Science.gov

Sample records for earth energy designer

  1. Clouds and the earth's radiant energy system (CERES) - Instrument design and development

    NASA Technical Reports Server (NTRS)

    Kopia, Leonard P.

    1991-01-01

    Measurements of the earth's reflected shortwave and emitted longwave energy and of the effect of clouds on these quantities are planned using a refined version of the Earth Radiation Budget Experiment (ERBE) scanning instrument. The CERES instruments are being designed to accumulate earth radiance measurements with a repeatability of better than 0.5 percent over their five year life. Beginning in 1996, flights are planned on both polar and low earth orbit satellites to obtain the required temporal and spatial coverage. The design and development of CERES are discussed.

  2. Design, Fabrication and Testing of a Crushable Energy Absorber for a Passive Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Corliss, James M. (Technical Monitor)

    2002-01-01

    A conceptual study was performed to investigate the impact response of a crushable energy absorber for a passive Earth entry vehicle. The spherical energy-absorbing concept consisted of a foam-filled composite cellular structure capable of omni-directional impact-load attenuation as well as penetration resistance. Five composite cellular samples of hemispherical geometry were fabricated and tested dynamically with impact speeds varying from 30 to 42 meters per second. Theoretical crush load predictions were obtained with the aid of a generalized theory which accounts for the energy dissipated during the folding deformation of the cell-walls. Excellent correlation was obtained between theoretical predictions and experimental tests on characteristic cell-web intersections. Good correlation of theory with experiment was also found to exist for the more complex spherical cellular structures. All preliminary design requirements were met by the cellular structure concept, which exhibited a near-ideal sustained crush-load and approximately 90% crush stroke.

  3. Towards Designing an Integrated Earth Observation System for the Provision of Solar Energy Resource and Assessment

    NASA Technical Reports Server (NTRS)

    Stackouse, Paul W., Jr.; Renne, D.; Beyer, H.-G.; Wald, L.; Meyers, R.; Perez, R.; Suri, M.

    2006-01-01

    The GEOSS strategic plan specifically targets the area of improved energy resource management due to the importance of these to the economic and social viability of every nation of the world. With the world s increasing demand for energy resources, the need for new alternative energy resources grows. This paper overviews a new initiative within the International Energy Agency that addresses needs to better manage and develop solar energy resources worldwide. The goal is to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information of the solar radiation resources at the Earth's surface in easily-accessible formats and understandable quality metrics. The scope of solar resource assessment information includes historic data sets and currently derived data products using satellite imagery and other means. Thus, this new task will address the needs of the solar energy sector while at the same time will serve as a model that satisfies GEOSS objectives and goals.

  4. Earth Port-Moon Port design

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A pair of compatible transfer stations or Space Ports and associated transfer vehicles was designed in order to support permanent manned lunar facilities. One of the Space Ports was placed in earth orbit (not necessarily Low Earth Orbit - LEO), and the other in lunar orbit. The primary purposes of the Space Ports was to support the lunar surface facility, the return of lunar manufactured items to the earth, and the transfer of lunar manufactured items to space vehicles and earth orbital space stations. The design was constrained by the following: (1) The orbital altitudes and inclinations of the Earth Port and Moon Port were chosen to minimize the overall cost of transporting materials to and from the moon. The ETO (Earth-to-Orbit) costs were considered separately to allow consideration of initiating planetary missions, etc., from the Earth Port. (2) A new earth launch point was chosen to facilitate the support of the lunar facility. This launch point was chosen to minimize overall costs, maximize overall safety, and to avoid political problems. To this end, it was mandatory the launch site be owned by the United States or one of its close allies. In addition, the launch would take place over water and expendable stages would drop into the ocean. Space shuttle type vehicles could be used if appropriate provisions were made for aborts, SRB and ET impact, etc. The ground track and impact point studies included space shuttle type vehicles, current ELV's (expendable launch vehicles, and HLLV's (heavy lift launch vehicles). (3) The Earth Port and Moon Port orbits were selected so that transfer trajectories between the two facilities could be initiated often without major plane change penalties. The amount of these penalties was calculated. Families of Earth Port to Moon Port and Moon Port to Earth Port trajectories were calculated to document the energy requirements and penalties. (4) Space Port module designs included module systems definitions, module masses, system masses, module and system volumes, module and system power requirements, etc. (5) The Space Port designs included specifications and justification for: Permanent crew size; Warehousing capacity; Assembly, assembly support, and repair; Unsupported operational capability; Nominal resupply intervals; Contingency resupply options; Transient personnel support capability; Costing, based on the Space Station Cost Model.

  5. Intelligent Design and Earth History

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2001-05-01

    Intelligent Design (ID), the idea that the Earth's biota was intelligently designed and created, is not a new species recently evolved by allopatric speciation at the fringes of the creationist gene pool. In spite of its new veneer of sophistication, ID is a variant of an already extant species of religious polemics. In the western world, arguments about causative relationships between the complexity of nature and the supernatural can be traced from the fifth century St. Augustine, to the eighteenth century David Hume and the nineteenth century William Paley. Along this descent tree some argued from the existence of supernatural agencies to the creation of nature with its complexities, while others argued from the complexities of nature to the existence of supernatural agencies. Today, Phillip Johnson promotes ID by attacking evolution rather than by presenting evidence for ID. He argues that the evidence for macroevolution is either absent, misinterpreted or fraudulent. His "Wedge Strategy" attempts to separate his "objective science" from the "philosophical mechanistic naturalism" which he posits is responsible for the survival of Darwinism. To make his appeal as wide as possible he tries not to offend anyone (except evolutionists) by deliberately avoiding discussion of biblical literalism or the age of the Earth. Although in 1859 Darwin admitted that the geological evidence was "the most obvious and gravest objection which can be urged against my theory", subsequently geological evidence has become one of the chief supports of his theory. However, the fossil record is now seen to be not simply one of slow gradual descent with modification. Rates of divergence and disappearance of organisms have varied enormously through time. Repeated mass extinctions indicate a strong element of contingency in evolution. Accepting the postulate of an intelligent designer also requires the postulate of an intelligent destroyer. Darwin hinted at this when he referred to, "The clumsy, wasteful works of nature as seen in the suffering caused by parasites and in the delight in cruelty shown by some predators when catching and playing with their prey". The positions of other contemporary proponents of ID are far from uniform. Some, while rejecting unguided evolution, appear to accept the concepts of common descent and an Earth 4.6 billion years old. However, within the ID movement there has been very little discussion of its implications for Earth history. For example, is it valid to ask, "Were the Himalayas intelligently designed?" Or should the question be, "Is the physics of plate tectonics intelligently designed?" As well as contingency in the history of life, there are strong elements of contingency in the history of the Earth, in the history of the solar system and in the history of the cosmos. Does ID matter? From a purely operational viewpoint, the rock record could equally well be interpreted in pattern-based investigations as being the product of either naturalistic processes, or as a sequence of intelligently designed events. For example, in correlating horizons between adjacent oil wells using micropaleontology, or in doing seismic stratigraphy, it makes little difference whether foraminifera or unconformities formed by natural or supernatural agencies. However, ID is an anathema for process-based research and its cultural implications are enormous. While we must be careful in our work to separate methodological naturalism from culturally bound philosophical naturalism, methodological naturalism has been an enormously successful approach in the advancement of knowledge. We have moved from the "demon-haunted" world to the world of the human genome. We must take ID seriously; it is a retrograde step.

  6. Earth's Energy Imbalance

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.; Fasullo, J.

    2013-12-01

    'Global warming' from increased greenhouse gases really refers to a global energy imbalance at the top-of-atmosphere (TOA). TOA measurements of radiation from space can track changes over time but lack absolute accuracy. An inventory of energy shows that over 90% of the imbalance is manifested as ocean heat content (OHC). Here we use ORAS4 ocean reanalysis data and other OHC estimates to compare the OHC rates of change with model-based estimates of TOA energy imbalance (from CCSM4), and with TOA satellite measurements for the year 2000 onwards. Most of the ocean-only OHC analyses extend to only 700 m depth, have large discrepancies among the rates of change of OHC, and do not resolve interannual variability adequately to capture ENSO and volcanic eruption effects. For the first time we show that ORAS4 OHC quantitatively agrees with the radiative forcing estimates of impacts of the 3 major volcanic eruptions since 1960 (Mt. Agung 1963, El Chichn 1982, and Mt. Pinatubo 1991). The natural variability of the energy imbalance is substantial from month-to-month associated with cloud and weather variations, and interannually mainly associated with ENSO, while the sun affects 15% of the climate change signal on decadal timescales. All estimates (OHC and TOA) show that over the past decade the energy imbalance ranges between about 0.5 and 1 W m-2. By using the full-depth ocean, there is a better overall accounting for energy, but discrepancies remain at interannual timescales between OHC and TOA radiation measurements, notably in 2008-09.

  7. Earth's Energy Imbalance and Implications

    NASA Astrophysics Data System (ADS)

    Hansen, J.; von Schuckmann, K.; Sato, M.; Kharecha, P.

    2012-04-01

    Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. We update our analysis of Earth's observed energy imbalance through 2011 and compare this with climate simulations. Observed global surface temperature change and ocean heat gain together constrain the net climate forcing, implying existence of a large negative forcing by human-made aerosols. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We discuss implications of the trend of observed sea level rise in recent years, and its consistency with reported ice melt rates and ocean thermal expansion.

  8. Earth Orbit Raise Design for the Artemis Mission

    NASA Technical Reports Server (NTRS)

    Wiffen, Gregory J.; Sweetser, Theodore H.

    2011-01-01

    The Artemis mission is an extension of the Themis mission. The Themis mission1 consisted of five identical spacecraft in varying sized Earth orbits designed to make simultaneous measurements of the Earth's electric and magnetic environment. Themis was designed to observe geomagnetic storms resulting from solar wind's interaction with the Earth's magnetosphere. Themis was meant to answer the age old question of why the Earth's aurora can change rapidly on a global scale. The Themis spacecraft are spin stabilized with 20 meter long electric field booms as well as several shorter magnetometer booms. The goal of the Artemis2 mission extension is to deliver the field and particle measuring capabilities of two of the Themis spacecraft to the vicinity of the Moon. The Artemis mission required transferring two Earth orbiting Themis spacecraft on to two different low energy trans-lunar trajectories ultimately ending in lunar orbit. This paper describes the processes that resulted in successful orbit raise designs for both spacecraft.

  9. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  10. CERES Detects Earth's Heat and Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Clouds and the Earth's Radiant Energy System, CERES, monitors solar energy reflected from the Earth and heat energy emitted from the Earth. In this image, heat energy radiated from the earth is shown in varying shades of yellow, red, blue and white. The brightest yellow areas, such as the Sahara Desert and Arabian Peninsula, are emitting the most energy out to space, while the dark blue polar regions and bright white clouds are the coldest areas on Earth, and are emitting the least energy. The animation (1.5MB) (high-res (4MB)) shows roughly a week of CERES data. For more information: CERES images through Visible Earth. CERES web site Image courtesy of the CERES instrument team

  11. Earth's energy imbalance and implications

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K.

    2011-09-01

    Improving observations of ocean heat content show that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 ± 0.15 W m-2 during the 6-year period 2005-2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be -1.6 ± 0.3 W m-2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade. Humanity is potentially vulnerable to global temperature change, as discussed in the Intergovernmental Panel on Climate Change (IPCC, 2001, 2007) reports and by innumerable authors. Although climate change is driven by many climate forcing agents and the climate system also exhibits unforced (chaotic) variability, it is now widely agreed that the strong global warming trend of recent decades is caused predominantly by human-made changes of atmospheric composition (IPCC, 2007). The basic physics underlying this global warming, the greenhouse effect, is simple. An increase of gases such as CO2 makes the atmosphere more opaque at infrared wavelengths. This added opacity causes the planet's heat radiation to space to arise from higher, colder levels in the atmosphere, thus reducing emission of heat energy to space. The temporary imbalance between the energy absorbed from the sun and heat emission to space, causes the planet to warm until planetary energy balance is restored. The planetary energy imbalance caused by a change of atmospheric composition defines a climate forcing. Climate sensitivity, the eventual global temperature change per unit forcing, is known with good accuracy from Earth's paleoclimate history. However, two fundamental uncertainties limit our ability to predict global temperature change on decadal time scales. First, although climate forcing by human-made greenhouse gases (GHGs) is known accurately, climate forcing caused by changing human-made aerosols is practically unmeasured. Aerosols are fine particles suspended in the air, such as dust, sulfates, and black soot (Ramanathan et al., 2001). Aerosol climate forcing is complex, because aerosols both reflect solar radiation to space (a cooling effect) and absorb solar radiation (a warming effect). In addition, atmospheric aerosols can alter cloud cover and cloud properties. Therefore, precise composition-specific measurements of aerosols and their effects on clouds are needed to assess the aerosol role in climate change. Second, the rate at which Earth's surface temperature approaches a new equilibrium in response to a climate forcing depends on how efficiently heat perturbations are mixed into the deeper ocean. Ocean mixing is complex and not necessarily simulated well by climate models. Empirical data on ocean heat uptake are improving rapidly, but still suffer limitations. We summarize current understanding of this basic physics of global warming and note observations needed to narrow uncertainties. Appropriate measurements can quantify the major factors driving climate change, reveal how much additional global warming is already in the pipeline, and help define the reduction of climate forcing needed to stabilize climate.

  12. Earth Orbit Raise Design for the ARTEMIS Mission

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.; Sweetser, Theodore H.

    2012-01-01

    ARTEMIS is a mission to send two spacecraft from Earth orbit to libration orbits around the Moon Lagrange points and then into lunar orbit. Lunar flybys were used early in the mission to send the spacecraft into low-energy lunar transfers which were designed libration orbits for minimal deltaV. ARTEMIS began by raising the Earth orbits of each spacecraft to achieve the planned lunar flybys. Spacecraft conguration and operation constraints made the Earth orbit raise phase of the mission a signicant mission design challenge by itself. This paper describes the process used to and trajectories that achieved mission goals and the resulting series of Earth orbits that culminated in successful lunar flybys.

  13. Earth's energy imbalance and implications

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K.

    2011-12-01

    Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.58 0.15 W m-2 during the 6-yr period 2005-2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be -1.6 0.3 W m-2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.

  14. Approach to rapid mission design and planning. [earth orbit missions

    NASA Technical Reports Server (NTRS)

    Green, W. G.; Matthys, V. J.

    1973-01-01

    Methods and techniques are described for implementation in automated computer systems to assess parametric data, capabilities, requirements and constraints for planning earth orbit missions. Mission planning and design procedures are defined using two types of typical missions as examples. These missions were the high energy Astronomical Observatory Satellite missions, and Small Applications Technology Satellite missions.

  15. Designing sustainable soils in Earth's critical zone

    NASA Astrophysics Data System (ADS)

    Banwart, Steven Allan; de Souza, Danielle Maia; Menon, Manoj; Nikolaidis, Nikolaos; Panagos, Panos; Vala Ragnardsdottir, Kristin; Rousseva, Svelta; van Gaans, Pauline

    2014-05-01

    The demographic drivers of increasing human population and wealth are creating tremendous environmental pressures from growing intensity of land use, resulting in soil and land degradation worldwide. Environmental services are provided through multiple soil functions that include biomass production, water storage and transmission, nutrient transformations, contaminant attenuation, carbon and nitrogen storage, providing habitat and maintaining the genetic diversity of the land environment. One of the greatest challenges of the 21st century is to identify key risks to soil, and to design mitigation strategies to manage these risks and to enhance soil functions that can last into the future. The scientific study of Earth's Critical Zone (CZ), the thin surface layer that extends vertically from the top of the tree canopy to the bottom of aquifers, provides an essential integrating scientific framework to study, protect and enhance soil functions. The research hypothesis is that soil structure, the geometric architecture of solids, pores and biomass, is a critical indicator and essential factor of productive soil functions. The experimental design selects a network of Critical Zone Observatories (CZOs) as advanced field research sites along a gradient of land use intensity in order to quantify soil structure and soil processes that dictate the flows and transformations of material and energy as soil functions. The CZOs focus multidisciplinary expertise on soil processes, field observation and data interpretation, management science and ecological economics. Computational simulation of biophysical processes provides a quantitative method of integration for the range of theory and observations that are required to quantify the linkages between changes in soil structure and soil functions. Key results demonstrate that changes in soil structure can be quantified through the inputs of organic carbon and nitrogen from plant productivity and microbial activity, coupled with particle aggregation dynamics and organic matter mineralization. Simulation results show that soil structure is highly dynamic and is sensitive to organic matter production and minearlisation rates as influenced by vegetation, tillage and organic carbon amendments. These results point to a step-change in the capability to design soil management and land use through computational simulation. This approach of "sustainability by design" describes the mechanistic process linkages that exist between the above-ground inputs to the CZ and the internal processes that produce soil functions. This approach provides a rational, scientific approach to selecting points of intervention with the CZ in order to design methods to mitigate soil threats and to enhance and sustain vital soil functions. Furthermore, this approach provides a successful pilot study to the use of international networks of CZOs as a planetary-scale laboratory to test the response of CZ process rates along gradients of global environmental change - and to test adaptation strategies to manage the risks arising from the CZ impacts. Acknowledgements. The authors acknowledge the substantial contributions of the entire team of investigators and funding of the SoilTrEC project (EC FP7, agreement no. 244118; www.soiltrec.eu).

  16. Clouds and the Earth's Radiant Energy System (CERES) experiment

    NASA Technical Reports Server (NTRS)

    Cooper, John E.; Barkstrom, Bruce R.; Kopia, Leonard P.

    1992-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) experiment will play a major role in NASA's planned multi-instrument multi-satellite Earth Observing System (EOS) program to observe and study the total Earth System on a global scale. The CERES experiment will provide EOS with a consistent data base of accurately known fields of radiation and of clouds; and will investigate the important question of the impact of clouds upon the radiative energy flow through the earth-atmosphere system. The CERES instruments will be an improved version of the Earth Radiation Budget Experiment (ERBE) broadband scanning radiometer instruments flown by NASA in the 1980s. This paper describes the CERES experiment approach and the current CERES instrument design status.

  17. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  18. Transforming Instructional Designs in Earth Science (TIDES)

    NASA Astrophysics Data System (ADS)

    McWilliams, H.; McAuliffe, C.; Penuel, W.

    2008-12-01

    An enduring challenge in Earth system science education has been to prepare teachers to teach for deep understanding of subject matter. Standards and trade textbooks are often too broad to allow for in-depth treatment of specific topics, and many teachers have had limited exposure to how to plan instruction for the core concepts of Earth system science they are expected to teach. High-quality curriculum materials do exist that provide young people with opportunities to explore concepts in depth and to experience the inquiry process. At the same time, few programs provide teachers with the necessary skills and knowledge to enact and adapt those materials to the unique circumstances of their classrooms and schools. Our interdisciplinary team of curriculum and staff developers, researchers, and district personnel developed a program focused on preparing teachers to use a principled approach to curriculum adaptation in Earth system science. In this program, teachers learned how to use the Understanding by Design (UbD) approach developed by Grant Wiggins and Jay McTighe to organize and adapt materials from an expert-designed curriculum. As part of the program, teachers learn to select or modify materials from the curriculum based on how likely the materials are to develop so-called "enduring understandings" of concepts in the district standards. Teachers also learn how to apply the approach in incorporating materials from other sources besides the expert-designed curriculum, which can include their textbook and materials they design on their own or with colleagues. Third, teachers learn how to collect and interpret evidence of student understanding by designing or adapting performance tasks that call for students to apply knowledge acquired during the unit to solve a problem or complete a project. Evidence from a randomized controlled trial indicates the program we created is effective in improving the quality of teacher assignments and in improving student achievement. From the point of view of district staff, the program is effective because it prepares teachers to become critical consumers of curriculum materials. In this presentation, we present the impacts of our program on teacher instructional planning, curriculum enactment, and student achievement.

  19. Orbit Design of Earth-Observation Satellite

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    The purpose of this study is to design a reliable orbit for a medium-resolution scientific satellite to observe Earth for developmental issues such as water resources, agricultural, and industrial. To meet this objective this study firstly, defines the mission, secondly, determines mission constraints, thirdly, design the attitude and orbit control system. As for the observation requirements, and the revisit time are provided as a function of the orbital parameters. Initial orbital parameters are obtained by optimal analysis between observation characteristics and attitude and orbit maintenance costs. Long term station-keeping strategies will be provided for the proposed solutions. Impulsive control will be investigated to provide a reliable and affordable attitude and orbit control system.

  20. Clouds and the Earth's Radiant Energy System

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Clouds and the Earth's Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. The CERES instrument provides radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions are a follow-on to the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument (PFM) was launched on November 27, 1997, as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the EOS flagship Terra on December 18, 1999, and two additional CERES instruments (FM3 and FM4) were launched on board EOS Aqua on May 4,2002. [Mission Objectives] The scientific justification for the CERES measurements can be summarized by three assertions: (1) changes in the radiative energy balance of the Earth-atmosphere system can cause long-term climate changes (e.g., carbon dioxide inducing global warming); (2) besides the systematic diurnal and seasonal cycles of incoming solar energy, changes in cloud properties (amount, height, optical thickness) cause the largest changes of the Earth's radiative energy balance; and (3) cloud physics is one of the weakest components of current climate models used to predict potential global climate change. CERES has four main objectives: 1) For climate change analysis, provide a continuation of the ERBE record of radiative fluxes at the top of the atmosphere (TOA), analyzed using the same algorithms that produced the ERBE data. 2) Double the accuracy of estimates of radiative fluxes at TOA and the Earth's surface. 3) Provide the first long-term global estimates of the radiative fluxes within the Earth's atmosphere. 4) Provide cloud property estimates that are consistent with the radiative fluxes from surface to TOA. [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  1. Earth integrated design: office dormitory facility

    SciTech Connect

    Shapira, H.B.; Barnes, P.R.

    1980-01-01

    The generation process of the design of the Joint Institute for Heavy Ion Research is described. Architectural and energy considerations are discussed. The facility will contain living quarters for guest scientists who come to Oak Ridge to conduct short experiments and sleeping alcoves for local researchers on long experimental shifts as well as office space. (MHR)

  2. Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.

    1992-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.

  3. Visualizing Energy Resources Dynamically on Earth

    SciTech Connect

    Shankar, Mallikarjun; Stovall, John P.; Sorokine, Alexandre; Bhaduri, Budhendra L.; King, Jr., Thomas J.

    2008-01-01

    For the North American hurricane season, in partnership with the Tennessee Valley Authority (TVA) and working with the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, we have developed a capability that helps visualize the status of the electric transmission system infrastructure. The capability toolkit, called VERDE - Visualizing Energy Resources Dynamically on Earth, takes advantage of the Google Earth platform to display spatiotemporally informed power grid and related data. Custom libraries describe the electrical transmission network in the Eastern United States and the dynamic status of each transmission line. Standard Google Earth layers provide additional spatial context. In addition to live status, VERDE provides a framework and mechanism to ingest and intuitively present predictive models, data from different sources, and response needs.

  4. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

  5. Observing and modeling Earths energy flows

    SciTech Connect

    Stevens B.; Schwartz S.

    2012-05-11

    This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

  6. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher

  7. Energy design for architects

    SciTech Connect

    Shaw, A.

    1989-01-01

    This book contains techniques for energy efficiency in architectural design. Many aspects are covered including: cost; comfort and health; energy use; the design process; and analytical techniques. 202 figs. (JF)

  8. Solar energy and its interaction with Earth`s atmosphere

    SciTech Connect

    Tulunay, Y.

    1993-12-31

    The Sun is responsible for many of the phenomena on Earth, including the maintenance of life. In addition, magnetic storms, capable of disrupting radio communication, and auroral displays are associated with solar events. Man-made electrical, satellite, and communication systems are affected strongly by the near-Earth space environments. The purpose of this paper is to review briefly the interaction of solar activity with the near-Earth environment. These processes can be studied by examing two sets of interactions. That is, the interaction of the solar electromagnetic output with the Earth`s neutral atmosphere, and the solar corpuscular output with the geomagnetic field. In order to understand the types of interactions one needs to know more details of the interacting components. Therefore, the near-Earth environments which comprise neutral atmospheric, ionospheric and magnetospheric regions will be discussed in relation to the direct and indirect influences of solar activity.

  9. Designing for Energy Conservation.

    ERIC Educational Resources Information Center

    Estes, R. C.

    This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and

  10. Designing for Energy Conservation.

    ERIC Educational Resources Information Center

    Estes, R. C.

    This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and…

  11. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  12. Passive Earth Entry Vehicle Energy Absorbing Systems

    NASA Astrophysics Data System (ADS)

    Kellas, S.; Maddock, R. W.

    2014-06-01

    A critical element of a passive EEV performance is the energy absorbing system required to attenuate the dynamic landing loads. Two design approaches are described and the pros and cons based on particular mission requirements are discussed.

  13. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  14. An Earth-Moon system trajectory design reference catalog

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2015-05-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  15. EarthCARE/CPR design results and PFM development status

    NASA Astrophysics Data System (ADS)

    Maruyama, Kenta; Tomita, Eiichi; Nakatsuka, Hirotaka; Aida, Yoshihisa; Seki, Yoshihiro; Okada, Kazuyuki; Ishii, Yasuyuki; Tomiyama, Nobuhiro; Takahashi, Nobuhiro; Ohno, Yuichi; Horie, Hiroaki; Sato, Kenji

    2015-10-01

    Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) is a Japanese-European collaborative earth observation satellite mission aimed to deepen understanding of the interaction process between clouds and aerosols and their effects on the Earth's radiation. The outcome of this mission is expected to improve the accuracy of global climate change prediction. As one of instruments for EarthCARE, the Cloud Profiling Radar (CPR) is the world's first space-borne Doppler cloud radar jointly developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). In Japan, the critical design review of the CPR has been completed in 2013, and CPR proto-flight model was manufactured and integrated until summer in 2015. Finally, the proto-flight test have been just started. This paper describes the design results and current status of CPR proto-flight test.

  16. Clouds and the Earth's Radiant Energy System (CERES) - An Earth Observing System experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.

    1991-01-01

    An overview is presented of the CERES experiment that is designed not only to monitor changes in the earth's radiant energy system and cloud systems but to provide these data with enough accuracy and simultaneity to examine the critical climate/cloud feedback mechanisms which may play a major role in determining future changes in the climate system. CERES will estimate not only the flow of radiation at the top of the atmosphere, but also more complete cloud properties that will permit determination of radiative fluxes within the atmosphere and at the surface. The CERES radiation budget data is also planned for utilization in a wide range of other Earth Observing System interdisciplinary science investigations, including studies of land, biological, ocean and atmospheric processes.

  17. Harvesting renewable energy from Earth's mid-infrared emissions.

    PubMed

    Byrnes, Steven J; Blanchard, Romain; Capasso, Federico

    2014-03-18

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations. PMID:24591604

  18. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  19. Earth's Energy Imbalance and Ocean Heat Storage

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Willis, J.; Leuliette, E.; Bleck, R.; Lo, K.; Ruedy, R.; Sato, M.; Sun, S.

    2006-12-01

    The Earth's energy imbalance, i.e., the difference between solar energy absorbed and thermal energy emitted by the planet, is fundamental to global climate change, as it measures the net forcing acting on the climate system. The imbalance is now positive on decadal time scales, due to dominance of increasing greenhouse gas (GHG) forcing, and, with canonical climate sensitivity, it yields an estimate of the amount of global warming that remains "in the pipeline" due to GHGs already in the atmosphere. The ocean is the largest sink for excess incoming energy. Inference of information from the energy imbalance is affected by a trade-off between decreasing accuracy of earlier data and the added information from longer time scales. We use two atmosphere-ocean models, with ocean heat and sea level measurements, to study the roles of different climate forcings, unforced climate variability including ocean- cloud interactions, and limitations of data sampling. We find that observed decrease in ocean heat content in the upper 750m in 2004-2005 does not significantly alter the estimate of ~0.5C global warming still "in the pipeline". Continuation and refinement of measurements of ocean heat, sea level, and ice sheet mass balance have the potential to greatly refine understanding of global warming, its practical implications, and important climate processes, but to be most useful they need to be supplemented by better measurements of deep ocean heat content changes and precise measurements of changing climate forcings such as tropospheric aerosols.

  20. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  1. Energy-Conscious Design. Part 1.

    ERIC Educational Resources Information Center

    Lawrence, Jerry

    1984-01-01

    Practical energy-design elements adaptable for schools include building orientation and shape, inclusion of an energy-storage system, window placement, double or triple window glazing, air-curtain windows, and the use of earth berms and trees as wind breaks. (MLF)

  2. An imperative to monitor Earth's energy imbalance

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Palmer, M. D.; Trenberth, K. E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S. A.; Loeb, N.; Mathieu, P.-P.; Meyssignac, B.; Wild, M.

    2016-02-01

    The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort.

  3. Earth's energy imbalance: confirmation and implications.

    PubMed

    Hansen, James; Nazarenko, Larissa; Ruedy, Reto; Sato, Makiko; Willis, Josh; Del Genio, Anthony; Koch, Dorothy; Lacis, Andrew; Lo, Ken; Menon, Surabi; Novakov, Tica; Perlwitz, Judith; Russell, Gary; Schmidt, Gavin A; Tausnev, Nicholas

    2005-06-01

    Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space. This imbalance is confirmed by precise measurements of increasing ocean heat content over the past 10 years. Implications include (i) the expectation of additional global warming of about 0.6 degrees C without further change of atmospheric composition; (ii) the confirmation of the climate system's lag in responding to forcings, implying the need for anticipatory actions to avoid any specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration and sea level rise. PMID:15860591

  4. Earth Science by Design: Teaching the Big Ideas in Earth System Science

    NASA Astrophysics Data System (ADS)

    McWilliams, H.; McAuliffe, C.

    2007-12-01

    Developed by TERC and the American Geological Institute with funding from the National Science Foundation, Earth Science by Design (ESBD) is a year-long program of professional development for middle or high school teachers based on the Understanding by Design approach pioneered by Grant Wiggins and Jay McTighe. ESBD is designed to help teachers: · Teach for deep and enduring understanding of the "big ideas" in Earth system science. · Use "backward design" to create curriculum units and lessons that are engaging, rigorous, and aligned with national, state, and local standards. · Design effective classroom assessments and rubrics. · Incorporate powerful web-based Earth science visualizations and satellite imagery into an Earth system science approach. ESBD has developed a complete professional development package for staff developers and geoscience educators, including: · The ESBD Handbook, which provides everything you need to offer the program, including detailed workshop lesson plans. · The ESBD Web Site, where teachers can develop curriculum units online (www.esbd.org). · Online resources for Earth Science teaching and learning. · PowerPoint presentations for workshops and courses. · DVD of teacher reflections on their implementation experiences. In this session we will review the resources which ESBD makes available for geoscience educators: ·sample Earth science units produced by teachers in the program, ·field test results, ·the effect of the program on teacher practice, ·and how geoscience educators can get involved with ESBD. ESBD has been field-tested by staff developers in eight sites nationwide and is being adapted by college and university geoscience educators for use with pre-service teachers. In this session we will report on the results of field testing and on an experimental study of ESBD and other professional development approaches funded by the US Department of Education, Institute of Educational Sciences.

  5. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  6. Energy Budget: Earth's Most Important and Least Appreciated Planetary Attribute

    NASA Technical Reports Server (NTRS)

    Chambers, Lin; Bethea, Katie

    2013-01-01

    The energy budget involves more than one kind of energy. People can sense this energy in different ways, depending on what type of energy it is. We see visible light using our eyes. We feel infrared energy using our skin (such as around a campfire). We know some species of animals can see ultraviolet light and portions of the infrared spectrum. NASA satellites use instruments that can "see" different parts of the electromagnetic spectrum to observe various processes in the Earth system, including the energy budget. The Sun is a very hot ball of plasma emitting large amounts of energy. By the time it reaches Earth, this energy amounts to about 340 Watts for every square meter of Earth on average. That's almost 6 60-Watt light bulbs for every square meter of Earth! With all of that energy shining down on the Earth, how does our planet maintain a comfortable balance that allows a complex ecosystem, including humans, to thrive? The key thing to remember is the Sun - hot though it is - is a tiny part of Earth's environment. Earth's energy budget is a critical but little understood aspect of our planetary home. NASA is actively studying this important Earth system feature, and sharing data and knowledge about it with the education community.

  7. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  8. Design requirements for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J.; Bradford, L. H.; Burnett, E. S.; Hutson, D. E.; Kinsler, B. A.; Kugle, D. R.; Webber, D. S.

    1972-01-01

    Realistic tradeoff data and evaluation techniques were studied that permit conceptual design of operational earth resources ground processing systems. Methodology for determining user requirements that utilize the limited information available from users is presented along with definitions of sensor capabilities projected into the shuttle/station era. A tentative method is presented for synthesizing candidate ground processing concepts.

