with lumines- cent rare earth RE species. In our approach the GaN host material does not require alloying based on RE-doping of GaN, utilizing the rare earth element thulium Tm . We have selected Tm because utilized transpar- ent and conducting metal electrodes of indium­tin­oxide ITO . The ITO contacts were

  20. Doped graphene supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Baek, Jong-Beom

    2015-12-11

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed. PMID:26574192

  1. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  2. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  3. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  4. Spectral and time-resolved photoluminescence studies of Eu-doped GaN Ei Ei Nyein and U. Hommericha)

    E-print Network

    Cincinnati, University of

    American Institute of Physics. DOI: 10.1063/1.1560557 The visible and infrared light emissions from rare-earth doped GaN grown by metal- organic chemical vapor deposition. They observed significant differences

  5. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  6. Heat transfer regulation of hole defect graphene by nitrogen doping

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Haiying; Fan, Haibiao; Yu, Xingang; Yang, Ping

    2015-11-01

    Using classical molecular dynamics simulation, we investigate the thermal transport properties of hole defect graphene nanoribbons (HD-GNRs) possing various doping concentration of nitrogen atoms. By changing the concentration of nitrogen atoms, we try to find an effective method to adjust the heat transfer of HD-GNRs. The results show that the existence of hole defect in graphene destroys the structural integrity of the GNRs, which causes great decrease in thermal conductivity. We detect that nitrogen doping is a very sensitive mode for hole defect graphene nanoribbons. The thermal conductivity of HD-GNRs can be greatly improved by decreasing the N doping concentration from 7 to 0.87 %.

  7. Committing to creating time for integrating contemporary environmental issues into a traditional introduction to Earth Science course, one topic at a time

    NASA Astrophysics Data System (ADS)

    Cook, H. M.

    2014-12-01

    I teach an Earth Science course, designed as an introductory science class that also fulfills the Earth Science requirement for pre-service teachers preparing to take their state content exam. This course provides an introduction to astronomy, geology, oceanography, and meteorology. By design, the class is content-heavy. Despite this, with so many current environmental and societal issues directly tied to the Earth Sciences, it is essential to address contemporary problems and to educate students about the changes and challenges in the world around them. I have made a commitment to doing this by incorporating relevant societal and environmental issues into every topic and every class session. While this may sound basic, doing so requires diligence and research. For example, when teaching about weathering and erosion, I discuss soils, soil quality and erosion, and the impact this has on our global food supply. A hands-on mineral activity lends itself to looking at the energy and waste involved in ore extraction. A lecture on ocean circulation results in an opportunity to analyze the consequences of the interruption of this pattern due to global warming. Through this approach, students are provided with necessary content; furthermore, by linking traditional content to modern issues on a regular basis, students see the relevance of what they are learning and become more aware of the environmental issues facing society today. Student evaluations indicate that this approach has been successful: 100% of students reported that they learned a great deal from the course, and 100% of students agreed that the quality of the course was high. In addition, prior to the class 55.8% of the students indicated interested in the content; whereas, after the course 88.6% indicated interest, with strong interest in the content increasing from 16.3% to 41%.

  8. Performance characterization of new erbium-doped fibers using MCVD nanoparticle doping process

    NASA Astrophysics Data System (ADS)

    Boivin, David; Pastouret, Alain; Burov, Ekaterina; Gonnet, Cédric; Cavani, Olivier; Lempereur, Simon; Sillard, Pierre

    2011-02-01

    In 2009, we introduced a new doping concept involving Al2O3/rare-earth nanoparticles (NP) in a MCVD-compatible process finding potential applications in Erbium-, Ytterbium- or Erbium-Ytterbium-doped fiber amplifiers and lasers.1 This approach, motivated by the need for increased efficiencies and improved attributes, is characterized by the ability to control the rare-earth ion environment independently from the core composition. The NP matrix can therefore be viewed as an optimized sub-micronic amplifying medium for the embedded rareearth ion. The first experimental evidence to support this idea is reported in a comparative study with a standard process2 where homogeneous up-conversion (HUC) and pair-induced quenching (PIQ) levels are extracted from Er3+ unsaturable absorption measurements. NP-based fibers are found to mitigate the effects of the Er3+ concentration increase seen in standard heavily-doped fibers. This conclusion is particularly clear when focusing on the HUC coefficient evolution since, for a given type of NP, its level is independent from the Er3+ concentration in the doped zone. In this paper, we address our most recent work completing these preliminary results. First, we investigate the quenching signature of a new NP design and its behavior when incorporated in different core matrices. The interplay is further analysed by relating this set of measurements to practical EDFA performances. Gain and noise characteristics of typical WDM amplifiers operating points serve as key benchmarking indicators to identify the benefits of NP Erbium-doped fibers in the wide variety of EDFAs implementations.

