Science.gov

Sample records for earth element geochemistry

  1. The geochemistry of rare earth elements in the Amazon River estuary

    SciTech Connect

    Shokovitz, E.R. )

    1993-05-01

    The estuarine geochemistry of rare earth elements (REEs) was studied using samples collected in the Amazon River estuary from the AmasSeds (Amazon Shelf SEDiment Study) cruise of August 1989. Extensive removal of dissolved (0.22 [mu]m filtered) trivalent REEs from river water occurs in the low (0--6) salinity region. Removal by the salt-induced coagulation of river colloids leads to fractionation among the REE(III) series; the order of removal is light REEs > middle REEs > heavy REEs. There also is the enhanced removal of Ce (relative to trivalent La and Nd) in the low salinity (0--6) zone and in the zone of high biological activity. This is the first field observation of strong Ce removal associated with coagulation of river colloids and biological productivity. The argument is made that the decrease in the Ce anomaly across a biological front is caused by biologically mediated oxidation of Ce(III) to Ce(IV). Coagulation of river colloids and biologically mediated oxidation of Ce(III) lead to fractionation of REE(III) and redox modification of Ce. These processes result in the REE composition becoming fractionated relative to the Amazon River water and crust and more evolved toward the REE composition of the oceans. This study implies that reactions in estuaries play significant, yet poorly understood roles in controlling the REE composition and Ce anomaly of the oceans. 46 refs., 9 figs., 2 tabs.

  2. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  3. Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry

    NASA Astrophysics Data System (ADS)

    Ismail, Ibrahim; Baioumy, Hassan; Ouyang, Hegen; Mossa, Hesham; Aly, Hisham Fouad

    2015-12-01

    Among other mineralizations in the basement complex of the Nuba Mountains, fluorite occurs as lenses and veins in a number of localities. The rare earth elements (REE) geochemistry in these fluorites along with their petrography and fluid inclusion was investigated in this study to discuss the origin the fluorites and shed the light on the economic importance of the REE. Fluorites in the Nuba Mountains are classified into four categories based on their petrography. Category I (F1) is characterized by pink color and free of inclusions. Category II (F2) is zoned of alternating pink and colorless zones with euhedral outline or anhedral patchy pink and colorless fluorite enclosing category I fluorite and is usually sieved with submicroscopic silicate minerals. Category III (F3) is colorless, euhedral to anhedral fluorite and associated with quartz and/or orthoclase. Category IV (F4) is colorless, either massive or dispersed, corroded grains associated with calcite and pertain to the late introduced carbonatites in Dumbeir area. Gangue minerals in the studied fluorites include quartz, calcite, orthoclase and muscovite. The ΣREE ranges between 541 and 10,430 ppm with an average of 3234 ppm. Chondrite-normalized REE patterns for fluorite from different localities exhibit LREE enrichment relative to HREE as shown by (La/Yb)N ratios that vary from 16 to 194 and significant positive Eu anomalies that are pronounced with Eu/Eu* from 1.1 to 2.5. The Tb/La and Tb/Ca ratios of fluorites in the present study indicate that they plot mainly in the pegmatitic or high-hydrothermal field with the characteristics of primary crystallization and remobilization trend. The clear heterogeneity of fluorite, abundance of growth zones, irregular shapes of grains, presence of fluorite inclusions in other minerals as well as the relatively high concentration of REE in the studied fluorites are supportive for this interpretation. The relatively high Tb/La (0.002-0.013) and low Tb/Ca (0.0000007-0.0000086) ratios of the studied fluorites suggest that they precipitated from fractionated ore-bearing fluids at a late stage of deposition. The microtherometric measurements of the primary inclusions show that the Nuba Mountains fluorites were formed at temperatures greater than 600 °C. These values along with the low salinity of the fluid inclusions indicates homogenize at moderate temperatures. Thus the studied fluorite probably formed during the late stages of pegmatite consolidation under magmatic-hydrothermal transition conditions supporting the previous conclusions from REE geochemistry.

  4. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry

    USGS Publications Warehouse

    Piper, D.Z.; Perkins, R.B.; Rowe, H.D.

    2007-01-01

    The geochemistry of deposition of the Meade Peak Member of the Phosphoria Formation (MPM) in southeast Idaho, USA, a world-class sedimentary phosphate deposit of Permian age that extends over 300,000 km2, is ascertained from its rare earth element (REE) composition. Ratios of REE:Al2O3 suggest two sources-seawater and terrigenous debris. The seawater-derived marine fraction identifies bottom water in the Phosphoria Sea as O2-depleted, denitrifying (suboxic) most of the time, and seldom sulfate-reducing (anoxic). This interpretation is supported by earlier research that showed progressively greater ratios in the marine sediment fraction of Cr:Ni>V:Ni???Mo:Ni, relative to their ratios in seawater; for which marine Cr, V, and Mo can have a dominantly O2-depleted bottom-water source and Ni a photic-zone, largely algal, source. The water chemistry was maintained by a balance between bacterial oxidation of organic matter settling through the water column, determined largely by primary productivity in the photic zone, and the flux of oxidants into the bottom water via advection of seawater from the open ocean. Samples strongly enriched in carbonate fluorapatite, the dominant REE host mineral, have variable Er/Sm, Tm/Sm, and Yb/Sm ratios. Their distribution may represent greater advection of seawater between the Phosphoria Sea and open ocean during deposition of two ore zones than a center waste and greater upwelling of nutrient-enriched water into the photic zone. However, the mean rate of deposition of marine Ni, a trace nutrient of algae, and PO43-, a limiting nutrient, indicate that primary productivity was probably high throughout the depositional history. An alternative interpretation of the variable enrichments of Er, Tm, and Yb, relative to Sm, is that they may reflect temporally variable carbonate alkalinity of open-ocean seawater in Permian time. A more strongly negative Ce anomaly for all phosphatic units than the Ce anomaly of modern pelletal phosphate is further indicative of an elevated O2 concentration in the Permo-Carboniferous open ocean, as proposed by others, in contrast to the depletion of O2 in the bottom water of the Phosphoria Sea itself. The oceanographic conditions under which the deposit accumulated were likely similar to conditions under which many sedimentary phosphate deposits have accumulated and to conditions under which many black shales that are commonly phosphate poor have accumulated. A shortcoming of several earlier studies of these deposits has resulted from a failure to examine the marine fraction of elements separate from the terrigenous fraction. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Distribution and Geochemistry of Rare-Earth Elements in Rivers of Southern and Eastern Primorye (Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Chudaev, O. V.; Bragin, I. V.; A, Kharitonova N.; Chelnokov, G. A.

    2016-03-01

    The distribution and geochemistry of rare earth elements (REE) in anthropogenic, technogenic and natural surface waters of southern and eastern Primorye, Far East of Russia, are presented in this study. The obtained results indicated that most of REE (up to 70%) were transported as suspended matter, ratio between dissolved and suspended forms varing from the source to the mouth of rivers. It is shown that all REE (except Ce) in the source of the rivers are predominantly presented in dissolved form, however, the content of light and heavy REE is different. Short-term enrichment of light rare earth elements (LREE) caused by REE-rich runoff from waste dumps and mining is neutralized by the increase in river flow rate. Rivers in urban areas are characterized by high content of LREE in dissolved form and very low in suspended one.

  6. The Aqueous Geochemistry of Trivalent Rare Earth Elements, Gallium and Indium Up to 250C

    NASA Astrophysics Data System (ADS)

    Wood, S. A.

    2011-12-01

    The aqueous solution chemistry of trivalent REE, Ga and In at elevated temperatures is relevant to radioactive waste disposal,economic geology, environmental geochemistry and a variety of other applications. In each of these areas, the ability to model aqueous mass transfer of these elements is essential and dependent on the availability of high-quality thermodynamic data. There has been fairly intense study of aqueous REE complexation and REE solid-phase solubility recently. There are fewer studies of these properties for In and Ga. The available data are reviewed and discussed in this paper. Experimentally measured stability constants at elevated temperatures are available for REE complexes with acetate, chloride, fluoride, hydroxide, and sulfate. Solubility products at elevated temperatures have been determined for selected solid REE fluoride, hydroxide and phosphate phases. The experimental data show that acetate complexes are more stable and fluoride and hydroxide complexes are less stable than predicted based on extrapolation of stability constants determined at standard conditions. The measured stability constants for chloride and sulfate complexes are in reasonable agreement with predicted values. At elevated temperatures, the stabilities of both chloride and fluoride complexes decrease with increasing atomic number across the REE series. The experimental data suggest that chloride complexation is likely to be more important relative to hydroxide and fluoride complexation than predicted from extrapolations. Lack of data prevent definitive conclusions for Ga and In. However, there are some similarities of Ga and In with the REE. In particular, chloride complexes are likely to be less important for Ga than the REE and more important for In. Bisulfide complexation could conceivably play a role for In transport.

  7. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  8. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.

    2007-01-01

    The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    PubMed

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD. PMID:26247412

  10. Rare earth and trace element geochemistry of a fragment of Jurassic seafloor, Point Sal, California

    NASA Technical Reports Server (NTRS)

    Menzies, M.; Blanchard, D.; Brannon, J.; Korotev, R.

    1977-01-01

    Rocks from an ophiolite suite once on the seafloor were analyzed for rare earth elements (REE), Sc, Co, Na2O, Cr, Zn and FeO. Strontium isotope exchange noted in some of the lavas is attributed to basalt-seawater interaction; the Ce abundance in smectite- and zeolite-bearing lavas may also be due to prolonged exposure to seawater. The higher grades of metamorphic rock, however, show no variation from the usual flat or slightly light REE depleted profiles. Plutonic igneous rock, all light REE depleted, have total REE abundances varying by a factor of 100 between the dunites and diorites. In order of decreasing REE abundance are hornblende, clinopyroxene, plagioclase, orthopyroxene and olivine. Calculations of REE contents of liquids in equilibrium with early cumulative clinopyroxenes suggest that the parent to the stratiform sequence was more depleted in light REE than the parent to the lava pile.

  11. Geochemistry of the rare earth elements in ferromanganese nodules from DOMES Site A, northern equatorial Pacific

    USGS Publications Warehouse

    Calvert, S.E.; Piper, D.Z.; Baedecker, P.A.

    1987-01-01

    The distribution of rare earth elements (REE) in ferromanganese nodules from DOMES Site A has been determined by instrumental neutron activation methods. The concentrations of the REE vary markedly. Low concentrations characterize samples from a depression (the valley), in which Quaternary sediments are thin or absent; high concentrations are found in samples from the surrounding abyssal hills (the highlands) where the Quaternary sediment section is relatively thick. Moreover, the valley nodules are strongly depleted in the light trivalent REE (LREE) and Ce compared with nodules from the highlands, some of the former showing negative Ce anomalies. The REE abundances in the nodules are strongly influenced by the REE abundances in coexisting bottom water. Some controls on the REE chemistry of bottom waters include: a) the more effective removal of the LREE relative to the HREE from seawater because of the greater degree of complexation of the latter elements with seawater ligands, b) the very efficient oxidative scavenging of Ce on particle surfaces in seawater, and c) the strong depletion of both Ce and the LREE in, or a larger benthic flux of the HREE into, the Antarctic Bottom Water (AABW) which flows through the valley. The distinctive REE chemistry of valley nodules is a function of their growth from geochemically evolved AABW. In contrast, the REE chemistry of highland nodules indicates growth from a local, less evolved seawater source. ?? 1987.

  12. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge

    SciTech Connect

    Barrett, T.J. ); Jarvis, I. ); Jarvis, K.E. )

    1990-07-01

    Massive sulfide-sulfate deposits on the Southern Explorer Ridge were analyzed for 14 rare earth elements (REE) by a modified inductively coupled plasma-mass spectrometric technique that included a correction for high Ba content. Bulk samples of finely intermixed sulfides, sulfate, and amorphous silica contain {Sigma}REE concentrations of {le} 6 ppm. REE patterns range from (1) strongly enriched in light REE with positive Eu anomalies, to (2) relatively flat with positive Eu anomalies and slightly negative Ce anomalies, to (3) slightly enriched in light REE with moderately negative Ce anomalies. Pattern 1 is similar to that of 300-350 C solutions discharging at vents on the East Pacific Rise and the Mid-Atlantic Ridge, whereas pattern 3 resembles REE distributions in normal oceanic bottom waters. The sulfide-sulfate patterns are interpreted to result from variable mixtures of hydrothermal and normal seawater. Barite in gossans capping the mounds has an REE pattern almost identical to patterns of high-temperature vent solutions. Hydrothermal barite has lower REE contents and a different REE pattern relative to hydrogenous barite formed slowly on the sea floor.

  13. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    NASA Astrophysics Data System (ADS)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and drinking water. Lead isotope and REE analysis of trabecular and cortical bone tissue of 60 femoral heads resected during hip replacement surgery at the Univ. of Roch. Medical Center were analyzed by a combination of TIMS and ICP-MS. Results show that Pb compositions are consistent with local soil with variable inputs from known environmental sources. Several samples demonstrate inputs from known environmental sources (e.g. Mississippi Valley ore) that was used in paint, solder, and US gasoline. Additionally, results suggest bioincorporation of Pb with isotopic composition consistent with that observed for Canadian gasoline aerosols. Immigrants included in the study show Pb compositions distinctly different than local residents.

  14. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Himmler, Tobias; Haley, Brian A.; Torres, Marta E.; Klinkhammer, Gary P.; Bohrmann, Gerhard; Peckmann, Jörn

    2013-07-01

    The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.

  15. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.

    PubMed

    Janssen, René P T; Verweij, Wilko

    2003-03-01

    Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands. PMID:12598196

  16. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Snidvongs, Anond

    2000-12-01

    A new filtration method using a 0.04 μm hollow fiber filter was applied to the river, estuarine, and coastal waters in the Chao Phraya estuary for geochemical investigation. The filtered waters were analyzed for all the lanthanides, Y and In by using inductively coupled plasma mass spectrometry (ICPMS). The dissolved concentrations of rare earth elements (REEs) are significantly lower than those reported previously for other rivers, presumably because of effective removal of river colloids by the ultra-filtration. The variation of dissolved REEs in the estuary is dependent on the season. The light REEs vary considerably in the low salinity ( S < 3) zone presumably due to adsorption-desorption interaction with suspended particles. In January when the river discharge is low, the REEs show maxima in the mid salinity ( S = 5-12) zone suggesting that dissolved REEs are supplied to the waters by either desorption from suspended loads or remineralization of underlying sediments. The rapid removal of the REEs is also taking place in the turbid-clear water transition zone ( S = 12-15), presumably due to biological uptake associated with blooming of Noctilca occurred at the time of January sampling. In the medium to high discharge season (July and November), the dissolved REE(III)s at S > 3 show almost conservative trends being consistent with some of the previous works. Europium is strongly enriched in the river and estuarine waters compared to the South China Sea waters. Thus, the REE source of the Chao Phraya River must be fractionated and modified in entering to the South China Sea. Dissolved In and Ce in the high salinity ( S = 20-25) zone of the estuary are lower than those of the offshore waters, and therefore, the dissolved flux of the Chao Phraya River cannot account for the higher concentrations of dissolved In and Ce in the surface waters of the South China Sea. The negative Ce anomaly is progressively developed with increasing salinity, being consistent with continued oxidation of Ce(III) to Ce(IV) in the estuary. Fractionation of the light-to-heavy REEs seems to take place, whereas the Y/Ho fractionation is unclear in the estuarine mixing zone.

  17. Mineralogy and geochemistry of trace and Rare Earth Element from the Manaila massive sulphide deposit (Eastern Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Moldoveanu, S.; Iancu, O. G.; Kasper, H. U.

    2012-04-01

    Keywords: Eastern Carpathians, Mănăila deposit, REE, trace elements, pyrite The present paper deal with the mineralogy and trace elements geochemistry of sulphide deposits from Mănăila mine field located in NE area of Eastern Carpathians Mountains (Romania). The mineralization occurs within metamorphic rocks of Tulgheş terrane, part of Crystalline-Mezozoic zone of the Eastern Carpathians. The metamorphic rocks in Mănăila area consist of felsic metavolcanics rocks with quartzites and quartz-feldspathic rocks as prevailing types. The P-T metamorphic conditions are typical of greenschis facies with biotite and garnet (Mn-Grt) in mineral assemblage. The mineralogical study was performed using reflected light microscope and Scanning Electron Microscopy (SEM) methods. Thus, the both methods show that the main sulphides minerals are represented by pyrite and chalcopyrite, being followed by sphalerite, galena and little amount of Cu sulphosalts (tetrahedrite and bournonite) and also by gangue minerals (quartz and carbonates). Pyrite occurs as large euhedral to subhedral grains in quartz and small rounded inclusion in chalcopyrite. The trace elements analysis was achieved on whole-rock samples and involved the determination of REE, LIL (Rb, Ba, Sr) and HFS (Y, Zr, Hf, U, Th, Nb, Ta) by ICP-MS method. The concentration of LIL and HFS trace elements in mineralized rocks decrease as follows: Ba > Bi > As > Sb > Co > Ga > Ni > Cd. Even if the barium contents in Mănăila ore is high, baritina (BaSO4) was not identified throught the mineralogical analyses carried out so far. The total rare earth element content (REE) of the samples from Mănăila range from 26.84 to 246.46 ppm. Chondrite - normalized REE patterns of the mineralized rocks show that the LREE are enriched in relation to the HREE. Also a positive Ce anomalies and negative Eu anomalies are present. Y/Ho and Zr/Hf ratios are close to the chondritic ratios indicating Charge-and-Radius-Controlled (CHARAC) behavior of these elements in pure silicate melts. The REE patterns of the ores are highly variable and do not appear to be related to the mineral compositions. This feature may reflect contributions from several factors involved in fluid formation, ore mineral deposition and post-depositional processes. The lack of a relation between major mineral composition and REE patterns suggests complex REE fractionation processes during the ore formation. This work was supported by the European Social Fund in Romania, under the responsibility of the Managing Authority for the Sectoral Operational Programme for Human Resources Development 2007-2013 (grant POSDRU/88/1.5/S/47646).

  18. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa

    SciTech Connect

    Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M.

    2000-01-01

    At Cape Banza (North Tanganyika Lake), fluids and aragonite chimneys have been collected many times since the discovery of this sublacustrine field in 1987. This sampling has been investigated here for the Sr isotopic compositions and the rare-earth element features of the carbonates and a few fluid samples. The {sup 87}Sr/{sup 86}Sr ratios of the chimneys indicate that they have precipitated from a mixture of lake water (more than 95%) and hydrothermal fluids. No zoning in the chimneys was detected with the Sr data. For the rare-earth elements, the situation is more complex. The external walls of the chimneys are rare-earth-element-poor (La {approx} 500 ppb, Yb {approx} 200 ppb, La/Yb = 2 to 3.4). Their shale normalized rare-earth element patterns suggest that they are in equilibrium with the inferred carbonate-depositing fluids. The rare-earth element concentrations of the internal walls of the chimneys are significantly light rare earth elements (LREE)-enriched with La contents sometimes up to 5 ppm. The authors suggest that they contain more vent-fluid rare-earth elements than the external wall samples, possibly adsorbed on the surface of growing crystals or simply hosted by impurities. It was not possible to constrain the nature of these phases, but the variations of the compositions of the internal wall materials of the active chimneys with time, as well as data obtained on an inactive chimney indicate that this rare-earth element excess is mobile. Partition coefficients were calculated between the external wall aragonite and carbonate-depositing fluid. The results are strikingly similar to the values obtained by Sholkovitz and Shen (1995) on coral aragonite, and suggest that there is no significant biologic effect on the incorporation of rare-earth elements into coral aragonite and that the various carbonate complexes involved Me(CO{sub 3}{sup +}) complexes are the main LREE carriers in seawater instead of Me(CO{sub 3}){sub 2}{sup {minus}} in Banza fluids have the same behavior during aragonite precipitation.

  19. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  20. Geochemistry of rare earth elements in early-diagenetic miocene phosphatic concretions of Patagonia, Argentina: Phosphogenetic implications

    NASA Astrophysics Data System (ADS)

    Fazio, A. M.; Scasso, R. A.; Castro, L. N.; Carey, S.

    2007-06-01

    Phosphatic concretions in the Early Miocene, shallow marine, clastic deposits of the Gaiman Formation (Gaiman Fm.) show typical major element ratios, rare earth element (REE) patterns, and total REE contents. These characteristics are similar within different stratigraphic levels and geographic locations of the unit in central-north Patagonia, Argentina and suggest a common process for the origin of the concretions. Major element oxides in concretions are grouped into a "clastic" group (Si, Al, Ti, K and Fe), that mostly corresponds to the silicates in the terrigenous fraction, and an "authigenic" group (P, Ca and total REEs), that corresponds to authigenic francolite and calcite. Mn is the only element that exhibits a separate behavior, most likely because of its high mobility in seawater. Major element ratios in host shales are similar to those of the clastic fraction within the concretions and coquinas. Concretions are slightly depleted in LREEs and slightly enriched in HREEs in comparison to shales and display a weak negative Ce anomaly. Their La/Yb and La/Sm ratios indicate REEs incorporation from pore water without strong postdepositional recrystallization or strong adsorption. Y anomalies and La/Nd ratios in concretions are equivalent to seawater or slightly lower, suggesting that Gaiman concretions did not undergo intense diagenesis, but they were probably formed from phosphatic solutions impoverished in Y and La as a result of REEs release to solution from organic complexes in the early diagenesis. Flat, linear REE patterns also support an early-diagenetic origin for the concretions, via quantitative precipitation of phosphate from oxic-suboxic pore waters. Water circulation through burrows at the Miocene seawater-sediment interface improved ion diffusion and pore water renewal in the sediments, allowing the development of a widened early-diagenetic oxic-suboxic zone and the precipitation of phosphate with a homogeneous REE pattern.

  1. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Bai, Yueyue; Liu, Zhaojun; Sun, Pingchang; Liu, Rong; Hu, Xiaofeng; Zhao, Hanqing; Xu, Yinbo

    2015-01-01

    The Meihe Basin is a Paleogene pull-apart basin. Long-flame coal, lignite and oil shale are coexisting energy resources deposited in this basin. Ninety-seven samples, including oil shales, coals, brown to gray silt and mudstone, have been collected from the oil shale- and coal-bearing layers to discover the rare earth element geochemistry. The total REE contents of oil shales and coals are 137-256 μg/g and 64-152 μg/g respectively. The chondrite-normalized patterns of oil shales and coals show LREE enrichments, HREE deficits, negative Eu anomalies and negligible Ce anomalies. The chemical index of alteration (CIA) as well as some trace elements is often used to reflect the paleoenvironment at the time of deposition. The results show that fine-grained sediments in both layers were deposited in dysoxic to oxic conditions and in a warm and humid climate, and coals were deposited in a warmer and more humid climate than oil shales. Oil shales and coals are both in the early stage of diagenesis and of terrigenous origin. Besides, diagrams of some major, trace and rare earth elements show that the fine-grained sediments of both layers in the Meihe Basin are mainly from the felsic volcanic rocks and granite, and that their source rocks are mostly deposited in the continental inland arc setting. The analysis of major elements shows that Si, Al, K and Ti, in both layers, are found mainly in a mixed clay mineral assemblage and that Si is also found in quartz. Sodium occurs primarily in clay minerals, whereas Ca is found mainly in the organic matter. In the coal-bearing layer, iron is mainly controlled by organic matter rather than detrital minerals. In contrast, in the oil shale-bearing layer, neither detrital minerals nor organic matter exert a control on the iron content. Analyzing the relationship between rare earth elements and major elements shows that REEs in the oil shales and the coals are both of terrigenous origin and are mainly controlled by detrital minerals rather than by organic matter. In both layers, REEs have no relationship with fine-grained phosphates, and during the weathering process, the REEs were not very mobile and were resistant to fractionation.

  2. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones

    NASA Astrophysics Data System (ADS)

    Nothdurft, Luke D.; Webb, Gregory E.; Kamber, Balz S.

    2004-01-01

    Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements ( n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average Nd SN/Yb SN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement ( n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (Nd SN/Yb SN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modern seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans.

  3. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence of crustal contamination. ?? 1983.

  4. Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: Evidence from rare earth element geochemistry

    NASA Astrophysics Data System (ADS)

    Laurila, Tea E.; Hannington, Mark D.; Petersen, Sven; Garbe-Schönberg, Dieter

    2014-02-01

    The Atlantis II Deep is a brine-filled depression on the slowly spreading Red Sea rift axis. It is by far the largest deposit of hydrothermally precipitated metals on the present ocean floor and the only known modern deposit that is analogous to laminated Fe-rich chemical sediments, such as banded iron formation (BIF). The brine pool at the bottom of the Atlantis II Deep creates an environment where most of the hydrothermally sourced elements can be dispersed and deposited over an area of ˜60 km2. We analyzed the rare earth element concentrations in 100 small-volume samples from 9 cores in different parts of the Atlantis II Deep to better understand the origins of different types of metalliferous sediments (detrital, proximal hydrothermal and distal hydrothermal). Our results agree with earlier studies based on larger bulk samples that show the composition of the major depositional units is related to major changes in the location and intensity of hydrothermal activity and the amount of hydrothermal versus background sedimentation. In this paper, we address the origins of chemically distinct laminae (down to sub-millimeter) that correspond to ˜annual deposition. REE patterns clearly reflect 3 different sources (e.g., detrital, scavenging, direct hydrothermal input). Detrital REE that are delivered to the Deep from outside account for most of the REE in the sediments of the Atlantis II Deep, similar to BIF, and are unaffected by fractionation due to hydrothermal processes during deposition and diagenesis. Fe- and Mn-(oxy)hydroxides that form at the anoxic-oxic boundary scavenge REE from the brine pool as they settle. The Fe-(oxy)hydroxides contain a larger proportion of REE from seawater than any other sediment-type and also scavenge REE from pore waters after deposition. In contrast, the Mn-(oxy)hydroxides dissolve before deposition and thus function as transporting agents between seawater and the brine. However, there is little evidence for direct seawater influence in the REE geochemistry of the sediments (e.g., Y/Ho ratio). Non-ferrous sulfides form proximal to the hydrothermal vent source and inherit an hydrothermal REE pattern. The total REE content of the presently forming Fe-(oxy)hydroxides is very low due to limited input of REE into the brine. The largest proportion of non-detrital REE appears to have been deposited early in the history of the basin from an initial brine pool that was relatively enriched in REE, followed by a change in REE chemistry in later sediments. Similar abrupt changes in the REE chemistry of ancient chemical sediments may record similar processes, including changes in local basin evolution and input of REE from different sources.

  5. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease clusters either through dietary deficiency of essential elements or dietary excess of toxic elements. (28K)Figure 1. Potential human exposure routes within the earth's geochemical cycle can come from a wide variety of both natural and anthropogenic sources. This chapter focuses on a somewhat narrower area of medical geochemistry: the study of mechanisms of uptake of earth materials by humans and animals and their reactions to these materials. In order for earth materials to affect health, they must first interact with the body across key interfaces such as the respiratory tract, gastrointestinal tract, skin, and eyes. In some way, all of these interfaces require the earth materials to interact chemically with water-based body fluids such as lung fluids, gastrointestinal fluids, saliva, or blood plasma.The primary goal of this chapter, co-authored by a geochemist and a toxicologist, is to provide both geochemists and scientists from health disciplines with an overview of the potential geochemical mechanisms by which earth materials can influence human health. It is clear that significant opportunities for advancement in this arena will require continued and increased research collaborations between geochemists and their counterparts in the health disciplines.

  6. Geochemistry.

    ERIC Educational Resources Information Center

    Fyfe, William S.

    1979-01-01

    Techniques in geochemistry continue to improve in sensitivity and scope. The exciting areas of geochemistry still include the classical fields of the origin of the elements and objects in space, but environmental crisis problems are important as well. (Author/BB)

  7. Trace element geochemistry of Archean volcanic rocks

    NASA Technical Reports Server (NTRS)

    Jahn, B.-M.; Shih, C.-Y.; Murthy, V. R.

    1974-01-01

    The K, Rb, Sr, Ba and rare-earth-element contents of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system.

  8. Insights into Igneous Geochemistry from Trace Element Partitioning

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hanson, B. Z.

    2001-01-01

    Partitioning of trivalent elements into olivine are used to explore basic issues relevant to igneous geochemistry, such as Henry's law. Additional information is contained in the original extended abstract.

  9. Rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Lewis, A.J.; Palmer, M.R.; Kemp, A.J.; Sturchio, N.C.

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm: their chondrite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg{sup -1} ({ge}162 ppm), and {Sigma}REE concentrations in sinter are {ge}181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu{sup 2+} is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in mixing and dilution of the geothermal fluids and may have lead to changes in the extent and nature of REE complexing. 37 refs., 7 figs., 4 tabs.

  10. Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran - a key to determine conditions of mineralisation

    NASA Astrophysics Data System (ADS)

    Zamanian, Hassan; Radmard, Kaikosrov

    2016-03-01

    The Baba Ali skarn deposit, situated 39 km to the northwest of Hamadan (Iran), is the result of a syenitic pluton that intruded and metamorphosed the diorite host rock. Rare earth element (REE) values in the quartz syenite and diorite range between 35.4 and 560 ppm. Although the distribution pattern of REEs is more and less flat and smooth, light REEs (LREEs) in general show higher concentrations than heavy REEs (HREEs) in different lithounits. The skarn zone reveals the highest REE-enriched pattern, while the ore zone shows the maximum depletion pattern. A comparison of the concentration variations of LREEs (La-Nd), middle REEs (MREEs; Sm-Ho) and HREEs (Er-Lu) of the ore zone samples to the other zones elucidates two important points for the distribution of REEs: 1) the distribution patterns of LREEs and MREEs show a distinct depletion in the ore zone while representing a great enrichment in the skarn facies neighbouring the ore body border and decreasing towards the altered diorite host rock; 2) HREEs show the same pattern, but in the exoskarn do not reveal any distinct increase as observed for LREEs and MREEs. The ratio of La/Y in the Baba Ali skarn ranges from 0.37 to 2.89. The ore zone has the highest La/Y ratio. In this regard the skarn zones exhibit two distinctive portions: 1) one that has La/Y >1 beingadjacent to the ore body and; 2) another one with La/Y < 1 neighbouring altered diorite. Accordingly, the Baba Ali profile, from the quartz syenite to the middle part of the exoskarn, demonstrates chiefly alkaline conditions of formation, with a gradual change to acidic towards the altered diorite host rocks. Utilising three parameters, Ce/Ce*, Eu/Eu* and (Pr/Yb)n, in different minerals implies that the hydrothermal fluids responsible for epidote and garnet were mostly of magmatic origin and for magnetite, actinolite and phlogopite these were of magmatic origin with low REE concentration or meteoric water involved.

  11. Fluid inclusion, rare earth element geochemistry, and isotopic characteristics of the eastern ore zone of the Baiyangping polymetallic Ore district, northwestern Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Caixia; Bi, Xianwu; Liu, Shen; Hu, Ruizhong

    2014-05-01

    The Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt, which lies between the Jinshajiang-Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4-19.9 wt.% NaCl equivalents, with two modes at approximately 5-10 and 16-21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10-38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21-196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from -7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological conditions of seawater sulfate reduction to sulfur. (4) The C-O isotopic analyses yield δ13C values from ca. zero to -10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.

  12. Trace element geochemistry of CR chondrite metal

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Paulhiac-Pison, Marine; Alard, Olivier; Kearsley, Anton T.; Gounelle, Matthieu

    2013-10-01

    We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior ("interior grains"), chondrule surficial shells ("margin grains"), and the matrix ("isolated grains"). Save for a few anomalous grains, Ni-normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least-melted, fine-grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high-temperature isolation of refractory platinum-group-element (PGE)-rich condensates before mixing with lower temperature PGE-depleted condensates. The rounded shape of the Ni-rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1-100 K h-1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni-poorer, amoeboid margin grains, often included in the pyroxene-rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high-temperature event, of which the chondrule margin records a late "quenching phase," in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule-forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.

  13. Geochemistry

    ERIC Educational Resources Information Center

    Ailin-Pyzik, Iris B.; Sommer, Sheldon E.

    1977-01-01

    Enumerates some of the research findings in geochemistry during the last year, including X-ray analysis of the Mars surface, trace analysis of fresh and esterarine waters, and analysis of marine sedements. (MLH)

  14. Rare earth elements: end use and recyclability

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  15. Experimental constraints on light elements in the Earth's outer core.

    PubMed

    Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian

    2016-01-01

    Earth's outer core is liquid and dominantly composed of iron and nickel (~5-10 wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in the Fe-Ni-Si system at the outer core conditions by shock-wave experiments. Combining with the previous studies, we found that the best estimate for the outer core's light elements is ~6 wt% Si, ~2 wt% S, and possible ~1-2.5 wt% O. This composition satisfies the requirements imposed by seismology, geochemistry, and some models of the early core formation. This finding may help us to further constrain the thermal structure of the Earth and the models of Earth's core formation. PMID:26932596

  16. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  17. Rare Earth Element Mines, Deposits, and Occurrences

    USGS Publications Warehouse

    Orris, Greta J.; Grauch, Richard I.

    2002-01-01

    Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.

  18. Moving KML geometry elements within Google Earth

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  19. Mineral resource of the month: rare earth elements

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.

  20. Volatile Element Geochemistry in the Lower Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2004-01-01

    We computed equilibrium abundances of volatile element compounds as a function of altitude in Venus lower atmosphere. The elements included are generally found in volcanic gases and sublimates on Earth and may be emitted in volcanic gases on Venus or volatilized from its hot surface. We predict: 1) PbS, Bi2S3, or possibly a Pb-Bi sulfosalt are the radar bright heavy metal frost in the Venusian highlands; 2) It should be possible to determine Venus' age by Pb-Pb dating of PbS condensed in the Venusian highlands, which should be a representative sample of Venusian lead; 3) The gases HBr, PbCl2, PbBr2, As4O6, As4S4, Sb4O6, BiSe, InBr, InCl, Hg, TlCl, TlBr, SeS, Se2-7, HI, I, I2, ZnCl2, and S2O have abundances greater than 0.1 ppbv in our nominal model and may be spectroscopically observable; 4) Cu, Ag, Au, Zn, Cd, Ge, and Sn are approx. 100 % condensed at the 740 K (0 km) level on Venus.

  1. Sedimentology, Geochemistry, and Geophysics of the Cambrian Earth System

    NASA Astrophysics Data System (ADS)

    Creveling, Jessica Renee

    Within this dissertation, I document how—and hypothesize why—the quirks and qualities of the Cambrian Period demarcate this interval as fundamentally different from the preceding Proterozoic Eon and succeeding periods of the Phanerozoic Eon. To begin, I focus on the anomalous marine deposition of the mineral apatite. Sedimentary sequestration of phosphorus modulates the capacity for marine primary productivity and, thus, the redox state of the Earth system. Moreover, sedimentary apatite minerals may entomb and replicate skeletal and soft-tissue organisms, creating key aspects of the fossil record from which paleontologists deduce the trajectory of animal evolution. I ask what geochemical redox regime promoted the delivery of phosphorus to Cambrian seafloors and conclude that, for the case of the Thorntonia Limestone, apatite nucleation occurred under anoxic, ferruginous subsurface water masses. Moreover, I infer that phosphorus bound to iron minerals precipitated from the water column and organic-bound phosphorus were both important sources of phosphorus to the seafloor. Petrographic observations allow me to reconstruct the early diagenetic pathways that decoupled phosphorus from these delivery shuttles and promoted the precipitation of apatite within the skeletons of small animals. Together, mechanistic understandings of phosphorus delivery to, and retention within, seafloor sediment allow us to constrain hypotheses for the fleeting occurrence of widespread apatite deposition and exquisite fossil preservation within Cambrian sedimentary successions. Next, I describe and quantify the nature of carbonate production on a marine platform deposited at the hypothesized peak of Cambrian skeletal carbonate production. I find that fossils represent conspicuous, but volumetrically subordinate components of early Cambrian carbonate reef ecosystems and that despite the evolution of mineralized skeletons, Cambrian carbonate platforms appear similar to their Neoproterozoic counterparts, primarily reflecting abiotic and microbial deposition. Finally, I investigate the geodynamic mechanism responsible for rapid, oscillatory true polar wander (TPW) events proposed for the Neoproterozoic and Phanerozoic Earth on the basis of paleomagnetic data. Using geodynamic models, I demonstrate that elastic strength in the lithosphere and stable excess ellipticity of Earth's figure provided sufficient stabilization to return the pole to its original state subsequent to convectively-driven TPW.

  2. What about the rare-earth elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is insufficient understanding of the nutritional physiology of pecan trees and orchards; thus, affecting nutmeat yield and quality, disease resistance and alternate bearing. An analysis of the rare-earth element composition of pecan and related hickory cousins found that they hyperaccumulate ...

  3. The Role of the Ion Microprobe in Solid-Earth Geochemistry

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.

    2002-12-01

    Despite the early success of the electron microprobe in taking petrology to the micron scale, and the widespread use of mass spectrometers in geochemistry and geochronology, it was not until the mid-1970s that the ion microprobe came into its own as an in situ analytical tool in the Earth sciences. Despite this inauspicious beginning, secondary ion mass spectrometry (SIMS) was widely advertised as a technology that would eventually eclipse thermal ion mass spectrometry (TIMS) in isotope geology. However this was not to happen. While various technical issues in SIMS such as interferences and matrix effects became increasingly clear, an appreciation grew for the complimentary abilities of SIMS and TIMS that, even with the advent of ICP-MS, continues to this day. Today the ion microprobe is capable of abundance measurements in the parts-per-billion range across nearly the entire periodic table, and SIMS stable isotope data quality is now routinely crossing the 1 per mil threshold, all at the micron scale. Much of this success is due to the existence of multi-user community facilities for SIMS research, and the substantial efforts of interested scientists to understand the fundamentals of sputtered ion formation and their application to geochemistry. Recent discoveries of evidence for the existence of ancient crust and oceans, the emergence of life on Earth, the large-scale cycling of surficial materials into the deep Earth, and illumination of fundamental high-pressure phenomena have all been made possible by SIMS, and these (and many more) discoveries owe a debt to the vision of creating and supporting multi-user community facilities for SIMS. The ion microprobe remains an expensive instrument to purchase and maintain, yet it is also exceedingly diverse in application. Major improvements in SIMS, indeed in all mass spectrometry, are visible on the near horizon. Yet the geochemical community cannot depend on commercial manufacturers alone to design and build the next generation of instrumentation for geochemistry. Such will be the role of instrument-minded scientists asking questions that simply cannot be answered by extant means. And it will be multi-user facilities that will make such advancements available to the wider geochemical community.

  4. Trace Element Geochemistry of Martian Iddingsite in the Lafayette Meteorite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Lindstrom, David J.

    1997-01-01

    The Lafayette meteorite contains abundant iddingsite, a fine-grained intergrowth of smectite clay, ferrihydrite, and ionic salt minerals. Both the meteorite and iddingsite formed on Mars. Samples of iddingsite, olivine, and augite pyroxene were extracted from Lafayette and analyzed for trace elements by instrumental neutron activation. Our results are comparable to independent analyses by electron and ion microbeam methods. Abundances of most elements in the iddingsite do not covary significantly. The iddingsite is extremely rich in Hg, which is probably terrestrial contamination. For the elements Si, Al, Fe, Mn, Ni, Co, and Zn, the composition of the iddingsite is close to a mixture of approximately 50% Lafayette olivine + approximately 40% Lafayette siliceous glass + approximately 1O% water. Concordant behavior among these elements is not compatible with element fractionations between smectite and water, but the hydrous nature and petrographic setting of the iddingsite clearly suggest an aqueous origin. These inferences are both consistent, however, with deposition of the iddingsite originally as a silicate gel, which then crystallized (neoformed) nearly isochemically. The iddingsite contains significantly more magnesium than implied by the model, which may suggest that the altering solutions were rich in Mg(2+).

  5. Light element geochemistry of the Apollo 12 site

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Kaplan, I. R.; Kung, C. C.; Winter, D. A.; Friedman, D. L.; Desmarais, D. J.

    1978-01-01

    Analytical techniques of improved sensitivity have revealed details of the concentrations and isotopic compositions of light elements for a comprehensive suite of samples from the Apollo 12 regolith. These samples show a wide spread in maturity, although maximum contents observed for solar wind elements are less than observed at other sites, possibly reflecting relative recency of craters at the Apollo 12 site. Isotopic composition of nitrogen is consistent with the idea that N-15/N-14 in the solar wind has increased with time, at least a major part of this increase having occurred in the past 3.1 Gyr. Sulfur isotope systematics support a model in which sulfur is both added to the regolith, by meteoritic influx, and lost, by an isotopically selective process. Most soils from this site are heavily contaminated with terrestrial carbon.

  6. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  7. Light element geochemistry of the Apollo 16 site

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Kaplan, I. R.; Petrowski, C.; Chang, S.

    1975-01-01

    The abundance and isotopic composition of carbon, sulfur, and nitrogen, the abundance of helium and hydrogen, and the content of metallic iron are reported for lunar surface samples from the Apollo 16 landing site at Cayley-Descartes. The light elements show marked interstation variability at the site. The abundances in soils of C, N, He, and H are apparently controlled mainly by exposure to the solar wind, through implantation or stripping processes. Carbon abundances (but not observed isotopic distributions) are compatible with a model in which equilibrium is established after 10,000-100,000 yr between solar wind input and loss by proton stripping. Sulfur abundances in soils are apparently controlled by abundances in local country rocks, but the lunar S cycle is quite complex. A metallic iron component may have originated by solar wind reduction of lunar Fe(2+).

  8. Regional geochemistry of trace elements in Chesapeake Bay sediments

    NASA Astrophysics Data System (ADS)

    Sinex, S. A.; Helz, G. R.

    1981-11-01

    The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in 177 surface sediment samples from throughout Chesapeake Bay are reported. Analyses were made of both unfractionated samples and the <63 μm fractions. Analytical uncertainty, always less than ±10%, controlled reproducibility in analyses of the <63 μm fractions, but sampling variance controlled reproducibility in the unfractionated samples, especially when coarse-grained sediments were being analyzed. Sediments in the northernmost part of the bay are enriched relative to average continental crust in all elements except Cr. This reflects the composition of dissolved and suspended material being delivered to that region by the Susquehanna River. The enriched sediments appear not to be transported south of Baltimore in significant quantily. Zinc, cadmium, and lead are enriched relative to average crust throughout the bay and in most other estuaries in the eastern United States.

  9. The geochemistry of carbonatites revisited: Two major types of continental carbonatites and their trace-element signatures

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, A.

    2009-04-01

    There have been several attempts to systematize the geochemistry of carbonatites, most recently by Samoilov (1984), Nelson et al. (1988), Woolley and Kempe (1989), and Rass (1998). These studies revealed a number of important geochemical characteristics that can be used to track the evolutionary history of these rocks, distinguish them from modally similar metamorphic parageneses, and aid in mineral exploration for rare earths, niobium and other resources commonly associated with carbonatites. Important breakthroughs in the understanding of carbonatite petrogenesis and numerous reports of new carbonatite localities made in the past two decades lay the ground for a critical re-assessment of the geochemistry of these rocks. A new representative database of whole-rock carbonatite analyses was compiled from the post-1988 literature and various unpublished sources. The database contains 820 analyses encompassing calcio-, magnesio- and ferrocarbonatites from 174 localities (ca. one-third of the total number of carbonatites known worldwide) reduced to ca. 350 analyses following the approach of Woolley and Kempe (1989). Carbonatites emplaced in oceanic settings (e.g., Cape Verde), ophiolite belts (e.g., Oman), or those of uncertain tectonic affinity (e.g., El Picacho in Mexico) were not included. Two major types of continental carbonatites can be distinguished on the basis of their geological setting and trace-element geochemistry: (1) carbonatites emplaced in rifts and smaller-scale extensional structures developed in stable Archean cratons or paleo-orogenic belts, and (2) carbonatites emplaced in collisional settings following the orogenesis. In both settings, the most common and best-studied type of carbonatite is calcite carbonatite (predominantly intrusive with a small percentage of extrusive occurrences), which accounts for 62% of the analyses included in the database. Both types of carbonatite are typically associated with alkaline silicate lithologies (meleigites, nepheline syenites, etc.), but those associated with type-1 rocks are typically Na-rich and silica-undersaturated, whereas type-2 carbonatites are associated with K-rich silica-saturated to undersaturated syenites. Type-1 carbonatites are notably different from their type-2 counterparts in showing higher abundances of high-field-strength elements (HFSE = Ti, Zr, Hf, Nb, Ta), Rb, U and V, but lower levels of Sr, Ba, Pb, rare-earth elements, F and S. Key element ratios are also different in the two carbonatite types; in particular, Rb/K, Nb/Ta, Zr/Hf and Ga/Al values are consistently higher in type-1 samples. Notably, some element ratios (e.g., Co/Ni and Y/Ho) are very similar in both groups. Type-2 carbonatites commonly show a 13C-depleted signature relative to the "primary carbonatite" range (Deines, 1989). The observed differences in geological setting and geochemistry indicate the existence of two distinct carbonatite sources in the subcontinental lithosphere: amphibole-bearing lherzolite producing type-1 rocks (cf. Chakhmouradian, 2006), and subducted oceanic crust (rutile-bearing eclogite?) yielding type-2 melts depleted in HFSE, but enriched in light carbon, large-ion-incompatible elements, F and S. References: Chakhmouradian, A.R. (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol., 235, 138-160. Deines, P. (1989) Stable isotope variations in carbonatites. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 301-359. Nelson, D.R., Chivas, A.R., Chappell, B.V. and McCulloch, M.T. (1988) Geochemical and isotopic systematic in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta, 52, 1-17. Rass, I.T. (1998) Geochemical features of carbonatite indicative of the composition, evolution, and differentiation of their mantle magmas. Geochem. Int., 36, 107-116. Samoilov, V.S. (1984) Geochemistry of Carbonatites. Nauka, Moscow (in Russ.). Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 1-14.

  10. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect

    Imashuku, Susumu Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  11. Note: Portable rare-earth element analyzer using pyroelectric crystal.

    PubMed

    Imashuku, Susumu; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-01

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera. PMID:24387481

  12. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from mining to use to recycling quantifying the cycles for Japan, China and the U.S. as three representative types of consumers and paying attention to aspects of resource sustainability. Being well aware of the stages in the metal life cycle helps the sustainable development and policy making in long term. The goal is to consider REE resource availability, sustainability, and development strategies in the future that can sustain a reliable, steady, uninterrupted REE supply on the global market.

  13. Siderophile elements and the earth's formation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Capobianco, C. J.; Drake, M. J.; O'Neill, Hugh

    1992-01-01

    Two comments on a work by Murthy (1991) concerning the abundances of siderophile elements in the earth's mantle are presented. In the first comment it is asserted that the basis of Murthy's extrapolation is the assumption that the Gibbs free energy change for the partitioning reaction is independent of temperature, and as this is generally not a valid assumption thermodynamically, and as this is contradicted by most experimental data, the issue of mantle siderophile elements remains unresolved. In the second comment it is asserted that the extrapolation method used by Murthy does not appear to be valid thermodynamically, and that an extrapolation based on generally accepted thermodynamic assumptions yields different results. In a reply, Murthy takes issue with the comments.

  14. [In Situ Analysis of Element Geochemistry in Submarine Basalt in Hydrothermal Areas from Ultraslow Spreading Southwest Indian Ridge].

    PubMed

    Wang, Yan; Sun, Xiao-ming; Xu, Li; Liang, Ye-heng; Wu, Zhong-wei; Fu, Yu; Huang, Yi

    2015-03-01

    In this study, we analyze element geochemistry of submarine basalt in situ, which is sampled in hydrothermal areas from ultraslow spreading Southwest Indian Ridge, including the fresh basalt rocks (B19-9, B15-13) and altered basalt (B5-2). And we can confirm that altered mineral in B5-2 is celadonite by microscope and Raman Spectrum. Furthermore, amygdaloidal celadonites are analyzed by electron microprobe (EPMA) and EDS-line scanning. The results show that K-contents decrease and Na-contents increase from the core to the edge in these altered minerals, indicating the transition from celadonite to saponite. Celadonite is an altered minerals, forming in low temperature (< 50 degrees C) and oxidizing condition, while saponite form in low water/rock and more reducing condition. As a result, the transition from celadonite to saponite suggests environment change from oxidizing to reducing condition. Using the result of EPMA as internal standard, we can analyze rare earth elements (REE) in altered mineral in situ. Most of result show positive Eu anomaly (Δ(Eu)), indicating hydrothermal fluid transform from oxidizing to reducing, and reducing fluid rework on the early altered minerals. Comparison with REE in matrix feldspar both in altered and unaltered zoning, we find that reducing fluid can leach REE from the matrix feldspar, leading to lower total REE concentrations and positive Eu anomaly. So leaching process play an important role in hydrothermal system. PMID:26117900

  15. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  16. Tipping elements in the Earth's climate system

    PubMed Central

    Lenton, Timothy M.; Held, Hermann; Kriegler, Elmar; Hall, Jim W.; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim

    2008-01-01

    The term “tipping point” commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term “tipping element” to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points. PMID:18258748

  17. Alkali element depletion by core formation and vaporization on the early Earth

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  18. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    USGS Publications Warehouse

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  19. Rare Earth Elements in Global Aqueous Media

    NASA Astrophysics Data System (ADS)

    Noack, C.; Karamalidis, A.; Dzombak, D. A.

    2012-12-01

    We are examining the occurrence and abundance of rare earth elements (REE) associated with produced waters from shale gas development, and factors controlling aqueous REE concentrations in geochemical environments, to provide information for: (1) potential recovery of REE as a valuable byproduct, and (2) utilization of unique REE signatures as a risk assessment tool. REE include the lanthanide series of elements - excluding short-lived, radioactive promethium - and yttrium. These elements are critical to a wide variety of high-tech, energy efficient applications such as phosphors, magnets, and batteries. Escalating costs of REE resulting from divergent supply and demand patterns motivates the first goal. The second goal relates to the search for a reliable, naturally occurring tracer to improve understanding of fluid migration and water-rock interactions during hydraulic fracturing and natural gas recovery. We compiled data from 100 studies of REE occurrence and concentrations in groundwaters, ocean waters, river waters, and lake waters. In the groundwater systems documented, total dissolved REE concentrations ranged over eight orders of magnitude; however the average concentrations across the lanthanides varied by less than two orders of magnitude. This leads to exceptional inter-element correlations, with a median correlation coefficient greater than 0.98, implying potential usefulness of REE ratios for groundwater signatures. Reports describing reactions governing REE solubilization were also investigated. We assembled information about important solution chemistries and performed equilibrium modeling using PHREEQC to examine common hypotheses regarding the factors controlling REE compositions. In particular, effects of pH, Eh, and common complexing ligands were evaluated. Produced and connate waters of the Marcellus shale are well characterized for their major chemical elements. There is a dearth of knowledge, however, regarding the occurrence of REE in Marcellus shale brines and in high TDS brines in general. From synthesis of available brine and geological data, we have developed hypotheses about REE occurrence and content of these hypersaline solutions. It is well documented that the REE concentrations of a solution can serve as a signature of the water and changes in this signature represent interactions with fluids of different compositions or changing mineral strata. We will discuss how the unique signatures and reactivity of REE potentially makes these elements uniquely capable tracers of hydrogeologic activity.