  9. Alternatives to Rare Earth Permanent Magnets for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    Direct-drive permanent magnet generators (DDPMGs) offer increased reliability and efficiency over the more commonly used geared doubly-fed induction generator, yet are only employed in less than 1 percent of utility scale wind turbines in the U.S. One major barrier to increased deployment of DDPMGs in the U.S. wind industry is NdFeB permanent magnets (PMs), which contain critical rare earth elements Nd and Dy. To allow for the use of rare earth free PMs, the magnetic loading, defined as the average magnetic flux density over the rotor surface, must be maintained. Halbach cylinders are employed in 3.5kW Halbach PMGs (HPMGs) of varying slot-to-pole ratio to concentrate the magnetic flux output by a lower energy density PM over the rotor surface. We found that for high pole and slot number, the increase in magnetic loading is sufficient to allow for the use of strontium iron oxide hard ferrite PMs and achieved rated performance. Joule losses in the stator windings were found to increase for the hard ferrite PMs due to increased inductance in the stator windings. However, for scaling of the HPMG designs to 3MW, rated performance and high efficiency were achieved, demonstrating the potential for elimination for rare earth PMs in commercial scale wind turbines. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  10. Exemplary Learning Modules in the ESSE Design Guide for Undergraduate Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J. L.; Ruzek, M.

    2006-12-01

    Supported by NASA through the Universities Space Research Association (USRA), the cooperative university- based Earth System Science Education (ESSE) program fosters the development of undergraduate curriculum and courses designed to understand Earth as a system. The ESSE community has produced the web-based Design Guide for Undergraduate Earth System Science Education as a living synthesis of the program. One section of the Design Guide contains exemplary learning modules with demonstrated value in courses that include new perspectives and new audiences underrepresented in the sciences. Two highlights are applications of earth system science to the urban environment and the adaptation of course material for the K- 12 curriculum. These learning modules will be useful in existing courses and will provide ideas for future course development. Each module has a description that includes the rationale, the learning objectives, the target audience, types of activities supported, instructor's tips, evaluation procedures and other information to help faculty to make best use of the module. Vignettes of personal experiences with the learning modules and linkage to the Design Guide provide scientific, pedagogical and institutional context. The ESSE21 Evaluation Toolkit, packaged with the Design Guide, offers additional information about evaluation. The topics developed in the learning modules cover a broad range from the tropics to the poles to near-Earth space: urban land surface-atmosphere systems; carbon cycle; remote sensing; integrating earth system science and the urban environment; land use and land cover change; pollution protection of Earth systems; local energy balance at air/land and air/water interfaces; earth and space science; and polar remote sensing.

  11. Axial focusing of energy from a hypervelocity impact on earth

    SciTech Connect

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  12. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Falck, Robert D.; McGuire, Melissa L.

    2010-01-01

    The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity.

  13. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation Suite (NEOS3).

  14. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities and Mars-to-Earth Return Opportunities 2009-2024

    NASA Technical Reports Server (NTRS)

    George, L. E.; Kos, L. D.

    1998-01-01

    This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009-2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.

  15. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  16. The mini-prototype solar energy earth storage system

    NASA Astrophysics Data System (ADS)

    Yuan, S. W.; Majdi, M. M.

    1981-07-01

    A one-tenth scale model of solar energy earth storage (SEES) system was tested under an artificial condition during the first winter season. The earth storage was heated by house hot water heaters and heat was then extracted with a high performance heat exchanger which was exposed to an open air environment under subfreezing temperatures. The results of these preliminary tests show that the thermal performance of the earth storage heat exchanger (polybutylene plastic coils) and the wet soil medium is quite satisfactory. Furthermore, the response rate of the earth storage to a large heat demand over a short-time duration is more than adequate.

  17. Energy Efficient Cryogenics on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2012-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.

  18. Earth Science Markup Language: Transitioning From Design to Application

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Graves, Sara; Ramachandran, Rahul

    2002-01-01

    The primary objective of the proposed Earth Science Markup Language (ESML) research is to transition from design to application. The resulting schema and prototype software will foster community acceptance for the "define once, use anywhere" concept central to ESML. Supporting goals include: 1. Refinement of the ESML schema and software libraries in cooperation with the user community. 2. Application of the ESML schema and software libraries to a variety of Earth science data sets and analysis tools. 3. Development of supporting prototype software for enhanced ease of use. 4. Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate. 5. Widespread publication of the ESML approach, schema, and software.

  19. Design of optimal impulse transfers from the Sun-Earth libration point to asteroid

    NASA Astrophysics Data System (ADS)

    Wang, Yamin; Qiao, Dong; Cui, Pingyuan

    2015-07-01

    The lunar probe, Chang'E-2, is the first one to successfully achieve both the transfer to Sun-Earth libration point orbit and the flyby of near-Earth asteroid Toutatis. This paper, taking the Chang'E-2's asteroid flyby mission as an example, provides a method to design low-energy transfers from the libration point orbit to an asteroid. The method includes the analysis of transfer families and the design of optimal impulse transfers. Firstly, the one-impulse transfers are constructed by correcting the initial guesses, which are obtained by perturbing in the direction of unstable eigenvector. Secondly, the optimality of one-impulse transfers is analyzed and the optimal impulse transfers are built by using the primer vector theory. After optimization, the transfer families, including the slow and the fast transfers, are refined to be continuous and lower-cost transfers. The method proposed in this paper can be also used for designing transfers from an arbitrary Sun-Earth libration point orbit to a near-Earth asteroid in the Sun-Earth-Moon system.

  20. Designing Medical Support for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Watkins, S. D.; Charles, J. B.; Kundrot, C. E.; Barr, Y. R.; Barsten, K. N.; Chin, D. A.; Kerstman, E. L.; Otto, C.

    2011-01-01

    This panel will discuss the design of medical support for a mission to a near-Earth asteroid (NEA) from a variety of perspectives. The panelists will discuss the proposed parameters for a NEA mission, the NEA medical condition list, recommendations from the NASA telemedicine workshop, an overview of the Exploration Medical System Demonstration planned for the International Space Station, use of predictive models for mission planning, and mission-related concerns for behavioral health and performance. This panel is intended to make the audience aware of the multitude of factors influencing medical support during a NEA mission.

  1. On the gravitational energy associated with Earth's changing oblateness

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    2014-11-01

    Relative to the gravitational potential energy of the Earth's monopole, the multipole energy has received far less attention. In this paper, we recapitulate the basic physics from first principles and derive the formulas for multipole energies in analogy to classical electrostatic theory. We focus on the zonal quadrupole energy associated with the Earth's oblateness, the dominant term in Earth's gravity field apart from the monopole. We find the gravitational energy Eoblateness ≈ 10-6 |Emonopole| = +2.5 × 1026 J. We examine the implications of Eoblateness and its changes associated with long-term `secular' decreases in the oblateness parameter J2. We find the rate of loss of Eoblateness due to the Earth rounding induced by the present-day GIA is about -200 GW, an amount quite significant in the kinetic energy budget of the mantle heat engine that drives the plate tectonics that has been estimated to be ˜1 TW. We also assert that the tidal braking and the global earthquake dislocations, both resulting in Earth rounding on long-term geological timescales, are accompanied with a secular decrease of Eoblateness at nearly the same rate of several GW.

  2. Conceptual radiometer design studies for Earth observations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  3. Low energy near-earth asteroid flyby missions

    NASA Astrophysics Data System (ADS)

    Sauer, Carl G., Jr.

    1992-08-01

    Evaluations are presented of the flyby performance for all low-launch-energy near-earth asteroid missions for launch opportunities extending from 1995 through 2006, and determinations are made as to the suitability of these asteroids as targets for flyby missions. The performance data are presented in a series of tables. This information can be used to select the most interesting examples of near-earth asteroid flyby missions for a more detailed examination which can include a launch period analysis and determination of spacecraft, earth, and target geometry during the mission.

  4. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    NASA Astrophysics Data System (ADS)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  5. Wave Energy Budget in the Earth Radiation Belts

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Mozer, Forest

    2015-04-01

    Whistlers are important electromagnetic waves pervasive in Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and ionization or chemical composition in the upper-atmosphere. Here, we report an analysis of ten-year Cluster data, evaluating for the first time the wave energy budget in Earth's magnetosphere and revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with ten times smaller magnetic power than parallel waves, typically have similar total energy. Very oblique waves may turn out to be a crucial agent of energy redistribution in Earth's radiation belts, controlled by solar activity.

  6. Design of a 35-kilowatt bipolar nickel-hydrogen battery for low Earth orbit application

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Smithrick, J. J.

    1982-01-01

    The needs of multikilowatt storage for low Earth orbit applications are featured. The modular concept, with projected energy densities of 20-24 W-hr/lb and 700-900 W-hr/ft3, has significant improvements over state of the art capabilities. Other design features are; active cooling, a new scheme for H2-O2 recombination, and pore size engineering of all cell components.

  7. Pennsylvania's Energy Curriculum for the Secondary Grades: Earth Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    Two dozen energy-related earth science lessons comprise this guide for secondary school teachers. Intended to provide information about energy issues that exist in Pennsylvania and throughout the world, the activities cover topics such as coal mining, radioactivity, and the distribution of oil and gas in Pennsylvania. Lessons include objectives,

  8. Pennsylvania's Energy Curriculum for the Secondary Grades: Earth Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    Two dozen energy-related earth science lessons comprise this guide for secondary school teachers. Intended to provide information about energy issues that exist in Pennsylvania and throughout the world, the activities cover topics such as coal mining, radioactivity, and the distribution of oil and gas in Pennsylvania. Lessons include objectives,…

  9. Energy Transfer in the Earth-Sun System

    NASA Astrophysics Data System (ADS)

    Lui, A. T. Y.; Kamide, Y.

    2007-02-01

    Conference on Earth-Sun System Exploration: Energy Transfer; Kailua-Kona, Hawaii, USA, 16-20 January 2006; The goal of this conference, which was supported by several agencies and organizations, was to provide a forum for physicists engaged in the Earth-Sun system as well as in laboratory experiments to discuss and exchange knowledge and ideas on physical processes involving energy transfer. The motivation of the conference stemmed from the following realization: Space assets form an important fabric of our society, performing functions such as television broadcasting, cell- phone communication, navigation, and remote monitoring of tropospheric weather. There is increasing awareness of how much our daily activities can be adversely affected by space disturbances stretching all the way back to the Sun. In some of these energetic phenomena, energy in various forms can propagate long distances from the solar surface to the interplanetary medium and eventually to the Earth's immediate space environment, namely, its magnetosphere, ionosphere, and thermosphere. In addition, transformation of energy can take place in these space disturbances, allowing charged-particle energy to be transformed to electromagnetic energy or vice versa. In- depth understanding of energy transformation and transmission in the Earth-Sun system will foster the identification of physical processes responsible for space disturbances and the prediction of their occurrences and effects. Participants came from 15 countries.

  10. Solar power satellites: our next generation of satellites will deliver the sun's energy to Earth

    NASA Astrophysics Data System (ADS)

    Flournoy, Don M.

    2009-12-01

    The paper addresses the means for gathering energy from sunlight in space and transmitting it to Earth via Solar Power Satellites. The motivating factor is that the output of our sun is the largest potential energy source available, with the capability of providing inexhaustible quantities of clean electrical energy to every location on Earth. The challenge is that considerable financial, intellectual and diplomatic resources must be focused on designing and implementing new types of energy infrastructures in space and on the ground. These include: 1) next-generation space platforms, arrays, and power transmission systems; 2) more flexible and powerful launch vehicles for delivering materials to space; 3) specialized receivers, converters and storage systems on earth, and the in-orbit position allocations, spectrum and software that make these systems work together efficiently and safely.

  11. Recent Changes in Earth's Energy Budget As Observed By CERES

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.

    2014-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term climate data record of Earth's radiation budget at the top-of-atmosphere, within-atmosphere and surface together with coincident cloud, aerosol and surface properties. CERES relies on a number of data sources, including broadband CERES radiometers on Terra, Aqua, and Suomi-NPP, high-resolution spectral imagers (MODIS and VIIRS), geostationary visible/infrared imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. The many input data sets are integrated and cross-calibrated to provide a consistent climate data record that accurately captures variations in Earth's radiation budget and associated cloud, aerosol and surface properties over a range of time and space scales. The CERES datasets are primarily used for climate model evaluation, process studies and climate monitoring. This presentation will review some of the ways in which the CERES record along with other datasets have been used to improve our understanding Earth's energy budget. At the top-of-atmosphere, we will show how Earth's energy imbalance, a critical indictor of climate change, has varied during the past 15 years relative to what is observed by in-situ observations of ocean heat content by the Argo observing system. We will use these results to place the so-called global warming hiatus into a larger context that takes Earth's energy budget into account. We will also discuss how recent advances in surface radiation budget estimation by the CERES group is reshaping the debate on why the surface energy budget cannot be closed to better than 15 Wm-2 using state-of-the-art observations. Finally, we will highlight the dramatic changes that have been observed by CERES over the Arctic Ocean, and discuss some of the yet unresolved observational challenges that limit our ability document change in this unique part of the planet.

  12. Earth's changing energy and water cycles

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.; Fasullo, J. T.

    2008-12-01

    A new assessment of the flows of energy through the climate system and its changes over time will be presented. It features an imbalance at the top-of-atmosphere owing to an enhanced greenhouse effect that produces global warming. Most of the surplus energy trapped at TOA increases ocean heat content. Large upward surface thermal radiation is offset by back radiation from greenhouse gases and clouds in the atmosphere. At the surface, the net losses of energy are greatest through evaporation, followed by net radiation, while sensible heat losses are much smaller. The budget highlights the vital role of the hydrological cycle and its response as a consequence of climate change. Nonetheless, net changes in total surface evaporation are fairly modest and a much larger percentage change occurs in the water-holding capacity as atmospheric temperatures increase (7 percent per C). Consequences include increased water vapor in the atmosphere, which projects nonlinearly onto convective instability, and the intensification of severe precipitation - changes that are now observable. Moreover the disparity between modestly enhanced evaporation and increases in the heaviest rains implies a decreased frequency of precipitation. Combined with elevated surface temperatures, drought probability is therefore enhanced.

  13. Energy flux in the Earth's magnetosphere: Storm substorm relationship

    NASA Astrophysics Data System (ADS)

    Alexeev, Igor I.

    2003-04-01

    Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways.

  14. Gravitational potential energy of the earth - A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.

  15. Design and Analysis of an Extended Mission of CE-2: From Lunar orbit to Sun-Earth L2 point

    NASA Astrophysics Data System (ADS)

    Dong, Qiao

    2012-07-01

    Being a part of Chinese Lunar Exploration Program, CE-2 was launched on 1 Oct.2010. CE-2 probe left lunar orbit for the Sun-Earth Lagrangian point L2 to test the tracking and control network after completing its primary objective. It entered orbit around Sun-Earth L2 on 25 August 2011, and is expected to remain there until the end of 2012. In this paper, we systematically discuss the trajectory design problem of this mission, and present the target Lissajous orbit of Sun-Earth L2 point based on the full ephemeris model. For complicated dynamics system of Sun-Earth-Moon-spacecraft, we decouple it in two different restricted three-body problems: Sun-Earth+Moon RTBP and the Earth-Moon one. We design the low-energy transfer trajectory in double three-body systems of Sun-Earth and Earth-Moon model by using invariant manifolds theory. Finally, we propose the basic correction strategy of transfer trajectory on basis of engineering constraints and mission requirements. The results of flight test show that the tajectory design of CE-2 mission is accurate and feasible.

  16. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  17. Near-Earth object intercept trajectory design for planetary defense

    NASA Astrophysics Data System (ADS)

    Vardaxis, George; Wie, Bong

    2014-08-01

    Tracking the orbit of asteroids and planning for asteroid missions have ceased to be a simple exercise, and become more of a necessity, as the number of identified potentially hazardous near-Earth asteroids increases. Several software tools such as Mystic, MALTO, Copernicus, SNAP, OTIS, and GMAT have been developed by NASA for spacecraft trajectory optimization and mission design. However, this paper further expands upon the development and validation of an Asteroid Mission Design Software Tool (AMiDST), through the use of approach and post-encounter orbital variations and analytic keyhole theory. Combining these new capabilities with that of a high-precision orbit propagator, this paper describes fictional mission trajectory design examples of using AMiDST as applied to a fictitious asteroid 2013 PDC-E. During the 2013 IAA Planetary Defense Conference, the asteroid 2013 PDC-E was used for an exercise where participants simulated the decision-making process for developing deflection and civil defense responses to a hypothetical asteroid threat.

  18. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting what Earth Scientists do. This approach can transform our Earth Science buildings into destinations for visitors, to show evoke inquiry. The building becomes a centerpiece, not another blank box on campus. Administrators at the University of Utah now want other new building structures to emulate our geoscience example. Done right, “bricks and mortar” can build stronger departments, infuse Earth Science into the community, and enhance our educational missions. LEED-certified Earth Science building with Eocene fossil fish wall, river pebble pattern in floor tile, displays, and student gathering areas.

  19. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  20. Energy principles in architectural design

    SciTech Connect

    Dean, E.

    1981-01-01

    A foundation of basic information pertaining to design and energy use in buildings is presented with emphasis on principles and concepts rather than applications of particular solution. Energy impacts of landforms and topography, vegetation, wind and ventilation, and sun on planning and designing the site are discused. General design considerations involving passive heating, cooling, and lighting systems are detailed. For the design of active building systems, heating, cooling, lighting, and HVAC systems are described. (MCW)

  1. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  2. Earth science: Another energy source for the geodynamo

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce

    2016-01-01

    Magnesium is not usually considered to be a constituent of Earth's core, but its presence there has now been proposed to explain an ongoing enigma -- the identity of the energy sources that drive our planet's magnetic field. See Letter p.387

  3. Gamma rays made on Earth have unexpectedly high energies

    SciTech Connect

    Miller, Johanna

    2011-01-15

    Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.

  4. Solar energy system case study: Telex Communications, Blue Earth, Minnesota

    SciTech Connect

    Raymond, M.G.

    1984-09-01

    A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

  5. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2015-10-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  6. Interplanetary mission design handbook. Volume 1, Part 5: Mars-to-Earth ballistic mission opportunities, 1992-2007

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, Andrey; Cunniff, Ross

    1987-01-01

    This document contains graphical data necessary for the preliminary design of ballistic missions returning from Mars. Contours of Mars-departure energy requirements, as well as many other launch and Earth-arrival parameters are presented in arrival-date/launch-date space for all departure opportunities from 1992 through 2007. In addition, an extensive companion document (Part 2) is available; it contains Earth-Mars graphical data and explains mission design methods, using the graphical data as well as numerous equations relating various parameters. This is one of a planned series of mission design handbooks.

  7. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.

    1996-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  8. Gravitational potential energy of the earth: A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1977-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic equation agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the mantle and crust of -2.77 x 10 to the twenty-ninth power ergs, an order of magnitude. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the twentieth power poises is found by assuming the total geothermal flux is due to viscous dissipation. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at one per cent efficiency, then the viscosity is ten to the twenty second power poises, a number preferred by some as the viscosity of the mantle.

  9. Designing to Save Energy

    ERIC Educational Resources Information Center

    Santamaria, Joseph W.

    1977-01-01

    While tripling the campus size of Alvin Community College in Texas, architects and engineers cut back on nonessential lighting, recaptured waste heat, insulated everything possible, and let energy considerations dictate the size and shape of the building. (Author/MLF)

  10. Electrical energy sources for organic synthesis on the early earth

    NASA Astrophysics Data System (ADS)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 × 1019 J yr-1 and 6 × 1019 J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended valves for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 × 1018 J yr-1 and 5 × 1017 J yr-1.

  11. Electrical energy sources for organic synthesis on the early Earth.

    PubMed

    Chyba, C; Sagan, C

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 x 10(19) J yr-1 and 6 x 10(19) J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended values for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 x 10(18) J yr-1 and 5 x 10(17) J yr-1. PMID:11537539

  12. Electrical energy sources for organic synthesis on the early earth

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  13. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  14. Energy storage for low earth orbit operations at high power

    NASA Technical Reports Server (NTRS)

    Trout, J. B.

    1979-01-01

    Results are presented of an in-house study of relative sizes and technology needs of three energy storage systems for high power, low earth orbit power systems. The systems compared are nickel-cadmium batteries, nickel-hydrogen batteries, and regenerative fuel cell systems (RFCS). RFCS based on hydrogen-oxygen and hydrogen-chlorine reactants are examined. Those components of the total power system which are significantly impacted by energy storage system selection; e.g., solar array, reactant storage tanks and radiator sizes, are included incrementally in the weights of the systems compared.

  15. Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Condon, Gerald; Williams, Jacob

    2012-01-01

    The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.

  16. Earth Science Contexts for Teaching Physics. Part 2: Contexts Relating to the Teaching of Energy, Earth and Beyond and Radioactivity.

    ERIC Educational Resources Information Center

    King, Chris; Kennett, Peter

    2002-01-01

    Explains how physics teaching can be more relevant for elementary and secondary students by integrating physics and earth science content that students can relate to and understand. Identifies and explains Earth contexts that can be appropriately implemented into the physics curriculum such as energy resources and radioactivity. (Author/YDS)

  17. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  18. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  19. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  20. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  1. Functional design for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.

    1972-01-01

    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.

  2. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    NASA Astrophysics Data System (ADS)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  3. Design strategies for human & earth systems modeling to meet emerging multi-scale decision support needs

    NASA Astrophysics Data System (ADS)

    Spak, S.; Pooley, M.

    2012-12-01

    The next generation of coupled human and earth systems models promises immense potential and grand challenges as they transition toward new roles as core tools for defining and living within planetary boundaries. New frontiers in community model development include not only computational, organizational, and geophysical process questions, but also the twin objectives of more meaningfully integrating the human dimension and extending applicability to informing policy decisions on a range of new and interconnected issues. We approach these challenges by posing key policy questions that require more comprehensive coupled human and geophysical models, identify necessary model and organizational processes and outputs, and work backwards to determine design criteria in response to these needs. We find that modular community earth system model design must: * seamlessly scale in space (global to urban) and time (nowcasting to paleo-studies) and fully coupled on all component systems * automatically differentiate to provide complete coupled forward and adjoint models for sensitivity studies, optimization applications, and 4DVAR assimilation across Earth and human observing systems * incorporate diagnostic tools to quantify uncertainty in couplings, and in how human activity affects them * integrate accessible community development and application with JIT-compilation, cloud computing, game-oriented interfaces, and crowd-sourced problem-solving We outline accessible near-term objectives toward these goals, and describe attempts to incorporate these design objectives in recent pilot activities using atmosphere-land-ocean-biosphere-human models (WRF-Chem, IBIS, UrbanSim) at urban and regional scales for policy applications in climate, energy, and air quality.

  4. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Agapitov, O. V.; Mourenas, D.; Krasnoselskikh, V. V.; Mozer, F. S.

    2015-05-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  5. Magnetic energy transfer at the top of the Earth's core

    NASA Astrophysics Data System (ADS)

    Huguet, L.; Amit, H.

    2012-12-01

    We introduce a formalism to track magnetic energy transfer between spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. Large-scale synthetic single harmonic flows are characterized by a fixed difference between harmonics participating in the transfer. Large-scale toroidal flows result in more local energy transfer than small-scale poloidal flows. Axisymmetric poloidal flows are most efficient in producing energy transfer and dipole changes. The azimuthal phase relation between the field and the flow may play a major role in the energy transfer. Geomagnetic energy transfer induced by core flow models exhibit a striking transfer spectrum pattern of alternating extrema suggestive of energy cascade, but the detailed transfer spectrum matrix reveals rich behaviour with both local Kolmogorov-like transfer and non-local transfer, the latter about twice larger. The transfer spectrum reverses from even maxima and odd minima between 1840 and 1910 to odd maxima and even minima between 1955 and 1990. The transfer spectrum matrix shows geomagnetic energy cascade from low to high degrees as well as non-local transfer from the dipole directly to higher degrees, explaining the simultaneous dipole decrease and non-dipoleincrease during the historical period.

  6. Magnetic energy transfer at the top of the Earth's core

    NASA Astrophysics Data System (ADS)

    Huguet, Ludovic; Amit, Hagay

    2012-08-01

    We introduce a formalism to track magnetic energy transfer between spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. Large-scale synthetic single harmonic flows are characterized by a fixed difference between harmonics participating in the transfer. Large-scale toroidal flows result in more local energy transfer than small-scale poloidal flows. Axisymmetric poloidal flows are most efficient in producing energy transfer and dipole changes. The azimuthal phase relation between the field and the flow may play a major role in the energy transfer. Geomagnetic energy transfer induced by core flow models exhibit a striking transfer spectrum pattern of alternating extrema suggestive of energy cascade, but the detailed transfer spectrum matrix reveals rich behaviour with both local Kolmogorov-like transfer and non-local transfer, the latter about twice larger. The transfer spectrum reverses from even maxima and odd minima between 1840 and 1910 to odd maxima and even minima between 1955 and 1990. The transfer spectrum matrix shows geomagnetic energy cascade from low to high degrees as well as non-local transfer from the dipole directly to higher degrees, explaining the simultaneous dipole decrease and non-dipole increase during the historical period.

  7. Research on design of Earth-Mars transfer trajectories exploiting invariant manifold

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Pingyuan, Cui; Shang, Haibin; Zhao, Zunhui

    2012-07-01

    It is well known that various transfer missions will cost lower fuel based on invariant manifold theory, although more time would be expended. In this paper, Earth-Mars low energy transfer trajectories, with fixed initial and finial circle orbit, exploiting the invariant manifolds of the restricted three-body problem are studied. In the transfer style, an impulse is applied in the circle orbit around planet to send the spacecraft into a transit orbit, and no more impulse is applied until the spacecraft enters into the deep space far away from the planet. A technique for estimating the benefit of exploiting invariant manifolds is presented. The evaluation standard is the sum of following parameters: the impulse used to send the spacecraft into the transit orbit, the impulse used to transfer from transit orbit to target planet, and the change value of hyperbolic velocity relative to the target planet. Compared with traditional two-impulse transfer, the rationality of exploiting invariant manifolds is analyzed for orbits with various altitudes around plants. Based on the analysis, the conclusion that only large radius circle orbits around Earth are suitable to exploit the invariant manifolds can be obtained. Further, a new transfer trajectory design method is proposed by introducing the evaluation standard mentioned above as a performance index. The performance index is used to separate transit orbits design and heliocentric patched conics from four-body problem. In the transit orbits design, the Jacobi constant of invariant manifold exploited is selected through comparing the maximum benefit. Then the practicable range for the fixed circle orbit converting to the transit orbits is obtained by calculating the projection of invariant manifolds on the orbital altitude. On the feasible range, the contour method is applied to select the transit orbit with minimum performance index. After the two transit orbits connecting the circle orbits and the interplanetary trajectory are designed, the trajectory is patched in the heliocentric two-body model. Finally, the trajectory is optimized in the plane four-body model by sequential quadratic programming. The validity of the proposed approach is demonstrated through several simulation examples of Earth-Mars low energy transfer trajectories designing.

  8. An observationally based energy balance for the Earth since 1950

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Solomon, S.; Portmann, R. W.; Rosenlof, K. H.; Forster, P. M.; Wong, T.

    2009-09-01

    We examine the Earth's energy balance since 1950, identifying results that can be obtained without using global climate models. Important terms that can be constrained using only measurements and radiative transfer models are ocean heat content, radiative forcing by long-lived trace gases, and radiative forcing from volcanic eruptions. We explicitly consider the emission of energy by a warming Earth by using correlations between surface temperature and satellite radiant flux data and show that this term is already quite significant. About 20% of the integrated positive forcing by greenhouse gases and solar radiation since 1950 has been radiated to space. Only about 10% of the positive forcing (about 1/3 of the net forcing) has gone into heating the Earth, almost all into the oceans. About 20% of the positive forcing has been balanced by volcanic aerosols, and the remaining 50% is mainly attributable to tropospheric aerosols. After accounting for the measured terms, the residual forcing between 1970 and 2000 due to direct and indirect forcing by aerosols as well as semidirect forcing from greenhouse gases and any unknown mechanism can be estimated as -1.1 ± 0.4 W m-2 (1σ). This is consistent with the Intergovernmental Panel on Climate Change's best estimates but rules out very large negative forcings from aerosol indirect effects. Further, the data imply an increase from the 1950s to the 1980s followed by constant or slightly declining aerosol forcing into the 1990s, consistent with estimates of trends in global sulfate emissions. An apparent increase in residual forcing in the late 1990s is discussed.

  9. TPS design for aerobraking at Earth and Mars

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Gietzel, M. M.; Rochelle, W. C.; Curry, D. M.

    1991-01-01

    An investigation was made to determine the feasibility of using an aerobrake system for manned and unmanned missions to Mars, and to Earth from Mars and lunar orbits. A preliminary thermal protection system (TPS) was examined for five unmanned small nose radius, straight bi-conic vehicles and a scaled up Aeroassist Flight Experiment (AFE) vehicle aerocapturing at Mars. Analyses were also conducted for the scaled up AFE and an unmanned Sample Return Cannister (SRC) returning from Mars and aerocapturing into Earth orbit. Also analyzed were three different classes of lunar transfer vehicles (LTV's): an expendable scaled up modified Apollo Command Module (CM), a raked cone (modified AFT), and three large nose radius domed cylinders. The LTV's would be used to transport personnel and supplies between Earth and the moon in order to establish a manned base on the lunar surface. The TPS for all vehicles analyzed is shown to have an advantage over an all-propulsive velocity reduction for orbit insertion. Results indicate that TPS weight penalties of less than 28 percent can be achieved using current material technology, and slightly less than the most favorable LTV using advanced material technology.

  10. Energy coupling in the magnetospheres of earth and Mercury

    NASA Technical Reports Server (NTRS)

    Baker, D. N.

    1990-01-01

    The mechanisms involved in the dissipation of solar-wind energy during magnetospheric substorms are considered theoretically, comparing models for earth and Mercury. In the model for terrestrial substorms, IMF lines interconnect with terrestrial field lines near the front of the magnetosphere and are dragged back, carrying plasma and energy, to form tail lobes; a magnetic neutral region is then formed by reconnection of the open lines as the plasma sheet thins, and reconnective heating and acceleration of tail plasma lead to plasma inflow at the poles and formation of a plasmoid flowing down the tail at high velocity. Analogous phenomena on Mercury could produce precipitation of particles carrying 10-1000 GW of power into 'auroral zones' on the dark side of the planet. The feasibility of remote or in situ observations to detect such processes is discussed.

  11. New High Energy Electron Component of Earth Radiation Belt

    NASA Astrophysics Data System (ADS)

    Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Ulin, S. E.; Voronov, S. A.

    The Earth Radiation Belt (ERB) was discovered in the course of the first flights of Russian and American satellites with conventional instruments (gas discharge and scintillation counters), which made it possible to investigate many characteristics of trapped particles and simulate adequate radiation belt models. However, the experimental and theoretical evidence accumulated over recent time, needs more elaborate measurements for its interpretation. These measurements became feasible after the development of devices based on more perfect detectors (solid and gas-filled Cherenkov detectors, magnetic spectrometer, scintillation time-of-flight systems). The evidence requiring new direct measurements in the ERB was obtained in the late 1960s in the course of balloon flights carried out by Cosmophysics Laboratory of the Moscow Engineering and Physics Institute. In these flights a correlation between the high energy electron flux in the upper atmosphere and perturbations ofthe Earth's magnetosphere was established. This phenomenon could be explained assuming there exist high energy electron fluxes in the ERB. High energy electron fluxes in the ERB were recorded for the first time in the direct experiments carried out on board orbital station 'Salyut-6' (orbit altitude - 350 km, inclination 51.6 deg). A scintillation-Cherenkov telescope 'Elena' controlled by cosmonauts was preset to different programmed positions. The measurements were made in the periphery of the ERB, namely, in the part which goes as low as several hundred km in the Brazil Anomaly Region (BRA). The flux of electrons with energies above 30 MeV was up to 104 (m2s sr)-1.

  12. Near-earth thermal environmental criteria study. [for design of spacecraft

    NASA Technical Reports Server (NTRS)

    Dash, J. M.; Green, T. F.; Starr, T. P.

    1974-01-01

    A study was made to determine improved values and definitions to be used for thermal environmental design parameters for a spacecraft in near-earth orbit. An algorithm was used to derive a total earth thermal radiation based on a mathematical relationship. Several albedo and earth thermal radiation grid maps were produced on seven track digital magnetic tape. Each map contained the values obtained during a 24 hour period over the entire earth. The output statistics are summarized, and the data processing program is described.

  13. Elemental processes of transport and energy conversion in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Vassilis

    In the last 5 years observations from several missions and ground based observatories have honed in on the most elemental aspects of flux transport and energy conversion. Dipolarization fronts and their counterpart in the distant magnetotail "anti-dipolarization" fronts, which together are refered to herein as "reconnection fronts", usher the recently reconnected flux tubes from the near-Earth X-points and in the process convert magnetic energy to particle energy and wave radiation. On the tailward side they are responsible for plasmoid formation and acceleration. On the earthward side they result in elemental substorm current wedges or wedglets, which were initially postulated from ground observations alone. Recent observations have revealed how the interaction of wedgelets and the inner magnetosphere takes place. Questions remain with regards to the physics of the energy transfer process from global magnetic energy to local heating and waves, and with regards to the initiation of the X-point activations in space. Observations indicate that the latter may be induced by polar cap or dayside activity, suggesting a direct link between dayside reconnection and nightside phenomena. The likely causal sequence of events and open questions in light of these recent observations, and the field's outlook in anticipation of upcoming coordinated observations from the international Heliophysics System Observatory will be discussed.