  9. Properties of an Earth-Like Planet Orbiting a Sun-Like Star: Earth Observed by the EPOXI Mission

    E-print Network

    Livengood, Timothy A.

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of ...

  10. CHRISTOPHER K. JUNIUM CURRICULUM VITAE ASSISTANT PROFESSOR OF EARTH SCIENCES SYRACUSE UNIVERSITY

    E-print Network

    Raina, Ramesh

    CHRISTOPHER K. JUNIUM CURRICULUM VITAE ASSISTANT PROFESSOR OF EARTH SCIENCES · SYRACUSE UNIVERSITY DEPARTMENT OF EARTH SCIENCES · SYRACUSE, NEW YORK, 13244 RESEARCH INTERESTS Application of the stable, Department of Earth Sciences 2012 Sedimentologist, Integrated Ocean Drilling Program, Expedition 342

  11. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  12. SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space

    NASA Astrophysics Data System (ADS)

    Zhu, Liangfeng; Sun, Jianzhong; Li, Changling; Zhang, Bing

    2014-12-01

    Although many of the first-generation Digital Earth systems have proven to be quite useful for the modeling and visualization of geospatial objects relevant to the Earth's surface and near-surface, they were not designed for the purpose of modeling and application in geological or atmospheric space. There is a pressing need for a new Digital Earth system that can process geospatial information with full dimensionality. In this paper, we present a new Digital Earth system, termed SolidEarth, as an alternative virtual globe for the modeling and visualization of the whole Earth space including its surface, interior, and exterior space. SolidEarth consists of four functional components: modeling in geographical space, modeling in geological space, modeling in atmospheric space, and, integrated visualization and analysis. SolidEarth has a comprehensive treatment to the third spatial dimension and a series of sophisticated 3D spatial analysis functions. Therefore, it is well-suited to the volumetric representation and visual analysis of the inner/ outer spheres in Earth space. SolidEarth can be used in a number of fields such as geoscience research and education, the construction of Digital Earth applications, and other professional practices of Earth science.

  13. Modelling the concentration dependence of doping in optical materials

    NASA Astrophysics Data System (ADS)

    Jackson, R. A.; Valerio, M. E. G.

    2015-04-01

    As well as understanding the location of dopants in optical materials, it is also important to understand how much dopant can be added to a given material. A method for calculating the maximum concentration of dopants has been developed, and applied to dopants in mixed metal fluorides for optical and nuclear clock applications. Applications to rare earth doping in YLiF4, and Th doping in LiCaAlF6/LiSrAlF6 are described, and compared with available experimental data.

  14. Early Earth differentiation

    NASA Astrophysics Data System (ADS)

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation (t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10 15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally consistent with isotopic constraints for time-integrated Sm/Nd and Lu/Hf ratios in the modern upper mantle and might account for the characteristics of some mantle isotope reservoirs. Although much remains to be learned about the earliest formative period in the Earth's development, a convergence of theoretical, physical, isotopic and geochemical arguments is beginning to yield a self-consistent portrait of the infant Earth.

  15. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  16. Earth's extensive entropy bound

    E-print Network

    A. M. Lisewski

    2012-12-20

    The possibility of planetary mass black hole production by crossing entropy limits is addressed. Such a possibility is given by pointing out that two geophysical quantities have comparable values: first, Earth's total negative entropy flux integrated over geological time and, second, its extensive entropy bound, which follows as a tighter bound to the Bekenstein limit when entropy is an extensive function. The similarity between both numbers suggests that the formation of black holes from planets may be possible through a strong fluctuation toward thermodynamic equilibrium which results in gravothermal instability and final collapse. Briefly discussed are implications for the astronomical observation of low mass black holes and for Fermi's paradox.

  17. Computer modelling of the reduction of rare earth dopants in barium aluminate

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos V. dos S.; Valerio, Mário E. G.; Jackson, Robert A.

    2011-08-01

    Long lasting phosphorescence in barium aluminates can be achieved by doping with rare earth ions in divalent charge states. The rare earth ions are initially in a trivalent charge state, but are reduced to a divalent charge state before being doped into the material. In this paper, the reduction of trivalent rare earth ions in the BaAl 2O 4 lattice is studied by computer simulation, with the energetics of the whole reduction and doping process being modelled by two methods, one based on single ion doping and one which allows dopant concentrations to be taken into account. A range of different reduction schemes are considered and the most energetically favourable schemes identified.