  20. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  1. Trace-element geochemistry of coal resource development related to environmental quality and health

    SciTech Connect

    Not Available

    1980-01-01

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  2. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32 (amphibole major elements; Thornber and others, 2008b) and 37 (210Pb; 210Pb/226Pa; Reagan and others, 2008) of U.S. Geological Survey Professional Paper 1750 (Sherrod and others, 2008). A brief overview of sample collection methods is given below as an aid to deciphering the tephra sample catalog. This is followed by an explanation of the categories of sample information (column headers) in table 1. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of Mount St. Helens 2004?2005 tephra samples in tables 2?6. Rhyolite glass standard analyses are reported (Appendix 1) to demonstrate the accuracy and precision of similar glass analyses presented herein.

  3. Geostationary earth observatories - Key elements of NASA's 'Mission to Planet Earth'

    NASA Technical Reports Server (NTRS)

    Snoddy, William C.; Keller, Vernon W.

    1991-01-01

    The scientific rationale, required instrumentation, observatory configuration, and data system of the Geostationary Earth Observatory (GEO) element of NASA's Mission to Planet Earth program are discussed. Physical characteristics of GEO candidate instruments are listed.

  4. Rare earths and other trace elements in Luna 16 soil.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.

    1972-01-01

    An analysis has been made of four small samples of material brought to earth by the Luna 16 mission, with the aim to determine rare earths and other trace elements in these samples. The analytical results are tabulated, and the rare earth abundances are compared with the average for chondrites. A comparison is also made with the results of similar analyses of Apollo samples.

  5. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; Bird, D.K.

    2009-01-01

    In the southeastern part of the North Qaidam terrane, near Dulan, paragneiss hosts minor peridotite and UHP eclogite. Zircon geochronology and trace element geochemistry of three paragneiss samples (located within a ???3 km transect) indicates that eclogite-facies metamorphism resulted in variable degrees of zircon growth and recrystallization in the three samples. Inherited zircon core age groups at 1.8 and 2.5 Ga suggest that the protoliths of these rocks may have received sediments from the Yangtze or North China cratons. Mineral inclusions, depletion in HREE, and absence of negative Eu anomalies indicate that zircon U-Pb ages of 431 ?? 5 Ma and 426 ?? 4 Ma reflect eclogite-facies zircon growth in two of the samples. Ti-in-zircon thermometry results are tightly grouped at ???660 and ???600 ??C, respectively. Inclusions of metamorphic minerals, scarcity of inherited cores, and lack of isotopic or trace element inheritance demonstrate that significant new metamorphic zircon growth must have occurred. In contrast, zircon in the third sample is dominated by inherited grains, and rims show isotopic and trace element inheritance, suggesting solid-state recrystallization of detrital zircon with only minor new growth. ?? 2009 Elsevier Ltd.

  6. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  7. Trapping of transuranium elements by the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Bloom, J. L.; Eastlund, B. J.

    1972-01-01

    The search for a transuranium element component of cosmic radiation has been carried out in high altitude balloon experiments. The trapping of high Z elements on orbits in the Earth's magnetic field may lead to a sufficient enhancement of the intensity of particle flux to make it possible to detect these elements by satellite experiments. Calculations are presented that predict the behavior of trapped particles as a function of the predicted flux and energy distribution of high Z elements incident on the Earth's magnetic field. Techniques are suggested for the detection of such particles. In addition, the possibility of production of transuranium elements in the recently discovered pulsars are discussed.

  8. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  9. Rare earth element diffusion in apatite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2000-11-01

    Diffusion of rare earth elements (REEs) in natural and synthetic fluorapatite has been characterized under anhydrous conditions. Three types of experiments were run. In the first set of experiments, Sm was introduced into the apatite by means of ion implantation, with diffusivities extracted through measurement of the "relaxation" of the implanted profile after diffusion anneals. The second group consisted of "in diffusion" experiments, in which apatite was immersed in reservoirs of synthetic REE apatite analogs of various compositions. The final set of experiments was "out-diffusion" experiments run on synthetic Nd-doped apatite immersed in a reservoir of synthetic (undoped) fluorapatite. REE depth profiles in all cases were measured with Rutherford Backscattering Spectrometry. Diffusion rates for the REE vary significantly among these sets of experiments. For the ion-implantation experiments, the following Arrhenius relation was obtained for Sm, over the temperature range 750°C to 1100°C: D imp=6.3×10-7exp(-298±17 kJ/mol/RT) m2/s Diffusion of a series of REE, from light to heavy, was investigated in the "in-diffusion" experiments. Over the temperature range 800°C to 1250°C, the following Arrhenius relations are obtained for La, Nd, Dy, and Yb, for in-diffusion experiments using REE silicate oxyapatite sources: D La=2.6×10-7exp(-324±9 kJ/mol/RT) m2/sD Nd=2.4×10-6exp(-348±13 kJ/mol/RT) m2/sD Dy=9.7×10-7exp(-340±11 kJ/mol/RT) m2/sD Yb=1.3×10-8exp(-292±23 kJ/mol/RT) m2/s Diffusivities of the REE in these "in-diffusion" experiments are all quite similar, suggesting little difference in diffusion rates in apatite with increasing ionic radii of the REEs. The "out-diffusion" experiments on the Nd-doped synthetic apatite, over the temperature range 950°C to 1400°C, yield the Arrhenius law: D out=9.3×10-6exp(-392±31 kJ/mol/RT) m2/s The differences in REE diffusion among these three sets of experiments (i.e., ion implantation, in-diffusion, and out-diffusion) may be attributable to the differences in substitutional processes facilitating REE exchange. The fastest diffusion, found in the ion-implantation experiments, is likely largely governed by simple light REE +3 ↔ REE +3 exchange, with no charge compensating species necessary. REE transport in the in-diffusion experiments requires movement of an additional charge-compensating species, either through the substitutions REE +3 + Si +4 ↔ Ca +2 + P +5 or REE +3 + Na +1 ↔ 2 Ca +2, and thus proceeds more slowly than simple REE exchange. Slowest of all is Nd out-diffusion from the synthetic Nd-doped apatite, for which neither charge compensating species are present nor REEs available in the surrounding reservoir to facilitate Nd exchange. This observed dependence of REE diffusion rates on the exchange process involved has important geochemical implications. These findings indicate that REE isotope and chemical signatures can become decoupled in apatite, with light REE isotope exchange proceeding much more rapidly than REE chemical diffusion altering total REE concentrations. Under temperatures typical of thermal events, REE zoning (involving differences in REE concentration across zones) of a given dimension might persist over time periods two orders of magnitude greater than those under which zoning of REE isotopes (without significant changes in total REE) on similar scale is preserved.

  10. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Walsh, Kevin J.; Rubie, David C.

    2014-04-01

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 +/- 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

  11. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.

    PubMed

    Jacobson, Seth A; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2014-04-01

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation. PMID:24695310

  12. Experimental geochemistry of Pu and Sm and the thermodynamics of trace element partitioning

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Burnett, Donald S.

    1987-01-01

    An experimental study of the partitioning of Pu and Sm between diopside/liquid and whitlockite/liquid supports the hypothesis that Pu behaves as a light rare earth element during igneous processes in reducing environments. D-Pu/D-Sm is found to be about 2 for both diopsidic pyroxene and whitlockite, and the amount of fractionation would be decreased further if Pu were compared to Ce or Nd. Data indicate that temperature, rather than melt composition, is the most important control on elemental partitioning, and that P2O5 in aluminosilicate melts serves as a complexing agent for the actinides and lanthanides.

  13. The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil.

    PubMed

    De Miguel, Eduardo; Mingot, Juan; Chacón, Enrique; Charlesworth, Susanne

    2012-12-01

    A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared against aqua regia extractions ("total" concentration), and it was found that total concentrations of As, Cu, Pb and Zn were double those of bioaccessible values, whilst that of Cr was ten times higher. Whereas the results of the gastric + intestinal extraction were affected by a high uncertainty, both gastric methods offered very similar and consistent results, with bioaccessibilities following the order: As = Cu = Pb = Zn > Co > Ni > Cr, and ranging from 63 to 7 %. Selected soil properties including pH, organic matter, Fe and CaCO(3) content were determined to assess their influence on trace element bioaccessibility, and it was found that Cu, Pb and Zn were predominantly bound to organic matter and, to a lesser extent, Fe oxides. The former fraction was readily accessible in the gastric solution, whereas Fe oxides seemed to recapture negatively charged chloride complexes of these elements in the gastric solution, lowering their bioaccessibility. The homogeneous pH of the playground soils included in the study does not influence trace element bioaccessibility to any significant extent except for Cr, where the very low gastric accessibility seems to be related to the strongly pH-dependent formation of complexes with organic matter. The results for As, which have been previously described and discussed in detail in Mingot et al. (Chemosphere 84: 1386-1391, 2011), indicate a high gastric bioaccessibility for this element as a consequence of its strong association with calcium carbonate and the ease with which these bonds are broken in the gastric solution. The calculation of risk assessments are therefore dependant on the methodology used and the specific environment they address. This has impacts on management strategies formulated to ensure that the most vulnerable of society, children, can live and play without adverse consequences to their health. PMID:23053927

  14. Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry

    USGS Publications Warehouse

    Hochstaedter, A.G.; Gill, J.B.; Kusakabe, M.; Newman, S.; Pringle, M.; Taylor, B.; Fryer, P.

    1990-01-01

    A bimodal volcanic suite with KAr ages of 0.05-1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures. Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts, Fe3+ ??Fe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs. H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. High H2O S, high ??D, and low (MORB-like) ??34S ratios are considered primary and distinctive of the back-arc basin setting. ?? 1990.

  15. Geochemistry of metallic trace elements in fumarolic condensates from Nicaraguan and Costa Rican volcanoes

    NASA Astrophysics Data System (ADS)

    Gemmell, J. Bruce

    1987-08-01

    Metallic trace-element composition of volcanic gas from Cerro Negro, Momotombo, San Cristbal, Telica and Masaya volcanoes in Nicaragua and Pos volcano in Costa Rica is indicated by analyses of fumarolic condensates for alkalis, alkaline earths, transition elements, precious metals, halogens and sulphate. The temperatures of the fumaroles varied from 85 to 852C. Element concentrations range from 10 4 to 10 -3 ppm. Statistical tests indicate that the trace-element constituents of the condensates are log-normally distributed. Although there are variations in element concentrations in individual condensates, the general order of decreasing elemental abundances in Nicaraguan and Costa Rican fumarolic gas is: Cl > SO 4 > certain igneous rock-forming elements (Si, Al, Fe, Ti) > F and alkalis (Li, Na, K) > alkaline earths (Mg, Ca, Ba) > Br and transition elements (Cr, Mn, Co, Ni, Cu, Zn) > other ore-forming elements (Mo, Cd, Sn, Pb) > semi-metals (As, Sb) > Sc, Hg, and precious metals (Au, Ag). Li, Mn, Cr, and Pb were found to be near or below detection limits in many of the condensates analyzed. SO 4, Ti, Al, K, Na, Zn, Sn, Cr, and Br all tend to decrease in abundance as mean fumarolic temperature between volcanoes decreases. The remaining elements remain constant in abundance or behave erratically. The metallic trace-element composition of the Nicaraguan and Costa Rican fumarolic condensates is very similar to condensates from subduction zone volcanoes around the Pacific margin and the Mediterranean. Metals in volcanic gas are postulated to have been transported as halogen, sulphate, and oxide compounds. Chloride and fluoride compounds are considered to be the primary transporters of metals in volcanic gas. Correlations between metal and halogen content vary considerably between volcanoes. Statistically significant correlations between metal content and both chlorine and bromine are found in the Cerro Negro and between metal content and bromine and fluorine in the Momotombo condensates. Metal-bearing compounds in volcanic gas are postulated from correlation matrices. Bromine, though seldom reported in condensates, is a minor but important constituent of volcanic gas with concentrations similar to those of fluorine. Metal-bromide compounds have higher volatilities than fluoride compounds and volatilities similar to chloride compounds. Significant correlations between bromine content and metal concentration suggests that bromide compounds play a role in the transportation of metals in volcanic gas.

  16. Major and trace element geochemistry of S-type cosmic spherules

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Babu, E. V. S. S. K.; Vijaya Kumar, T.

    2016-03-01

    Micrometeorites that pass through the Earth's atmosphere undergo changes in their chemical compositions, thereby making it difficult to understand if they are sourced from the matrix, chondrules, or calcium-aluminum-rich inclusions (CAIs). These components have the potential to provide evidence toward the understanding of the early solar nebular evolution. The variations in the major element and trace element compositions of 155 different type (scoriaceous, relict bearing, porphyritic, barred, cryptocrystalline, and glass) of S-type cosmic spherules are investigated with the intent to decipher the parent sources using electron microprobe and laser ablation inductively coupled plasma-mass spectrometry. The S-type cosmic spherules appear to show a systematic depletion in volatile element contents, but have preserved their refractory trace elements. The trends in their chemical compositions suggest that the S-type spherules comprise of components from similar parent bodies, that is, carbonaceous chondrites. Large fosteritic relict grains observed in this investigation appear to be related to the fragments of chondrules from carbonaceous chondrites. Furthermore, four spherules (two of these spherules enclose spinels and one comprised entirely of a Ca-Al-rich plagioclase) show enhanced trace element enrichment patterns that are drastically different from all the other 151 cosmic spherules. The information on the chemical composition and rare earth elements (REEs) on cosmic spherules suggest that the partially to fully melted ones can preserve evidences related to their parent bodies. The Ce, Eu, and Tm anomalies found in the cosmic spherules have similar behavior as that of chondrites. Distinct correlations observed between different REEs and types of cosmic spherules reflect the inherited properties of the precursors.

  17. Major and trace element geochemistry of S-type cosmic spherules

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Babu, E. V. S. S. K.; Vijaya Kumar, T.

    2016-04-01

    Micrometeorites that pass through the Earth's atmosphere undergo changes in their chemical compositions, thereby making it difficult to understand if they are sourced from the matrix, chondrules, or calcium-aluminum-rich inclusions (CAIs). These components have the potential to provide evidence toward the understanding of the early solar nebular evolution. The variations in the major element and trace element compositions of 155 different type (scoriaceous, relict bearing, porphyritic, barred, cryptocrystalline, and glass) of S-type cosmic spherules are investigated with the intent to decipher the parent sources using electron microprobe and laser ablation inductively coupled plasma-mass spectrometry. The S-type cosmic spherules appear to show a systematic depletion in volatile element contents, but have preserved their refractory trace elements. The trends in their chemical compositions suggest that the S-type spherules comprise of components from similar parent bodies, that is, carbonaceous chondrites. Large fosteritic relict grains observed in this investigation appear to be related to the fragments of chondrules from carbonaceous chondrites. Furthermore, four spherules (two of these spherules enclose spinels and one comprised entirely of a Ca-Al-rich plagioclase) show enhanced trace element enrichment patterns that are drastically different from all the other 151 cosmic spherules. The information on the chemical composition and rare earth elements (REEs) on cosmic spherules suggest that the partially to fully melted ones can preserve evidences related to their parent bodies. The Ce, Eu, and Tm anomalies found in the cosmic spherules have similar behavior as that of chondrites. Distinct correlations observed between different REEs and types of cosmic spherules reflect the inherited properties of the precursors.

  18. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. PMID:26332985

  19. Rare earth elements in synthetic zircon. 1. synthesis, and rare earth element and phosphorus doping.

    SciTech Connect

    Hanchar, J. M.; Finch, R. J.; Hoskin, W. O.; Watson, E. B.; Cherniak, D. J.; Mariano, A. N.; Chemical Engineering; George Washington Univ.; Univ. of Canterbury; Australian National Univ.; Rensselaer Polytechnic Inst.

    2001-05-01

    Sedimentary mineral assemblages commonly contain detrital zircon crystals as part of the heavy-mineral fraction. Age spectra determined by U-Pb isotopic analysis of single zircon crystals within a sample may directly image the age composition--but not the chemical composition--of the source region. Rare earth element (REE) abundances have been measured for zircons from a range of common crustal igneous rock types from different tectonic environments, as well as kimberlite, carbonatite, and high-grade metamorphic rocks, to assess the potential of using zircon REE characteristics to infer the rock types present in sediment source regions. Except for zircon with probable mantle affinities, zircon REE abundances and normalized patterns show little intersample and intrasample variation. To evaluate the actual variation in detrital zircon REE composition in a true sediment of known mixed provenance, zircons from a sandstone sample from the Statfjord Formation (North Sea) were analyzed. Despite a provenance including high-grade metasediment and granitoids and a range in zircon age of 2.82 b.y., the zircon REEs exhibit a narrow abundance range with no systematic differences in pattern shape. These evidences show zircon REE patterns and abundances are generally not useful as indicators of provenance.

  20. MaRGEE: Move and Rotate Google Earth Elements

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  1. Systematic variation of rare-earth elements in cerium-earth minerals

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J., Jr.; Carron, M.K.; Glass, J.J.

    1957-01-01

    In a continuation of a study reported previously, rare-earth elements and thorium have been determined in monazite, allanite, cerite, bastnaesite, and a number of miscellaneous cerium-earth minerals. A quantity called sigma (???), which is the sum of the atomic percentages of La, Ce, and Pr, is proposed as an index of composition of all cerium-earth minerals with respect to the rare-earth elements. The value of ??? for all of the minerals analysed falls between 58 and 92 atomic per cent. Monazites, allanites, and cerites cover the entire observed range, whereas bastnaesites are sharply restricted to the range between 80 and 92 atomic per cent. The minimum value of ??? for a cerium-earth mineral corresponds to the smallest possible unit-cell size of the mineral. In monazite, this structurally controlled minimum value of ??? is estimated to be around 30 atomic per cent. Neodymium, because of its abundance, and yttrium, because of its small size, have dominant roles in contraction of the structure. In the other direction, the limit of variation in composition will be reached when lanthanum becomes the sole rare-earth element in a cerium-earth mineral. Cerium-earth minerals from alkalic rocks are all characterized by values of ??? greater than 80 atomic per cent, indicating that the processes that formed these rocks were unusually efficient in fractionating the rare-earth elements-efficient in the sense that a highly selected assemblage is produced without eliminating the bulk of these elements. Analyses of inner and outer parts of two large crystals of monazite from different deposits show no difference in ??? in one crystal and a slightly smaller value of ??? in the outer part of the other crystal compared to the inner part. The ??? of monazites from pegmatites that intrude genetically related granitic rocks in North Carolina is found to be either higher or lower than the ??? of monazites in the intruded host rock. These results indicate that the fractionation of the rare-earth elements is not a simple unidirectional process. When a cerium-earth mineral undergoes replacement, its rare-earth elements may be fractionated into two parts, one forming a new mineral with ??? that is smaller, and the other a second new mineral with ??? that is larger than that of the original mineral. The complete analysis of a cerium-earth mineral to determine its ??? is time consuming. The discovery of a direct relationship between ??? and the Ce/(Nd + Y) atomic ratio in cerium earth minerals allows a rapid determination of ??? from spectrograms obtained in a previously described method for determining thorium in these minerals. ?? 1957.

  2. Modeling rammed earth wall using discrete element method

    NASA Astrophysics Data System (ADS)

    Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.

    2016-03-01

    Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.

  3. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    NASA Technical Reports Server (NTRS)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  4. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  5. Hf-Nd Isotopic and Trace-Element Geochemistry of Global Subducting Sediments

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Plank, T.; Patchett, P. J.

    2001-12-01

    Ferromanganese nodules, crusts, and associated metalliferous clays have long been known to have anomalously high Lu/Hf ratios and highly radiogenic Hf relative to Nd (Patchett et al., 1984; White et al., 1986). These oceanic sediments are some of the few terrestrial materials where Hf and Nd isotopes deviate from the crust-mantle array. This distinctive isotopic signature, therefore, has the potential to trace the fate of oceanic sediments through the subduction zone and into the mantle. It has recently been suggested, for example, that pelagic sediments can be detected in some Hawaiian basalts (Blichert-Toft et al., 1999) and in volcanic rocks from the Luzon arc (Marini et al., 2000) based on their Hf-Nd isotopic compositions. The weak link in this approach, however, is that we do not know, in any quantitative way, how widespread this anomalous signature is in oceanic sediments, what compositions are responsible for this signature, or how volumetrically important these compositions are in terms of the total sediment flux into subduction zones and the mantle. Most marine sediments analyzed thus far have been collected on or near the ocean floor and constitute an incomplete and unrepresentative inventory of the sediment column bound for the subduction zone. There is some reason to suspect that much of the sediment flux is not particularly anomalous, either in terms of Lu/Hf ratios or Hf and Nd isotopic compositions. The most dominant sediment types entering many subduction zones (terrigenous and other continentally derived sediments), have normal Lu/Hf ratios and Hf-Nd isotopic compositions that are indistinguishable from the crust-mantle array. An examination is needed of the Hf-Nd isotopic composition of oceanic sediments, the major and trace-element geochemistry of global sediment flux, how such compositions may relate to Hf-Nd isotopic behavior, and potential Lu/Hf and Nd/Hf fractionation in subduction zones. In addition, the origin of the high Lu/Hf and anomalous radiogenic Hf isotopic character of pelagic sediments needs to be determined in order to understand the global sediment budget problem.

  6. Geochemistry of rare and minor elements in sediments from Brazil Basin of Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Vvedenskaya, Irina; Dubinin, Alexander

    2010-05-01

    This paper reviews the features of the rare and minor elements in the sediment samples recovered from the Brazil Basin at the location of the Station No. 1537 in the Atlantic Ocean during the 18th cruise of the Research Vessel "Akademik Sergey Vavilov". The depth of the sediment column is 470 cm. The sediments are represented by the oxidized miopelagic clay (0-305 cm) which are underlain by the thin bedded Ethmodiscus diatom oozes (305-470 cm). The brown miopelagic clay (0.09-1.25% СаСО3, 0.05-0.28% Сorganic) predominately consist of the clay minerals (91-97%). The top section sediments also include some terrigenous clastic sandy-silt minerals (1-5%), diatoms (up to 2%), manganese micronodules (approx. 1%), occasional spicules, radiolarian, coccoliths and marine fossil fragments. The transition to the lower diatom oozes is associated with the lens-shape structures and increase in the content of diatoms in clay. The age of sediments at the station No. 1537 is Late Pleistocene. Presence of thin bedded Ethmodiscus oozes is an indirect evidence of re-deposition of the sediments in the central part of the Brazil Basin The chemical composition has been analyzed on 37 core samples recovered from the column. These core samples have been used to define the content of the chemical composition as well as the rare and minor elements. The manganese content in the top section of the miopelagic clay varies insignificantly and value is close 0.46%. The rare and minor elements content in the miopelagic clay is quite stable. The sharp increase in manganese content (to 1.16%) as well as in that of the minor elements such as Co, Cu, Ni, Mo and Tl are observed at the 305-308 cm horizon which corresponds to the bottom of the miopelagic clay. Than, the manganese content decreases to reach its minimum value (0.20%) immediately below this horizon. With further depth increase, the content of manganese starts rising again reaces its maximum value of 2.31% at the 405-407 cm horizon. The diatom oozes, compared with the clayey silts, contain higher concentrations of Co, Cu, Ni, Mo, Tl. The content of other minor elements is considerably lower than that of the clayey silts. Comparison of the average chemical element contents in miopelagic clay and diatom oozes gives a series sequence of abundance of minor elements: Ag Mo Tl Mn Cd Ba Co Ni Cu Sr Pb Li Ce Zn V 0.2 0.4 0.5 0.5 0.6 1.2 1.3 1.5 1.7 1.8 2.1 2.1 2.1 2.1 2.3 REE Y U W Th Be Rb Cs As 2.3-2.1 2.3 2.4 2.4 2.4 2.4 2.4 2.5 3.5 The miopelagic muds contains high concentrations are reached in three groups of elements: easily hydrolyze elements (REE, Y, Th, Be), elements represented by oxyanions in the ocean water (U, W, V, As) and elements linked with the clays (Li, Rb, Cs). The concentrations of rare earth elements (REE) in miopelagic muds show almost no change with depth. The compositions of REE include cerium anomaly and light lanthanides. The composition of REE in diatom oozes is more variable. The oozes also include cerium anomaly, but sometimes concentrations of lighter elements are low.

  7. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. PMID:26375205

  8. Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico)

    NASA Astrophysics Data System (ADS)

    Gonneea, Meagan Eagle; Charette, Matthew A.; Liu, Qian; Herrera-Silveira, Jorge A.; Morales-Ojeda, Sara M.

    2014-05-01

    Trace element cycling within subterranean estuaries frequently alters the chemical signature of groundwater and may ultimately control the total chemical load to the coastal ocean associated with submarine groundwater discharge. Globally, karst landscapes occur over 12% of all coastlines. Subterranean estuaries in these regions are highly permeable, resulting in rapid infiltration of precipitation and transport of groundwater to the coast, and the predominant carbonate minerals are readily soluble. We studied the chemical cycling of barium (Ba), strontium (Sr), manganese (Mn), uranium (U), calcium (Ca) and radium (Ra) within the carbonate karst subterranean estuary of the Yucatan Peninsula, which is characterized by a terrestrial groundwater lens overlying marine groundwater intrusion with active submarine discharge through coastal springs. Terrestrial groundwater calcium (1-5 mmol kg-1) and alkalinity (3-8 mmol kg-1) are enriched over that predicted by equilibrium between recharging precipitation and calcite, which can be accounted for by groundwater organic matter respiration and subsequent dissolution of calcite, dolomite and gypsum. There is a close agreement between the observed terrestrial groundwater Sr/Ca, Mn/Ca, Ba/Ca and Ra/Ca and that predicted by equilibrium dissolution of calcite, thus the trace element content of terrestrial groundwater is largely determined by mineral dissolution. Subsequent mixing between terrestrial groundwater and the ocean within the actively discharging springs is characterized by conservative mixing of Sr, Mn, Ba and Ca, while U is variable and Ra displays a large enrichment (salinity: 1.9-34.9, Ba: 60-300 nmol kg-1, Sr: 15-110 μmol kg-1, U: 0.3-35 nmol kg-1, Mn: 0.3-200 nmol kg-1, Ca: 4.3-12.9 mmol kg-1, 226Ra: 18-2140 dpm 100 L-1). The deep groundwater sampled through cenotes, local dissolution features, is typified by elevated Ba, Sr, Ca, Mn and Ra and the absence of U within marine groundwater, due to enhanced dissolution of the aquifer matrix following organic matter degradation and redox processes including sulfate reduction (salinity: 0.2-36.6, Ba: 7-1630 nmol kg-1, Sr: 1.3-210 μmol kg-1, U: 0.3-18 nmol kg-1, Mn: 0.6-2600 nmol kg-1, Ca: 2.1-15.2 mmol kg-1, 226Ra 20-5120 dpm 100 L-1). However, there is no evidence in the spring geochemistry that deep marine groundwater within this reaction zone exchanges with the coastal ocean via spring discharge. Total submarine groundwater discharge rates calculated from radium tracers are 40-95 m3 m-1 d-1, with terrestrial discharge contributing 75 ± 25% of the total. Global estimates of chemical loading from karst subterranean estuaries suggest Sr and U fluxes are potentially 15-28% and 7-33% of total ocean inputs (8.2-15.3 mol y-1 and 4.0-7.7 mol y-1), respectively. Radium-226 inputs from karst subterranean estuaries are 34-50 times river inputs (6.7-9.9 × 1016 dpm y-1).

  9. Anthropogenic influence on trace element geochemistry of healing mud (peloid) from Makirina Cove (Croatia)

    NASA Astrophysics Data System (ADS)

    Miko, S.; Koch, G.; Mesić, S.; Šparica-Miko, M.; Šparica, M.; Čepelak, R.; Bačani, A.; Vreča, P.; Dolenec, T.; Bergant, S.

    2008-08-01

    Due to their balneotherapeutic features, the organic-rich sediments in Makirina Cove are an important source of healing mud. An environmental geochemistry approach using normalization techniques was applied to evaluate the anthropogenic contribution of trace metals to sediments used as healing mud. Sediment geochemistry was found to be associated with land-use change and storm events, as well as with proximity of a road with heavy traffic in the summer months. Local valley topography preferentially channels lithogenic and pollutant transport to the cove. Concentrations and distribution of trace metals indicate lithogenic (Ni, Cr, Co) and anthropogenic (Pb, Cu, Zn and Se) contributions to the sediments. The calculation of enrichment factors indicates a moderate (EFs between 2-3.5) input of anthropogenic Cu and Pb in surficial sediments to a depth of 10 cm. Patients using the Makirina Cove sediments as healing mud could be to some extent exposed to enhanced uptake of metals from anthropogenic sources via dermal contact.

  10. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    SciTech Connect

    West, H.B.; Delanoy, G.A.; Thomas, D.M. . Hawaii Inst. of Geophysics); Gerlach, D.C. ); Chen, B.; Takahashi, P.; Thomas, D.M. Evans and Associates, Redwood City, CA )

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  11. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle.

    PubMed

    Gasperini, D; Blichert-Toft, J; Bosch, D; Del Moro, A; Macera, P; Télouk, P; Albarède, F

    2000-12-01

    Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle. PMID:11130068

  12. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught

    PubMed Central

    Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael

    2013-01-01

    The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965

  13. Coal fly ash as a resource for rare earth elements.

    PubMed

    Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena

    2015-06-01

    Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials. PMID:25613802

  14. Uncovering the end uses of the rare earth elements.

    PubMed

    Du, Xiaoyue; Graedel, T E

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. PMID:23602698

  15. Spherical disharmonics in the Earth sciences and the spatial solution: Ridges, hotspots, slabs, geochemistry and tomography correlations

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Anderson, Don L.

    1994-01-01

    There is increasing use of statistical correlations between geophysical fields and between geochemical and geophysical fields in attempts to understand how the Earth works. Typically, such correlations have been based on spherical harmonic expansions. The expression of functions on the sphere as spherical harmonic series has many pitfalls, especially if the data are nonuniformly and/or sparsely sampled. Many of the difficulties involved in the use of spherical harmonic expansion techniques can be avoided through the use of spatial domain correlations, but this introduces other complications, such as the choice of a sampling lattice. Additionally, many geophysical and geochemical fields fail to satisfy the assumptions of standard statistical significance tests. This is especially problematic when the data values to be correlated with a geophysical field were collected at sample locations which themselves correlate with that field. This paper examines many correlations which have been claimed in the past between geochemistry and mantle tomography and between hotspot, ridge, and slab locations and tomography using both spherical harmonic coefficient correlations and spatial domain correlations. No conclusively significant correlations are found between isotopic geochemistry and mantle tomography. The Crough and Jurdy (short) hotspot location list shows statistically significant correlation with lowermost mantle tomography for degree 2 of the spherical harmonic expansion, but there are no statistically significant correlations in the spatial case. The Vogt (long) hotspot location list does not correlate with tomography anywhere in the mantle using either technique. Both hotspot lists show a strong correlation between hotspot locations and geoid highs when spatially correlated, but no correlations are revealed by spherical harmonic techniques. Ridge locations do not show any statistically significant correlations with tomography, slab locations, or the geoid; the strongest correlation is with lowermost mantle tomography, which is probably spurious. The most striking correlations are between mantle tomography and post-Pangean subducted slabs. The integrated locations of slabs correlate strongly with fast areas near the transition zone and the core-mantle boundary and with slow regions from 1022-1248 km depth. This seems to be consistent with the 'avalanching' downwellings which have been indicated by models of the mantle which include an endothermic phase transition at the 670-km discontinuity, although this is not a unique interpretation. Taken as a whole, these results suggest that slabs and associated cold downwellings are the dominant feature of mantle convection. Hotspot locations are no better correlated with lower mantle tomography than are ridge locations.

  16. Removal of Phosphorus in Metallurgical Silicon by Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Løvvik, Ole Martin; Safarian, Jafar; Ma, Xiang; Tangstad, Merete

    2014-08-01

    Removal of phosphorus in metallurgical silicon is one of the crucial steps for the production of solar grade Si feedstock. The possibility of doping rare earth elements for phosphorus removal has in this work been studied both theoretically and experimentally. Thermochemical properties of Ce, Nd, and Pr monophosphides have first been estimated by ab initio thermodynamic simulations based on density functional theory and the direct phonon method. The reliability of the first principles calculations was assessed by coupling with the phase diagram data of the Pr-P system. Equilibrium calculations confirmed the existence of stable rare earth monophosphides in solid silicon. Experimental investigations were then carried out, employing a high temperature resistance furnace. The Ce-doped silicon samples were examined by electron probe micro analyzer and inductively coupled plasma analysis. The efficiency of phosphorus removal by means of rare earth doping was discussed in detail in the paper.

  17. Removal of Phosphorus in Metallurgical Silicon by Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Løvvik, Ole Martin; Safarian, Jafar; Ma, Xiang; Tangstad, Merete

    2014-09-01

    Removal of phosphorus in metallurgical silicon is one of the crucial steps for the production of solar grade Si feedstock. The possibility of doping rare earth elements for phosphorus removal has in this work been studied both theoretically and experimentally. Thermochemical properties of Ce, Nd, and Pr monophosphides have first been estimated by ab initio thermodynamic simulations based on density functional theory and the direct phonon method. The reliability of the first principles calculations was assessed by coupling with the phase diagram data of the Pr-P system. Equilibrium calculations confirmed the existence of stable rare earth monophosphides in solid silicon. Experimental investigations were then carried out, employing a high temperature resistance furnace. The Ce-doped silicon samples were examined by electron probe micro analyzer and inductively coupled plasma analysis. The efficiency of phosphorus removal by means of rare earth doping was discussed in detail in the paper.

  18. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  19. Highly siderophile elements: Constraints on Earth accretion and early differentiation

    NASA Astrophysics Data System (ADS)

    Righter, Kevin

    Highly siderophile elements (HSE: Re, Au, and the PGEs) prefer FeNi metal and sulfide phases over silicate melts and minerals (olivine, pyroxene, feldspar, etc.). In addition, three HSE—Re, Pt, and Os—are involved in radioactive decay schemes: 187Re → 187Os (beta decay) and 192Pt → 188Os (alpha decay). As a result, they have provided constraints on the conditions during establishment of the primitive upper mantle, and the conditions and timing of later mantle differentiation and evolution. Hypotheses proposed to explain HSE elemental and isotopic compositions in the primitive upper mantle include mantle-core equilibrium, outer core metal addition, inefficient core formation, and late accretion (the late veneer). All of these scenarios have problems or unresolved issues. Here a hybrid model is proposed to explain the HSE concentrations in the primitive mantle, whereby Au, Pd, and Pt concentrations are set by high-pressure and temperature metal-silicate equilibrium, and Re, Ru, Rh, Ir, and Os concentrations are set by late accretion of chondritic material that is added via oxidized vapor following a giant impact (post-core formation). Processes affecting the later HSE evolution of the mantle include (1) layering caused by fractionation and/or flotation of mantle phases such as olivine, chromite, and garnet, (2) addition of metal from the outer core, and (3) recycling of oceanic crust. Uncertainties about differences in composition between the upper and lower mantle make evaluation of processes in the first category uncertain, but both the second and third processes can explain some aspects of mantle Os isotope geochemistry. This is a review of the field over the past decade and reports not only progress in the field but also highlights areas where much work remains.

  20. Trace Element Geochemistry of Matrix Glass from the Bedout Impact Structure,Canning Basin NW Australia

    NASA Astrophysics Data System (ADS)

    Poreda, R. J.; Basu, A. R.; Chakrabarti, R.; Becker, L.

    2004-12-01

    We report on geochemical and petrographic analysis of separated matrix glass from Lagrange-1 and Bedout-1 drill cores that penetrated the Bedout structure offshore NW Australia. The results support the conclusion that the Bedout structure was produced by a a major ET impact at the end-Permian that generated shock melted glass and impact breccias (Becker et al., Science, v.304, p.1469, 2004) The Bedout structure is a 30 km, circular, 1.5 km uplifted basment high that occurs on the passive margin offshore NW Australia. The isolated feature, covered by 3 km of Triassic to Recent sediments,is not consistent with any typical volcanic province (i.e. arc or hotspot volcanism). This hypothesis is supported by the unique mineralogy and chemistry of the matrix glass. At Lagrange, major elements crudely resemble low-K, Fe-Ti basalts while the trace element patterns have two distinct signatures. The lower 250 m of Lagrange (3260 - 3010 m depth) have essentially flat REE and "spider" patterns that superficially resemble some E-MORB; a signal not typically found in arc, hotspot or continental margin settings. The upper 150 meters (3000 - 2850m) of Lagrange and the entire Bedout core (3030 - 3070m) have similar light REE-enriched patterns but low levels of alkalis, alkaline-earths and high field strength elements. Again, the chemistry is not consistent with an arc or hotspot setting, based on the low Ba and extremely low Sr (30-110 ppm) concentrations. Based on the geophysical, chemical and petrologic evidence, we hypothesize that the Bedout structure formed as the result` of an ET impact with Permian age rift margin basalts and continental sediment. The basalts did not completely melt as evidenced by the abundance of large (1 mm) An50 plagioclase,that exist as both crystalline plag and shock melted maskelynite. Plagioclase is the major repository of Sr in basalts and the lack of a plagioclase contribution to the melt glass is reflected in the low Sr abundance. Shock-transformed plagioclase glass that still retains the lath shape and chemistry of An50 are one of the major indicators of the impact origin for Bedout.

  1. Trace-element geochemistry of metabasaltic rocks from the Yukon-Tanana Upland and implications for the origin of tectonic assemblages in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Cooper, K.M.

    1999-01-01

    We present major- and trace- element geochemical data for 27 amphibolites and six greenstones from three structural packages in the Yukon-Tanana Upland of east-central Alaska: the Lake George assemblage (LG) of Devono-Mississippian augen gneiss, quartz-mica schist, quartzite, and amphibolite; the Taylor Mountain assemblage (TM) of mafic schist and gneiss, marble, quartzite, and metachert; and the Seventymile terrane of greenstone, serpentinized peridotite, and Mississippian to Late Triassic metasedimentary rocks. Most LG amphibolites have relatively high Nb, TiO2, Zr, and light rare earth element contents, indicative of an alkalic to tholeiitic, within-plate basalt origin. The within-plate affinities of the LG amphibolites suggest that their basaltic parent magmas developed in an extensional setting and support a correlation of these metamorphosed continental-margin rocks with less metamorphosed counterparts across the Tintina fault in the Selwyn Basin of the Canadian Cordillera. TM amphibolites have a tholeiitic or calc-alkalic composition, low normalized abundances of Nb and Ta relative to Th and La, and Ti/V values of <20, all indicative of a volcanic-arc origin. Limited results from Seventymile greenstones indicate a tholeiitic or calc-alkalic composition and intermediate to high Ti/V values (27-48), consistent with either a within-plate or an ocean-floor basalt origin. Y-La-Nb proportions in both TM and Seventymile metabasalts indicate the proximity of the arc and marginal basin to continental crust. The arc geochemistry of TM amphibolites is consistent with a model in which the TM assemblage includes arc rocks generated above a west-dipping subduction zone outboard of the North American continental margin in mid-Paleozoic through Triassic time. The ocean-floor or within-plate basalt geochemistry of the Seventymile greenstones supports the correlation of the Seventymile terrane with the Slide Mountain terrane in Canada and the hypothesis that these oceanic rocks originated in a basin between the continental margin and an arc to the west.

  2. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Uncovering the Global Life Cycles of the Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyue; Graedel, T. E.

    2011-11-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements.

  4. Uncovering the Global Life Cycles of the Rare Earth Elements

    PubMed Central

    Du, Xiaoyue; Graedel, T. E.

    2011-01-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements. PMID:22355662

  5. Anthropogenic Disturbance of Element Cycles at the Earth's Surface

    NASA Astrophysics Data System (ADS)

    Sen, I. S.; Peucker-Ehrenbrink, B.

    2012-12-01

    The extent to which humans are modifying Earth's surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts [1]. We determine anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compared it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions and - for helium - hydrodynamic escape from the Earth's atmosphere. In addition, we introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporated uncertainties of element mass fluxes through Monte Carlo simulations [2]. Our assessment indicates that anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium are greater than the respective natural fluxes. For these elements mining is the major factor of human dominance, whereas petroleum burning strongly influence the surficial cycle of rhenium. Apart from these 11 elements there are 15 additional elements whose anthropogenic fluxes may surpass their corresponding natural fluxes. Anthropogenic fluxes of the remaining elements are smaller than their corresponding natural fluxes although a significant human influence is observed for all of them. For example, ~20% of the annual fluxes of C, N, and P can be attributed to human activities. Such disturbances, though small compared with natural fluxes, can significantly alter concentrations in near-surface reservoirs and affect ecosystems if they are sustained over time scales similar to or longer than the residence time of elements in the respective reservoir. Examples are the continuing input of CO2 to the atmosphere that has led to a 40% increase in atmospheric CO2 concentrations, and the atmospheric redistribution of reactive nitrogen and accumulation in remote ecosystems. We note that if anthropogenic contributions to soil erosion and eolian dust are considered, anthropogenic fluxes of up to 62 elements may surpass their corresponding natural fluxes. [1] Klee and Graedel (2004), Annu. Rev. Environ. Resour., 29, p. 69-107 [2] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol., dx.doi.org/10.1021/es301261x

  6. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    PubMed

    McLennan, S M; Anderson, R B; Bell, J F; Bridges, J C; Calef, F; Campbell, J L; Clark, B C; Clegg, S; Conrad, P; Cousin, A; Des Marais, D J; Dromart, G; Dyar, M D; Edgar, L A; Ehlmann, B L; Fabre, C; Forni, O; Gasnault, O; Gellert, R; Gordon, S; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; King, P L; Le Mouélic, S; Leshin, L A; Léveillé, R; Lewis, K W; Mangold, N; Maurice, S; Ming, D W; Morris, R V; Nachon, M; Newsom, H E; Ollila, A M; Perrett, G M; Rice, M S; Schmidt, M E; Schwenzer, S P; Stack, K; Stolper, E M; Sumner, D Y; Treiman, A H; VanBommel, S; Vaniman, D T; Vasavada, A; Wiens, R C; Yingst, R A

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars. PMID:24324274

  7. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    TOXLINE Toxicology Bibliographic Information

    McLennan SM; Anderson RB; Bell JF 3rd; Bridges JC; Calef F 3rd; Campbell JL; Clark BC; Clegg S; Conrad P; Cousin A; Des Marais DJ; Dromart G; Dyar MD; Edgar LA; Ehlmann BL; Fabre C; Forni O; Gasnault O; Gellert R; Gordon S; Grant JA; Grotzinger JP; Gupta S; Herkenhoff KE; Hurowitz JA; King PL; Le Mouélic S; Leshin LA; Léveillé R; Lewis KW; Mangold N; Maurice S; Ming DW; Morris RV; Nachon M; Newsom HE; Ollila AM; Perrett GM; Rice MS; Schmidt ME; Schwenzer SP; Stack K; Stolper EM; Sumner DY; Treiman AH; VanBommel S; Vaniman DT; Vasavada A; Wiens RC; Yingst RA; MSL Science Team

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  8. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Anderson, R. B.; Bell, J. F.; Bridges, J. C.; Calef, F.; Campbell, J. L.; Clark, B. C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D. J.; Dromart, G.; Dyar, M. D.; Edgar, L. A.; Ehlmann, B. L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J. A.; Grotzinger, J. P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J. A.; King, P. L.; Le Mouélic, S.; Leshin, L. A.; Léveillé, R.; Lewis, K. W.; Mangold, N.; Maurice, S.; Ming, D. W.; Morris, R. V.; Nachon, M.; Newsom, H. E.; Ollila, A. M.; Perrett, G. M.; Rice, M. S.; Schmidt, M. E.; Schwenzer, S. P.; Stack, K.; Stolper, E. M.; Sumner, D. Y.; Treiman, A. H.; VanBommel, S.; Vaniman, D. T.; Vasavada, A.; Wiens, R. C.; Yingst, R. A.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Siebach, Kirsten; Brunet, Claude; Hipkin, Victoria; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Robert, François; Sautter, Violaine; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Fassett, Caleb; Blake, David F.; Bristow, Thomas; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Williams, Rebecca M. E.; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Pradler, Irina; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  9. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  10. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  11. Catalytic properties of monophosphates of rare-earth elements

    SciTech Connect

    Mel'nikov, P.P.; Koldasheva, E.M.; Kubason, A.A.; Lais Pichardo, Kh.

    1986-11-01

    From analysis of literature data it follows that use of structural analogies often leads to new catalytic systems. A characteristic example is zeolites and phosphates of group III elements which have as basic structural unit the PO/sub 4/ tetrahedron. The catalytic properties of zeolites and phosphates are well known in transformations of ethanol. In this work the catalytic properties of the complex rare-earth phosphates H/sub 3/HO (PO/sub 4/)/sub 2/, K/sub 2/CsTm(PO/sub 4/) /sub 2/, and K/sub 2/CsEr(PO/sub 4/) /sub 2/ in the above reaction are investigated, Phosphates containing rare-earth an alkaline cations were obtained by the cryochemical method.

  12. Assessing rare earth elements in quartz rich geological samples.

    PubMed

    Santoro, A; Thoss, V; Guevara, S Ribeiro; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J

    2016-01-01

    Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. PMID:26595776

  13. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  14. Rare earth element content of cryptocrystalline magnesites of Konya, Turkey

    NASA Astrophysics Data System (ADS)

    Zedef, Veysel; Russell, Michael

    2016-04-01

    We examined the rare earth element content of several cryptocrystalline magnesites as well as hydromagnesite, host rock serpentinites, lake water and hot spring water from Turkey. Southwestern Turkey hosts cryptocrystalline magnesites, sedimentary magnesites with presently forming, biologically mediated hydromagnesites and travertines. Our results show the REE content of the minerals, rocks and waters are well below detection limits. One hydromagnesite sample from Lake Salda has slightly high La (2.38ppb), Ce (3.91 ppb) and Nd (1.68 ppb) when compared to other samples, but these are also still below detection limits of the method we followed.

  15. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  16. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    NASA Astrophysics Data System (ADS)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.

  17. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    NASA Technical Reports Server (NTRS)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  18. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, R.C.; Nordstrom, D.K.; Taylor, H.E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  19. Mimicking the magnetic properties of rare earth elements using superatoms

    PubMed Central

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A. W.

    2015-01-01

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel “magic boron” counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  20. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters. PMID:25848014

  1. Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils

    PubMed Central

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  2. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  3. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements.

    PubMed

    Argyraki, Ariadne; Kelepertzis, Efstratios

    2014-06-01

    Understanding urban soil geochemistry is a challenging task because of the complicated layering of the urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements. A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil samples (0-10cm) were collected from 238 sampling sites on a regular 1×1km grid and were digested by a HNO3-HCl-HClO4-HF mixture. A combination of multivariate statistics and Geographical Information System approaches was applied for discriminating natural from anthropogenic sources using 4 major elements, 9 trace metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24mg kg(-1) respectively). The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians of 45, 39, 98, 3.6, 1.7 and 0.3mg kg(-1) respectively) was also observed; significant correlations were identified between concentrations and urbanization indicators, including vehicular traffic, urban land use, population density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other cities around the world, and further investigation should characterize and evaluate their geochemical reactivity. PMID:24662205

  4. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.

    2011-12-01

    The study of rare earth elements (REEs) in natural waters initially involved an examination of their occurrence and behavior in seawater and coastal waters such as estuaries. Since the 1990s, REE geochemistry has been applied to continental waters such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique characteristics and have been used in the study of many geological processes like weathering and water-rock interaction processes, provenance of sediments, etc... With the evolution of analytical techniques like new generation ICP-MS, much attention had been paid towards the water geochemistry of REEs. However, there is a need of more investigations devoted to REEs in large groundwater systems, especially on the understanding of the distribution of REEs and their evolution in such systems. In this frame, large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems. These large aquifer systems thus require water management at the basin scale in order to preserve both water quantity and quality. The large Eocene Sand aquifer system of the Aquitaine sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 in the South west part of the French territory. The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The 'Eocene Sands', composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres. The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. One important feature, in these confined systems isolated from anthropogenic influence, is the range in salinities by a factor of 10, from 250 mg/L up to 2.5 g/L. The ΣREE, in the range 2-54 ng/L, with a dependence on salinity when expressed in % HCO3 or SO4, reflect the carbonate or evaporite source of REEs. The UCC normalized-REE patterns show a large variability as exemplified by the REE flat patterns-low SREE associated with salinity controlled by HCO3. In the present work, the REEs are investigated in terms of saturation indices, speciation modelling, REE patterns in order to recognize the aquifer type hosting groundwater and decipher the origin of the salinity of the groundwater as some part of the aquifer display in the groundwater concentration of chemical element exceeding the drinking water standard (SO4, F...). Such high concentrations of naturally-occurring substances (e.g. unaffected by human activities) can have negative impacts on groundwater thresholds and deciphering their origin by means of geochemical tools like REE is a remaining challenge.

  5. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  6. Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms.