  14. Skylab Earth Resource Experiment Package critical design review. [conference

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An outline of the conference for reviewing the design of the EREP is presented. Systems design for review include: tape recorder, support equipment, view finder/tracking, support hardware, and control and display panel.

  15. Evaluating the design of an Earth Radiation Budget Instrument with systen simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1993-01-01

    A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: (1) the Active Cavity Array (ACA), (2) the Clouds and Earth's Radiant Energy System-Instrument (CERES-I), (3) the Conically Scanning Radiometer (CSR), (4) the Earth Radiation Budget Experiment Cross-Track Scanner (ERBE), and (5) the Nimbus-7 Biaxial Scanner (N7). Errors in instantaneous, top-of-the-atmosphere (TOA) satellite flux estimates are assumed to arise from two measurement problems: the sampling of space over a given geographic domain, and sampling in angle about a given spatial location. When angular sampling errors vanish due to the application of correct angular dependence models (ADMs) during inversion, the accuracy of each scanner design is determined by the instrument's ability to map the TOA radiance field in a uniform manner. In this regard, the instruments containing a cross-track scanning component (CERES-I and ERBE) do best. As errors in ADMs are encountered, cross-track instruments incur angular sampling errors more rapidly than biaxial instruments (N7, ACA, and CSR) and eventually overtake the biaxial designs in their total error amounts. A latitude bias (north-south error gradient) in the ADM error of cross-track instruments also exists. This would be objectionable when ADM errors are systematic over large areas of the globe. For instantaneous errors, however, cross-track scanners outperform biaxial or conical scanners for 2.5 deg latitude x 2.5 deg longitude target areas, providing that the ADM error is less than or equal to 30%. A key issue is the amount of systematic ADM error (departures from the mean models) that is present at the 2.5 deg resolution of the ERBE target areas. If this error is less than 30%, then the CERES-I, ERBE, and CSR, in order of increasing error, provide the most accurate instantaneous flux estimates, within 2-3 W/sq m of each other in reflected shortwave flux. The magnitude of this error is near the 10 W/sq m accuracy requirement of the user community. Longwave flux errors have been found to have the same space and time characteristics as errors in shortwave radiation, but only about 25% as large.

  16. Physical Limits of Solar Energy Conversion in the Earth System.

    PubMed

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy. PMID:26003563

  17. Earth Observations and the Water-Energy-Food Security Nexus

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Marx, S.

    2013-12-01

    The Water-Energy-Food (W-E-F) Security Nexus has received a great deal of attention internationally since 2011 when the World Economic Forum identified it as one of the three largest threats to the global economy. Since then several international conferences and research initiatives have focused on the linkages and synergies between these sectors. In addition, it has been recognized that land and/or ecosystems must also be considered as part of this nexus to fully understand the linkages between the sectors. The Global Water System Project carried out a preliminary assessment of the role of basin management on W-E-F security in a number of transboundary basins to determine the factors that drive this nexus, to understand how W-E-F security is perceived; to evaluate the degree to which data are used in making decisions related to this nexus; and to identify opportunities for enhancing the role of Earth Observations in making decisions relevant to W-E-F security. This assessment which relied on expert surveys is supplemented by a more in-depth case study in the Lake Winnipeg Basin which includes the basin of the Red River of the North. This paper provides a summary of the results of this assessment with an emphasis on the actual and potential roles of Earth Observations. In particular, their possible role is discussed in both national and transboundary basin contexts. Recommendations arising from the study deal with data sets and information systems, the need for targets related to the W-E-F Nexus, and possible new approaches for enhancing W-E-F resilience through the use Earth Observations to better plan and monitor the movement of water on the landscape.

  18. Linking Humans to Data: Designing an Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Meyer, C. B.

    2013-12-01

    National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.

  19. Earth-to-Moon low energy transfers targeting L1 hyperbolic transit orbits.

    PubMed

    Topputo, Francesco; Vasile, Massimiliano; Bernelli-Zazzera, Franco

    2005-12-01

    In the frame of the lunar exploration, numerous future space missions will require maximization of payload mass, and simultaneously achieving reasonable transfer times. To fulfill this request, low energy non-Keplerian orbits could be used to reach the Moon instead of high energetic transfers. The low energy solutions can be separated into two main categories depending on the nature of the trajectory approaching the Moon: low energy transit orbits that approach the Moon from the interior equilibrium point L(1) and weak stability boundary transfers that reach the Moon after passing through L(2). This paper proposes an alternative way to exploit the opportunities offered by L(1) transit orbits for the design of Earth-Moon transfers. First, in a neighborhood of the L(1) point, the three-body dynamics is linearized and written in normal form; then the entire family of nonlinear transit orbits is obtained by selecting the appropriate nontrivial amplitudes associated with the hyperbolic part. The L(1)-Earth arc is close to a 5:2 resonant orbit with the Moon, whose perturbations cause the apogee to rise. In a second step, two selected low altitude parking orbits around the Earth and the Moon are linked with the transit orbit by means of two three-body Lambert arcs, solutions of two two-point boundary value problems. The resulting Earth-to-Moon trajectories prove to be very efficient in the Moon captured arc and save approximately 100 m/sec in Deltav cost when compared to the Hohmann transfer. Furthermore, such solutions demonstrate that Moon capture could be obtained in the frame of the Earth-Moon R3BP neglecting the presence of the Sun. PMID:16510403

  20. Material and Energy Requirement for Rare Earth Production

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara

    2013-10-01

    The use of rare earth metals (REMs) for new applications in renewable and communication technologies has increased concern about future supply as well as environmental burdens associated with the extraction, use, and disposal (losses) of these metals. Although there are several reports describing and quantifying the production and use of REM, there is still a lack of quantitative data about the material and energy requirements for their extraction and refining. Such information remains difficult to acquire as China is still supplying over 95% of the world REM supply. This article attempts to estimate the material and energy requirements for the production of REM based on the theoretical chemical reactions and thermodynamics. The results show the material and energy requirement varies greatly depending on the type of mineral ore, production facility, and beneficiation process selected. They also show that the greatest loss occurs during mining (25-50%) and beneficiation (10-30%) of RE minerals. We hope that the material and energy balances presented in this article will be of use in life cycle analysis, resource accounting, and other industrial ecology tools used to quantify the environmental consequences of meeting REM demand for new technology products.

  1. Geothermal energy: clean power from the Earth's heat

    USGS Publications Warehouse

    Duffield, Wendell A.; Sass, John H.

    2003-01-01

    Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks. This heat then rises to and through the Earth’s surface, where it escapes into the atmosphere. The amount of heat that flows annually from the Earth into the atmosphere is enormous—equivalent to ten times the annual energy consumption of the United States and more than that needed to power all nations of the world, if it could be fully harnessed. Even if only 1 percent of the thermal energy contained within the uppermost 10 kilometers of our planet could be tapped, this amount would be 500 times that contained in all oil and gas resources of the world. How might we benefit from this vast amount of thermal energy beneath our feet? Where, by what means, and how much of the Earth’s natural heat can be usefully harnessed? These are especially important questions to contemplate, because global population is expected to soon exceed seven billion and many scientists believe that the world’s fossilfuel resources may be substantially depleted within this century. Faced with such prospects, both the public and private sectors are working toward more fully utilizing the Earth’s abundant thermal energy and other alternative energy resources. A skeptic might question the wisdom of devoting much national effort to geothermal energy development, especially because many experts think that geothermal heat can contribute at most about 10 percent to the Nation’s energy supply using current technologies. However, ongoing advances in exploration and heat-extraction technologies are improving our ability to use the resource and may substantially increase the geothermal contribution to the Nation’s energy supply. In an attempt to help national planners and average citizens alike understand the nature and energy potential of geothermal resources, this book (1) describes the distribution and nature of geothermal energy, (2) reviews the common types of geothermal systems that provide useful energy with current technology, (3) considers potential geothermal resources that might someday be tapped with developing technologies, and (4) summarizes the role of earth-science information in assessing and harnessing geothermal resources wherever they occur worldwide. The predecessor to this book (Tapping the Earth’s Natural Heat, U.S. Geological Survey Circular 1125, published in 1994) summarized the situation in the early 1990s. In an effort to support national energy planners, this new circular incorporates more recent advances in geothermal science and technology.

  2. Revised estimate of radioactive energy in the Earth

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.; Arévalo, R.; Luong, M.

    2007-12-01

    The radioactive elements, K, Th and U, play a paramount role in chemical geodynamics by providing a significant proportion of the energy that drives mantle convection. A major unknown is the absolute abundance and distribution of these elements in the mantle. For example, a mantle with a barren upper mantle and a radioactively hot core-mantle boundary (CMB) implies a significantly different mode of mantle convection than typically invoked for a more internally-heated mantle. The canonical K/U ratio of the silicate Earth (12,700), which is based on N-MORB samples, has been challenged in recent years by alternative models suggesting lower values for the bulk silicate Earth. Support for a lower K/U value for the silicate Earth comes from reconciling the missing Ar-40 problem, a re-examination of the continental crust composition, and evaluating the relative composition and contributions of different components in the mantle. In addition, a commonly held view is that the abundances of the most-depleted elements in the Depleted Mantle (MORB-source), the highly incompatible elements, are kinetically controlled by fluxes from sediment recycling and/or plume additions. We have analyzed >50 MORB, spanning a range from N- (normal) to (enriched) E-types from the Indian, Pacific and Atlantic oceans, and report an average K/U of 18,500 and Th/U of 3.1. In addition, we also observe a weak correlation of decreasing K/U with higher 6/4Pb isotope ratios, with the E-type MORB (K/Ti>0.14) having, on average, lower K/U values. Our findings are inconsistent with these incompatible elements being controlled by additions from either a continental or plume flux, both of which are believed to have lower K/U and higher Th/U values, and indicate that the Depleted Mantle component has an even higher K/U value. We will present the implications of these data with (1) revised compositional model (and uncertainties) of the DM and the silicate Earth, (2) a model for the distribution of heat producing elements in the mantle and (3) constraints on the proportion of recycled crustal and plume components in the DM.

  3. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  4. Design and analysis of a mode B and mode JD satellite Earth station

    NASA Astrophysics Data System (ADS)

    Hance, Dennis J.

    1994-06-01

    This thesis focuses on the design, integration, and analysis of an amateur radio service mode B and mode JD satellite earth station. Preliminary designs were investigated to determine the optimum configuration for the earth station. Modern digital modems, cabling structures, an 80386-based computer system, satellite tracking software, transmission and reception antennas, preamplifiers, and sophisticated performance measurement technologies were integrated into a functioning earth station. Initially, component availability and station design dictated the selection and acquisition of the requisite station equipment, integration of the transmitter, receiver preamplifiers, antennas, and computer equipment followed. Preliminary testing of the various components in the integration station occupied a significant amount of time. Empirical test tracking of different amateur and commercial satellites verified proper operation of the earth station. Results are discussed throughout this thesis.

  5. Passive Energy Building Design Tool

    Energy Science and Technology Software Center (ESTSC)

    1994-11-01

    SOLAR5 is a computer aided design tool to help architects design better, more energy efficient buildings. It is intended for use at the beginning of the design process. To get started, only four pieces of information are necessary to compute the energy needed: the square footage, the number of stories, the kind of building (such as school, home, hotel, or any one of 20 types), and its location (the program stores the temperature ranges formore » fourty major cities). Additional information may be given later to fine tune the design. An expert system using heuristics from a wide range of sources, automatically creates a passive solar baseline building from the four facts specified for that project. By modifying and adapting prior designs the user can create and work upon as many as nine schemes simultaneously. SOLAR5 can analyze the buildings thermal performance for each hour of each month and plot its total heat gain or loss as a three-dimensional surface. After reading the plot, the user can immediately redesign the building and rerun the analysis. Separate heat gain/loss surfaces can be plotted for each of the different parts of the building or schemes that add together to make up the total, including walls, roof, windows, skylights, floor, slab on grade, people, lights, equipment, and infiltration. Two different schemes can be instantly compared by asking for a three-dimensional plot showing only the difference in their performances. The objective of SOLAR5 is to allow the designer to make changes easily and quickly with detailed instantaneous pictorial feedback of the implications of the change.« less

  6. The Clouds and the Earth's Radiant Energy System (CERES) Sensors and Preflight Calibration Plans

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Smith, G. Louis; Cooper, John E.; Kopia, Leonard P.; Lawrence, R. Wes; Thomas, Susan; Pandey, Dhirendra K.; Crommelynck, Dominique A. H.

    1996-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.3-5 microns) and earth-emitted longwave (5- > 100 microns) radiances at the top of the atmosphere as part of the Mission to Planet Earth program. The scanning thermistor bolometer sensors respond to radiances in the broadband shortwave (0.3-5 microns) and total-wave (0.3- > 100 microns) spectral regions, as well as to radiances in the narrowband water vapor window (8-12 microns) region. 'ne sensors are designed to operate for a minimum of 5 years aboard the NASA Tropical Rainfall Measuring Mission and Earth Observing System AM-1 spacecraft platforms that are scheduled for launches in 1997 and 1998, respectively. The flight sensors and the in-flight calibration systems will be calibrated in a vacuum ground facility using reference radiance sources, tied to the international temperature scale of 1990. The calibrations will be used to derive sensor gains, offsets, spectral responses, and point spread functions within and outside of the field of view. The shortwave, total-wave, and window ground calibration accuracy requirements (1 sigma) are +/-0.8, +/-0.6, and +/-0.3 W /sq m/sr, respectively, while the corresponding measurement precisions are +/-O.5% and +/-1.0% for the broadband longwave and shortwave radiances, respectively. The CERES sensors, in-flight calibration systems, and ground calibration instrumentation are described along with outlines of the preflight and in-flight calibration approaches.

  7. Systems and Methods for Providing Energy to Support Missions in Near Earth Space

    NASA Technical Reports Server (NTRS)

    Fork, Richard (Inventor)

    2015-01-01

    A system has a plurality of spacecraft in orbit around the earth for collecting energy from the Sun in space, using stimulated emission to configure that energy as well defined states of the optical field and delivering that energy efficiently throughout the region of space surrounding Earth.

  8. Low energy trajectories to Mars via gravity assist from Venus to earth

    NASA Technical Reports Server (NTRS)

    Williams, S. N.; Longuski, J. M.

    1991-01-01

    The analytical determination of launch dates and proposed trajectories is reviewed with respect to the search for a low-energy trajectory to Mars with gravitational assist from Venus for the years 1995-2024. Both Ballistic and Venus-Earth gravity assist (VEGA) trajectories are calculated with an automated design tool by the authors (1990). The trajectories are modeled as conic sections from one gravitating body to the next, and gravity assist is considered to act impulsively. VEGA trajectories to Mars require similar launch energies for 6 years listed and have moderate arrival C3s, with the lowest C3 requirement in 2015. The flight time and arrival energies of the trajectories are found to be larger than those of ballistic trajectories, but the low-energy launch window makes them desirable for unmanned Mars missions, in particular.

  9. Design and benefits of a multibeam Earth Observing Radar

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.; Beck, F. B.

    1985-01-01

    The oceanographic rationale is described for continuing to advance the state of the art in satellite radar altimetry, and the expected capabilities of a multibeam Earth Observing Radar are noted. At the end of this decade, there is the possibility that altimeters may be in orbit aboard the American TOPEX, the ESA ERS-1, and the French SPOT satellites at the same time. The TOPEX version will be the most precise altimeter yet built. Global ocean circulation will be measured by using TOPEX to monitor the elevation changes across the ocean basins due to oceanic currents. It will then be possible to monitor the 'mean' circulation patterns in the oceans. The multiple beams of EOR might be used to measure the curvature of the topographic surface. The use of curvature is especially beneficial because it is directly related to ocean circulation, which is a function only of the Laplacian of the topographic height field in a given area. With the EOR, that height field will be known and ocean circulation can be immediately computed.

  10. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of the number of links looking above and below GEO; the detailed design of a GEO SSBS spacecraft bus and its accommodation of the communication payload, and a summary of the trade study that resulted in the selection of the Falcon 9 launch vehicle to deploy the SSBS and its impact on cost reductions per satellite. ======================================================================== Several initiatives have taken place within NASA1 and international space agencies2 to create a human exploration strategy for expanding human presence into the solar system; these initiatives have been driven by multiple factors to benefit Earth. Of the many elements in the strategy one stands out: to send robotic and human missions to destinations beyond Low Earth Orbit (LEO), including cis-lunar space, Near-Earth Asteroids (NEAs), the Moon, and Mars and its moons.3, 4 The time frame for human exploration to various destinations, based on the public information available,1,4 is shown in Figure 1. Advance planning is needed to define how future space communications services will be provided in the new budget environment to meet future space communications needs. The spacecraft for these missions can be dispersed anywhere from below LEO to beyond GEO, and to various destinations within the solar system. NASA's Space Communications and Navigation (SCaN) program office provides communication and tracking services to space missions during launch, in-orbit testing, and operation phases. Currently, SCaN's space networking relay satellites mainly provide services to users below GEO, at Near Earth Orbit (NEO), below LEO, and in deep space. The potential exists for using a space-based relay satellite, located in the vicinity of various solar system destinations, to provide communication space links to missions both below and above its orbit. Such relays can meet the needs of human exploration missions for maximum connectivity to Earth locations and for reduced latency. In the past, several studies assessed the ability of satellite-based relays working above GEO in conjunction with Earth ground stations. Many of these focused on the trade between space relay and direct-to-Earth station links5,6,7. Several others focused on top-level architecture based on relays at various destinations8,9,10,11,12. Much has changed in terms of microwave and optical technology since the publication of the referenced papers; Ka-band communication systems are being deployed, optical communication is being demonstrated, and spacecraft buses are becoming increasingly more functional and operational. A design concept study was undertaken to access the potential for deploying a Small Space-Based Satellite (SSBS) relay capable of serving missions between LEO and NEO. The needs of future human exploration missions were analyzed, and a notional relay-based architecture concept was generated as shown in Fig. 1. Relay satellites in Earth through cis-Lunar orbits are normally located in stable orbits requiring low fuel consumption. Relay satellites for Mars orbit are normally selected based on the mission requirement and projected fuel consumption. Relay satellites have extreme commonalities of functions between them, differing only in the redundancy and frequencies used; therefore, the relay satellite in GEO was selected for further analysis since it will be the first step in achieving a relay-based architecture for human exploration missions (see Fig.Figure 2). The mission design methodology developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team13 was used to produce the satellite relay design and to perform various design trades. At the start of the activity, the team was provided with the detailed concept of the notional architecture and the system and communication payload drivers.

  11. Education, energy, toilets, and Earth: The Operators' Manual

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Haines-stiles, G.; Akuginow, E.

    2011-12-01

    Solid science shows the unsustainability of relying on fossil fuels for long-term future energy supply, with increasingly strong evidence that a measured shift to renewable sources will be economically beneficial while improving employment and national security, providing insurance against catastrophes, and more. Yet despite notable advances in renewable energy and related issues, the transition does not appear to be occurring at the economically optimal rate. Analogy may be useful. In biological evolution and business, successful innovation is met by competitors, but also by predators, parasites, and diseases. Trees must handle the competition, but also termites, bark beetles, fungal diseases, strangling vines, and more, while new software meets competitors plus viruses, worms, Trojan horses and other malware. By analogy, the emergence of a "denialsphere" as well as competitors may be a predictable response to the threat posed to business-as-usual by the success of the National Academies and the IPCC in defining the climate-energy problem with the best science, and the growing success of inventors and policy-makers in developing advantageous and increasingly cost-effective solutions. Real questions exist about the best way forward, but the discussion of the important issues is sometimes confused by arguments that are not especially forward-going. Success of beneficial innovations against such problems is not guaranteed but surely has occurred, with transitions as large as that to a low-carbon energy system-we did switch from chamber pots and night-soil haulers to modern sanitation and clean water, for example. Analogy suggests that education and outreach are integral in such a transition, not a job to be completed but a process to be continued. Our attempt to contribute to this large effort, the NSF-supported Earth: The Operators' Manual, emphasizes diverse, interlocking approaches to show the large benefits that are ultimately available, relying on assessed science and not recommending particular policies.

  12. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.

  13. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  14. Earth-coupled heat pump and refrigeration design and applications

    SciTech Connect

    Braud, H.J.; Klimkowski, H.; Baker, F.E.

    1986-01-01

    The paper gives a design procedure for ground loops with a combination of heat pump and refrigeration loads. Water-cooled condensers for refrigeration, freezers, ice machines and heat pumps for hot water can be ground-couples along with heat pump for space heat/cool.

  15. Spacecraft systems design trade-offs for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Branchflower, G. A.

    1973-01-01

    The Earth Resources Technology Satellite Program's use of flight proven hardware in the design of a satellite for earth sensor payload support and data handling is discussed. The use of an existing satellite as the building block around which additional support systems such as the orbit adjust system, the redundant wideband telemetry systems, the second regulated power system, and the quad redundant command system is analyzed. System performance seen in orbit vs design objectives are discussed to point up the success of the design approach chosen. Also discussed are the schedule and cost benefits derived from the use of previously developed hardware with additional subsystems as required to meet program requirements.

  16. Concept design, modeling and station-keeping attitude control of an earth observation platform

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2012-11-01

    The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.

  17. Requirements and concept design for large earth survey telescope for SEOS

    NASA Technical Reports Server (NTRS)

    Mailhot, P.; Bisbee, J.

    1975-01-01

    The efforts of a one year program of Requirements Analysis and Conceptual Design for the Large Earth Survey Telescope for the Synchronous Earth Observatory Satellite is summarized. A 1.4 meter aperture Cassegrain telescope with 0.6 deg field of view is shown to do an excellent job in satisfying the observational requirements for a wide range of earth resources and meteorological applications. The telescope provides imagery or thermal mapping in ten spectral bands at one time in a field sharing grouping of linear detector arrays. Pushbroom scanning is accomplished by spacecraft slew.

  18. Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.

  19. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    PubMed Central

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  20. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  1. Energy Design Guides for Army Barracks: Preprint

    SciTech Connect

    Deru, M.; Zhivov, A.; Herron, D.

    2008-08-01

    The U.S. Army Corps of Engineers and NREL are developing target energy budgets and design guides to achieve 30% energy savings. This paper focuses the design guide for one type of barracks called unaccompanied enlisted personal housing.

  2. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.

  3. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  4. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  5. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  6. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  7. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  8. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    NASA Astrophysics Data System (ADS)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon transfers given current sail technology levels. Although the implemented steering laws suffice to generate baseline paths, infeasible turn rate demands placed on the sail are also investigated to explore the technical hurdles in designing Earth-Moon transfers. The methodologies are suitable for a variety of mission scenarios and sail configurations, rendering the resulting trajectories valuable for a diverse range of applications.

  9. Low-energy Earth-Moon transfers involving manifolds through isomorphic mapping

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro; Teofilatto, Paolo

    2013-10-01

    Analysis and design of low-energy transfers to the Moon has been a subject of great interest for decades. Exterior and interior transfers, based on the transit through the regions where the collinear libration points are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is concerned with a geometrical approach for low-energy Earth-to-Moon mission analysis, based on isomorphic mapping. The isomorphic mapping of trajectories allows a visual, intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Two types of Earth-to-Moon missions are considered. The first mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a periodic orbit around the Moon. The second mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a capture (non-periodic) orbit around the Moon. In both cases three velocity impulses are needed to perform the transfer: the first at an unknown initial point along the low Earth orbit, the second at injection on the stable manifold, the third at injection in the final (periodic or capture) orbit. The final goal is in finding the optimization parameters, which are represented by the locations, directions, and magnitudes of the velocity impulses such that the overall delta-v of the transfer is minimized. This work proves how isomorphic mapping (in two distinct forms) can be profitably employed to optimize such transfers, by determining in a geometrical fashion the desired optimization parameters that minimize the delta-v budget required to perform the transfer.

  10. Analytical Simulations of Energy-Absorbing Impact Spheres for a Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)

    2002-01-01

    Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.

  11. Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit

    NASA Technical Reports Server (NTRS)

    Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle

    1990-01-01

    The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.

  12. Design and field testing of solar-assisted earth coils. Final report, August 1, 1978-January 31, 1981

    SciTech Connect

    Bose, J E

    1981-01-01

    Two types of earth coils were designed, constructed, and are operational on the Oklahoma State University campus. A nominal 1000-foot, 4-inch, PVC coil buried in a serpentine pattern is the heat source/sink for two commercial heat pump systems. This system is vented which allows the easy placement of thermocouples down its length to measure changes in temperature as well as changes in overall U values as a function of length. Integral to the earth coil is a 1000-gallon uninsulated water storage tank in which solar energy from 210 ft/sup 2/ of solar collectors (single-glazed, metal absorber) can be added directly to the heat pump, circulated through the 1000-foot earth coil system, or added to an insulated storage tank for direct transfer. Temperature ranges for this type of system at the four-foot level are from a nominal range of 78/sup 0/F in mid-September to a low of 42/sup 0/F in mid-February in the absence of heat rejection or absorption. The second type of earth coil under study was a vertical coil approximately 240 feet in length. Placement of the coil is with a conventional water well drilling machine. The vertical heat exchanger consists of a 5-inch PVC pipe which is capped at both ends and pressurized at approximately 15 PSIG. This sealed and pressurized heat exchanger allows a low power pump to circulate water through both the heat pump and vertical heat exchanger system.

  13. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  14. Preparing Teachers to Design Instruction for Deep Understanding in Middle School Earth Science

    ERIC Educational Resources Information Center

    Penuel, William R.; Gallagher, Lawrence P.

    2009-01-01

    This study compared the efficacy of 3 approaches to professional development in middle school Earth science organized around the principles of Understanding by Design (Wiggins & McTighe, 1998) in a sample of 53 teachers from a large urban district. Teachers were randomly assigned to a control group or to 1 of 3 conditions that varied with respect…

  15. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  16. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  17. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.

  18. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  19. Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.

  20. Solar Sailing Kinetic Energy Interceptor (KEI) Mission for Impacting/Deflecting Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    2005-01-01

    A solar sailing mission architecture, which requires a t least ten 160-m, 300-kg solar sail spacecraft with a characteristic acceleration of 0.5 mm/sqs, is proposed as a realistic near- term option for mitigating the threat posed by near-Earth asteroids (NEAs). Its mission feasibility is demonstrated for a fictional asteroid mitigation problem created by AIAA. This problem assumes that a 200-m asteroid, designated 2004WR, was detected on July 4, 2004, and that the expected impact will occur on January 14, 2015. The solar sailing phase of the proposed mission for the AIAA asteroid mitigation problem is comprised of the initial cruise phase from 1 AU t o 0.25 AU (1.5 years), the cranking orbit phase (3.5 years), and the retrograde orbit phase (1 year) prior to impacting the target asteroid at its perihelion (0.75 AU from the sun) on January 1, 2012. The proposed mission will require at least ten kinetic energy interceptor (KEI) solar sail spacecraft. Each KEI sailcraft consists of a 160- m, 150-kg solar sail and a 150-kg microsatellite impactor. The impactor is to be separated from a large solar sail prior to impacting the 200-m target asteroid at its perihelion. Each 150-kg microsatellite impactor, with a relative impact velocity of at least 70 km/s, will cause a conservatively estimated AV of 0.3 cm/s in the trajectory of the 200-m target asteroid, due largely to the impulsive effect of material ejected from the newly-formed crater. The deflection caused by a single impactor will increase the Earth-miss-distance by 0.45Re (where Re denotes the Earth radius of 6,378 km). Therefore, at least ten KEI sailcraft will be required for consecutive impacts, but probably without causing fragmentation, to increase the total Earth-miss-distance by 4.5Re. This miss-distance increase of 29,000 km is outside of a typical uncertainty/error of about 10,000 km in predicting the Earth-miss- distance. A conventional Delta I1 2925 launch vehicle is capable of injecting at least two KEI sailcraft into an Earth escaping orbit. A 40-m solar sail is currently being developed by NASA and industries for a possible flight validation experiment within 10 years, and a 160-m solar sail is expected to be available within 20 years.

  1. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion

  2. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  3. Enhanced solar energy options using earth-orbiting mirrors

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Billman, K. W.; Bowen, S. W.

    1978-01-01

    A system of orbiting space reflectors is described, analyzed, and shown to economically provide nearly continuous insolation to preselected ground sites, producing benefits hitherto lacking in conventional solar farms and leading to large reductions in energy costs for such installations. Free-flying planar mirrors of about 1 sq km are shown to be optimum and can be made at under 10 g/sq m of surface, thus minimizing material needs and space transportation costs. Models are developed for both the design of such mirrors and for the analysis of expected ground insolation as a function of orbital parameters, time, and site location. Various applications (agricultural, solar-electric production, weather enhancement, etc.) are described.

  4. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  5. 75 FR 34515 - American Energy Services, Inc., Dynacore Patent Litigation Trust, Earth Sciences, Inc., Empiric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION American Energy Services, Inc., Dynacore Patent Litigation Trust, Earth Sciences, Inc., Empiric... there is a lack of current and accurate information concerning the securities of Earth Sciences,...

  6. Link design of Moon-to-Earth optical communication based on telescope array receivers

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorui; Guo, Lei; Zhang, Lincong; Liu, Yejun

    2014-01-01

    Optical communication technology shows promising prospects to fulfill the large bandwidth requirements of future deep-space exploration. This paper mainly studies the link design of Moon-to-Earth optical communication based on the telescope array receiver. Firstly, we analyze and design the telescope array model. An array of relatively small-sized telescope combined to form a larger synthesized aperture is a viable and efficient alternative to a large monolithic telescope. Moreover, this array structure also saves the total costs of the telescopes. In addition, we present an end-to-end system analysis to provide the expected signal and background photons as a function of the Moon-Earth distance. Then, we describe the work on the link design of the Moon-to-Earth optical communication. This primarily includes the received power, the antenna gain, the space loss, the atmospheric loss, and so on. We also provide an approximation calculation to the channel capacity, the data rate, the bit error ratio (BER) and signal-to-noise ratio (SNR). This demonstrates much theoretical significance on the actual Moon-to-Earth optical communication.

  7. An efficient lightning energy source on the early earth

    NASA Astrophysics Data System (ADS)

    Hill, R. D.

    1992-09-01

    Miller and Urey suggested in 1959 that lightning and corona on the early Earth could have been the most favorable sources of prebiotic synthesis. In 1991 Chyba and Sagan reviewed the presently prevailing data on electrical discharges on Earth and they raised questions as to whether the electrical sources of prebiotic synthesis were as favorable as was claimed. The proposal of the present paper is that localized lightning sources associated with Archaean volcanoes could have possessed considerable advantages for prebiotic synthesis over the previously suggested global sources.

  8. Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid

    2015-01-01

    Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.

  9. Satellite Operation Design for Assessing MTF Performance of Earth Observation Satellite Using Stellar Sources

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Seob; Chung, Dae-Won; Choi, Hae-Jin

    2007-12-01

    Modulation Transfer Function (MTF) of satellite image is an important performance index in satellite image applications. Therefore MTF performance is assessed using satellite image for the ground target during LEOP phase after launch. But the MTF performance assessment using the ground target can be affected by imaging conditions such as cloud and weather. In this paper system requirements and satellite operation for assessing MTF performance of satellite image using stellar sources are proposed. Satellite capability in collecting stellar sources using the satellite which is designed for earth observation and satellite image usefulness for assessing MTF performances were analyzed. The proposed approach will be useful to assess MTF performance of earth observation satellite in lower earth orbit.

  10. Energy-Conscious Design: Part 2.

    ERIC Educational Resources Information Center

    Lawrence, Jerry

    1984-01-01

    There are many design features that can be used to achieve an energy-efficient building. Described are task lighting, unoccupied space shutoff, onsite well with heat pump, wide-band thermostats, and solar energy. (MLF)

  11. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  12. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  13. Rocky super-Earths: variety in composition and energy budget

    NASA Astrophysics Data System (ADS)

    Valencia, D. C.

    2014-12-01

    Solid exoplanets offer a unique opportunity for comparative planetology with the small solar system planets, and in particular with Earth. With more than 40 low-mass planets (with masses less than 10 earth-masses) with measured masses and radii, it is now possible to distinguish trends in the data. Although most of these planets have a substantial envelope that makes them closer in nature to Uranus and Neptune, there are about 10 low-mass exoplanets that are potentially rocky. Despite the uncertainties in the data (especially in the mass), it is becoming evident that there is variety in compositions expressed mostly in a wide range of Fe/Si ratios that may affect the interior dynamics and thermal evolution of these planets. In addition, numerous observing campaigns have targeted M stars to find super-Earths in the habitable zone, as this region is closer to the host star. It is well recognized that these planets may also be subjected to variable amounts of early and/or sustained tidal heating. This may in turn affect the mode of convection and outgassing of these planets. I will present results on the lessons learned from the super-Earth data and the implications of variable Fe/Si ratio and tidal heating for the dynamics of the interior using the model by [1] including a simple degassing model for water. [1] Tackley, P. J., M. Ammann, J. P. Brodholt, D. P. Dobson and D. Valencia (2013) Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity, Icarus 225(1), 50-61

  14. Earth Science Week 2010 - Infrared Energy - Duration: 3 minutes, 9 seconds.

    NASA Video Gallery

    This video explores what infrared energy is and how NASA detects it to study our Earth's systems more completely. Satellite measurements over time allow scientists to study seasonal changes in loca...