  18. Liquid phase epitaxial growth of InGaAs on InP using rare-earth-treated and Paul R. Bergerb)

    E-print Network

    Liquid phase epitaxial growth of InGaAs on InP using rare-earth-treated melts Wei Gaoa) and Paul R-doped InP substrates. The growths were performed by liquid phase epitaxy LPE using rare-earth-doped melts in a graphite boat. The rare-earth elements studied were Yb, Gd and Er which act as gettering agents

  19. Optical and magnetic properties of Eu-doped GaN J. Hite, G. T. Thaler, R. Khanna, C. R. Abernathy, and S. J. Peartona

    E-print Network

    Cincinnati, University of

    Institute of Physics. DOI: 10.1063/1.2358293 There is continued strong interest in the properties of rare-earth allow emission of higher energy rare earth transitions that are otherwise ab- sorbed in smaller band gap systems that employ color-combining tech- niques. Rare earth doping of GaN with Eu and Gd has also been

  20. Observation of Minority Spin Character of the New Electron Doped Manganite La0:7Ce0:3MnO3 from Tunneling Magnetoresistance

    E-print Network

    Raychaudhuri, Pratap

    by substituting the rare-earth atom by tetravalent Ce also drives the sys- tem into a ferromagnetic metallic numbers: 75.70.­i, 73.40.Gk, 75.47.Gk There has been a lot of interest recently in the hole doped rare-earth manganites, where the rare earth in the insulating parent compound is partially replaced by a divalent cation

  1. Thermal lensing effects in ?-doped ? luminescent glass

    NASA Astrophysics Data System (ADS)

    Alvarez, E. R.; Camarillo, I. G.; Castaño, E. T.; Muñoz, A. F.; Clark, A. B.; Taheri, B.

    1996-07-01

    Optical absorption, photoluminescence and fluorescence decay time of 0953-8984/8/30/013/img10 in a 0953-8984/8/30/013/img11 glass were measured in the 400 - 800 nm range. Under continuous (CW) laser excitation the characteristics of thermal lensing (TL) were measured at room temperature, under resonant and non-resonant conditions. Our results are analysed based on a theoretical model for CW laser induced thermal lensing under a gaussian-beam approximation. The effects of the power input and the response time for TL are explained in terms of the thermal properties of the glass host, for non-resonant excitation, and in terms of the coupling of rare earth ions to the local vibrations for resonant excitations. We also report, for the first time, the observation of laser induced permanent changes in the refractive index of bulk rare earth doped oxide glasses, under non-resonant excitation conditions.

  2. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    DOEpatents

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  3. A Stand-Alone Demography and Landscape Structure Module for Earth System Models: Integration with Inventory Data from Temperate and Boreal Forests

    NASA Astrophysics Data System (ADS)

    Haverd, V. E.; Smith, B.; Nieradzik, L. P.; Briggs, P.

    2014-12-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 years. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs. Haverd, V., Smith, B., Briggs, P.R., Nieradzik, L.P, 2014. A stand-alone tree demography and landscape structure module for Earth system models: integeration with inventory data from temperate and boreal forests. Biogeosciences, 11: 1-17.

  4. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  5. [Doping control in race horses].

    PubMed

    Ungemach, F R

    1985-01-01

    Doping in performance horses is defined as the "illegal application of any substance, except normal diet, that might modify the natural and present capacities of the horse at the time of the race." The prohibition of doping is mainly based on the protection of animals. Doping can be performed with various aims: "doping to win" can be regarded as the classical method by mobilization of overphysiological capacities. Such positive doping may be classified as an acute form using psychomotoric stimulants, as a chronic form using anabolic hormones, and as a paradoxical form using small doses of neuroleptics or tranquilizers in excitable horses. In larger doses these sedatives are acting for "doping to loose" in a more subtle manner as compared to hypnotics. According to the doping regulations there is no difference between therapy and doping at the time of the race. Thus at the race all medications to restore normal performance have to be regarded as doping. This fact especially concerns the therapy of lamenesses with non-steroidal antiinflammatory drugs or local anesthetics. A particular problem is "inadvertent" doping due to unknown side effects, combinations of drugs, galenic supplements or food additives. Accidental doping may further be caused by the unawareness of elimination times. At the moment no exact withdrawing times can be defined due to the manifold interindividual variations at different levels of the pharmacokinetics. As a border-line case of doping the application of endogenous substances, like electrolytes or glucose, may be regarded. Though their parenteral application is prohibited prior to the race, only bicarbonate or "blood doping" may be considered to be effective as positive doping. Special doping methods are the use of "masking" substances or diuretics in order to make more difficult the detection of illegal drugs as well as physical doping procedures which are often hardly to define and which thus are only in part included in the doping regulations. PMID:2859671

  6. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.