    PubMed

    Kalantzi, I; Shimmield, T M; Pergantis, S A; Papageorgiou, N; Black, K D; Karakassis, I

    2013-02-01

    Trace element concentrations in sediment were investigated at four fish farms in the Eastern Mediterranean Sea. Fish farms effects were negligible beyond 25-50 m from the edge of the cages. Based on elemental distribution, sediments from the farms were separated into coarse oxidized and silty reduced ones. Fish feed is richer in P, Zn and Cd than reference and impacted stations. Comparison among impacted stations and the respective reference stations shows that, in anoxic sediments, all elements had higher concentrations at the impacted stations than at reference stations while in oxic sediments, many elemental concentrations were lower at impacted stations than at reference stations. The behavior of elements and therefore their distribution is affected by changes in sediment grain size, organic content and redox regime. Elements in sediments around fish farms can be clustered into five groups according to these environmental variables. In silty and anoxic sediments, element concentrations were higher than in coarse and oxic ones. Several approaches were used to assess potential sediment toxicity (enrichment factors, geoaccumulation indices, contamination factors) as well as to assess the potential danger to aquatic life (Sediment Quality Guidelines, SQG). Cu, Zn and Fe can cause from threshold to extreme effects on aquatic life in anoxic, fine-grained sediments and As can cause threshold effects in all types of sediment around fish farms. Other elements (Cr, Pb, Mn) can also cause unwanted effects when compounded with elevated background levels. PMID:23268141

  7. The chemistry of rare earth elements in the solar nebula

    NASA Technical Reports Server (NTRS)

    Larimer, J. W.; Bartholomay, H. A.; Fegley, B.

    1984-01-01

    The high concentration of rare earth elements (REE) in primitive CaS suggests that the REE along with the other normally lithophile elements form stable sulfides under the unusual conditions which existed during the formation of enstatite chrondites. In order to acquire a more quantitative framework in which to interpret these data, the behavior of the REE in systems with solar, or slightly fractionated solar, composition is being studied. These new data introduce modest changes in the behavior of some of the REE when compared to previous studies. For example, the largest differences are in the stabilities of the gaseous monoxides of Ce, Eu, Tb, Ho, and Tm, all of which now appear to be less stable than previously thought, and YbO(g) which is somewhat more stable. Much more significant are the changes in REE distribution in the gas phase in fractionated systems, especially those made more reducing by changing the C/O ratio from the solar value of 0.6 to about 1.0. In almost all cases, the exceptions being Eu, Tm and Yb whose elemental gaseous species dominate, the monosulfides become more abundant. Moreover, the solid oxides of Eu, Tm and Yb become less stable under more reducing conditions which, in effect, should reduce the condensation temperature of all REE in more reduced systems.

  8. The elements of the Earth's magnetism and their secular changes between 1550 and 1915

    NASA Technical Reports Server (NTRS)

    Fritsche, H.

    1983-01-01

    The results of an investigation about the magnetic agents outside the Earth's surface as well as the Earth's magnetic elements for the epochs 1550, 1900, 1915 are presented. The secular changes of the Earth's magnetic elements during the time interval 1550 - 1900 are also included.

  9. Geochemistry of minor elements in the Monterey Formation, California; seawater chemistry of deposition

    USGS Publications Warehouse

    Piper, D.Z.; Isaacs, C.M.

    1995-01-01

    Approximately 24 samples of the Monterey Formation, Southern California, have been analyzed for their major-element oxide and minor-element content. These analyses allow identification of a detrital fraction, composed of terrigenous quartz, clay minerals, and other Al silicate minerals, and a marine fraction, composed of biogenic silica, calcite, dolomite, organic matter, apatite, and minor amounts of pyrite. The minor-element contents in the marine fraction alone are interpreted to have required, at the time of deposition, a high level of primary productivity in the photic zone and denitrifying bacterial respiration in the bottom water.

  10. Rare earth elements activate endocytosis in plant cells

    PubMed Central

    Wang, Lihong; Li, Jigang; Zhou, Qing; Yang, Guangmei; Ding, Xiao Lan; Li, Xiaodong; Cai, Chen Xin; Zhang, Zhao; Wei, Hai Yan; Lu, Tian Hong; Deng, Xing Wang; Huang, Xiao Hua

    2014-01-01

    It has long been observed that rare earth elements (REEs) regulate multiple facets of plant growth and development. However, the underlying mechanisms remain largely unclear. Here, using electron microscopic autoradiography, we show the life cycle of a light REE (lanthanum) and a heavy REE (terbium) in horseradish leaf cells. Our data indicate that REEs were first anchored on the plasma membrane in the form of nanoscale particles, and then entered the cells by endocytosis. Consistently, REEs activated endocytosis in plant cells, which may be the cellular basis of REE actions in plants. Moreover, we discovered that a portion of REEs was successively released into the cytoplasm, self-assembled to form nanoscale clusters, and finally deposited in horseradish leaf cells. Taken together, our data reveal the life cycle of REEs and their cellular behaviors in plant cells, which shed light on the cellular mechanisms of REE actions in living organisms. PMID:25114214

  11. Trace Element Geochemistry of the Dolomite Member of the Neoproterozoic Ibex Formation, Death Valley National Park, CA

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Lanids, J. D.; Quicksall, A. N.; Ddamba, I.

    2012-12-01

    This work examines the major and trace element geochemistry of the pink, laminated Dolomite Member of the Neoprotoerozic Ibex Formation, sampled at high resolution in the Ibex Hills of Death Valley, California. The Dolomite Member of the Ibex Formation directly overlies a basal conglomerate which has lead Corsetti and Kaufman (2005) to speculate that the juxtaposition of these units represents a diamictite - cap carbonate pair. Cap carbonates are inferred to represent deposition under high alkalinity conditions in the shallow ocean at the termination of low latitude glaciation. Increased alkalinity may be driven by the post glacial overturn of anoxic water masses. Here we infer paleoredox conditions during the deposition of the Dolomite Member of the Ibex Formation using trace metal enrichments. The Dolomite Member shows enrichments of Ni, Mo, Fe, Cu, V, Co, and Ba near the base of the unit, and also has a weak overall enrichment in Mn. The enrichment of these metals suggests a period of anoxia during the initial deposition of the Dolomite, and may signal the introduction of basin brines to the shallow ocean during marine transgression. These data are consistent with patterns observed in other cap carbonates worldwide, and support the speculation that the Dolomite Member is a cap carbonate. Alternatively, trace metal enrichments may reflect diagenetic alteration.

  12. Rare earth elements and neodymium isotopes in world river sediments revisited

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; Germain, Y.; Jorry, S. J.; Ménot, G.; Monin, L.; Ponzevera, E.; Rouget, M.-L.; Tachikawa, K.; Barrat, J. A.

    2015-12-01

    Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world's major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd(clay-silt) < |1|. A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts is probably best explained by preferential alteration of feldspars and/or accessory mineral phases. Importantly, this finding clearly indicates that silicate weathering can lead to decoupling of REE between different grain-size fractions, with implications for sediment provenance studies. Finally, we propose a set of values for a World River Average Clay (WRAC) and Average Silt (WRAS), which provide new estimates for the average composition of the weathered and eroded upper continental crust, respectively, and could be used for future comparison purposes.

  13. Trace element geochemistry of soils and plants in Kenyan conservation areas and implications for wildlife nutrition.

    PubMed

    Maskall, J; Thornton, I

    1991-06-01

    Trace element concentrations in soils, plants and animals in National Parks and Wildlife Reserves in Kenya are assessed using geochemical mapping techniques. Soil trace element concentrations are shown to be related to soil parent material and possibly to pedological and hydrological factors. At Lake Nakuru National Park, plant trace element concentrations vary with plant species and the geochemical conditions that influence uptake are discussed. Impala at Lake Nakuru National Park and black rhino at Solio Wildlife Reserve are shown to have a lower blood copper status than animals from other areas. The trace element status of wildlife is assessed also with respect to critical concentrations used for domestic ruminants. It is suggested that at Lake Nakuru National Park, the low soil copper content and high molybdenum content of some plants contributes to the low copper status of impala and may also influence the nutrition of other species. PMID:24202842

  14. Rare Earth elements in individual minerals in Shergottites

    NASA Technical Reports Server (NTRS)

    Wadhwa, Meenakshi; Crozaz, Ghislaine

    1993-01-01

    Shergottites (i.e., Shergotty, Zagami, EETA79001, ALHA77005, and LEW88516) are an important set of achondrites because they comprise the majority of the SNC group of meteorites (nine, in total, known to us), which are likely to be samples of the planet Mars. Study of these meteorites may therefore provide valuable information about petrogenetic processes on a large planetary body other than Earth. Rare earth element (REE) distributions between various mineral phases were found to be useful in geochemically modeling the petrogenesis of various rock types (terrestrial and meteoritic). However, with the exception of a few ion microprobe studies and analyses of mineral separates, there has previously not been any comprehensive effort to characterize and directly compare REE in individual minerals in each of the five known shergottites. Ion microprobe analyses were made on thin sections of each of the shergottites. Minerals analyzed were pyroxenes (pigeonite and augite), maskelynite, and whitlockite. The REE concentrations in each mineral type in each shergottite is given.

  15. Dissolved Rare Earth Element Concentrations in the Upwelling area off Peru

    NASA Astrophysics Data System (ADS)

    Grasse, P.; Plass, A.; Hathorne, E. C.; Frank, M.

    2012-12-01

    Rare earth elements (REEs) are powerful tracers of continental input, particle exchange and scavenging processes, as well as for water mass transport in the ocean. We present a first data set of dissolved REE distributions in filtered seawater covering the major gradients of bio-productivity and oxygen concentrations in the upwelling area off Peru. A total of 22 stations were analyzed along a shelf, a nearshore and an offshore transect to investigate the influence of local inputs versus water mass mixing. The Peruvian coastal upwelling area is a highly dynamic system characterized by intense upwelling of nutrient-rich subsurface water and therefore high productivity that leads to one of the globally largest Oxygen Minimum Zones (OMZ). The upwelling area off Peru is of particular interest for understanding the biogeochemical cycling of REEs and other redox-sensitive metals because anoxic conditions are expected to release of REEs from the shelf, whereas high particle densities and fluxes efficiently remove the REEs from the water column. Despite their high potential as tracers few systematic investigations of seawater REEs have been carried out so far because the low concentrations of REEs (pM) are difficult to measure. In this study an online preconcentration (OP) system (seaFast, Elemental Scientific Inc.) was used with a technique slightly modified from Hathorne et al. (2012). The OP system efficiently separates seawater matrix elements from the REEs and elutes the preconcentrated sample directly into the spray chamber of the ICP-MS instrument. Repeated measurements of a seawater reference sample (n= 20) during this study gave a reproducibility of between 5% and 15% (2σ), with the worst reproducibility for Sm, Eu, and Gd (12% to 15%). In general, the REEs, except Ce, show a nutrient-like behavior in seawater increasing in concentration with water depth. However, such distributions were not observed for some stations on the shelf where the highest concentrations, especially of the light REEs, were found in surface waters. Shelf locations show an enrichment in light REEs with higher (La/Yb)PAAS ratios (~0.7) in comparison to offshore stations (~0.3), likely reflecting continental input from the shelf sediments. Compared to North Pacific Deep Water (Alibo and Nozaki, 1999) the shelf samples are depleted in REEs, except for La and Ce, revealing that in addition to shelf inputs and dissolution of lithogenic particles, particle scavenging processes in the highly productive shelf area exert a major control on the REE concentrations. Interestingly there is no clear correlation between oxygen concentration and the Ce anomaly (Ce*) as in waters with oxygen concentrations below 5 μmol/kg the Ce* ranged between 0.2 and 1.0. References: Hathorne, E. C., Haley, B., Stichel, T., Grasse, P., Zieringer, M., & Frank, M. (2012). Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochemistry Geophysics Geosystems, 13(1), 1-12. doi:10.1029/2011GC003907 Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3/4), 363-372.

  16. Elemental processes of transport and energy conversion in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Vassilis

    In the last 5 years observations from several missions and ground based observatories have honed in on the most elemental aspects of flux transport and energy conversion. Dipolarization fronts and their counterpart in the distant magnetotail "anti-dipolarization" fronts, which together are refered to herein as "reconnection fronts", usher the recently reconnected flux tubes from the near-Earth X-points and in the process convert magnetic energy to particle energy and wave radiation. On the tailward side they are responsible for plasmoid formation and acceleration. On the earthward side they result in elemental substorm current wedges or wedglets, which were initially postulated from ground observations alone. Recent observations have revealed how the interaction of wedgelets and the inner magnetosphere takes place. Questions remain with regards to the physics of the energy transfer process from global magnetic energy to local heating and waves, and with regards to the initiation of the X-point activations in space. Observations indicate that the latter may be induced by polar cap or dayside activity, suggesting a direct link between dayside reconnection and nightside phenomena. The likely causal sequence of events and open questions in light of these recent observations, and the field's outlook in anticipation of upcoming coordinated observations from the international Heliophysics System Observatory will be discussed.

  17. Minor element geochemistry of groundwater from an area with prevailing saline groundwater in Chikhwawa, lower Shire valley (Malawi)

    NASA Astrophysics Data System (ADS)

    Monjerezi, Maurice; Vogt, Rolf D.; Gebru, Asfaw Gebretsadik; Saka, John D. K.; Aagaard, Per

    Groundwater resources with high salinity content are found in some parts of the lower Shire River valley (Malawi). This paper discusses the geochemistry of minor elements with regards to the prevailing salinity. Hierarchical clustering and principal component analyses were used to identify factors which relate to both minor elements and samples and were interpreted as reflecting the influence of prevailing saline/brackish groundwater. Concentrations of lead (Pb), boron (B), strontium (Sr) and chromium (Cr) were associated with groundwater with high content of total dissolved solids (TDS). Speciation calculations indicated that dissolved Sr, barium (Ba) and lithium (Li) were mainly in the form of free aqueous ions whereas hydrolysed species were significant for aluminium (Al) and Cr, and carbonate complexes for Pb. Chloride complexes were prevalent for silver (Ag). Solubility of cerussite (PbCO3) and barite (BaSO4) was shown to act as a control on the levels of Pb and Ba, respectively. Thus, Ba concentrations were very low in saline groundwater owing to their high sulphate content. A relatively variable B concentration in the groundwater samples was explained using a binary mixing model of saline and fresh groundwater. The mixing of fresh groundwater with saline groundwater was concomitant with high Na+/Ca2+ ratios and enrichment of B, probably by desorption from clays. The WHO drinking water guidelines for Ba, B, Cr and Pb were exceeded in 6.5%, 9.7%, 16.1% and 64.5% of all the samples, respectively. However, all samples were below the Malawian specification of B in borehole and shallow well water quality (MS 733:2005) of 5.0 mg/L.

  18. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet

    NASA Astrophysics Data System (ADS)

    Chen, Genwen; Xia, Bin

    2008-04-01

    The Xigaze ophiolite in the central part of the Yarlung-Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO 2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO 2 from 0.87 to 1.21 wt%. Their Mg #s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3-1.2 wt%) and Al 2O 3 (0.04-0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd) N ratios ranging from 3.17 to 64.6 and (Gd/Yb) N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone. Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99-13.5 ppb) and Pt (7.92-20.5 ppb), and have a relatively narrow range of Ir (3.47-5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al 2O 3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.

  19. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  20. Trace element geochemistry in water from selected springs in Death Valley National Park, California

    SciTech Connect

    Kreamer, D.K.; Hodge, V.F.; Rabinowitz, I.; Johannesson, K.H.; Stetzenbach, K.J.

    1996-01-01

    Concentrations of 40 trace elements and other constituents in ground water from springs in Death Valley National Park were measured to investigate whether trace element composition of the ground water can be related to the aquifer materials. Samples from these springs were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) for the trace elements and by ion chromatography (IC) for the major anions. A Principal Component Analysis was performed on the data set. Surprise and Scotty`s Springs formed one group; Texas, Nevares, and Travertine Springs formed another group; and Mesquite Springs did not group with any of the others. Scotty`s and Surprise Spring issued from volcanic rocks; Texas, Nevares, and Travertine discharge from carbonate rocks; and Mesquite Spring is located in alluvial basin-fill deposits. The first three components in each principal Component Analysis accounted for approximately 95% of the variance in the data set. The Principal Component Analysis suggests that ground water inherits its trace element composition from the rocks or aquifer material with which it has interacted and may be used for the purpose of identifying ground-water movement and source.

  1. Rare earth elements exploitation, geopolitical implications and raw materials trading

    NASA Astrophysics Data System (ADS)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact, establishing a company in China can lower the production cost (since the company buys the products used in its production at a lower price). In the fifth session, they study the raw materials trading based on the futures contracts example. A producer, to avoid a rise in prices of raw materials used in his production can use derivative products on the financial market: futures contracts for instance. This product ensures a quantity and quality for a price and a delivery date agreed upon today. Actually, producers can use a method called Fix price hedging in order to fix the price of a specific product. The main idea is to balance out the "physical position" (spot market) and the "paper position" (futures market). Even if the REE are commercialized in form of a non-perishable's oxide, the flow of the stock must be guaranteed and this is why it is important for producers to secure their supply of raw materials. In the last session, students search local companies that use REE in their production process and study their strategy on the market.

  2. Major and Trace Element Geochemistry: Ultra-Slow Spreading SWIR (9°-25° E)

    NASA Astrophysics Data System (ADS)

    Standish, J.; Dick, H.; Le Roex, A.; Melson, W.; O'Hearn, T.

    2002-12-01

    The oblique nature, relative to spreading direction, of the ridge axis between 9° and 16° E on the Southwest Indian Ridge results in an effective spreading rate of only ~3.9 mm/yr. Aside from the Gakkel Ridge of the Arctic Ocean, this is the lowest rate for any known section of the global ridge system. To the east of the oblique super-segment lies an orthogonal super-segment (16° - 25° E), which spreads at a rate of about 7 mm/yr. Because of the differences in spreading rates caused by the unique geometry between the two segments, the basalt chemistry at the oblique segment should reflect lower degrees of mantle melting (high Na8; trace element enrichment) than along the orthogonal segment. Additionally, due to the influence of conductive cooling on mantle melting at these spreading rates, the current paradigm predicts the lowest degrees of mantle melting anywhere along the global ridge system. Major element and trace element analyses of basalt glasses have been conducted, and the data indicate a distinct difference between the oblique and orthogonal segments. Dredged glassy basalts from the oblique super-segment are dominantly nepheline normative (up to 5.91% Nepheline), moderately K-enriched (up to 1.66 wt.% K2O) alkali basalts and hawaiites. In contrast, orthogonal segment glasses are generally hypersthene normative, transitional to tholeiitic N-MORB, with K2O < 0.41 wt.%. Fe8 is fairly constant along the orthogonal segment, but trends towards lower values on the oblique segment, consistent with lower pressures or shallower depths of melting. Na8 values are highest in lavas from the amagmatic zone of the oblique segment. Trace element ratios like Zr/Nb and La/Yb show strong enrichment trends from east to west along the orthogonal segment, possibly reflecting a decreasing percent of melting. Oblique segment trace element ratios are highly variable along strike, owing to an amagmatic rift zone positioned between two magmatically active areas on either end of the segment. Variable Cl/K ratios in glasses from the oblique segment indicate differing magma fluxes along the ridge and suggest focusing of melt by a complex crustal plumbing system. Continued modeling of chemical data will further constrain melting percentages and source compositions of both segments.

  3. Targeting heavy rare earth elements in carbonatite complexes

    NASA Astrophysics Data System (ADS)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are reviewed in terms of their grade, tonnage, rock type and the potential environmental impacts associated with their exploitation. [1] Wall et al. (2008), Can Mineral, 46, 861. [2] Do Cabo et al. (2011), Minmag, 75 (3), 770. [3] Zaitsev et al. (1998), Minmag, 62 (2), 225. [4] Dowman et al. (2011), abstract, Fermor conference, London. [5] Lottermoser (1990), Lithos, 24, 151

  4. Rare earth elements in scleractinian cold-water corals

    NASA Astrophysics Data System (ADS)

    Raddatz, J.; Liebetrau, V.; Hathorne, E. C.; Rüggeberg, A.; Dullo, W.; Frank, M.

    2012-12-01

    The Rare Earth Elements (REE) have a great potential to trace continental input, particle scavenging and the oxidation state of seawater. These REE are recorded in the skeleton of the cosmopolitan cold-water corals Lophelia pertusa. Here we use an online preconcentration ICP-MS method (Hathorne et al. 2012) to measure REE concentrations in seawater and associated cold-water coral carbonates in order to investigate their seawater origin. Scleractinian cold-water corals were collected in-situ and alive and with corresponding seawater samples covering from the European Continental Margin. The seawater REE patterns are characterized by the typical negative cerium anomaly of seawater, but are distinct for the northern Norwegian Margin and the Oslo Fjord, probably related to continental input. Initial results for the corresponding coral samples suggest that these distinct REE patterns of ambient seawater are recorded by the coral skeletons although some fractionation during incorporation into the aragonite occurs. This indicates that scleractinian cold-water corals can serve as a valuable archive for seawater derived REE signatures, as well radiogenic Nd isotope compositions. In a second step we analysed fossil coral samples from various locations, which were oxidatively and reductively cleaned prior to analysis. Initial results reveal that sediment-buried fossil (early Pleistocene to Holocene) coral samples from the Norwegian Margin and the Porcupine Seabight (Challenger Mound, IODP Site 1317) do not show the expected seawater REE patterns. In particular, the fossil coral-derived REE patterns lack a negative cerium anomaly suggesting that fossil coral-REE patterns do not represent ambient seawater. Thus, we suggest that the oxidative-reductive cleaning method widely used for cleaning of marine carbonates such as foraminifera prior to measurements of seawater-derived trace metal and isotope compositions are not sufficient for REE and Nd isotopes in sediment-buried coral-water corals and require alternative or additional approaches. Hathorne, E.C., B. Haley, T. Stichel, P. Grasse, M. Zieringer, and M. Frank (2012). Online preconcentration ICP-MS analysis of rare earth elements in seawater, Geochem. Geophys. Geosyst.,13, Q01020, doi:10.1029/2011GC003907. .

  5. Origins and early evolution of volatile elements in Earth

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2009-12-01

    The origin and evolution of volatile elements is a long standing problem not yet fully resolved. Stable isotope (H and N) systematics of the Sun (now documented for N thanks to the Genesis mission [1]), meteorites, giant planets and comets indicate that volatile elements of Earth (and Mars) share isotopic similarities with chondritic volatiles and therefore were supplied by chondritic bodies, or were sampled from a cosmochemical reservoir which vestiges are found now in chondrites. Stable isotopes together with noble gases permit to set limits on contributions of the solar nebula and of comets, and yield a possible upper limit of 10 % H(2O) nebular gas for the mantle volatile inventory. Volatile elements might have been supplied either towards the end of terrestrial accretion by volatile-rich bodies from the outer asteroidal region, or by volatile-rich dust akin of IPDs and micrometeorites. However, these models face the long-standing problem of the xenon paradox : the isotopic composition of this element is neither solar nor chondritic, and is under-abundant relative to chondritic volatile elements (e.g., the adjacent noble gas krypton, or H, N). Any supply of water and nitrogen by a chondritic source should have resulted in the addition of chondritic Xe in abundance much higher than presently seen in the atmosphere and the mantle, and with an isotopic composition drastically different from that of air Xe. Martian atmospheric Xe is elementally and isotopically similar to air Xe, which casts doubt on the possibility to fractionate Xe by terrestrial processes. One could infer that volatile elements were supplied by some unknown precursor not presently sampled by meteorites like Jupiter-like comets, a somewhat frustrating explanation that cannot be checked at Present. Another possibility for both planets is photoionisation of xenon in the upper atmosphere by UVs, since Xe has the lowest ionization energy compared to other noble gases, N2 and O2. Recent experiments indeed show significant Xe isotope fractionation in xenon by 1.36 % per amu during UV irradiation and trapping in condensed matter [2]. The case of other noble gases and of major volatiles will await for further experimental test. The late heavy bombardment might have included icy bodies from the outer solar system, according to recent simulations [3]. Measurements of noble gases in cometary matter from Stardust [4], as well as inferred noble gas contents of cometary matter [5], suggest that significant amounts of noble gases could have been contributed around 3.8 Ga ago to the terrestrial atmosphere, and could have even dominated the present-day Ne and Ar inventory of the atmosphere. The impact of this episode on the major volatile budget was probably negligible. [1] B. Marty and et al., Geochim. Cosmochim. Acta In press (2009). [2] Y. Marrocchi, F. Robert, and B. Marty, (2009). [3] R. Gomes, H. F. Levison, K. Tsiganis et al., Nature 435, 466 (2005). [4] B. Marty, R. L. Palma, R. O. Pepin et al., Science 319, 75 (2008). [5] T. Owen, A. Bar-Nun and I. Kleinfeld, Nature 358, 43 (1992).

  6. Geochemistry of organic carbon and trace elements in boreal stratified lakes during different seasons

    NASA Astrophysics Data System (ADS)

    Moreva, O. Y.; Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.

    2008-12-01

    Our knowledge of chemical fluxes in the system rock-soils-rivers-ocean of boreal and glacial landscapes is limited by the least studied part, i.e., the river water transformation between the lake and the river systems. Dissolved organic carbon (DOC), nutrients, major and trace elements are being leached from soil profile to the river but subjected to chemical transformation in the lakes due to phytoplankton and bacterial activity. As a result, many lakes in boreal regions are quite different in chemical composition compared to surrounding rivers and demonstrate important chemical stratification. The main processes responsible for chemical stratification in lakes are considered to be i) diffusion fluxes from the sediment to the bottom water accompanied by sulfate reduction and methanogenesis in the sediments and ii) dissolution/mineralization of precipitating organic matter (mineral fraction, detritus, plankton pellets) in the bottom layer horizons under anoxic conditions. Up to present time, distinguishing between two processes remains difficult. This paper is aimed at filling this gap via detailed geochemical analysis of DOC and trace elements in the water column profiles of three typical stratified lakes of Arkhangelsk region in Kenozersky National Parc (64° N) in winter (glacial) and in summer period. Concentration of most trace elements (Li, B, Al, Ti, V, Cr, Ni, Co, Zn, As, Rb, Sr, Y, Zr, Mo, Sb, Ba, REEs, Th, U) are not subjected to strong variations along the water column, despite the presence of strong or partial redox stratification. Apparently, these elements are not significantly controlled by production/mineralization processes and redox phenomena in the water column, or the influence of these processes is not pronounced under the control by the allochtonous river water input. In particularly, the stability of titanium and aluminum concentration along the depth profile and their independence of iron behavior suggest the important control by dissolved organic matter. Therefore, organo-ferric colloids controlling petrogenic elements speciation in soil and river waters are being replaced by autochthonous organic colloids in the lake system. The same observation is true for some heavy metals such as nickel, copper and zinc, whereas cobalt, as limiting component, is being strongly removed from the photic zone or it is coprecipitating with manganese hydroxide. Results of the present work allow quantitative evaluation of the role of redox processes in the bottom horizons and organic detritus degradation in the creation of chemical stratification of small lakes with high DOC concentration. Further insights on geochemical migration of trace elements in lakes require : i) study of colloidal speciation using in-situ dialysis; ii) monitoring the annual and seasonal dynamics of redox processes and TE concentration variation along the profile; iii) quantitative assessment of bacterial degradation of suspended OM and Mn and Fe redox reactions along the depth profile; iv) setting the sedimentary traps for evaluation of suspended material fluxes, and, v) thorough study of chemical composition of interstitial pore waters.

  7. Potassium and other minor elements in Porites corals: implications for skeletal geochemistry and paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Mitsuguchi, T.; Kawakami, T.

    2012-09-01

    We investigated how the K/Ca, Na/Ca, Mg/Ca, and Sr/Ca ratios of powders ground from Porites coral skeletons are changed by cumulative chemical treatments to the powders: first with distilled/deionized water (DDW), next with 30 % H2O2 and then with 0.004 mol l-1 HNO3. The K/Ca, Na/Ca, and Mg/Ca ratios were decreased with the DDW treatment and then increased with the H2O2 and HNO3 treatments; the Sr/Ca ratio was slightly decreased through the cumulative treatments, suggesting fine-scale (tens of μm or less) elemental heterogeneities in the skeleton—K, Na, and Mg are significantly enriched at the skeletal surface and also at the center of calcification (COC); in contrast, the heterogeneity of Sr is very small. We suggest that the principal mechanisms of K incorporation into coral skeleton are (1) ion incorporation into lattice defects/distortions and (2) ion adsorption onto crystal discontinuities (including crystal-organic matter interfaces) as forms of K+ and KSO4 -. Furthermore, we measured the element/Ca ratios of a modern Porites coral skeleton along its growth direction at 2-mm intervals. Results showed that all the element/Ca ratios displayed annual cycles, that the K/Ca and Na/Ca ratios covaried with each other, and that the annual-minimum K/Ca and Na/Ca ratios coincided with the annual high-density band in the skeleton. It is unclear what environmental factors may cause the covarying annual cycles of the K/Ca and Na/Ca ratios; however, as a possible explanation, the cycles may be due not to environmental factors, but to a combined effect of (1) the K and Na enrichment at the COC, (2) annual bands of high- and low-density skeleton, and (3) mm-scale element/Ca measurements along the skeletal growth direction. This kind of effect on geochemical proxies of which the concentrations significantly differ between the COC and surrounding skeleton may generate false or distorted paleoenvironmental signals.

  8. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs

    USGS Publications Warehouse

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.

    1991-01-01

    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction. ?? 1991.

  9. Microbial Paleontology, Mineralogy and Geochemistry of Modern and Ancient Thermal Spring Deposits and Their Recognition on the Early Earth and Mars"

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.

    2004-01-01

    The vision of this project was to improve our understanding of the processes by which microbiological information is captured and preserved in rapidly mineralizing sedimentary environments. Specifically, the research focused on the ways in which microbial mats and biofilms influence the sedimentology, geochemistry and paleontology of modem hydrothermal spring deposits in Yellowstone national Park and their ancient analogs. Toward that goal, we sought to understand how the preservation of fossil biosignatures is affected by 1) taphonomy- the natural degradation processes that affect an organism from the time of its death, until its discovery as a fossil and 2) diagenesis- longer-term, post-depositional processes, including cementation and matrix recrystallization, which collectively affect the mineral matrix that contains fossil biosignature information. Early objectives of this project included the development of observational frameworks (facies models) and methods (highly-integrated, interdisciplinary approaches) that could be used to explore for hydrothermal deposits in ancient terranes on Earth, and eventually on Mars.

  10. Geochemical prospecting for rare earth elements using termite mound materials

    NASA Astrophysics Data System (ADS)

    Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi

    2014-12-01

    The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.

  11. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    NASA Technical Reports Server (NTRS)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  12. Stratigraphy and major element geochemistry of the Lassen Volcanic Center, California

    SciTech Connect

    Clynne, M.A.

    1984-01-01

    Detailed geologic mapping of 200 km/sup 2/ in and near Lassen Volcanic National Park, California and reconnaissance of the surrounding area, combined with reinterpretation of data in the literature, allow definition of the Lassen Volcano Center and provide the stratigraphic framework necessary for interpretation of major-element chemical data. The Lassen Volcanic Center developed in three stages. Stage I and II produced Brokeoff Volcanic, an andesitic composite cone that erupted mafic andesite to dacite 0.6 to 0.35 my ago. Volcanism then shifted in character and locale. Domes and flows of dacite and rhyodacite, and flows of hybrid andesite were erupted on the northern flank of Brokeoff Volcano during the period from 0.25 my ago to the present; these rocks comprise Stage III of the Lassen Volcanic Center. Rocks of the Lassen Volcanic Center are typical of subduction-related calc-alkaline volcanic rocks emplaced on a continental margin overlying sialic crust. Porphyritic andestic and dacite with high Al/sub 2/O/sub 3/, low TiO/sub 2/, medium K/sub 2/O, and FeO/MgO 1.5-2.0 are the most abundant rock types. Major-element chemical trends of rock sequences indicate a mafic to silicic evolution for magmas of the Lassen Volcanic Center, probably owing to crystal fractionation of calc-alkaline basalt. 23 figs., 5 tabs.

  13. Trace element geochemistry of Jurassic coals from Eastern Black Sea Region, NE-Turkey

    SciTech Connect

    Cebi, F.H.; Korkmaz, S.; Akcay, M.

    2009-07-01

    The majority of coal deposits in the world are of Carboniferous and Tertiary age but Jurassic coals are seldom present. They are also exposed in northern Turkey and occur both at the lower and upper sections of the Liassic-Dogger volcanic- and volcani-clastic series. The coals at the base of the Jurassic units are characterized by higher Ba, Th, Zr, and Cr-Ni and lower S values than those at the top of the units, indicating, in general, laterally consistent trace element contents. The vertical distribution of trace elements in individual coal seams is also rather consistent. The B contents of coals from the Godul and Norsun areas vary from 1.5 to 4.3 ppm whereas those from the Alansa area are in the range of 95 to 138 ppm. This suggests that the coals in the Godul and Norsun areas were deposited in a swamp environment inundated by the sea from time to time, whereas coals of the Alansa were deposited in a saline environment.

  14. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While elements such as Ca, Mg, Sr or U are relatively high in whitewater rivers, their concentrations are generally lower in clearwater rivers and lowest in blackwater rivers. In contrast, elements including Si, Rb and Cs have their highest concentrations in blackwater rivers, intermediate concentrations in clearwater rivers and their lowest concentrations in whitewater river. [1] Elderfield H., Upstill-Goddard R. and Sholkovitz E.R. (1990): The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim.Cosmochim.Acta, 54, 971-991 [2] Gerard M., Seyler P., Benedetti M.F., Alves V.P., Boaventura G.R. and Sondag, F. (2003): Rare earth elements in the Amazon basin. Hydrological Processes, 17, 1379-1392 [3] Molinier M., Guyot J.L., Callede J., Guimaraes V., Oliveira E. and Filizola N. (1997): Hydrologie du bassinamazonien. Evironment et développement en Amazonie brésiliènne, Thery H. (ed.), Berlin Publ., Paris; 24-41

  15. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  16. Rare-earth element based permanent magnets: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv K.; Paudyal, Durga

    Permanent magnetic materials with large magnetization and high magnetocrystalline anisotropy are important for technical applications. In this context rare-earth (R) element based materials are good candidates because of their localized 4 f electrons. The 4 f crystal field splitting provides large part of magnetic anisotropy depending upon the crystal environment. The d spin orbit coupling of alloyed transition metal component provides additional anisotropy. RCo5 and its derivative R2Co17 are known compounds for large magnetic anisotropy. Here we have performed electronic structure calculations to predict new materials in this class by employing site substitutions. In these investigations, we have performed density functional theory including on-site electron correlation (DFT +U) and L-S coupling calculations. The results show that the abundant Ce substitution in R sites and Ti/Zr substitutions in some of the Co sites help reduce criticality without substantially affecting the magnetic moment and magnetic anisotropy in these materials. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  17. Major, trace element and stable isotope geochemistry of synorogenic breccia bodies, Ellsworth Mountains, Antarctica

    USGS Publications Warehouse

    Craddock, J.P.; McGillion, M.S.; Webers, G.F.

    2007-01-01

    Cambrian carbonates in the Heritage Range of the Ellsworth Mountains, West Antarctica host a series of carbonate-rich breccia bodies that formed contemporaneously with the Permian Gondwanide orogen. The breccia bodies had a three-stage genesis, with the older breccias containing Cambrian limestone (and marble) clasts supported by calcite, whereas the younger breccias are nearly clast-free and composed entirely of matrix calcite. Breccia clasts, calcite matrix and detrital matrix samples were analyzed using x-ray fluorescence (major and trace elements), x-ray diffraction, and stable isotopes (C, O) and suggest that the breccias formed as part of a closed geochemical system, at considerable depth, within the Cambrian limestone host as the Ellsworth Mountains deformed into a fold-and-thrust belt along the margin of Gondwana

  18. Platinum-group element geochemistry of zoned ultramafic intrusive suites, Klamath Mountains, California and Oregon.

    USGS Publications Warehouse

    Gray, F.; Page, N.J.; Carlson, C.A.; Wilson, S.A.; Carlson, R.R.

    1986-01-01

    Analyses for platinum-group elements of the varied rock suites of three Alaskan-type ultramafic to mafic multi-intrusive bodies are reported. Ir and Ru are less than analytical sensitivities of 100 and 20 ppb; Rh is less than or near 1 ppb. Average Pd assays vary among the rocks within intrusive complexes and between the three complexes (6.3, 13.7, 36.4 ppb); average Pt assays vary little among the same samples (27.9, 60.9, 34.0 ppb). Statistically adjusted Pt/(Pt + Pd) ratios increase in each suite from gabbro through clinopyroxenite to olivine-rich rocks, possibly owing to Pd fractionation.-G.J.N.

  19. Characterization of the Sukinda and Nausahi ultramafic complexes, Orissa, India by platinum-group element geochemistry

    USGS Publications Warehouse

    Page, N.J.; Banerji, P.K.; Haffty, J.

    1985-01-01

    Samples of 20 chromitite, 14 ultramafic and mafic rock, and 9 laterite and soil samples from the Precambrian Sukinda and Nausahi ultramafic complexes, Orissa, India were analyzed for platinum-group elements (PGE). The maximum concentrations are: palladium, 13 parts per billion (ppb); platinum, 120 ppb; rhodium, 21 ppb; iridium, 210 ppb; and ruthenium, 630 ppb. Comparison of chondrite-normalized ratios of PGE for the chromitite samples of lower Proterozoic to Archean age with similar data from Paleozoic and Mesozoic ophiolite complexes strongly implies that these complexes represent Precambrian analogs of ophiolite complexes. This finding is consistent with the geology and petrology of the Indian complexes and suggests that plate-tectonic and ocean basin developement models probably apply to some parts of Precambrian shield areas. ?? 1985.

  20. Redox control on trace element geochemistry and provenance of groundwater in fractured basement of Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Zhang, Liping

    2014-12-01

    Assessment of redox state, pH, environmental isotope ratios (δ18O, δ2H) coupled with PHREEQC speciation modeling investigations were conducted to understand trace element geochemical controls in basement complex aquifer in Blantyre, Malawi. Groundwater in the area is typical Ca-Mg-Na-HCO3 type suggesting more of carbonate weathering and significance of carbon dioxide with dissolution of evaporites, silicate weathering and cation exchange being part of the processes contributing to groundwater mineralization. The significance of pH and redox status of groundwater was observed. The groundwater redox state was mostly O2-controlled with few exceptions where mixed (oxic-anoxic) O2-Mn(IV) and O2-Fe(III)/SO4 controlled redox states were modeled. More so, some of the main trace element species modeled with PHREEQC varied with respect to pH. For instance vanadium(III) and vanadium(IV) decreased with increase in field pH contrasting the trend observed for vanadium(V). The isotopic composition of the sampled groundwater varied between -5.89‰ and -3.32‰ for δ18O and -36.98‰ and -20.42‰ for δ2H. The δ2H/δ18O and δ18O/Cl- ratios revealed that groundwater is of meteoric origin through vertical recharge and mixing processes. The d-excess value approximated the y-intercept of GMWL of 10 (d-excess = 9.269, SD = 1.240) implying that influence of secondary evaporative processes on isotopic signature of the study area is minimal. Thus, there is evidence to suggest that groundwater chemistry in the studied aquifer is influenced by inherent processes with contribution from human activities and furthermore, the water originates from rainwater recharge. With such results, more studies are recommended to further constrain the processes involved in mineralization through isotopic fractionation investigations.

  1. Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Muenow, David W.; Aggrey, Kwesi E.; O'Neil, James R.

    1989-08-01

    Tholeiitic glasses were dredged from the submarine rift zones of the five volcanoes comprising the island of Hawaii and Loihi Seamount. The major element composition of the glasses follows a systematic trend that is related to the stage of evolution of the volcano. Glasses from Loihi Seamount (the youngest Hawaiian volcano) are enriched in Fe, Ca, Ti, Na, and K and depleted in Si and Al relative to the glasses from the other, older volcanoes. Kilauea is intermediate in age and its glasses are intermediate in composition between those from Loihi and Mauna Loa, the largest and oldest of the active Hawaiian tholeiitic volcanoes. The volatile contents (H20, CO2, S, F, Cl) of the glasses from these volcanoes follow the same trend (highest in Loihi; lowest in Mauna Loa). Glasses from Hualalai Volcano are similar in composition to those from Mauna Loa; those from Kohala Volcano are similar to Kilauea; Mauna Kea glasses range from Mauna Loa-like to Kilauea-like. The observed systematic variation in composition of Hawaiian tholeiites may be related to the progressive melting and depletion of the source of these volcanoes during their growth. Oxygen and hydrogen isotope analyses were made on many of the glasses from each volcano. The δ18O values of Hawaiian tholeiites are distinctly lower than those of mid-ocean ridge basalt (MORB) (averages: 5.1 versus 5.7). These low values are probably a distinct feature of hot spot lavas. The δD values for these glasses (-88 to -61) are typical of mantle and MORB values. Thus the H2O in the Hawaiian glasses is probably of magmatic origin. Previous isotopic and trace element data indicate that the source of Hawaiian tholeiites contains two distinct source components. Based on the results of this study, the plume component in the source for Hawaiian tholeiites is characterized by moderate 87Sr/86Sr (0.7035-0.7037) and 206Pb/204Pb ratios (18.6-18.7), a low δ18O value (˜5.0), and greater contents of volatiles, Fe, Ca, Ti, Na and K relative to the MORB source.

  2. Crystal Field Effects and Siderophile Element Partitioning: Implications for Mars HSE Geochemistry

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Malavergne, V.; Neal, C. R.

    2007-01-01

    Analyses of martian (SNC) meteorites indicate that Pt abundances do not vary much compared to other highly siderophile elements (HSE). Therefore, Jones et al. [1] inferred that D(Pt) during basalt petrogenesis was of order unity. This inference was at odds with previously published experiments that gave a D(sub ol/liq) for Pt of approx. 0.01 [2]. Because olivine is likely to be an important constituent of any reasonable martian mantle, the implication of these findings is that minor minerals must have D(Pt) much greater than 1, which seemed improbable. However, not only did the SNC evidence point to a D(sub ol/liq) approx. equal to 1, but so did plots of D(sub ol/liq) vs. ionic radius (Onuma diagram). The ionic radius of Pt(2+) suggested that D(sub ol/liq) for Pt was of order unity, in agreement with the inferences from SNC meteorites. New experiments have failed to detect measurable Pt in olivine, even at high oxygen fugacities [3]. Therefore, some other parameter, other than ionic charge and radius, must hold sway during olivine liquid partitioning of Pt.

  3. Major and trace element geochemistry of ilmenite suites from the Kimberley diamond mines, South Africa

    NASA Astrophysics Data System (ADS)

    Ene, V. V.; Schulze, D. J.

    2013-12-01

    We have undertaken an electron microprobe and LA-ICP-MS study of ilmenites from Kimberley, South Africa, to understand better the mantle sources of ilmenite xenocrysts, key indicator minerals in kimberlite exploration. Among mantle xenoliths from Kimberley mines, ilmenite occurs in the following rock types: MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside), Granny Smith glimmerites (cpx-phlogopite-ilmenite), rutile -ilmenite rocks, dunites (olivine-ilmenite) and phlogopite orthopyroxenites. Using major, minor and trace elements we have created a preliminary classification scheme for Kimberley ilmenites. Our data allow distinction between four broad suites: MARID, Granny Smith/rutile, orthopyroxenites and dunites. MARID ilmenites are generally the lowest in MgO (5.3-15.21 wt %) and Al2O3 (<0.05 wt %) and highest in Fe2O3 (6.6-23.4 wt %) and those from the Granny Smith/rutile suite have high MgO contents in the narrow range (13.0-14.9 wt %), with Al2O3 in the range 0.2-0.6 wt% and low Fe2O3 (4.9-6.7 wt %) values. Ilmenites from orthopyroxenites mostly have intermediate MgO, Al2O3 and Fe2O3 contents (10.8 -13.5 wt%, 0.1-0.4 wt % and 9.8-10.4 wt%, respectively). Ilmenites from dunites range to high MgO and Cr2O3 values (5.01-15.49wt % and 0.07-6.5 wt % respectively). The range of Nb2O5 contents of the Granny Smith/rutile ilmenites is very restricted (0.07-0.14 wt %) whereas those of MARID, orthopyroxenites and dunites are in a much wider range (0.03-1.74 wt% Nb2O5). Ilmenites belonging to the dunite suite cluster in three different groups, based on their Mg, Cr and Nb contents. One of these groups has MgO and Cr2O3 values similar to those of the rutile and Granny Smith suites, while the other have lower MgO contents. The three suites can be somewhat distinguished on the basis of comparison of MgO vs. Cr2O3, Al2O3 vs. Nb2O5, FeO vs. Fe2O3 (calculated from stoichiometry) and Cu/W vs Co/Cu. Distinguishing between the rutile, Granny Smith and part of the dunite suite is extremely difficult due to extensive compositional overlap, suggesting that they have a common genesis perhaps forming in related metasomatic events. Trace element data are consistent with such a hypothesis. All three suites have V values in the 900 - 1200 ppm range, Zr contents that range from 300 to 550 ppm and similar Sn values (6.69 - 9.07 ppm). We have applied these preliminary distinctions to ilmenite xenocrysts fom the Wesselton, Bultfontein, Kampfersdam and Otto's Kopje Mines in Kimberley. For example, we infer that >75% of the ilmenites from Wesselton and Kampfersdam belong to the rutile/dunite/Granny Smith suite compared to Otto's Kopje where the majority belongs to the MARID, orthopyroxenite and dunite suites. Ilmenites from all suites are present in approximately equal proportions at Bultfontein.

  4. Geochemistry of arsenic and other trace elements in a volcanic aquifer system of Kumamoto Area, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, Shahadat; Hosono, Takahiro; Shimada, Jun

    2015-04-01

    Total arsenic (As), As(III) species, dissolved organic carbon (DOC), methane (CH4), sulfur isotope ratios of sulfate (δ34SSO4), major ions and trace elements were measured in groundwater collected from boreholes and wells along the flow lines of western margins of Kumamoto basin, at central part of Kyushu island in southern Japan. Kumamoto city is considered as the largest groundwater city in Japan. 100% people of this city depends on groundwater for their drinking purpose. In this study, we used trace elements data and δ34SSO4 values to better understand the processes that are likely controlling mobilization of As in this area. Arsenic concentrations ranges from 1 to 60.6 μg/L. High concentrations were found in both shallow and deep aquifers. The aquifers are composed of Quaternary volcanic (pyroclastic) flow deposits. In both aquifers, groundwaters evolve along the down flow gradient from oxidizing conditions of recharge area to the reducing conditions of stagnant area of Kumamoto plain. 40% samples from the Kumamoto plain area excced the maximum permissible limit of Japan drinking water quality standard (10 μg/L). In the reducing groundwater, As(III) constitutes typically more, however; 50% samples dominated with As(III) and 50% samples dominated with As(V) species. High As concentrations occur in anaerobic stagnant groundwaters from this plain area with high dissolved Fe, Mn, moderately dissolved HCO3, PO4, DOC and with very low concentrations of NO3 and SO4 suggesting the reducing condition of subsurface aquifer. Moderately positive correlation between As and dissolved Fe, Mn and strong negative correlation between As(III)/As(V) ratio and V, Cr and U reflect the dependence of As concentration on the reductive process. The wide range of δ34SSO4 values (6.8 to 36.1‰) indicate that sulfur is undergoing redox cycling. Highly enriched values suggesting the process was probably mediated by microbial activity. It also be noted from positive values of sulfur isotopes that sulfate was not originated from oxidation process of pyrite. A weak correlation was observed between δ34SSO4 values and total As contents when all the samples were considered. Although, there is evidence for sulfate reduction, however; it is less clear about co-pricipitation or sequester of As with Fe and Sulfide ion. It is evident that As distribution in subsurface geological media is not controlled by single solid phase. Probably, dissolution-desorption from different phases contributes to the total As in groundwater. The data are consistant with the possibility that microbial mediated reactions and reductive dessolution of Fe-oxyhydroxides are the important processes to mobilize arsenic in this area. The combination of slow flow of groundwater and the younger age of aquifer sediments are also considered potentially important causes for the high dissolved As concentrations in groundwater as the sediments have not been well flushed since burial.

  5. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments

    NASA Astrophysics Data System (ADS)

    Charette, Matthew A.; Sholkovitz, Edward R.; Hansel, Colleen M.

    2005-04-01

    Subterranean estuaries are characterized by the mixing of terrestrially derived groundwater and seawater in a coastal aquifer. Subterranean estuaries, like their river water-seawater counterparts on the surface of the earth, represent a major, but less visible, hydrological and geochemical interface between the continents and the ocean. This article is the first in a two-part series on the biogeochemistry of the subterranean estuary at the head of Waquoit Bay (Cape Cod, MA, USA). The pore-water distributions of salinity, Fe and Mn establish the salt and redox framework of this subterranean estuary. The biogeochemistry of Fe, Mn, P, Ba, U and Th will be addressed from the perspective of the sediment composition. A second article will focus on the groundwater and pore-water chemistries of Fe, Mn, U and Ba. Three sediment cores were collected from the head of Waquoit Bay where the coastal aquifer consists of permeable sandy sediment. A selective dissolution method was used to measure the concentrations of P, Ba, U and Th that are associated with "amorphous (hydr)oxides of iron and manganese" and "crystalline Fe and Mn (hydr)oxides." The deeper sections of the cores are characterized by large amounts of iron (hydr)oxides that are precipitated onto organic C-poor quartz sand from high-salinity pore waters rich in dissolved ferrous iron. Unlike Fe (hydr)oxides, which increase with depth, the Mn (hydr)oxides display midcore maxima. This type of vertical stratification is consistent with redox-controlled diagenesis in which Mn (hydr)oxides are formed at shallower depths than iron (hydr)oxides. P and Th are enriched in the deep sections of the cores, consistent with their well-documented affinity for Fe (hydr)oxides. In contrast, the downcore distribution of Ba, especially in core 3, more closely tracks the concentration of Mn (hydr)oxides. Even though Mn (hydr)oxides are 200-300 times less abundant than Fe (hydr)oxides in the cores, Mn (hydr)oxides are known to have an affinity for Ba which is many orders of magnitude greater than iron (hydr)oxides. Hence, the downcore distribution of Ba in Fe (hydr)oxide rich sediments is most probably controlled by the presence of Mn (hydr)oxides. U is enriched in the upper zones of the cores, consistent with the formation of highly reducing near-surface sediments in the intertidal zone at the head of the Bay. Hence, the recirculation of seawater through this type of subterranean estuary, coupled with the abiotic and/or biotic reduction of soluble U(VI) to insoluble U(IV), leads to the sediments acting as a oceanic net sink of U. These results highlight the importance of permeable sediments as hosts to a wide range of biogeochemical reactions, which may be impacting geochemical budgets on scales ranging from coastal aquifers to the continental shelf.

  6. Trace element and REE geochemistry of Red Butte, Oregon: a gold-bearing hot spring system

    SciTech Connect

    Evans, C.S.; Cummings, M.L.