  15. Axial focusing of impact energy in the earth`s interior: A possible link to flood basalts and hotspots

    SciTech Connect

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.; Campbell, D.L.

    1994-12-01

    We present the results of shock physics and seismological computational simulations that show how energy from a large impact can be coupled to the interior of the Earth. The radially-diverging shock wave generated by the impact decays to linearly elastic seismic waves. These waves reconverge (minus attenuation) along the axis of symmetry between the impact and its antipode. The locations that experience the most strain cycles with the largest amplitudes will dissipate the most energy and have the largest increases in temperature (for a given attenuation efficiency). We have shown that the locus of maximum energy deposition in the mantle lies along the impact axis. Moreover, the most intense focusing is within the asthenosphere at the antipode, within the range of depths where mechanical energy is most readily converted to heat. We propose that if large impacts on the Earth leave geological evidence anywhere other than the impact site itself, it will be at the antipode. We suggest that the most likely result of the focusing for a sufficiently large impact, consistent with features observed in the geological record, would be a flood basalt eruption at the antipode followed by hotspot volcanism. A direct prediction of this model would be the existence of undiscovered impact structures whose reconstructed locations would be antipodal to flood basalt provinces. One such structure would be in the Indian Ocean, associated with the Columbia River Basalts and Yellowstone; another would be a second K/T impact structure in the Pacific Ocean, associated with the Deccan Traps and Reunion.

  16. Navigation Design and Analysis for the Orion Earth-Moon Mission

    NASA Technical Reports Server (NTRS)

    DSouza, Christopher; Zanetti, Renato

    2014-01-01

    This paper details the design of the cislunar optical navigation system being proposed for the Orion Earth-Moon (EM) missions. In particular, it presents the mathematics of the navigation filter. The unmodeled accelerations and their characterization are detailed. It also presents the analysis that has been performed to understand the performance of the proposed system, with particular attention paid to entry flight path angle constraints and the delta-V performance.

  17. Energy manager design for microgrids

    SciTech Connect

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.

  18. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  19. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  20. Earth-sheltered housing: an evaluation of energy-conservation potential

    SciTech Connect

    Wendt, R.L.

    1982-04-01

    The Innovative Structures Program (ISP) began an evaluation of the energy conservation potential of earth-sheltered houses in late 1979. Since that time, several projects have been undertaken as part of this evaluation. The findings of these projects, plus a discussion of the work of others in the field, form the body of this report. Although a comprehensive evaluation of earth-sheltered housing has not been completed, this report presents a compendium of knowledge on the subject. The conclusions are more qualitative than quantitative in nature because of the limited information on which to base projections. The major conclusions to date are as follows: Earth-sheltered houses are capable of very good energy performance. Earth-sheltered houses, as a passive means to conserve energy, perform significantly better in some climatic regins than in others. Earth-sheltered houses are not the optimum passive concept in several major housing growth regions of the country. Earth-sheltered houses, including their land and site improvements, will cost an estimated 10 to 35% more than comparable aboveground houses, and this additional cost may not be justified on a life cycle cost basis, given 1981 market conditions. The use of earth sheltering will probably grow in some parts of the country; however, broad-scale national or regional utilization is not likely to occur in the next 20 to 30 years.

  1. 50% Advanced Energy Design Guides: Preprint

    SciTech Connect

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  2. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  3. Different Sun-Earth energy coupling between different solar cycles

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi

    2015-04-01

    Geoeffect of the extremely low solar (sunspot) activity starting from the last solar minimum is one of major space science issues. This study compared responses of global geomagnetic indices Dst, Kp, and AL to the same solar wind conditions (density, velocity, magnetic field and their products) between the recent decade (2005-2014) and each of the previous four decades (1965-1974, 1975-1984, 1985-1994, 1995-2004) using the NASA OMNI hourly values up to August 2014. It is found that geomagnetic activity for a given solar wind condition, namely the Sun-Earth coupling efficiency, during the last 10 years (from after the declining phase of cycle #23 to the maximum of cycle #24) is quantitatively lower than those during the previous four decades (each decade approximately corresponds to cycles #20--23, respectively). The low Sun-Earth coupling efficiency became obvious from around 2006 and continued until now with a sharp peak at 2009. The speciality after 2006 is more obvious in Dst than in AL. Acknowledgement: Dst, Kp, AL, and sunspot numbers (RI) are official IAGA and IAA endorsed indices that are provided by World Data Center for Geomagnetism, Kyoto University, Japan (Dst and AL), GFZ, Adolf-Schmidt-Observatory Niemegk, Germany (Kp), and the Royal Observatory of Belgium, Brussels (RI). Including these indices, all data in hourly values are obtained from NASA-GSFC/SPDF through OMNIWeb (http://omniweb.gsfc.nasa.gov/ow.html).

  4. Explaining Earths Energy Budget: CERES-Based NASA Resources for K-12 Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Chambers, L. H.; Bethea, K.; Marvel, M. T.; Ruhlman, K.; LaPan, J.; Lewis, P.; Madigan, J.; Oostra, D.; Taylor, J.

    2014-01-01

    Among atmospheric scientists, the importance of the Earth radiation budget concept is well understood. Papers have addressed the topic for over 100 years, and the large Clouds and the Earth's Radiant Energy System (CERES) science team (among others), with its multiple on-orbit instruments, is working hard to quantify the details of its various parts. In education, Earth's energy budget is a concept that generally appears in middle school and Earth science curricula, but its treatment in textbooks leaves much to be desired. Students and the public hold many misconceptions, and very few people have an appreciation for the importance of this energy balance to the conditions on Earth. More importantly, few have a correct mental model that allows them to make predictions and understand the effect of changes such as increasing greenhouse gas concentrations. As an outreach element of the core CERES team at NASA Langley, a multi-disciplinary group of scientists, educators, graphic artists, writers, and web developers has been developing and refining graphics and resources to explain the Earth's Energy budget over the last few decades. Resources have developed through an iterative process involving ongoing use in front of a variety of audiences, including students and teachers from 3rd to 12th grade as well as public audiences.

  5. Design Methodology of Micro Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    Recently, micro vibration energy harvesters are attracting much attention for wireless sensor applications. To answer the power requirement of practical applications, the design methodology is important. This paper first reviews the fundamental theory of vibration energy harvesting, and then discusses how to design a micro vibration energy harvester at a concept level. For the micro vibration energy harvesters, independent design parameters at the top level are only the mass and stroke of a seismic mass and quality factor, while the frequency and acceleration of vibration input are given parameters determined by the application. The key design point is simply to make the mass and stroke of the seismic mass as large as possible within the available device size. Some case studies based on the theory are also presented. This paper provides a guideline for the development of the micro vibration energy harvesters.

  6. Design of Round-trip Trajectories to Near-Earth Asteroids Utilizing a Lunar Flyby

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 7,700 known Near-Earth Asteroids (NEAs), and more are being discovered on a continual basis. Current models predict that the actual order of magnitude of the NEA population may range from 10' to 10 6 . The close proximity of NEA orbits to Earth's orbit makes it possible to design short duration round-trip trajectories to NEAs under the proper conditions. In previous work, 59 potentially accessible NEAs were identified for missions that depart Earth between the years 2016 and 2050 and have round-trip flight times of a year or less. We now present a new method for designing round-trip trajectories to NEAs in which the Moon's gravity aids the outbound trajectory via a lunar flyby. In some cases this gravity assist can reduce the overall spacecraft propellant required for the mission, which in turn can allow NEAs to be reached which would otherwise be inaccessible to a given mission architecture. Results are presented for a specific case study on NEA 2003 LN6.

  7. Constraining the gravitational wave energy density of the Universe using Earth's ring

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Harms, Jan

    2014-08-01

    The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this paper, we constrain the energy density of gravitational waves to values in the range 0.035-0.15 normalized by the critical energy density of the Universe at frequencies between 0.3 and 5 mHz, using ten years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advances in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

  8. Computational design and optimization of energy materials

    NASA Astrophysics Data System (ADS)

    Chan, Maria

    The use of density functional theory (DFT) to understand and improve energy materials for diverse applications - including energy storage, thermal management, catalysis, and photovoltaics - is widespread. The further step of using high throughput DFT calculations to design materials and has led to an acceleration in materials discovery and development. Due to various limitations in DFT, including accuracy and computational cost, however, it is important to leverage effective models and, in some cases, experimental information to aid the design process. In this talk, I will discuss efforts in design and optimization of energy materials using a combination of effective models, DFT, machine learning, and experimental information.

  9. Spacecraft Design-for-Demise implementation strategy & decision-making methodology for low earth orbit missions

    NASA Astrophysics Data System (ADS)

    Waswa, Peter M. B.; Elliot, Michael; Hoffman, Jeffrey A.

    2013-05-01

    Space missions designed to completely ablate upon an uncontrolled Earth atmosphere reentry are likely to be simpler and cheaper than those designed to execute controlled reentry. This is because mission risk (unavailability) stemming from controlled reentry subsystem failure(s) is essentially eliminated. NASA has not customarily implemented Design-for-Demise meticulously. NASA has rather approached Design-for-Demise in an ad hoc manner that fails to entrench Design-for-Demise as a mission design driver. Thus, enormous demisability challenges at later formulation stages of missions aspired to be demisable are evident due to these perpetuated oversights in entrenching Design-for-Demise practices. The investigators hence propose a strategy for a consistent integration of Design-for-Demise practices in all phases of a space mission lifecycle. Secondly, an all-inclusive risk-informed, decision-making methodology referred to as Analytic Deliberative Process is proposed. This criterion facilitates in making a choice between an uncontrolled reentry demisable or controlled reentry. The authors finally conceive and synthesize Objectives Hierarchy, Attributes, and Quantitative Performance Measures of the Analytical Deliberative Process for a Design-for-Demise risk-informed decision-making process.

  10. Specific mode output from multimode fiber oscillators by designing rare earth doping profiles

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Liang; Huang, Liang-Jin; Leng, Jin-Yong; Guo, Shao-Feng; Jiang, Zong-Fu

    2014-09-01

    Based on rate equations, a theoretical model of a fiber oscillator with a multimode gain fiber was built. We studied the effect of the rare earth doping profile in the core on the output characteristics of the multimode fiber oscillator. The results indicated that a pure fundamental mode can be obtained by partly doping the core of the large mode area (LMA) ytterbium doped fiber (YDF) in the fiber laser. Furthermore, a sole specific high-order mode can also be implemented by tailoring the rare earth doping profile according to the simulations. The mode coupling effect was also taken into account in the model. In spite of the mode coupling effect, the specific mode was able to dominate in the output of the fiber laser by utilizing the designed LMA YDF.

  11. Automated Job Controller for Clouds and the Earth's Radiant Energy System (CERES) Production Processing

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Hillyer, T. N.

    2011-12-01

    Clouds and the Earth's Radiant Energy System (CERES) is one of NASA's highest priority Earth Observing System (EOS) scientific instruments. The CERES science team will integrate data from the CERES Flight Model 5 (FM5) on the NPOESS Preparatory Project (NPP) in addition to the four CERES scanning instrument on Terra and Aqua. The CERES production system consists of over 75 Product Generation Executives (PGEs) maintained by twelve subsystem groups. The processing chain fuses CERES instrument observations with data from 19 other unique sources. The addition of FM5 to over 22 instrument years of data to be reprocessed from flight models 1-4 creates a need for an optimized production processing approach. This poster discusses a new approach, using JBoss and Perl to manage job scheduling and interdependencies between PGEs and external data sources. The new optimized approach uses JBoss to serve handler servlets which regulate PGE-level job interdependencies and job completion notifications. Additional servlets are used to regulate all job submissions from the handlers and to interact with the operator. Perl submission scripts are used to build Process Control Files and to interact directly with the operating system and cluster scheduler. The result is a reduced burden on the operator by algorithmically enforcing a set of rules that determine the optimal time to produce data products with the highest integrity. These rules are designed on a per PGE basis and periodically change. This design provides the means to dynamically update PGE rules at run time and increases the processing throughput by using an event driven controller. The immediate notification of a PGE's completion (an event) allows successor PGEs to launch at the proper time with minimal start up latency, thereby increasing computer system utilization.

  12. Design description report for a photovoltaic power system for a remote satellite earth terminal

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  13. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  14. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  15. Design Guide for Earth System Science Education: Common Student Learning Objectives and Special Pedagogical Approaches

    NASA Astrophysics Data System (ADS)

    Baker, D.

    2006-12-01

    As part of the NASA-supported undergraduate Earth System Science Education (ESSE) program, fifty-seven institutions have developed and implemented a wide range of Earth system science (ESS) courses, pedagogies, and evaluation tools. The Teaching, Learning, and Evaluation section of USRA's online ESSE Design Guide showcases these ESS learning environments. This Design Guide section also provides resources for faculty who wish to develop ESS courses. It addresses important course design issues including prior student knowledge and interests, student learning objectives, learning resources, pedagogical approaches, and assessments tied to student learning objectives. The ESSE Design Guide provides links to over 130 ESS course syllabi at introductory, senior, and graduate levels. ESS courses over the past 15 years exhibit common student learning objectives and unique pedagogical approaches. From analysis of ESS course syllabi, seven common student learning objectives emerged: 1) demonstrate systems thinking, 2) develop an ESS knowledge base, 3) apply ESS to the human dimension, 4) expand and apply analytical skills, 5) improve critical thinking skills, 6) build professional/career skills, and 7) acquire an enjoyment and appreciation for science. To meet these objectives, ESSE often requires different ways of teaching than in traditional scientific disciplines. This presentation will highlight some especially successful pedagogical approaches for creating positive and engaging ESS learning environments.

  16. Designating Earth's Moon as a United Nations World Heritage Site - Permanently Protected from Commercial or Military Uses

    NASA Astrophysics Data System (ADS)

    Steiner, R. G.

    2002-01-01

    This paper proposes that Earth's Moon, in its entirety, be designated a United Nations World Heritage Site (WHS), permanently protected from any and all commercial or military utilization and reserved exclusively for scientific and aesthetic purposes. The paper discusses: 1) the extraordinary importance of the Moon for science, culture, and religion - past, present and future; 2) the history of proposals to exploit the Moon for commercial and military purposes and the shortcomings of this colonial, exploitation paradigm; and 3) the necessity, policy mechanisms, and political dynamics of designating the Moon as a World Heritage Site, permanently protected from commercial and/or military uses. The first part of the paper discusses the extraordinary importance of the Moon as it exists today - as a scientific laboratory, a source of beauty and inspiration throughout human evolution, a source for artistic expression, and as an object that is considered sacred by many cultures. Next, the paper traces the history of specific proposals for the exploitation of the Moon for commercial and/or military purposes - including plans by the U.S. Air Force in 1959 to detonate a nuclear explosion on the Moon, proposals to strip-mine the lunar regolith for helium-3 and rocket-fuel hydrogen; construction of solar power plants to transmit energy to Earth, and proposals to use the lunar surface as a billboard upon which to project commercial advertisements visible from Earth. The profound ethical, legal, and scientific shortcomings of this exploitation paradigm are described as an emerging Extraterrestrial Manifest Destiny that we have a collective obligation to challenge and constrain. The paper proposes that space exploration be infused with an ethical commitment to compassion, reverence, conservation, and non-interference to abiotic and biotic systems alike; as opposed to the expansion and extraterrestrial imposition of the colonization, exploitation, domination, and despoliation paradigm that has characterized 19th and 20th century western civilization on Earth. The World Heritage process, and how Earth's Moon clearly satisfies necessary criteria, is described, as are the political challenges this proposal presents, including the 'national sovereignty' issue. The 1972 United Nations World Heritage Convention (signed by 167 countries), provides for the protection of cultural and natural properties deemed to be of "outstanding universal value", including value "from the point of view of science, conservation, or natural beauty" and places them under "a collective responsibility." The Moon clearly meets several criteria for WHS designation, as follow: a. "be outstanding examples representing major stages of Earth's history...significant on-going geological processes in the development of landforms, or significant geomorphic or physiographic features"; b. "contain superlative natural phenomena or areas of exceptional natural beauty and aesthetic importance"; and c. the Moon qualifies within the Convention as an "associative cultural landscape" which designates areas "by virtue of their powerful religious, artistic or cultural associations of the natural element." To facilitate WHS site designation for the Moon, it is proposed that the 1979 "Moon Treaty" (Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, entered into force 7/11/84) be amended and broadly ratified internationally. Specifically, Article 11 - which presently provides for 'the establishment of an international regime to govern the exploitation of the natural resources of the moon, encourage the development of the natural resources of the moon, the management and expansion of opportunities in the use of those resources' - should be amended to provide a clear and unequivocal declaration of the extraordinary, irreplaceable cultural and natural value of the Moon, and designation of the Moon in its entirety as an inviolate World Heritage Site reserved exclusively for scientific purposes and aesthetic/religious appreciation under the collective responsibility of all humankind.

  17. The Global Energy Situation on Earth, Student Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide are: (1) Introduction to the unit; (2) The "EARTH" program; (3) Exercises; and (4) Sources of information on the energy crisis. This guide supplements a simulation which allows students to analyze different aspects of energy…

  18. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  19. Diagnosing ocean energy transports from earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.

  20. Star Power on Earth: Path to Clean Energy Future

    ScienceCinema

    Ed Moses

    2010-09-01

    Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

  1. Application of a generalized diffraction analysis to the design of nonstandard Lyot-stop systems for earth limb viewing radiometers

    NASA Astrophysics Data System (ADS)

    Caldwell, Martin E.; Gray, Peter F.

    1997-10-01

    The design of Lyot-stop systems in earth limb viewing radiometers is first reviewed, with particular reference to the stray-light analysis methods used for instrument design and performance evaluation. These methods are given in order of increasing sophistication, up to the most powerful technique for diffraction analysis, that of generalized beam propagation analysis. The typical design features of radiometers for the limb-viewing application are discussed to summarize the important stray-light issues, including scatter, ghosting, and diffraction effects. How for multichannel instruments based on arrays of detectors, the interplay of these issues affects the Lyot-stop system is shown, pushing the design toward nonstandard geometries for which the generalized analysis method becomes essential. An example is given of the use of the technique in a system requiring a nonstandard Lyot-stop geometry, including the computation of the full diffracted energy patterns at each stage of the Lyot-stop system, illustrating the physics of the diffraction suppression, and giving insight into the design trade-offs; in particular, that between signal throughput and diffraction rejection. For one choice of this trade-off, the net diffraction response is calculated. This quantity is an important input to the ground characterization of the predicted performance.

  2. Simulation for the design of next-generation global Earth observing systems

    NASA Astrophysics Data System (ADS)

    Seablom, Michael S.; Talabac, Stephen J.; Higgins, Glenn J.; Womack, Brice T.

    2007-09-01

    Under a recently-funded NASA Earth Science Technology Office (ESTO) award we are now designing, and will eventually implement, a sensor web architecture that couples future Earth observing systems with atmospheric, chemical, and oceanographic models and data assimilation systems. The end product will be a "sensor web simulator" (SWS), based upon the proposed architecture, that would objectively quantify the scientific return of a fully functional modeldriven meteorological sensor web. Our proposed work is based upon two previously-funded ESTO studies that have yielded a sensor web-based 2025 weather observing system architecture, and a preliminary SWS software architecture that had been funded by NASA's Revolutionary Aerospace Systems Concept (RASC) and other technology awards. Sensor Web observing systems have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable meteorological features and events. A revolutionary architectural characteristic that could substantially reduce meteorological forecast uncertainty is the use of targeted observations guided by advanced analytical techniques (e.g., prediction of ensemble variance). Simulation is essential: investing in the design and implementation of such a complex observing system would be very costly and almost certainly involve significant risk. A SWS would provide information systems engineers and Earth scientists with the ability to define and model candidate designs, and to quantitatively measure predictive forecast skill improvements. The SWS will serve as a necessary trade studies tool to: evaluate the impact of selecting different types and quantities of remote sensing and in situ sensors; characterize alternative platform vantage points and measurement modes; and to explore potential rules of interaction between sensors and weather forecast/data assimilation components to reduce model error growth and forecast uncertainty. We will demonstrate key SWS elements using a proposed future lidar wind measurement mission as a use case.

  3. Trajectory design in the Earth-Moon system and lunar South Pole coverage

    NASA Astrophysics Data System (ADS)

    Grebow, Daniel J.

    Spacecraft trajectory design is evolving and innovation is increasingly driven by computational methods. As new regimes are explored, numerical techniques are most often developed to cope with undesirable behavior in sensitive dynamical systems. Nonlinear systems with sensitive dynamics are ubiquitous spacecraft trajectory modeling, where the models include, for example, perturbations due to an aspherical central body, multi-body perturbations, and solar wind. Numerical techniques are particularly useful in designing trajectories for lunar south pole coverage. Dual-spacecraft constellations include either two spacecraft in lunar "frozen" orbits or in multi-body orbits near the libration points of the Earth-Moon Restricted 3-Body Problem (R3BP). Alternatively, single spacecraft constellations, or "pole-sitters," require only one spacecraft for continuous surveillance and a control source for displacing the vehicle below the trans- or cis-lunar libration point. The control source might originate from a solar sail or an electric thruster. A spacecraft equipped with an electric thruster has an added advantage in that it can be deployed immediately and is eventually inserted into a larger constellation for continued surveillance. The following investigation includes many numerical techniques that are useful for trajectory design. The methods are applied for a thorough analysis of motion in the Earth-Moon R3BP, including dual-spacecraft and pole-sitter missions for lunar south pole coverage, where continuous line-of-sight access between a lunar ground station and the Earth is required. The various options for coverage are explored in higher-fidelity models and evaluated in terms of elevation angle and altitude from the Shackleton crater near the lunar south pole. The choice of constellation is driven by the mission requirements.

  4. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  5. Low-earth-orbit Satellite Internet Protocol Communications Concept and Design

    NASA Technical Reports Server (NTRS)

    Slywezak, Richard A.

    2004-01-01

    This report presents a design concept for a low-Earth-orbit end-to-end Internet-Protocol- (IP-) based mission. The goal is to maintain an up-to-date communications infrastructure that makes communications seamless with the protocols used in terrestrial computing. It is based on the premise that the use of IPs will permit greater interoperability while also reducing costs and providing users the ability to retrieve data directly from the satellite. However, implementing an IP-based solution also has a number of challenges, since wireless communications have different characteristics than wired communications. This report outlines the design of a low-Earth-orbit end-to-end IP-based mission; the ideas and concepts of Space Internet architectures and networks are beyond the scope of this document. The findings of this report show that an IP-based mission is plausible and would provide benefits to the user community, but the outstanding issues must be resolved before a design can be implemented.

  6. Energy Conscious Design in Schools of Architecture

    ERIC Educational Resources Information Center

    Villecco, Marguerite

    1977-01-01

    Major findings are summarized of an investigation of energy design teaching in schools of architecture, which led to recommendations described in this article addressed to theoretical and inspirational models of design teaching, rather than to technical courses. Available from: ACSA, 1735 New York Ave., Washington, D.C. 20006. (Author/LBH)

  7. Designing the Nuclear Energy Attitude Scale.

    ERIC Educational Resources Information Center

    Calhoun, Lawrence; And Others

    1988-01-01

    Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)

  8. DSN energy data base preliminary design

    NASA Technical Reports Server (NTRS)

    Cole, E. R.; Herrera, L. O.; Lascu, D. M.

    1979-01-01

    The design and implementation of a computerized data base created to support the DSN Energy Conservation Project with data relating to energy use at Goldstone Deep Space Communications Complex are described. The results of development work to date, are presented along with work currently in progress or in the planning stage.

  9. Human factors analysis of workstation design: Earth Radiation Budget Satellite Mission Operations Room

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.; Murphy, E. D.; Mitchell, C. M.

    1982-01-01

    A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel.

  10. Earth resources data systems design: S192 instrument measurements and characteristics

    NASA Technical Reports Server (NTRS)

    Goldstein, A. S.

    1972-01-01

    The design, development, and characteristics of the S192 instrument for use with the earth resources data systems are discussed. Subjects presented are: (1) multispectral scanner measurements, (2) measurement characteristics, (3) calibration and aligment, (4) operating modes, and (5) time tagging and references. The S192 will obtain high spatial resolution, quantitative line scan imagery data of the radiation reflected and emitted by selected test sites in up to 13 spectral bands of visible, near infrared, and thermal infrared regions of the electromagnetic spectrum.

  11. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  12. High-energy cosmic ray muons in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-01

    We present the calculations of the atmospheric muon fluxes at energies 10-107 GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  13. High-energy cosmic ray muons in the Earth's atmosphere

    SciTech Connect

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-15

    We present the calculations of the atmospheric muon fluxes at energies 10-10{sup 7} GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  14. Co-Seismic Energy Changes Induced by Earthquakes on a Rotating, Gravitating Earth

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Gross, Richard S.

    2003-01-01

    Besides operating its own energy budget, an earthquake acts as an agent transferring a much greater amount of energy among the Earth's rotation, elastic field, gravitational field and internal heat. We compute the co-seismic, globally integrated gravitational and rotation changes induced by some 20,000 large earthquakes that occurred in the last quarter century, according to Chao et al. (1995, GJI, 122,776- 783,784-789) and using the Harvard CMT catalog. The result confirms an extremely strong tendency for the earthquakes to decrease the global gravitational energy and to increase the spin energy. It is found that energy is being extracted from the Earth's gravitational field by the action of earthquakes at an average rate of about approx. 2 TeraW during the studied period, larger by far than the approx. 7 GigaW for the average rate of the earthquake-induced rotational energy increase and the approx. 5 GigaW for the seismic energy release. Based on energetics considerations and assuming the inability of the Earth to build up elastic energy continuously over time, it is argued that earthquakes, by converting gravitational energy, may make a significant contribution to the global hedflow.

  15. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  16. Design of a Representative Low Earth Orbit Satellite to Improve Existing Debris Models

    NASA Technical Reports Server (NTRS)

    Clark, S.; Dietrich, A.; Werremeyer, M.; Fitz-Coy, N.; Liou, J.-C.

    2012-01-01

    This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.

  17. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  18. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  19. AEOSS design guide for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced Earth Orbital Spacecraft System (AEOSS) enables users to project the requried power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxillary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius; 4th Dimension with a Macintosh version. Because of the licensing agreement, two versions of the AEOSS documents were prepared. This version AEOSS Design Guide, is for users to exploit the full capacity of the 4th Dimension. It is for a user who wants to alter or expand the program structures, the program statements, and the program procedures. The user has to possess a 4th Dimension first.

  20. High Energy Output Marx Generator Design

    SciTech Connect

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50×500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  1. Optical design of the multi-spectral camera (MSC) for high-resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Jang, Hong-Sul; Jung, Dae-Jun; Lee, Seunghoon

    2005-12-01

    The Multi-Spectral Camera (MCS) is the electro-optical imaging isntrument for high-resolution observation of the Earth with push broom scanning in the space. The MSC uses compact and light weighted optical design to tkae image with high MTF (modulation transfer function) performance. The Ritchey-Chretien with focal correct lens is selected to implement enough performance in the wide swath width. The focal plane has one panchromatic (PAN) and four multi-spectral (MS) CCD (charge coupled device) for the imaging of visible and near-infrared wavelength. The PAN and MS have their own focus correct lens to correct field aberration and also to make proper effective focal length. Here we present the optical design and analysis of the MSC.

  2. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  3. Computational materials design for energy applications

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  4. Energy Design Guides for Army Barracks

    SciTech Connect

    Deru, M.; Zhivov, A.; Herron, D.

    2008-01-01

    The Energy Policy Act of 2005 requires federal facilities to be built to achieve 30% energy savings over the 2004 International Energy Code or American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2004, as appropriate. The Engineer Research and Development Center of the U.S. Army Corps of Engineers and the National Renewable Energy Laboratory (NREL) are developing target energy budgets and design guides with a prescriptive path to achieve 30% energy savings over a baseline built to the minimum requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This project covers eight building types in 15 U.S. climate zones. The building types include barracks, administrative buildings, a maintenance facility, a dining facility, a child development center, and an Army reserve center. All the design guides will be completed by the end of 2008. This paper focuses on the design guide for one type of barracks called unaccompanied enlisted personal housing (UEPH). The UEPH buildings are similar to apartment buildings with double occupancy units. For each building type, a baseline was established following typical Army construction and ASHRAE Standard 90.1 Appendix G modeling rules. Improvements in energy performance were achieved for the envelope using the NREL optimization platform for commercial buildings and previous ASHRAE design guides. Credit was also taken for tightening the building envelope by using proposed envelope leakage rates from ASHRAE and the Army. Two HVAC systems, including a dedicated outdoor air system, were considered. The final results achieved 29% site energy savings in two climates and greater than 30% site energy savings in all other climates. Results of this study were implemented in the Army's standard RFP process for new UEPH barracks construction in late 2007. New UEPH design/construction begun in 2008 and beyond will require the contractor to design and construct a UEPH facility that meets the target energy budget developed in this study using either a custom design or the design guide's prescriptive path developed as part of this study.

  5. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.; Rutan, D. A.

    2011-01-01

    The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation and ultraviolet radiation (total, UVA and UVB) are computed. The CERES instruments aboard the Terra and Aqua spacecraft have served well past their design life times. A CERES instrument has been integrated onto the NPP platform and is ready for launch in 2011. Another CERES instrument is being built for launch in 2014, and plans are being made for a series of follow-on missions.

  6. Design of energy filters for electron microscopes

    NASA Astrophysics Data System (ADS)

    Tsuno, Katsushige

    1999-11-01

    Software for simulating 3D electric and magnetic fields followed by the direct ray tracing in individual field and combined fields (EO3D, MO3D and CO3D) are well applied to the design of energy filters attached to electron microscopes. When we had designed a high resolution EELS instrument, we had no 3D software, and encountered problems in designing a retarding Wien filter used as the monochromator and analyzer. At that time, electric field homogeneity inside the gap of magnet and the deflection of beam at the fringing region due to the deviation of the Wien condition were unsolved problems. When we designed a low energy reflection electron microscope (LEEM), we had 3D software, and some of the above problems were solved. We used an arc shaped electrode for the beam separator and an eight-pole filter for the analyzer. The coincidence of the magnetic and electric fringing field distributions at the fringing regions (Wien condition) was not perfect but was improved. We have designed an omega filter for in-column energy filtered transmission electron microscope (EFTEM). The omega filter consists of four sector magnets. Optical behavior of the system is very complicated. First, we designed the filter by 2D approximation and then checked by electron trajectories by the 3D software. The designed omega filter works successfully.

  7. Conceptual design of reduced energy transports

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.

    1976-01-01

    The paper reports the results of a conceptual design study of new near-term fuel-conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the optimum configuration characteristics and relative economic performance. Supercritical wing technology and advanced engine cycles were assumed. For each design, the wing geometry was selected to maximize an economic figure of merit which reflects the potential rate of return on investment. Based on the results of the parametric study, a reduced energy configuration was selected. Compared with existing transport design, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a slightly lower Mach number. It yields about 30% more seat-miles/gal than current wide-body aircraft. At the higher fuel costs anticipated in the future, the reduced energy design has about the same economic performance as existing designs with the same technology level. As an example of a far-term technology application, a design with a composite material wing was also investigated.

  8. Design + energy: results of a national student design competition

    SciTech Connect

    Not Available

    1980-01-01

    A national competition for students in schools of architecture was conducted during the Spring of 1980. The competition was the first of a series of competitions that emphasized the integration of architectural design and energy considerations in medium-scale building projects, and specifically applying passive solar design strategies and the appropriate use of brick masonry materials. Some 300 faculty members and over 2200 students representing 80 of the 92 US architecture schools participated in the program. A summary is presented of the program and the range of submissions grouped by problem types and general climatic region.