  7. Classroom Earth!

    ERIC Educational Resources Information Center

    Horton, Tom

    1999-01-01

    Educators are rediscovering the benefits of using the local natural environment as an integrating context (EIC) for curriculum. Once called "nature study," this form of hands-on environmental education draws on the connectedness inherent in natural systems to forge meaningful links in student learning. Sidebars describe EIC projects at three…

  8. Surface Morphology of Undoped and Doped ZnSe Films

    NASA Technical Reports Server (NTRS)

    George, T.; Hayes, M.; Chen, H.; Chattopadhyay, K.; Thomas E.; Morgan, S.; Burger, A.

    1998-01-01

    Rare-earth doped ions in polar II-VI semiconductors have recently played an important role in the optical properties of materials and devices. In this study, undoped ZnSe and erbium doped ZnSe films were grown by radio frequency (RF) magnetron sputtering method. Atomic Force Microscopy (AFM) was used together with optical microscopy and UV-Vis spectroscopy to characterize the films. Doped samples were found to have higher surface roughness and quite different surface morphology compared to that of undoped samples. The grown films generally show a relatively smooth and uniform surface indicating that they are of overall good quality. The impact of plasma etching on ZnSe:Er film examined under AFM is also discussed.

  9. Self-limited kinetics of electron doping in correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhou, You; Middey, Srimanta; Jiang, Jun; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max; Shi, Jian; Chakhalian, Jak; Ramanathan, Shriram

    2015-07-01

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni3+ are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  10. Search for ferromagnetism in transition metal doped monoclinic HfO2

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2013-02-01

    Electronic and structural properties of the bulk monoclinic (m) phase of HfO2 are calculated using density functional theory as implemented in SIESTA code. We have considered substitutional doping of transition metals (TM) V and Cr in m-hafnia and studied electronic and magnetic properties of the resulting system. We found that TM doped systems are ferromagnetic. Also Cr doped m-hafnia exhibit half-metallic characteristics and posses Curie temperature above room temperature. Therefore TM doped m-hafnia offers the possibility of integration of CMOS with spintronic technology.

  11. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  12. Light emission from rare-earths in dislocation engineered silicon substrates

    NASA Astrophysics Data System (ADS)

    Lourenço, Manon A.; Ludurczak, Willy; Prins, Andrew D.; Milosavljevi?, Momir; Gwilliam, Russell M.; Homewood, Kevin P.

    2015-07-01

    We report and compare the luminescence, both photo- and electroluminescence, in the near-infrared of a wide range of rare earths (Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm) doped dislocation engineered silicon light emitting devices. The rare earths are introduced using ion implantation into standard Czochralski (CZ) n-type silicon wafers pre-implanted with boron to form both the p-n junction and an engineered dislocation loop array. Rare earth internal transitions are observed in samples co-doped with Dy, Ho, Er, and Tm. We show that for each rare earth optimizing the optical activity depends critically on the rare earth implant parameters and post-implant process conditions. Room temperature operation in the 1.5 and 2.0 µm spectral regions is observed from the internal rare earth transitions in Er and Tm.

  13. Growth and morphology of Er-doped GaN on sapphire and hydride vapor phase epitaxy substrates

    E-print Network

    Cincinnati, University of

    Society. S0734-211X 99 06303-9 The optical properties of rare earth RE elements such as Nd, Er, Pr have chemical stability, carrier generation to excite the rare earths , and physical stability over a wide temperature range. The doping of III nitrides GaN, AlN with Er by molecular beam epitaxy MBE and metal

  14. Spectroscopic signature of phosphate crystallization in Erbium-doped optical fibre preforms

    E-print Network

    Peretti, Romain; Jacquier, Bernard; Blanc, Wilfried; Dussardier, Bernard; 10.1016/j.optmat.2011.01.005

    2011-01-01

    In rare-earth-doped silica optical fibres, the homogeneous distribution of amplifying ions and part of their spectroscopic properties are usually improved by adding selected elements, such as phosphorus or aluminum, as structural modifier. In erbium ion (Er3+) doped fibres, phosphorus preferentially coordinates to Er3+ ions to form regular cages around it. However, the crystalline structures described in literature never gave particular spectroscopic signature. In this article, we report emission and excitation spectra of Er3+ in a transparent phosphorus-doped silica fibre preform. The observed line features observed at room and low temperature are attributed to ErPO4 crystallites.