    1985-01-01

    Red Butte, 60 km south of Vale, Oregon is an Au-bearing hot spring deposit of intercalated lacustrine and fluvial Mio-Pliocene volcaniclastic sediments and basalt flows. Topography of the butte is controlled by a 30-60 m thick cap of silicified sediments which is cut by N and NW-trending faults. Anomalous Au, As, Sb, and Hg occur in fault controlled quartz veins, quartz-adularia veins, silicified sediments and rarely in calcite-quartz veins cutting basalt. Distribution of these elements away from the veins is controlled by permeability of the host rock. REE concentrations were normalized to chondritic abundances for 73 sediment, basalt, and vein samples. Silicified sediments from the butte top and unsilicified sediments from the east slope of the butte have similar LREE enriched patterns with strong negative Eu anomalies reflecting their felsic volcanic source. Silicified sediments are depleted in all REEs relative to fresh sediments indicating dilution by silica deposition. Basalt REE patterns are much closer to chondritic ratios. Patterns of veined basalt mirror those for fresh basalts but are relatively depleted in all REEs. Quartz-adularia and quartz veins have REE abundances 2-3 orders of magnitude lower than fresh sediments, and REE patterns unlike either the sediments or basalts. Mobility of REEs in the hydrothermal fluid is seen in La/Sm and Sa/Yb ratios of the veins. The La/Sm ratio for sediments averages 3.70. In veins this ratio drops to 1.65. The average La/Yb ratio is 9.1 in sediments and falls to 1.65 in quartz veins. Fluids depositing quartz and adularia in veins carried REEs in low abundance and deposited them in ratios that do not reflect the host rock. Any movement of REEs in host rock may have been masked by original high REE content combined with silica dilution.

  7. Coal-forming environments and geochemistry of minor and trace elements of Cretaceous coals in Pingzhuang Basin, Inner Mongolia, China

    SciTech Connect

    Shao, J.; Wang, Y.; Gao, C.

    1997-12-31

    Pingzhuang Basin is a semi-grabenal fault basin of early Mesozoic age in China. Yuanbaoshan Formation of Lower Cretaceous is the main coal measure of the basin. The thickness of coal seams and the number of coal seams in each mining area vary through out the basin. The main coal-forming environments of the basin are lacustrine, lake-margin-fan-delta, lake-margin-delta, alluvial fan and fluvial faces. The coal-forming environment of different mining areas and seams in the basin varies. Ershijiazi Mining Area, which is located in the northeastern part of the basin, is mainly forefan-marsh and lakeside coal-formation; Silongtougou Mining Area, which is located in the southwestern part of the basin, is mainly lake-margin-delta coal-formation; Gushan Mining Area and West Open Pit Mining Area, which is located in the center of the basin, are mainly lakeside, lake-margin-delta-plain, lake-margin-fan-delta coal-formation. The distribution of element contents of coals in different mining areas and seams differs. At Silongtougou, the contents of most minor and trace elements are low except strontium. At Ershijiazi, the contents of some elements, such as Fe, Co, Ni, As, Sb, Sc, Cs and U, are high in the basin, and the contents of Ba, Sr and Hf are low. At West Open Pit, the contents of most elements, such as Fe, Zn, Co, Ni, As, Sb, K, Sc, Cs, Zr, U and Hf, are stable in the different seams, and the contents of these elements are intermediate in the basin. The contents of other elements in the area are low. At Gushan, the contents of all elements in seam 5 are low, and in seam 6 are high. The elements similar in geochemical characteristics have good correlation. The main correlated elements are due to the formations of the organic molecular structures of coals and/or the formations of inorganic minerals in coals. The rare-earth-element (REE) contents of coals in different mining areas and seams also differ, but the REE distribution patterns of all coals are alike. This indicates that the coal-forming conditions of the basin are stable. There is a good relationship between the contents of minor and trace elements and the coal-forming environments.

  8. Mineralogy, petrology, and trace element geochemistry of the Johnstown meteorite - A brecciated orthopyroxenite with siderophile and REE-rich components

    NASA Technical Reports Server (NTRS)

    Floran, R. J.; Prinz, M.; Hlava, P. F.; Keil, K.; Spettel, B.; Waenke, H.

    1981-01-01

    The compositional and petrologic characteristics of the Johnstown meteorite show it to contain uncontaminated and unbrecciated orthopyroxenite clasts of cumulative origin that (1) must have undergone subsolidus recrystalization, (2) are parental to the brecciated matrix, and (3) show no evidence of a xenolithic, meteoritic contribution to the matrix except for contamination by the projectile which crushed it on impact. The trapped liquid was not introduced in the impact process. The variability of such trace elements as the light rare earth elements, and the presence of plagioclase and olivine in only one of the thin sections studied, demonstrates the heterogeneity of coarse-grained diogenites on a millimeter scale and the difficulty of obtaining representative samples of such meteorites. The data presented indicate that this meteorite is a monominct breccia.

  9. Rare earth element budgets in subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Tsay, A.; Zajacz, Z.; Sanchez-Valle, C.

    2012-12-01

    Subduction zone fluids play a fundamental role in the geochemical cycle of the Earth. The nature and composition of these fluids are determined by complex processes and still poorly understood. As a result of a variety of metasomatic and partial melting events, arc-related magmas display a typical trace element abundance spectrum, in which the rare earth elements' (REE) signature is an important record of petrogenetic processes. Therefore, investigating the behavior of REE in fluids at high pressure (P) and temperature (T) conditions is crucial for constraining fluid composition, as well as understanding subduction-zone processes in general. However, up to date, the experimental studies on REE solubility and speciation are limited to quite low P-T conditions (300 °C, saturated water vapor pressure) [1]. The theoretical predictions of the stability of REE complexes have been performed up to 350 °C [2] and 1000 °C, 0.5 GPa [3] by the extrapolation of thermodynamic data obtained at ambient conditions. In this study we present new experimental data on REE silicate (REE2Si2O7) solubility in aqueous quartz saturated fluids, containing various ligands, at conditions relevant for subducting slabs (600, 700, 800 °C, 2.6 GPa). The aim of the experiments was to investigate the relative effect of temperature and ligands on the solubility of REE. The experiments were conducted in an end-loaded piston-cylinder apparatus and the fluids were in situ sampled at P-T in the form of primary fluid inclusions in quartz [4]. The gold capsule was typically loaded with a chip of synthetic REE silicate (La,Nd,Gd,Dy,Er,Yb)2Si2O7, an aqueous fluid (~20 wt.%) and a piece of natural quartz. During the experiment (24-48 h) a thermal gradient along the capsule promoted intensive dissolution of quartz at the hottest part and precipitation of new quartz at the cooler part of the capsule, allowing the primary fluid inclusions to be trapped (~30-50 μm). Rubidium and cesium were added to the fluid as the internal standards for LA-ICPMS analyses. The solubility of REE in quartz saturated water, free of additional ligands, increases more than an order of magnitude as temperature is increased from 600 °C to 800 °C. The effect of halogen ligands (Cl-, F-) on the solubility of REE was tested on experiments conducted at 800 °C. Addition of 1.5 m NaCl enhances the solubilities of all REE by a factor of 2 to 4 and induces moderate LREE/HREE fractionation; the La/Yb ratio increases by factor of 2. Unlike chlorine, the presence of fluorine ligands in the fluid (0.3 m NaF) promotes increase in HREE solubilities with almost no change in LREE solubilities compared to water, hence decreasing the La/Yb ratio by a factor of 2. The results of our experiments suggest that temperature plays an important role in mobilization of all REE by fluids. The presence of Cl- and F- ligands in the fluid shows opposing effects on the REE pattern: Cl- seems to be a more efficient ligand for LREE, while F- tends to form more stable complexes with HREE. [1] Migdisov A. A. et al., 2009, Geochim Cosmochim Acta, 73, 7087-7109 [2] Wood S. A. 1990b, Chem Geo., 82, 159-186 [3] Haas J. R. 1995, Geochim Cosmochim Acta, 59, 4329-4350 [4] Bali E. et al., 2011, Contrib Mineral Petrol, 161, 597-613

  10. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our conclusions on the impact of depositional setting and diagenetic remobilization and authigenic mineral formation on the REE system in the Marcellus Shale.

  11. Recovery and Separation of Rare Earth Elements Using Salmon Milt

    PubMed Central

    Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Watanabe, Yusuke; Fan, Qiaohui; Honma, Tetsuo; Tanaka, Kazuya

    2014-01-01

    Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption–desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt. PMID:25490035

  12. Attenuation of rare earth elements in a boreal estuary

    NASA Astrophysics Data System (ADS)

    Åström, Mats E.; Österholm, Peter; Gustafsson, Jon Petter; Nystrand, Miriam; Peltola, Pasi; Nordmyr, Linda; Boman, Anton

    2012-11-01

    This study focuses on attenuation of rare earth elements (REE) when a boreal creek, acidified and loaded with REE and other metals as a result of wetland drainage, empties into a brackish-water estuary (salinity < 6‰). Surface water was collected in a transect from the creek mouth to the outer estuary, and settling (particulate) material in sediment traps moored at selected locations in the estuary. Ultrafiltration, high-resolution ICP-MS and modeling were applied on the waters, and a variety of chemical reagents were used to extract metals from the settling material. Aluminium, Fe and REE transported by the acidic creek were extensively removed in the inner/central estuary where the acidic water was neutralised, whereas Mn was relatively persistent in solution and thus redistributed to particles and deposited further down the estuary. The REE removal was caused by several contemporary mechanisms: co-precipitation with oxyhydroxides (mainly Al but also Fe), complexation with flocculating humic substances and sorption to suspended particles. Down estuary the dissolved REE pool, remaining after removal, was fractionated: the <1 kDa pool became depleted in the middle REE and the colloidal (0.45 μm-1 kDa) pool depleted in the middle and heavy REE. This fractionation was controlled by the removal process, such that those REE with highest affinity for the settling particles became most depleted in the remaining dissolved pool. Modeling, based on Visual MINTEQ version 3.0 and the Stockholm Humic Model after revision and updating, predicted that the dissolved (<0.45 μm) REE pool in the estuary is bound almost entirely to humic substances. Acid sulphate soils, the source of the REE and other metals in the creek water, are widespread on coastal plains worldwide and therefore the REE attenuation patterns and mechanisms identified in the studied estuary are relevant for recognition of similar geochemical processes and conditions in a variety of coastal locations.

  13. Recovery and separation of rare Earth elements using salmon milt.

    PubMed

    Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Watanabe, Yusuke; Fan, Qiaohui; Honma, Tetsuo; Tanaka, Kazuya

    2014-01-01

    Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption-desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt. PMID:25490035

  14. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  15. [Electrophoresis of rare earth elements on cellulose acetate].

    PubMed

    Aitzetmüller, K; Buchtela, K; Grass, F; Hecht, F

    1966-01-01

    Previous work on th electrophoretic separation of rare earth mixtures in α-hydroxyisobutyric acid was continued using cellogel strips and radioactive tracers. The purity and sequence were determined by γ-spectrometric analysis and the decay of the various activities. The detection of rare earths by direct activation of the electropherogram is demonstrated. Mixtures containing all the lanthanoides are clearly separated. PMID:23045747

  16. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOEpatents

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  17. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    NASA Technical Reports Server (NTRS)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  18. The Fluid History of Jadeitites Near the Motagua Fault, Guatemala, as Revealed by Stable Isotope and Elemental Geochemistry

    NASA Astrophysics Data System (ADS)

    Niespolo, E. M.; Holk, G. J.; Neff, H.

    2014-12-01

    Stable isotopes and elemental geochemistry reveal a complex fluid history for jadeitites exposed both north and south of the Motagua Fault Zone (MFZ) in Guatemala. A companion study (Niespolo et al., 2014) utilized these data to source Mesoamerican jadeitite artifacts, as this region is the only source for such materials. Materials studied include jadeitites that range from 71% to 95% jadeite with minor albite and white mica. Jadeitites north of the MFZ have δ18OJadeite = +9.2±0.6‰ (n=6), δ18OAlbite = +9.4±0.3 (n=2), δ18OWhiteMica = +9.8±0.3 (n=3), and δDWhiteMica = -52± 4‰ (n=3). Jadeite δ18O values are 2-5‰ higher than those reported by Johnson and Harlow (1999), suggesting a diverse fluid history north of the MFZ. Water in apparent equilibrium at 400°C with north MFZ jadeitite has δ18O = +8.5‰ and δD = -25‰. Jadeites from Carrizal Grande south of the MFZ have δ18OJadeite = +6.8±0.6‰ (n=7), δ18OWhiteMica = +9.0±1.2 (n=6), and δDWhiteMica = -42±2‰ (n=5), with δ18OH2O = +6.4‰ and δDH2O = -15‰. In contrast, jadeitites from La Cieba south of the MFZ have δ18OJadeite = +7.5±1.4‰ (n=5), δ18OAlbite = +9.0, δ18OWhiteMica = +9.7±0.1 (n=2), and δDWhiteMica = -42±0‰ (n=2), with δ18OH2O = +7.2‰ and δDH2O = -14‰. Calculated fluids are consistent with those associated with the alteration of serpentinite in a subduction zone setting (e.g., Harlow and Sorenson, 2005). White mica, albite and jadeite are out of 18O/16O equilibrium. This suggests post-jadeite isotopic exchange, possibly during exhumation. North MFZ jadeites are enriched in Rb, Ba, Sc, Pb and Nd, and depleted in Sr, Ti, V, and Cr relative to chondrites. Carrizal Grande jadeites are depleted in Sr, Zr, V, and Cr, and enriched in REE and Rb.

  19. Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA

    USGS Publications Warehouse

    Whitney, P.R.; Olmsted, J.F.

    1998-01-01

    Wollastonite ores and garnet-pyroxene skarns in the Willsboro-Lewis district, New York, USA were formed in a complex hydrothermal system associated with the emplacement of a large anorthosite pluton. Contact-metamorphic marbles were replaced by wollastonite, garnet, and clinopyroxene during infiltration metasomatism involving large volumes of water of chiefly meteoric origin. Rare earth elements (REE) in these rocks show large departures from the protolith REE distribution, indicative of substantial REE mobility. Three types of chondrite-normalized REE distribution patterns are present. The most common, found in ores and skarns containing andradite-rich garnet, is convex-up in the light REE (LREE) with a maximum at Pr and a positive Eu anomaly. Europium anomalies and Pr/Yb ratios are correlated with X(Ad) in garnet. This pattern (type C) results from uptake of REE from hydrothermal fluids by growing crystals of calcsilicate minerals, principally andradite, with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet X sites. The Eu anomaly results either from prior interaction of the fluids with plagioclase-rich, Eu-positive anorthositic rocks in and near the ore zone, or by enrichment of divalent Eu on growth surfaces of garnet followed by entrapment, or both. Relative enrichment in heavy REE (type H) occurs in ores and skarn where calcsilicates, including grossularitic garnet, in contact-metamorphic marble have been concentrated by dissolution of calcite. In most cases a negative Eu anomaly is inherited from the marble protolith. Skarns containing titanite and apatite exhibit high total REE, relative light REE enrichment, and negative Eu anomalies (type L). These appear to be intrusive igneous rocks (ferrodiorites or anorthositic gabbros) that have been converted to skarn by Ca metasomatism. REE, sequestered in titanite, apatite, and garnet, preserve the approximate REE distribution pattern of the igneous protolith. Post-ore granulite facies metamorphism homogenized zoned mineral grains without causing complete intergranular reequilibration and does not appear to have significantly affected the whole-rock REE distributions. These results demonstrate that extensive REE metasomatism can occur in hydrothermal systems at shallow to intermediate depths and that REE geochemistry may be useful in discerning the origin of skarns and skarn-related ore deposits.

  20. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system

    NASA Astrophysics Data System (ADS)

    Cole, Catherine S.; James, Rachael H.; Connelly, Douglas P.; Hathorne, Ed C.

    2014-09-01

    The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (>348 °C) ‘black smoker’ vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as ‘white smoker’ (<212 °C) and diffuse (<28 °C) hydrothermal fluids from within the caldera of the Kemp submarine volcano. The composition of the endmember fluids (Mg = 0 mmol/kg) is markedly different, with pH ranging from <1 to 3.4, [Cl-] from ∼90 to 536 mM, [H2S] from 6.7 to ∼200 mM and [F-] from 35 to ∼1000 μM. All of the vent sites are basalt- to basaltic andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8-30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45-59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1-2.2; EuCN/Eu∗CN = 1.2-2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.

  1. Isotopic and trace element geochemistry of alkalic-mafic-ultramafic-carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume

    NASA Astrophysics Data System (ADS)

    Ghatak, Arundhuti; Basu, Asish R.

    2013-08-01

    The Archean East Indian cratonic margin was affected by the Kerguelen plume (KP) ˜117 Ma, causing flood-basalt eruptions of the Rajmahal-Bengal-Sylhet Traps (RBST). The RBST cover ˜one million km2 in and around the Bengal Basin as alkalic-ultrabasic intrusives in the west and Sikkim in the north, and Sylhet basalts and alkalic-carbonatitic-ultramafic complexes in the Shillong plateau - Mikir hills farther east of the Rajmahal-Bengal Traps. We provide new Nd-Sr-Pb-isotopic and trace element data on 21 unreported discrete lava flows of the Rajmahal Traps, 56 alkalic-carbonatitic-mafic-ultramafic rocks from four alkalic complexes, and three dikes from the Gondwana Bokaro coalfields, all belonging to the RBST. The data allow geochemical correlation of the RBST with some contemporaneous Kerguelen Plateau basalts and KP-related volcanics in the southern Indian Ocean. Specifically, the new data show similarity with previous data of Rajmahal group I-II basalts, Sylhet Traps, Bunbury basalts, and lavas from the southern Kerguelen Plateau, indicating a relatively primitive KP source, estimated as: ɛNd(I) = +2, 87Sr/86Sr(I) = 0.7046, with a nearly flat time-integrated rare earth element (REE) pattern. We model the origin of the uncontaminated RBST basalts by ˜18% batch melting with a 2× chondritic KP source in the spinel-peridotite stability depths of 60-70 km in the mantle. The new geochemical data similar to the Rajmahal group II basalts indicate a light REE enriched average source at ɛNd(I) = -5, 87Sr/86Sr(I) = 0.7069. Our geochemical modeling indicates these lavas assimilated granulites of the Eastern Ghats, reducing the thickness of the continental Indian lithosphere. Lack of an asthenospheric MORB component in the RBST province is indicated by various trace element ratios as well as the Nd-Sr isotopic ratios. Three alkalic complexes, Sung, Samchampi, and Barpung in NE India, and one in Sikkim to the north are of two groups: carbonatites, pyroxenites, lamproites, nephelinites, sovites, melteigite in the first group and syenites and ijolites in the second. The Nd-Sr-Pb-isotopic and trace element geochemistry of the first group of carbonatitic-ultrabasic rocks are consistent with similar data of the RBST lavas of the present and previous studies, and are modeled as derived from a relatively primitive carbonated garnet peridotite source in the KP. In contrast, the syenites and ijolites of the second group show a wide range of Nd-Sr-Pb isotopic compositions, modeled by low-degree melts of an ancient recycled carbonated eclogite also in the KP. The KP thus reflects heterogeneities in the lower mantle-derived plume with carbonated components yielding ultrabasic melts at greater depths with low-degree melting, followed by rise of the plume at shallower depths causing tholeiitic flood basalt volcanism. Collectively, these data imply a zone of influence of the plate-motion-reconstructed KP head for ˜1000 km around the Bengal Basin, as represented by the widely scattered and diverse rock types of the RBST.

  2. Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Schoneveld, Louise; Spandler, Carl; Hussey, Kelvin

    2015-08-01

    The Nolans Bore rare earth element (REE) deposit consists of a network of fluorapatite-bearing veins and breccias hosted within Proterozoic granulites of the Reynolds Range, Central Australia. Mineralisation is divided into three zones (north, central, and south-east), with the north and south-east zones consisting of massive REE-bearing fluorapatite veins, with minor brecciation and carbonate infill. The central zone is distinctively different in mineralogy and structure; it features extensive brecciation, a high allanite content, and a large, epidote-rich enveloping alteration zone. The central zone is a reworking of the original solid apatite veins that formed during the Chewings Orogeny at ca. 1525 Ma. These original apatite veins are thought to derive from phosphate-rich magmatic-hydrothermal fluid exsolved from as-yet unrecognised alkaline magmatic bodies at depth. We define four ore breccia types (BX1-4) in the central zone on the basis of detailed petrological and geochemical analysis of drillcore and thin sections. BX1 ore comprises fluorapatite with minor crackle brecciation with carbonate infill and resembles ore of the north and south-east zones. Breccia types BX2, BX3, and BX4 represent progressive stages of ore brecciation and development of calc-silicate mineral (amphibole, epidote, allanite, calcite) infill. Comparison of bulk ore sample geochemistry between breccia types indicates that REEs were not mobilised more than a few centimetres during hydrothermal alteration and brecciation. Instead, most of the REEs were partitioned from the original REE fluorapatite into newly formed allanite, REE-poor fluorapatite and minor REE carbonate in the breccias. Negative europium (Eu) anomalies in the breccia minerals are accounted for by a large positive Eu anomaly in epidote from the alteration zones surrounding the ore breccias. This observation provides a direct link between ore recrystallisation and brecciation, and the formation of the alteration halo in the surrounding host rocks. Where allanite and fluorapatite are texturally related, the fluorapatite is relatively depleted in the light rare earth elements (LREEs), whereas allanite is relatively LREE enriched, suggesting co-crystallisation. We tentatively date the BX1 ore stage to 1440 ± 80 Ma based on U-Pb dating of thorianite. Sm-Nd isotope isochrons derived from in situ isotope analysis of cognate apatite and allanite date the BX2 and BX3 events to ca. 400 Ma, while U-Pb dating of late-stage monazite from the BX4 ore stage returned an age of ca. 350 Ma. Therefore, formation of the central zone at Nolans Bore involved multiple alteration/brecciation events that collectively span over 1 billion years in duration. We suggest that the BX1-type veins and breccias were formed from REE-rich, saline (F- and Cl-bearing) fluids that infiltrated the granulite-grade host rocks in association with either shear activation events of the Redbank Shear Zone (1500-1400 Ma) or intrusion of late-stage pegmatites of the Mt Boothby area. BX2, BX3, and BX4 events record deformation and hydrothermal alteration associated with the Alice Springs Orogeny (400-350 Ma). These hydrothermal events occurred at temperatures of 450 to ~600 °C, due to inflow of highly acidic hydrous fluids derived from a magmatic source, or from mixing of meteoric and metamorphic fluids. Our data testify to the long and complex geological history of not only the Nolans Bore REE deposit, but also of the rocks of the eastern Reynolds Range, and demonstrate the great utility of using hydrothermally derived REE minerals to trace the timing of crustal deformation events and source of associated hydrothermal fluids.

  3. Biogeochemistry of the rare-earth elements with particular reference to hickory trees

    USGS Publications Warehouse

    Robinson, W.O.; Bastron, H.; Murata, K.J.

    1958-01-01

    Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.

  4. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  5. Earth's moderately volatile element composition may not be chondritic: Evidence from In, Cd and Zn

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Laurenz, Vera; Petitgirard, Sylvain; Becker, Harry

    2016-02-01

    Current models assume that siderophile volatile elements (SVE) are depleted in bulk Earth to the same extent as lithophile elements of similar volatility. The observed additional depletion of many SVE relative to lithophile elements in the bulk silicate Earth (BSE) is ascribed to partitioning of SVE into Earth's core. However, the assumption of similar volatility of moderately volatile elements during Earth formation processes as in solar gas is quite uncertain. Here, these assumptions will be tested by assessing abundances and ratios of indium and cadmium in the BSE using new data on mantle rocks, and the application of high- and low-pressure-temperature metal-silicate partitioning data. New bulk rock abundance data of In and Cd obtained on bulk rocks of peridotite tectonites and xenoliths by isotope dilution refine previous results inferred from basalts and in-situ analyses of silicate minerals in peridotite xenoliths. The CI chondrite-normalized abundance of In in the BSE is similar to zinc and is 3-4 times higher than Cd. New and published low- and high-P-T metal-silicate partitioning data indicate that, during core formation at a range of conditions, In is always more siderophile than Zn and Cd. Adding the fraction of these elements in Earth's core to the BSE results in bulk Earth compositions that yield higher CI chondrite normalized abundances of In in the bulk Earth compared to Zn and Cd. Because In is more volatile than Zn and Cd in gas of solar composition, suprachondritic In/Zn and In/Cd in the bulk Earth suggest that during formation of Earth or its building materials, the volatilities of these elements and perhaps other volatile elements likely have changed significantly (i.e. In became less volatile). The results also suggest that known carbonaceous chondrites likely did not deliver the main volatile element-rich fraction of the Earth. Various arguments suggest that the loss of moderately volatile elements during planetary accretion should be limited, thus, their abundances in the bulk Earth likely reflect the average composition of Earth's building materials. Combined with evidence from nucleosynthetic isotope anomalies, the data suggest that Earth's main building materials originated from compartments of the inner solar system where volatile element abundances evolved differently from the formation area of known chondrites. The materials with nonchondritic volatile element composition may have been used up for building the terrestrial planets.

  6. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    EPA Science Inventory

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  7. Rare earth elements in weathering profiles and sediments of Minnesota: Implications for provenance studies

    USGS Publications Warehouse

    Morey, G.B.; Setterholm, D.R.

    1997-01-01

    The relative abundance of rare earth elements in sediments has been suggested as a tool for determining their source rocks. This correlation requires that weathering, erosion, and sedimentation do not alter the REE abundances, or do so in a predictable manner. We find that the rare earth elements are mobilized and fractionated by weathering, and that sediments derived from the weathered materials can display modifications of the original pattern of rare earth elements of some due to grain-size sorting of the weathered material. However, the REE distribution pattern of the provenance terrane can be recognized in the sediments.

  8. Rare Earth Elements: A Tool for Understanding the Behaviour of Trivalent Actinides in the Geosphere

    SciTech Connect

    Buil, Belen; Gomez, Paloma; Garralon, Antonio; Turrero, M. Jesus

    2007-07-01

    Rare earth element (REE) concentrations have been determined in groundwaters, granite and fracture fillings in a restored uranium mine. The granitoids normalized REE patterns of groundwaters show heavy rare earth elements (HREE)-enrichment and positive Eu anomalies. This suggests that the REE are fractionated during leaching from the source rocks by groundwaters. Preferential leaching of HREE would be consistent with the greater stability of their aqueous complexes compared to those of the light rare earth elements (LREE), together with the dissolution of certain fracture filling minerals, dissolution/alteration of phyllosilicates and colloidal transport. (authors)

  9. Geochemistry of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond-facies conditions

    NASA Astrophysics Data System (ADS)

    Stepanov, Aleksandr S.; Hermann, Joerg; Korsakov, Andrey V.; Rubatto, Daniela

    2014-05-01

    The Kokchetav complex in Kazakhstan contains garnet-bearing gneisses that formed by partial melting of metasedimentary rocks at ultrahigh-pressure (UHP) conditions. Partial melting and melt extraction from these rocks is documented by a decrease in K2O and an increase in FeO + MgO in the restites. The most characteristic trace element feature of the Kokchetav UHP restites is a strong depletion in light rare earth elements (LREE), Th and U. This is attributed to complete dissolution of monazite/allanite in the melt and variable degree of melt extraction. In contrast, Zr concentrations remain approximately constant in all gneisses. Using experimentally determined solubilities of LREE and Zr in high-pressure melts, these data constrain the temperature of melting to ~1,000 °C. Large ion lithophile elements (LILE) are only moderately depleted in the samples that have the lowest U, Th and LREE contents, indicating that phengite retains some LILE in the residue. Some restites display an increase in Nb/Ta with respect to the protolith. This further suggests the presence of phengite, which, in contrast to rutile, preferentially incorporates Nb over Ta. The trace element fractionation observed during UHP anatexis in the Kokchetav gneisses is significantly different from depletions reported in low-pressure restites, where generally no LREE and Th depletion occurs. Melting at UHP conditions resulted in an increase in the Sm/Nd ratio and a decoupling of the Sm-Nd and Lu-Hf systems in the restite. Further subduction of such restites and mixing with mantle rocks might thus lead to a distinct isotopic reservoir different from the bulk continental crust.

  10. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter (inferred from the analysis of local surface seawater). A notable exception is the case of organic matter (OM) fractions leached from cold seep sediment samples, which sometimes exhibit εNd values markedly different from both terrigenous and surface seawater signatures. This suggests that a significant fraction of organic compounds in these sediments may be derived from chemosynthetic processes, recycling pore water REE characterized by a distinct isotopic composition. Overall, our results confirm that organic matter probably plays an important role in the oceanic REE budget, through direct scavenging and remineralization within the water column. Both the high REE abundances and the shape of shale-normalized patterns for leached SOM also suggest that OM degradation in sub-surface marine sediments during early diagenesis could control, to a large extent, the distribution of REE in pore waters. Benthic fluxes of organic-bound REE could hence substantially contribute to the exchange processes between particulates and seawater that take place at ocean margins. Neodymium isotopes could provide useful information for tracing the origin (terrestrial versus marine) and geographical provenance of organic matter, with potential applications in paleoceanography. In particular, future studies should further investigate the potential of Nd isotopes in organic compounds preserved in sedimentary records for reconstructing past variations of surface ocean circulation.

  11. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  12. Rare Earth Element Systematics in 48 R Chondrite Ca,Al-Rich Inclusions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Krause, J.; Berndt, J.; Bischoff, A.

    2012-09-01

    The compiled rare earth element systematics of 48 (including 32 new) Ca,Al-rich inclusions from seven R chondrites will be presented and implications for their formation and evolution will be discussed.

  13. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  14. Technical Information Resource on Rare Earth Elements Now Available to Public and Private Sector Stakeholders

    EPA Science Inventory

    A new EPA technical information resource, Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues has been produced as an introductory resource for those interested in learning more about REE mining and alternatives to meet demand...

  15. Elemental and Sr-Nd isotopic geochemistry of Permian Emeishan flood basalts in Zhaotong, Yunnan Province, SW China

    NASA Astrophysics Data System (ADS)

    Li, Juan; Zhong, Hong; Zhu, Wei-Guang; Bai, Zhong-Jie; Hu, Wen-Jun

    2016-05-01

    This study presents new whole-rock elemental and isotopic data for the basalts from the Zhaotong area, located in the intermediate zone of the ~260 Ma Emeishan large igneous province (ELIP). The Zhaotong basalts belong to high-Ti series with TiO2 from 2.93 to 5.26 % and Ti/Y from 519 to 974. The parental magma was subjected to minor crustal contamination as indicated by slight Nb-Ta depletion (Nb/La: 0.72-1.10). Meanwhile, the relatively invariable Sr-Nd isotopes (ɛNd(t): -0.74 to +2.86, mostly +1.10 to +2.86; (87Sr/86Sr)i: 0.7050-0.7072) and the light rare earth elements (LREE) enrichment (La/Yb: 10.3-19.1) of the basalts prefer a mantle plume origin. A garnet-dominated peridotite mantle source was further suggested on the basis of the REE distribution patterns and high Sm/Yb and high La/Yb ratios. This study further confirms the geochemical zoning of the high-Ti basalts in the ELIP, which is in accordance with both the spatial distribution and the thickness of the basalts. The high-Ti basalts in the intermediate and outer zones of ELIP (e.g., Zhaotong and Guizhou) share similar Sr-Nd isotopic and elemental compositions, suggesting that they originated directly from the Emeishan mantle plume. By contrast, the high-Ti basalts in the inner zone (e.g., Longzhoushan and Binchuan) have variable compositions, indicating a rather heterogeneous mantle source possibly involved with subcontinental lithospheric mantle (SCLM) components.

  16. Platinum Group Elements (PGE) geochemistry of komatiites and boninites from Dharwar Craton, India: Implications for mantle melting processes

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Manikyamba, C.; Santosh, M.; Ganguly, Sohini; Khelen, Arubam C.; Subramanyam, K. S. V.

    2015-06-01

    High MgO volcanic rocks having elevated concentrations of Ni and Cr are potential hosts for platinum group elements (PGE) owing to their primitive mantle origin and eruption at high temperatures. Though their higher PGE abundance is economically significant in mineral exploration studies, their lower concentrations are also valuable geochemical tools to evaluate petrogenetic processes. In this paper an attempt has been made to evaluate the PGE geochemistry of high MgO volcanic rocks from two greenstone belts of western and eastern Dharwar Craton and to discuss different mantle processes operative at diverse geodynamic settings during the Neoarchean time. The Bababudan greenstone belt of western and Gadwal greenstone belt of eastern Dharwar Cratons are dominantly composed of high MgO volcanic rocks which, based on distinct geochemical characteristics, have been identified as komatiites and boninites respectively. The Bababudan komatiites are essentially composed of olivine and clinopyroxene with rare plagioclase tending towards komatiitic basalts. The Gadwal boninites contain clinopyroxene, recrystallized hornblende with minor orthopyroxene, plagioclase and sulphide minerals. The Bababudan komatiites are Al-undepleted type (Al2O3/TiO2 = 23-59) with distinctly high MgO (27.4-35.8 wt.%), Ni (509-1066 ppm) and Cr (136-3036 ppm) contents. These rocks have low ΣPGE (9-42 ppb) contents with 0.2-2.4 ppb Iridium (Ir), 0.2-1.4 ppb Osmium (Os) and 0.4-4.4 ppb Ruthenium (Ru) among Iridium group PGE (IPGE); and 1.4-16.2 ppb Platinum (Pt), 2.8-19 ppb Palladium (Pd) and 0.2-9.8 ppb Rhodium (Rh) among Platinum group PGE (PPGE). The Gadwal boninites are high-Ca boninites with CaO/Al2O3 ratios varying between 0.8 and 1.0, with 12-24 wt.% MgO, 821-1168 ppm Ni and 2307-2765 ppm Cr. They show higher concentration of total PGE (82-207 ppb) with Pt concentration ranging from 13 to 19 ppb, Pd between 65 and 180 ppb and Rh in the range of 1.4-3 ppb compared to the Bababudan komatiites. Ir, Os and Ru concentrations range from 0.6 to 2.2 ppb, 0.2 to 0.6 ppb and 1.4 to 2.6 ppb respectively in IPGE. The PGE abundances in Bababudan komatiites were controlled by olivine fractionation whereas that in Gadwal boninites were influenced by fractionation of chromite and sulphides. The Al-undepleted Bababudan komatiites are characterized by low CaO/Al2O3, (Gd/Yb)N, (La/Yb)N, with positive Zr, Hf, Ti anomalies and high Cu/Pd, Pd/Ir ratios at low Pd concentrations suggesting the derivation of parent magma by high degrees (>30%) partial melting of mantle under anhydrous conditions at shallow depth with garnet as a residual phase in the mantle restite. The komatiites are geochemically analogous to Al-undepleted Munro type komatiites and their PGE compositions are consistent with Alexo and Gorgona komatiites. The S-undersaturated character of Bababudan komatiites is attributed to decompression and assimilation of lower crustal materials during magma ascent and emplacement. In contrast, the higher Al2O3/TiO2, lower (Gd/Yb)N, for Gadwal boninites in combination with negative Nb, Zr, Hf, Ti anomalies and lower Cu/Pd at relatively higher Pd/Ir and Pd concentrations reflect high degree melting of refractory mantle wedge under hydrous conditions in an intraoceanic subduction zone setting. Higher Pd/Ir ratios and S-undersaturation of these boninites conform to influx of fluids derived by dehydration of subducted slab resulting into high fluid pressure and metasomatism of mantle wedge.

  17. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of volatile siderophile elements (VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd) in mantles of Earth and Moon, constrain the origin of volatile elements in these bodies, and the overall depletion of volatile elements in Moon relative to Earth. A satisfactory explanation has remained elusive [1,2]. We examine the depletions of VSE in Earth and Moon and quantify the amount of depletion due to core formation and volatility of potential building blocks. We calculate the composition of the Earth's PUM during continuous accretion scenarios with constant and variable fO2. Results suggest that the VSE can be explained by a rather simple scenario of continuous accretion leading to a high PT metal-silicate equilibrium scenario that establishes the siderophile element content of Earth's PUM near the end of accretion [3]. Core formation models for the Moon explain most VSE, but calculated contents of In, Sn, and Zn (all with Tc < 750 K) are all still too high after core formation, and must therefore require an additional process to explain the depletions in the lunar mantle. We discuss possible processes including magmatic degassing, evaporation, condensation, and vapor-liquid fractionation in the lunar disk.

  18. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  19. Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy)

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Hofmann, A. W.; Piccardo, G. B.; Vannucci, R.; Bottazzi, P.; Ottolini, L.

    1996-02-01

    Mantle peridotites of the Internal Liguride (IL) units (Northern Apennines) constitute a rare example of the depleted lithosphere of the Jurassic Ligurian Tethys. Detailed chemical (ICP-MS and SIMS techniques) and isotopic investigations on very fresh samples have been performed with the major aim to constrain the timing and mechanism of their evolution and to furnish new data for the geodynamic interpretation. The data are also useful to discuss some general geochemical aspects of oceanic-type mantle. The studied samples consist of clinopyroxene-poor spinel lherzolites, showing incipient re-equilibration in the plagioclase-facies stability field. The spinel-facies assemblage records high (asthenospheric) equilibration temperatures (1150 1250° C). Whole rocks, and constituent clinopyroxenes, show a decoupling between severe depletion in highly incompatible elements [light rare earth elements (LREE), Sr, Zr, Na, Ti] and less pronounced depletion in moderate incompatible elements (Ca, Al, Sc, V). Bulk rocks also display a relatively strong M(middle)REE/H(heavy)REE fractionation. These compositional features indicate low-degree (<10%) fractional melting, which presumably started in the garnet stability field, as the most suitable depletion mechanism. In this respect, the IL ultramafics show strong similarity to abyssal peridotites. The Sr and Nd isotopic compositions, determined on carefully handpicked clinopyroxene separates, indicate an extremely depleted signature (87Sr/86Sr=0.702203 0.702285; 143Nd/144Nd=0.513619 0.513775). The Sm/Nd model ages suggest that the IL peridotites melted most likely during Permian times. They could record, therefore, the early upwelling and melting of mid ocean ridge basalt (MORB) type asthenosphere, in response to the onset of extensional mechanisms which led to the opening of the Western Tethys. They subsequently cooled and experienced a composite subsolidus evolution testified by multiple episodes of gabbroic intrusions and H T-L P retrograde metamorphic re-equilibration, prior to their emplacement on the sea floor. The trace element chemistry of IL peridotites also provides useful information about the composition of oceanic-type mantle. The most important feature concerns the occurrence of Sr and Zr negative anomalies (relative to “adjacent” REE) in both clinopyroxenes and bulk rocks. We suggest that such anomalies reflect changes in the relative magnitude of Sr, Zr and REE partition coefficients, depending on the specific melting conditions.

  20. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. PMID:25089667

  1. RARE EARTH ELEMENT OXIDES FOR TRACING SEDIMENT MOVEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of soil conservation plans and evaluation of spatially distributed erosion models require knowledge of rates of soil loss and sedimentation on different landscape elements and slope positions. Characterization of soil erosion rates and patterns within watersheds is important for the ...

  2. Scheelite geochemical signatures by LA-ICP-MS and potential for rare earth elements from Hutti Gold Mines and fingerprinting ore deposits

    NASA Astrophysics Data System (ADS)

    Raju, P. V. S.; Hart, Craig J. R.; Sangurmath, P.

    2016-02-01

    Scheelite (CaWO4), with gold and REE enrichments, is found in appreciable concentrations in the world class Hutti Gold deposit, Eastern Dharwar Craton (EDC), India. We used in situ Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) to determine the rare earth elements in scheelite and utilize results to fingerprint the extensions/continuity of auriferous ore shoots/lodes/reefs. The Hutti Gold deposit is briefly compared to southern African gold deposits and corroborates in terms of geochemistry, structural, chemical alterations and REE contents in scheelite etc… The scheelite samples from Hutti are enriched in light rare earth elements (LREE) up to 11 ppm and depleted in heavy rare earth elements(HREE) up to 6.50 ppm with positive to negative europium anomaly. The total REE (∑ REE + Y) of the scheelite samples is up to 35 ppm. The ratio of LREE/HREE values is 1.80. The results for the REEs indicate: (1) considerable differences in the ΣREEs amongst the sample suite (2) most samples are dominated by a single chondrite-normalized (CN) pattern, but rarely a second pattern is present; 3) although the type of CN REE patterns vary (e.g., convex MREE, LREE enrichment), there is a similarity among deposit types; and 4) both positive and negative 'Eu' anomalies are observed; 5) positive correlations between MREE and HREE suggesting a strong influence of magmatic fluids. These initial results suggest that the minor and trace-element chemistry of scheelite may offer the potential to discriminate and identify deposit types based on its geochemical fingerprinting.

  3. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Power, S.E.; Gilotti, J.A.; Mazdab, F.K.; Wopenka, B.

    2006-01-01

    Obtaining reliable estimates for the timing of eclogite-facies metamorphism is critical to establishing models for the formation and exhumation of high-pressure and ultrahigh-pressure (UHP) metamorphic terranes in collisional orogens. The presence of pressure-dependent phases, such as coesite, included in metamorphic zircon is generally regarded as evidence that zircon growth occurred at UHP conditions and, ifdated, should provide the necessary timing information. We report U-Pb sensitive high-resolution ion microprobe (SHRIMP) ages and trace-element SHRIMP data from coesite-bearing zircon suites formed during UHP metamorphism in the North- East Greenland Caledonides. Kyanite eclogite and quartzofeldspathic host gneiss samples from an island in J??kelbugt (78??00'N, 18??04'W) contained subspherical zircons with well-defined domains in cathodoluminescence (CL) images. The presence of coesite is confirmed by Raman spectroscopy in six zircons from four samples. Additional components of the eclogite-facies inclusion suite include kyanite, omphacite, garnet, and rutile. The trace-element signatures in core domains reflect modification of igneous protolith zircon. Rim signatures show flat heavy rare earth element (HREE) patterns that are characteristic of eclogite-facies zircon. The kyanite eclogites generally lack a Eu anomaly, whereas a negative Eu anomaly persists in all domains of the host gneiss. The 207Pb- corrected 206Pb/238U ages range from 330 to 390 Ma for the host gneiss and 330-370 Ma for the kyanite eclogite. Weighted mean 206Pb/238U ages for coesite-bearing domains vary from 364 ?? 8 Ma for the host gneiss to 350 ?? 4 Ma for kyanite eclogite. The combined U-Pb and REE data interpreted in conjunction with observed CL domains and inclusion suites suggest that (1) Caledonian metamorphic zircon formed by both new zircon growth and recrystallization, (2) UHP metamorphism occurred near the end of the Caledonian collision, and (3) the 30-50m.y. span of ages records long residence times at eclogite-facies conditions for the UHProcks of North-East Greenland. This spread in observed ages is interpreted to be characteristic of metamorphic rocks that have experienced relatively long (longer than 10 m.y.) residence times at UHP conditions. ?? 2006 Geological Society of America.

  4. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.

    PubMed

    Day, James M D; Pearson, D Graham; Taylor, Lawrence A

    2007-01-12

    A new combined rhenium-osmium- and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in Earth's mantle. The results are consistent with silicate-metal equilibrium during a giant impact and core formation in both bodies, followed by post-core-formation late accretion that replenished their mantles with highly siderophile elements. The lunar mantle experienced late accretion that was similar in composition to that of Earth but volumetrically less than (approximately 0.02% lunar mass) and terminated earlier than for Earth. PMID:17218521

  5. Mobile DNA Elements: The Seeds of Organic Complexity on Earth.

    PubMed

    Habibi, Laleh; Pedram, Mehrdad; AmirPhirozy, Akbar; Bonyadi, Khadijeh

    2015-10-01

    Mobile DNA or transposable elements (TEs) are genomic sequences capable of moving themselves independently into different parts of the genome. Viral invasion of eukaryotic genomes is assumed to be the main source of TEs. Selfish transposition of these elements could be a serious threat to the host cell, as they can insert themselves into the middle of coding genes and/or induce genomic instability. In response, through millions of years of evolution, cells have come up with various mechanisms such as genomic imprinting, DNA methylation, heterochromatin formation, and RNA interference to deactivate them. Interestingly, these processes have also greatly contributed to important cellular functions involved in cell differentiation, development, and differential gene expression. Propagation of TE copies during the course of evolution have resulted in increasing the genome size and providing proper space and flexibility in shaping the genome by creating new genes and establishing essential cellular structures such as heterochromatin, centromere, and telomeres. Yet, these elements are mostly labeled for playing a role in pathogenesis of human diseases. Here, we attempt to introduce TEs as factors necessary for making us human rather than just selfish sequences or obligatory guests invading our DNA. PMID:26222789

  6. Geochemical Constraints on Core Formation in the Earth

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Drake, Michael J.

    1986-01-01

    New experimental data on the partitioning of siderophile and chalcophile elements among metallic and silicate phases may be used to constrain hypotheses of core formation in the Earth. Three current hypotheses can explain gross features of mantle geochemistry, but none predicts siderophile and chalcophile element abundances to within a factor of two of observed values. Either our understanding of metal-silicate interactions and/or our understanding of the early Earth requires revision.

  7. [Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].

    PubMed

    Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng

    2015-11-01

    In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha. PMID:26978935

  8. Effects of Drake Passage widening during the Eocene-Oligocene Transition on Southern Ocean bulk sediment trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Elsworth, G.; Galbraith, E. D.; Halverson, G. P.

    2013-12-01

    Presently, the Southern Ocean provides three-quarters of the global nutrient supply to the low latitude surface ocean (Sarmiento et al. 2004; Palter et al. 2010). In this region the removal of nutrients by sinking organic matter is exceeded by wind-driven upwelling of remineralized nutrients along the Antarctic Circumpolar Current (ACC). The excess nutrients are then advected across the ACC into Subantarctic Mode Water (SAMW), a water mass that transfers the unutilized Southern Ocean nutrients to low-latitude upwelling regions (Toggweiler et al. 1991). However, prior to the opening of the Drake Passage near the Eocene-Oligocene Transition (EOT) the ACC did not exist, suggesting a change in nutrient dynamics of the Southern Ocean. Earth system model simulations by Yang et al. 2013 suggest that as the Drake Passage opened, the supply of southern nutrients would have increased, possibly amplifying iron limitation and increasing oxygenation of the deep Southern Ocean. These results indicate that different surface nutrient return pathways in the pre- and post-Drake Passage Southern Ocean may have changed nutrients available to phytoplankton. To assess geological records of these model predictions, Integrated Ocean Drilling Program (IODP) Sites 689 and 1090 have been sampled at 15 to 50 kyr intervals from 31 to 37 Ma. Site 689, located on Maud Rise in the Weddell Sea, and Site 1090, located on Agulhas Ridge in the Southern Atlantic, provide a crucial transect across the Atlantic Sector of the Southern Ocean to examine the influence of the developing ACC on ocean circulation. Bulk sediment trace element analyses using inductively coupled plasma optical emission spectrometry (ICP OES) provide indications of biological surface export (Ca, Ba), deep-water oxygenation (U, Mo, Mn), and dust influx (Th, Rb). Results will be presented at the meeting.

  9. Rare earths and other trace elements in Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.; Korotev, R. L.; Ziege, K. E.

    1972-01-01

    REE and other trace elements have been determined in igneous rocks 14053, 14072, and 14310, in breccias 14063 and 14313, and in fines 14163. All materials analyzed have typical depletions of Eu except for feldspar fragments from the breccias and igneous fragments from 14063. Igneous rocks 14072 and 14053 have REE concentrations very similar to Apollo 12 basalts; 14310 has the highest REE concentrations yet observed for a large fragment of lunar basalt. The effects of crystallization of a basaltic liquid as a closed system on the concentrations of Sm and Eu in feldspar are considered. Small anorthositic fragments may have originated by simple crystallization from very highly differentiated basalt (KREEP) or by closed-system crystallization in a less differentiated starting material. Application of independent models of igneous differentiation to Sm and Eu in massive anorthosite 15415 and to Sm and Eu in lunar basalts suggests a common starting material with a ratio of concentrations of Sm and Eu about the same as that in chondrites and with concentrations of those elements about 15 times enriched over chondrites.

  10. Molecular Polyarsenides of the Rare-Earth Elements.

    PubMed

    Arleth, Nicholas; Gamer, Michael T; Köppe, Ralf; Konchenko, Sergey N; Fleischmann, Martin; Scheer, Manfred; Roesky, Peter W

    2016-01-22

    Reduction of [Cp*Fe(η(5)-As5)] with [Cp''2Sm(thf)] (Cp''=η(5)-1,3-(tBu)2C5H3) under various conditions led to [(Cp''2Sm)(μ,η(4):η(4)-As4)(Cp*Fe)] and [(Cp''2Sm)2As7(Cp*Fe)]. Both compounds are the first polyarsenides of the rare-earth metals. [(Cp''2Sm)(μ,η(4):η(4)-As4)(Cp*Fe)] is also the first d/f-triple decker sandwich complex with a purely inorganic planar middle deck. The central As4(2-) unit is isolobal with the 6π-aromatic cyclobutadiene dianion (CH)4(2-). [(Cp''2Sm)2As7(Cp*Fe)] contains an As7(3-) cage, which has a norbornadiene-like structure with two short As-As bonds in the scaffold. DFT calculations confirm all the structural observations. The As-As bond order inside the cyclo As4 ligand in [(Cp''2Sm)(μ,η(4):η(4)-As4)(Cp*Fe)] was estimated to be in between an As-As single bond and a formally aromatic As4(2-) system. PMID:26676537

  11. Rare Earth Elemental Signatures in Fungal Fruiting Bodies as Probes into Mineral Breakdown Reactions in Post-glacial Landscapes

    NASA Astrophysics Data System (ADS)

    Bryce, J. G.; Hobbie, E. A.