  9. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  10. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    NASA Astrophysics Data System (ADS)

    Kusiolek, Richard

    Summary An array of 55,000 40-foot antennas can generate from the rays of the Sun enough electrical power to replace 50 The economic potential is huge. There are new industries that will only grow and there are different ways to collect solar energy, including wind power. The energy sources we rely on for the most part are finite - fossil fuels, coal, oil and natural gas are all limited in supply. The cost will only continue to rise as demand increases. The time of global economic crossover between the EU, Asia Pacific and North America is coming within less than five years. The biggest opportunity for solar energy entrepreneurs would seem to be in municipal contracting where 1500 40-foot stacking antennas can be hooked into a grid to power an entire city. The antenna can generate 45 kilowatts of energy, enough to satisfy the electrical needs 7x24 of ten to twenty homes. It is possible to design and build 35-by-80-foot pedestals that track the sun from morning until night to provide full efficiency. A normal solar cell looks in the sky for only four or five hours of direct sunlight. Fabrication of these pedestals would sell for USD 50, 000-70,000 each. The solar heat collected by the antennas can be bounced into a Stirling engine, creating electricity at a focal point. Water can be heated by running through that focal point. In addition, salt water passing through the focal point can be desalinated, and since the antenna can generate up to 2,000 degrees of heat at the focal point. The salt water passing through the focal point turns to steam, which separates the salt and allows the steam to be turned into fresh drinking water. Collector energy can be retained in betavoltaics which uses semiconductors to capture energy from radioactive materials and turn it into usable electricity for automobiles. In a new battery, the silicon wafers in the battery are etched with a network of deep pores. These pores vastly increase the exposure surface area of the silicon, allowing it to absorb more energy and making the antenna collector 20 times more efficient than planar designs. A tracking pedestal powered by betavoltaics can follow the sun. With a 500-sun photovoltaic cell underneath a Fresnal lens magnifies and distributes the sun's energy at 500 times. Primary results and the main conclusions This idea is revolutionary and utilizes satellite tracking abilities to follow the sun, maintaining a constant energy source that can reach 700 to 800 degrees. This technology will have many applications, from instant fresh water in the form of steam to the use of fiber optics to filter natural light through a building. With the direction of the oil and energy costs continuing to spiral upward, there has been recent emphasis on alternative energy that is transmitted from space. Satellite antenna manufacturers can move quickly to production and create a revolution in sustainable energy that was never thought of before. The efforts of the United States, Russia, China, and India to colonize the Moon and Mars would be greatly enhanced by use of satellite solar collectors and betavoltaics electrical energy technologies for the colonies' habitats. Introduction This study was undertaken for the Global environment is in a crisis. The rich oil producing countries of Russia, Saudi Arabia, Venezuela, and Africa, have been at war to gain monopoly power and to restrict the space based explorations of the solar system. The physics of solar energy transmission to electrical mechanical energy is unique in improving the economies of the entire community of Nations. It is easy to produce satellite antennas, thus, satellite antennas can now be used as solar panels which can generate free power from the sun by converting sunlight to electricity. Solar Panels require no moving parts; have zero emissions, and no maintenance. These antennas will revolutionize the use of solar rays from the sun to benefit a global grid. These "collectors of free energy" are able to harness solar energy for thermal heating, desalination, lighting, and electricity. Further, • Clean energy means jobs. For example, the American Solar Energy Society released a report that the 8.5 million Americans working in the energy efficiency and renewable energy industries today can grow to 40 million jobs by 2020 (estimated at 200 million globally). • The EU, Asia Pacific, and North America need carbon-free, local, renewable energy now to fuel their economies. • The solution to global warming can be found in the transition to a sustainable energy economy. Methods and Materials This satellite collector study was undertaken using research methodology using primary and secondary research which began with the Science and Environmental Policy Project, Institute for Energy Research, Hoover Institution, Stanford University and the University of Michigan. The study on using betavoltiacs was conducted by a multi-disciplinary team included researchers from the University of Rochester, the University of Toronto, the Rochester Institute of Technology, and BetaBatt Inc of Houston, Texas and was supported by grants from the NSF Small Business Innovation Research (SBIR) program. Results Less than 2 Discussion Our planet is heading towards a catastrophe unless emissions of greenhouse gas in space and in the earth's atmosphere are substantially reduced. The results of this study are significant for it demonstrates that existing technologies found in the space technologies are being side-stepped in order to support the antiquated land-based energy systems that have focused on oil and gas, wind power, atomic, and water power. All along, the solar system has all the answers to lessen global warming and to create cheap energy that is free of the bureaucracies of global governments.

  11. Advancing Water and Water-Energy-Food Cluster Activities within Future Earth

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Bhaduri, A.; Pahl-Wostl, C.

    2014-12-01

    In building its emerging program, Future Earth has encouraged former Earth System Science Partnership (ESSP) projects to redefine their objectives, priorities and problem approaches so they are aligned with those of Future Earth. These new projects will be characterized by more integrated applications of natural and social sciences as well as dialogue and science integrated across disciplinary boundaries to address a wide range of environmental and social issues. The Global Water System Project (GWSP) has had a heritage of integrating natural and social sciences, and recently started to also look at issues within the Water-Energy-Food (WEF) cluster using similar integrated approaches. As part of the growth of the scientific elements of this cluster, GWSP has approached Future Earth opportunities by addressing the sustainability for Water, Energy, and Food through integrated water information and improved governance.In this presentation the approaches being considered for promoting integration in both water and the WEF cluster will be discussed. In particular, potential contributions of Future Earth to research related to the use and management of water and to issues and science underpinning the W-E-F nexus deliberations will be identified. In both cases the increasing ability to utilize Earth observations and big data will advance this research agenda. In addition, the better understanding of the implications of governance structures in addressing these issues and the options for harmonizing the use of scientific knowledge and technological advances will be explored. For example, insights gained from water management studies undertaken within the GWSP are helping to focus plans for a "sustainable water futures" project and a WEF cluster within Future Earth. The potential role of the Sustainable Development Goals in bringing together the monitoring and science capabilities, and understanding of governance approaches, will be discussed as a framework for facilitating the factors that could encourage more coherence in water management and in the WEF cluster.

  12. Scaled-energy spectroscopy for alkali-earth rydberg atom in external fields

    NASA Astrophysics Data System (ADS)

    Zhang, Shanshan; Cheng, Hong; Gao, Wei; Liu, Hongping

    2016-02-01

    The alkali-earth Rydberg atom in external fields is theoretically investigated by scaled-energy spectroscopy incorporating energy-dependent quantum defects. Closed-orbit theory is successful in reproducing the experimental observations for hydrogen and hydrogen-like alkali atoms in external fields. However, for the alkali-earth atoms such as barium, even the highly excited Rydberg electron can not be taken as isolated from the spectator valence electron(s) for the electron correlations. Closed-orbit theory cannot give a satisfactory explanation since the electron correlations are angular momentum and energy-dependent. In this paper, we perform a quantum calculation incorporating implicitly the quantum defects varying with energy where the electron correlation information is subsumed. The results recover the experimental observations for barium in magnetic or electric fields very well.

  13. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  14. The measurement of the earth's radiation budget as a problem in information theory - A tool for the rational design of earth observing systems

    NASA Technical Reports Server (NTRS)

    Barkstrom, B. R.

    1983-01-01

    The measurement of the earth's radiation budget has been chosen to illustrate the technique of objective system design. The measurement process is an approximately linear transformation of the original field of radiant exitances, so that linear statistical techniques may be employed. The combination of variability, measurement strategy, and error propagation is presently made with the help of information theory, as suggested by Kondratyev et al. (1975) and Peckham (1974). Covariance matrices furnish the quantitative statement of field variability.

  15. The opto-mechanical design of the GMT-consortium large earth finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Baldwin, Daniel; Bean, Jacob; Bergner, Henry; Bigelow, Bruce; Chun, Moo-Young; Crane, Jeffrey; Foster, Jeff; Fżrész, Gabor; Gauron, Thomas; Guzman, Dani; Hertz, Edward; Jordán, Andrés.; Kim, Kang-Min; McCracken, Kenneth; Norton, Timothy; Ordway, Mark; Park, Chan; Park, Sang; Podgorski, William A.; Szentgyorgyi, Andrew; Uomoto, Alan; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT) currently under construction at the Las Campanas Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose echelle spectrograph with precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) precision goal of GCLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the habitable zone. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures. Stability in instruments of this type is typically affected by changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the previously listed considerations must be managed while ensuring that performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including technical choices made to minimize the system's sensitivity to thermal gradients. A more general treatment of the properties of G-CLEF can be found elsewhere in these proceedings1. We discuss the design of the vacuum chamber which houses the irregularly shaped optical bench and optics while conforming to a challenging space envelope on GMT's azimuth platform. We also discuss the design of G-CLEF's insulated enclosure and thermal control systems which maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting the maximum thermal emission into the telescope dome environment. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  16. Thermonuclear Processes as a Principal Source of the Earth's Internal Energy

    NASA Astrophysics Data System (ADS)

    Terez, E. I.; Terez, I. E.

    2011-12-01

    A cosmological model of the formation of the Solar System is presented. It is shown that the main source of the Earth's energy is delivered from the thermonuclear processes in the inner Earth's core consisting of metallic hydrides. Several theoretical studies showed that under low temperature (T<104 K) and sufficiently high density of plasma, the characteristics of nuclear synthesis could be explained only with some adjustments to a thermonuclear synthesis theory. By building a diagram of the mass luminosity for the giant planets and the Earth, Wang Hong-Zhang (1990) illustrated that this diagram was similar to the one corresponding to stars. This could have only one explanation-the energy is due to the thermonuclear reactions and the energy rate is increasing exponentially with temperature and pressure. In the local areas where thermonuclear reactions occur in the Earth core, one should expect a sharp increase in temperature which causes of the dissolution of hydrides, e.g. release of hydrogen from the hydride-ionic form to the proton gas in large quantities (Larin, 2005). The pressure in this zone would sharply rise, and this would cause expulsion of the streams of the hydrogen plasma outside of the Earth's core. As a result of the Earth rotation and existence of the Coriolis' acceleration, the hydrogen plumes (more exactly, the proton gas) characterized by a high electrical conductivity twirl in spirals in the outer core of the Earth. These spirals form solenoid and, as a result, create the dipole magnetic field of the Earth. The suggest hypothesis of the thermonuclear nature of the Earth's energy flux is a main reason for the endogenic geodynamic and tectonic processes in the Earth's history. This hypothesis is supported by known experimental facts, and it opens new ways to study not only our planet but other planets of the Solar System. One should note that according to accepted concepts, the dipole magnetic field could exist in planets with a sufficient rotation and a possibility of thermonuclear reactions in their core. Accordingly, these planets don't have dipole magnetic fields. The quantities of hydrogen (in the form of hydrides) in the Earth's core are also not limitless. When they are exhausted, then naturally, the thermonuclear reactions cease along with all tectonic activity and magnetic field. This study gives a theoretical justification of a possible non-organic origin of hydrocarbons. Surely, if there is degassing of hydrogen from deep areas of the planet, hydrogen once present in the carbon rich areas would result in the hydrogenising reactions potentially forming layers rich with hydrocarbons. Respectively, hydrocarbons (non-organic) could be formed now and will be formed until the source of hydrogen would cease in the Earth's core. Moreover, the pure hydrogen (coming from the Earth's core) could find its way to the surface during some rare and catastrophic evens. However, this is another problem of new methods of how to detect, explore and even produce hydrocarbons including pure hydrogen. Full paper: www.springerlink.com/content/jn2576q7727q0034

  17. High Earth orbit design for lunar assisted small Explorer class missions

    NASA Technical Reports Server (NTRS)

    Mathews, M.; Hametz, M.; Cooley, J.; Skillman, D.

    1994-01-01

    Small Expendable launch vehicles are capable of injecting modest payloads into high Earth orbits having apogee near the lunar distance. However, lunar and solar perturbations can quickly lower perigee and cause premature reentry. Costly perigee raising maneuvers by the spacecraft are required to maintain the orbit. In addition, the range of inclinations achievable is limited to those of launch sites unless costly spacecraft maneuvers are performed. This study investigates the use of a lunar swingby in a near-Hohmann transfer trajectory to raise perigee into the 8 to 25 solar radius range and reach a wide variety of inclinations without spacecraft maneuvers. It is found that extremely stable orbits can be obtained if the postencounter spacecraft orbital period is one-half of a lunar sidereal revolution and the Earth-vehicle-Moon geometry is within a specified range. Criteria for achieving stable orbits with various perigee heights and ecliptic inclinations are developed, and the sensitivity of the resulting mission orbits to transfer trajectory injection (TTI) errors is examined. It is shown that carefully designed orbits yield lifetimes of several years, with excellent ground station coverage characteristics and minimal eclipses. A phasing loop error correction strategy is considered with the spacecraft propulsion system delta V demand for TTI error correction and a postlunar encounter apogee trim maneuver typically in the 30 to 120 meters per second range.

  18. Design and application of multi-channel simultaneous detection system for well-earth potential

    NASA Astrophysics Data System (ADS)

    Lei, Shao; Jun, Lin; Wei, Jianrong; Sui, Yangyi; Wu, Ziyu

    2007-07-01

    Well-earth ERT (electrical resistance tomography) technology is an important geophysical exploration method which studies the location distribution of remaining oil. Based on virtual instrument technology, the author designs a set of multi-channel simultaneous detection system. It adopts multi-channel simultaneous sampling, bipolar and differential inputs, analog LPF (low pass filter), FIR digital filter, and linear accumulated digital averaging method or techniques to suppress electromagnetic noise and improve SNR (signal-to-noise ratio); uses digital signal process method to remove the overshoot, avoided huge errors and improved accuracy of measurement; adopts feedback compensative method to exclude the influence of SP(spontaneous potential) and cover a wide dynamic measurable scope; spectrum analysis method is used for judging all electrodes earthing situation correctly; the USB2.0 technique is used to solve the problem of bulky multi-channel data transmission to achieve high-speed data transmission between hardware and PC. The Liao He oilfield survey results show that the system is characterized with high efficiency, portable and strong antijiamming capability.

  19. Activation energy for alkaline-earth ion transport in low alkali aluminoborosilicate glasses

    NASA Astrophysics Data System (ADS)

    Dash, Priyanka; Furman, Eugene; Pantano, Carlo G.; Lanagan, Michael T.

    2013-02-01

    Activation energies (Ea) for ionic conduction in low-alkali boroaluminosilicate glasses due to alkaline-earth (Ba, Ca) and alkali (Na) ion transport have been estimated using thermally stimulated depolarization current (TSDC) and AC impedance spectroscopy techniques. The TSDC plot showed distinct relaxation peaks which shifted to higher temperatures with increasing ramp rates, and the dielectric dispersion plot showed individual low frequency relaxation peaks indicating space charge polarization due to transport of cations with different Ea (0.93, 1.83, and 3.5 eV for Na, Ba, and Ca, respectively). The higher value of Ea for Ca transport is attributed to mixed alkaline earth effect.

  20. Global Change Research Related in the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Berry, Linda R.

    2002-01-01

    The mission of the Global Change Research Related to the Earth's Energy and Hydrologic Cycle is to enhance the scientific knowledge and educational benefits obtained from NASA's Earth Science Enterprise and the U.S. Global Change Research Program, University of Alabama in Huntsville (UAH). This paper presents the final technical report on this collaborative effort. Various appendices include: A) Staff Travel Activities years one through three; B) Publications and Presentations years one through three; C) Education Activities; D) Students year one through three; E) Seminars year one through three; and F) Center for Applied Optics Projects.

  1. Clouds and the Earth's Radiant Energy System (CERES) Visualization Single Satellite Footprint (SSF) Plot Generator

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.

    1995-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched in 1997 to collect data on the Earth's radiation budget. The data retrieved from the satellite will be processed through twelve subsystems. The Single Satellite Footprint (SSF) plot generator software was written to assist scientists in the early stages of CERES data analysis, producing two-dimensional plots of the footprint radiation and cloud data generated by one of the subsystems. Until the satellite is launched, however, software developers need verification tools to check their code. This plot generator will aid programmers by geolocating algorithm result on a global map.

  2. A preliminary design for the GMT-Consortium Large Earth Finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Bigelow, Bruce; Bouchez, Antonin; Chun, Moo-Young; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Frebel, Anna; Furesz, Gabor; Glenday, Alex; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jeong, Ueejong; Jordan, Andres; Kim, Kang-Min; Kim, Jihun; Li, Chih-Hao; Lopez-Morales, Mercedes; McCracken, Kenneth; McLeod, Brian; Mueller, Mark; Nah, Jakyung; Norton, Timothy; Oh, Heeyoung; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Phillips, David; Plummer, David; Podgorski, William; Rodler, Florian; Seifahrt, Andreas; Tak, Kyung-Mo; Uomoto, Alan; Van Dam, Marcos A.; Walsworth, Ronald; Yu, Young Sam; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an optical-band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general-purpose, high dispersion spectrograph that is fiber fed and capable of extremely precise radial velocity measurements. The G-CLEF Concept Design (CoD) was selected in Spring 2013. Since then, G-CLEF has undergone science requirements and instrument requirements reviews and will be the subject of a preliminary design review (PDR) in March 2015. Since CoD review (CoDR), the overall G-CLEF design has evolved significantly as we have optimized the constituent designs of the major subsystems, i.e. the fiber system, the telescope interface, the calibration system and the spectrograph itself. These modifications have been made to enhance G-CLEF's capability to address frontier science problems, as well as to respond to the evolution of the GMT itself and developments in the technical landscape. G-CLEF has been designed by applying rigorous systems engineering methodology to flow Level 1 Scientific Objectives to Level 2 Observational Requirements and thence to Level 3 and Level 4. The rigorous systems approach applied to G-CLEF establishes a well defined science requirements framework for the engineering design. By adopting this formalism, we may flexibly update and analyze the capability of G-CLEF to respond to new scientific discoveries as we move toward first light. G-CLEF will exploit numerous technological advances and features of the GMT itself to deliver an efficient, high performance instrument, e.g. exploiting the adaptive optics secondary system to increase both throughput and radial velocity measurement precision.

  3. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain

    NASA Astrophysics Data System (ADS)

    DeWolf, Scott; Wyatt, Frank K.; Zumberge, Mark A.; Hatfield, William

    2015-11-01

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ɛ2/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.

  4. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  5. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.

    PubMed

    DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William

    2015-11-01

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results. PMID:26628152

  6. Preliminary Downlink Design and Performance Assessment for Advanced Radio Interferometry Between Space and Earth (ARISE)

    NASA Astrophysics Data System (ADS)

    Yan, T.-Y.; Wang, C. C.; Gray, A.; Hemmati, H.; Mittskus, A.; Golshan, N.; Noca, M.

    1998-10-01

    Advanced Radio Interferometry Between Space and Earth (ARISE) is a space very long baseline interferometry (VLBI) mission with a nominal launch date of 2008. It consists of an inflatable 25-m radio telescope circulating in a highly elliptical Earth orbit with a perigee of 5,000 km and an apogee of 40,000 km. The objective is to observe in conjunction with Earth-based telescopes to obtain high-resolution maps of quasars and active galactic nuclei for science investigations. ARISE requires an 8-Gb/s downlink of science data, which is a challenge using today's technology. In this article, 8-Gb/s systems using both traditional radio frequency (RF) and laser communication are proposed with the goal of minimizing both the cost and the risk of the design. Either option requires appropriate technology investments. The RF system requires the use of dual polarization, high-order modulations such as 32-quadrature amplitude modulation (QAM), and spectrally efficient square-root raised-cosine (SRRC) filters to meet the Federal Communications Commission (FCC) spectral allocation. If additional bandwidth is allocated by the FCC, constant-envelope modulations such as cross-correlated trellis-coded quadrature modulation (XTCQM) can be used in place of SRRC filters and QAM to reduce the power required on the spacecraft. The proposed laser communication system uses on-off keying (OOK) and wavelength division multiplexing (WDM). The wavelength of 1550 nm has the advantage of lower background light subtended at the ground receiver for downlink communications. The critical components of the system are based on mature fiber-optic technologies. The downlink transceiver terminal will be a modified Optical Communications Demonstrator (OCD) that has been in development at JPL over the past 3 years. This article includes a road map on how the 8-Gb/s RF and laser communication systems can be developed with a series of demonstrations between now and the launch date. The demonstrations are needed to verify technologies and to raise the confidence level of the designs. With the completion of the demonstrations, both the RF system and the laser communication systems can be deployed with relatively low risk.

  7. An enhanced model of land water and energy for global hydrologic and earth-system studies

    USGS Publications Warehouse

    Milly, Paul C.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  8. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. PMID:23518599

  9. Towards a critical design of an operational ground segment for an Earth observation mission

    NASA Astrophysics Data System (ADS)

    Storch, Tobias; Habermeyer, Martin; Eberle, Sabrina; Mühle, Helmut; Müller, Rupert

    2013-01-01

    The ground segment for the future remote sensing mission Environmental Mapping and Analysis Program (EnMAP; www.enmap.org) is developed by the Earth Observation Center and the German Space Operations Center at the German Aerospace Center. The launch is scheduled for 2017. An operational satellite ground segment is a highly complex heterogeneous system which has to cope with different levels of criticality, novelty, specificity, and to be operated for many years. It consists of equipment, hard- and software as well as operators with their procedures. The strengths of the global coherence of the segment-wide approach bringing these aspects together is examined and not on the local details of segment-specific issues. However, the effects on two software-based elements of the ground segment are considered in more detail, namely the product library and the level 2geo processor. The development methodology and how the critical design of the complete ground segment finished its detailed design phase successfully was achieved is analyzed. As a measure of the maturity of the design, its stability across the project phases is proposed.

  10. ESAS-Derived Earth Departure Stage Design for Human Mars Exploration

    NASA Technical Reports Server (NTRS)

    Flaherty, Kevin; Grant, Michael; Korzun, Ashley; Malo-Molina, Faure; Steinfeldt, Bradley; Stahl, Benjamin; Wilhite, Alan

    2007-01-01

    The Vision for Space Exploration has set the nation on a course to have humans on Mars as early as 2030. To reduce the cost and risk associated with human Mars exploration, NASA is planning for the Mars architecture to leverage the lunar architecture as fully as possible. This study takes the defined launch vehicles and system capabilities from ESAS and extends their application to DRM 3.0 to design an Earth Departure Stage suitable for the cargo and crew missions to Mars. The impact of a propellant depot in LEO was assessed and sLzed for use with the EDS. To quantitatively assess and compare the effectiveness of alternative designs, an initial baseline architecture was defined using the ESAS launch vehicles and DRM 3.0. The baseline architecture uses three NTR engines, LH2 propellant, no propellant depot in LEO, and launches on the Ares I and Ares V. The Mars transfer and surface elements from DRM 3.0 were considered to be fixed payloads in the design of the EDS. Feasible architecture alternatives were identified from previous architecture studies and anticipated capabilities and compiled in a morphological matrix. ESAS FOMs were used to determine the most critical design attributes for the effectiveness of the EDS. The ESAS-derived FOMs used in this study to assess alternative designs are effectiveness and performance, affordability, reliability, and risk. The individual FOMs were prioritized using the AHP, a method for pairwise comparison. All trades performed were evaluated with respect to the weighted FOMs, creating a Pareto frontier of equivalently ideal solutions. Additionally, each design on the frontier was evaluated based on its fulfillment of the weighted FOMs using TOPSIS, a quantitative method for ordinal ranking of the alternatives. The designs were assessed in an integrated environment using physics-based models for subsystem analysis where possible. However, for certain attributes such as engine type, historical, performance-based mass estimating relations were more easily employed. The elements from the design process were integrated into a single loop, allowing for rapid iteration of subsystem analyses and compilation of resulting designs.

  11. Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth

    NASA Astrophysics Data System (ADS)

    Anderson, John D.; Campbell, James K.; Ekelund, John E.; Ellis, Jordan; Jordan, James F.

    2008-03-01

    We report and characterize anomalous orbital-energy changes observed during six Earth flybys by the Galileo, NEAR, Cassini, Rosetta, and MESSENGER spacecraft. These anomalous energy changes are consistent with an empirical prediction formula which is proportional to the total orbital energy per unit mass and which involves the incoming and outgoing geocentric latitudes of the asymptotic spacecraft velocity vectors. We use this formula to predict a potentially detectable flyby velocity increase of less than 1mm/s for a second Rosetta flyby on November 13, 2007.

  12. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  13. Training the next generation of Space and Earth Science Engineers and Scientists through student design and development of an Earth Observation Nanosatellite, AlbertaSat-1

    NASA Astrophysics Data System (ADS)

    Lange, B. A.; Bottoms, J.

    2011-12-01

    This presentation addresses the design and developmental process of a Nanosatellite by an interdisciplinary team of undergraduate and graduate students at the University of Alberta. The Satellite, AlbertaSat-1, is the University of Alberta's entry in the Canadian Satellite Design Challenge (CDSC); an initiative to entice Canadian students to contribute to space and earth observation technologies and research. The province of Alberta, while home to a few companies, is very limited in its space industry capacity. The University of Alberta reflects this fact, where one of the major unifying foci of the University is oil, the provinces greatest resource. For students at the U of A, this lack of focus on astronautical, aerospace and space/earth observational research limits their education in these industries/disciplines. A fully student operated project such as AlbertaSat-1 provides this integral experience to almost every discipline. The AlbertaSat-1 team is comprised of students from engineering, physics, chemistry, earth and atmospheric science, business, and computer science. While diverse in discipline, the team is also diverse in experience, spanning all levels from 1st year undergraduate to experienced PhD. Many skill sets are required and the diverse group sees that this is covered and all opinions voiced. Through immersion in the project, students learn quickly and efficiently. The necessity for a flawless product ensures that only the highest quality of work is presented. Students participating must research and understand their own subsystem as well as all others. This overall system view provides the best educational tool, as students are able to see the real impacts of their work on other subsystems. As the project is completely student organized, the participants gain not only technical engineering, space and earth observational education, but experience in operations and financial management. The direct exposure to all aspects of the space and earth science industry through a student satellite development program is one of the best methods of developing the next generation of space and earth science engineers and scientists.

  14. Path of the solar wind energy into the Earth s magnetosphere

    NASA Astrophysics Data System (ADS)

    Alexeev, I.

    The solar wind MHD generator is an unique energy source for all magnetospheric processes. The field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field in the nightside magnetosphere. After energetic particle precipitation into upper atmosphere the premier solar wind energy transfer into ionosphere and atmosphere. This way of energy transfer can include the tail lobe magnetic field energy storage connected with the increasing of the tail current during southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of tail currents, ring currents and field--aligned currents to the magnetospheric energy as well as the contributions to onground magnetic disturbances. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for covering of solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for energy transmission into ionosphere and atmosphere. Main conclusion tell us that the field--aligned currents are important contributors to magnetospheric energy transformations. For understanding a relation between substorms and storm it is necessary to take into account that both of them are the concurrent energy transferring ways. To test of the model' results a magnetospheric response to the CME-driven shocks that impinged on the Earth's magnetopause on 10 January 1997 and 28 September 1998 are studied.

  15. Energy storage flywheel housing design concept development

    SciTech Connect

    Coppa, A.P.

    1982-03-12

    A low cost vehicular flywheel housing conceptual design has been obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheet metal components for automotive vehicles provided the following budgetary quotations for steel housings, including hardened steel containment rings, based on the conceptual design: housing for 15 in. OD, 0.25 kw. hr. rotor: $50; and housing for 18 in. OD, 0.25 kw. hr. rotor: $58. These prices are based on a production rate of 10/sup 6/ units per year and include tooling. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.

  16. Composition and energy spectra of low energy ions observed upstream of the earth's bow shock on ISEE-1

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1980-01-01

    The characteristics of eleven locally accelerated particle events in the energy range from 30 to 125 keV/Q observed upstream of the earth's bow shock have been determined, including composition, energy spectra, and intensity versus time profiles. The measurements were made with the Ultra Low Energy Charge Analyzer sensor on ISEE-1. The composition in these events is similar to that of the solar wind, with a He to proton ratio of 8% and a CNO to He ratio of 6%. The composition is reasonably constant only when evaluated at equal energy per charge. The energy spectra cannot be adequately fit by a single power law in energy; an exponential or Maxwellian in energy per charge gives a satisfactory representation of the spectra. The time-intensity profiles of these upstream events show an inverse velocity dispersion, which may provide clues to the responsible acceleration mechanism.

  17. Power and Propulsion System Design for Near-Earth Object Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.

    2011-01-01

    Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.

  18. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  19. Design, Delivery, and Results of the Earth and Space Science Partnership Teacher Professional Development Program

    NASA Astrophysics Data System (ADS)

    Palma, Christopher; Flarend, A.; Petula, J.; Richards, M. T.; Spotts, H.; McDonald, S.; Furman, T.

    2013-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists and science educators with seven school districts across Pennsylvania. Part of the multi-faceted ESSP effort includes long-term professional development that is built around annual summer workshops for middle grades teachers in several content areas, including Solar System astronomy. Our project was initially funded for five years (we are in year 3 now), so teachers remain engaged with the ESSP for longer than many professional development programs. This project duration allows us to implement several methods for building on the summer workshops: (1) Teachers are able to repeat workshops in a content area more than once, which means that in most of our workshops we have a mix of veteran teachers and those new to the program, (2) three meetings are held throughout the school year where all partners revisit the content and pedagogy from the summer, and (3) the teachers are encouraged and supported in their own efforts to create learning communities in their districts that meet more frequently. In this poster, we report on our efforts to impact the teaching of Earth and Space Science by offering a professional development program designed around coherent content storylines and a claims/evidence/reasoning (CER) framework. We will present the storyline from our summer 2012 astronomy workshop and samples of the CER activities that were developed to align with pieces of the storyline. Finally, we will discuss how aspects of the storyline / CER approach are being implemented in the sixth grade curriculum of one of our partner school districts, the Bellefonte Area School District. We gratefully acknowledge support from the NSF from a Targeted Math Science Partnership award DUE#0962792.

  20. Design of a Formation of Earth-Orbiting Satellites: The Auroral Lites Mission

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Conway, Darrel J.; Richon, Karen

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has proposed a set of spacecraft flying in close formation around the Earth in order to measure the behavior of the auroras. The mission, named Auroral Lites, consists of four spacecraft configured to start at the vertices of a tetrahedron, flying over three mission phases. During the first phase, the distance between any two spacecraft in the formation is targeted at 10 kilometers (km). The second mission phase is much tighter, requiring satellite interrange spacing targeted at 500 meters. During the final phase of the mission, the formation opens to a nominal 100-km interrange spacing. In this paper, we present the strategy employed to initialize and model such a close formation during each of these phases. The analysis performed to date provides the design and characteristics of the reference orbit, the evolution of the formation during Phases I and II, and an estimate of the total mission delta-V budget. AI Solutions' mission design tool, FreeFlyer, was used to generate each of these analysis elements. The tool contains full force models, including both impulsive and finite duration maneuvers. Orbital maintenance can be fully modeled in the system using a flexible, natural scripting language built into the system. In addition, AI Solutions is in the process of adding formation extensions to the system facilitating mission analysis for formations like Auroral Lites. We will discuss how FreeFlyer is used for these analyses.

  1. Design of a Formation of Earth Orbiting Satellites: The Auroral Lites Mission

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Conway, Darrel J.; Richon, Karen

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has proposed a set of spacecraft flying in close formation around the Earth in order to measure the behavior of the auroras. The mission, named Auroral Lites, consists of four spacecraft configured to start at the vertices of a tetrahedron, flying over three mission phases. During the first phase, the distance between any two spacecraft in the formation is targeted at 10 kilometers (km). The second mission phase is much tighter, requiring satellite interrange spacing targeted at 500 meters. During the final phase of the mission, the formation opens to a nominal 100-km interrange spacing. In this paper, we present the strategy employed to initialize and model such a close formation during each of these phases. The analysis performed to date provides the design and characteristics of the reference orbit, the evolution of the formation during Phases I and II, and an estimate of the total mission delta-V budget. AI Solutions' mission design tool, FreeFlyer(R), was used to generate each of these analysis elements. The tool contains full force models, including both impulsive and finite duration maneuvers. Orbital maintenance can be fully modeled in the system using a flexible, natural scripting language built into the system. In addition, AI Solutions is in the process of adding formation extensions to the system facilitating mission analysis for formations like Auroral Lites. We will discuss how FreeFlyer(R) is used for these analyses.

  2. Design of a High Resolution Scalable Cluster Based Portable Tiled Display for Earth Sciences Visualization

    NASA Astrophysics Data System (ADS)

    Nayak, A. M.; Dawe, G.; Samilo, D.; Keen, C.; Matthews, J.; Patel, A.; Im, T.; Orcutt, J.; Defanti, T.

    2006-12-01

    The Center for Earth Observations and Applications (CEOA) collaborated with researchers at the Scripps Institution of Oceanography Visualization Center and the California Institute for Telecommunications and Information Technology (Calit2) to design an advanced portable visualization system to explore geophysical and oceanography datasets at very high resolution. The system consists of 15 Dell 24" monitors arranged in a 3x5 grid ( 3 panels high and 5 wide). Each monitor supports a resolution of upto 1920 x 1200 and is driven by one node of a cluster of 15 Intel Mac Minis. The tiled display supports a total resolution of over 34 million pixels and can be used either as a single large desktop to display rendered animations, HD movies and image files or to display web-based content on each panel for simultaneous viewing of mutliple datasets. The system is enclosed in a custom built case that can hold all the required components and transported to research sites or to meetings and conferences for public awareness activities. We call the system the 'Mobile INteractive Imaging Multidisplay Environment' or simply 'miniMe'. The design of the miniMe wall is based on a class of advanced display systems called Geowall-2 developed at the Electronic Visualization Laboratory, University of Illinois at Chicago.