  15. Er-doped fiber comb with enhanced fceo S/N ratio using Tm:Ho-doped fiber.

    PubMed

    Kim, Yunseok; Kim, Young-Jin; Kim, Seungman; Kim, Seung-Woo

    2009-10-12

    We report that the Tm:Ho-doped fiber can be utilized to improve the frequency stabilization of the Er-doped fiber comb. This rare-earth doped fiber provides photon absorption at 1.2 microm and 1.7 microm wavelengths together with emission at wavelengths between 1.8 microm to 2.1 microm. This unique combination of the absorption and emission regions constructively redistributes the spectral power of the supercontinuum generated by a highly nonlinear fiber to detect the carrier-envelope-offset frequency (f(ceo)) via a self-referencing f-2f interferometer. As a result, the signal to noise (S/N) ratio of the detected f(ceo) signal increases by 10 dB, thereby increasing the potential of enhancing the long-term frequency stability of the fiber frequency comb. PMID:20372591

  16. Process for fabricating device structures for real-time process control of silicon doping

    DOEpatents

    Weiner, Kurt H. (San Jose, CA)

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  17. A rough earth scattering model for multipath prediction

    NASA Technical Reports Server (NTRS)

    Page, L. J.; Chestnut, P. C.

    1970-01-01

    The most important phenomena to be considered in a model of radio wave communication between earth satellites are scattering from the surface of the earth. A model is derived and implemented on a computer to predict the field received after reflection from a rough, spherical earth. The scattering integrals are computed numerically; the domain of integration is the appropriate region on the surface of the earth. Calculations have been performed at VHF frequencies and for terrain which could be described as marshy land. Rough surface scattering calculations must be performed over a spherical earth when satellites are involved. There is a definite dependence on the values of the roughness, and the correlation length.

  18. Effect of rare earth ions on the properties of glycine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Moorthy Babu, S.; Kumar, Binay; Bhagavannarayana, G.

    2013-01-01

    Optically transparent glycine phosphite (GPI) single crystals doped with rare earth metal ions (Ce, Nd and La) were grown from aqueous solution by employing the solvent evaporation and slow cooling methods. Co-ordination of dopants with GPI was confirmed by X-ray fluorescence spectroscopic analysis. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters and to analyze the structural morphology of GPI with dopants, which indicates that cell parameters of doped crystals were significantly varied with pure GPI. Crystalline perfection of doped GPI crystals was determined by high resolution X-ray diffraction analysis by means of full width at half maximum values. Influence of the dopants on the optical properties of the material was determined. Paraelectric to ferroelectric transition temperature (Tc) of doped GPI crystals were identified using differential scanning calorimetric measurements. Piezoelectric charge coefficient d33 was measured for pure and doped GPI crystals. Hysteresis (P-E) loop was traced for ferroelectric b-axis and (100) plane of pure and doped GPI crystals with different biasing field and ferroelectric parameters were calculated. Mechanical stability of crystals was determined by Vickers microhardness measurements; elastic stiffness constant 'C11' and yield strength '?y' were calculated from hardness values. Mechanical and ferroelectric properties of doped crystals were improved with doping of rare earth metals.

  19. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being †

    PubMed Central

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795

  20. 2014 Future Earth Young Scientists Conference on integrated science and knowledge co-production for ecosystems and human well-being.

    PubMed

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-11-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25-31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a "good" anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with "sustainable development goals". PMID:25390795

  1. Doped colloidal artificial spin ice

    NASA Astrophysics Data System (ADS)

    Libál, A.; Olson Reichhardt, C. J.; Reichhardt, C.

    2015-10-01

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  2. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  3. Dope, Fiends, and Myths.

    ERIC Educational Resources Information Center

    Reasons, Charles E.

    Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…

  4. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D. (Oak Ridge, TN); Bond, Walter D. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  5. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  6. Rare-earth doped aluminum oxide lasers for silicon photonics

    E-print Network

    Magden, Emir Salih

    2014-01-01

    A reliable and CMOS-compatible deposition process for amorphous Al2O3 based active photonic components has been developed. Al2O3 films were reactively sputtered, where process optimization was achieved at a temperature of ...

  7. Laser ceramics with rare-earth-doped anisotropic materials.

    PubMed

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori

    2010-11-01

    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1). PMID:21042362

  8. Enhanced stability of Eu in GaN nanoparticles: Effects of Si co-doping

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhsharan; Sekhon, S. S.; Zavada, J. M.; Kumar, Vijay

    2015-06-01

    Ab initio calculations on Eu doped (GaN)n (n = 12, 13, and 32) nanoparticles show that Eu doping in nanoparticles is favorable compared with bulk GaN as a large fraction of atoms lie on the surface where strain can be released compared with bulk where often Eu doping is associated with a N vacancy. Co-doping of Si further facilitates Eu doping as strain from an oversized Eu atom and an undersized Si atom is compensated. These results along with low symmetry sites in nanoparticles make them attractive for developing strongly luminescent nanomaterials. The atomic and electronic structures are discussed using generalized gradient approximation (GGA) for the exchange-correlation energy as well as GGA + U formalism. In all cases of Eu (Eu + Si) doping, the magnetic moments are localized on the Eu site with a large value of 6?B (7?B). Our results suggest that co-doping can be a very useful way to achieve rare-earth doping in different hosts for optoelectronic materials.