    2008-12-01

    The application of rare earth element (REE) abundances in low temperature geochemistry and biogeochemistry has improved our understanding of the cycling of various micro- and macronutrients from the bedrock into terrestrial ecosystems. In many continental rocks, REEs are concentrated in accessory phases such as apatite and monazite. These phosphate mineral phases break down readily and may be especially important nutrient sources, particularly for P and Ca, in recently glaciated terrains. Several studies (e.g., 1-3) have suggested that the presence of ectomycorrhizal (ECM) fungi, due to the organic acids they secrete, may play an especially important role in this weathering process. A field-based experiment implementing mesh bags doped with specific mineral compositions confirmed that ECM fungal tissues do record the REE signatures of the minerals they break down (4). In an effort to understand the relative role different ECM fungi may play in mineral breakdown reactions, we have measured REE abundances in tissues of several ECM fruiting bodies. Our preliminary data include Russula, Suillus Americana, Leccinum and Lactarius ECM fungi from three postglacial landscapes. At a given site, the relative abundance of REEs varies between the different ECM fungi. Interestingly, we found distinctions in tissue La/Ce values at two of the sites. Leccinum, a deep rooter, shows much lower La/Ce than the companion Russula and Lactarius samples from the same site. Similarly Suillus tissues demonstrated lower La/Ce when compared to Russula growing nearby. Lower La/Ce is consistent with enhanced dissolution of the mineral apatite, a common accessory phase. While the influence of symbiotic host (beech vs. oak vs. pine) may play some role in the distinctive REE signatures recorded by the fruiting bodies, we attribute the observed differences to organic acid production and tendency to colonize in different horizons of the soil profile. (1) Wallander, Plant and Soil, 2000; (2) Blum et al., Nature, 2002; (3) Hoffland et al., Front Ecol Environ., 2003; (4) Hagerburg et al., Plant and Soil, 2003.

  12. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters. PMID:25430011

  13. Exploration Geochemistry.

    ERIC Educational Resources Information Center

    Closs, L. Graham

    1983-01-01

    Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…

  14. U.S. trade dispute with China over rare earth elements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The U.S. government has brought a new trade case against China over rare earth elements (REE) as well as tungsten and molybdenum, President Barack Obama announced on 13 March. Japan and the European Union also have taken similar actions against China about REEs, which are a group of 17 chemically similar metallic elements that are used in a variety of electronic, optical, magnetic, and catalytic applications. REEs are plentiful in the Earth's crust, although China currently has about 37% of the world's reserves and accounts for more than 95% of the world's production of the elements, according to the British Geological Survey. The United States has requested consultations with China at the World Trade Organization (WTO) concerning "China's unfair export restraints on rare earths, as well as tungsten and molybdenum," the Office of the United States Trade Representative announced in a 13 March statement.

  15. Platinum-group element geochemistry of the Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block, SW China: control of platinum-group elements by magnetite

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Peng; Zhu, Wei-Guang; Zhong, Hong; Bai, Zhong-Jie; He, De-Feng; Ye, Xian-Tao; Chen, Cai-Jie; Cao, Chong-Yong

    2014-06-01

    Platinum-group element (PGE) geochemistry combined with elemental geochemistry and magnetite compositions are reported for the Mesoproterozoic Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in the western Yangtze Block, SW China. All the Zhuqing gabbros display extremely low concentrations of chalcophile elements and PGEs. The oxide-rich gabbros contain relatively higher contents of Cr, Ni, Ir, Ru, Rh, and lower contents of Pt and Pd than the oxide-poor gabbros. The abundances of whole-rock concentrations of Ni, Ir, Ru, and Rh correlate well with V contents in the Zhuqing gabbros, implying that the distributions of these elements are controlled by magnetite. The fractionation between Ir-Ru-Rh and Pt-Pd in the Zhuqing gabbros is mainly attributed to fractional crystallization of chromite and magnetite, whereas Ru anomalies are mainly due to variable degrees of compatibility of PGE in magnetite. The order of relative incompatibility of PGEs is calculated to be Pd < Pt < Rh < Ir < Ru. The very low PGE contents and Cu/Zr ratios and high Cu/Pd ratios suggest initially S-saturated magma parents that were highly depleted in PGE, which mainly formed due to low degrees of partial melting leaving sulfides concentrating PGEs behind in the mantle. Moreover, the low MgO, Ni, Ir and Ru contents and high Cu/Ni and Pd/Ir ratios for the gabbros suggest a highly evolved parental magma. Fe-Ti oxides fractionally crystallized from the highly evolved magma and subsequently settled in the lower sections of the magma chamber, where they concentrated and formed Fe-Ti-V oxide ore layers at the base of the lower and upper cycles. Multiple episodes of magma replenishment in the magma chamber may have been involved in the formation of the Zhuqing intrusions.

  16. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  17. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-09-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  18. Multipole Boundary Element Application in Solid Earth and Ice Mechanics

    NASA Astrophysics Data System (ADS)

    Morra, Gabriele; Yuen, Dave; Chatelain, Philippe

    2010-05-01

    We present a large variety of applications of the Boundary Element Method exploiting a Multipole formulation, ranging from global planetary scale geodynamics down to crystal Ice or rocks deformation. The motivation for this approach is the scaling growth of 3-D data-assimilation that makes increasingly difficult to achieve the necessary performance for simulating their mechanical behaviour in a single simulation. In order to overcome such limitation we translate the equations to be solved into a boundary formulation in which only the few surfaces where the constitutive material properties change are explicitly meshed and where the equations in the integral form are solved. The main advantage of such an approach is the reduction of the spatial dimensionality by one, due to construction of a boundary integral equation on the surfaces instead of the volumes. This approach, classically neglected because it requires the build of highly memory expensive dense matrices, can be speed up to linear scaling, as the best FD or FEM, employing the Fast Multipole Method approach, but with the advantage of a smaller memory requirement, that makes it better predisposed for implementation on the most modern highly parallelized multicore machines.

  19. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    PubMed

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered. PMID:26263628

  20. Rare Earth Element Fractionation During Evaporation of Chondritic Material

    NASA Astrophysics Data System (ADS)

    Wang, J.; Davis, A. M.; Clayton, R. N.

    1993-07-01

    Evaporation experiments suggest that enrichments in the heavy isotopes of oxygen, magnesium, and silicon in some CAIs are caused by kinetic effects during evaporation [1]. Volatility-fractionated REE patterns found in some CAIs have been modeled with some success using equilibrium thermodynamics [2,3], but little is known about kinetic effects on REE patterns. We have begun an investigation of REE fractionation under conditions where large isotope effects are produced by the kinetic isotope effect. We synthesized a starting material containing CI chondritic relative proportions of MgO, Al2O3, SiO2, CaO, TiO2, and FeO, and doped it with 100 ppm each of the REE. Samples of this material were evaporated in a vacuum furnace [4] at 10^-6 torr and 1800 or 2000 degrees C for periods of a few seconds to 5 hr. The mass fraction evaporated ranged from 7.6 to 95.4%. Most residues consist of olivine and glass. Chemical compositions of the residues were determined by electron and ion microprobe. Results for selected elements are shown in Fig. 1. There is no significant evaporation of Ca, Al, and Ti up to 95% mass loss; the evaporation behavior of Mg, Si, and Fe is similar to that found by Hashimoto [5]. There is no significant evaporation of most of the REE up to 95% mass loss. Ce is much more volatile than the other REE under these conditions: a tenfold negative Ce anomaly developed between 60 and 70% mass loss and the anomaly reached 5 X 10^-4 at 95% mass loss. A small Pr anomaly (50% Pr loss) also appeared in the highest-mass-loss residue. Thermodynamic calculations show that Ce has approximately the same volatility as other LREE under solar nebular oxygen fugacity, but is much more volatile than the other REE under oxidizing conditions [6]. We suspect that conditions in the residue in our vacuum evaporation experiments became oxidizing because evaporation reactions involving most major element oxides involve release of oxygen. The four known HAL-type hibonite-rich inclusions, which have large negative Ce and small negative Pr anomalies [7], probably formed by extremely rapid evaporation in the solar nebula or by evaporation in an environment much poorer in hydrogen. Normal CAIs do not have Ce anomalies. If they experienced evaporation in the solar nebula, the process must have occurred slowly enough to maintain reducing conditions in the residue. References: [1] Davis A. M. et al. (1990) Nature, 347, 655-658. [2] Boynton W. V. (1975) GCA, 39, 569-584. [3] Davis A. M. and Grossman L. (1979) GCA, 43, 1611-1632. [4] Hashimoto A. (1990) Nature, 347, 53-55. [5] Hashimoto A. (1983) Geochem. J., 17, 111-145. [6] Davis A. M. et al. (1982) GCA, 46, 1627-1651. [7] Ireland T. R. et al. (1992) GCA, 56, 2503-2520. Figure 1, which appears in the hard copy, shows fraction remaining vs. percent evaporated for vacuum evaporation of material of chondritic composition.

  1. Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method

    NASA Technical Reports Server (NTRS)

    Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.

    1974-01-01

    An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.

  2. Rare earth element content of thermal fluids from Surprise Valley, California

    SciTech Connect

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  3. Radioluminescence and thermoluminescence of rare earth element and phosphorus-doped zircon

    SciTech Connect

    Karali, T.; Can, N.; Townsend, P.D.; Rowlands, A.P.; Hanchar, J.M.

    2000-06-01

    The radioluminescence and thermoluminescence spectra of synthetic zircon crystals doped with individual trivalent rare earth element (REE) ions (Pr, Sm, Eu, Gd, Dy, Ho, Er, and Yb) and P are reported in the temperature range 25 to 673 K. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE{sup 3+} states. The shapes of the glow curves are different for each dopant, and there are distinct differences between glow peak temperatures for different rare-earth lines of the same element. Within the overall set of signals there are indications of linear trends in which some glow peak temperatures vary as a function of the ionic size of the rare earth ions. The temperature shifts of the peaks are considerable, up to 200{degree}, and much larger than those cited in other rare-earth-doped crystals of LaF{sub 3} and Bi{sub 4}Ge{sub 3}O{sub 12}. The data clearly suggest that the rare-earth ions are active both in the trapping and luminescence steps, and hence the TL occurs within localized defect complexes that include REE{sup 3+} ions.

  4. Composition of the earth's upper mantle. I - Siderophile trace elements in ultramafic nodules

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1981-01-01

    The considered investigation is concerned with a reexamination of the question of the distribution of siderophile elements in the earth's upper mantle, taking into account a more unified data base which is now available. A comprehensive suite of ultramafic inclusions was collected as part of the Basaltic Volcanism Study Project and has been analyzed by instrument neutron activation analysis for major, minor, and some lithophile trace elements. In addition, 18 of these rocks and the important sheared garnet lherzolite PHN 1611 have been analyzed by means of radiochemical neutron activation analysis for 7 siderophile elements (Au, Ge, Ir, Ni, Os, Pd, and Re) and 9 volatile elements (Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn). The siderophile element data reveal interesting inter-element correlations, which were not apparent from the compiled abundance tables of Ringwood and Kesson (1976) and Chou (1978).

  5. Fluid rare earth element anlayses from wells RN-12 and RN-19, Reykjanes, Iceland

    SciTech Connect

    Andrew Fowler

    2015-07-24

    Results for fluid rare earth elment analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples preconcetrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using and Element magnetic sctor ICP-MS.

  6. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  7. Preliminary study on using rare earth elements to trace non-point source phosphorous loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental fate of phosphorus (P) is of concern as P is a primary cause of freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential...

  8. A LOW-COST RARE EARTH ELEMENTS RECOVERY TECHNOLOGY - PHASE I

    EPA Science Inventory

    Physical Sciences, Inc., and the University of Kentucky Center for Applied Energy Research propose to develop a unique enabling technology to significantly reduce U.S. dependency for Rare Earth Elements (REE) on foreign suppliers and our global competitors. Our innovation...

  9. Technical Information Resource on Rare Earth Elements Now Available to Public and Private Sector Stakeholders

    EPA Science Inventory

    A new EPA technical information resource, “Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues” has been produced as an introductory resource for those interested in learning more about REE mining and alternatives to meet demand...

  10. Relative sensitivity factors for rare earth elements in different matrices employing spark source mass spectrometry

    SciTech Connect

    Ramakumar, K.L.; Aggarwal, S.K.; Kavimandan, V.D.; Shah, P.M.; Raman, V.A.; Sant, V.L.; Ramasubramanian, P.A.; Jain, H.C.

    1985-07-01

    Relative Sensitivity Factors (RSFs) for the rare earth elements Ce, Nd, Sm, Eu, Gd, Dy, Er, and Lu have been determined in U/sub 3/O/sub 8/-graphite and pure graphite matrices under similar experimental conditions employing Spark Source Mass Spectrometry (SSMS) with electrical detection system in magnetic peak switching mode. The RSF values differ very much when the matrix element (uranium in U/sub 3/O/sub 8/-graphite system or carbon in pure graphite) is the reference, but they show very good agreement when Er, one of the rare earth elements is chosen as internal standard. The literature data on RSF values for the rare earth elements in Y/sub 2/O/sub 3/ as well as Al matrices are compared with those obtained in the present work. An attempt has been made to explain the similar tend in the RSF values in all these matrices in terms of the decomposition pattern of the rare earth oxides. An empirical equation relating the RSFs with the decomposition energies of the lanthanide sesquioxides and monoxides has been shown to be useful in computing the RSFs for the lanthanides in various matrices.

  11. Effect of rare-earth element oxides on characteristics of the IM-2201 dehydrogenation catalyst

    SciTech Connect

    Balashova, V.V.; Krupina, S.N.P.; Nemzer, N.N.; Lyubimtsev, V.N.

    1982-02-01

    It is shown that the addition of rare-earth element oxides to the industrial catalyst IM-2201 improves the parameters of the dehydrogenation of n-butane. The best results were obtained on a sample containing 0.5% REE oxides at a temperature of 580/sup 0/C and n-butane space velocity of 800 hr/sup -1/.

  12. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  13. SEDIMENT REWORKING AND TRANSPORT IN EASTERN LAKE SUPERIOR: IN SITU RARE EARTH ELEMENT TRACER STUDIES

    EPA Science Inventory

    A rare earth element (REE) tracer pellet was deployed at the floor of the Ile Parisienne basin of eastern Lake Superior to measure representative sediment reworking and transport processes in the benthic boundary layer of the prnfundal Great Lakes. Samarium oxide, a high neutron-...

  14. Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...

  15. Influence of Addition of Rare Earth Elements on Thermal Barrier Coatings Micro Structural Evolution

    NASA Astrophysics Data System (ADS)

    Ji, Xiaojuan; Wei, Qiuli; Zhou, Chungen; Gong, Shengkai; Xu, Huibin

    Decreasing thermal diffusivity of YSZ can increase the thermal barrier effect. Thermal diffusivity is in direct proportion to lattice oscillation amplitude and frequency. The addition of rare earth oxide into YSZ may induce the lattice distortion, which will result in the change of lattice oscillation frequency. In the present work, combined with the experiment, a theoretical study was proposed to investigate the effect of the rare earth elements on the thermal barrier effect of YSZ using first-principal calculations implemented CASTEP program. It has been found that the addition of the rear earth element can make larger lattice distortion and favorable to reduce the thermal conductivity. The calculation results are in agreement with our experimental results.

  16. Mineralogical anomalies and their influences on elemental geochemistry of the main workable coal beds from the Dafang Coalfield, Guizhou, China

    USGS Publications Warehouse

    Dai, S.; Ren, D.; Li, D.; Chou, C.-L.; Luo, K.

    2006-01-01

    Mineralogy and geochemistry of the No. 11 Coal bed were investigated by using inductively-coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), sequential chemical extraction procedure (SCEP), and optical microscopy. The results show that the No. 11 Coal bed has very high contents of veined quartz (Vol. 11.4%) and veined ankerite (Vol. 10.2 %). The veined ankerite was generally coated by goethite and the veined quartz embraced chalcopyrite, sphalerite, and selenio-galena. In addition, a trace amount of kaolinite was filled in the veins. These seven minerals often occur in the same veins. The formation temperatures of the veined ankerite and quartz are 85??C and 180??C respectively, indicating their origins of iron-rich calcic and siliceous low-temperature hydrothermal fluids in different epigenetic periods. Studies have also found that the veined quartz probably formed earlier than the veined ankerite, and at least three distinct ankerite formation stages were observed by the ration of Ca/Sr and Fe/Mn of ankerite. The mineral formation from the early to late stage is in order of sulfide, quartz, kaolinite, ankerite, and goethite. The veined ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn, which are as high as 0.09%, 74.0 ??g/g, 33.6 ??g/g, 185 ??g/g, and 289 ??g/g in this coal seam, respectively. However, the veined quartz is the main carrier of Pd, Pt, and Ir, which are 1.57 ??g/g, 0.15 ??g/g, and 0.007 ??g/g in this coal seam, respectively. In addition, chalcopyrite, sphalerite, and selenio-galena of hydrothermal origin were determined in the veined quartz, and these three sulfide minerals are also important carriers of Cu, Zn and Pb in the No. 11 Coal bed.

  17. The Fate of Sulfur during Decompression Melting of Peridotite and Crystallization of Basalts - Implications for Sulfur Geochemistry of MORB and the Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Ding, S.; Dasgupta, R.

    2014-12-01

    Magmatism in mid-ocean ridges is the main pathway of sulfur (S) from the Earth's mantle to the surficial reservoir. MORB is generally considered sulfide saturated due to the positive correlation between S and FeOT concentration (e.g., [1]). However, most MORBs are differentiated, and both S content and sulfur concentration at sulfide saturation (SCSS) change with P, T, and magma composition (e.g., [2]). Therefore, it remains uncertain, from the MORB chemistry alone, whether mantle melts parental to MORB are sulfide saturated. In this study, we modeled the behavior of S during isentropic partial melting of a fertile peridotite using pMELTS [3] and an SCSS parameterization [4]. Our results show that during decompression melting, at a fixed mantle potential temperature, TP (e.g., 1300 °C), SCSS of aggregate melt first slightly increases then decreases at shallower depth with total variation <200 ppm. However, an increase of TP results in a significant increase of SCSS of primitive melts. Our model shows that at 15% melting (F), sulfide in the residue is exhausted for a mantle with <200 ppm S. The resulted sulfide-undersaturated partial melts contain <1000 ppm S and are 4-6 times enriched in Cu compared to the source. In order to compare our modeled results directly to the differentiated basalts, isobaric crystallization calculation was performed on 5, 10, and 15% aggregate melts. SCSS changes along liquid line of descent with a decrease in T and increase in FeOT. Comparison of S contents between the model results and MORB glasses [5] reveals that many MORBs derive from sulfide undersaturated melts. Further, for a TP of 1300-1350 °C and F of 10-15 wt.%, reproduction of self-consistent S, and Cu budget of many MORB glasses requires that S of their mantle source be ~25-200 ppm. We will discuss the interplay of TP, average F, and the conditions of differentiation to bracket the S geochemistry of MORB and MORB source mantle and develop similar systematics for OIBs and OIB source. References: [1] Le Roux et al. (2006) EPSL, 251, 209-231. [2] Baker and Moritti (2011) Rev. in Mineral. Geochem, 73, 167-213. [3] Ghiorso et al. (2002) Geochem. Geophy. Geosy. 3, 5. [4] Li and Ripley (2009) Econ. Geol. 104, 405-412. [5] Jenner and O'Neill (2012) Geochem. Geophy. Geosy. 13, 1.

  18. Oceanic crustal thickness from seismic measurements and rare earth element inversions

    SciTech Connect

    White, R.S.; McKenzie, D.; O'Nions, R.K. )

    1992-12-10

    Seismic refraction results show that the igneous section of oceanic crust averages 7.1 [plus minus] 0.8 km thick away from anomalous regions such as fracture zones and hot-spots, with extremal bounds of 5.0-8.5 km. Rare earth element inversions of the melt distribution in the mantle source region suggest that sufficient melt is generated under normal oceanic spreading centers to produce an 8.3 [plus minus] 1.5 km thick igneous crust. The difference between the thickness estimates from seismics and from rare earth element inversions is not significant given the uncertainties in the mantle source composition. The inferred igneous thickness increases to 10.3 [plus minus] 1.7 km (seismic measurements) and 10.7 [plus minus] 1.6 km (rare earth element inversions) where spreading centers intersect the regions of hotter than normal mantle surrounding mantle plumes. This is consistent with melt generation by decompression of the hotter mantle as it rises beneath spreading centers. Maximum inferred melt volumes are found on aseismic ridges directly above the central rising cores of mantle plumes, and average 20 [plus minus] 1 and 18 [plus minus] 1 km for seismic profiles and rare earth element inversions respectively. Both seismic measurements and rare earth element inversions show evidence for variable local crustal thinning beneath fracture zones, though some basalts recovered from fracture zones are indistinguishable geochemically from those generated on normal ridge segments away from fracture zones. The authors attribute the decreased mantle melting on very slow-spreading ridges to the conductive heat loss that enables the mantle to cool as it rises beneath the rift.

  19. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium. PMID:26739864

  20. [Determination of ten trace rare earth elements in the sample by atomic emission spectrometry].

    PubMed

    Li, Hui-zhi; Zhai, Dian-tang; Zhang, Jin; Pei, Mei-shan

    2005-09-01

    This paper describes the determination of trace La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb and Lu in the sample, using carbon powder, potassium sulfate, barium sulfate, strontium sulfate, and scandium chloride as buffer, by atomic emission spectrometry (AES). Scandium was selected as internal standard line. Sample separation and chemical treatment were not required. The sample was directly loaded into ordinary electrode. The method is simple, rapid and accurate. The determination requirement and influence factors were studied. A new method was developed for the determination of ten rare earth elements, for which the detection limit is smaller than 0.030%, and the range of the recovery is 94%-105%. The results of these elements in standard sample are in agreement with certified values, and the RSD is smaller than 5% (n = 9). The method has been applied to the determination of ten rare earth elements with satisfactory results. PMID:16379301

  1. Trace element geochemistry of the Jurassic coals in the Feke and Kozan (Adana) Areas, Eastern Taurides, Turkey

    SciTech Connect

    Kara-Gulbay, R.; Korkmaz, S.

    2009-07-01

    In this study, trace element and organic matter-trace element relation between Jurassic coals exposed in three different fields in the eastern Taurides were examined and their enrichment values with respect to upper crust values were calculated and the coal characteristics were also compared with world arithmetic means and those from the U.S. In comparison to the Feke and Kizilin coals, Pb, Zn, Ag, and Hg element contents of the Gedikli coals are considerably high; Ni, As, and Ge contents are moderately high; and Cr, Cu, Co, Cd, Sb, Ga, and Sn contents are slightly high. The element concentrations are very similar to those of other fields. In the Gedikli coals, Sr content is extremely low and Ba content is slightly low with respect to other fields. Re, Mo, U, V, and B element concentrations are different for each of three fields. The major element contents of the Feke, Gedikli, and Kizilin coals were correlated with world arithmetic means and average values of coals from the U.S. and Fe, K, Mg, and Na concentrations were found to be similar. Ti and Al contents of the world and USA coals are higher while Ca and Mn concentrations are lower. Considering trace element contents of the world and U.S. coals, Ba is considerably high, Cu and Zr are moderately high, and Ga, Rb, and Sc elements are slightly high. In comparison to world arithmetic means and U.S. coals, Sr content of the Feke and Kizilin coals are very high while those of the Gedikli coals are lower. For major and trace elements, factors of enrichment with respect to upper crust values were also calculated. The highest enrichment values were calculated for Ca and S. Except for Se and Rb, all other trace elements are enriched with respect to upper crust.

  2. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Mezger, K.; van Westrenen, W.

    2011-05-01

    The bulk silicate Earth (BSE) shows substantial deficits in volatile elements compared to CI-chondrites and solar abundances. These deficits could be caused by pre-accretionary depletion in the solar nebula during condensation of solids, or by later heat-driven evaporation during collision of small bodies that later accreted to form the Earth. The latter is considered to result in isotope fractionation for elements with low condensation temperatures that correlates with the degree of depletion. Here, we report first high-precision isotope ratio measurements of the moderately volatile and lithophile trace element Rb. Data from seventeen chondrite meteorites show that their Rb isotope abundances are nearly indistinguishable from Earth, not deviating more than 1 per mil in their 87Rb/85Rb. The almost uniform solar system Rb isotope pool suggests incomplete condensation or evaporation in a single stage is unlikely to be the cause of the volatile element deficit of the Earth. As Rb and Pb have similar condensation temperatures, we use their different degrees of depletion in the BSE to address the mechanisms and timing of terrestrial volatile depletion. The Rb isotope data are consistent with a scenario in which the volatile budget of the Earth was generated by a mixture of a highly volatile-element depleted early Proto-Earth with undepleted material in the course of terrestrial accretion. Observed Pb and Rb abundances and U-Pb and Rb-Sr isotope systematics suggest that volatile addition occurred at approximately the same time at which last core-mantle equilibration was achieved. In line with previous suggestions, this last equilibration involved a second stage of Pb (but not Rb) depletion from the BSE. The timing of this second Pb loss event can be constrained to ~ 110 Ma after the start of the solar system. This model supports a scenario with core storage of Pb in the aftermath of a putative Moon forming giant impact that also delivered the bulk of the volatile elements to the Earth.

  3. The provenance of Cretaceous to Quaternary sediments in the Tarfaya basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd-Sr isotopes

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Stattegger, Karl; Garbe-Schönberg, Dieter; Frank, Martin; Kraft, Steffanie; Kuhnt, Wolfgang

    2014-02-01

    We present trace element compositions, rare earth elements (REEs) and radiogenic Nd-Sr isotope analyses of Cretaceous to recent sediments of the Tarfaya basin, SW Morocco, in order to identify tectonic setting, source rocks composition and sediments provenance. The results suggest that the sediments originate from heterogeneous source areas of the Reguibat Shield and the Mauritanides (West African Craton), as well as the western Anti-Atlas, which probably form the basement in this area. For interpreting the analyzed trace element results, we assume that elemental ratios such as La/Sc, Th/Sc, Cr/Th, Th/Co, La/Co and Eu/Eu∗ in the detrital silicate fraction of the sedimentary rocks behaved as a closed system during transport and cementation, which is justified by the consistency of all obtained results. The La/Y-Sc/Cr binary and La-Th-Sc ternary relationships suggest that the Tarfaya basin sediments were deposited in a passive margin setting. The trace element ratios of La/Sc, Th/Sc, Cr/Th and Th/Co indicate a felsic source. Moreover, chondrite-normalized REE patterns with light rare earth elements (LREE) enrichment, a flat heavy rare earth elements (HREE) and negative Eu anomalies can also be attributed to a felsic source for the Tarfaya basin sediments. The Nd isotope model ages (TDM = 2.0-2.2 Ga) of the Early Cretaceous sediments suggest that sediments were derived from the Eburnean terrain (Reguibat Shield). On the other hand, Late Cretaceous to Miocene--Pliocene sediments show younger model ages (TDM = 1.8 Ga, on average) indicating an origin from both the Reguibat Shield and the western Anti-Atlas. In contrast, the southernmost studied Sebkha Aridal section (Oligocene to Miocene-Pliocene) yields older provenance ages (TDM = 2.5-2.6 Ga) indicating that these sediments were dominantly derived from the Archean terrain of the Reguibat Shield.

  4. A hybrid boundary element-finite element approach to modeling plane wave 3D electromagnetic induction responses in the Earth

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Kalscheuer, Thomas; Greenhalgh, Stewart; Maurer, Hansruedi

    2014-02-01

    A novel hybrid boundary element-finite element scheme which is accelerated by an adaptive multi-level fast multipole algorithm is presented to simulate 3D plane wave electromagnetic induction responses in the Earth. The remarkable advantages of this novel scheme are the complete removal of the volume discretization of the air space and the capability of simulating large-scale complicated geo-electromagnetic induction problems. To achieve this goal, first the Galerkin edge-based finite-element method (FEM) using unstructured meshes is adopted to solve the electric field differential equation in the heterogeneous Earth, where arbitrary distributions of conductivity, magnetic permeability and dielectric permittivity are allowed for. Second, the point collocation boundary-element method (BEM) is used to solve a surface integral formula in terms of the reduced electrical vector potential on the arbitrarily shaped air-Earth interface. Third, to avoid explicit storage of the system matrix arising from large-scale problems and to reduce the horrendous time complexity of the product of the system matrix with an initial vector of unknowns, the adaptive multilevel fast multipole method is applied. This leads to a matrix-free form suitable for the application of iterative solvers. Furthermore, a highly sparse problem-dependent preconditioner is developed to significantly reduce the number of iterations used by the iterative solvers. The efficacy of the presented hybrid scheme is verified on two synthetic examples against different numerical techniques such as goal-oriented adaptive finite-element methods. Numerical experiments show that at low frequencies, where the quasi-static approximation is applicable, standard FEM methods prove to be superior to our hybrid BEM-FEM solutions in terms of computational time, because the FEM method requires only a coarse discretization of the air domain and offers an advantageous sparsity of the system matrix. At radio-magnetotelluric frequencies of a few hundred kHz, the hybrid BEM-FEM scheme outperforms the FEM method, because it avoids explicit storage of the system matrices as well as dense volume discretization of the air domain required by FEM methods at high frequencies. In summary, to the best of our knowledge, this study is the first attempt at completely removing the air space for large scale complicated electromagnetic induction modeling in the Earth.

  5. Trace element geochemistry of Manilkara zapota (L.) P. Royen, fruit from winder, Balochistan, Pakistan in perspective of medical geology.

    PubMed

    Hamza, Salma; Naseem, Shahid; Bashir, Erum; Rizwani, Ghazala H; Hina, Bushra

    2013-07-01

    An integrated study of rocks, soils and fruits of Manilkara zapota (L.) (Sapotaceae) of Winder area have been carried out to elaborate trace elements relationship between them. The igneous rocks of the study area have elevated amount of certain trace elements, upon weathering these elements are concentrated in the soil of the area. The trace elements concentration in the soil were found in the range of 0.8-197 for Fe, 1.23-140 for Mn, 0.03-16.7 for Zn, 0.07-9.8 for Cr, 0.05-2.0 for Co, 0.52-13.3 for Ni, 0.03-8.8 for Cu, 0.08-10.55 for Pb and 0.13-1.8μg/g for Cd. The distribution pattern of elements in the rocks and soils reflected genetic affiliation. Promising elements of edible part of the fruit were Fe (14.17), Mn (1.49), Cr (2.96), Ni (1.13), Co (0.92), Cu (1.70) and Zn (1.02μg/g). The concentration of these elements in the fruits is above the optimum level of recommended dietary intake, probably due to this, disorder in the human health is suspected in the inhabitants of the area. PMID:23811462

  6. Study on Orbital Decay of Near Earth Satellites with KS Orthogonal Elements

    NASA Astrophysics Data System (ADS)

    Ps, Sandeep

    STUDY ON ORBITAL DECAY OF NEAR EARTH SATELLITES WITH KS ORTHOGONAL ELEMENTS SANDEEP P S The knowledge of satellite orbit decay and its expected life prior to launch is necessary for mission planning purpose. Several sets of data for various parametric studies is sought quite often, it is necessary to minimize computational time involved for generating decay predictions, keeping the prediction accuracy normally good. A number of factors play dominant role in perturbation modelling for near earth satellites such as oblateness of the Earth, presence of the atmosphere, luni-solar attraction and solar radiation pressure. This paper concerns with the study of orbital decay of near earth satellites with KS orthogonal elements, which provide accurate orbit predictions at low computational time. Perturbations considered are due to oblateness of the Earth and the atmospheric drag. The Earth’s zonal harmonic terms J2 to J6 are included and the drag is modeled with an analytical diurnally oblate atmosphere. Effect of Earth’s geomagnetic and solar activity is included in density and density scale height computations. JACCHIA77 atmospheric model is utilized. The developed software is validated with the orbital data of decayed objects taken from www.space-track.org.

  7. Origin of the earth's moon - Constraints from alkali volatile trace elements

    NASA Technical Reports Server (NTRS)

    Kreutzberger, M. E.; Drake, M. J.; Jones, J. H.

    1986-01-01

    Although the moon is depleted in volatile elements compared to the earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the earth and moon inferred from basalt are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the moon was derived entirely from earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18 percent of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25-50 percent to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the moon.

  8. Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    USGS Publications Warehouse

    Crowe, Bruce M.; Sargent, Kenneth A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.

  9. Geochemistry for Chemists.

    ERIC Educational Resources Information Center

    Hostettler, John D.

    1985-01-01

    A geochemistry course for chemists is described. Includes: (1) general course information; (2) subject matter covered; and (3) a consideration of the uses of geochemistry in a chemistry curriculum, including geochemical "real world" examples, geochemistry in general chemistry, and geochemistry as an elective. (JN)

  10. The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: New evidence from in situ analyses of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Witt-Eickschen, G.; Palme, H.; O'Neill, H. St. C.; Allen, C. M.

    2009-03-01

    The abundances of 30 trace elements, including the volatile chalcophile/siderophile elements As, Cd, Ga, In and Sn were determined by laser ablation ICP-MS in minerals of 19 anhydrous and 5 hydrous spinel peridotite xenoliths from three continents. The majority of samples were fertile lherzolites with more than 5% clinopyroxene; several samples have major element compositions close to estimates of the primitive mantle. All samples have been previously analysed for bulk-rock major, minor and lithophile trace elements. They cover a wide range of equilibration temperatures from about 850 to 1250 °C and a pressure range from 0.8 to 3.0 GPa. A comparison of results from bulk-rock analyses with concentrations obtained from combining silicate and oxide mineral data with modal mineralogy, gave excellent agreement, with the exception of As. Arsenic is the only element analysed that has high concentrations in sulphides. For all other elements sulphides can be neglected as host phases in these mantle rocks. The major host phase for Cd, In and Sn is clinopyroxene and if present, amphibole. Cadmium and In appear to behave moderately incompatibly during mantle melting similar to Yb. The data yield new and more reliable mantle abundances for Cd (35 ± 7 ppb), In (18 ± 3 ppb) and Sn (91 ± 28 ppb). The In value is similar to the Mg and CI-normalized Zn abundance of the mantle, although In is cosmochemically more volatile than Zn. The high In content suggests a high content of volatile elements in general in proto-Earth material. The lower relative abundances of volatile chalcophile elements such as Cd, S, Se and Te might be explained by sulphide segregation during core formation. The very low relative abundances of volatile and highly incompatible lithophile elements such as Br, Cl and I, and also C, N and rare gases, imply loss during Earth accretion, arguably by collisional erosion from differentiated planetesimals and protoplanets.

  11. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise description. This study seeks to make the first quantitative connection between the organic and inorganic compositions of speleothems and thus determine the potential for speleothems to encode fluctuations in colloid-facilitated trace metal transport in karst aquifers. Recent findings of direct relevance to the present studyThe conjugate dripwater (PE1) to the stalagmite studied here (PC-08-1) was characterised in June 2009 using an array of complementary techniques, in which the size, speciation and lability of NOM-metal complexes was characterised (Hartland et al., 2011), where lability is defined as the capacity for complexes to dissociate in the context of the on-going interfacial process at the stalagmite surface. In PE1 dripwater, the most stable aqueous complexes were formed between Co and the finest, low molecular weight component of the NOM spectrum (Hartland et al., 2011). Speciation experiments demonstrated that Co was essentially non-exchangeable (free metal (fm) = <0.05), being retained in aqueous complexes, whilst Cu, Ni and V were all predominantly bound by NOM (fm = 0.2-0.3).In contrast, Sr and Ba were freely exchangeable between the solution and solid phase (Hartland et al., 2011) and Mg was absent, presumably due to the poor solubility of Mg(OH)2 at hyperalkaline pH (Ksp = 1.5 × 10-11): Mg2+(aq)+2OH-(aq)↔Mg( On the other hand, the transition metals were not lost as insoluble hydroxides (Hartland et al., 2012), despite having lower solubility than Mg (e.g. Cu(OH)2Ksp = 2.2 × 10-20); and this is consistent with the dominant role of NOM in solubilising and transporting the transition metals in this system (Hartland et al., 2011).The transport of metals by complexes with NOM in PE1 dripwater through the hydrological year was studied by Hartland et al. (2012). This study had two findings of direct relevance to the study of trace metal variations in the conjugate PC-08-1 stalagmite: Complexes between metals and the smallest, low-molecular weight fraction of NOM showed an attenuated delivery in dripwaters consistent with the non-conservative behaviour of analogous tracers in fractured-rock studies due to diffusion into micro-fractures. This mode of transport was termed ‘low-flux’ and was the dominant mode of transport for Co and V. Complexes between metals and coarse colloids (>100 nm) and particulates (>1000 nm) showed a rapid responsiveness to infiltration events. This was termed the ‘high-flux’ mode of NOM-metal transport and was interpreted as being dominantly fracture-fed. This mode of transport was dominated by Cu, Zn and Ni. The ‘high-flux’ vs ‘low-flux’ interplay of trace metal transport is summarised in Fig. 1.The PC-08-1 stalagmite studied here was deposited following the removal of stalagmite PC-97-1 studied by Baker et al. (1999b) and which grew under the PE1 drip point between 1927 and 1997. Both the PC-97-1 stalagmite and its regrowth (PC-08-1) are characterised by annual lamina couplets consisting of a porous pale layer and a dense fluorescent layer. Fluorescence in the PC-97-1 stalagmite displayed a marked sinusoidal pattern with 10% of laminae exhibiting a double band structure (Baker et al., 1999b).

  12. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed. PMID:10376325

  13. Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Haiyan; Guo, Huaming; Xing, Lina; Zhan, Yanhong; Li, Fulan; Shao, Jingli; Niu, Hong; Liang, Xing; Li, Changqing

    2016-03-01

    Rare earth element (REE) geochemistry is a useful tool in delineating hydrogeochemical processes and tracing solute transport, which can be used to reveal groundwater chemical evolution in the complexed groundwater systems of the North China Plain (NCP). Groundwaters and sediments were collected approximately along a flow path in shallow and deep aquifers of the NCP to investigate REE geochemistry as a function of distance from the recharge zone. Groundwater REE concentrations are relatively low, with ranges from 81.2 to 163.6 ng/L in shallow groundwaters, and from 65.2 to 133.7 ng/L in deep groundwaters. Speciation calculation suggests that dissolved REEs mainly occur as dicarbonato (Ln(CO3)2-) and carbonato (LnCO3+) complexes. Although along the flow path groundwater REE concentrations do not vary substantially, relatively lower HREEs are observed in central plain (Zone II) compared to recharge area (Zone I) and discharge plain (Zone III). Shale-normalized REE patterns are characterized by different degrees of enrichment in the HREEs, as indicated by the variation in average (Er/Nd)NASC value. The similar REE compositions and shale-normalized REE patterns of shallow and deep groundwaters demonstrate that interactions of groundwaters between shallow and deep aquifers possibly occur, which is likely due to the long-term groundwater over-exploration. Cerium anomalies (Ce/Ce∗ = CeNASC/(LaNASC × PrNASC)0.5) generally increase from Zone I, through Zone II, to Zone III, with trends from 0.79 to 3.58, and from 1.22 to 2.43 in shallow groundwaters and deep groundwaters, respectively. This is consistent with the variations in oxidation-reduction potential and redox sensitive components (i.e., dissolved Fe, Mn, NO3- and As concentrations) along the flow path. Positive Ce anomaly and redox indicators suggest that redox conditions progressively evolve from oxic to moderate anaerobic in the direction of groundwater flow. In the recharge zone (Zone I), groundwater low positive Ce anomalies are likely due to partially oxidative scavenging of Ce(III) to Ce(IV), and HREE enrichment would result from preferential scavenging of the LREEs relative to the HREEs during Fe/Mn oxides/oxyhydroxides precipitations, which is well supported by the low concentrations of dissolved Fe and Mn. In the down-gradient (Zone II and Zone III), reductive dissolution of Fe/Mn oxides/oxyhydroxides increases positive Ce anomalies along the flow path. The positive correlations between (Er/Nd)NASC values and dissolved Fe/Mn concentrations suggest that reductive dissolution of Fe/Mn oxides/oxyhydroxides, as well as readsorption, are the geochemical controls on groundwater REE fractionation patterns. Groundwaters mostly have positive Eu anomalies (Eu/Eu∗ = EuNASC/(SmNASC × GdNASC)0.5), which would be the result of chemical weathering of feldspars (e.g., plagioclase) detected in aquifer sediments by XRD technique.

  14. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ferrat, Marion; Weiss, Dominik J.; Strekopytov, Stanislav; Dong, Shuofei; Chen, Hongyun; Najorka, Jens; Sun, Youbin; Gupta, Sanjeev; Tada, Ryuji; Sinha, Rajiv

    2011-11-01

    The Asian Monsoon forms an important part of the earth's climate system, yet our understanding of the past interactions between its different sub-systems, the East Asian and Indian monsoons, and between monsoonal winds and other prevailing wind currents such as the Westerly jet, is limited, particularly in central Asia. This in turn affects our ability to develop climate models capable of accurately predicting future changes in atmospheric circulation patterns and monsoon intensities in Asia. Provenance studies of mineral dust deposited in terrestrial settings such as peat bogs can address this problem directly, by offering the possibility to examine past deposition rates and wind direction, and hence reconstruct past atmospheric circulation patterns. However, such studies are challenged by several issues, most importantly the identification of proxies that unambiguously distinguish between the different potential dust sources and that are independent of particle size. In addition, a single analytical method that is suitable for sample preparation of both dust source (i.e. desert sand, soil) and receptor (i.e. dust archive such as peat or soil profiles) material is desirable in order to minimize error propagation derived from the experimental and analytical work. Here, an improved geochemical framework of provenance tracers to study atmospheric circulation patterns and palaeomonsoon variability in central Asia is provided, by combining for the first time mineralogical as well as major and trace elemental (Sc, Y, Th and the rare earth elements) information on Chinese (central Chinese loess plateau, northern Qaidam basin and Taklamakan, Badain Juran and Tengger deserts), Indian (Thar desert) and Tibetan (eastern Qinghai-Tibetan Plateau) dust sources. Quartz, feldspars and clay minerals are the major constituents of all studied sources, with highly variable calcite contents reflected in the CaO concentrations. Chinese and Tibetan dust sources are enriched in middle REE relative to the upper continental crust and average shale but the Thar desert has a REE signature distinctly different from all other dust sources. There are significant differences in major, trace and REE compositions between the coarse and fine fractions of the surface sands, with the finest <4 μm fraction enriched in Al 2O 3, Fe 2O 3, MnO, MgO and K 2O and the <32 μm fractions in Sc, Y, Th and the REE relative to the coarse fractions. The <4 μm fraction best represents the bulk REE geochemistry of the samples. The provenance tracers Y/∑REE, La/Er, La/Gd, Gd/Er, La/Yb, Y/Tb, Y/La, Y/Nd and to a certain extent the europium anomaly Eu/Eu ∗ (all REE normalized to post-Archean Australian shale, PAAS) are particle size-independent tracers, of which combinations of Y/∑REE, La/Yb, Y/Tb, Y/La and Eu/Eu ∗ can be used to distinguish the Thar desert, the Chinese deserts, the Chinese loess plateau and the Tibetan soils. Their independence upon grain size means that these tracers can be applied to the long-range provenance tracing of Asian dust even when only bulk samples are available in the source region. Combinations of La/Th, Y/Tb, Y/∑REE, Sc/La and Y/Er distinguish the Tibetan soils from the Chinese loess plateau and the Chinese deserts. La/Th and notably Th/∑REE isolate the signature of the Badain Juran desert and the combination of Sc/La and Y/Er that of the Taklamakan desert. The similarity in all trace and REE-based provenance tracers between the northern Qaidam basin and Tengger desert suggests that these two deposits may have a common aeolian source.

  15. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka Tulou, if rated by the LEED green building certification program, would earn the highest certification as this rammed earth construction has offered efficient living for hundreds of years. As historic as these rammed earth structures are, they present an environmentally friendly option to structures of the future.

  16. Dripwater organic matter and trace element geochemistry in a semi-arid karst environment: Implications for speleothem paleoclimatology

    NASA Astrophysics Data System (ADS)

    Rutlidge, Helen; Baker, Andy; Marjo, Christopher E.; Andersen, Martin S.; Graham, Peter W.; Cuthbert, Mark O.; Rau, Gabriel C.; Roshan, Hamid; Markowska, Monika; Mariethoz, Gregoire; Jex, Catherine N.

    2014-06-01

    A series of four short-term infiltration experiments which revealed hydrochemical responses relevant to semi-arid karst environments were carried out above Cathedral Cave, Wellington, New South Wales (NSW), Australia. Dripwater samples were collected at two sites for trace element and organic matter analysis. Organic matter was characterised using fluorescence and interpreted using a PARAFAC model. Three components were isolated that represented unprocessed, soil-derived humic-like and fulvic-like material, processed humic/fulvic-like material and tryptophan-like fluorescence. Principal Component Analysis (PCA) performed on the entire dataset comprising trace element concentrations and PARAFAC scores revealed two dominant components that were identified as soil and limestone bedrock. The soil component was assigned based on significant contributions from the PARAFAC scores and additionally included Ba, Cu, Ni and Mg. The bedrock component included the expected elements of Ca, Mg and Sr as well as Si. The same elemental behaviour was observed in recent stalagmite growth collected from the site. Our experiments demonstrate that existing paleoclimate interpretations of speleothem Mg and Sr, developed in regions of positive water balance, are not readily applicable to water limited environments. We provide a new interpretation of trace element signatures unique to speleothems from water limited karst environments.

  17. Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China: Constrains from rare earth element, fluid inclusion geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Huang, Zhixin; Yuan, Wanming; Wang, Changming; Liu, Xiangwei; Xu, Xiaotong; Yang, Liya

    2012-12-01

    The Jiapigou gold belt is located on the northern margin of the North China Craton, and is one of the most important gold-mining and production regions in the circum-Pacific metallogenic zone. Research has been conducted in this area since the 1960s, however, the timing of the gold mineralisation is still unresolved, and an ideal metallogenic model has not been well established. To address these questions, a systematic geological, geochemical and geochronological investigation was conducted. The study revealed that (i) the gold-bearing quartz veins can be divided into two groups, earlier and later gold-bearing quartz veins according to their occurrence and the geochemical characteristics, (ii) the geochemical characteristics of the ore bodies, while similar to granite, are clearly different from the altered rock, and (iii) the geochemical characteristics of the later gold-bearing quartz veins have more similarity to the altered rock than the earlier gold-bearing quartz veins do. Therefore, we conclude that two independent stages of metallogenesis within the Jiapigou gold deposit area are related to magmatic activity in the Palaeoproterozoic and the Yanshanian stage of the Mesozoic, that the ore-forming fluids are mainly of magmatic origin, and that magma contamination by the altered rock was stronger in the Mesozoic. Zircon LA-ICP-MS U-Pb data show that the age of the Palaeoproterozoic granite is ~2426.0 Ma and that of the Mesozoic granite is ~166.2 Ma; these ages can be interpreted as the maximum ages of the two periods of gold mineralisation. In addition to investigating the geotectonic and regional structure of the Jiapigou gold belt, this study also proposes that the WNW-trending zone of gold mineralisation is a result of a magmatic event within the basement in the early Palaeoproterozoic, and that large-scale sinistral strike-slip displacements of the Huifahe and Liangjiang Faults in the late Middle Triassic (Yanshanian epoch) controlled the later tectono-magmatic event and the NNE-ENE-trending zone of gold mineralisation.

  18. Trace element geochemistry of zircons from mineralizing and non-mineralizing igneous rocks related to gold ores at Yanacocha, Peru

    NASA Astrophysics Data System (ADS)

    Koleszar, A. M.; Dilles, J. H.; Kent, A. J.; Wooden, J. L.

    2012-12-01

    Zircons record important details about the evolution of magmatic systems, are relatively insensitive to alteration, and have been used to investigate the geochemistry, temperature, and oxidation state of volcanic and plutonic system. We examine zircons that span 6-7 m.y. of calc-alkaline volcanic activity in the Yanacocha district of northern Peru, where dacitic intrusions are associated with high-sulfidation gold deposits. The 14.5-8.4 Ma Yanacocha Volcanics include cogenetic lavas and pyroclastic rocks and are underlain by the andesites and dacites of the Calipuy Group, the oldest Cenozoic rocks in the region. We present data for magmatic zircons from the Cerro Fraile dacitic pyroclastics (15.5-15.1 Ma) of the Calipuy Group, and multiple eruptive units within the younger Yanacocha Volcanics: the Atazaico Andesite (14.5-13.3 Ma), the Quilish Dacite (~14-12 Ma), the Azufre Andesite (12.1-11.6 Ma), the San Jose Ignimbrite (11.5-11.2 Ma), and the Coriwachay Dacite (11.1-8.4 Ma). Epithermal high sulfidation (alunite-bearing) gold deposits are associated with the dacite intrusions of the Coriwachay and Quilish Dacites. Zircons from the non-mineralizing rocks typically have lower Hf concentrations and record Ti-in-zircon temperatures that are ~100°C hotter than zircons from the mineralizing intrusions. Temperatures recorded by zircons from the mineralizing intrusions are remarkably similar to those of the underlying Cerro Fraile dacite pyroclastics, but the zircons discussed here generally record SHRIMP-RG 206Pb/238U ages within error of previously published Ar-Ar eruption ages (eliminating antecrystic or xenocrystic origins). These observations suggest that zircons in the mineralizing intrusions form after greater extents of crystallization (and thus record elevated Hf concentrations and lower temperatures) than do zircons in the non-mineralized deposits. Unlike zircons from mineralized units associated with the porphyry Cu(Mo) deposits in Yerington, Nevada, which generally have Eu/Eu* ratios approaching 1 (i.e., Eu-anomalies that decrease in magnitude) with increasing Hf (and thus increasing crystallization), zircons associated with mineralized deposits in the Coriwachay and Quilish intrusions at Yanacocha typically have Eu-anomalies that are highly variable but do not vary systematically during magma evolution. These Eu/Eu* versus Hf trends are inconsistent with observations from the porphyry Cu-Mo(Au) deposit at El Salvador, Chile, where zircons from all porphyry intrusions have Eu-anomalies that become systematically more negative during magma evolution but with highest Eu/Eu* occurring in mineralized intrusions. We explore a variety of scenarios to explain the Eu/Eu* systematics of zircons from Yanacocha, including changes to the magmatic oxidation state as a consequence of anhydrite breakdown and progressive degassing.

  19. Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee

    USGS Publications Warehouse

    Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.