  3. Optimization methods for alternative energy system design

    NASA Astrophysics Data System (ADS)

    Reinhardt, Michael Henry

    An electric vehicle heating system and a solar thermal coffee dryer are presented as case studies in alternative energy system design optimization. Design optimization tools are compared using these case studies, including linear programming, integer programming, and fuzzy integer programming. Although most decision variables in the designs of alternative energy systems are generally discrete (e.g., numbers of photovoltaic modules, thermal panels, layers of glazing in windows), the literature shows that the optimization methods used historically for design utilize continuous decision variables. Integer programming, used to find the optimal investment in conservation measures as a function of life cycle cost of an electric vehicle heating system, is compared to linear programming, demonstrating the importance of accounting for the discrete nature of design variables. The electric vehicle study shows that conservation methods similar to those used in building design, that reduce the overall UA of a 22 ft. electric shuttle bus from 488 to 202 (Btu/hr-F), can eliminate the need for fossil fuel heating systems when operating in the northeast United States. Fuzzy integer programming is presented as a means of accounting for imprecise design constraints such as being environmentally friendly in the optimization process. The solar thermal coffee dryer study focuses on a deep-bed design using unglazed thermal collectors (UTC). Experimental data from parchment coffee drying are gathered, including drying constants and equilibrium moisture. In this case, fuzzy linear programming is presented as a means of optimizing experimental procedures to produce the most information under imprecise constraints. Graphical optimization is used to show that for every 1 m2 deep-bed dryer, of 0.4 m depth, a UTC array consisting of 5, 1.1 m 2 panels, and a photovoltaic array consisting of 1, 0.25 m 2 panels produces the most dry coffee per dollar invested in the system. In general this study reports both new experimental data from the case studies and the benefits of using modified linear programming methods to account for the real nature of alternative energy design problems.

  4. Revolutions in energy input and material cycling in Earth history and human history

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  5. The feasibility and application of using gravitational energy to allow efficient travel between earth and Mars

    NASA Astrophysics Data System (ADS)

    King, O. L.; Avvento, Gennaro J.

    This paper discusses the feasibility and application of using gravitational energy attained in a planetary swing-by to control the trajectory of an interplanetary transfer vehicle (IPTV) - establishing nonstop round trip orbits between earth and Mars. Energy supplied by the swing-by process and supplemented by minor correction burns will allow efficient nonstop round trip travel between earth and Mars. The IPTV will have all the necessary support equipment to maintain the cargo (manned/unmanned) during transit. At the planetary 'landfall' points, the IPTV will not decelerate but will perform a swing-by maneuver returning to the planet of origin. Cargo elements will either depart or dock with the IPTV at the planetary approach asymptote. This will be the only component of the system to undergo propulsive maneuvers.

  6. An investigation of ESSA 7 radiation data for use in long-term earth energy experiments, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    House, F. B.

    1974-01-01

    The results are presented of an investigation of ESSA 7 satellite radiation data for use in long-term earth energy experiments. Satellite systems for performing long-term earth radiation balance measurements over geographical areas, hemispheres, and the entire earth for periods of 10 to 30 years are examined. The ESSA 7 satellite employed plate and cone radiometers to measure earth albedo and emitted radiation. Each instrument had a black and white radiometer which discriminated the components of albedo and emitted radiation. Earth measurements were made continuously from ESSA 7 for ten months. The ESSA 7 raw data is processed to a point where it can be further analyzed for: (1) development of long-term earth energy experiments; and (2) document climate trends.

  7. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  8. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  9. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2014-05-30

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  10. Microscopic energy correction to the ground states of some rare-earth nuclei

    SciTech Connect

    Allal, N.H.; Fellah, M. )

    1994-09-01

    The total microscopic correction to the deformation energy of the rare-earth even-even nuclei is evaluated by a method that takes simultaneously into account the shell and pairing effects. The single-particle basis used is the Woods-Saxon potential. The results are in good agreement with experiments and represent an improvement as compared to the usual Strutinsky and BCS methods.

  11. Optimized energy harvesting materials and generator design

    NASA Astrophysics Data System (ADS)

    Graf, Christian; Hitzbleck, Julia; Feller, Torsten; Clauberg, Karin; Wagner, Joachim; Krause, Jens; Maas, Jürgen

    2013-04-01

    Electroactive polymers are soft capacitors made of thin elastic and electrically insulating films coated with compliant electrodes offering a large amount of deformation. They can either be used as actuators by applying an electric charge or they can be used as energy converters based on the electrostatic principle. These unique properties enable the industrial development of highly efficient and environmentally sustainable energy converters, which opens up the possibility to further exploit large renewable and inexhaustible energy sources like wind and water that are widely unused otherwise. Compared to other electroactive polymer materials, polyurethanes, whose formulations have been systematically modified and optimized for energy harvesting applications, have certain advantages over silicones and acrylates. The inherently higher dipole content results in a significantly increased permittivity and the dielectric breakdown strength is higher, too, whereby the overall specific energy, a measure for the energy gain, is better by at least factor ten, i.e. more than ten times the energy can be gained out of the same amount of material. In order to reduce conduction losses on the electrode during charging and discharging, a highly conductive bidirectional stretchable electrode has been developed. Other important material parameters like stiffness and bulk resistivity have been optimized to fit the requirements. To realize high power energy harvesting systems, substantial amounts of electroactive polymer material are necessary as well as a smart mechanical and electrical design of the generator. In here we report on different measures to evaluate and improve electroactive polymer materials for energy harvesting by e.g. reducing the defect occurrence and improving the electrode behavior.

  12. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Mclucas, John L.

    1989-01-01

    The Mission to Planet Earth is a research program designed to obtain information on the earth and the global changes taking place in the environment, including the 'natural'changes due to internal processes within the earth environment, the effects of energy and particles arriving from the outer space, and the effects of man and other living organisms inhabiting the earth. This paper emphasizes the need for multinational commitment to the collection of data on various global phenomena and for the 'end-to-end' management of the data handling process, which must combine data from many sources and do it properly to reveal useful information. The role of NASA and other space agencies in organizing these efforts is discussed. Special attention is given to the role of SAFISY (the Space Agency Forum for the International Space Year) formed with participation of 24 nations to coordinate the activities of various space agencies on the Mission to Planet Earth project.

  13. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    In 1976 NASA initiated the Aircraft Energy Efficiency (ACEE) Program to assist in the development of technology for more fuel-efficient aircraft for commercial airline use. The Energy Efficient Engine (EEE) Project of the ACEE program is intended to lay the advanced-technology foundation for a new generation of turbofan engines. This project, planned as a seven-year cooperative government-industry effort, is aimed at developing and demonstrating advanced component and systems technologies for engines that could be introduced into airline service by the late 1980s or early 1990s. In addition to fuel savings, new engines must offer potential for being economically attractive to the airline users and environmentally acceptable. A description is presented of conceptual energy-efficient engine designs which offer potential for achieving all of the goals established for the EEE Project.

  14. Ballistic design of transfer trajectories from artificial-satellite earth orbit to halo orbit in the neighborhood of the L 2 point of the Sun-Earth system

    NASA Astrophysics Data System (ADS)

    Il'in, I. S.; Zaslavsky, G. S.; Lavrenov, S. M.; Sazonov, V. V.; Stepanyantz, V. A.; Tuchin, A. G.; Tuchin, D. A.; Yaroshevsky, V. S.

    2014-11-01

    The paper considers the ballistic design of spacecraft (SC) transfer to the neighborhood of the L 2 point and subsequent entry of the SC into the halo orbit. Trajectory calculations of one-impulse Earth-halo orbit transfers with and without using a lunar gravitational maneuver are presented. For the calculation of one-impulse trajectories of Earth-halo-orbit transfers, an algorithm for constructing initial approximations is applied. These approximations are constructed by calculating and analyzing the isolines as a function of two variables. This function is represented by the pericenter height of the outgoing orbit over the Earth's surface. The arguments of the function are special parameters that characterize the halo orbit. The mentioned algorithm allows one to obtain halo orbits with specified geometrical characteristics both in the ecliptic plane, and in the plane orthogonal to it. The estimates of the characteristic velocity expenses for maintaining SC in the selected halo orbit are obtained. The described technique was used to search for working orbits of the Spectr-RG and Millimetron spacecraft. Examples of orbits obtained are presented.

  15. Initial observations of low energy charged particles near the earth's bow shock on ISEE-1

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Gloeckler, G.; Fan, C. Y.; Fisk, L. A.; Hovestadt, D.; Klecker, B.; Scholer, M.; Ogallagher, J. J.

    1979-01-01

    Initial measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE 1 are reported. ULECA is an electrostatic deflection - total energy sensor consisting of a collimator, a deflection analyzer, and an array of solid-state detectors. The position of a given detector, which determines the energy per charge of an incident particle, together with the measured energy, determines the particle's charge state. It is found that a rich variety of phenomena are operative in the transthermal energy regime (about 10 keV/Q to 100 keV/Q) covered by ULECA. Specifically, observations are presented of locally accelerated protons, alpha particles, and heavier ions in the magnetosheath and upstream of earth's bow shock. Preliminary analysis indicates that the behavior of these locally accelerated particles is most similar at the same energy per charge.

  16. Mass, Energy, Space And Time System Theory---MEST A way to help our earth

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2009-05-01

    Things have their physical system of the mass, energy, space and time of themselves-MEST (for short there in after). It can unite both the macrophysics and microphysics and can unite both MEST equation of atomic spectrum and MEST equation of nine planets. The solar system is mass-energy center, and the space-time wave is around. The black hold is the space-time center, and the dark matter-energy wave is around. The dark matter-energy wave is from the black hold like that the light is from sun. (like black hole) The light can give the planet the repulsion, and can produce negative curvature of the space-time of the planet; (like sun)The dark matter-energy can give the planet the gravitation, and can produce positive curvature of the space-time of the planet . The Dark matter-energy will take the asteroid and the comet impacted near our earth. The Dark matter-energy can produce dark planet. The Oort cloud is a dark planet belt. The comet is dark planet from the Oort cloud. There are four terrestrial planets which are mass-energy center like solar system; and there are five Jovian planets which are gas (space-time) center like black hole system. Because them be influenced by dark matter-energy. And Jupiter's orbital velocity be reduced by it too. We can use the Dark matter-energy to reduce the greenhouse effect, use it to control nuclear fusion and produce the quantum black hole, and arrest the asteroid and the comet who impacted near our earth.

  17. A REVISED SOLAR TRANSFORMITY FOR TIDAL ENERGY RECEIVED BY THE EARTH AND DISSIPATED GLOBALLY: IMPLICATIONS FOR EMERGY ANALYSIS

    EPA Science Inventory

    Solar transformities for the tidal energy received by the earth and the tidal energy dissipated globally can be calculated because both solar energy and the gravitational attraction of the sun and moon drive independent processes that produce an annual flux of geopotential energy...

  18. Global shortwave energy budget at the earth's surface from ERBE observations

    SciTech Connect

    Breon, F.M.; Frouin, R. ); Gautier, C. )

    1994-02-01

    A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiments (ERBE) data from S4 data (monthly averaged broadband planetary albedo). Net surface shortwave irradiance is obtained for the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used along with four surface types: ocean, vegetation, desert, snow/ice. Over the tropical Pacific Ocean, the estimates compare well with the International Satellite Cloud Climatology Project (ISCCP) B3 data. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. Our values are generally higher than Esbensen and Kushnir's by as much as 80 W m[sup [minus]2] in the tropical oceans. The difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts. 33 refs., 11 figs., 2 tabs.

  19. Design for minimum energy in interstellar communication

    NASA Astrophysics Data System (ADS)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  20. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  1. [Transparent evolution of the energy/matter interactions on earth: from gas whirlwind to technogenic civilization].

    PubMed

    Pechurkin, N S; Shuvaev, A N

    2015-01-01

    The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for homoeothermic (warm-blooded) animals has increased 20 times, based on the process energy used by the "average" inhabitant of the world. Thus, the victory of our species in planetary evolution is easy to fit into the mainstream of evolution through energy-matter interactions: multiple growth of star energy was used to transform the matter on the surface of the irradiated planet. PMID:26016039

  2. Design and analysis of an extended mission of CE-2: From lunar orbit to Sun-Earth L2 region

    NASA Astrophysics Data System (ADS)

    Qiao, Dong; Cui, Pingyuan; Wang, Yamin; Huang, Jiangchuan; Meng, Linzhi; Jie, Degang

    2014-11-01

    Chang'E-2 (CE-2) has firstly successfully achieved the exploring mission from lunar orbit to Sun-Earth L2 region. In this paper, we discuss the design problem of transfer trajectory and at the same time analyze the visible segment of Tracking, Telemetry & Control (TT&C) system for this mission. Firstly, the four-body problem of Sun-Earth-Moon and Spacecraft can be decoupled in two different three-body problems (Sun-Earth + Moon Restricted Three-Body Problems (RTBPs) and Earth-Moon ephemeris model). Then, the transfer trajectory segments in different model are computed, respectively, and patched by Poincar sections. The full-flight trajectory including transfer trajectory from lunar orbit to Sun-Earth L2 region and target Lissajous orbit is obtained by the differential correction method. Finally, the visibility of TT&C system at the key time is analyzed. Actual execution of CE-2 extended mission shows that the trajectory design of CE-2 mission is feasible.

  3. Dual nozzle design update. [on liquid rocket engines for advanced earth-to-orbit transportation systems

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1982-01-01

    Dual-nozzle engines, such as the dual-throat and dual-expander engines, are being evaluated for advanced earth-to-orbit transportation systems. Potential derivatives of the Space Shuttle and completely new vehicles might benefit from these advanced engines. In this paper, progress in the design of single-fuel and dual-fuel dual-nozzle engines is summarized. Dual-nozzle engines include those burning propellants such as LOX/RP-1/LH2, LOX/LC3H8/LH2, LOX/LCH4/LH2, LOX/LH2/LH2, LOX/LCH4/LCH4, LOX/LC3H8/C3H8 and N2O4/MMH/LH2. Engine data are applicable for thrust levels from 200,000 through 670,000 lbF. The results indicate that several versions of these engines utilize state-of-the-art technology and that even advanced versions of these engines do not require a major breakthrough in technology.

  4. Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood

    NASA Technical Reports Server (NTRS)

    Fletcher, David

    2002-01-01

    NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.

  5. Advanced spacecraft designs in support of human missions to earth's neighborhood

    NASA Astrophysics Data System (ADS)

    Fletcher, David

    2002-01-01

    NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by the NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a crew transfer vehicle (CTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the CTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the CTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP. .

  6. Experimental Tests of UltraFlex Array Designs in Low Earth Orbital and Geosynchronous Charging Environments

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.

    2011-01-01

    The present ground based investigations give the first definitive look describing the expected on-orbit charging behavior of Orion UltraFlex array coupons in the Low Earth Orbital and Geosynchronous Environments. Furthermore, it is important to note that the LEO charging environment also applies to the International Space Station as well as to the lunar mission charging environments. The GEO charging environment includes the bounding case for all lunar orbital and lunar surface mission environments. The UltraFlex thin film photovoltaic array technology has been targeted to become the sole power system for life support and on-orbit power for the manned Aires Crew Exploration Vehicle. It is therefore, crucial to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues in an attempt to ascertain that a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Testing was limited to four array coupons, two coupons each from two different array manufactures, Emcore and Spectrolab. The layout of each array design is identical and varies only in the actual cell technology used. The individual array cells from each manufacturer have an antireflection layered coating and come in two different varieties either uncoated (only AR coating) or coated with a thin conducting ITO layer. The LEO Plasma tests revealed that all four coupons passed the arc threshold -120 V bias tests. GEO electron gun charging tests revealed that only front side area of ITO coated coupons passed tests. Only the Emcore AR array passed backside Stage 2 GEO Tests.

  7. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  8. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  9. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.

  10. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.

  11. Energy Conscious Design: Educational Facilities. [Brief No.] 1.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    An energy task group of the American Institute of Architects discusses design features and options that educational facility designers can use to create an energy efficient school building. Design elements cover the building envelope, energy storage system, hydronic heating/cooling systems, solar energy collection, building orientation and shape,…

  12. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small parameter and methods of averaging. Some regimes of the relative translatory-rotary motions of the shells were described in analytical form. Wide set observed geodynamical and geophysical phenomena can be illustrated as results or as reflections of the small and slow relative displacements of the shells in corresponding time-scales. Barkin's work was accepted and financed by RFBR grant 02-05-64176 and by grant SAB2000-0235 of Ministry of Education of Spain (Secretaria de Estado de Educacion y Universidades).

  13. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  14. Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    NASA Technical Reports Server (NTRS)

    Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.

    2007-01-01

    Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.

  15. Preview of the BATSE Earth Occultation Catalog of Low Energy Gamma Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; McCollough, M. L.; Robinson, C. R.; Sahi, M.; Paciesas, W. S.; Zhang, S. N.

    1999-01-01

    The Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma Ray Observatory (CGRO) has been detecting and monitoring point sources in the high energy sky since 1991. Although BATSE is best known for gamma ray bursts, it also monitors the sky for longer-lived sources of radiation. Using the Earth occultation technique to extract flux information, a catalog is being prepared of about 150 sources potential emission in the large area detectors (20-1000 keV). The catalog will contain light curves, representative spectra, and parametric data for black hole and neutron star binaries, active galaxies, and super-nova remnants. In this preview, we present light curves for persistent and transient sources, and also show examples of what type of information can be obtained from the BATSE Earth occultation database. Options for making the data easily accessible as an "on line" WWW document are being explored.

  16. The Dark Energy Survey CCD imager design

    SciTech Connect

    Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Guarino, V.; Kuk, K.; Kuhlmann, S.; Schultz, K.; Schmitt, R.L.; Stefanik, A.; /Fermilab /Ohio State U. /Argonne

    2008-06-01

    The Dark Energy Survey is planning to use a 3 sq. deg. camera that houses a {approx} 0.5m diameter focal plane of 62 2kx4k CCDs. The camera vessel including the optical window cell, focal plate, focal plate mounts, cooling system and thermal controls is described. As part of the development of the mechanical and cooling design, a full scale prototype camera vessel has been constructed and is now being used for multi-CCD readout tests. Results from this prototype camera are described.

  17. Earth occultation imaging of the low energy gamma-ray sky with GBM

    NASA Astrophysics Data System (ADS)

    Rodi, J.; Cherry, M. L.; Case, G. L.; Camero-Arranz, A.; Chaplin, V.; Finger, M. H.; Jenke, P.; Wilson-Hodge, C. A.

    2014-02-01

    Aims: The Earth Occultation Technique (EOT) has been applied to Fermi's Gamma-ray Burst Monitor (GBM) to perform all-sky monitoring for a predetermined catalog of hard X-ray/soft γ-ray sources. In order to search for sources not in the catalog, thus completing the catalog and reducing a source of systematic error in EOT, an imaging method has been developed - Imaging with a Differential filter using the Earth Occultation Method (IDEOM). Methods: IDEOM is a tomographic imaging method that takes advantage of the orbital precession of the Fermi satellite. Using IDEOM, all-sky reconstructions have been generated for ~4 years of GBM data in the 12-50 keV, 50-100 keV and 100-300 keV energy bands in search of sources otherwise unmodeled by the GBM occultation analysis. Results: IDEOM analysis resulted in the detection of 57 sources in the 12-50 keV energy band, 23 sources in the 50-100 keV energy band, and 7 sources in the 100-300 keV energy band. Seventeen sources were not present in the original GBM-EOT catalog and have now been added. We also present the first joined averaged spectra for four persistent sources detected by GBM using EOT and by the Large Area Telescope (LAT) on Fermi: NGC 1275, 3C 273, Cen A, and the Crab.

  18. Importance of light scattering properties of cloud particles on calculating the earth energy cycle

    NASA Astrophysics Data System (ADS)

    Letu, H.; Nakajima, T. Y.; Nagao, T. M.; Ishimoto, H.

    2013-12-01

    The Earth is an open system, and the energy cycle of the Earth is not always a certain amount. In other words, the energy cycle in the nature is imbalance. A better understanding of the earth energy cycle is very important to study global climate change. the IPCC-AR4 reported that the cloud in the atmosphere are still characterized by large uncertainties in the estimation of their effects on energy sysle of the Earth's atmosphere. There are two types of cloud in the atmosphere, which are Cirrus and warm water cloud. In order to strongly reflect visible wavelength from sun light, thick water cloud has the effect of cooling the earth surface. When Cirrus is compared to water cloud, temperature is almost lower. Thus, there is a feature that Cirrus is easy to absorb long-wave radiation than warm water cloud. However, in order to quantitatively evaluate the reflection and absorption characteristics of cloud on remote senssing application and energy cycle of the imbalance of nature, it is necessary to obtain the scattering properties of cloud particles. Since the shapes of the water cloud particle are close to spherical, scattering properties of the particles can be calculated accurately by the Mie theory. However, Cirrus particles have a complex shape, including hexagonal, plate, and other non- spherical shapes. Different from warm water cloud partical, it is required to use several different light scattering methods when calculating the light scattering properties of the non-spherical Cirrus cloud particals. Ishimoto et al. [2010, 2012] and Masuda et al. [2012] developed the Finite-Difference Time Domain method (FDTD) and Improved Geometrical-Optics Method (IGOM) for the solution of light scattering by non-spherical particles. Nakajima et al [1997,2009] developed the LIght Scattering solver for Arbitral Shape particle (Lisas)-Geometrical-Optics Method (GOM) and Surface Integral Equations Method of Müller-type (SIEMM) to calculate the light scattering properties for hexagonal ice crystals. Lisas/GOM and IGOM methods are efficient for calculating the single scattering properties of the ice crystal when size parameter is large enough, while exact solution such as FDTD and Lisas/SIEMM methods are efficient for calculating the light scattering properties of the non-spherical partical when size parameter is small. However, to develop the compact light scattering database for satellite remote sensing application, it is important to optimize the scattering database based on the specification of the satellite sensor. Letu et al. (2012) optimized the ice crystal scattering database for Cirrus cloud remote sensing of the GCOM-C/SGLI satellite mission of JAXA, Japan and radiative transfer calculation in earth atmospheric system. Based on the above optimization results, we developed the ice crystal scattering database for GCOM-C/SGLI satellite mission with hexagonal, plate and aggregate shapes determined by in-situ observation for radiative transfer calculation and satellite remote sensing retrieval. Futuermore, radiance flux, alculated by RSTAR radiative transfer code with scattering database of the water cloud and the Cirrus particle is compared both at the earth surface and at the top of atmosphere. Furthermore, calculation uncertainty caused by different cloud particle scattering database was discussed.

  19. Design of a Slab Waveguide Multiaperture Fourier Spectrometer for Water Vapor Measurements in Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel

    Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE, Volume 7208 (2009)., pp. 72080G-72080G-7 (2009).

  20. Interactions of high-energy (E>5 x 10/sup 19/ eV) photons in the Earth's magnetic field

    SciTech Connect

    McBreen, B.; Lambert, C.J.

    1981-11-01

    Cosmic-ray photons of energy >5 x 10/sup 19/ eV will pair produce in the Earth's magnetic field. The electrons radiate by quantum synchrotron radiation; the produced photons may in turn pair produce and continue the cascade. This electromagnetic cascade interacts with the Earth's atmosphere and produces an extensive air shower. Some implications for determining the photon contribution to the highest-energy cosmic rays are discussed.

  1. Mechanical Aspects of Design, Analysis and Testing of the Nanosatellite for Earth Monitoring and Observation -- Aerosol Monitor (NEMO-AM)

    NASA Astrophysics Data System (ADS)

    Diaconu, Dumitru

    A next generation nanosatellite bus is under development at the University of Toronto's Space Flight Laboratory (SFL), and is being used for the first time in an ambitious Earth observation mission to identify and monitor atmospheric aerosol species. The spacecraft system brings together novel advanced designs that expand the capability envelope of nanosatellites, with heritage SFL technology that is presently defining the state-of-the-art in microspace applications. The work presented in this thesis pertains primarily to the development of the structural subsystem of the Nanosatellite for Earth Monitoring and Observation -- Aerosol Monitor (NEMO-AM). Described extensively are the design and analysis efforts made by the author to validate and finalize the structural design in order to bring it to a manufacturing-ready stage. Subsequent work to meet the mechanical requirements of ground operations during the assembly and testing of the spacecraft is also presented.

  2. Investigation of Alternative Return Strategies for Orion Trans-earth Injection Design Options

    NASA Technical Reports Server (NTRS)

    Marchand, Belinda G.; Scarritt, Sara K.; Howell, Kathleen C.; Weeks, Michael W.

    2010-01-01

    The purpose of this study is to investigate alternative return strategies for the Orion trans-Earth injection (TEI) phase. A dynamical systems analysis approach considers the structure of the stable and unstable Sun perturbed Earth-Moon manifolds near the Earth-Moon interface region. A hybrid approach, then, combines the results from this analysis with classical two-body methods in a targeting process that seeks to expand the window of return opportunities in a precision entry scenario. The resulting startup arcs can be used, for instance, to enhance the block set of solutions available onboard during an autonomous targeting process.

  3. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  4. Coloration Determination of Spectral Darkening Occurring on a Broadband Earth Observing Radiometer: Application to Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Matthews, Grant; Priestley, Kory; Loeb, Norman G.; Loukachine, Konstantin; Thomas, Susan; Walikainen, Dale; Wielicki, Bruce A.

    2006-01-01

    It is estimated that in order to best detect real changes in the Earth s climate system, space based instrumentation measuring the Earth Radiation Budget (ERB) must remain calibrated with a stability of 0.3% per decade. Such stability is beyond the specified accuracy of existing ERB programs such as the Clouds and the Earth s Radiant Energy System (CERES, using three broadband radiometric scanning channels: the shortwave 0.3 - 5microns, total 0.3. > 100microns, and window 8 - 12microns). It has been shown that when in low earth orbit, optical response to blue/UV radiance can be reduced significantly due to UV hardened contaminants deposited on the surface of the optics. Since typical onboard calibration lamps do not emit sufficient energy in the blue/UV region, this darkening is not directly measurable using standard internal calibration techniques. This paper describes a study using a model of contaminant deposition and darkening, in conjunction with in-flight vicarious calibration techniques, to derive the spectral shape of darkening to which a broadband instrument is subjected. Ultimately the model uses the reflectivity of Deep Convective Clouds as a stability metric. The results of the model when applied to the CERES instruments on board the EOS Terra satellite are shown. Given comprehensive validation of the model, these results will allow the CERES spectral responses to be updated accordingly prior to any forthcoming data release in an attempt to reach the optimum stability target that the climate community requires.

  5. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition to presenting these results, participating teachers from the 2004 and 2006 cohorts discuss their TRUST experiences and the subsequent impact the program has had on their respective Earth science teaching practices and professional lives.

  6. First observation of low-energy γ -ray enhancement in the rare-earth region

    NASA Astrophysics Data System (ADS)

    Simon, A.; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Ross, T. J.; Allmond, J. M.; Chyzh, R.; Dag, M.; Koglin, J.; McCleskey, E.; McCleskey, M.; Ota, S.; Saastamoinen, A.

    2016-03-01

    The γ -ray strength function and level density in the quasi-continuum of Sm,153151 have been measured using bismuth germanate shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow an extraction of the γ strength down to unprecedentedly low γ energies of ≈500 keV. For the first time an enhanced low-energy γ -ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well-known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low γ energies could have an impact of 2-3 orders of magnitude on the (n ,γ ) reaction rates for r -process nucleosynthesis.

  7. Conduction of thermal energy in the neighborhood of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hohlfeld, R. G.

    1976-01-01

    The Rankine-Hugoniot equations for MHD shocks are generalized by the addition of a term to the energy conservation equation representing a nonzero heat flow in the plasma in the neighborhood of the shock. This generalization is found to be compatible with the assumption of infinite electrical conductivity. The effects of plasma waves in this treatment are of the order of the reciprocal Alfvenic Mach number squared and hence are neglected. The effect of alpha particles in the solar wind is discussed. Seven crossings of the earth's bow shock by Explorer 35 in lunar orbit are analyzed. Sufficient data are available so that the determination of a dimensionless parameter, psi, characterizing the heat-flow difference across the bow shock is possible. The values of psi indicate energy-flux densities due to heat flow which are a nonnegligible fraction of the total energy flux. Two possible interpretations of psi are discussed.

  8. Opportunities and limitations in low earth subsonic testing for qualification of extraterrestrial supersonic parachute designs

    NASA Technical Reports Server (NTRS)

    Steltzner, A.; Cruz, J.; Bruno, R.; Mitcheltree, R.

    2003-01-01

    Parachutes for Mars and other planetary missions often need to operate at supersonic speeds in very low density atmospheres. Flight testing of such parachutes at appropriate conditions in the Earth's atmosphere is possible at high altitudes.

  9. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  10. Spatial sampling considerations of the CERES (Clouds and Earth Radiant Energy System) instrument

    NASA Astrophysics Data System (ADS)

    Smith, G. L.; Manalo-Smith, Natividdad; Priestley, Kory

    2014-10-01

    The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field.

  11. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    PubMed

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets. PMID:16604595

  12. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  13. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    PubMed

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use. PMID:24417322

  14. Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design

    PubMed Central

    2014-01-01

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use. PMID:24417322

  15. Regional Earth-Atmosphere Energy Balance Estimates Based on Assimilations with a GCM.

    NASA Astrophysics Data System (ADS)

    Alexander, Michael A.; Schubert, Siegfried D.

    1990-01-01

    The column budget technique described by Oort and Vonder Haar (1976) is used to assess the physical consistency and accuracy of estimates of the earth-atmosphere energy balance. Regional estimates of the atmospheric budget terms, the net radiation at the top of the atmosphere, and the time tendency and flux divergence of energy are calculated for the Special Observing Periods of the FGGE year. The data are assimilated by the Goddard Laboratory for the Atmospheres (GLA) four-dimensional analysis system. Ocean heat storage is obtained from marine temperature records while the energy flux through the surface and ocean heat flux divergence are computed as residuals.During winter the midlatitude oceans supply large quantities of energy to the overlying atmosphere which then transports the energy to the continental heat sinks, the energy flows in the opposite direction during summer. The energy exchange between continental and oceanic regions is much stronger in the Northern Hemisphere where land coverage and land-sea differences are greater.The uncertainties in the energy balance calculations are assessed by examining the errors in the observations, the data assimilation system including the GLA general circulation model, and the energy budget procedures. Sensitivity tests, error analyses and comparison with other studies indicate that the uncertainties in the continental-scale atmospheric energy flux divergence and the surface energy flux are approximately 20 W m2 and 30 W m2, respectively. We conclude that at present it is not possible to estimate accurately the ocean heat divergence and transport using the column budget technique.

  16. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    NASA Astrophysics Data System (ADS)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the considerable challenge of supplying clean energy to a growing population. Additional scenes have been filmed in Brazil, Spain, China, Morocco, Scotland, and across America, including at the National Renewable Energy Lab. in Denver, CO, and New Orleans. Program 3 (presently untitled and targeted for 2012) will feature American communities seeking to increase energy efficiency and minimize carbon emissions. The Fall 2010 AGU presentation will include video clips from the series, initial findings from focus groups (coordinated by project evaluator, Rockman Et Al) as to what information has been found most compelling to potential audiences, and a description of plans being developed by the project's science center partners in San Diego CA, Portland OR, Minneapolis-St. Paul, Fort Worth TX and Raleigh NC. "EARTH-The Operators' Manual" is an experiment to determine the effectiveness of these activities to reach audiences who, according to surveys, have actually become less convinced of anthropogenic climate change, while remaining supportive of investments in advancing clean energy opportunities.

  17. Conceptual design of rotary magnetostrictive energy harvester

    NASA Astrophysics Data System (ADS)

    Park, Young-Woo; Kang, Han-Sam; Wereley, Norman M.

    2014-05-01

    This paper presents the conceptual design of a rotary magnetostrictive energy harvester (RMEH), which consists of one coil-wound Galfenol cantilever, with two PMs adhered onto the each end, and one permanent magnet (PM) array sandwiched between two wheels. Modeling and simulation are used to validate the concept. The proof-of-concept RMEH is fabricated by using the simulation results, and subjected to the experimental characterization. The experimental setup for the simulated characterization uses the motor-driven PM array to induce a forced vibration. It can be concluded that the theoretical prediction on the induced voltage agrees well with the experimental results and that induced voltage increases with rpm and with number of PMs. Future work includes optimization of RMEH performance via PM array configuration and development of prototype.

  18. Use of excess solar array power by regenerative fuel cell energy storage systems in low earth orbit

    SciTech Connect

    Hoberecht, M.A.; Green, R.D.