  9. Testosterone and doping control

    PubMed Central

    Saudan, C; Baume, N; Robinson, N; Avois, L; Mangin, P; Saugy, M

    2006-01-01

    Background and objectives Anabolic steroids are synthetic derivatives of testosterone, modified to enhance its anabolic actions (promotion of protein synthesis and muscle growth). They have numerous side effects, and are on the International Olympic Committee's list of banned substances. Gas chromatography?mass spectrometry allows identification and characterisation of steroids and their metabolites in the urine but may not distinguish between pharmaceutical and natural testosterone. Indirect methods to detect doping include determination of the testosterone/epitestosterone glucuronide ratio with suitable cut?off values. Direct evidence may be obtained with a method based on the determination of the carbon isotope ratio of the urinary steroids. This paper aims to give an overview of the use of anabolic?androgenic steroids in sport and methods used in anti?doping laboratories for their detection in urine, with special emphasis on doping with testosterone. Methods Review of the recent literature of anabolic steroid testing, athletic use, and adverse effects of anabolic?androgenic steroids. Results Procedures used for detection of doping with endogenous steroids are outlined. The World Anti?Doping Agency provided a guide in August 2004 to ensure that laboratories can report, in a uniform way, the presence of abnormal profiles of urinary steroids resulting from the administration of testosterone or its precursors, androstenediol, androstenedione, dehydroepiandrosterone or a testosterone metabolite, dihydrotestosterone, or a masking agent, epitestosterone. Conclusions Technology developed for detection of testosterone in urine samples appears suitable when the substance has been administered intramuscularly. Oral administration leads to rapid pharmacokinetics, so urine samples need to be collected in the initial hours after intake. Thus there is a need to find specific biomarkers in urine or plasma to enable detection of long term oral administration of testosterone. PMID:16799097

  10. Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhan, Huan; Ni, Li; Peng, Kun; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-11-01

    With continuous efforts and practical managing experiences, the chelate precursor doping method has been justified as an effective way to dope rare-earth ions into silica host materials, a key technique in making large-mode-area silica fibers for high power laser applications. It is characterized by good controllability, stability and repeatability to accomplish different refractive index profiles. Different preforms with a large core, designed refractive index profile, good symmetrical shape and homogeneous elemental distribution were successfully fabricated. The home-made standard 20/400-type double-cladding Yb-doped large-mode-area silica fiber was drawn and presented a 1.6 kW laser output at 1064?nm, the highest power record publically reported with this method. With further optimization, chelate precusor doping method has potential to manufacture high power laser fibers for the next generation.

  11. From the Sun to the Ice - Then Where? A Bi-polar, Integrated View of the Role of Polar Snow and Floating Ice Covers in the Earth's Heat Budget During IPY 2007/08

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Grenfell, T.; Jeffries, M.; Perovich, D.; Sturm, M.

    2003-12-01

    The polar regions play a key role in the disposition of energy and in particular solar radiation in the earth's climate system. With the largest seasonal variations in surface albedo occurring over the polar oceans and with substantial changes in the extent and nature of the snow and ice covers in recent decades, the polar regions are a critical link between top-of-the atmosphere radiative fluxes and solar energy absorbed by the earth system. While recent studies have greatly improved our knowledge of the heat budget of the polar oceans, we are still far from understanding a number of fundamental questions related to the role of snow and ice in the global radiation budget and their importance for albedo feedback processes. For example, currently albedo parameterizations in large-scale sea ice and climate models are only partially successful in taking into account the physical processes driving seasonal and interannual albedo changes. In fact, the majority of models employ different albedo parameterizations for northern and southern hemisphere snow and sea ice. This is dictated by the strong contrasts in snow and ice melt processes in Arctic and Antarctic, which in of themselves are not all that well understood. Our own research in the Western Arctic and in the southern Ross Sea indicates that snow may play a crucial, currently underestimated role in governing these processes and hence the nature and magnitude of ice-albedo feedback processes. Here, we propose that an integrated, bi-polar examination of the interaction between snow and floating ice covers (sea and lake ice), coupled with a global-scale analysis of the role of polar ice masses in affecting the earth's radiation budget would provide an interesting and scientifically significant cryospheric thread within the framework of the IPY 2007/08. This work would also address other important aspects such as large-scale cloud radiative forcing over ice surfaces and spatio-temporal partitioning of the radiation reaching the surface. At the same time, such a program would provide direct linkages to the aims of the International Heliospheric Year. The observational effort would comprise a pan-polar approach to ground-based measurements along with satellite remote sensing, augmented by numerical simulations. Based on studies of the energy and mass balance of Arctic and Antarctic snow and ice covers, we will show how such a cryospheric component could be integrated into the overall aims of the IPY. IPY will provide an extraordinary opportunity to capture the imagination of the general public and school children. Our proposed effort will take advantage of this opportunity to convey information about the solar radiation and about the role the polar regions play in global climate. There will be an extensive educational outreach component that will include media contacts, web sites, classroom programs, and public lectures. Examples of such approaches, e.g., the Alaska Lake Ice and Snow Observatory Network (ALISON, www.gi.alaska.edu/alison) or Barrow Coastal Ice Observations (www.arcticice.org) will be discussed.