    2006-01-01

    Mean contents of trace elements and ash in channel, bench-column, and dump samples of the abandoned Bon Air coal (Lower Pennsylvanian) in Franklin County, Tennessee are similar to Appalachian COALQUAL mean values, but are slightly lower for As, Fe, Hg, Mn, Na, Th, and U, and slightly higher for ash, Be, Cd, Co, Cr, REEs, Sr, and V, at the 95% confidence level. Compared to channel samples, dump sample means are slightly lower in chalcophile elements (As, Cu, Fe, Ni, Pb, S, Sb, and V) and slightly higher in clay or heavy-mineral elements (Al, K, Mn, REEs, Th, Ti, U, and Y), but at the 95% confidence level, only As and Fe are different. Consistent abundances of clay or heavy-mineral elements in low-Br, high-S, high-ash benches that are relatively enriched in quartz and mire-to-levee species like Paralycopodites suggest trace elements are largely fluvial in origin. Factor analysis loadings and correlation coefficients between elements suggest that clays host most Al, Cr, K, Ti, and Th, significant Mn and V, and some Sc, U, Ba, and Ni. Heavy accessory minerals likely house most REEs and Y, lesser Sc, U, and Th, and minor Cr, Ni, and Ti. Pyrite appears to host As, some V and Ni, and perhaps some Cu, but Cu probably exists largely as chalcopyrite. Data suggest that organic debris houses most Be and some Ni and U, and that Pb and Sb occur as Pb-Sb sulfosalt(s) within organic matrix. Most Hg, and some Mn and Y, appear to be hosted by calcite, suggesting potential Hg remobilization from original pyrite, and Hg sorption by calcite, which may be important processes in abandoned coals. Most Co, Zn, Mo, and Cd, significant V and Ni, and some Mn probably occur in non-pyritic sulfides; Ba, Sr, and P are largely in crandallite-group phosphates. Selenium does not show organic or "clausthalite" affinities, but Se occurrence is otherwise unclear. Barium, Mn, Ni, Sc, U, and V, with strongly divided statistical affinities, likely occur subequally in multiple modes. For study area surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.

  20. The effect of rare earth elements on the texture and formability of asymmetrically rolled magnesium sheet

    SciTech Connect

    Alderman, Dr. Martyn; Cavin, Odis Burl; Davis, Dr. Bruce; Muralidharan, Govindarajan; Muth, Thomas R; Peter, William H; Randman, David; Watkins, Thomas R

    2011-01-01

    The lack of formability is a serious issue when considering magnesium alloys for various applications. Standard symmetric rolling introduces a strong basal texture that decreases the formability; however, asymmetric rolling has been put forward as a possible route to produce sheet with weaker texture and greater ductility. It has also been shown in recent work that weaker textures can be produced through the addition of rare earth elements to magnesium alloys. Therefore, this study has been carried out to investigate the effect of rare earth additions on the texture changes during asymmetric rolling. Two alloys have been used, AZ31B and ZEK100. The effect that the rare earth additions have on the texture of asymmetrically rolled sheet and the subsequent changes in formability will be discussed.

  1. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Pourmand, Ali

    2015-08-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The measurements were done in dynamic mode using multi-collector inductively coupled plasma mass spectrometers (MC-ICPMS), allowing precise quantification of mono-isotopic REEs (Pr, Tb, Ho and Tm). The CI-chondrite-normalized REE patterns (LaN/LuN; a proxy for fractionation of light vs. heavy REEs) and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed (petrologic types 4-6) than in unequilibrated (types 1-3) chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. A model is presented that predicts the dispersion of elemental and isotopic ratios due to the nugget effect when the analyzed sample mass is limited and elements are concentrated in minor grains. The dispersion in REE patterns of equilibrated ordinary chondrites is reproduced well by this model, considering that REEs are concentrated in 200 μm-size phosphates, which have high LaN/LuN ratios and negative Eu anomalies. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ∼-4.5% relative to CI chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (∼+10%). These anomalies are similar to those found in group II refractory inclusions in meteorites but of much smaller magnitude. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas reservoir that had been depleted in refractory dust and carried positive Tm anomalies or (ii) CI chondrites are enriched in refractory dust and are not representative of solar composition for refractory elements. A new reference composition relevant to inner solar system bodies (CI∗) is calculated by subtracting 0.15% of group II refractory inclusions to CI. The observed Tm anomalies in ordinary and enstatite chondrites and terrestrial rocks, relative to carbonaceous chondrites, indicate that material akin to carbonaceous chondrites must have represented a small fraction of the constituents of the Earth. Tm anomalies may be correlated with Ca isotopic fractionation in bulk planetary materials as they are both controlled by addition or removal of refractory material akin to fine-grained group II refractory inclusions.

  2. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S

    2014-01-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252

  3. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant

    NASA Astrophysics Data System (ADS)

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.

    2014-08-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.

  4. Separation of tervalent transplutonium and rare-earth elements using for-tveks

    SciTech Connect

    Zaitsev, B.N.; Korolev, V.A.; Korovin, Y.F.; Kuzovov, Y.I.; Kvasnitskii, I.B.; Popik, V.P.

    1986-03-01

    The authors study the distribution of curium, americium, and certain rare-earth elements (REE) between aqueous nitric acid solutions and FOR-tveks under static and dynamic conditions. It is shown that on introducing diethylenetriaminepentaacetic acid into the aqueous solution separation coefficients for the transplutonium elements and REE can be obtained which are sufficiently high for practical use. A method is proposed for the group separation of REE and transplutonium elements under dynamic conditions. On a column 22 cm high coefficients of approximately 500 are obtained for the purification of curium from cerium, more than 260 from neodymium, 250 from lanthanum, and 14 from europium and gadolinium. The possibility has been studied of separating palladium from transplutonium elements and REE and isolating it as an individual product.

  5. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  6. Extraction of rare-earth elements from nitric solutions by phosphoryl-containing podands

    SciTech Connect

    Turanov, A.N.; Karandashev, V.K.; Baulin, V.E.

    1999-11-01

    The extraction of microquantities of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y from HNO{sub 3} solutions by phosphoryl-containing podands of various structures has been studied.. It has been found that the maximum extraction of rare earth elements is exhibited by reagents containing one ether oxygen atom in the molecule, bound to diphenylphosphoryl or ditolylphosphoryl groups by methylene and o-phenylene fragments. The structure of these reagents is best suited for the polydentate coordination of the ligand and the conditions of a chelate complex formation. The effect of HNO{sub 3} concentration in the aqueous phase and that of the nature of an organic diluent on the extraction of rare earth elements and Y are considered. Stoichiometric of the extracted complexes has been determined and the extraction constants calculated.

  7. Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements

    SciTech Connect

    Hashida, Masaki; Sakabe, Shuji; Izawa, Yasukazu

    2011-03-15

    Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross sections of IIIa rare-earth-metal elements ({sigma}{sub Sc}, {sigma}{sub Y}, and {sigma}{sub Gd}) with those of alkali metals or helium {sigma}{sub 0}, we found that {sigma}{sub 0{approx_equal}{sigma}Sc}<{sigma}{sub Y}<{sigma}{sub Gd{approx_equal}}2{sigma}{sub 0}at an impact energy of 1000 eV.

  8. Impulsive penetration of filamentary plasma elements into the magnetospheres of the earth and Jupiter

    NASA Technical Reports Server (NTRS)

    Lemaire, J.

    1977-01-01

    Assuming that the solar wind plasma is usually nonuniform over distances of 10,000 km or less, it is shown that filamentary plasma elements stretched out from the sun can penetrate impulsively and become engulfed into the magnetosphere. The diamagnetic effects associated with these plasma inhomogeneities are observed in outer magnetospheres and magnetosheaths as dips or directional discontinuities in the magnetic field measurements. From the mean penetration distances of these diamagnetic plasma elements one can deduce a mean deceleration time, as well as an approximate value of the integrated Pedersen conductivity in the polar cusp of the earth and Jupiter.

  9. Bishop tuff revisited: new rare Earth element data consistent with crystal fractionation.

    PubMed

    Cameron, K L

    1984-06-22

    The Bishop Tuff of eastern California is the type example of a high-silica rhyolite that, according to Hildreth, supposedly evolved by liquid-state differentiation. New analyses establish that the Bishop Tuff "earlyllate" rare earth element trend reported by Hildreth mimics the relations between groundmass glasses and whole rocks for allanite-bearing pumice. Differences in elemental concentrations between whole rock and groundmass are the result of phenocryst precipitation; thus the data of Hildreth are precisely those expected to result from crystal fractionation. PMID:17837193

  10. The early Aptian OAE record in the Cau section (Prebetic Zone, Spain): High-resolution C-isotope stratigraphy, biomarker distributions, and elemental geochemistry

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Quijano, M. L.; de Gea, G. A.; Pancost, R. D.

    2012-04-01

    The occurrence of time intervals of enhanced deposition of organic matter (OM) during the Cretaceous, defined as Oceanic Anoxic Events (OAE), reflect abrupt changes in global carbon cycling. These episodes raise questions about the causes for such perturbations, and their relation to fluctuations in ocean geochemistry, climate, and marine and continental biota. To investigate these questions, we have performed an integrated study comprising high-resolution C-isotope stratigraphy, biomarker distributions, and elemental geochemistry through the record of an expanded section of the OAE 1a (Cau section, Spain). This section belongs to the Prebetic Zone, which represents the platform domain of the Southern Iberian Paleomargin during the Mesozoic. The high-resolution C-isotope curve records the characteristic first negative and subsequent positive excursions that are well known from a large number of sections around the world. Apparent in the section are all eight of the segments previously defined from the alpine domain by Menegatti et al (1998). Both carbonate and organic C-isotope curves are presented and compared, allowing qualitative consideration for changes in pCO2. Molecular analyses of sedimentary organic matter are powerful tools in assessing the origin of organic matter and constraining ancient environmental conditions, such as marine productivity, anoxia in bottom waters or the photic zone and sea surface temperatures as well as its thermal maturity. The biomarker association in the section comprises mainly four main groups of compounds: n-alkanes, isoprenoids, hopanes and steranes. Overall, all of the OM present in the studied samples is interpreted to derive from significant terrestrial inputs as well as marine and bacterial sources. It is also thermally immature, leading to a good preservation of the organic compounds. This study has revealed major variations in biomarker distributions through the section, including the distributions of n-alkanes (long-chain versus short-chain compounds), relative abundances of n-alkanes, hopanes and steranes, and other significant biomarkers. These changes are interpreted to be related to variations in the major sources of the organic matter (bacterial, terrestrial and marine plants, marine plankton), and in the environmental conditions (i.e. development of water column stratification, anoxia and productivity). Elemental geochemical analyses have revealed major changes in redox-sensitive, productivity and provenance proxies through the section. The main contribution from these data is the observation of development of suboxic-anoxic conditions during the deposition of the OAE1a, with high frequency oscillations, especially during the onset of the event. Integration of C-isotopes, biomarkers and elemental distributions represents a powerful tool in the interpretation of the environmental changes that occurred during deposition of the OAE1a. Data presented here suggest significant sedimentary and biological perturbations predating the OAE1a, and environmental instability during especially the first stages of the OAE. Acknowledgements: This work is a contribution of the research project CGL2009-10329.

  11. Circular dust formations around earth and moon and some structural elements of dust formation around sun

    NASA Astrophysics Data System (ADS)

    Barsukov, V. L.; Nazarova, T. N.

    1989-01-01

    An analysis of meteoroid data from the Elektron 1 and 2, HEOS 2, Luna 10, Zond 3, and Venera 2 probes reveals the existence of circumterrestrial and circumlunar dust envelopes and yields information about the elements of an analogous circumsolar dust envelope. It is shown that meteoritic matter in these envelopes is distributed not uniformly but as individual clusters which move along gravitation centers (the earth, the moon, and the sun) in more or less stable orbits.

  12. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    PubMed

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs. PMID:22304002

  13. Transport of rare earth element-tagged soil particles in response to thunderstorm runoff.

    PubMed

    Matisoff, G; Ketterer, M E; Wilson, C G; Layman, R; Whiting, P J

    2001-08-15

    The downslope transport of rare earth element-tagged soil particles remobilized during a spring thunderstorm was studied on both a natural prairie and an agricultural field in southwestern Iowa (U.S.A.). A technique was developed for tagging natural soils with the rare earth elements Eu, Tb, and Ho to approximately 1,000 ppm via coprecipitation with MnO2. Tagged material was replaced in target locations; surficial soil samples were collected following precipitation and runoff; and rare earth element concentrations were determined by inductively coupled plasma mass spectrometry. Diffusion and exponential models were applied to the concentration-distance data to determine particle transport distances. The results indicate that the concentration-distance data are well described by the diffusion model, butthe exponential model does not simulate the rapid drop-off in concentrations near the tagged source. Using the diffusion model, calculated particle transport distances at all hillside locations and at both the cultivated and natural prairie sites were short, ranging from 3 to 73 cm during this single runoff event. This study successfully demonstrates a new tool for studying soil erosion. PMID:11529577

  14. Heterogeneous Accretion of the Earth and the Timing of Volatile Element Depletion

    NASA Astrophysics Data System (ADS)

    Schönbächler, M.; Nimmo, F.

    2011-12-01

    The Earth is depleted in moderately volatile elements relative to CI chondrites and thus average solar system material. The timing of this depletion has been a matter of debate. Isotopic constraints from the short-lived Pd-Ag, Mn-Cr and Hf-W decay systems can be used to model the accretion history of the Earth and the timing of moderately volatile element depletion [1]. While the Pd-Ag decay system provides evidence for the accretion of volatile-rich material, other systems like Mn-Cr and Rb-Sr require that the Earth accreted volatile-depleted material [2, 3]. As recently shown [1], the contrasting evidence from these decay systems can be reconciled by heterogeneous accretion, which implies that the composition of the material from which the Earth accreted changed over time. A continuous core formation model was used and the best match was obtained for the Earth mainly accreting volatile-depleted material in the beginning and more volatile-rich material towards the end, while core formation was still ongoing [1]. However, a different study proposed that the bulk of the moderately volatile elements was delivered in a volatile-rich late veneer after core formation ceased [4]. This is not supported by the Pd-Ag data (Ag is a moderately volatile element, while Pd is more refractory). A late veneer of volatile-rich CI material (Pd = 556 ppb and Ag = 197 ppb) after core formation is limited to a maximum of ~0.4 % of the Earth's mass by the Pd concentration of the Earth's mantle today (~3.3 ppb). This amount of CI material does not supply enough Ag to substantially modify the Ag isotope composition of the Earth's mantle. In a scenario where the Earth accretes exceedingly volatile depleted material, its high Pd/Ag ratio would lead to an extreme radiogenic Ag isotope composition of the bulk silicate Earth (BSE), which cannot be counterbalanced by the late veneer to match the observed BSE composition. We also tested the heterogeneous accretion scenario using N-body accretion simulations [5] for the Pd-Ag decay system. Again the best results were obtained when materials with different degrees of volatile depletion (= different Pd/Ag ratios) were accreted. The simulations include early accretion of close-in material and later accretion of material from greater heliocentric distances, which is consistent with a transition from volatile-depleted to volatile-enriched material. Therefore, N-body accretion simulations and the continuous core formation model yield similar results, which demonstrates the robustness of the heterogeneous accretion scenario. [1] Schönbächler et al. (2010), Science 328, 884. [2] Carlson & Lugmair (1988), Earth Planet Sci. Lett. 90, 119. [3] Qin et al. (2009), Geochim. Cosmochim. Acta 74, 1122. [4] Albarède (2009), Nature, 461, 1227.[5] O'Brien et al. (2006), Icarus 184, 36.

  15. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3

    NASA Astrophysics Data System (ADS)

    Kyte, Frank T.; Leinen, Margaret; Ross Heath, G.; Zhou, Lei

    1993-04-01

    The concentrations of thirty-nine elements in 324 samples show large variations in sediments down the 24.3 m length of LL44-GPC3, a piston core of pelagic clay from the central North Pacific (30°19'N, 157°49.9'W) that contains a relatively continuous record of sedimentation since the late Cretaceous. Strong interelement correlations identify five groups of elements whose variance is related and which we interpret to represent porewater salts, silicates, biogenic phosphates, and hydrothermal and hydrogenous oxyhydroxide precipitates. Interelement ratios, when combined with mineralogical, sedimentological, and site-backtrack data, indicate that at least five distinct sources contributed to the aluminosilicate fraction of the sediments in the core. Eight endmember sediment source components (two eolian, two volcanic, two biogenous, one hydrothermal, and one hydrogenous) are modeled and quantified by total inversion. Accumulation rates of these components and of thirty-nine elements vary dramatically for stratigraphically defined intervals within the Cenozoic. Continuous accumulation-rate profiles based on a model combining stratigraphic data and an assumed constant flux of hydrogenous Co yield a general sedimentation model that reflects variations in the sedimentary environment as the LL44-GPC3 site migrated from near the equator in the late Cretaceous to its present location north of Hawaii.

  16. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter L.; Khadilkar, Aditi B.; Pulati, Nuerxida; Soundarrajan, Nari; Klima, Mark S.; Mosser, Morgan M.; Miller, Charles E.; Pisupati, Sarma V.

    2016-01-01

    Rare earth elements are known to occur in low concentrations in U.S. coals and coal byproducts. These low concentrations may make rare earth element recovery from these materials unattractive, using only physical separation techniques. However, given the significant production of rare earths through ion exchange extraction in China, two U.S. coal byproducts were examined for ion extraction, using ammonium sulfate, an ionic liquid, and a deep eutectic solvent as lixiviants. Extraction of rare earth elements in each case produced high recoveries of rare earth elements to the solution. This suggests that in at least the cases of the materials examined, U.S. coal byproducts may be technically suitable as REE ores. More work is required to establish economic suitability.

  17. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter L.; Khadilkar, Aditi B.; Pulati, Nuerxida; Soundarrajan, Nari; Klima, Mark S.; Mosser, Morgan M.; Miller, Charles E.; Pisupati, Sarma V.

    2016-03-01

    Rare earth elements are known to occur in low concentrations in U.S. coals and coal byproducts. These low concentrations may make rare earth element recovery from these materials unattractive, using only physical separation techniques. However, given the significant production of rare earths through ion exchange extraction in China, two U.S. coal byproducts were examined for ion extraction, using ammonium sulfate, an ionic liquid, and a deep eutectic solvent as lixiviants. Extraction of rare earth elements in each case produced high recoveries of rare earth elements to the solution. This suggests that in at least the cases of the materials examined, U.S. coal byproducts may be technically suitable as REE ores. More work is required to establish economic suitability.

  18. Complementary rare earth element patterns in unique achondrites, such as ALHA 77005 and shergottites, and in the earth

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Laul, J. C.

    1982-01-01

    Abundances of major, minor, and trace elements are determined in the Antarctic achondrite Allan Hills (ALHA) 77005 via sequential instrumental and radiochemical neutron activation analysis. The rare earth element (REE) abundances of ALHA 77005 reveal a unique chondritic normalized pattern; that is, the REEs are nearly unfractionated from La to Pr at approximately 1.0X chondrites, monotonically increased from Pr to Gd at approximately 3.4X with no Eu anomaly, nearly unfractionated from Gd and Ho and monotonically decreased from Ho to Lu at approximately 2.2X. It is noted that this unique REE pattern of ALHA 77005 can be modeled by a melting process involving a continuous melting and progressive partial removal of melt from a light REE enriched source material. In a model of this type, ALHA 77005 could represent either a crystallized cumulate from such a melt or the residual source material. Calculations show that the parent liquids for the shergottites could also be derived from a light REE enriched source material similar to that for ALHA 77005.

  19. Geochemistry of Fresh Submarine HSDP-2 Glasses from Mauna Kea Volcano: Unexpected Mobility of 'Immobile' Trace Elements

    NASA Astrophysics Data System (ADS)

    Amini, M. A.; Jochum, K. P.; Stoll, B.; Willbold, M.; Sobolev, A. V.; Hofmann, A. W.

    2002-12-01

    The Hawaii Scientific Drilling Project-2 provides the opportunity to investigate the geochemical evolution of the submarine section of Mauna Kea. Our previous analyses of bulk-rock trace element concentrations had revealed relatively high degrees of scatter of trace element ratios such as Th/U, Ta/U and even Nb/Ta, and we suspected that many of the samples had been affected by seawater alteration. Fortunately, fresh glasses are found throughout the drill core in many glass-rich hyaloclastic and pillow basalts with glass proportions up to 10%. We therefore determined incompatible trace elements such as Th, U, Nb, Ta, Zr, Ba, Pb, Rb in carefully handpicked, fresh glasses in 16 samples derived from depths between 1310 m and 3050 m. The samples were crushed to less than 0.425 mm grain size in order to obtain very fresh glass fragments free of contamination by alteration products, olivines or other minerals. The glass fractions and their corresponding bulk samples were analyzed for major and trace elements by EMP, MIC-SSMS and HR-ICPMS. The differences between glass and bulk are particularly obvious in Pb, Rb, Cs and U. As expected, Pb, Rb and Cs were found to be mobile, with concentrations in the bulk samples varying by up to a factor of 5 relative to the glass samples. Similarly, U concentrations in glass are up to a factor of 2 higher than in bulk samples. More surprising is the observation that Th and Ta are quite probably mobile, because these elements are normally believed to be immobile. However, these results are consistent with those of Bienvenue et al. (1990), who found that Th appears to be sensitive to seawater alteration. Our glass data indicate that Ta/U (3.7+/-0.2) is uniform along the sequence, in contrast to the bulk data which show a large scatter (3.7-6.5). Th/U ratios in the glasses show a maximum (~3.5) at a depth of ~2100 m, whereas low ratios of about 3 were found in depths of 1300-1400 m and 2800-3000 m. The high Th/U ratios in the 2100 m region are associated with low SiO2 contents, high 208Pb*/206Pb*(Eisele et al., 2002; Blichert-Toft et al., 2002) and high 3He/4He ratios (Kurz, personal comm., Althaus et al., 2002). Thus, it appears that the high Th/U values are not caused by melting effects but are features of an anomalous source chemistry sampled by the volcano at this stratigraphic level.

  20. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: role of crystal fractionation and mantle heterogeneity.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.

    1981-01-01

    A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95oW and 85oW on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P2O5/K2O ratio implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns. The sequence of fractionated lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95oW. The mantle source regions for these two areas are interpreted to be depleted in incompatible (and volatile?) elements, although the source region beneath 95oW is less severely depleted in La and K. -Authors

  1. Siku: A Sea Ice Discrete Element Method Model on a Spherical Earth

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A. V.; Hutchings, J. K.; Johnson, J.

    2014-12-01

    Offshore oil and gas exploration and production activities in the Beaufort and Chukchi Seas can be significantly and adversely affected by sea ice. In the event of an oil spill, sea ice complicates the tracking of ice/oil trajectories and can hinder cleanup operations. There is a need for a sea ice dynamics model that can accurately simulate ice pack deformation and failure to improve the ability to track ice/oil trajectories and support oil response operations. A discrete element method (DEM) model, where each ice floe is represented by discrete elements that are initially bonded (frozen) together will be used to address the difficulty continuum modeling approaches have with representing discrete phenomena in sea ice, such as the formation of leads and ridges. Each discrete element in the DEM is a rigid body driven by environmental forcing (wind, current and Coriolis forces) and interaction forces with other discrete elements (compression, shear, tension, bond rupture and regrowth). We introduce a new DEM model ``Siku'', currently under development, to simulate ice drift of an ice floe on a spherical Earth. We will present initial free-drift results. Siku is focused on improving sea ice interaction mechanics and providing an accurate geometrical representation needed for basin scale and regional simulations. Upon completion, Siku will be an open source GNU GPL licensed user friendly program with embedded python capability for setting up simulations "scenarios" and coupling with other models to provide forcing fields. We use a unique quaternion representation for position and orientation of polygon sea-ice elements that use a second order integration scheme of sea-ice element motion on the Earth's sphere that does not depend on the location of the element and, hence, avoids numerical problems near the pole.

  2. Adsorption of rare earth elements onto Carrizo sand: Experimental investigations and modeling with surface complexation

    NASA Astrophysics Data System (ADS)

    Tang, Jianwu; Johannesson, Karen H.

    2005-11-01

    Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH 2+, LnSO 4+, and LnCO 3+, but not that of Ln(CO 3) 2- or LnPO 4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln 3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln 3+) but also as aqueous complexes (e.g., as Ln(CO 3) 2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.

  3. Dynamical Geochemistry

    NASA Astrophysics Data System (ADS)

    Davies, G. F.

    2009-12-01

    Dynamical and chemical interpretations of the mantle have hitherto remained incompatible, despite substantial progress over recent years. It is argued that both the refractory incompatible elements and the noble gases can be reconciled with the dynamical mantle when mantle heterogeneity is more fully accounted for. It is argued that the incompatible-element content of the MORB source is about double recent estimates (U~10 ng/g) because enriched components have been systematically overlooked, for three main reasons. (1) in a heterogeneous MORB source, melts from enriched pods are not expected to equilibrate fully with the peridotite matrix, but recent estimates of MORB-source composition have been tied to residual (relatively infertile) peridotite composition. (2) about 25% of the MORB source comes from plumes, but plume-like components have tended to be excluded. (3) a focus on the most common “normal” MORBs, allegedly representing a “depleted” MORB source, has overlooked the less-common but significant enriched components of MORBs, of various possible origins. Geophysical constraints (seismological and topographic) exclude mantle layering except for the thin D” layer and the “superpiles” under Africa and the Pacific. Numerical models then indicate the MORB source comprises the rest of the mantle. Refractory-element mass balances can then be accommodated by a MORB source depleted by only a factor of 2 from chondritic abundances, rather than a factor of 4-7. A source for the hitherto-enigmatic unradiogenic helium in OIBs also emerges from this picture. Melt from subducted oceanic crust melting under MORs will react with surrounding peridotite to form intemediate compositions here termed hybrid pyroxenite. Only about half of the hybrid pyroxenite will be remelted, extracted and degassed at MORs, and the rest will recirculate within the mantle. Over successive generations starting early in Earth history, volatiles will come to reside mainly in the hybrid pyroxenite. This will be denser than average mantle and will tend to accumulate in D”, like subducted oceanic crust. Because residence times in D” are longer, it will degas more slowly. Thus plumes will tap a mixture of older, less-degassed hybrid pyroxenite, containing less-radiogenic noble gases, and degassed former oceanic crust. Calculations of degassing history confirm that this picture can quantitatively account for He, Ne and Ar in MORBs and OIBs. Geophysically-based dynamical models have been shown over recent years to account quantitatively for the isotopes of refractory incompatible elements. This can now be extended to noble gas isotopes. The remaining significant issue is that thermal evolution calculations require more radiogenic heating than implied by cosmochemical estimates of radioactive heat sources. This may imply that tectonic and thermal evolution have been more episodic in the Phanerozoic than has been generally recognised.

  4. Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain)

    NASA Astrophysics Data System (ADS)

    Piña, R.; Gervilla, F.; Ortega, L.; Lunar, R.

    2008-01-01

    The Aguablanca Ni-Cu-(PGE) magmatic sulphide deposit is associated with a magmatic breccia located in the northern part of the Aguablanca gabbro (SW, Iberia). Three types of ores are present: semi-massive, disseminated, and chalcopyrite-rich veined ore. The principal ore minerals are pyrrhotite, pentlandite and chalcopyrite. A relatively abundant platinum-group mineral (PGM) assemblage is present and includes merenskyite, melonite, michenerite, moncheite and sperrylite. Moreover, concentrations of base and precious metals and micro-PIXE analyses were obtained for the three ore-types. The mineralogy and the mantle-normalised chalcophile element profiles strongly suggest that semi-massive ore represents mss crystallisation, whereas the disseminated ore represents an unfractionated sulphide liquid and the chalcopyrite-rich veined ore a Cu-rich sulphide liquid. Palladium-bearing minerals occur commonly enclosed within sulphides, indicating a magmatic origin rather than hydrothermal. The occurrences and the composition of these minerals suggest that Pd was initially dissolved in the sulphides and subsequently exsolved at low temperatures to form bismutotellurides. Negative Pt and Au anomalies in the mantle-normalised chalcophile element profiles, a lack of Cu-S correlation and textural observations (such as sperrylite losing its euhedral shape when in contact with altered minerals) suggest partial remobilisation of Pt, Au and Cu by postmagmatic hydrothermal fluids after the sulphide crystallisation.

  5. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    White, William M.; Dupr, Bernard; Vidal, Philippe

    1985-09-01

    Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb 206Pb /204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd /144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.

  6. Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy)

    USGS Publications Warehouse

    Somma, R.; Ayuso, R.A.; de Vivo, B.; Rolandi, G.

    2001-01-01

    Major, trace element and isotopic (Sr, Nd, Pb) data are reported for representative samples of interplinian (Protohistoric, Ancient Historic and Medieval Formations) activity of Mt. Somma-Vesuvius volcano during the last 3500 years. Tephra and lavas exhibit significant major, trace element and isotopic variations. Integration of these data with those obtained by previous studies on the older Somma suites and on the latest activity, allows to better trace a complete petrological and geochemical evolution of the Mt. Somma-Vesuvius magmatism. Three main groups of rocks are recognized. A first group is older than 12.000 yrs, and includes effusive-explosive activity of Mt. Somma. The second group (8000-2700 yrs B.P.) includes the products emitted by the Ottaviano (8000 yrs. B.P.) and Avellino (3550 yrs B.P.) plinian eruptions and the interplinian activity associated with the Protohistoric Formation. Ancient Historic Formation (79-472 A.D.), Medieval Formation (472-1139 A.D.) and Recent interplinian activity (1631-1944 A.D.) belong to the third group of activity (79-1944 A.D.). The three groups of rocks display distinct positive trends of alkalis vs. silica, which become increasingly steeper with age. In the first group there is an increase in silica and alkalis with time, whereas an opposite tendency is observed in the two younger groups. Systematic variations are also evident among the incompatible (Pb, Zr, Hf, Ta, Th, U, Nb, Rb, Cs, Ba) and compatible elements (Sr, Co, Cr). REE document variable degrees of fractionation, with recent activity displaying higher La/Yb ratios than Medieval and Ancient Historic products with the same degree of evolution. N-MORB normalized multi-element diagrams for interplinian rocks show enrichment in Rb, Th, Nb, Zr and Sm (> *10 N-MORB). Sr isotope ratios are variable, with Protohistoric rocks displaying 87Sr/86Sr= 0.70711-0.70810, Ancient Historic 87Sr/86Sr=0.70665-0.70729, and Medieval 87Sr/86Sr=0.70685-0.70803. Neodymium isotopic compositions in the interplinian rocks show a tendency to become slightly more radiogenic with age, from the Protohistoric (143Nd/144Nd=0.51240-0.51247) to Ancient Historic (143Nd/144Nd=0.51245-0.51251). Medieval interplinian activity (143Nd/144Nd: 0.51250-0.51241) lacks meaningful internal trends. All the interplinian rocks have virtually homogeneous compositions of 207Pb/204Pb and 208Pb/204Pb in acid-leached residues (207Pb/204Pb ???15.633 to 15.687, 208Pb/204Pb ???38.947 to 39.181). Values of 206Pb/204Pb are very distinctive, however, and discriminate among the three interplinian cycles of activity (Protohistoric: 18.929-18.971, Ancient Historic: 19.018-19.088, Medieval: 18.964-19.053). Compositional trends of major, trace element and isotopic compositions clearly demonstrate strong temporal variations of the magma types feeding the Somma-Vesuvius activity. These different trends are unlikely to be related only to low pressure evolutionary processes, and reveal variations of parental melt composition. Geochemical data suggest a three component mixing scheme for the interplinian activity. These involve HIMU-type and DMM-type mantle and Calabrian-type lower crust. Interaction between these components has taken place in the source; however, additional quantitative constraints must be acquired in order to better discriminate between magma characteristics inherited from the sources and those acquired during shallow level evolution.

  7. Experimental partitioning of rare earth elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid

    NASA Technical Reports Server (NTRS)

    Irving, A. J.; Merrill, R. B.; Singleton, D. E.

    1978-01-01

    An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.

  8. Separation method and yields of small quantities of rare earth elements

    NASA Astrophysics Data System (ADS)

    Boulin, Y.; Juery, A.

    1992-08-01

    The EMIS PARSIFAL was designed to purify very small quantities of radioactive isotopes. Yields are therefore an important component of the separations. The ionization is done in a thermoionization source or a plasma source, according to the physical properties of the concerned elements. For rare earth elements (REE), hydroxides are electrodeposited on a tantalum wire; for thermoionization, the wire is introduced in a tungsten crucible whose depth is linked to the boiling point of the element. Samples weigh between 0.2 and 0.9 mg. The crucible, heated at 3050°C by electron bombardment, gives REE yields from 20 to 40% and usually 50% for europium. The total beam intensity is about 5 × 10 -6 A and separations last from 2 to 20 hours until the whole sample is consumed.

  9. Assessment of groundwater dynamics by applying rare earth elements and stable isotopes &ndash; the case of the Tiberias Basin, Jordan Valley.

    NASA Astrophysics Data System (ADS)

    Siebert, Christian; Möller, Peter; Rödiger, Tino; Al-Raggad, Marwan; Magri, Fabien

    2015-04-01

    The Tiberias basin, situated in the northern part of the Jordan-Dead Sea Transform Valley, is hydraulically connected to the surrounding aquifers of Cretaceous to Cenozoic age. As a result of the local erosion base, the basin hosts Lake Tiberias, recharged mainly by the Upper Jordan River and by fresh groundwater from the Galilee and Golan Heights. However, variably ascending deep-seated brines enhance the chlorinity of the lake to about 250-280 mg/l. In addition to these hot brines, also hot fresh waters emerge on surface, particularly to both sides of the Yarmouk gorge, SE of the basin. Investigation of rare earth element patterns and stable isotopes of water and sulfur, in combination with major elements reveal, that the gorge acts at least partially as a water divide between north and south with enhanced hydraulic conductivity along its axis. Although there are no geological evidences given, we suppose a swarm of hydraulic active fractures/faults parallel to the Lower Yarmouk gorge axis, which force the upward movement of hot fluids, as also suggested by numerical modeling. Additionally, these faults may channel SW-oriented groundwater flow, which has its origin in the Syrian Hauran Plateau. Although exercised in the Tiberias Basin, the application of trace and major element geochemistry in combination with stable isotopes allows analyzing (supra-) regional groundwater movements. This method is even more relevant in areas with either limited access to recharge areas or boreholes along proposed flow-paths and particularly in areas suffering from data scarcity and poor infrastructure.

  10. Late Holocene Multiproxy Record (Palynology, Stable Isotope and Multi-Element Geochemistry) of Lake Santa Maria del Oro, Western Mesoamerica.

    NASA Astrophysics Data System (ADS)

    Lozano, S.; Caballero, M.; Rodriguez, A.; Roy, P.; Sosa, S.

    2007-05-01

    We present the palynological, stable isotope and major element (ITRAX X-Ray fluorescence) data from a 850-cm sediment sequence from the deepest part of lake Santa María del Oro (SMO) in order to document changes in the climatic and limnological conditions and in the vegetation for the last ca. 5000 yr. SMO is a crater lake of (750 m asl, 2 km diam.) located in a tropical sub-humid climate (1250 mm/yr, average annual temperature 21° C) at the transition between the temperate central Mexican highlands and the arid northern regions. Tropical deciduous forests which loose their leaves for 8 months in a year and the tropical oak forests are the main plant communities in the lake catchments. The western part of Mesoamerica is the cradle of maize (Zea mays ssp. mays ) agriculture; this region is probably one of the two centers of maize domestication based on the presence of one of its closets wild relative teosinte (Zea mays ssp. parviglumis ). Chronology was established with 8 AMS radiocarbon dates. Sediments are finely laminated, with some intervals dominated by black and brown clayey silt and others by brown clayey silt and calcareous silt. In some levels, laminae are characterized by silts and fine sands. Authigenic carbonate laminations are formed during the summer season, when the highest temperatures are reached in the area. Throughout the pollen analysis, teosinte pollen and maize pollen was recorded. The major element concentration (Ca and Ti) in the bulk sediments was analyzed by ITRAX multi-element scanner and the isotopic data (δ13C and δ18O) in authigenic carbonates by mass spectrometer. Ca and Ti ITRAX intensities were calibrated to mass % by using the linear relationship between ITRAX intensity and mass % obtained through conventional XRF analysis. Preliminary pollen data of SMO sediments indicates abundant pollen of teosinte from ca. 2000 to 100 BC and maize presence at ca. 1300 BC and ca. 900 BC along with high charcoal particle concentrations, suggesting early agricultural activity in the area, being the first record of maize in the western region of Mesoamerica. The phases with higher concentration of Ti are identified as periods of higher inflow into the lake basin (BC 1700-1400, 0- AD 200, AD 900 and AD 1800-1900). Phases of higher evaporative conditions are identify at ca. BC 700, BC 400, AD 400-800 and AD 1900-2003 based on Ca high values and enriched δ18O and δ13C. There exists a negative relationship between Ca and Ti. Evidence of changes in climatic conditions is inferred from the data.

  11. Medical geochemistry of tropical environments

    NASA Astrophysics Data System (ADS)

    Dissanayake, C. B.; Chandrajith, Rohana

    1999-10-01

    Geochemically, tropical environments are unique. This uniqueness stems from the fact that these terrains are continuously subjected to extreme rainfall and drought with resulting strong geochemical fractionation of elements. This characteristic geochemical partitioning results in either severe depletion of elements or accumulation to toxic levels. In both these situations, the effect on plant, animal and human health is marked. Medical geochemistry involves the study of the relationships between the geochemistry of the environment in which we live and the health of the population living in this particular domain. Interestingly, the relationships between geochemistry and health are most marked in the tropical countries, which coincidentally are among the poorest in the world. The very heavy dependence on the immediate environment for sustainable living in these lands enables the medical geochemist to observe correlations between particular geochemical provinces and the incidence of certain diseases unique to these terrains. The aetiology of diseases such as dental and skeletal fluorosis, iodine deficiency disorders, diseases of humans and animals caused by mineral imbalances among others, lie clearly in the geochemical environment. The study of the chemistry of the soils, water and stream sediments in relation to the incidence of geographically distributed diseases in the tropics has not only opened up new frontiers in multidisciplinary research, but has offered new challenges to the medical profession to seriously focus attention on the emerging field of medical geochemistry with the collaboration of geochemists and epidemiologists.

  12. Toward understanding early Earth evolution: prescription for approach from terrestrial noble gas and light element records in lunar soils.

    PubMed

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A; Miura, Yayoi N

    2008-11-18

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth-Moon dynamical system. PMID:19001263

  13. Major and minor element geochemistry of deep-sea sediments in the Azores Platform and southern seamount region.

    PubMed

    Palma, Carla; Oliveira, Anabela; Valença, Manuela; Cascalho, João; Pereira, Eduarda; Lillebø, Ana I; Duarte, Armando C; Pinto de Abreu, Manuel

    2013-10-15

    The Azores Platform and the Irving and Great Meteor seamounts south of the archipelago (38°N-29°N) have rarely been studied geochemically, a fact which is surprising given that they represent the south-eastern limit of region V outlined in the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention). The main aim of the present work was therefore to characterise the spatial variability of major and minor elements in deep-sea sediment cores from these two regions. XRD and geochemical analyses revealed that whereas the Azores Platform sediments are composed of a mixture of biogenic and detrital volcanic material, those at the seamounts are characterised by carbonated biogenic remains. The latter sediments were found to contain very low amounts of volcanic or hydrothermal detrital material, being almost entirely comprised of CaCO3 (more than 80%). PMID:23896401

  14. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    SciTech Connect

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.; Boynton, W.V.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 days after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).

  15. In Situ Instrumentation for Sub-Surface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    Novel instrumentation is under development at NASA's Goddard Space Flight Center, building upon earth-based techniques for hostile environments, to infer geochemical processes important to formation and evolution of solid bodies in our Solar System. A prototype instrument, the Pulsed Neutron Generator Gamma Ray and Neutron Detectors (PNG-GRAND), has a 14 MeV pulsed neutron generator coupled with gamma ray and neutron detectors to measure quantitative elemental concentrations and bulk densities of a number of major, minor and trace elements at or below the surfaces with approximately a meter-sized spatial resolution down to depths of about 50 cm without the need to drill. PNG-GRAND's in situ a meter-scale measurements and adaptability to a variety of extreme space environments will complement orbital kilometer-scale and in-situ millimeter scale elemental and mineralogical measurements to provide a more complete picture of the geochemistry of planets, moons, asteroids and comets.

  16. Geochemistry and petrogenesis of late proterozoic volcanic rocks from north-western Africa

    NASA Astrophysics Data System (ADS)

    Chikhaoui, M.; Dupuy, C.; Dostal, J.

    1980-09-01

    The Upper Proterozoic volcanism of northwestern Africa is characterized by the predominance of calc-alkaline rocks. Volcanics with tholeiitic affinities and alkali basalts are rare. The geochemistry and the relative proportions of calc-alkaline rocktypes in the Silet zone (Algeria) and the Ouarzazate formation (Morocco) are similar to those of recent island arc suites where basalts are most abundant while in the Tassendjanet and Gara Akofo zones (Algeria) they resemble contintal margin volcanic suites with a predominance of andesites. The volcanic rocks have undergone low-grade metamorphism which strongly affected alkali and alkali-earth elements and also to a smaller degree, the less mobile elements such as REE, Zr, Hf, Nb, and P. The geochemistry of the calc-alkaline rocks point to a complex origin involving low-pressure fractional crystallization, crustal contamination and derivation from a source already enriched in LILE.

  17. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-12-01

    A study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. These studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  18. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  19. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  20. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417

  1. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications. PMID:24681591

  2. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China

    NASA Astrophysics Data System (ADS)

    Wang, Lingqing; Liang, Tao

    2015-07-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg-1 with an average value of 4.67 × 103 mg·kg-1, which was significantly higher than the average value in China (181 mg·kg-1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.

  3. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China

    PubMed Central

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417

  4. Trace Element Partitioning Between Earths Lower Mantle Minerals and Iron Alloy Melts

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Schmidt, M.; Günther, D.; Stewart, A.

    2004-12-01

    The physical conditions (pressure-temperature-oxygen fugacity) and iron alloy compositions involved in the formation of Earths core are relatively poorly constrained. Current geochemical core formation models rely heavily on arguments related to how trace elements are distributed between metal and silicate during metal segregation. Hypotheses concerning the timing of Earths accretion and core segregation also require knowledge of metal-silicate partition coefficients for parent and daughter isotopes in key isotopic systems (e.g., W-Hf, U-Pb). Many studies (e.g., Righter, Ann Rev Earth Planet Sci 2003) have focused on metal melt - silicate melt partitioning at upper mantle and transition zone pressures (P < 25 GPa) and high temperatures. In contrast, little is known about the partitioning of trace elements between metals and lower mantle minerals and melts, even though the later stages of core formation, characterised by high-energy processes related to collisions of Mars-sized objects, likely involved liquid iron alloys percolating through a solid or molten lower mantle matrix. We will present results of a systematic study of the distribution of trace elements between lower mantle minerals (Ca and Mg perovskite, and ferropericlase) and a range of iron alloy melts, to assess the redistribution of trace elements as metallic melts percolate through the lower mantle. Experiments are performed using a 10/3.5 assembly in a conventional Walker-type multi-anvil press (P < 26 GPa), and using a 7/2 assembly in a spherically-constrained multi-anvil press with sintered diamond pressure-transmitting cubes (P > 30 GPa). Starting materials include end-member silicates (wollastonite, enstatite), MgO, and Fe-light element (S, Si) mixtures. Trace elements added include slightly siderophile (Mn, V, Cr), moderately siderophile (P, W, Co, Ni, Mo) and highly siderophile elements, as well as key parent-daughter pairs, and run products are analysed by laser ablation ICP-MS. Implications of our data for core formation models will be discussed.

  5. Prolonged Eclogite-Facies Metamorphism: Evidence From Geochronology and Trace Element Geochemistry, North Qaidam UHP Terrane, NW China

    NASA Astrophysics Data System (ADS)

    Mattinson, C. G.; Wooden, J. L.; Mazdab, F. K.; Liou, J. G.; Bird, D. K.; Wu, C.

    2006-12-01

    Amphibolite-facies felsic gneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor (<10 vol%) eclogite and peridotite which record ultra-high pressure (UHP) metamorphism. Field relations, and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449--422 Ma; REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate that these ages record eclogite-facies metamorphism. Trace element variations in zircon are similar to core-to-rim trace element zoning of coexisting garnet revealed by LA-ICP-MS analysis. The coherent field relations, and the similar range of individual ages in each sample suggests that the ~25 m.y. age range reflects the duration of eclogite-facies conditions. Ti-in-zircon thermometry results show considerable spread, but may suggest cooling from 650-700°C (442--449 Ma) to 600-650°C (433--422 Ma). One group of zircons yields 770--810°C temperatures, possibly related to granulite-facies overprinting during exhumation. In contrast to Ti-in-zircon, Zr- in-rutile thermometry yields tightly clustered results of 590°C for all four eclogites and one 426 ± 4 Ma paragneiss. The ~25 m.y. duration as well as possible cooling during eclogite-facies metamorphism suggests the UHP rocks decoupled from the downgoing plate, and were refrigerated by continued, structurally deeper subduction. In the Lüliang Shan (350 km NW) in the North Qaidam terrane, eclogite and garnet peridotite ages of 414-- 495 Ma suggest that this locality also records a protracted eclogite-facies history. Evidence of prolonged eclogite-facies metamorphism in other HP/UHP localities (Greenland, Norway, Alps, Dabie-Sulu) suggests that eclogite-facies residence times of >15--25 m.y. may be globally significant in continental subduction/collision zones.

  6. Mineralogy, major and trace element geochemistry of riverbed sediments in the headwaters of the Yangtze, Tongtian River and Jinsha River

    NASA Astrophysics Data System (ADS)

    Wu, Weihua; Xu, Shijun; Lu, Huayu; Yang, Jiedong; Yin, Hongwei; Liu, Wen

    2011-01-01

    We collected riverbed sediments of the headwaters of the Yangtze River (Chumaer River, Tuotuo River, Gaerqu River and Buqu River), Tongtian River and Jinsha River (HTJR) flowing on the eastern Tibetan Plateau and analyzed their mineralogical features, major and trace element contents. The results show: (i) very poor correlations of Na 2O, K 2O, CaO, Ba, and Sr to SiO 2, LREE to Th, HREE to Hf, and Ta/La to Ti, and characteristics of Eu anomaly (the ratios of (Eu/Eu *) N range from 0.60 to 0.83 with an average value of 0.71) all indicate that the Jinsha River sediments have not undergone much mineralogical sorting; (ii) illite and chlorite are predominant clay minerals, and quartz, calcite, dolomite, albite, and K-feldspar are prevailing non-clay minerals. The characteristics of mineral assemblage indicate relatively weak chemical weathering degree in these river basins; (iii) very high contents of Fe 2O 3, MgO, TiO 2, Sc, V, Cr, Co, and Ni at Panzhihua mainly result from the huge-sized V-Ti magnetite deposits occurred in layered gabbroic intrusion; and (iv) the chemical alteration index (CIA) in the HTJR ranges from 46.5 to 69.2 and with an average value of 60.5 which indicates relatively weak weathering degree.

  7. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    PubMed

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects. PMID:26782327

  8. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  9. Evaluating the Age of Buried Ice in Antarctica Using Ashfall Deposits: New Insights from Deposit Morphology, Grain Shape, and LA-ICP-MS Trace-Element Geochemistry

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Marchant, D. R.

    2003-12-01

    Dating of buried ice in the western Dry Valleys region relies on 40Ar/39Ar analysis of ashfall deposits within sublimation tills that rest directly on stagnant glacier ice. The oldest ice so dated is >8.1 Ma. The fundamental assumption is that dated ashes are in-situ and have not been transported from surface deposits elsewhere in the Dry Valleys region. Given that the surface of sublimation tills shows well-developed patterned ground, the presumption of ground stability and long-term preservation of in-situ ashfall is questioned. As a test of ground stability, we examined ash-deposit morphology, grain shape, and glass-shard trace-element geochemistry from several ashfall deposits used to provide limiting ages on buried ice and tills in the western Dry Valleys. Detailed field analyses show that ashfall that collects in sublimation tills over buried ice occurs in one of three morphologic settings: surface troughs that delineate sand-wedge polygons, void spaces in gravel-and-cobble lags that overlie active sand wedges, and 1 to 2-cm-wide thermal contraction cracks. Post-depositional sublimation of underlying ice may distort initial deposit morphology through uneven surface lowering. Microscopic analyses of concentrated ashfall deposits that lack detrital sand grains show highly angular glass shards that preserve delicate hair-like spires and thin bubble-wall vesicles. Grain edges are sharp with no chipped, fractured, or pitted surfaces. In contrast, ash deposits containing detrital sand grains show subangular to subrounded shard morphologies with concave fractures and pits on grain edges, all of which are suggestive of abrasion during transport. In such deposits, grains preserving delicate bubble walls and hair-like spires are conspicuously absent. Laser ablation-inductively coupled plasma-mass spectrometry shows that glass shards within each ashfall deposit have uniform trace-element geochemical signatures. If ashfall were eroded and transported after initial deposition, then ashes of different ages and geochemical compositions should be found together in individual deposits. An accurate chronology for buried ice in the western Dry Valleys region of Antarctica has implications for research in atmospheric chemistry (Miocene-aged glacier ice may hold pristine samples of ancient atmosphere), geobiology (ancient microbes are preserved in the ice), and planetary geology (buried ice in Antarctica may serve as an analog for buried ice on Mars).

  10. Online preconcentration ICP-MS analysis of rare earth elements in seawater

    NASA Astrophysics Data System (ADS)

    Hathorne, Ed C.; Haley, Brian; Stichel, Torben; Grasse, Patricia; Zieringer, Moritz; Frank, Martin

    2012-01-01

    The rare earth elements (REEs) with their systematically varying properties are powerful tracers of continental inputs, particle scavenging intensity and the oxidation state of seawater. However, their generally low (pmol/kg) concentrations in seawater and fractionation potential during chemical treatment makes them difficult to measure. Here we report a technique using an automated preconcentration system, which efficiently separates seawater matrix elements and elutes the preconcentrated sample directly into the spray chamber of an ICP-MS instrument. The commercially available "seaFAST" system (Elemental Scientific Inc.) makes use of a resin with ethylenediaminetriacetic acid and iminodiacetic acid functional groups to preconcentrate REEs and other metals while anions and alkali and alkaline earth cations are washed out. Repeated measurements of seawater from 2000 m water depth in the Southern Ocean allows the external precision (2?) of the technique to be estimated at <23% for all REEs and <15% for most. Comparison of Nd concentrations with isotope dilution measurements for 69 samples demonstrates that the two techniques generally agree within 15%. Accuracy was found to be good for all REEs by using a five point standard addition analysis of one sample and comparing measurements of mine water reference materials diluted with a NaCl matrix with recommended values in the literature. This makes the online preconcentration ICP-MS technique advantageous for the minimal sample preparation required and the relatively small sample volume consumed (7 mL) thus enabling large data sets for the REEs in seawater to be rapidly acquired.