    1997-12-31

    Regenerative Fuel Cells (RFC`s) are a competing energy storage system technology for a number of low-earth-orbit applications. The system is comprised of an electrolyzer which utilizes solar array power to convert water into hydrogen and oxygen reactants, a fuel cell that recombines the reactants back into water and produces power during eclipse, and associated controls and reactant storage. Round-trip electrical efficiencies of RFC systems are typically lower than competing battery energy storage systems. This results in larger solar arrays for the same application, with inherent drag, mass, and cost penalties. However, the increase in solar array size can be limited, if not totally eliminated, because of the ability of RFC systems to use excess solar array power. For this paper, the International Space Station (ISS) application was chosen for evaluation and comparison of battery and RFC energy storage systems. This selection was based on the authors` familiarity with the ISS design and the availability of a detailed in-house computer model specific to the ISS electrical power system (SPACE). Combined altitude and orientation effects, seasonal variations, and beginning-of-life solar array performance were examined for individual orbits at and above specified reference points. Charging characteristics of the battery system were also investigated. The evaluation allowed a comparison of the solar array size required with the existing battery energy storage system to the projected solar array size required with a possible RFC system. The results of the examination indicated that no increase in solar array size would be necessary for the ISS if outfitted with a RFC energy storage system, in spite of the lower round-trip electrical efficiency. For orbits with a minimum of excess power, the battery energy storage system used only 73% of the available solar array power as compared to 100% usage for a RFC system. The usage by the battery system was far less for the orbits with higher amounts of excess power. In terms of solar array size, a 59% efficient RFC system thus becomes equivalent to an 80% efficient battery system. Thus, for the ISS and possibly other low-earth-orbit spacecraft, there would be little if any solar array size advantage as a result of a difference in round-trip electrical efficiency between battery and RFC energy storage systems.

  19. Climate-induced tree mortality: earth system consequences for carbon, energy, and water exchanges

    NASA Astrophysics Data System (ADS)

    Adams, H. D.; Macalady, A.; Breshears, D. D.; Allen, C. D.; Luce, C.; Royer, P. D.; Huxman, T. E.

    2010-12-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and atmosphere that could present hazards to current earth system function. Terrestrial ecosystems, and in particular forests, exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets. Widespread, rapid, drought- and infestation-triggered tree mortality is now emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. We demonstrate the link between climate-sensitive tree mortality and risks of altered earth system function though carbon, water, and energy exchange. Tree mortality causes a loss of carbon stocks from an ecosystem and a reduction sequestration capacity. Recent research has shown that the 2000s pinyon pine die-off in the southwest US caused the loss of 4.6 Tg of aboveground carbon stocks from the region in 5 years, far exceeding carbon loss from other disturbances. Widespread tree mortality in British Columbia resulted in the loss of 270 Tg of carbon, shifting affected forestland from a carbon sink to a source, and influenced Canadian forest policy on carbon stocks. Tree mortality, as an immediate loss of live tree cover, directly alters albedo, near-ground solar radiation, and the relative contributions of evaporation and transpiration to total evapotranspiration. Near-ground solar radiation, an important ecosystem trait affecting soil heating and water availability, increased regionally following the pinyon pine die-off. Conversely, forest canopy loss with tree mortality, is expected to increase regional albedo, especially for forests which experience winter snow cover, potentially offsetting the climate forcing of terrestrial carbon releases to the atmosphere. Initial hydrological response to die-off is likely a reduction in evapotranspiration, which can increase subsurface flow, runoff, groundwater recharge, and streamflow. Under some circumstances there may also be increased flood risks. We hypothesized thresholds of mean annual precipitation and canopy cover reduction identified from the forest harvesting literature as minima that must be exceeded for die-off to noticeably affect hydrologic processes. We note exceptions to these thresholds when snowmelt dominates the watershed hydrology and when mortality affects a single species with a unique hydrologic role. Management options for mitigating die-off effects on ecosystem and earth system processes and implementing post-die-off restoration will likely be limited and costly, requiring ecological and societal adaptation in many areas. As such, climate-induced tree mortality poses a significant risk to the current earth system function through altered exchanges of carbon, energy, and water between the land surface and atmosphere.

  20. Global shortwave energy budget at the earth's surface from ERBE observations

    NASA Technical Reports Server (NTRS)

    Breon, Francois-Marie; Frouin, Robert

    1994-01-01

    A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than Esbensen and Kushnir's by as much as 80 W/sq m in the tropical oceans. A cloud parameter, defined as the difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance, is also examined. This parameter, minimally affected by sun zenith angle, is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting that, on average, the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, yet sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts.

  1. Low-energy ions dominate the space environments of Earth, Mars, and Venus

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-03-01

    Stretching from the top of the ionosphere to out into space, the terrestrial space environment is packed with low-energy ions, populated when ultraviolet radiation emanating from the Sun ionizes atmospheric gases in the ionosphere below. These ions, with energies of a few electron volts, play an important role in modifying dynamics within the magnetosphere. Though this view of the space environment is well grounded in theory, the actual detection and quantification of low-energy ion densities have been more elusive. The difficulty stems from the environmental conditions within which sensors seeking to measure these low-energy ions must operate. Satellites high above the Earth accumulate surface charges giving positive potentials of tens to hundreds of volts when exposed to sunlight and end up repelling the low-velocity, low-energy, positively charged ions that researchers hoped to detect. Using an array of techniques, including a recently developed approach whereby onboard sensors look for distortions in the electric field in the satellite's own wake, André and Cully estimate the density of low-energy ions.

  2. FPGA design for constrained energy minimization

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Chang, Chein-I.; Cao, Mang

    2004-02-01

    The Constrained Energy Minimization (CEM) has been widely used for hyperspectral detection and classification. The feasibility of implementing the CEM as a real-time processing algorithm in systolic arrays has been also demonstrated. The main challenge of realizing the CEM in hardware architecture in the computation of the inverse of the data correlation matrix performed in the CEM, which requires a complete set of data samples. In order to cope with this problem, the data correlation matrix must be calculated in a causal manner which only needs data samples up to the sample at the time it is processed. This paper presents a Field Programmable Gate Arrays (FPGA) design of such a causal CEM. The main feature of the proposed FPGA design is to use the Coordinate Rotation DIgital Computer (CORDIC) algorithm that can convert a Givens rotation of a vector to a set of shift-add operations. As a result, the CORDIC algorithm can be easily implemented in hardware architecture, therefore in FPGA. Since the computation of the inverse of the data correlction involves a series of Givens rotations, the utility of the CORDIC algorithm allows the causal CEM to perform real-time processing in FPGA. In this paper, an FPGA implementation of the causal CEM will be studied and its detailed architecture will be also described.

  3. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  4. Analyses of On-orbit Determinations of the Clouds and the Earth Radiant Energy System (CERES) Thermistor Bolometer Sensor Zero-radiance Effects

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Thomas, Susan; Priestley, Kory J.; Barkstrom, Bruce R.; Paden, Jack; Pandey, Dhirendra K.; Smith, G. Louis; Al-hajjah, Aiman; Wilson, Robert S.

    1999-01-01

    The Clouds and Earth's Radiant Energy System (CERES) missions were designed to measure broadband earth-reflected shortwave solar (0.3 micrometers to less than 5.0 micrometers) and earth-emitted longwave (5.0 micrometers to greater than 100 micrometers) radiances as well as earth-emitted narrow-band radiances in the water vapor window region between 8 micrometers and 12 micrometers. However, the CERES scanning thermistor bolometer sensor zero-radiance offsets were found to vary as much as 1.0 Wm (exp -2) sr (exp -1) with the scan angle measurement geometry due to gravitational forces and systematic electronic noise. To minimize the gravitational effects, the Tropical Rainfall Measuring Mission (TRMM) Spacecraft CERES sensors' offsets were derived on-orbit as functions of scan elevation and azimuth angles from the January 7-8, 1998 radiometric observations of deep cold space, representative of a 3 K blackbody. In this paper, the TRMM/CERES six orbit data base of on-orbit derived offsets is presented and analyzed to define the sampling requirements for the CERES sensors located on the Earth Science Enterprise (ESE) Terra Spacecraft and on the Earth Observing System (EOS) Afternoon (PM-1) Spacecraft, scheduled for launches in 1999 and 2000, respectively. Analyses of the TRMM/CERES shortwave sensor earth radiance measurements indicate that offsets can be determined on-orbit at the plus or minus 0.02 Wm (exp -2) sr (exp -1) precision level. Offset measuring techniques and sampling requirements are discussed for the TRMM and ESE missions. Ground, pre-launch Terra CERES cross-track scan offsets are presented and described which were measured as a function of scan angle.

  5. The influence of the Earth's magnetosphere on the high-energy solar protons

    NASA Technical Reports Server (NTRS)

    Bazilevskaya, G. A.; Makhmutov, V. S.; Charakhchyan, T. N.

    1985-01-01

    In the Earth's polar regions the intensity of the solar protons with the energy above the critical energy of geomagnetic cutoff is the same as in the interplanetary space. The penumbra in the polar regions is small and the East-West effect is also small. However the geomagnetic cutoff rigidity R sub c in polar regions is difficult to calculate because it is not sufficient to include only the internal sources of the geomagnetic field. During the magneto-quiescent periods the real value of R sub c can be less by 0.1 GV than the calculated value because of the external sources. During the geomagnetic storms the real value of R sub c is still lower.

  6. Earth Occultation Monitoring of the Hard X-ray/Low-Energy Gamma Ray Sky with GBM

    NASA Astrophysics Data System (ADS)

    Cherry, Michael L.; Camero-Arranz, A.; Case, G. L.; Chaplin, V.; Finger, M. H.; Jenke, P. A.; Rodi, J. C.; Wilson-Hodge, C. A.; GBM Earth Occultation Team

    2012-01-01

    By utilizing the Earth occultation technique (EOT), the Gamma-Ray Burst Monitor (GBM) instrument aboard Fermi has been used to make nearly continuous full-sky observations in the 8-1000 keV energy range. The GBM EOT analysis program currently monitors an input catalog containing 235 sources. We will present the GBM catalog of sources observed in the first 3 years of the EOT monitoring program, with special emphasis on the high energy (>100 keV) and time-variable sources, in particular the Crab, Cyg X-1, and A0535+26. We will also describe the initial results of an all-sky imaging analysis of the EOT data, with comparisons to the Swift, INTEGRAL, and Fermi LAT catalogs. This work is supported by the NASA Fermi Guest Investigator program, NASA/Louisiana Board of Regents, and Spanish Ministerio de Ciencia de Innovacion.

  7. Apollo-Soyuz pamphlet no. 5: The earth from orbit. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    Astronaut training in the recognition of various geological features from space is described as well as the cameras, lenses and film used in experiment MA-136 to measure their effectiveness in photographing earth structural features from orbit. Aerosols that affect climate and weather are discussed in relation to experiment Ma-007 which relied on infrared observations of the setting or rising sun, as seen from Apollo, to measure the amount of dust and droplets in the lower 150 km of earth's atmosphere. The line spectra of atomic oxygen and nitrogen and their densities at 22 km above the earth's surface are examined along with experiment MA-059 which measured ultraviolet absorption at that altitude.

  8. Engineering theory of slide processes in the design of earth dams on a soft ground foundation

    SciTech Connect

    Krasil'nikov, N.A.

    1987-11-01

    This paper discusses the slope stability and landslide propensity of several hydroelectric plant earth dams throughout the Soviet Union from the standpoint of slide theory and compares the research of several Soviet institutions into this problem with existing standards and recommendations on dam stability and reliability. The comparisons are made for earth dams having a soft ground foundation under static loading conditions. Applicable properties are discussed for a wide range of soils and rocks including clays, loams, sands, alluvials, and soft and hard gravels. Seismic effects are not discussed.

  9. Design Challenges of Power Systems for Instrumented Spacecraft with Very Low Perigees in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Manzer, Dominic D.; Pfaff, Robert E.; Grebowsky, Joseph M.; Gervin, Jan C.

    1999-01-01

    Designing a solar array to power a spacecraft bus supporting a set of instruments making in situ plasma and neutral atmosphere measurements in the ionosphere at altitudes of 120km or lower poses several challenges. The driving scientific requirements are the field-of-view constraints of the instruments resulting in a three-axis stabilized spacecraft, the need for an electromagnetically unperturbed environment accomplished by designing an electrostatically conducting solar array surface to avoid large potentials, making the spacecraft body as small and as symmetric as possible, and body-mounting the solar array. Furthermore, the life and thermal constraints, in the midst of the effects of the dense atmosphere at low altitude, drive the cross-sectional area of the spacecraft to be small particularly normal to the ram direction. Widely varying sun angles and eclipse durations add further complications, as does the growing desire for multiple spacecraft to resolve spatial and temporal variations packaged into a single launch vehicle. Novel approaches to insure adequate orbit-averaged power levels of approximately 250W include an oval-shaped cross section to increase the solar array collecting area during noon-midnight orbits and the use of a flywheel energy storage system. The flywheel could also be used to help maintain the spacecraft's attitude, particularly during excursions to the lowest perigee altitudes. This paper discusses the approaches used in conceptual power designs for both the proposed Dipper and the Global Electrodynamics Connections (GEC) Mission currently being studied at the NASA/Goddard Space Flight Center.

  10. Performance assessment of the Clouds and the Earth's Radiant Energy System (CERES) instruments aboard Terra and Aqua spacecraft

    NASA Astrophysics Data System (ADS)

    Thomas, Susan; Priestley, K. J.; Shankar, M.; Smith, N. M.; Loeb, N. G.; Walikainen, D. R.; Hess, P. C.; Wilson, R. S.; Smith, N. P.

    2013-09-01

    Clouds and the Earth's Radiant Energy System (CERES) instruments were designed to measure the reflected shortwave and emitted longwave radiances of the Earth's radiation budget and to investigate the cloud interactions with global radiances for the long-term monitoring of Earth's climate. The three scanning thermistor bolometer sensors on CERES measure broadband radiances in the shortwave (0.3 to 5.0 micrometer), total (0.3 to <100 micrometer) and in 8 - 12 micrometer water vapor window regions. Of the five CERES instruments that are currently in operation, four of the CERES instruments (Flight Models1 through 4) fly aboard Earth Observing System (EOS) Terra and Aqua platforms with two instruments aboard each spacecraft, in 705 KM sun-synchronous orbits of 10:30 AM and 1:30 PM equatorial crossing time. A rigorous and comprehensive radiometric calibration and validation protocol comprising of various studies was developed to evaluate the calibration accuracy of the CERES instruments. The in-flight calibration of CERES sensors are carried out using the internal calibration module (ICM) comprising of blackbody sources and quartzhalogen tungsten lamp, and a solar diffuser plate known as the Mirror Attenuator Mosaic (MAM). The ICM calibration results are instrumental in determining the changes in CERES sensors' gains after launch from the prelaunch determined values and the on-orbit gain variations. In addition to the broadband response changes derived from the on-board blackbody and the tungsten lamp, the shortwave and the total sensors show a spectrally dependent drop in responsivity in the shorter wavelegth region below one micron that were brought to light through validation studies. The spectrally dependent changes were attributed to the instrument operational modes and the corrections were derived using the sensor radiance comparisons. This paper covers the on-orbit behavior of CERES sensors aboard the Terra and Aqua spacecraft and the determination of the sensor response changes utilising the in-flight calibration and the radiance measurement comparisons viewing various targets. The corrections for the sensor response changes were incorporated in the radiance calculations of CERES Edition3 data products.

  11. Compensation for spectral darkening of short wave optics occurring on the cloud's and the Earth's radiant energy system

    NASA Astrophysics Data System (ADS)

    Matthews, Grant; Priestley, Kory; Spence, Peter; Cooper, Denise; Walikainen, Dale

    2005-08-01

    Cloud's and the Earth's Radiant Energy System (CERES) is an investigation into the role of clouds and radiation in the Earth's climate system. Four CERES scanning thermistor bolometer instruments are currently in orbit. Flight model 1 (FM1) and 2 (FM2) are aboard the Earth Observing System (EOS) Terra satellite and FM3 and FM4 are aboard the EOS Aqua satellite. Each CERES instrument measures in three broadband radiometric regions: the shortwave (SW 0.3-5μm), total (0.3- > 100μm), and window (8-12μm). It has been found that both CERES instruments on the Terra platform imply that the SW flux scattered from the Earth had dropped by up to 2% from 2000 to 2004. No climatological explanation for this drop could be found, suggesting the cause was a drift in both the Terra instruments. However, the onboard calibration lamps for the SW channels do not show a change in gain of this magnitude. Experience from other satellite missions has shown that optics in the orbital environment can become contaminated, severely reducing their transmission of ultra-violet (UV) radiation. Since the calibration lamps emit little radiance in the UV spectral region it was suggested that contaminates could be responsible for an undetectable 'spectral darkening' of the CERES SW channel optics and hence the apparent drop in SW flux. Further evidence for this was found by looking at the comparison between simultaneous measurements made by FM1 and FM2. The proposed mechanisms for contaminant build up would not apply to a CERES instrument operating in the normal cross track scan mode. Indeed it was found from the comparison between CERES instruments on Terra that the response of the instrument operating in rotating azimuth plane (RAPS) mode consistently dropped relative to the other cross track instrument. Since at all times one of the instruments operates in cross track mode, where it is not subject to spectral darkening, it allowed that unit to be used as a calibration standard from which the darkening of the other RAPS instrument can be measured. A table of adjustment coefficients to compensate for this spectral darkening are therefore derived in this paper. These figures are designed to be multiplied by SW fluxes or radiances produced in the climate community using Edition 2 CERES data. SW CERES measurements that have been revised using these coeffcients are therefore to be referred to as ERBE-like Edition2_Rev1 or SSF Edition2B_Rev1 data in future literature. Current work to fully characterize the effect of spectral darkening on the instrument spectral response before the release of Edition 3 data is also described.

  12. Comparison of Earth Science Achievement between Animation-Based and Graphic-Based Testing Designs

    ERIC Educational Resources Information Center

    Wu, Huang-Ching; Chang, Chun-Yen; Chen, Chia-Li D.; Yeh, Ting-Kuang; Liu, Cheng-Chueh

    2010-01-01

    This study developed two testing devices, namely the animation-based test (ABT) and the graphic-based test (GBT) in the area of earth sciences covering four domains that ranged from astronomy, meteorology, oceanography to geology. Both the students' achievements of and their attitudes toward ABT compared to GBT were investigated. The purposes of…

  13. Trajectory design for a lunar mapping and near-Earth-asteroid flyby mission

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Farquhar, Robert W.

    1993-01-01

    In August, 1994, the unusual asteroid (1620) Geographos will pass very close to the Earth. This provides one of the best opportunities for a low-cost asteroid flyby mission that can be achieved with the help of a gravity assist from the Moon during the years 1994 and 1995. A Geographos flyby mission, including a lunar orbiting phase, was recommended to the Startegic Defense Initiative (SDI) Office when they were searching for ideas for a deep-space mission to test small imaging systems and other lightweight technologies. The goals for this mission, called Clementine, were defined to consist of a comprehensive lunar mapping phase before leaving the Earth-Moon system to encounter Geographos. This paper describes how the authors calculated a trajectory that met the mission goals within a reasonable total Delta-V budget. The paper also describes some refinements of the initially computed trajectory and alternative trajectories were investigated. The paper concludes with a list of trajectories to fly by other near-Earth asteroids during the two years following the Geographos opportunity. Some of these could be used if the Geographos schedule can not be met. If the 140 deg phase angle of the Geographos encounter turns out to be too risky, a flyby of (2120) Tantalus in January, 1995, has a much more favorable approach illumination. Tantalus apparently can be reached from the same lunar orbit needed to get to Geographos. However, both the flyby speed and distance from the Earth are much larger for Tantalus than for Geographos.

  14. Trajectory design for a lunar mapping and near-Earth-asteroid flyby mission

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Farquhar, Robert W.

    In August, 1994, the unusual asteroid (1620) Geographos will pass very close to the Earth. This provides one of the best opportunities for a low-cost asteroid flyby mission that can be achieved with the help of a gravity assist from the Moon during the years 1994 and 1995. A Geographos flyby mission, including a lunar orbiting phase, was recommended to the Startegic Defense Initiative (SDI) Office when they were searching for ideas for a deep-space mission to test small imaging systems and other lightweight technologies. The goals for this mission, called Clementine, were defined to consist of a comprehensive lunar mapping phase before leaving the Earth-Moon system to encounter Geographos. This paper describes how the authors calculated a trajectory that met the mission goals within a reasonable total Delta-V budget. The paper also describes some refinements of the initially computed trajectory and alternative trajectories were investigated. The paper concludes with a list of trajectories to fly by other near-Earth asteroids during the two years following the Geographos opportunity. Some of these could be used if the Geographos schedule can not be met. If the 140 deg phase angle of the Geographos encounter turns out to be too risky, a flyby of (2120) Tantalus in January, 1995, has a much more favorable approach illumination. Tantalus apparently can be reached from the same lunar orbit needed to get to Geographos. However, both the flyby speed and distance from the Earth are much larger for Tantalus than for Geographos.

  15. Comparison of Earth Science Achievement between Animation-Based and Graphic-Based Testing Designs

    ERIC Educational Resources Information Center

    Wu, Huang-Ching; Chang, Chun-Yen; Chen, Chia-Li D.; Yeh, Ting-Kuang; Liu, Cheng-Chueh

    2010-01-01

    This study developed two testing devices, namely the animation-based test (ABT) and the graphic-based test (GBT) in the area of earth sciences covering four domains that ranged from astronomy, meteorology, oceanography to geology. Both the students' achievements of and their attitudes toward ABT compared to GBT were investigated. The purposes of

  16. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.

  17. Improvements in Clouds and the Earth's Radiant Energy System (CERES) Products Based on Instrument Calibrations

    NASA Astrophysics Data System (ADS)

    Smith, N. M.; Priestley, K.; Loeb, N. G.; Thomas, S.; Shankar, M.; Walikainen, D.

    2014-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) mission is instrumental in providing highly accurate radiance measurements that are critical for monitoring the Earth's radiation budget. Two identical CERES instruments are deployed aboard NASA's Earth Observing System (EOS) satellites Terra and Aqua. Each CERES instrument consists of scanning thermistor bolometer sensors that measure broadband radiances in the shortwave (0.3 to 5 micron), total (0.3 to < 100 micron) and water vapor window (8 to 12 micron) regions. CERES instruments have the capability of scanning in either the cross-track or rotating azimuth plane (RAP) scan mode. Cross-track scanning, the primary mode of CERES operation, allows for the geographical mapping of the radiation fields while RAP scanning enables the acquisition of data over a more extensive combination of viewing configurations, needed for developing vastly improved angular distribution models used in radiance to flux conversion. To evaluate, achieve and maintain radiometric stability, a rigorous and comprehensive radiometric calibration and validation protocol is implemented. Calibrations and validation studies have indicated spectral changes in the reflected solar spectral regions of the shortwave and total sensors. Spectral darkening is detected in the shortwave channel optics, which is more prominent while the instrument operates in RAP mode. In the absence of a climatological explanation for this darkening, this likely occurs during part of the RAP scan cycle when the scan plane is aligned with the direction of motion, making the optics more susceptible to increased UV exposure and molecular contamination. Additionally, systematic daytime-nighttime longwave top-of-atmosphere (TOA) flux inconsistency was also detected during validation, which highlights the changes in the shortwave region of the total sensor. This paper briefly describes the strategy to correct for the sensor response changes and presents the improvements in CERES Edition 4 data products, which incorporates these sensor response changes in the computation of radiances.

  18. The quiet-time low energy nucleon spectrum in the vicinity of earth

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Kohl, J. W.; Armstrong, T. P.

    1975-01-01

    Observations of the low energy quiet-time interplanetary nucleon spectrum obtained by Explorer 47 are examined for March 9-12, 1973, the quietest period from Sept. 26, 1972 through Feb. 15, 1975. The quiet-time energy spectrum may be represented by a power law with an index of about -3.1. The H/He ratio below 2 MeV is about 10. The ratio of antisunward to sunward intensities is about 2.6, increasing to about 8.55 in a frame moving with the solar wind. The angular distributions show that in the 0.3-0.5 MeV range most of the proton intensity originates in the earth's magnetosphere. The spectral behavior and enhancement of proton counting rates during microbursts suggest that the magnetosphere is a significant source at energies up to 2 MeV. The observed intensities are lower than those reported by Simpson and Tuzzolino (1973) by factors of 3 to 10. It is suggested that the low energy upturn in the quiet-time interplanetary proton spectrum may be related to particle emissions from planetary magnetospheres, such as that of Jupiter.

  19. Juno Earth Flyby as a Sensitive Detector of Anomalous Orbital-Energy Changes

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Jordan, J. F.; Campbell, J. K.; Ekelund, J. E.; Bordi, J. J.; Abrahamson, M.; Ardalan, S. M.; Thompson, P. F.

    2013-12-01

    The fact that unexplained energy changes occur in some Earth flybys, but not all, was reported in 2008 by Anderson et al., Phys. Rev. Lett. 100, 091102. The anomaly is detected by analyzing radio Doppler and ranging data used for space navigation. It is most significant for the closest flybys at altitudes of 539 km for the NEAR spacecraft, 960 km for the first Galileo flyby, and 1956 km for the first Rosetta flyby, with anomalous total changes in the hyperbolic excess velocity at infinity of 13.5 mm/s, 3.9 mm/s and 1.8 mm/s, respectively. There is also a correlation with the amount of asymmetry of the flyby trajectory with respect to the Earth's equator. As it turns out, the Juno flyby is well suited for another detection of this anomaly, with an altitude of about 500 km, and a declination of the incoming hyperbolic asymptote of 14.6 deg and an outgoing asymptote of 40.4 deg. Further, the control sequence for the spacecraft introduces no significant translational forces for an interval of plus and minus four days of perigee. Based on eight flybys analyzed previously, and an empirical formula given in the 2008 paper, the expected size of the Juno anomaly is about 7 mm/s. The standard error of the measurement is about 0.01 mm/s. We report first results of the data analysis.

  20. Energy-Efficient Design for Florida Educational Facilities.

    ERIC Educational Resources Information Center

    Florida Solar Energy Center, Cape Canaveral.

    This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…

  1. Community Design for Optimal Energy and Resource Utilization.

    ERIC Educational Resources Information Center

    Bilenky, Stephen; And Others

    Presented is a study which investigated the energy and resource dynamics of a semi-autonomous domestic system for 30 people. The investigation is organized on three levels: (1) developing a preliminary design and design parameters; (2) development and quantification of the energy and resource dynamics; and (3) designing a model to extrapolate…

  2. Community Design for Optimal Energy and Resource Utilization.

    ERIC Educational Resources Information Center

    Bilenky, Stephen; And Others

    Presented is a study which investigated the energy and resource dynamics of a semi-autonomous domestic system for 30 people. The investigation is organized on three levels: (1) developing a preliminary design and design parameters; (2) development and quantification of the energy and resource dynamics; and (3) designing a model to extrapolate

  3. Constraints on Energy Dissipation in the Earth's Body Tide From Satellite Tracking and Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.

    1992-01-01

    The phase lag by which the earth's body tide follows the tidal potential is estimated for the principal lunar semidiurnal tide M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-tide Q of 280 and body-tide energy dissipation of 110 +/- 25 gigawatts.

  4. Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.

    1995-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.

  5. Determination of Unfiltered Radiances from the Clouds and the Earth's Radiant Energy System (CERES) Instrument

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Priestley, K. J.; Kratz, D. P.; Geier, E. B.; Green, R. N.; Wielicki, B. A.; Hinton, P. OR.; Nolan, S. K.

    2001-01-01

    A new method for determining unfiltered shortwave (SW), longwave (LW) and window (W) radiances from filtered radiances measured by the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument is presented. The method uses theoretically derived regression coefficients between filtered and unfiltered radiances that are a function of viewing geometry, geotype and whether or not cloud is present. Relative errors in insta.ntaneous unfiltered radiances from this method are generally well below 1% for SW radiances (approx. 0.4% 1(sigma) or approx.l W/sq m equivalent flux), < 0.2% for LW radiances (approx. 0.1% 1(sigma) or approx.0.3 W/sq m equivalent flux) and < 0.2% (approx. 0.1% 1(sigma) for window channel radiances.

  6. Low-energy electron intensities at large distances over the earth's polar cap

    NASA Technical Reports Server (NTRS)

    Yeager, D. Y.; Frank, L. A.

    1976-01-01

    The eccentric-orbiting satellite Imp 5 penetrated the distant polar magnetosphere at positions corresponding to those for magnetic field lines which intersect the earth's northern polar cap. Measurements of electron intensities with E not less than 250 eV in these regions of extremely low plasma densities were gained with an electrostatic analyzer. The observational period was January-October 1970. Electron intensities within the energy range 250 eV-50 keV were less by orders of magnitude than those typically encountered within the plasma sheet and over the auroral oval. However, dramatic temporal variations of average electron intensities in the polar cap region were found for orbit-to-orbit comparisons. The observed intensity variations showed a remarkable correlation with the polarity of the magnetic sector structure in the interplanetary medium: high intensities for 'away from the sun' sectors and low intensities for 'toward' sectors.

  7. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  8. Evaluation of Clouds and the Earth's Radiant Energy System (CERES) Scanner Pointing Accuracy using a Coastline Detection System

    NASA Technical Reports Server (NTRS)

    Currey, Chris; Smith, Lou; Neely, Bob

    1998-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is a National Aeronautics and Space Administration (NASA) investigation to examine the role of clouds in the radiative energy flow through the Earth-atmosphere system. The first CERES scanning radiometer was launched on November 27, 1997 into a 35 inclination, 350 km altitude orbit, on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. The CERES instrument consists of a three channel scanning broadband radiometer. The spectral bands measure shortwave (0.3 - 5 microns), window (8 - 12 microns), and total (0.3 - 100 microns) radiation reflected or emitted from the Earth-atmosphere system. Each Earth viewing measurement is geolocated to the Earth fixed coordinate system using satellite ephemeris, Earth rotation and geoid, and instrument pointing data. The interactive CERES coastline detection system is used to assess the accuracy of the CERES geolocation process. By analyzing radiative flux gradients at the boundaries of ocean and land masses, the accuracy of the scanner measurement locations may be derived for the CERES/TRMM instrument/satellite system. The resulting CERES measurement location errors are within 10% of the nadir footprint size. Precise pointing knowledge of the Visible and Infrared Scanner (VIRS) is required for convolution of cloud properties onto the CERES footprint; initial VIRS coastline results are included.

  9. The design and analysis of a phased array microstrip antenna for a low earth orbit communication satellite

    NASA Astrophysics Data System (ADS)

    Barfield, William L.

    1994-06-01

    A Naval Postgraduate School spacecraft design class proposed a multiple beam, phased array, microstrip antenna as part of the preliminary design of a low earth orbit communication satellite. The antenna must provide coverage over the satellite's entire field of view while both uplink and down-link operate simultaneously on the same 1-band frequency. This thesis assesses the feasibility of the antenna proposed in that preliminary design. Design tradeoffs for a microstrip array constrained by both available surface area and a limited mass budget are examined. Two different substrate materials are considered in terms of weight and performance. Microstrip patch theory is applied to array element design and layout and antenna array theory is applied to determine phase and amplitude coefficients. The focus of the design is on obtaining the desired beam shape and orientation, given antenna size constraints. A corporate feed method is discussed and a general design presented. Antenna performance is predicted through the use of a computer model based on Modal Expansion theory and results are plotted in a series of graphs which demonstrate the limitations of the proposed design.

  10. Relations Between Microwave Bursts and Near-Earth High-Energy Proton Enhancements and Their Origin

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kiselev, V. I.; Meshalkina, N. S.; Chertok, I. M.

    2015-10-01

    We further study the relations between parameters of bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 25 years and solar proton events (Grechnev et al. in Publ. Astron. Soc. Japan 65, S4, 2013a). Here we address the relations between the microwave fluences at 35 GHz and near-Earth proton fluences above 100 MeV to find information on their sources and evaluate their diagnostic potential. The correlation between the microwave and proton fluences is pronouncedly higher than between their peak fluxes. This probably reflects a dependence of the total number of protons on the duration of the acceleration process. In events with strong flares, the correlation coefficients of high-energy proton fluences with microwave and soft X-ray fluences are higher than those with the speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to high-energy proton fluxes. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution is probable and possibly prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux, duration, and fluence of the 35 GHz burst, while the role of the Big Flare Syndrome might have been overestimated previously. Empirical diagnostic relations are proposed.

  11. Geology and Earth Sciences Sourcebook for Elementary and Secondary Schools, Second Edition.

    ERIC Educational Resources Information Center

    Heller, Robert L.

    This earth science resource book, designed for use by elementary and secondary school teachers, presents aspects of earth science which illustrate the significance of matter, energy, forces, motion, time, and space in the dynamics and history of the earth. The major content of this resource manual consists of authoritative information about earth

  12. DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...

  13. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    NASA Astrophysics Data System (ADS)

    Cross, J. B.; Blais, N. C.

    A high intensity (10 to the 19th O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 to the 22d O-atoms/sq cm in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3 to 8 atmospheres of rare gas/O2 mixtures. Visible and infrared photon flux levels of 1 watt/sq cm have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3x10 to the -24 cm + or - 50 percent) has an activation energy of 0.8 Kcal/mole over the temperature range of 25 to 100 C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H2O, NO, CO2). Teflon reacts with approx 0.1 to 0.2 efficiency to that of kapton at 25 C and both surfaces show a ruglike texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50 percent accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described.