  12. Near Earth asteroid rendezvous

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Spacecraft Design Course is the capstone design class for the M.S. in astronautics at the Naval Postgraduate School. The Fall 92 class designed a spacecraft for the Near Earth Asteroid Rendezvous Mission (NEAR). The NEAR mission uses a robotic spacecraft to conduct up-close reconnaissance of a near-earth asteroid. Such a mission will provide information on Solar System formation and possible space resources. The spacecraft is intended to complete a NEAR mission as a relatively low-budget program while striving to gather as much information about the target asteroid as possible. A complete mission analysis and detailed spacecraft design were completed. Mission analysis includes orbit comparison and selection, payload and telemetry requirements, spacecraft configuration, and launch vehicle selection. Spacecraft design includes all major subsystems: structure, electrical power, attitude control, propulsion, payload integration, and thermal control. The resulting spacecraft demonstrates the possibility to meet the NEAR mission requirements using existing technology, 'off-the-shelf' components, and a relatively low-cost launch vehicle.

  13. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  14. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  15. Anderson testifies on Planet Earth

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa A.

    AGU president Don Anderson joined former astronaut Sally Ride and National Aeronautics and Space Administration official Lennard Fisk March 8 in testifying before the Senate committee on Commerce, Science, and Transportation. The three had been asked to speak on the future of the Mission to Planet Earth, proposed both in a National Academy of Sciences report and a NASA study.Anderson was chairman of the National Academy of Science's Task Group on Earth Sciences, which prepared the report Mission to Planet Earth as part of the series Space Science in the Twenty-First Century. In his testimony, Anderson highlighted parts of the report and quoted the frontispiece “We now have the technology and the incentive to move boldly forward on a Mission to Planet Earth. We call on the nation to implement an integrated global program using both spaceborne and earth-based instrumentation for fundamental research on the origin, evolution and nature of our planet, its place in our solar system, and its interaction with living things, including mankind.”

  16. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  17. Earth's Mineral Evolution

    E-print Network

    Downs, Robert T.

    Earth's Mineral Evolution :: Astrobiology Magazine - earth science - evol...rth science evolution Extreme Life Mars Life Outer Planets Earth's Mineral Evolution Summary (Nov 14, 2008): New research. Display Options: Earth's Mineral Evolution Based on a CIW news release Mineral Kingdom Has Co

  18. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  19. Earth Sciences Further Information

    E-print Network

    Chauve, Cedric

    SCIENCE SFU.CA/ SCIENCE Earth Sciences #12;Further Information Student info, academic calendar, registration students.sfu.ca Science advising sfu.ca/science/undergrad/advising Earth Sciences Earth Sciences students have a natural curiosity about the Earth and a desire to find, invent or create things that help

  20. Earth Structure Introduction

    E-print Network

    Earth Structure Introduction Earth Structure (2nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm © WW Norton, unless noted otherwise #12;© EarthStructure (2nd ed) 210/4/2010 Aerial views #12;© EarthStructure (2nd ed) 310/4/2010 http://www.globalchange.umich.edu/Ben/ES/ #12

  1. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  2. Earth from Above

    ERIC Educational Resources Information Center

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  3. Space exercise and Earth benefits.

    PubMed

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients. PMID:16101469

  4. All-fiber Passively Q-switched Laser Based on Tm3+-doped Tellurite Fiber

    E-print Network

    Kuan, Pei-Wen; Li, Kefeng; Zhang, Lei; Fan, Xiaokang; Hasan, Tawfique; Wang, Fengqiu; Hu, Lili

    2014-12-24

    ]. Thanks to recent developments of saturable absorber (SA) materials, passively Q-switched pulse lasers have been realized by utilizing CNTs [7] , graphene [8], SESAMs [9], Cr2+:ZnSe crystals [10], metal dichalcogenides [11], rare-earth doped fibers [12... . High refractive index, high rare earth solubility, low phonon energy, and wide transmission region makes tellurite glasses promising hosts for laser fibers and mid-infrared transport fibers [18]. However, the brittleness of tellurite fibers is a...