  11. Biological availability and environmental behaviour of Rare Earth Elements in soils of Hesse, Central Germany

    NASA Astrophysics Data System (ADS)

    Loell, M.; Duering, R.-A.; Felix-Henningsen, P.

    2009-04-01

    Rare earth elements (REEs) comprise a group of 17 transition metals with very similar chemical and physical properties. They include the elements scandium (Sc), yttrium (Y) and lanthanum (La) and the 14 elements (cerium to lutetium) that follow La in the periodic table. Their average abundance in the earth's crust varies from 0,01 to 0,02% so they are as common as Cu and Pb. Beside their widespread use in industry, REEs are applied in Chinese agriculture. Their beneficial effects both on crop yield and on animal production are reported in various investigations. As a result - by using microelement fertilisers and manure - REEs enter the pedosphere while their fate and behaviour in the environment up to now remains unexamined. The first aim of our investigation was to evaluate the concentration of REEs in agricultural used soils in central Germany (Hesse) by ICP-MS. In addition to their total concentration (aqua regia digestion) their bioavailable contents - determined by EDTA (potentially available fraction) and ammonium nitrate extraction (mobile fraction) - were analysed. The occurrence of the three REE fractions in different soils will be discussed and influencing soil properties (e.g. pH-value, content of clay and organic carbon) will be revealed. Additionally the uptake of REEs by grassland plants was determined and resulting transfer factors will be presented.

  12. Metasomatic- hydrothermal processes in the Qatruyeh area, Iran: Mineralogy and trace elements geochemistry of metasedimentary rock- hosted iron indices

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, M. A.; Asadi, S.

    2009-04-01

    The Qatruyeh iron indices are located at about 40 Km northeast of Neyriz, in the eastern edge of the HP-LT Sanandaj-Sirjan metamorphic belt, Zagros Mountain. Qatruyeh indices are contained within the metasedimentary rocks of the Late Proterozoic- early Paleozoic, which consists predominantly of dolomitic limestone, greenschist and quartzite. Field investigations, mineralogical studies and XRD analyses indicate that orebodies are dominated by magnetite. The structures of orebodies are mainly formed as thin layers and massive, which are located between dolomitic limestones and greenschists. Tourmaline, muscovite, chlorite, talc, martite, specularite, goethite, limonite, pyrite and chalcopyrite are present as minor minerals. The area has experienced two different stages of metasomatic- hydrothermal alterations. The iron ores were formed during the metasomatic- hydrothermal processes. Those processes are: (1) Na-Ca alteration and (2) mineralization (Oxidation-Sulfidation). The first stage of alteration follows the attainment of peak regional metamorphic condition (187± 2.6 Ma based on zircon SHRIMP U- Pb). This alteration is accompanied with Low-grade magnetite ores formation (50 % Fe2O3t), replacement textures, gradual transformation between layered ores and host rock. Wet chemistry analyses on magnetite shows that Na-Ca alteration caused increasing Cr and Cu as transition metals and Ni, Co and V were depleted. Metasedimentary rock-hosted iron deposits indicate that Na-Ca alteration increase Cu, Ni, Cr, Co, Zn as immobile elements and Na-Fe, whereas the LILE (Pb, Sr) were depleted. The formation of paragonite-tourmaline is also occurs as a part of iron deposition process in the stage. The second stage of metasomatic- hydrothermal alteration is accompanied with widespread veins and veinlets of High-grade magnetite (75 % Fe2O3t) - hematite- Quartz. Mineralization took place along host rock fractures with passage of saline, hot and oxidized aqueous fluids. Paragonite altered to muscovite in the host-rocks and ores in the stage. Sulfide replacement is generally occurred as a late stage phase.

  13. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    NASA Astrophysics Data System (ADS)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  14. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  15. NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS

    SciTech Connect

    Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.; Cowan, John J.; Ivans, Inese I. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2009-05-15

    We have derived new abundances of the rare earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low-metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally consistent Ba, rare earth, and Hf (56 {<=} Z {<=} 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  16. A compilation of whole-rock and glass major-element geochemistry of Kilauea Volcano, Hawai'i, near-vent eruptive products: January 1983 through September 2001

    USGS Publications Warehouse

    Thornber, Carl R.; Hon, Ken; Heliker, Christina; Sherrod, David A.

    2003-01-01

    This report presents major-element geochemical data from 652 glasses (~6,520 analyses) and 795 whole-rock aliquots from 1,002 fresh samples of olivine-tholeiitic lava collected throughout the near-continuous eruption of Kïlauea Volcano, Hawai'i, from January 1983 through September 2001. The data presented herein provide a unique temporal compilation of lava geochemistry that best reflects variations of pre-eruptive magma compositions during prolonged rift-zone eruption. This document serves as a repository for geochemical data referred to in U.S. Geological Survey Professional Paper 1676 (Heliker, Swanson, and Takahashi, eds., 2003) which includes multidisciplinary research papers pertaining to the first twenty years of Puu Oo-Kupaianaha eruption activity. Details of eruption characteristics and nomenclature are provided in the introductory chapter of that volume (Heliker and Mattox, 2003). Geochemical relations among all or portions of this data set are depicted and interpreted by Thornber (2003), Thornber and others (2003) and Thornber (2001). Trace element compositions and Nd, Sr and Pb isotopic analyses of representative samples of this select eruption suite will be provided in a separate and complimentary open file report. From 1983 to October 2001, approximately 2,500 eruption samples were collected and archived by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO). Geochemical data for 1,002 of these samples are included here. Previous reports present bulk-lava major- element chemistry for eruption samples collected from 1983 to 1986 and from 1990 to 1994 (Neal and others, 1988 and Mangan and others, 1995, respectively). Major element glass chemistry and thermometry data for samples collected from 1983 to 1994 is reported by Helz and Hearn (1998) and whole-rock and glass chemistry for samples collected from September 1994 to October 2001 is provided by Thornber and others (2002). This report is a compilation of previously published data along with unpublished whole-rock data for the 1986–1990 eruptive interval (episode 48, see Heliker and Mattox, 2003). The geochemical data in this report is mostly limited to well-quenched samples collected at or near their respective vents. The samples include tephra and spatter, in addition to lava dipped from lava lakes, lava tubes, and surface lava flows. The details of sample collection techniques as described by Thornber and others (2002) are generally applicable for this entire sampling interval. Specifically excluded from this database are samples of distal surface flows, many of which were collected for topical studies of emplacement dynamics (for example, Cashman and others, 1999). Samples of sluggish or crystal-laden tube flows collected during eruptive pauses were also excluded, because they bear visual, petrographic and geochemical evidence for crystal accumulation during surface-flow stagnation. In addition, the pre-1992 whole-rock major element data reported here has been corrected to compensate for minor analytical discrepancies between pre- and post-1991 XRF analyses. These discrepancies resulted from a change in instrumentation at the USGS Denver analytical laboratories. This select suite of time-constrained geochemical data is suitable for constructing petrologic models of pre-eruptive magmatic processes associated with prolong rift zone eruption of Hawaiian shield volcanoes.

  17. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  18. On the origin of falling-tone chorus elements in Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Krasnoselskikh, V.; Le Contel, O.; Cully, C. M.; Angelopoulos, V.; Zaliznyak, Y.; Rolland, G.

    2014-12-01

    Generation of extremely/very low frequency (ELF/VLF) chorus waves in Earth's inner magnetosphere has received increased attention recently because of their significance for radiation belt dynamics. Though past theoretical and numerical models have demonstrated how rising-tone chorus elements are produced, falling-tone chorus element generation has yet to be explained. Our new model proposes that weak-amplitude falling-tone chorus elements can be generated by magnetospheric reflection of rising-tone elements. Using ray tracing in a realistic plasma model of the inner magnetosphere, we demonstrate that rising-tone elements originating at the magnetic equator propagate to higher latitudes. Upon reflection there, they propagate to lower L-shells and turn into oblique falling tones of reduced power, frequency, and bandwidth relative to their progenitor rising tones. Our results are in good agreement with comprehensive statistical studies of such waves, notably using magnetic field measurements from THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft. Thus, we conclude that the proposed mechanism can be responsible for the generation of weak-amplitude falling-tone chorus emissions.

  19. Geochemistry of Intermediate Olivine-Phyric Shergottite Northwest Africa 6234

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Chin, E.; Day, J. M. D.; Gross, J.; Penniston-Dorland, S. C.; Schwenzer, S. P.; Treiman, A. H.

    2012-03-01

    Here we present major- and trace-element geochemistry, Li-isotope composition and abundance, and Re-Os isotope and highly siderophile element abundance data for the ol-phyric shergottite Northwest Africa 6234.

  20. A reference Earth model for the heat-producing elements and associated geoneutrino flux

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Chubakov, Viacheslav; Mantovani, Fabio; Rudnick, Roberta L.; McDonough, William F.

    2013-06-01

    The recent geoneutrino experimental results from KamLAND (Kamioka Liquid Scintillator Antineutrino Detector) and Borexino detectors reveal the usefulness of analyzing the Earth's geoneutrino flux, as it provides a constraint on the strength of the radiogenic heat power, and this, in turn, provides a test of compositional models of the bulk silicate Earth (BSE). This flux is dependent on the amount and distribution of heat-producing elements (HPEs: U, Th, and K) in the Earth's interior. We have developed a geophysically based, three-dimensional global reference model for the abundances and distributions of HPEs in the BSE. The structure and composition of the outermost portion of the Earth, the crust and underlying lithospheric mantle, are detailed in the reference model; this portion of the Earth has the greatest influence on the geoneutrino fluxes. The reference model combines three existing geophysical models of the global crust and yields an average crustal thickness of 34.4 ± 4.1 km in the continents and 8.0 ± 2.7 km in the oceans, and a total mass (in 1022 kg) of oceanic, continental, and bulk crust is 0.67 ± 0.23, 2.06 ± 0.25, and 2.73 ± 0.48, respectively. In situ seismic velocity provided by CRUST 2.0 allows us to estimate the average composition of the deep continental crust by using new and updated compositional databases for amphibolite and granulite facies rocks in combination with laboratory ultrasonic velocities measurements. An updated xenolithic peridotite database is used to represent the average composition of continental lithospheric mantle. Monte Carlo simulation is used to predict the geoneutrino flux at 16 selected locations and to track the asymmetrical uncertainties of radiogenic heat power due to the log-normal distributions of HPE concentrations in crustal rocks.

  1. Effects of motion of the equatorial plane on the orbital elements of an earth satellite.

    NASA Technical Reports Server (NTRS)

    Kozai, Y.; Kinoshita, H.

    1973-01-01

    Exact differential equations relating the perturbations to satellite orbital elements by the motion of the earth's equatorial plane are derived, and they are solved to second order in precession. The system proposed in a previous paper (Kozai, 1960), in which the inclination and the argument of perigee are referred to the equator of date and the longitude of the ascending node is measured from a fixed point along a fixed plane and then along the equator of date, can still be recommended for precise studies of satellite motion even when the second-order perturbations are taken into account.

  2. Extraction of rare earth elements from hydrate-phosphate precipitates of apatite processing

    NASA Astrophysics Data System (ADS)

    Andropov, M. O.; Anufrieva, A. V.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, AV

    2016-01-01

    The features of extraction of rare earth elements (REE) were considered from hydrate-phosphate precipitates of REE of apatite processing by nitric acid technology. The preliminary purification of nitrate solution of REE from impurities of titanium, aluminum, iron, uranium and thorium was suggested to obtain stable solutions not forming precipitates. Washing the extract was recommended with the evaporated reextract that allows to obtain directly on the cascade of REE extraction the concentrated solutions suitable for the separation into groups by the extraction method. Technical decisions were suggested for the separation of REE in groups without the use of salting-out agent.

  3. Application of solid phase extraction procedures for rare earth elements determination in environmental samples.

    PubMed

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena

    2016-07-01

    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. PMID:27154643

  4. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    NASA Astrophysics Data System (ADS)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  5. Structural environment around Th 4+ in silicate glasses: Implications for the geochemistry of incompatible Me 4+ elements

    NASA Astrophysics Data System (ADS)

    Farges, François

    1991-11-01

    The structural environment around Th 4+ in several silicate glasses containing 1-3 wt% Th 4+ was investigated as a function of melt composition and polymerization using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. One set of glasses had the bulk chemical composition of monticellite (MO), diopside (DI), anorthite (AN), albite (AL), olivine basalt (O-BAS), tholeiitic basalt (T-BAS), calc-alkaline dacite (DAC), and calc-alkaline rhyolite (RHY). A second set of Th-bearing glasses had the bulk AL composition but also contained either 5.5 wt% F or 2000 ppm Cl. In glasses containing 3 wt% Th, Th-coordination varies from 8 ( d[ viiiTh-O]≈ 2.41 ± 0.02 Å in MO and DI) to a mixture of 8 and 6 coordinations ( d[ vi+viiiTh-O]≈ 2.35-2.36 ± 0.02 Å in all other compositions). The presence of viiiTh is related to the thorianite (ThO 2)-saturation in the glass. In AL glasses containing 1 wt% Th, 6-fold coordinated Th dominates ( d[ viTh-O]≈ 2.32 ± 0.02 Å). No clear evidence for F or Cl complexes around Th is observed in any of the halogen-containing glasses. Weak but significant interactions of Th with tetrahedral {Si, Al} network and/or alkali elements are observed, especially in highly polymerized compositions (RHY), in which Th-{Si, AI, Na, K} contributions are detected between 3.25 and 3.50 ± 0.05 Å. These results suggest that, in this set of glasses, Th does not form "complexes" but rather acts as a weak network modifier. The presence of viTh in silicate glasses, an unusual low coordination for Th, suggests that the ionic radius of Th in magmatic systems is lower than previously reported ( r Th = 0.94 Å). The resulting high Th-O bond strength (≈0.7 vu), unknown in minerals, may explain the observed low crystal-melt partition coefficients of Th 4+, i.e., its incompatible character during magmatic differentiation. Increasing polymerization is predicted to favor higher coordination around Th (VIII, IX) as a result of a shortage of NBO to which Th preferentially bonds. Hence, dramatic changes in the crystal chemistry of Th are predicted, i.e., the incorporation of Th in minerals. Comparison with U 4+ suggests that viTh is less abundant in similar glass/melt systems, compared with viU. This may explain the U/Th fractionation often observed in zircon, as well as the preferential incorporation of Th in accessory minerals containing large sites in which Th 4+ can be substituted (e.g., the Ca 2+ site in titanite, apatite, or zirkelite).

  6. An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Meng, Yong; Wang, Xueting; Yin, Dulin; Sillanpää, Mika

    2016-03-01

    The separation and recovery of Rare earth elements (REEs) from diluted aqueous streams has attracted great attention in recent years because of ever-increasing REEs demand. In this study, a green synthesized EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) biopolymer was prepared and employed in adsorption of aqueous REEs, such as La(III), Ce(III), and Eu(III). EDTA acts not only as cross-linker but also as coordination site for binding of REEs. The adsorption properties for the adsorption of REEs by varying experimental conditions were carried out by batch tests. The kinetics results revealed that the surface chemical sorption and the external film diffusion were the rate-determining steps of the adsorption process. The obtained maximum adsorption capacities of EDTA-β-CD were 0.343, 0.353, and 0.365mmolg(-1) for La(III), Ce(III) and Eu(III), respectively. Importantly, the isotherms fitted better to Langmuir than Freundlich and Sips models, suggesting a homogenous adsorption surface for REEs on the adsorbent. Moreover, the multi-component adsorption, which was modeled by extended Sips isotherms, revealed adsorbent's selectivity to Eu(III). More significantly, the successful recoveries of the studied ions from tap water and seawater samples makes EDTA-β-CD a promising sorbent for the preconcentration of REEs from diluted aqueous streams. PMID:26674238

  7. Three dimensional analysis of unconfined seepage in earth dams by the weak form quadrature element method

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zhong, Hongzhi

    2016-02-01

    It remains challenging to determine the unknown free surface in three dimensional unconfined seepage in earth dams. A number of iterations are frequently required which make the problem computationally expensive. In the present research, a weak form quadrature element formulation is presented for three dimensional analysis of unconfined seepage which is an extension of the recently established method for two dimensional seepage problems. "Free points" are introduced by the interpolation of which the free surfaces are smoothly approximated. Grid lines are constructed in the element and the "free points" are confined to the lines when updated. An interpolatory scheme for locating the exit points is proposed. Formulations and procedures of the method are given in detail. Results of numerical examples are compared with available analytical solutions and numerical solutions in the literature and agreement is reached demonstrating the efficiency and reliability of the present formulation.

  8. Partitioning of light lithophile elements during basalt eruptions on Earth and application to Martian shergottites

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie

    2015-02-01

    An enigmatic record of light lithophile element (LLE) zoning in pyroxenes in basaltic shergottite meteorites, whereby LLE concentrations decrease dramatically from the cores to the rims, has been interpreted as being due to partitioning of LLE into a hydrous vapor during magma ascent to the surface on Mars. These trends are used as evidence that Martian basaltic melts are water-rich (McSween et al., 2001). Lithium and boron are light lithophile elements (LLE) that partition into volcanic minerals and into vapor from silicate melts, making them potential tracers of degassing processes during magma ascent to the surface of Earth and of other planets. While LLE degassing behavior is relatively well understood for silica-rich melts, where water and LLE concentrations are relatively high, very little data exists for LLE abundance, heterogeneity and degassing in basaltic melts. The lack of data hampers interpretation of the trends in the shergottite meteorites. Through a geochemical study of LLE, volatile and trace elements in olivine-hosted melt inclusions from Kilauea Volcano, Hawaii, it can be demonstrated that lithium behaves similarly to the light to middle rare Earth elements during melting, magma mixing and fractionation. Considerable heterogeneity in lithium and boron is inherited from mantle-derived primary melts, which is dominant over the fractionation and degassing signal. Lithium and boron are only very weakly volatile in basaltic melt erupted from Kilauea Volcano, with vapor-melt partition coefficients <0.1. Degassing of LLE is further inhibited at high temperatures. Pyroxene and associated melt inclusion LLE concentrations from a range of volcanoes are used to quantify lithium pyroxene-melt partition coefficients, which correlate negatively with melt H2O content, ranging from 0.13 at low water contents to <0.08 at H2O contents >4 wt%. The observed terrestrial LLE partitioning behavior is extrapolated to Martian primitive melts through modeling. The zoning observed in the shergottite pyroxenes is only consistent with degassing of LLE from a Martian melt near its liquidus temperature if the vapor-melt partition coefficient was an order of magnitude larger than observed on Earth. The range in LLE and trace elements observed in shergottite pyroxenes are instead consistent with concurrent mixing and fractionation of heterogeneous melts from the mantle.

  9. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth

    NASA Astrophysics Data System (ADS)

    Martinec, Zden?k.

    2000-07-01

    We present a spectral-finite element approach to the forward modelling of the visco-elastic response of a spherical earth with a 3-D viscosity structure to a surface mass load. It represents an alternative to a variety of numerical methods for 2-D and 3-D postglacial rebound modelling used recently (the finite element method, the perturbation method, the semi-analytical approach and the spectral-finite difference method). For a fixed time, the problem is reformulated in a weak sense and parametrized by tensor surface spherical harmonics in the angular direction, whereas piecewise linear finite elements span the radial direction. The solution is obtained with the Galerkin method, which leads to solving a system of linear algebraic equations. The time dependence of the problem is treated directly in the time domain (not in the Laplace domain) as a time evolution problem. The time derivative in the constitutive equation for a Maxwell viscoelastic body is approximated by the explicit Euler time-differencing scheme, which leads to time splitting of the stress tensor. The spectral-finite element method and the associated numerical code have been tested for 2-D (azimuthally symmetric) eccentrically nested spheres models, and good agreement has been obtained.

  10. Spectral-finite element approach to three-dimensional electromagnetic induction in a spherical earth

    NASA Astrophysics Data System (ADS)

    Martinec, Zden?k

    1999-01-01

    We present a spectral-finite element approach to the forward problem of 3-Dglobal-scale electromagnetic induction in a heterogeneous conducting sphere excited by an external source current. It represents an alternative to a variety of numerical methods for 3-D global-scale electromagnetic induction modelling developed recently (the perturbation expansion approach and the finite element and finite difference schemes). Two possible formulations of electromagnetic induction boundary-value problem are introduced. The boundary data used in the Dirichlet boundary-value problem consist of the horizontal components of the total magnetic induction measured on the Earth's surface, whereas the mixed boundary-value problem makes use of the scalar spherical harmonic expansion coefficients of the normal component of total magnetic induction in a near-space atmosphere. The latter problem is then reformulated in a weak sense and parametrized by vector spherical harmonics in the angular direction, whereas piecewise linear finite elements span the radial direction. The solution is searched for using the Galerkin method, which leads to solving a system of linear algebraic equations. We employ the biconjugate gradient method with preconditioning to solve the Galerkin system numerically. Particular care is devoted to the construction of a preconditioner that stabilizes the solution and speeds up the convergence of iterations. The spectral-finite element method and associated numerical code have been tested for 2-D (azimuthally symmetric) and 3-D (off-axis) eccentrically nested spheres models, and good agreement has been obtained.

  11. Rare earth elements in soils from selected areas on the Island of Hawaii

    SciTech Connect

    Barnard, W.M.; Halbig, J.B.

    1985-07-01

    Fifty soil samples for the wet, windward (east) side and dry, leeward (west) side of the Island of Hawaii were analyzed for La, Ce, Sm, Eu, Yb, and Lu by neutron activation/gamma-ray spectroscopic analysis. Data on concentrations in each sample are listed and analyzed statistically for soil samples collected from the western slope of Kohala Mountain, the western coastal plain of Mauna Kea, and the Northeastern coastal plain of Maunal Loa. Rare earth element (REE) concentrations are two to six times greater in soils from the western, dry side of the island, and good statistical correlation is exhibited among the samples for pairs of individual REEs. In the organic-rich soils of the east side, correlations are poor but are markedly improved when sample weights are adjusted for weight due to organic matter and water in soil colloids. If the mean compositions of selected rock samples from the Hawaii Reference Suite are representative of the compositions of the parent materials, REEs in the soils are moderately enriched (up to two times, based on oven-dry weights). Rare earth element concentrations in the island's western soils are as much as two times greater than the mean REE values of common sedimentary rocks worldwide; however, they are well within the concentration ranges of soils of continental origin. The eastern soils tend to have less La and Ce, but similar amounts of the middle and heavy REEs.

  12. While China's dominance in rare earths dips, concerns remain about these and other elements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    China's dominance in the production of rare earth elements (REEs) peaked with that nation producing 97% of them in 2010; this number already has dipped to 90% in 2012 as mines in other nations are coming online, according to REE expert Karl Gschneidner Jr., a professor at Iowa State University's Ames Laboratory. Chinese production could drop to 60% by 2014, with production increasing at mines in the United States and other countries, he said. However, this reduction in China's share of REE production does not signal an end to the production crisis in REEs and other critical minerals, Gschneidner and others noted during a 1 May panel discussion on critical materials shortages at the AGU Science Policy Conference in Washington, D. C. REEs are a group of 17 chemically similar metallic elements used in a variety of electronic, optical, magnetic, and catalytic applications, and despite their name, they are relatively plentiful in the Earth's crust. China's control of known REE reserves has dropped from 75% in 1975 to 30.9% in 2012, with other regions also having large reserves, including the Commonwealth of Independent States (some former Soviet Republic states), the United States, and Australia, according to Gschneidner. Critical minerals are mineral commodities that are particularly important for a nation's economy or national defense that could potentially face supply disruptions.

  13. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?

    NASA Astrophysics Data System (ADS)

    Bright, Camomilia A.; Cruse, Anna M.; Lyons, Timothy W.; MacLeod, Kenneth G.; Glascock, Michael D.; Ethington, Raymond L.

    2009-03-01

    Past workers have used rare-earth element patterns recorded in biogenic apatite as proxies for original seawater chemistry. To explore the potency of this approach, we analyzed Pennsylvanian conodonts from limestones, gray shales, and black shales of the Fort Scott and Pawnee formations (Desmoinesian) and Swope and Dennis formations (Missourian) in Kansas, Missouri, and Iowa, U.S.A. Analysis of individual platform conodonts from seven taxa using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed a consistent enrichment in the middle rare-earth elements (MREE). Analogous MREE enrichment has been observed in authigenic apatite and bulk samples of phosphate-rich black shales from the same formations. Importantly, however, phosphate-depleted shales intimately associated with the P-rich intervals are relatively depleted in MREE. These antithetic patterns argue convincingly for secondary migration from the bulk sediment into the phosphate, and the extent of MREE enrichment in the conodonts is correlated positively with the total REE content. MREE enrichment in conodonts does not vary systematically as a function of lithology, stratigraphic level, conodont genus, geographic location, or with independent estimates of paleoredox conditions in the bottom waters. Collectively, these results argue for postmortem (diagenetic) REE uptake resulting in a pronounced (and progressive) MREE enrichment. Any cerium anomalies, if initially present, were masked by diagenetic uptake of REE. Paleoenvironmental interpretations of conodont REE, particularly for samples exhibiting MREE enrichment, should therefore be viewed with caution.

  14. Rare earth element components in atmospheric particulates in the Bayan Obo mine region.

    PubMed

    Wang, Lingqing; Liang, Tao; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM10) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m(3), and those for PM10 were 42.8 and 68.9 ng/m(3), in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM10 and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM10 were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N), Gd(N)/Yb(N)). PMID:24657942

  15. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    PubMed Central

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth–Moon dynamical system. PMID:19001263

  16. Consistent patterns of rare earth element distribution in accessory minerals from rocks of mafic-ultramafic complexes

    NASA Astrophysics Data System (ADS)

    Lesnov, Felix Petrovich

    2013-03-01

    This paper summarizes analytical data accumulated in the world literature and other materials about the regularities of the REE distribution in minerals contained in ultramafic and mafic rocks as accessory phases. These minerals are tentatively divided into two groups. The first includes garnets, zircons, apatites and perovskites, which can accumulate increased amounts of REE in their structure. The second consists of minerals whose structure can accumulate only limited contents of these trace elements. These are chrome-spinels, ilmenites, and micas. These minerals, in respect of REE geochemistry, are studied to a varying degree because of the different levels of accumulations of these elements, different degrees of occurrence in rocks, tiny sizes of their grains and other reasons. The analytical database formed on their basis includes about 600 original analyses. The overwhelming majority of presently available data on REE geochemistry in accessory minerals from ultramafic and mafic rocks have been published only in the recent 15 years. The studies became possible due to the development and introduction of new highly sensible microprobe analyses allowing detection of REE and many other trace elements in minerals grains directly in thin sections. The greatest numbers of these analyses were performed for garnets and zircons, fewer for apatites, and the fewest for chrome-spinels, ilmenites, micas, and perovskites. In general, the regularities of REE distribution in these minerals from ultramafic and mafic rocks are less studied compared to the rock-forming minerals from ultramafic and mafic rocks. Among the analytical methods, which were used to study the REE composition of accessory minerals, the most efficient was the mass-spectrometry with inductively coupled plasma (ICP-MS).

  17. The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)

    NASA Astrophysics Data System (ADS)

    Bracken, Reviewed By Jeffrey D.

    1999-04-01

    Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for both students and educators.

  18. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  19. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe-Ni, whereas the corresponding highly siderophile elements remained sequestered by the surviving metal. The highly siderophile elements may have been introduced by a population of ~103 large (~1022 g) planetisimals, similar to those forming the lunar mare basins. ?? 1981.

  20. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. PMID:25278442

  1. Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Heim, Christine; Simon, Klaus; Ionescu, Danny; Reimer, Andreas; De Beer, Dirk; Quéric, Nadia-Valérie; Reitner, Joachim; Thiel, Volker

    2015-02-01

    Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE). TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y) contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as microbial biosignatures.

  2. Transition region of the earth's upper mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Bass, J. D.

    1986-01-01

    The chemistry of the earth's mantle is discussed using data from cosmochemistry, geochemistry, petrology, seismology, and mineral physics. The chondritic earth, the upper mantle and the 400-km discontinuity, the transition region, lower mantle mineralogy, and surface wave tomography are examined. Three main issues are addressed: (1) whether the mantle is homogeneous in composition or chemically stratified, (2) whether the major element chemistry of the mantle is more similar to upper mantle peridotites or to chondrites, and (3) the nature of the composition of the source region of basalts erupted at midocean ridges.

  3. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic-Mediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM 10 trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Pérez, Noemi; Querol, Xavier; Amato, Fulvio; Alastuey, Andrés; Bhatia, Ravinder; Spiro, Baruch; Hanvey, Melanie; Gibbons, Wes

    2010-07-01

    The geochemistry of PM 10 filter samples collected at sea during the Scholar Ship Atlantic-Mediterranean 2008 research cruise reveals a constantly changing compositional mix of pollutants into the marine atmosphere. Source apportionment modelling using Positive Matrix Factorization identifies North African desert dust, sea spray, secondary inorganic aerosols, metalliferous carbon, and V-Ni-bearing combustion particles as the main PM 10 factors/sources. The least contaminated samples show an upper continental crust composition (UCC)-normalised geochemistry influenced by seawater chemistry, with marked depletions in Rb, Th and the lighter lanthanoid elements, whereas the arrival of desert dust intrusions imposes a more upper crustal signature enriched in "geological" elements such as Si, Al, Ti, Rb, Li and Sc. Superimposed on these natural background aerosol loadings are anthropogenic metal aerosols (e.g. Cu, Zn, Pb, V, and Mn) which allow identification of pollution sources such as fossil fuel combustion, biomass burning, metalliferous industries, and urban-industrial ports. A particularly sensitive tracer is La/Ce, which rises in response to contamination from coastal FCC oil refineries. The Scholar Ship database allows us to recognise seaborne pollution sourced from NW Africa, the Cape Verde and Canary islands, and European cities and industrial complexes, plumes which in extreme cases can produce a downwind deterioration in marine air quality comparable to that seen in many cities, and can persist hundreds of kilometres from land.

  4. Cracking the Code of Soil Genesis. The Early Role of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Maier, R. M.; Huxman, T. E.; Chorover, J.

    2014-12-01

    Soil is terrestrial life support system. Its genesis involves tight interactions between biota and mineral surfaces that mobilize structural elements into biogeochemical cycles. Of all chemical elements rare earth elements (REE) are a group of 16 non-nutrient elements of unusual geochemical similarity and present in all components of the surface environment. While much is known about the role of major nutrients in soil development we lack vital understanding of how early biotic colonization affects more conservative elements such as REE. A highly controlled experiment was set up at University of Arizona's Biosphere-2 that tested the effect of 4 biological treatments, incorporating a combination of microbe, grass, mycorrhiza and uninoculated control on REE leaching and uptake in 4 bedrock substrates: basalt, rhyolite, granite and schist. Generally the response of REE to biota presence was synergistic. Variation in total bedrock chemistry could explain major trends in pore water REE. There was a fast transition from chemistry-dominated to a biota dominated environment in the first 3-4 months of inoculation/seeding which translated into increase in REE signal over time. Relative REE abundances in water were generally reflected in plant concentrations, particularly in root, implying that below ground biomass is the main sync of REE in the ecosystem. Mycorrhiza effect on REE uptake in plant organs was significant and increased with infection rates. Presence of different biota translated into subtle differences in REE release, reveling potential biosignatures of biolota-rock colonization. The results thus bring fundamental insight into early stages non-nutrient cycle and soil genesis.

  5. Earth Science Information System (ESIS)

    USGS Publications Warehouse

    U.S. Geological Survey

    1982-01-01

    The Earth Science Information System (ESIS) was developed in 1981 by the U.S. Geological Survey's Office of the Data Administrator. ESIS serves as a comprehensive data management facility designed to support the coordination, integration, and standardization of scientific, technical, and bibliographic data of the U.S. Geological Survey (USGS). ESIS provides, through an online interactive computer system, referral to information about USGS data bases, data elements which are fields in the records of data bases, and systems. The data bases contain information about many subjects from several scientific disciplines such as: geology, geophysics, geochemistry, hydrology, cartography, oceanography, geography, minerals exploration and conservation, and satellite data sensing.

  6. Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland.

    PubMed

    Mleczek, Mirosław; Niedzielski, Przemysław; Kalač, Pavel; Siwulski, Marek; Rzymski, Piotr; Gąsecka, Monika

    2016-01-01

    Due to limited data-describing abilities of mushrooms to accumulate platinum group elements (PGEs) and rare-earth elements (REEs), the aim of this study was to determine, by inductively coupled plasma optical emission spectrometry followed by microwave-assisted sample digestion by nitric acid, the content of these elements in 20 mushroom species (10 above ground and 10 growing on wood), mostly edible, collected near a busy trunk road. The highest content of PGEs in above-ground mushroom species was observed in Lepista gilva and Suillus bovinus fruit bodies (0.38 ± 0.05 and 0.37 ± 0.03 mg kg(-1) DW, respectively), while in mushrooms growing on wood, the highest content was observed in Pleurotus ostreatus (0.35 ± 0.04 mg kg(-1) DW). The mean content of PGEs for both these groups was 0.23 ± 0.08 and 0.26 ± 0.07 mg kg(-1) DW, respectively. The highest content of REEs in Suillus luteus and Tricholoma equestra was 5.03 ± 0.50 and 2.18 ± 0.56 mg kg(-1) DW, respectively, but within mushrooms growing on wood in Ganoderma applanatum fruiting bodies it was 4.19 ± 0.78 mg kg(-1) DW. Mean contents of REEs were 1.39 ± 1.21 and 1.61 ± 0.97 mg kg(-1) DW in above-ground species and species growing on wood, respectively. Generally, the group of mushroom species growing on wood was capable of slightly higher accumulation of both REEs and PGEs. No limits have been established for both the groups until now. PMID:26515437

  7. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  8. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon - Evidence from sediment magnetism, trace-element geochemistry, and pollen

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.; Adam, D.P.; Drexler, J.; Sarna-Wojcicki, A. M.; Whitney, G.C.

    1996-01-01

    Comparison of systematic variations in sediment magnetic properties to changes in pollen assemblages in middle Pleistocene lake sediments from Buck Lake indicates that the magnetic properties are sensitive to changes in climate. Buck Lake is located in southern Oregon just east of the crest of the Cascade Range. Lacustrine sediments, from 5.2 to 19.4 m in depth in core, contain tephra layers with ages of ???300-400 ka at 9.5 m and ???400-470 ka at 19.9 m. In these sediments magnetic properties reflect the absolute amount and relative abundances of detrital Fe-oxide minerals, titanomagnetite and hematite. The lacustrine section is divided into four zones on the basis of magnetic properties. Two zones (19.4-17.4 m and 14.5-10.3 m) of high magnetic susceptibility contain abundant Fe oxides and correspond closely to pollen zones that are indicative of cold, dry environments. Two low-susceptibility zones (17.4-14.5 m and 10.3-5.3 m) contain lesser amounts of Fe oxides and largely coincide with zones of warm-climate pollen. Transitions from cold to warm climate based on pollen are preceded by sharp changes in magnetic properties. This relation suggests that land-surface processes responded to these climate changes more rapidly than did changes in vegetation as indicated by pollen frequencies. Magnetic properties have been affected by three factors: (1) dissolution of Fe oxides, (2) variation in heavy-mineral content, and (3) variation in abundance of fresh volcanic rock fragments. Trace-element geochemistry, employing Fe and the immobile elements Ti and Zr, is utilized to detect postdepositional dissolution of magnetic minerals that has affected the magnitude of magnetic properties with little effect on the pattern of magnetic-property variation. Comparison of Ti and Zr values, proxies for heavy-mineral content, to magnetic properties demonstrates that part of the variation in the amount of magnetite and nearly all of the variation in the amount of hematite are due to changes in heavy-mineral content. Variation in the quantity of fresh volcanic rock fragments is the other source of change in magnetite content. Magnetic-property variations probably arise primarily from changes in peak runoff. At low to moderate flows magnetic properties reflect only the quantities of heavy minerals derived from soil and highly weathered rock in the catchment. At high flows, however, fresh volcanic rock fragments may be produced by breaking of pebbles and cobbles, and such fragments greatly increase the magnetite content of the resulting sediment. Climatically controlled factors that would affect peak runoff levels include the accumulation and subsequent melting of winter snow pack, the seasonality of precipitation, and the degree of vegetation cover of the land surface. Our results do not distinguish amont the possible contributions of these disparate factors.

  9. 'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Mostefaoui, S.; Meibom, A.; Selo, M.; McKay, D. S.; Robert, F.

    2006-01-01

    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia.

  10. Grain Boundary Segregation of Rare-Earth Elements in Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Robson, Joseph D.; Haigh, Sarah J.; Davis, Bruce; Griffiths, David

    2016-01-01

    Small additions of rare-earth (RE) elements have been shown to have a powerful effect in modifying the texture of wrought magnesium alloys, giving a highly beneficial effect in improving their formability. Recent work has shown that segregation of RE atoms to grain boundaries is important in producing this texture change. In this work, two Mg-RE systems have been studied Mg-Y and Mg-Nd using high-resolution scanning transmission electron microscopy that permits both imaging and elemental analysis with a spatial resolution of better than 0.1 nm. The Mg-Y alloy, where the solubility and level of addition are relatively high, showed the RE texture change effect. This was accompanied by clustering of Y on the grain boundaries, consistent with previous studies of the Mg-Gd system. The Mg-Nd alloy, where the solubility and level of addition are relatively low, showed no texture change and no segregation. In this case, impurity elements binding the RE into insoluble particles, rendering it ineffective. The results are analyzed by modifying a previous model for the solute drag effect on boundaries expected due to the RE additions. This predicts that both Gd and Y will strongly inhibit boundary motion, with Gd being approximately twice as effective as Y.

  11. The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3)

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Alard, Olivier; Gounelle, Matthieu

    2015-09-01

    We report in situ LA-ICP-MS trace element analyses of silicate phases in olivine-bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance of opaque nodules found outside them in EH chondrites. In two chondrules, olivine and enstatite exhibit negatively sloped REE patterns, which may be an extreme manifestation of a general phenomenon (possibly linked to near-liquidus partitioning) underlying the overabundance of light REE observed in most chondrule silicates relative to equilibrium predictions. The silicate phases in one of these two chondrules show complementary Eu, Yb, and Sm anomalies providing direct evidence for the postulated occurrence of the divalent state for these elements at some stage in the formation reservoir of enstatite chondrites. Our work supports the idea that the peculiarities of enstatite chondrites may not require a condensation sequence at high C/O ratios as has long been believed.

  12. Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Blichert-Toft, J.; Touboul, M.; Walker, R. J.; Byerly, G. R.; Nisbet, E. G.; Anhaeusser, C. R.

    2013-05-01

    Major, minor, and lithophile trace element abundances and Nd and Hf isotope systematics are reported for two sets of remarkably fresh, by Archean standards, samples of komatiitic lavas from the 3.48 Ga Komati and the 3.27 Ga Weltevreden Formations of the Barberton Greenstone Belt (BGB) in South Africa. These data are used to place new constraints on the thermal history of the early Archean mantle, on the timing of its differentiation, and on the origin and chemical nature of early mantle reservoirs and their evolution through time. Projected moderate to strong depletions of highly incompatible lithophile trace elements and water in the mantle sources of both komatiite systems, combined with the partitioning behavior of V during lava differentiation, are consistent with anhydrous conditions during generation of the komatiite magmas. Komati and Weltevreden lavas are inferred to have erupted with temperatures of ∼1600 °C, and, thus, represent the hottest known lavas on Earth. The calculated mantle potential temperatures of ∼1800 °C for both komatiite systems are 150-200 °C higher than those of contemporary ambient mantle. Combined, these observations are consistent with the origin of these BGB komatiite magmas in mantle plumes in the lower mantle. New Sm-Nd and Lu-Hf isotopic data allow precise determination of initial ε143Nd = +0.46 ± 0.10 and +0.50 ± 0.11 and initial ε176Hf = +1.9 ± 0.3 and +4.7 ± 0.8 for the Komati and the Weltevreden system komatiites, respectively. These positive initial values reflect prior fractionation of Sm/Nd and Lu/Hf in the mantle early in Earth history. Conversely, μ142Nd values are 0.0 ± 2.4 and +2.2 ± 4.1 for the Komati and the Weltevreden systems, respectively. These values overlap, within uncertainties, those of modern terrestrial rocks, thus, limiting the magnitudes of possible Sm/Nd fractionations generated by early Earth processes in the sources of these rocks. Combined 142,143Nd and Hf isotope and lithophile trace element systematics are consistent with formation and long-term isolation of deep-seated mantle domains with fractionated Sm/Nd and Lu/Hf at ca. 4400 Ma. These domains were likely generated as a result of crystallization of a primordial magma ocean, with Mg-perovskite and minor Ca-perovskite acting as fractionating phases. The inferred mantle domains were evidently mixed away by 2.7 Ga on the scale of mantle reservoirs sampled by late Archean komatiite lavas emplaced worldwide.

  13. Study on the electrochemical extraction of rare earth elements from FLINAK

    SciTech Connect

    Long, Dewu; Huang, Wei; Jiang, Feng; Tian, Lifang; Li, Qingnuan

    2013-07-01

    Electrochemical behaviors of rare earth elements, such as NdF{sub 3}, GdF{sub 3}, SmF{sub 3}, YF{sub 3}, and EuF{sub 3}, were investigated in a LiF-NaF-KF (46.5-11.5-42.0 mol %, FLINAK, m. p. 454 Celsius degrees) solvent. The results indicated that it is possible to extract Nd, Gd and Y directly by electrochemical deposition since the reductions of those cations to metal are located in the electrochemical window of the FLINAK eutectic, while the reductions of Sm and Eu metal are out of the range of the medium. Subsequently electro-deposition of Nd was carried out with two kinds of cathodic materials, namely, an inert cathode, Pt, and a reactive electrode, Cu. The collected products were characterized by various techniques revealing that a Nd-rich product was obtained. (authors)

  14. Rare earths, other trace elements and iron in Luna 20 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Jacobs, J. W.; Haskin, L.; Haskin, A.

    1973-01-01

    The results of the analysis by neutron activation of six samples from the Luna 20 mission and one sample of less than 1 mm fines from Apollo 16 are reported. The concentrations of the rare-earth elements (REE) in the samples of fines from Luna 20 and Apollo 16 are less than those found for corresponding materials from the mare areas but a negative Eu anomaly is still present. The concentrations of the REE in fines from Luna 20 are only about two-thirds as great as in the sample of Apollo 16 fines, but the concentration of Co, Sc and Cr are greater by factors ranging from 1.5 to 2.3.

  15. The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements

    NASA Technical Reports Server (NTRS)

    Grutzeck, M.; Kridelbaugh, S.; Weill, D.

    1974-01-01

    Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.

  16. Investigation of rare-earth and associated elements, Zane Hills Pluton, Northwestern Alaska. Open File Report

    SciTech Connect

    Barker, J.C.

    1991-01-01

    Unverified reports of rare earth element (REE) concentrations in gold placers and radioactive mineral prospects in the Zane Hills were investigated by the U.S. Bureau of Mines as part of the Alaska critical minerals program. The Bureau mapped and sampled all of the reported or suspected REE occurrences. Dredge concentrates contain abundant uranothorianite, a mineral species which incorporates cerium subgroup REE. Bostonite dikes occur in conjunction with a multiphased zoned alkalic intrusion, however, no significant REE concentrations were found. The Zane Hills exhibit attractive exploration targets for uranium deposits, primarily in a sedimentary form. Gold may be found peripheral to the pluton in both placer and lode deposits. Resource potential of REE, however, appears limited to a placer by-product of REE-Zr-Ti that is recoverable only during large scale gold placer mining. Placer exploration of the lower Wheeler and Dakli Creeks is suggested.

  17. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  18. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    NASA Astrophysics Data System (ADS)

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-01

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  19. Anthropogenic rare earth element fluxes into floodplains: Coupling between geochemical monitoring and hydrodynamic sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hissler, Christophe; Hostache, Renaud; Iffly, Jean François; Pfister, Laurent; Stille, Peter

    2015-09-01

    As all rare earth elements (REEs) have an increasingly important role in high tech industries, they are now recognized as emergent pollutants in river systems impacted by anthropogenic activity. Over the past 20 years, significant anthropogenic contributions were reported for Gd, La and Sm, and we may expect that REE contamination in rivers is to further increase in a near future. Despite the work done to assess the environmental impact of REE pollutions in larger river systems, we are still lacking information on the dynamics of these anthropogenic compounds in relation to hydrological changes. Here, we observed for the first time particulate Ce originating from local industrial activities in Luxembourg and we quantified the anthropogenic contribution to the REE fluxes at the river basin scale during a single flood event.

  20. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  1. Lagrangian finite element analysis of the penetration of earth penetrating weapons

    SciTech Connect

    Rosinsky, R.W.

    1985-11-22

    Buried targets, such as hardened missile silos, that are resistant to the effects of air blast from above-ground or surface-burst explosions may be vulnerable to the effects of ground motion produced by nearby underground explosions. An earth penetrating weapon (EPW) is being developed to exploit this phenomena. To design the EPW system, loads on the weapon due to the penetration event must be determined. This paper presents the methodology for performing Lagrangian finite-element analysis of the penetration event in two and three dimensions. In order to describe the methodology, results from analyses done for a particular EPW impacting a particular target medium are presented. The results for impacts with nonzero angles of incidence and nonzero angles of attack show the importance of being able to calculate three dimensional penetration loads. 62 figs.

  2. Origin of middle rare earth element enrichment in acid mine drainage-impacted areas.

    PubMed

    Grawunder, Anja; Merten, Dirk; Büchel, Georg

    2014-01-01

    The commonly observed enrichment of middle rare earth elements (MREE) in water sampled in acid mine drainage (AMD)-impacted areas was found to be the result of preferential release from the widespread mineral pyrite (FeS2). Three different mining-impacted sites in Europe were sampled for water, and various pyrite samples were used in batch experiments with diluted sulphuric acid simulating AMD-impacted water with high sulphate concentration and high acidity. All water samples independent on their origin from groundwater, creek water or lake water as well as on the surrounding rock types showed MREE enrichment. Also the pyrite samples showed MREE enrichment in the respective acidic leachate but not always in their total contents indicating a process-controlled release. It is discussed that most probably complexation to sulphite (SO3 (2-)) or another intermediate S-species during pyrite oxidation is the reason for the MREE enrichment in the normalized REE patterns. PMID:24385183

  3. Study on the complex site of L-tyrosine with rare-earth element Eu3+.

    PubMed

    Xu, Hao; Chen, Liang

    2003-03-01

    Amino acids are the primary units of proteins and play an important role in human life. The coordinate of L-tyrosine with rare-earth element Eu(3+) was investigated in solution by ultraviolet and was proved the molar ratio is 1:2. Then the solid complex was prepared by coprecipitation method. The complex was characterized by several analytical techniques, including Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry, Scanning Electron Microscopy, 1H-NMR and 13C-NMR. Based on these data, we found that pentatomic ring was formed by binding with N atom in group of amino (-NH(2)) and O atom in group of carboxyl (-COOH). PMID:12609613

  4. Site-selective Mott transition in rare-earth-element nickelates.

    PubMed

    Park, Hyowon; Millis, Andrew J; Marianetti, Chris A

    2012-10-12

    A combination of density functional and dynamical mean field theory calculations are used to show that the remarkable metal-insulator transition in the rare-earth-element nickelate perovskites arises from a site-selective Mott phase, in which the d electrons on half of the Ni ions are localized to form a fluctuating moment while the d electrons on other Ni ions form a singlet with holes on the surrounding oxygen ions. The calculation reproduces key features observed in the nickelate materials, including an insulating gap in the paramagnetic state, a strong variation of static magnetic moments among Ni sites and an absence of charge order. A connection between structure and insulating behavior is documented. The site-selective Mott transition may be a more broadly applicable concept in the description of correlated materials. PMID:23102343

  5. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa

    NASA Astrophysics Data System (ADS)

    Alexander, Brian W.; Bau, Michael; Andersson, Per; Dulski, Peter

    2008-01-01

    The chemical composition of surface water in the photic zone of the Precambrian ocean is almost exclusively known from studies of stromatolitic carbonates, while banded iron formations (IFs) have provided information on the composition of deeper waters. Here we discuss the trace element and Nd isotope geochemistry of very shallow-water IF from the Pongola Supergroup, South Africa, to gain a better understanding of solute sources to Mesoarchean shallow coastal seawater. The Pongola Supergroup formed on the stable margin of the Kaapvaal craton ∼2.9 Ga ago and contains banded iron formations (IFs) that represent the oldest documented Superior-type iron formations. The IFs are near-shore, pure chemical sediments, and shale-normalized rare earth and yttrium distributions (REYSN) exhibit positive LaSN, GdSN, and YSN anomalies, which are typical features of marine waters throughout the Archean and Proterozoic. The marine origin of these samples is further supported by super-chondritic Y/Ho ratios (average Y/Ho = 42). Relative to older Isua IFs (3.7 Ga) from Greenland, and younger Kuruman IFs (2.5 Ga) also from South Africa, the Pongola IFs are depleted in heavy rare earth elements (HREE), and appear to record variations in solute fluxes related to sea level rise and fall. Sm-Nd isotopes were used to identify potential sediment and solute sources within pongola shales and IFs. The ɛNd(t) for Pongola shales ranges from -2.7 to -4.2, and ɛNd(t) values for the coeval iron-formation samples (range -1.9 to -4.3) are generally indistinguishable from those of the shales, although two IF samples display ɛNd(t) as low as -8.1 and -10.9. The similarity in Nd isotope signatures between the shale and iron-formation suggests that mantle-derived REY were not a significant Nd source within the Pongola depositional environment, though the presence of positive Eu anomalies in the IF samples indicates that high-T hydrothermal input did contribute to their REY signature. Isotopic mass balance calculations indicate that most (⩾72%) of the Nd in these seawater precipitates was derived from continental sources. If previous models of Fe-Nd distributions in Archean IFs are applied, then the Pongola IFs suggest that continental fluxes of Fe to Archean seawater were significantly greater than are generally considered.

  6. Rare earth element complexation by PO sub 4 sup 3 minus ions in aqueous solution

    SciTech Connect

    Byrne, R.H.; Lee, Jong Hyeon; Bingler, L.S. )

    1991-10-01

    Complexation of trivalent rare earths by PO{sub 4}{sup 3{minus}} ions has been assessed at t = 25C by examining the influence of aqueous phosphate concentrations on the distributions of {sup 144}Ce and {sup 153}Gd between 0.68 molar NaClO{sub 4} and tributyl phosphate (TBP). The authors estimates of these formation constants at zero ionic strength are approximately seven to eight orders of magnitude lower than previously reported estimates for lanthanide and actinide PO{sub 4}{sup 3{minus}} complexation. Linear free energy relationships relating the complexation of Ca{sup 2+} and lanthanides (Ln{sup 3+}) by a variety of organic ligands, in conjunction with previous direct observations of CaPO{sub 4}{sup {minus}} formation, are consistent with the experimentally derived CePO{sub 4}{sup 0} and GdPO{sub 4}{sup 0} formation constants reported in this work. Gadolinium speciation calculations indicate that the PO{sub 4}{sup 3{minus}} ion can effectively compete with the CO{sub 3}{sup 2{minus}} ion for free Gd{sup 3+} in model groundwater at pH 7-9. Rare earth element phosphate complexation is a significant process in natural freshwater systems which are neutral to mildly basic when the concentration ratio (HPO{sub 4}{sup 2{minus}})/(HCO{sub 3}{sup {minus}}) is greater than approximately 1 {times} 10{sup 3{minus}}.

  7. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGESBeta

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  8. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation. PMID:26836847

  9. Quantitative estimation of concentrations of dissolved rare earth elements using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Dai, Jingjing; Wang, Denghong; Wang, Runsheng; Chen, Zhenghui

    2013-01-01

    Characteristic spectral parameters such as the wavelength and depth of absorption bands are widely used to quantitatively estimate the composition of samples from hyperspectral reflectance data in soil science, mineralogy as well as vegetation study. However, little research has been conducted on the spectral characteristic of rare earth elements (REE) and their relationship with chemical composition of aqueous solutions. Reflectance spectra of ore leachate solutions and contaminated stream water from a few REE mines in the Jiangxi Province, China, are studied for the first time in this work. The results demonstrate that the six diagnostic absorption features of the rare earths are recognized in visible and near-infrared wavelengths at 574, 790, 736, 520, 861, and 443 nm. The intensity of each of these six absorption bands is linearly correlated with the abundance of total REE, with the r2 value >0.95 and the detection limit at ≥75,000 μg/L. It is suggested that reflectance spectroscopy provides an ideal routine analytical tool for characterizing leachate samples. The outcome of this study also has implications for monitoring the environmental effect of REE mining, in particular in stream water systems by hyperspectral remote sensing.

  10. Galileo Earth approach navigation using connected-element interferometer phase-delay tracking

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.

    1990-01-01

    The application of a Connected-Element Interferometer (CEI) to the navigation of the Galileo spacecraft during its encounter with Earth in December 1990 is investigated. A CEI tracking demonstration is planned for the week of November 11 through 18, 1990, from 27 days to 20 days prior to Earth encounter on December 8. During this period, the spacecraft will be tracked daily with Deep Space Network Stations 13 and 15 at Goldstone. The purpose of this work is twofold: first, to establish and define the navigation performance expected during the tracking demonstration and, second, to study, in a more general sense, the sensitivity of orbit demonstration results obtained with CEI to the data density within CEI tracking passes and to important system parameters, such as baseline orientation errors and the phase-delay measurement accuracy. Computer simulation results indicate that the use of CEI data, coupled with conventional range and Doppler data, may reduce the uncertainty in the declination of the spacecraft's incoming trajectory by 15 to 66 percent compared with the operational solution using range and Doppler data only. The level of improvement depends upon the quantity and quality of the CEI data.

  11. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads.

    PubMed

    Nakayama, Kenichi; Nakamura, Toshihiro

    2005-07-01

    Major and trace elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Gd, Dy, Th and U) in igneous rocks were assayed with fused lithium borate glass beads using X-ray fluorescence spectrometry. Low dilution glass beads, which had a 1:1 sample-to-flux ratio, were prepared for determination of rare earth elements. Complete vitrification of 1:1 mixture required heating twice at 1200 degrees C with agitation. Extra pure reagents containing determinants were used for calibrating standards instead of the rock standard. The calibration curves of the 23 elements showed good linearity. Furthermore, the lower limits of detection corresponding to three times the standard deviation for blank measurements were 26 mass ppm for Na2O, 6.7 for MgO, 4.5 for Al2O3, 4.5 for SiO2, 18 for P2O5, 1.1 for K2O, 4.0 for CaO, 3.9 for TiO2, 1.6 for MnO, 0.8 for Fe2O3, 0.5 for Rb, 0.2 for Sr, 0.4 for Y, 0.5 for Zr, 3.3 for La, 6.5 for Ce, 2.7 for Pr, 2.1 for Nd, 1.7 for Sm, 0.7 for Gd, 2.7 for Dy, 0.5 for Th, and 0.6 for U. Using the present method, we determined the contents of these 23 elements in four rhyolitic and granitic rocks from Japan. PMID:16038502

  12. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries. PMID:21324705

  13. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect

    Wang, Lingqing Liang, Tao Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  14. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-09-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  15. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  16. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  17. Performance evaluation of Laser Induced Breakdown Spectroscopy (LIBS) for quantitative analysis of rare earth elements in phosphate glasses

    NASA Astrophysics Data System (ADS)

    Devangad, Praveen; Unnikrishnan, V. K.; Nayak, Rajesh; Tamboli, M. M.; Muhammed Shameem, K. M.; Santhosh, C.; Kumar, G. A.; Sardar, D. K.

    2016-02-01

    In the current study, we have determined the elemental compositions of synthesized rare earth doped phosphate glasses using a laboratory Laser-Induced Breakdown Spectroscopy (LIBS) system. LIBS spectra of this rare earth (samarium (Sm), thulium (Tm) and ytterbium (Yb)) doped glass samples with known composition are recorded using a highly sensitive detector. Major atomic emission lines of Sm, Tm and Yb found in LIBS spectra are reported. By considering the atomic emission line of phosphorous as an internal standard, calibration curves were constructed for all the rare earth concentrations. Very good linear regression coefficient (R2) values were obtained using this technique. Analytical predictive skill of LIBS was studied further using leave-one-out method. Low values of the reported correlation uncertainty between measured LIBS concentration ratio and certified concentration ratio confirms that LIBS technique has great potential for quantitative analysis of rare earth elements in glass matrix.

  18. Structural Elements in a Persistent Identifier Infrastructure and Resulting Benefits for the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Weigel, T.; Toussaiant, F.; Stockhause, M.; Höck, H.; Kindermann, S.; Lautenschlager, M.; Ludwig, T.

    2012-12-01

    We propose a wide adoption of structural elements (typed links, collections, trees) in the Handle System to improve identification and access of scientific data, metadata and software as well as traceability of data provenance. Typed links target the issue of data provenance as a means to assess the quality of scientific data. Data provenance is seen here as a directed acyclic graph with nodes representing data and vertices representing derivative operations (Moreau 2010). Landing pages can allow a human user to explore the provenance graph back to the primary unprocessed data, thereby also giving credit to the original data producer. As in Earth System Modeling no single infrastructure with complete data lifecycle coverage exists, we propose to split the problem domain in two parts. Project-specific infrastructures such as the German project C3-Grid or the Earth System Grid Federation (ESGF) for CMIP5 data are aware of data and data operations (Toussaint et al. 2012) and can thus detect and accumulate single nodes and vertices in the provenance graph, assigning Handles to data, metadata and software. With a common schema for typed links, the provenance graph is established as downstream infrastructures refer incoming Handles. Data in this context is for example hierarchically structured Earth System model output data, which receives DataCite DOIs only for the most coarse-granular elements. Using Handle tree structures, the lower levels of the hierarchy can also receive Handles, allowing authors to more precisely identify the data they used (Lawrence et al. 2011). We can e.g. define a DOI for just the 2m-temperature variable of CMIP5 data across many CMIP5 experiments or a DOI for model and observational data coming from different sources. The structural elements should be implemented through Handle values at the Handle infrastructure level for two reasons. Handle values are more durable than downstream websites or databases, and thus the provenance chain does not break if individual links become unavailable. Secondly, a single service cannot interpret links if downstream solutions differ in their implementation schemas. Emerging efforts driven by the European Persistent Identifier Consortium (EPIC) aim to establish a default mechanism for structural elements at the Handle level. We motivate to make applications, which take part in the data lifecycle, aware of data derivation provenance and let them provide additional elements to the provenance graph. Since they are also Handles, DataCite DOIs can act as a corner stone and provide an entry point to discover the provenance graph. References B. Lawrence, C. Jones, B. Matthews, S. Pepler, and S. Callaghan, "Citation and peer review of data: Moving towards formal data publication," Int. J. of Digital Curation, vol. 6, no. 2, 2011. L. Moreau, "The foundations for provenance on the web," Foundations and Trends® in Web Science, vol. 2, no. 2-3, pp. 99-241, 2010. F. Toussaint, T. Weigel, H. Thiemann, H. Höck, M. Stockhause: "Application Examples for Handle System Usage", submitted to AGU 2012 session IN009.

  19. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and was added to the peridotite, as opposed to being exchanged. These data allows for more accurate constraints of the water/rock mass exchange ratios during serpentinization in these rocks (~ 1000 to 17,000) that are at least an order of magnitude lower than using typical mantle and seawater endmembers. These data provide strong evidence that serpentinization may also be a sink for the light REE, with implications for the refertilization of the peridotite during serpentinization, and the cycling of these elements through the subduction system and into the upper mantle.

  20. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Lau, D.; Chen, Z.

    2016-05-01

    This is a contemporary study of rapidly quenched Nd1.6X0.4Fe14B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho). A 20% substitution of the Nd component from Nd2Fe14B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La) than the heavier rare earth elements, but when they are included in RE2Fe14B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho) for Nd in Nd2Fe14B improves the thermal stability of magnets but causes a loss in magnet remanence.

  1. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly affected by gully erosion, rill or sheet erosion have been delineated. Furthermore, the measurement of radionuclide content in suspended sediment after the snowmelt suggests that most of this sediment consists in resuspended material rather than on newly eroded soil. In the Mexican watershed, a different contribution of andisols and acrisols to erosion is suspected. Overall, the bulk of erosion is generated by rather small areas within the watershed. In this region characterised by a succession of wet and dry seasons, the Be-7 content in rainfall and sediment has been measured at the scale of a 2.5 km2 sub-watershed in order to better understand the erosion transfer between hillslopes and rivers during the rainy season. This outlines the contribution of individual storms to seasonal erosion. Overall, this study brings important insights about sediment sources and fluxes within these watersheds located in contrasted environments. A further step consists in comparing experimental results with model outputs, and to evaluate the impact of on-going erosion mitigation measures.

  2. Major and trace element geochemistry and 40Ar/ 39Ar geochronology of Laramide plutonic rocks associated with gold-bearing Fe skarn deposits in Guerrero state, southern Mexico

    NASA Astrophysics Data System (ADS)

    Meza-Figueroa, D.; Valencia-Moreno, M.; Valencia, V. A.; Ochoa-Landín, L.; Pérez-Segura, E.; Díaz-Salgado, C.

    2003-08-01

    Fe-Au skarn deposits related to intrusive centers, mostly of granodioritic composition, are widespread in southern Mexico's Guerrero state. These intrusive rocks are largely associated with the NW-SE-oriented Laramide magmatic belt that extends across most of western Mexico. The geochemical composition and ages of representative rocks from the Mezcala mining district in central Guerrero are studied to evaluate the petrogenetic aspects of the ore-related magmas. Some major and trace elements display nearly linear silica variation trends, which suggest a possible comagmatic origin. However, other elements have scattered distributions, possibly due to irregular mantle-to-crust magma mixing ratios, heterogeneities in the composition of the assimilated crustal material, or modifications during the emplacement or postemplacement processes. Major element chemistry indicates calc-alkalic metaluminous compositions, whereas trace element data suggest a volcanic arc tectonic setting, confirming that these rocks evolved from magmas generated above a subduction zone. Compared with the Laramide granites from the northern part of the belt in northwestern Mexico, which intruded a crust underlain by Proterozoic North American rocks, the studied samples are similar but relatively low in Nb and high in Sr, the middle rare earth elements (REE), P, and Zr. They also display minor Ti enrichments and a moderate depletion in the heavy REE. These characteristics may indicate a source of basaltic composition. New 40Ar/ 39Ar dating of granodiorites and dacite porphyries shows a north-to-south age progression from 66.2±0.8 Ma in the northern part of the belt to 62.2±0.7 Ma in the south. Moreover, the argon dates identify a younger postorogenic igneous event 35-30 Ma ago. This event is poorly documented and may have occurred after the extinction of the Laramide arc and prior to the mid-Tertiary Sierra Madre Occidental ignimbrite flare-up. On the basis of limited geochemical data, these rocks appear to be depleted in P 2O 5 and Sr and enriched in U relative to the studied Laramide granites. A Fe skarn deposit located in Buena Vista de Cuéllar, in the north central part of Guerrero, suggests that this magmatic pulse took place after the ore development of the Mezcala district.

  3. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    NASA Astrophysics Data System (ADS)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as part of this study. Red muds from these deposits contain on average 900 ppm REE compared with typical values of <100 ppm to ~500 ppm REE in the bauxites. Extraction of REE from red muds has been shown to be feasible [5,7] although it is challenging due to the heterogeneous spatial distribution of REE in the primary bauxite deposits [8], an unclear understanding of the mobility of REE in red mud tailings ponds, and the need for development of appropriate processing methods. However, the resource potential of red muds in Europe is significant with approximately 3.5 Mt of bauxite ore extracted in 2012 [2], resulting in approximately 1.4 Mt of red mud from the production of alumina. In addition a large volume of stockpiled red muds exists from historical processing of bauxites, the total of which is not well constrained. Understanding the REE potential of both bauxites and red muds is integral to an assessment of European REE resources. References [1] European Commission, "Report on critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials". May 2014. [2] T. Brown, N. Idoine, E. Raycraft, R. Shaw, E. Deady, J. Rippingale, T. Bide, C. Wrighton, J. Rodley, "World Mineral Production 2008-12" British Geological Survey, Keyworth, Nottingham, 2014. [3] Z. Maksimović and G. Pantó, "Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits". In: A.P. Jones, F. Wall and C.T. Williams, Rare earth minerals, chemistry, origin and ore deposits, Chapter 10, pp. 257-279, 1996. [4] G. Bárdossy, "Karst Bauxites, Bauxite Deposits on Carbonate Rocks". Elsevier, 444pp, 1982. [5] M. Ochsenkühn-Petropoulou, T. Lyberopoulou, and G. Parissakis, "Direct determination of lanthanides, yttium and scandium in bauxites and red mud from alumina production", Analytica Chimica Acta, vol. 296, no. 3, pp. 305-313, October 1994. [6] É. Deady, E. Mouchos, K. Goodenough, B. Williamson and F. Wall. "Rare Earth Elements in Karst-Bauxites: a Novel Untapped European Resource?" ERES 1st European Rare Earth Resources conference, Milos, Greece, (5-6/09/2014). [7] A. Wagh and W. Pinnock, "Occurrence of scandium and rare earth elements in Jamaican bauxite waste", Economic Geology, vol. 82, no. 3, pp. 757-761, May 1987. [8] G. Mongelli, "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)", Chemical Geology, vol. 140, no. 1, pp. 69-79, June 1997. Additional resources: www.eurare.eu; www.redmud.org.

  4. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements

    NASA Astrophysics Data System (ADS)

    Canil, D.

    2013-12-01

    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8-electron change in redox state, with significant oxidation/ reduction capacity. The concomitant higher fO2 can in turn facilitate the mobility and/or extraction of chalcophile metals from the arc mantle into magmas by the melting process in arcs. Sedimentary records show that through most of Earth's history sulfur has mostly been subducted in reduced form as sulfide. The fate of sulfide in ocean sediments during subduction (and subsequent dehydration or melting) has not been thoroughly investigated, nor its interplay with other redox couples (C, H, Fe) in sediments, subducted basalt or in the mantle. I examine the redox controls on sulfate versus sulfide stability in subducted oceanic crust, and their disposition relative to other redox couples in the mantle. Sulfate-sulfide equilibria impact the fate of sulfur and chalcophile elements in subducted lithologies, especially if dehydrated or melted depending on a variety subduction P-T trajectories. In this light, new high P-T experiments show the utility of Cu as a proxy for S in the subduction system . These proxies can potentially be applied to examine the deep S cycle, subduction redox and its role in arc magmatism over geologic time.

  5. Annual review of earth and planetary sciences. Volume 8

    SciTech Connect

    Donath, F.A.; Stehli, F.G.; Wetherill, G.W.

    1980-01-01

    Papers are presented on the geochemistry of evaporitic lacustrine deposits, the deformation of mantle rocks, the dynamics of sudden stratospheric warmings, the equatorial undercurrent, geomorphological processes on planetary surfaces, and rare earth elements in petrogenetic studies of igneous systems. Consideration is also given to evolutionary patterns in early Cenozoic animals, the origin and evolution of planetary atmospheres, the moons of Mars, and refractory inclusions in the Allende meteorite.

  6. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  7. Study of Kα2 /Kα1 RYIED in closed and open shell Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Tribolet, A. D.; Reis, M. A.

    2016-01-01

    Relative Yield Ion Energy Dependence (RYIED) was observed, named and reported as phenomenological evidence in 2005 (Reis et al., 2005). Since then, it was observed in transitions to the same subshell, and plausible explanations for the physics behind the phenomena have been proposed. In this work we present experimental evidence of the RYIED effect on the most inner transition possible in two Rare Earth Elements (REE), namely variations in the intensity ratio of Kα2 /Kα1 X-rays from Tm and Yb irradiated under different conditions. These REE are particularly interesting to start with since Yb has an electronic configuration where all the subshells are completely filled, whilst Tm misses one electron in the 4f subshell. Ultrapure oxides of each element were irradiated using proton beams having energies in the range of 0.9-3.6 MeV, in steps of 100 keV. Spectra were collected using the CdTe detector of the HRHE-PIXE set-up of C2TN and analysed using the DT2 code. Finally, the vanishing of the effect upon charging up of the target has been observed and will be discussed.

  8. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium.

    PubMed

    Horiike, Takumi; Yamashita, Mitsuo

    2015-05-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  9. Using rare earth elements for the identification of the geographic origin of food

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Bandoniene, D.; Joebstl, D.

    2009-04-01

    The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the identification of adulteration of high priced pumpkin seed oil with cheap neutral tasting refined oils. Interestingly enough, the variations of the REE patterns between oils from different regions are much more pronounced than their host soils. Thus we assume that microbiological processes in the rhizosphere are in control of the REE uptake into the plant. Regional variations of the microbiological composition of the soils and probably not only a priori the bulk soil composition of the minerals in the soil are the cause of the regional variations making it possible to identify the geographic origin of pumpkin seeds and as a consequence the pumpkin seed oil.

  10. Bioavailable concentrations of germanium and rare earth elements in soil fractions

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner; Wiche, Oliver

    2015-04-01

    As there is an increasing demand for germanium and the rare earth elements due to their diverse application in modern technologies (optical cables, permanent magnets in wind power stations), there is an interest to investigate a new approach to extract these ubiquitous but disperse existing elements - via Phytomining. But before this method can be established, a thorough understanding of processes regarding the intake of germanium (Ge) and the rare earth elements (REEs) is necessary. The aim of this work was to get insights or hints on correlations between the concentrations and the fractionation of Ge and REEs in the soil and the concentrations in plants - in other words we wanted to conduct research on bioavailable concentrations of Ge and REEs in soil fractions. On 18 sites situated around Freiberg, Saxony we took samples of soil and plants. To extract the elements from the plant material a decomposition with hydrofluoric acid was used. The soil samples was examined by a sequential extraction with seven steps (mobile, carbonatic, oxidisable, amorphic oxides, crystalline oxides, phytoliths and secondary clay minerals, residual or siliceous). The amounts of the REEs showed a high correlation between each other, so neodymium can be regarded as a proxy for all REEs. The average total amount of Ge in the soil samples was around 1.45 mg/kg, the one of neodymium (Nd) was around 25 mg/kg. Both values equal the overall average in the earth crust. Concerning the Ge concentration in soil the residual siliceous fractions constituted for 70% of total, whereas the fractions V and VI - dedicated as crystalline oxides and phytoliths/secondary clay minerals - made out for 25%. Only 5% of the total amount of Ge in soil accounted for the fractions I to IV. There was found a statistical significant correlation between the absolute Ge concentrations in these latter soil fractions with the Ge concentration in plant material of the same site. Therefore it seems that the fractions I to IV could be regarded as a proxy for the bioavailable pool of Ge in soils. Concerning Nd the residual siliceous fractions made out for 60% of the total, whereas the fraction III (oxidisable) constitutes for 30%. The remaining 10% accounted for the other soil fractions. No correlation between the concentration in one soil fraction and the concentration in plant material from the same site could be found. There was also no correlation between the total amount in soil and the concentration in plant material from the same site neither for the REEs nor for Ge. These results can give only hints on the processes regarding the mobilisation of the bioavailable pool of Ge and REEs. Further investigations are necessary and will be taken in the PhytoGerm project.

  11. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    PubMed

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. PMID:23978671

  12. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids

    NASA Astrophysics Data System (ADS)

    Migdisov, Art A.; Williams-Jones, A. E.

    2014-12-01

    New technologies, particularly those designed to address environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable attention on the processes by which they are concentrated to economically exploitable levels in the Earth's crust. There is widespread agreement that hydrothermal fluids played an important role in the formation of the world's largest economic REE deposit, i.e. Bayan Obo, China. Until recently, many researchers have assumed that hydrothermal transport of the REE in fluorine-bearing ore-forming systems occurs mainly due to the formation of REE-fluoride complexes. Consequently, hydrothermal models for REE concentration have commonly involved depositional mechanisms based on saturation of the fluid with REE minerals due to destabilization of REE-fluoride complexes. Here, we demonstrate that these complexes are insignificant in REE transport, and that the above models are therefore flawed. The strong association of H+ and F- as HF° and low solubility of REE-F solids greatly limit transport of the REE as fluoride complexes. However, this limitation does not apply to REE-chloride complexes. Because of this, the high concentration of Cl- in the ore fluids, and the relatively high stability of REE-chloride complexes, the latter can transport appreciable concentrations of REE at low pH. The limitation also does not apply to sulphate complexes and in some fluids, the concentration of sulphate may be sufficient to transport significant concentrations of REE as sulphate complexes, particularly at weakly acidic pH. This article proposes new models for hydrothermal REE deposition based on the transport of the REE as chloride and sulphate complexes.

  13. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing.

  14. Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration

    NASA Astrophysics Data System (ADS)

    Tsay, A.; Zajacz, Z.; Sanchez-Valle, C.

    2014-07-01

    The characteristic REE fractionation pattern in arc magmas compared to MOR-basalts results from the selective mobilization of light rare-earth elements (LREE) by slab-derived mobile components. However, the nature and composition of the slab flux, and the actual mechanisms responsible for the transfer of rare-earth elements (REE) from the slab to the mantle wedge remain unclear. We present experimental data on the solubility of selected REE in ligand-bearing aqueous fluids and a hydrous haplogranitic melt at 2.6 GPa and 600-800 C, spanning the conditions relevant to slab dehydration and melting. The solubilities of REE in aqueous fluids increase more than an order of magnitude with temperature increasing from 600 to 800 C. Addition of ligands such as Cl-, F-, CO32-, SO42- in relatively small concentrations (0.3-1.5 m [mol/kg H2O]) has a pronounced effect further enhancing REE solubilities. Each ligand yields a characteristic REE pattern by preferential dissolution of either the light or the heavy REE. For example, the addition of NaCl to the aqueous fluids yields highly elevated LREE/HREE ratios (La/Yb=17.44.3), whereas the addition of fluoride and sulfate ligands significantly increases the solubility of all REE with moderate LREE/HREE fractionation (La/Yb?4). The addition of Na2CO3 results in preferential increase of HREE solubilities, and yields La/Yb ratio of 1.60.5 by flattening the moderately fractionated REE pattern seen in pure aqueous fluids. The solubilities in hydrous haplogranite melt are moderate in comparison to those observed in aqueous fluids and do not lead to pronounced REE fractionation. Therefore, REE can be effectively mobilized and fractionated by aqueous fluids, compared to felsic hydrous melts. Furthermore, the aqueous fluid chemistry has a major role in determining REE mobilities and fractionation upon slab dehydration in addition to the significant control exerted by temperature. Our results show that chloride-bearing slab-derived aqueous fluids have a significant contribution to the formation of REE-signatures in arc-magmas, especially at lower slab surface temperatures.

  15. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    NASA Astrophysics Data System (ADS)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in crack that cross-cut the calcite filling the vesicles or the volcanic glass. They are also closely associated with Ni-Mg bearing phyllosilicates, which appear to nucleate from alteration of olivine and clinopyroxenes. Further investigations are done to evidence and confirm an anterior magmatic enrichment. On the basis of these observations, we believe that the anomalous enrichment observed in seafloor sediments could derive from abnormally-rich provinces corresponding to aerial basaltic formations from oceanic islands primarily enriched during weathering processes (Melleton et al., 2014). Melleton et al. (2014). Rare-earth elements enrichment of Pacific sea-floor sediments: the view from volcanic islands of Polynesia. In preparation.

  16. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.

  17. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE PAGESBeta

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.« less

  18. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos spreading center: Role of crystal fractionation and mantle heterogeneity

    SciTech Connect

    Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.

    1981-10-10

    A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95/sup 0/ W and 85/sup 0/ W on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P/sub 2/O/sub 5//K/sub 2/O ratio averages 0.83 at 95/sup 0/W and 1.66 at 85/sup 0/W and implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns, with (La/Sm)/sub EF/ = 0.67 at 95/sup 0/W and 0.46 at 85/sup 0/W. The sequence of fractional lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95/sup 0/W. Incompatible trace element abundances in 26 samples are used to infer that the range of Fe-Ti-rich basalt from 85/sup 0/W represents 19 to 35% residual liquid following crystal fractionation of a mineral assemblage of plagioclase, clinopyroxene, and lesser olivine. Most samples from 85/sup 0/W can be related to a common parental magma that contained approximately 9 wt %FeO*, 1 wt % TiO/sub 2/, and had an Mg number (Mg/sup 3/ = 100 Mg/(Mg+Fe/sup 2 +/)) of about 65. Although the samples from 95/sup 0/W cannot all be derived from a common parental magma, the inferred parental magmas may have been derived by varying degrees of partial melting of a common source. The fractionation sequence consists of two parts: an initial iron enrichment trend followed by a silica enrichment trend. The most iron rich lavas represent about 32% residual liquid derived by crystal fractionation of plagioclase, clinopyroxene, and lesser olivine from a parental magma with an Mg number of about 66. The silicic enrichment trend results from crystallization of titanomagnetite and some apatite.

  19. Using Rare Earth Element (REE) tracers to identify perferential micro-sites of post-fire aeolian erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant communities in desert environments are spatially anisotropic. We applied Rare Earth Element (REE) tracers to different landscape positions of an anisotropic Northern Chihuahua Desert ecosystem in an effort to study preferential sediment source areas. We delineated three 0.5 m by 6 m plots of...

  20. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    USGS Publications Warehouse

    Rose, H.J., Jr.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  1. Nd, Sr-isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: implications for ensialic Andean orogeny

    NASA Astrophysics Data System (ADS)

    Basu, Asish R.; Sharma, Mukul; DeCelles, Peter G.

    1990-10-01

    Nd and Sr isotopes and the trace element contents, including the rare earths, were determined for fluvial sands of lithic arenite composition from the Madre de Dios foreland basin of Bolivia and Peru. On standard petrologic ternary diagrams, the sands fall in the recycled orogen provenance field and thus are similar to typical ancient foreland basin composition. The average rare earth elemental pattern of the sands is identical to the upper continental crustal average, as estimated from post-Archean composite shales of different continents. Ratios ofTh/U, Co/Th, La/Sc and Th/Sc of the fluvial sands are intermediate between an average magmatic arc and an upper crustal average compositions. The dispersion of some trace elemental patterns in the sands can be attributed to fractionation of dense minerals, including zircon, during the sedimentation process. The variations of Nd isotopes in conjunction with the petrographic parameters of lithic metamorphic (Lm) and volcanic (Lv) fragments allow a two-fold classification of the sands. These two sand types can be interpreted in terms of mixing among three different provenances: one volcanic rock-suite with less negativeɛ Nd(O) parameter than the other volcanic suite, and a third metasedimentary source withɛ Nd(O) value of around -12, which is considered to be similar to the average western Brazilian shield composition. Thus the overall compositions of the sands has been modeled as mechanical mixtures of two components, an Andean magmatic arc and the Brazilian shield-derived metasediments. The model is strongly supported by a plot ofɛ Nd(O) versusɛ Sr(O) of the sands. In this plot, the Type 1 and 2 sands define two coherent hyperbolic trends contiguous with two different portions of the Andean magmatic trend. This relationship has been interpreted to indicate that the observed Andean magmatic trend in anɛ Sr(O)-ɛ Nd(O) diagram is the result of varying degrees of contamination of a "primitive arc-type" magma by the Precambrian continental crust of the western Brazilian Shield. The depleted mantle average Nd model age of 1.46 Ga for the fluvial sands reflects the average age of the Brazilian continental crustal source. The development of the Andean orogenic belt has been discussed schematically with the isotopic data of the sands. The model describes a trailing edge prism of sediments, derived from the Brazilian Shield during the late Paleozoic-early Mesozoic. The prism becomes part of the fold-thrust belt during the Andean orogeny in the Neogene, when the foreland basin develops with the basin fill partly derived from the fold-thrust belt. The sedimentary rocks in the fold-thrust belt are also a major source of contaminants for the Andean magmas. The contiguous nature of the Andean magmatic trend and the fluvial sand data in theɛ Sr(O)-ɛ Nd(O) diagram suggests that the ensialic Andean magmatic arc has remained connected to its parent continent, the western Brazilian Shield, throughout the development of the Andean orogeny.

  2. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects.

    PubMed

    Pagano, Giovanni; Guida, Marco; Tommasi, Franca; Oral, Rahime

    2015-05-01

    In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts. PMID:25679485

  3. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    USGS Publications Warehouse

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.

  4. New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Sida, J.-L.; Lemaître, J.-F.; Panebianco, S.; Dubray, N.; Hilaire, S.; Bauswein, A.; Janka, H.-T.

    2013-12-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.

  5. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents.

    PubMed

    Butnariu, Monica; Negrea, Petru; Lupa, Lavinia; Ciopec, Mihaela; Negrea, Adina; Pentea, Marius; Sarac, Ionut; Samfira, Ionel

    2015-09-01

    The effects of the sorption of environmental applications by various source materials of natural organic matter, i.e., bone powder, was examined. Sorption capacities and subsequent rare earth element retention characteristics of all metals tested were markedly increased by ionic task-specific. In this study, the abilities of three models' isotherms widely were used for the equilibrium sorption data: Langmuir, Freundlich and Redlich-Peterson. For all studied metal ions the maximum adsorption capacity is close to those experimentally determined. The characteristic parameters for each isotherm and related coefficients of determination have been determined. The experimental data achieved excellent fits within the following isotherms in the order: Langmuir > Redlich-Peterson > Freundlich, based on their coefficient of determination values. The bone powder has developed higher adsorption performance in the removal process of Nd(III), Eu(III), La(III) from aqueous solutions than in the case of the removal process of Cs(I), Sr(II) and Tl(I) from aqueous solutions. The described relationships provide direct experimental evidence that the sorption-desorption properties of bone powder are closely related to their degree of the type of the metal. The results suggest a potential for obtaining efficient and cost-effective engineered natural organic sorbents for environmental applications. PMID:26378553

  6. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    PubMed

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets. PMID:26107531

  7. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1977-01-01

    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  8. Cerium redox cycles and rare earth elements in the Sargasso Sea

    SciTech Connect

    Sholkovitz, E.R.; Schneider, D.L. )

    1991-10-01

    Two profiles of the rare earth elements (REEs) are reported for the upper water column of the Sargasso Sea. The trivalent-only REEs have remarkably constant concentrations in the upper 500m of an April 1989 profile and in the upper 200m of a May 1989 profile. In contrast, Ce concentrations decrease smoothly with increasing depth. In April 1989 Ce decreases from 15.7 pmol/kg at 20 m to 5.1 pmol/kg at 750 m. Cerium, which has Redox transformations in seawater, behaves anomalously with respect to its REE(III) neighbors. While both dissolved Ce and Mn have elevated concentrations in the upper 200m, their vertical gradients are distinctly different. In contrast to Mn, which reaches a minimum dissolved concentration near the zone (150-250 m) of a particulate Mn maximum, Ce is being removed both near this zone and to depths of at least 750m. These new profiles indicate that Ce is involved in an upper ocean redox cycle. This interpretation is consistent with the MOFFETT (1990) incubation tracer experiments on the same May 1989 seawater. He showed that Ce(III) oxidation is biologically mediated, probably light inhibited, increases with depth, and 3-4 times slower than Mn(II) oxidation in the 100-200 m zone. CERoclines provide new information into the fine scale zonation of redox process operating in the upper columns of oligotrophic oceans.

  9. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-04-15

    A method of analysis of geological materials for the determination of the rare-earth elements using the inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of +/-2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metal:metal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  10. Ionic conductivity of binary fluorides of potassium and rare earth elements

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-01-01

    The ionic conductivity s of KYF4 and K2 RF5 single crystals ( R = Gd, Ho, Er) and KNdF4 and K2 RF5 ceramic samples ( R = Dy, Er) has been studied in the temperature range of 340-500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100-150 MPa) in the R 2O3-KF-H2O systems. The σ values of tetraf luorides are 3 × 10-5 S/cm (KYF4 single crystal) and 3 × 10-6 S/cm (KNdF4 ceramics) at 435°C. A K2ErF5 single crystal with σ = 1.2 × 10-4 S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K2HoF5 single crystals, σ∥ c /σ⊥ c = 2.5, where σ∥ c and σ⊥ c are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  11. Determination of Rare Earth Elements in Hypersaline Solutions Using Low-Volume, Liquid-Liquid Extraction.

    PubMed

    Noack, Clinton W; Dzombak, David A; Karamalidis, Athanasios K

    2015-08-18

    Complex, hypersaline brines-including those coproduced with oil and gas, rejected from desalination technologies, or used as working fluids for geothermal electricity generation-could contain critical materials such as the rare earth elements (REE) in valuable concentrations. Accurate quantitation of these analytes in complex, aqueous matrices is necessary for evaluation and implementation of systems aimed at recovering those critical materials. However, most analytical methods for measuring trace metals have not been validated for highly saline and/or chemically complex brines. Here we modified and optimized previously published liquid-liquid extraction (LLE) techniques using bis(2-ethylhexyl) phosphate as the extractant in a heptane diluent, and studied its efficacy for REE recovery as a function of three primary variables: background salinity (as NaCl), concentration of a competing species (here Fe), and concentration of dissolved organic carbon (DOC). Results showed that the modified LLE was robust to a range of salinity, Fe, and DOC concentrations studied as well as constant, elevated Ba concentrations. With proper characterization of the natural samples of interest, this method could be deployed for accurate analysis of REE in small volumes of hyper-saline and chemically complex brines. PMID:25920439

  12. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  13. Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang; Kaspari, Susan; Li, Chaoliu; Qin, Dahe; Mayewski, Paul A.; Hou, Shugui

    2009-10-01

    Rare earth element (REE) concentrations in ice samples from the upper 8.4 m of a Mt. Everest ice core retrieved from the col of the East Rongbuk Glacier (28.03°N, 86.96°E, 6518 m a.s.l.) on the northeast ridge of Mt. Everest in September 2002 are presented. REEs display large seasonal variations, with high concentrations in the non-monsoon season and low concentrations in the summer monsoon season. This seasonality is useful for ice core dating. When normalized to a shale standard, the Mt. Everest REEs exhibit a consistent shale-like pattern with a slight enrichment of middle REEs during both seasons. However, individual monsoon REE patterns display differences, possibly resulting from diversified sources. Non-monsoon REE patterns are stable and are associated with the westerlies. Investigation of potential sources for the Everest REEs suggests an absence of anthropogenic contributions and minimal input from local provenances. REEs in Mt. Everest samples are most likely representative of a stable well-mixed REE background of the upper troposphere consisting of a mixture of aerosols transported by the atmospheric circulation from the west windward arid regions such as the Thar Desert, West Asia, the Sahara Desert and other uncertain provenances.

  14. Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.

    1975-01-01

    The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.

  15. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.

    1980-01-01

    Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.

  16. Effect of Rare Earth Elements on Isothermal Transformation Kinetics in Si-Mn-Mo Bainite Steels

    NASA Astrophysics Data System (ADS)

    Liang, Yilong; Yi, Yanliang; Long, Shaolei; Tan, Qibing

    2014-12-01

    Isothermal heat treatments to Si-Mn-Mo steel specimens were performed, and time-temperature-transformation curves (C-curves) were plotted by DIL805A/D differential dilatometer. The effect of rare earth (RE) elements on bainite transformation kinetics was systematically studied by adopting the empirical electron theory of solids and molecules, Johnson-Mehl-Avrami equation calculation, dilatometry, and metallography. Experimental results show that the addition of RE in Si-Mn-Mo bainite steels leads to the C-curves moving to bottom right and prolongs incubation period of bainite transformation. Moreover, RE addition increases the values of phase structure factors ( n A, F {C/D}) and activation energy of bainite transformation, inhibits the formation of granular bainite, and refines microstructures of bainitic ferrite and substructures. During the bainite transformation process, bainite transformation is delayed due to the drag effect, which is induced by the segregation of RE at the ferrite interphase and the retardation of Fe-C-RE (segregation units) on carbon diffusion.

  17. Effect of Rare Earth Elements on Isothermal Transformation Kinetics in Si-Mn-Mo Bainite Steels

    NASA Astrophysics Data System (ADS)

    Liang, Yilong; Yi, Yanliang; Long, Shaolei; Tan, Qibing

    2014-09-01

    Isothermal heat treatments to Si-Mn-Mo steel specimens were performed, and time-temperature-transformation curves (C-curves) were plotted by DIL805A/D differential dilatometer. The effect of rare earth (RE) elements on bainite transformation kinetics was systematically studied by adopting the empirical electron theory of solids and molecules, Johnson-Mehl-Avrami equation calculation, dilatometry, and metallography. Experimental results show that the addition of RE in Si-Mn-Mo bainite steels leads to the C-curves moving to bottom right and prolongs incubation period of bainite transformation. Moreover, RE addition increases the values of phase structure factors (n A, F {C/D}) and activation energy of bainite transformation, inhibits the formation of granular bainite, and refines microstructures of bainitic ferrite and substructures. During the bainite transformation process, bainite transformation is delayed due to the drag effect, which is induced by the segregation of RE at the ferrite interphase and the retardation of Fe-C-RE (segregation units) on carbon diffusion.

  18. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  19. Examination of rare earth element concentration patterns in freshwater fish tissues.

    PubMed

    Mayfield, David B; Fairbrother, Anne

    2015-02-01

    Rare earth elements (REEs or lanthanides) were measured in ten freshwater fish species from a reservoir in Washington State (United States). The REE distribution patterns were examined within fillet and whole body tissues for three size classes. Total concentrations (ΣREE) ranged from 0.014 to 3.0 mg kg(-1) (dry weight) and averaged 0.243 mg kg(-1) (dry weight). Tissue concentration patterns indicated that REEs accumulated to a greater extent in organs, viscera, and bone compared to muscle (fillet) tissues. Benthic feeding species (exposed to sediments) exhibited greater concentrations of REEs than pelagic omnivorous or piscivorous fish species. Decreasing REE concentrations were found with increasing age, total length or weight for largescale and longnose suckers, smallmouth bass, and walleye. Concentration patterns in this system were consistent with natural conditions without anthropogenic sources of REEs. These data provide additional reference information with regard to the fate and transport of REEs in freshwater fish tissues in a large aquatic system. PMID:25000508

  20. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    PubMed

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells. PMID:27081794

  1. Effect of paleosol formation on rare earth element signatures in fossil bone

    NASA Astrophysics Data System (ADS)

    Metzger, Christine A.; Terry, Dennis O., Jr.; Grandstaff, David E.

    2004-06-01

    The rare earth element (REE) content of fossil bones was analyzed and compared with the degree of ancient pedogenic development and depositional environments from several locations in the Orellan Scenic Member of the Oligocene Brule Formation in Badlands National Park, South Dakota. Paleosols ranged from weakly developed Entisols to more strongly developed Inceptisols, all typical of fluvial environments and possible paleocatena variation. Paleosols were alkaline and well drained. Sediments with sparse soil features from an oxbow lake system suggest that conditions were too waterlogged and sedimentation rates too rapid for significant pedogenesis. The variance of REE signatures in fossil bones from the paleosol sites was significantly greater than that of fossils from minimally altered sediments of the former oxbow lake. Positive Ce anomalies were associated with low U concentrations and indicate paleoredox conditions. Greater degrees of pedogenesis, regardless of the horizon in which the bone was found, systematically correlated with increased heavy REE enrichment in fossil bones. The fossil-bone REE signatures from the different paleosols and depositional environments were significantly different and distinguishable.

  2. Sorption from slurries—A promising method in the processing of rare earth elements

    NASA Astrophysics Data System (ADS)

    Kosynkin, V. D.; Molchanova, T. V.; Peganov, V. A.; Zharova, E. V.

    2015-09-01

    The article presents the results of sorptive extraction of rare-earth elements (REE) from the solutions and slurries of complex salt compositions using sulfocationites and carboxyl cationites with a predominant content of the latter on laboratory and pilot scales. Upon REE sorption from hydrate slurry on KM-2p carboxyl cationite, the REE extraction rate of at least 98% has been achieved, and the following factors of ΣREE purification from impurities have been obtained: K REE/Al = 1.7, K REE/Th = 2.3, K REE/Ca ≈ 20, K REE/Zr = 15, K REE/Fe ≈ 40, and K REE/P,F ≈ 90. It is demonstrated that the REE capacity of cationite SG-1m is higher than that of cationite KM-2p by 10%; moreover, the content of thorium on KM-2p cationite is lower by 2.5 times and that of zirconium by 6 times. After the recovery of saturated cationites by 1.5-2.0 M HNO3 solutions, strippants have been extracted with a REE concentration of 15-20 g/L. The factors of REE purification from impurities upon desorption are as follows: K REE/Al = 2.5, K REE/Th = 0.5, K REE/Ca = 5.3, K REE/Zr = 5.6, and K REE/Fe = 0.8. The REE recovery rate is ≥99%.

  3. Effect of Ca and Rare Earth Elements on Impression Creep Properties of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Nami, B.; Razavi, H.; Mirdamadi, S.; Shabestari, S. G.; Miresmaeili, S. M.

    2010-08-01

    Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.

  4. Effects of Rare Earth Element Additions on the Impression Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Kabirian, F.; Mahmudi, R.

    2009-09-01

    The effects of 1, 2, and 3 wt pct rare earth (RE) element additions on the microstructure and creep behavior of cast AZ91 Mg alloy were investigated by impression tests. The tests were carried out under constant punching stress in the range 200 to 650 MPa at temperatures in the range 425 to 525 K. Analysis of the data showed that for all loads and temperatures, the AZ91-2RE alloy had the lowest creep rates and, thus, the highest creep resistance among all materials tested. This is attributed to the formation of Al11RE3 with a branched morphology, reduction in the volume fraction of the eutectic β-Mg17Al12 phase, and solid solution hardening effects of Al in the Mg matrix. The stress exponents and activation energies were the same for all alloy systems studied, 5.3 to 6.5 and 90 to 120 kJ mol-1, respectively, with the exception that the activation energy for the AZ91-3RE system was 102 to 126 kJ mol-1. An observed decreasing trend of creep-activation energy with stress suggests that two parallel mechanisms of lattice and pipe diffusion-controlled dislocation climb are competing. Dislocation climb controlled by dislocation pipe diffusion is controlling at high stresses, whereas climb of edge dislocations is the controlling mechanism at low stresses.

  5. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  6. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  7. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents

    PubMed Central

    Butnariu, Monica; Negrea, Petru; Lupa, Lavinia; Ciopec, Mihaela; Negrea, Adina; Pentea, Marius; Sarac, Ionut; Samfira, Ionel

    2015-01-01

    The effects of the sorption of environmental applications by various source materials of natural organic matter, i.e., bone powder, was examined. Sorption capacities and subsequent rare earth element retention characteristics of all metals tested were markedly increased by ionic task-specific. In this study, the abilities of three models’ isotherms widely were used for the equilibrium sorption data: Langmuir, Freundlich and Redlich-Peterson. For all studied metal ions the maximum adsorption capacity is close to those experimentally determined. The characteristic parameters for each isotherm and related coefficients of determination have been determined. The experimental data achieved excellent fits within the following isotherms in the order: Langmuir > Redlich-Peterson > Freundlich, based on their coefficient of determination values. The bone powder has developed higher adsorption performance in the removal process of Nd(III), Eu(III), La(III) from aqueous solutions than in the case of the removal process of Cs(I), Sr(II) and Tl(I) from aqueous solutions. The described relationships provide direct experimental evidence that the sorption-desorption properties of bone powder are closely related to their degree of the type of the metal. The results suggest a potential for obtaining efficient and cost-effective engineered natural organic sorbents for environmental applications. PMID:26378553

  8. New fission fragment distributions and r-process origin of the rare-earth elements.

    PubMed

    Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T

    2013-12-13

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140. PMID:24483647

  9. Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements.

    PubMed

    Borai, E H; Hamed, M G; El-kamash, A M; Siyam, T; El-Sayed, G O

    2015-10-15

    New sorbents containing 2-acrylamido 2-methyl propane sulphonic acid monomer onto poly(vinyl pyrilidone) P(VP-AMPS) hydrogel and P(VP-AMPS-SiO2) composite have been synthesized by radiation template polymerization. The effect of absorbed dose rate (kGy), crosslinker concentration and polymer/monomer ratio on the degree of template polymerization of P(VP-AMPS) hydrogel was studied. The degree of polymerization was evaluated by the calculated percent conversion and swelling degree. The maximum capacity of P(VP-AMPS) hydrogel toward Cu(+2) metal ion found to be 91 mg/gm. The polymeric composite P(VP-AMPS-SiO2) has been successfully synthesized. The structure of the prepared hydrogel and composite were confirmed by FTIR, thermal analysis (TGA and DTA) and SEM micrograph. Batch adsorption studies for La(3+), Ce(3+), Nd(3+), Eu(3+) and Pb(+2) metal ions on the prepared hydrogel and composite were investigated as a function of shaking time, pH and metal ion concentration. The sorption efficiency of the prepared hydrogel and composite toward light rare earth elements (LREEs) are arranged in the order La(3+)>Ce(3+)>Nd(3+)>Eu(3+). The obtained results demonstrated the superior adsorption capacity of the composite over the polymeric hydrogel. The maximum capacity of the polymeric composite was found to be 116, 103, 92, 76, 74 mg/gm for La(3+), Ce(3+), Nd(3+), Eu(3+) and Pb(2+) metal ions respectively. PMID:26141170

  10. Elements of a new Global Water Strategy for the Group on Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, Richard; Koike, Toshio; Ochiai, Osamu; Cripe, Douglas

    2013-04-01

    In order to address the need to review the scope and direction of GEO activities related to water and to provide guidance for the post-2015 GEO planning, the Integrated Global Water Cycle Observations (IGWCO) Community of Practice and the Committee on Earth Observation Satellites (CEOS) are working together to develop a strategy for GEO water activities over the next decade. This presentation will review the elements of the strategy which include topics as comprehensive as user needs and engagement, water cycle observational systems, assessment of water quality, data issues, interoperability and integration of water information systems and capacity building. Impediments in the flow of information and technological capabilities from the providers of new technologies, innovations and data products to the end users will be explored in terms of the nature of these impediments and how they can be overcome. To be successful in GEO's framework of volunteerism, the water strategy should build on activities that are on-going in related programmes at the international and national levels. In addition, implementation of the strategy will need to be supported through new initiatives and policies that promote greater integration. Suggestions for achieving these goals will be outlined at the end of the talk.

  11. The distribution of rare earth elements in tropical granitic soil: a case study from Malaysia

    NASA Astrophysics Data System (ADS)

    Mohamad, Hamzah; Ghani Rafek, Abdul

    A total of 93 samples of rock, altered soil representing various weathering grades from an ideal granite weathering profile exposed at a road cut along the Kuala Lumpur-Karak highway, Peninsular Malaysia, were studied. The fresh, unaltered parent rock is petrographically distinguished into two types: (1) coarse grained porphyritic biotite-muscovite granite, and (2) medium grained biotite-muscovite granite. The rock has undergone some degree of brittle deformation. A weathering index map based on the procedures suggested by Ibrahim Komoo et al. Warta Geologi17(3), 105-109 (1991) shows the spatial distribution of unaltered to slightly altered rocks (index 2-4), weathered rocks (5-8) and residual soil (9 and 10) for the profile under study. For each sample, 11 major elements were determined using X-ray fluorescence technique (XRF) and nine rare earth elements, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb and Lu, by the instrumental neutron activation analysis (INAA). All REEs decrease with increasing weathering grade, suggesting a depletion of the REEs due to weathering. The depletion rate is variable, the fastest being Sm and La. A Masuda-Coryell diagram for the three groups of samples, that is (1) fresh to slightly weathered rocks, (2) moderately to highly weathered rocks, and (3) residual soils, shows three curves with a similar pattern of negative Eu anomalies. The concentration of elements is in the order 1>2>3, suggesting strongly that the REEs diminish gradually in the course of the weathering. A rock-soil interface has been recognised to exist at weathering index 4. It is believed that at this interface, most REEs leave their primary carriers which undergo rapid breakdown, most probably plagioclase, biotite and hornblende and possibly ilmenite and apatite, into weathering solution, together with Fe 2+, Ca 2+, K +, Mn 2+ and Mg 2+. Anomalously low concentration of REEs in index 4 material supports this idea. The leached-out REEs are temporarily incorporated into newly formed secondary minerals (secondary carriers) before gradually leaving the system from index 6 onwards.

  12. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    De Carlo, Eric Heinen; Green, William J.

    2002-04-01

    We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ˜55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ˜50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration gradients. Furthermore, because the ultraoligotrophic nature of the lake limits the potential for organic phases to act as metal carriers, metal oxide coatings and sulfide phases appear to largely govern the distribution of trace elements. We discuss REE cycling in relation to the roles of redox reactions and competitive scavenging onto Mn- and Fe-oxides coatings on clay sized particles in the upper oxic water column and their release by reductive dissolution near the anoxic/oxic interface.

  13. β-decay of neutron-rich Z∼60 nuclei and the origin of rare earth elements