  5. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be unambiguously linked and integrated. SESAR operates a registry for Earth samples that assigns and administers the International GeoSample Numbers (IGSN) as a global unique identifier for samples. Registration of EarthScope samples with SESAR and use of the IGSN will ensure their unique identification in publications and data systems, thus facilitating interoperability among sample-based data relevant to EarthScope CI and globally. It will also make these samples visible to global audiences via the SESAR Global Sample Catalog.

  6. Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-xian; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; Liu, Jin-long; Wei, Jun-jun

    2015-10-01

    Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite-ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.

  7. Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon

    NASA Astrophysics Data System (ADS)

    Al-Attili, Abdelrahman Z.; Kako, Satoshi; Husain, Muhammad K.; Gardes, Frederic Y.; Arimoto, Hideo; Higashitarumizu, Naoki; Iwamoto, Satoshi; Arakawa, Yasuhiko; Ishikawa, Yasuhiko; Saito, Shinichi

    2015-05-01

    High electron doping of germanium (Ge) is considered to be an important process to convert Ge into an optical gain material and realize a monolithic light source integrated on a silicon chip. Spin-on doping is a method that offers the potential to achieve high doping concentrations without affecting crystalline qualities over other methods such as ion implantation and in-situ doping during material growth. However, a standard spin-on doping recipe satisfying these requirements is not yet available. In this paper we examine spin-on doping of Ge-on-insulator (GOI) wafers. Several issues were identified during the spin-on doping process and specifically the adhesion between Ge and the oxide, surface oxidation during activation, and the stress created in the layers due to annealing. In order to mitigate these problems, Ge disks were first patterned by dry etching followed by spin-on doping. Even by using this method to reduce the stress, local peeling of Ge could still be identified by optical microscope imaging. Nevertheless, most of the Ge disks remained after the removal of the glass. According to the Raman data, we could not identify broadening of the lineshape which shows a good crystalline quality, while the stress is slightly relaxed. We also determined the linear increase of the photoluminescence intensity by increasing the optical pumping power for the doped sample, which implies a direct population and recombination at the gamma valley.

  8. Undergraduate Prospectus Environmental & Earth Sciences

    E-print Network

    Marshall, Ian W.

    Undergraduate Prospectus Environmental & Earth Sciences Environmental and Earth Sciences and Earth Sciences (at LEC) The Degree Programmes Teaching & Learning Environmental Science Earth* and within the top 15% in the world** for environmental and Earth sciences. Lancaster University itself

  9. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  10. A call for policy guidance on psychometric testing in doping control in sport.

    PubMed

    Petróczi, Andrea; Backhouse, Susan H; Barkoukis, Vassilis; Brand, Ralf; Elbe, Anne-Marie; Lazuras, Lambros; Lucidi, Fabio

    2015-11-01

    One of the fundamental challenges in anti-doping is identifying athletes who use, or are at risk of using, prohibited performance enhancing substances. The growing trend to employ a forensic approach to doping control aims to integrate information from social sciences (e.g., psychology of doping) into organised intelligence to protect clean sport. Beyond the foreseeable consequences of a positive identification as a doping user, this task is further complicated by the discrepancy between what constitutes a doping offence in the World Anti-Doping Code and operationalized in doping research. Whilst psychology plays an important role in developing our understanding of doping behaviour in order to inform intervention and prevention, its contribution to the array of doping diagnostic tools is still in its infancy. In both research and forensic settings, we must acknowledge that (1) socially desirable responding confounds self-reported psychometric test results and (2) that the cognitive complexity surrounding test performance means that the response-time based measures and the lie detector tests for revealing concealed life-events (e.g., doping use) are prone to produce false or non-interpretable outcomes in field settings. Differences in social-cognitive characteristics of doping behaviour that are tested at group level (doping users vs. non-users) cannot be extrapolated to individuals; nor these psychometric measures used for individual diagnostics. In this paper, we present a position statement calling for policy guidance on appropriate use of psychometric assessments in the pursuit of clean sport. We argue that, to date, both self-reported and response-time based psychometric tests for doping have been designed, tested and validated to explore how athletes feel and think about doping in order to develop a better understanding of doping behaviour, not to establish evidence for doping. A false 'positive' psychological profile for doping affects not only the individual 'clean' athlete but also their entourage, their organisation and sport itself. The proposed policy guidance aims to protect the global athletic community against social, ethical and legal consequences from potential misuse of psychological tests, including erroneous or incompetent applications as forensic diagnostic tools in both practice and research. PMID:26094122

  11. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah (Albany, CA); Stevens, Raymond C. (Albany, CA)

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome sy