  14. A high energy-density nickel-hydrogen battery design

    SciTech Connect

    Miller, L.

    1982-09-01

    A light-weight Ni-H/sub 2/ battery design concept (projected energy-density 46.7 Whr/Kg or 21.2 Whr/Lb) suitable for immediate or near-term spacecraft integration is described. The proposed design does not violate proven and qualified design concepts, or critical electrochemical component designs or functions.

  15. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  16. Assessment of the global energy budget of Mars and comparison to the Earth

    NASA Astrophysics Data System (ADS)

    Madeleine, J.; Head, J. W.; Forget, F.; Wolff, M. J.

    2012-12-01

    The energy balance of a planet depends on its radiative environment and internal energy production. In the case of present-day Mars, the whole climate system is by far controlled by solar radiation rather than internal heat. Over the last hundreds of millions of years, changes in the orbital parameters and insolation pattern have induced various climatic excursions, during which the energy transfers within the atmosphere were different from today. On the longer term, i.e. over the last billions of years, the energy budget was even more different, as a result of the larger geothermal flux and heat provided by volcanic eruptions and impacts. Seeing the climate of Mars from an energy budget perspective provides a framework for understanding the key processes, as well as constraining climate models. The goal of this research is thus to characterize and analyze the energy budget of Mars. The first step, which is described in this communication, consists of quantifying the different components of the Mars radiation budget using the LMD (Laboratoire de Météorologie Dynamique) GCM (Global Climate Model). The LMD/GCM has been developed for more than 20 years and has now reached a level of detail that allows us to quantify the different contributions of CO2 gas, dust and clouds to the radiation budget. The general picture of the radiation budget as simulated by the GCM can be summarized as follows. First of all, the global-mean shortwave (SW) flux incident on the top of the Martian atmosphere is 148.5 W m-2. Whereas most of the incoming solar radiation is absorbed by atmospheric gases on Earth, on Mars most of the sunlight is absorbed by dust particles. Our simulations show that around 15% of the incoming solar radiation is absorbed by dust particles whereas 2.5% is reflected by them. Water-ice clouds also reflect around 1.5% of the solar radiation, which is much smaller than the amount of radiation reflected by clouds on Earth (around 20%). The Martian atmosphere is even more transparent in the long-wave (LW) domain. Only 7% of the infrared radiation emitted by the surface is absorbed by the atmosphere. Most of this absorption (around 4% of the total outgoing infrared radiation) is due to dust particles. Water-ice clouds also play a significant role, and absorb approximately half as much LW radiation as the dust particles. The distribution of energy among the different atmospheric processes (release of latent heat by condensing CO2, atmospheric motions, etc.) can also be analyzed with the GCM and is being further documented. The next steps include analyzing the available observations of the radiation budget, using them to better constrain the GCM, simulating the energy budget during past climatic excursions, and further comparing the fluxes to those of terrestrial glacial regions. The analysis of the integrated SW and LW fluxes has been done using instruments such as TES onboard Mars Global Surveyor, but only in the polar regions. Indeed, measuring the energy budget requires a good spatial and temporal sampling that is better achieved in the polar regions (most Martian satellites have a sun-synchronous polar orbit). Now that GCMs can simulate the SW and LW radiation fields accurately, simulations can be used to fill the temporal gaps in non-polar regions and explore the measurements on a global scale.

  17. The World's Largest Experiment Manipulating Solar Energy Input To Earth Resumed In 2003

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2010-12-01

    Small amounts of solar-ultraviolet-energy absorbing gases such as ozone, SO2, and NO2 play an unusually large role warming the atmosphere. A mere 3 to 8 ppmv ozone at elevations of 15 to 50 km and associated exothermic chemical reactions warm the atmosphere >50oC, forming the stratosphere. All three molecules have an asymmetric top shape that, unlike linear molecules of CO2, forms a permanent electromagnetic dipole enhancing interaction with electromagnetic radiation. Planck’s postulate (Energy = a constant times frequency) implies that solar ultraviolet energy strongly absorbed by SO2 is 43 times greater than infrared energy radiated by earth and strongly absorbed by CO2. Solar energy in the blue visible spectrum and ultraviolet causes electronic transitions and an absorption spectrum that is a continuum, absorbing far more energy per unit gas than spectral line absorption of infrared energy caused by rotational and vibrational transitions. Absorption of electromagnetic energy by atmospheric gases increases rapidly with increasing frequency, an observation not accounted for by the use of specific heat in atmospheric models to link energy flux with temperature. While SO2 in the stratosphere is oxidized to a sulfuric acid aerosol that reflects sunlight, cooling the earth, SO2 in the troposphere is oxidized much more slowly than commonly assumed. Well-documented concentrations of tens of ppbv SO2 emitted by humans burning fossil fuels, especially coal, in northern mid-latitudes are contemporaneous, with suitable time delays for warming the ocean, with increased global warming during the 20th century, greatest by nearly a factor of two in the northern hemisphere. A decrease by 18% of anthropogenic SO2 emissions between 1979 and 2000 aimed at reducing acid rain had the unintended effect of reducing the global mean rate of temperature increase to zero by 1998. By 2003, global SO2 emissions began to rise sharply due to the rapid increase in number of new coal-burning power plants in Asia. The 20th century rate of increase in tropospheric methane also approached zero by 1998 but began to increase in 2007 as explained by SO2 reducing the oxidizing capacity and thus the troposphere’s ability to remove methane. SO2 does not last long in the atmosphere, but a continual and increasing flux causes increased concentrations. SO2 from China is traceable across the Pacific Ocean even to eastern America, perhaps playing a major role in the unusually high air temperatures in 2010. Atmospheric circulation in the northern hemisphere moves SO2 towards the pole where it is the primary cause of Arctic Haze. In polar regions, solar radiation travels longer path lengths through the atmosphere during longer summer days than in equatorial regions, contributing to the well-documented excessive global warming in the Arctic. The resumed increase in SO2 emissions since 2003 provides the world’s largest geoengineering experiment and an excellent chance to measure, especially in China and India, the effects of SO2 and NO2 on global warming. Technology exists to reduce SO2 emissions economically. The time has come to control this large geoengineering experiment in the hopes that we can minimize continued global warming.

  18. Optical design of an imaging spectral radiometer for earth resources applications.

    NASA Technical Reports Server (NTRS)

    Harris, T. I.; Reynard, F.; Wolpert, H. D.

    1972-01-01

    Description of the optics, thermal compensation measures, and calibration procedures for a scanning imaging spectroradiometer to be used in earth resources sensing applications. The spectral range covered extends from 4000 to 8500 A. Two possible modes of operation include (1) a high-spatial-resolution terrestrial survey mode with moderate spectral resolution, and (2) a high-spectral-resolution ocean survey mode with decreased spatial resolution. Two high-aperture f/1.4 objective lenses (providing fields of view of 10 and 25 deg) are interchangeable to give added flexibility in planning experiments with this instrument. A diffraction grating disperses the spectrum which is then scanned by the image sensor.

  19. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  20. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.

  1. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 5: Specification for EROS operations control center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.

  2. Five year research plan, 1988--1992: Energy from the earth: Geothermal energy program

    SciTech Connect

    Not Available

    1988-10-01

    Consistent with national energy policy guidance, the plan concentrates on research and development (R and D) and limits system experiments to only those necessary to stimulate industrial confidence in the validity of research findings. A key strategy element is the continuation of the government/industry partnership which is critical to successful development of geothermal technology. The primary near-term research emphasis is the extension of hydrothermal technology options for reservoir identification, reservoir analysis, hard rock penetration, and flash and binary electric plants. The advanced geothermal resources--geopressured, hot dry rock, and magma--are longer-term and higher-risk focal points, and research in these areas centers on establishing a technology base that will allow industry to make prudent and timely investment decisions with respect to the use of these resources. 13 figs.

  3. A general design for energy test procedures

    SciTech Connect

    Meier, Alan

    2000-06-15

    Appliances are increasingly controlled by microprocessors. Unfortunately, energy test procedures have not been modified to capture the positive and negative contributions of the microprocessor to the appliance's energy use. A new test procedure is described which captures both the mechanical and logical features present in many new appliances. We developed an energy test procedure for refrigerators that incorporates most aspects of the proposed new approach. Some of the strengths and weaknesses of the new test are described.

  4. Design, Development and Preliminary Student Evaluation of Virtual Field Guides as aids to teaching and learning in the Earth sciences

    NASA Astrophysics Data System (ADS)

    Stott, Tim

    2010-05-01

    In Universities the benefits of teaching and learning through fieldwork has been brought under closer examination in recent years (e.g. Andrews et al., 2003) and the notion of supporting fieldwork in the Geography, Earth and Environmental Science (GEES) disciplines has been gathering momentum over the past decade as evidenced by conferences on ‘Supporting fieldwork using information technology' (Maskall et al., 2007) and a Higher Education Academy GEES Virtual Fieldwork Conference at University of Worcester (May 2007). Virtual environments and e-learning resources have been shown to help students become active rather than passive learners by appealing to their multi-sensory learning ability with interactive media (Fletcher et al., 2002; 2007). Research on glacial and fluvial processes has been conducted since 2003 by Liverpool John Moores University (LJMU) staff, sometimes in collaboration with other Universities, at field sites in the French Alps, Swiss Alps and Cariboo Mountains in British Columbia. A virtual field guide (VFG) (www.virtualalps.co.uk) has been developed which uses maps, site photos, panorama movies, video clips, a google earth tour, student exercises using hydrological and glacial datasets collected in the field and revision exercises. A preliminary evaluation of this learning resource has been carried out with two groups of LJMU students and an article written (Stott et al. 2009a). The Ingleton Waterfalls VFG (http://www.ljmu.ac.uk/BIE/ingleton/) was developed by LJMU staff to meet the needs of Foundation degree and undergraduate students. A workshop was presented at the Earth Science Teachers Association 2008 Annual Conference at LJMU, and a subsequent article written (Stott et al. 2009b). The final section of this presentation will summarise some staff perspectives and raises some questions and issues concerned with development and accessibility of VFGs in the light of new developments of a ‘semantic web' at LJMU (Carmichael, 2009). Andrews, J., Kneale, P., Sougnez, Y., Stewart, M., and Stott, T. A. (2003). Carrying out Pedagogic research into the Constructive Alignment of Fieldwork. Planet Special Edition 5: Linking Teaching and Research and undertaking Pedagogic Research in Geography, Earth and Environmental Sciences, 51-52. Carmichael, P. (2008) ‘The Semantic Web and ‘Web 3.0' in: Selwyn, N. (ed.) Education 2.0? Designing the web for teaching and learning. London: ESRC Teaching and Learning Research Programme. Fletcher, S., France, D., Moore, K. and Robinson, G. (2002). Fieldwork education and technology: A GEES perspective, Planet 4, 17-19. Fletcher, S., France, D., Moore, K. and Robinson, G. (2007). Putting technology into fieldwork education: A pedagogic evaluation. Journal of Geography in Higher Education 31, 2, 319 - 330 Maskall, J., Stokes, A., Truscott, J. B., Bridge, A., Magnier, K. and Calderbank, V. (2007) Supporting fieldwork using information technology, Planet 18, 18-21. Stott, TA., Nuttall, AM. and McCloskey, J. (2009a) Design, Development and Student Evaluation of a Virtual Alps Field Guide www.virtualalps.co.uk. Planet 22, 64-71. Publication of the Higher Education Academy Subject Centre for Geography, Earth and Environmental Sciences, Learning & Teaching Support Network www.gees.ac.uk/planet/. Stott, TA, Clark, H., Milson, C., McCloskey, J. and Crompton, K. (2009b) The Ingleton Waterfalls Virtual Field Trip: Design, Development and Preliminary Evaluation, Teaching Earth Sciences 34 (1), 13-19, Magazine of the Earth Science Teachers Association.

  5. A high-contrast coronagraph for direct imaging of Earth-like exoplanets: design and test

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Chao; Ren, De-Qing; Dou, Jian-Pei; Zhu, Yong-Tian; Zhang, Xi; Zhao, Gang; Wu, Zhen; Chen, Rui

    2015-03-01

    A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment that approaches these limits. Our test of a high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve this goal, we use a liquid crystal array as a phase corrector to create a dark hole based on our dedicated algorithm. We have suppressed the diffraction and speckle noise near the point image of a star to a level of 1.68 × 10-9 at 4λ/D, which can be used for direct imaging of Jupiter-like exoplanets. This demonstrates that a telescope incorporating a high-contrast coronagraph in space has the potential to detect and characterize Earth-like planets. Supported by the National Natural Science Foundation of China.

  6. Design Enhancements of the Fourier Kelvin Stellar Interferometer to Enable Detection of Earth Twins

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephan; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Kern, Pierre; Leger, Alain; Monin, Jean-Louis; Mourard, Denis; Ollivier, Marc; Petrov, Roman; Vakhili, Farrokh

    2009-01-01

    During the last few years, considerable effort has been directed towards very large-scale (> $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.

  7. Softdesk energy: A case study in early design tool integration

    SciTech Connect

    Gowri, K.; Chassin, D.P.; Friedrich, M.

    1998-04-01

    Softdesk Energy is a design tool that integrates building energy analysis capability into a highly automated production drafting environment (AutoCAD and Softdesk AutoArchitect). This tool provides users of computer aided software the opportunity to evaluate the aided design/drafting (CAD) energy impact of design decisions much earlier in the design process than previously possible with energy analysis software. The authors review the technical challenges of integrating analytic methods into design tools, the opportunities such integrated tools create for building designers, and a usage scenario from the perspective of a current user of Softdesk Energy. A comparison between the simplified calculations in Softdesk Energy and detailed simulations using DOE-2 energy analysis is made to evaluate the applicability of the Softdesk Energy approach. As a unique example of integrating decision and drafting, Softdesk Energy provides an opportunity to study the strengths and weaknesses of integrated design tools and gives some insight into the future direction of the CAD software towards meeting the needs of diverse design disciplines.

  8. The BATSE Earth Occultation Catalog of Low Energy Gamma Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson-Hodge, C. A.; Fishman, G. J.; Paciesas, W. S.; Zhang, S. N.; Finger, M. H.; Connaughton, V.; Koshut, T. M.; Henze, W.; McCollough, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the hard X-ray/low energy gamma ray sky between April 1991 and June 2000. During that time, a catalog of known sources was derived from existing catalogs such as HEAO A-4 (Levine et al. 1984), as well as new transient sources discovered with BATSE and other X-ray monitors operating in the CGRO era. The Earth Occultation Technique (Harmon et al. 2001, astro-ph/0109069) was used to monitor a combination of these sources, mostly galactic, totaling to about 175 objects. The catalog will present the global properties of these sources and their probability of detection (greater than 10 mCrab, 20-100 keV) with BATSE. Systematic errors due to unknown sources or background components are included. Cursory analyses to search for new transients (35-80 mCrab in the 20-100 keV band) and super-orbital periods in known binary sources are also presented. Whole mission light curves and associated data production/analysis tools are being delivered to the High Energy Astrophysics Science Archive Research Center (HEASARC) for public use.

  9. Seismic - Climatic - Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2014-12-01

    This research concerns itself with modeling the geo-data related to seismic, atmospheric, climatic, and natural hazards processes as the self-optimization process of the Earth in the total energy state of itself. The self-optimization approach in the total energy state produces a structure embedded in a topological space with an equivalent energy mechanism (EEM). We call the energetically equivalent topological device model (EETDM) the model used in getting this EEM. The EETDM is applied as considering the whole Earth like a complete system with atmosphere and oceans getting inputs from the outside of Earth. The activities, inside and/or over Earth, are taken as boundary and initial conditions. All the structures relatable to seismicity, climatic processes, and natural hazards are considered as a complex topological network of distributed circuits involving irradiation, transfer, dissipation, conversion, and conserving of the total energy in such energetically equivalent topological devices (EETD). The suitable equivalence principles provide the reliability of the approach to get the results for our purposes in value. The critical operation sectors involve some irregular and singular characteristics suitable to the physics of the above said individual events. The model brings the interpretations of these irregularities and singularities with specific boundary conditions and settlements the complex topological boundary value problems sets. There are some couplings among such EETDs; therefore some transitions are observable among the several different kinds of events. We call the energetically equivalent complex topological device model of the complete system of Earth (EECTDMCSE) totally the estimation processes. The temporal variations at the mappings of EECTDMCSE at specific locations extract the mechanisms explaining the relationships among the characteristics of the distributed complex topological network and all above said physical phenomena of Earth in future.

  10. Interplanetary mission design handbook. Volume 1, part 2: Earth to Mars ballistic mission opportunities, 1990-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.; Cunniff, R. A.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Mars are provided. Contours of launch energy requirements, as well as many other launch and Mars arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1990 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Mars probe and orbiter arrival design, utilizing the graphical data as well as numerous equations relating various parameters.

  11. Interplanetary mission design handbook. Volume 1, part 1: Earth to Venus ballistic mission opportunities, 1991-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Yin, N. H.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Venus is presented. Contours of launch energy requirements, as well as many other launch and arrival parameters, are presented in launch data/arrival date space for all launch opportunities from 1991 through 2005. An extensive text is included which explains mission design methods, from launch window development to Venus probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  12. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  13. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    NASA Astrophysics Data System (ADS)

    André, Mats

    2015-12-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 1026 ions s-1. This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s-1 (30 000 ton yr-1). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life.

  14. Design Concepts for Optimum Energy Use in HVAC Systems.

    ERIC Educational Resources Information Center

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  15. Landscape Design and Nursery Operation for Energy Conservation.

    ERIC Educational Resources Information Center

    Bell, Richard C.; Glazener, Dennis

    Landforms, vegetation, water bodies, climate and solar radiation can be analyzed and used to design an energy-conserving landscape and horticulture operation. Accordingly, this course instructor's manual covers the use of the elements of the environment to make landscaping and nursery design and operation more energy-efficient. Five sections…

  16. Sustainable Design and Renewable Energy Concepts in Practice

    NASA Astrophysics Data System (ADS)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  17. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008

    USGS Publications Warehouse

    Church, John A.; White, Neil J.; Konikow, Leonard F.; Domingues, Catia M.; Cogley, J. Graham; Rignot, Eric; Gregory, Jonathan M.; van den Broeke, Michiel R.; Monaghan, Andrew J.; Velicogna, Isabella

    2011-01-01

    We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 0.2 mm yr-1 from tide gauges alone and 2.1 0.2 mm yr -1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 0.4 mm yr-1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr-1) and the melting of glaciers and ice caps (0.7 mm yr -1), with Greenland and Antarctica contributing about 0.4 mm yr -1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr -1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of-0.1 mm yr-1. Ocean warming (90% of the total of the Earth's energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as-0.8 0.4 W m-2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity. Copyright 2011 by the American Geophysical Union.

  18. Developing an energy design tool: Phase 1 report

    SciTech Connect

    Heidell, J.A.; Deringer, J.D.

    1987-02-01

    This report documents the planning phase of a proposed four-phase project for creating computer software to provide energy expertise in a manageable form to architects and engineers - thereby decreasing energy use in new buildings. The government sponsored software would be integrated with commercially developed software for use in the design of buildings. The result would be an integrated software package to aid the designer in the building design process and to provide expert insight into the energy related implications of a proposed design.

  19. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5. Diurnal cycles are explicitly resolved by merging geostationary satellite observations with CERES and MODIS. Atmospheric state data are provided from a frozen version of the Global Modeling and Assimilation Office- Data Assimilation System at the NASA Goddard Space Flight Center. In addition to improving the accuracy of top-of-atmosphere (TOA) radiative fluxes, CERES also produces radiative fluxes at the surface and at several levels in the atmosphere using radiative transfer modeling, constrained at the TOA by CERES (ERBE was limited to the TOA). In all, CERES uses 11 instruments on 7 spacecraft all integrated to obtain climate accuracy in TOA to surface fluxes. This presentation will provide an overview of several new CERES datasets of interest to the climate community (including a new adjusted TOA flux dataset constrained by estimates of heat storage in the Earth system), show direct comparisons between CERES ad ERBE, and provide a detailed error analysis of CERES fluxes at various time and space scales. We discuss how observations can be used to reduce uncertainties in cloud feedback and climate sensitivity and strongly argue why we should NOT "call off the quest".

  20. Application of CERES Energy Budget Data to Improve Understanding of the Dynamic Role of Clouds in the Earth's Planetary Albedo

    NASA Astrophysics Data System (ADS)

    Schmidt, C. T.; Garrett, T. J.

    2011-12-01

    Cloud fraction has a large influence on the top of the atmosphere global energy balance through its control of the Earth's planetary albedo. Radiative-dynamic interaction of clouds occur at scales unresolved by GCMs so mechanistic models are needed for what controls the global response of cloud fraction to external forcings from changes in insolation. There is a periodic oscillation of globally averaged solar insolation due to the elliptical orbit of the earth of 11 Watts per meter squared or ~3.5% of its mean value of 340 Watts per meter squared. What is interesting is that analysis of CERES data shows that the northern hemisphere winter increase in global solar insolation is concurrent with an increase in the Earth's planetary albedo of ~0.01, which is also ~3.5% of the mean value of 0.29. However, the albedo declines from its maximum value approximately one month earlier than the solar maximum, concurrent with a decline in net energy deposition in the Earth's atmosphere, defined as the difference of the albedo-adjusted solar input and the outgoing longwave TOA flux. In prior work, we have shown that the radiative temperature difference between cloud base and the surface and below cloud air controls the potential energy that is available to be supplied to the cloud for driving dynamic motions and the extent of cloud cover spreading. We propose a speculative mechanism for the observed relationships between solar insolation and the Earth's planetary albedo. When there is net positive energy deposition in the Earth's atmosphere, this drives atmospheric convection and cloud spreading, which increases planetary albedo. A higher albedo acts as a negative feedback on increasing energy deposition from the Earth being closer to the sun, diminishing the solar input. This in turn acts as a negative feedback on cloud cover. Thus, the impact of solar eccentricity on net energy deposition is regulated by the response and control of cloud cover on planetary albedo. This interplay between cloud cover and solar eccentricity acts as a shortwave global-scale "iris".

  1. Interplanetary mission design handbook. Volume 1, part 4: Earth to Saturn ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1981-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Saturn are provided. Contours of launch energy requirements as well as many other launch and Saturn arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Saturn probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations elating various parameters. This is the first of a planned series of mission design documents which will apply to all planets and some other bodies in the solar system.

  2. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  3. The BATSE Earth Occultation Catalog of Low Energy Gamma Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; WilsonHodge, C. A.; Fishman, G. J.; Paciesas, W.

    2002-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the hard X-ray/low energy gamma ray sky between April 1991 and June 2000. During that time, a catalog of known sources was derived from existing catalogs such as HEAO A-4, as well as new transient sources discovered with BATSE and other X-ray monitors operating in the CGRO era. The Earth Occultation Technique was used to monitor a combination of these sources, mostly galactic, totaling to about 175 objects. The catalog will present the global properties of these sources and their probability of detection (> 10 mCrab, 20-100 keV) with BATSE. Systematic errors due to unknown sources or background components are included. Cursory analyses to search for new transients (35-80 mCrab in the 20-100 keV band) and super-orbital periods in known binary sources are also presented. Whole mission light curves and associated data production/analysis tools are being delivered to the HEASARC for public use.

  4. The BATSE Earth Occultation Catalog of Low Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson-Hodge, C. A.; Fishman, G. J.; Paciesas, W. S.; Zhang, S. N.; Finger, M. H.; Connaughton, V.; Koshut, T. M.; Henze, W.; McCollough, M. L.

    2004-01-01

    The Burst and Transient Source Experiment (BATSE),aboard the COmptOn Gamma Ray Observatory (CGRO), provided a record of the hard X-ray/low energy gamma ray sky between April 1991 and June 2000. During that time, a catalog of known sources was derived from existing catalogs such as HEAO A-4 (Levine et al. 19841, as well as new transient sources discovered with RATSE and other X-ray monitors operating in the CGRO era. The Earth Occultation Technique (Harmon et al. 2001, astro-ph/0109069) was used to monitor a combination of these sources, mostly galactic, totaling about 175 objects. The catalog will present the global properties of these sources and their probability of detection (>lO mCrab, 20-100 keV) with BATSE. Systematic errors due to unknown sources or background components are included. Cursory analyses to search for new transients (35-80 mCrab in the 20-100 keV band) and super-orbital periods in known binary sources are also presented. Whole mission light curves and associated data production/analysis tools are being delivered to the HEASARC for public use.

  5. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  6. Solar modulation of low energy galactic cosmic rays in the near-earth space environment

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; González, L. X.

    2016-03-01

    This is an overview of the solar modulation of galactic cosmic rays as seen from the Earth and spacecrafts closeby, where we have put the contributions of Latin-American researchers in the global context in the last five to ten years. It is a broad topic with numerous intriguing aspects so that a research framework has to be chosen to concentrate on, therefore we have put our emphasis on measurements of the cosmic ray flux, without attempting to review all details or every contribution made in this field of research. In consequence, after establishing the basic characteristics of the cosmic radiation such as composition and energy spectrum, we focus on a few selected subjects, almost all within the framework of solar modulation of galactic cosmic rays such as Forbush decreases, periodic variations, space and atmospheric weather cosmic ray relationships, to which we add a general description of ground level enhancement observations. Controversial aspects are discussed where the appropriate results are presented, some of the challenges and prospects of key issues are also pointed out. At the end of the paper, a brief summary of the last decade Latin-American contributions to the subjects treated is given.

  7. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  8. Refinement and design of rare earth doped photonic crystal fibre amplifier using an ANN approach

    NASA Astrophysics Data System (ADS)

    Mescia, Luciano; Fornarelli, Girolamo; Magarielli, Donato; Prudenzano, Francesco; De Sario, Marco; Vacca, Francesco

    2011-10-01

    A number of numerical and analytical methods with different complexity can be exploited to analyse fibre amplifiers. Conventional approaches make the refinement and design of the devices extremely time consuming, especially when several design parameters have to be simultaneously optimised to obtain the desired performance in terms of gain and noise figure. In order to tackle this issue, a method based on an artificial neural network to perform the refinement and design of erbium doped photonic crystal fibre amplifiers is proposed in this paper. The capability of the neural network to capture the nonlinear functional link among the physical and geometrical characteristics of the fibre amplifier and its gain and noise figure is exploited. In the refinement it is employed to determine the optimal values of the parameters maximising the gain. In the design, it is used to develop an inverse problem solver in order to determine the values of the parameters corresponding to the known values of gain. Numerical results show that the proposed approach finds the refinement/design parameters in good accordance with respect to the conventional one.

  9. Fuzzy Logic Trajectory Design and Guidance for Terminal Area Energy Management

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley

    2003-01-01

    The second generation reusable launch vehicle will leverage many new technologies to make flight to low earth orbit safer and more cost effective. One important capability will be completely autonomous flight during reentry and landing, thus making it unnecessary to man the vehicle for cargo missions with stringent weight constraints. Implementation of sophisticated new guidance and control methods will enable the vehicle to return to earth under less than favorable conditions. The return to earth consists of three phases--Entry, Terminal Area Energy Management (TAEM), and Approach and Landing. The Space Shuttle is programmed to fly all three phases of flight automatically, and under normal circumstances the astronaut-pilot takes manual control only during the Approach and Landing phase. The automatic control algorithms used in the Shuttle for TAEM and Approach and Landing have been developed over the past 30 years. They are computationally efficient, and based on careful study of the spacecraft's flight dynamics, and heuristic reasoning. The gliding return trajectory is planned prior to the mission, and only minor adjustments are made during flight for perturbations in the vehicle energy state. With the advent of the X-33 and X-34 technology demonstration vehicles, several authors investigated implementing advanced control methods to provide autonomous real-time design of gliding return trajectories thus enhancing the ability of the vehicle to adjust to unusual energy states. The bulk of work published to date deals primarily with the approach and landing phase of flight where changes in heading angle are small, and range to the runway is monotonically decreasing. These benign flight conditions allow for model simplification and fairly straightforward optimization. This project focuses on the TAEM phase of flight where mathematically precise methods have produced limited results. Fuzzy Logic methods are used to make onboard autonomous gliding return trajectory design robust to a wider energy envelope, and the possibility of control surface failures, thus increasing the flexibility of unmanned gliding recovery and landing.

  10. Beam-waveguide antenna servo design issues for tracking low earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1993-01-01

    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and reducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the over-sampled monopulse signal is described.

  11. Probabilistic Design of a Mars Sample Return Earth Entry Vehicle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Mitcheltree, Robert A.

    2002-01-01

    The driving requirement for design of a Mars Sample Return mission is to assure containment of the returned samples. Designing to, and demonstrating compliance with, such a requirement requires physics based tools that establish the relationship between engineer's sizing margins and probabilities of failure. The traditional method of determining margins on ablative thermal protection systems, while conservative, provides little insight into the actual probability of an over-temperature during flight. The objective of this paper is to describe a new methodology for establishing margins on sizing the thermal protection system (TPS). Results of this Monte Carlo approach are compared with traditional methods.

  12. Energy and Heat Transport Constraints On Tropical Climates of the Sturtian Snowball Earth

    NASA Astrophysics Data System (ADS)

    Sohl, L. E.; Chandler, M. A.; Jonas, J.; Rind, D. H.

    2014-12-01

    It remains uncertain whether the maximum extent of Neoproterozoic Snowball Earth glaciations involves total sea ice coverage or significant open ocean. Models disagree, and the geologic record is inconclusive, but a resolution to this key question has important ramifications for how climate processes function at extremes, as well as for the distribution of habitable space for nascent multicellular life. Here we report results of new Sturtian (ca 715 Ma) Snowball Earth simulations that explore the response to three primary climate forcings often cited as contributing to Neoproterozoic cold climates: a continent distribution in low to mid-latitudes, a reduction in solar input (-6.19%), and lowered atmospheric CO2 (40 ppm). The simulations use the latest GISS ModelE2-R, with a coupled dynamic ocean using a 2° X 2.5° atmosphere and 1° x 1.25° ocean resolution. The GCM includes dynamic sea ice, an improved ocean mixing scheme, and continental runoff directed via a river drainage scheme. The GCM responds rapidly to the extreme forcings, and within 300 years the sea ice front reaches the subtropics, but after 1000 years the sea ice extent remains stable near 30° latitude, despite global average surface air temperatures dropping to -12°C. Tropical sea surface temperatures are above 5°C and nearly half the ocean surface area remains ice-free. This result differs from published results using CCSM4, but is consistent with previous NASA GCMs. Examining the tropical energy fluxes and heat transports from both atmosphere and oceans shows that for the GISS model, increases in tropical sea ice would require higher surface albedos, stronger poleward heat transports, or a reduced greenhouse effect. Atmospheric composition and cloud forcing are likely sources of this major difference in response amongst the newest versions of these IPCC models. Tropical cloud forcing must be a major suspect, since it also differs dramatically among IPCC models for future climate. We continue to stress that our "slushball" solution can readily accommodate the geological record of Neoproterozoic glacial activity, as well as the ecological space needed for the development of complex life.

  13. ERTS-B (Earth Resources Technology Satellite). [spacecraft design remote sensor description, and technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.

  14. A Design Based Research of an Earth Systems Based Environmental Curriculum

    ERIC Educational Resources Information Center

    Assaraf, Orit Ben-Zvi; Orion, Nir

    2009-01-01

    This article presents a model for the development of an environmentally oriented unit designed to be implemented as an integral part of the science core curriculum. The program's main goal is encouraging students at the junior high-school level to develop systems-thinking and environmental insight as a basis for environmental literacy. A

  15. A Design Based Research of an Earth Systems Based Environmental Curriculum

    ERIC Educational Resources Information Center

    Assaraf, Orit Ben-Zvi; Orion, Nir

    2009-01-01

    This article presents a model for the development of an environmentally oriented unit designed to be implemented as an integral part of the science core curriculum. The program's main goal is encouraging students at the junior high-school level to develop systems-thinking and environmental insight as a basis for environmental literacy. A…

  16. MATLAB® and Design Recipes for Earth Sciences: How to Collect, Process and Present Geoscientific Information

    NASA Astrophysics Data System (ADS)

    Trauth, M.; Sillmann, E.

    2012-04-01

    The overall aim of the class was to introduce undergraduate students to the typical course of a project. The project starts with searching of the relevant literature, reviewing and ranking of the published books and journal articles, extracting the relevant information as text, data or graphs from the literature, searching, processing and visualizing data, and compiling and presenting the results as posters, abstracts and oral presentations. In the first lecture, an unexpectedly-large number (ca. 65) of students subscribed to the course urging us to teach the course in a lecture hall with a projector, microphone and speaker system, a table for the teacher's laptop and equipment, private laptops of the students and wireless Internet. We used a MOODLE eLearning environment to handle the large number of participants in a highly interactive, tutorial-style course environment. Moreover, the students were organized in five GOOGLE groups not accessed by the course instructor, but led by elected student group leaders and their deputies. During the course, the instructor defined three principle topics for each of the groups within the overall theme Past Climate Changes. After having defined sub-themes within the groups for each student, the course culminated in the presentation of the project work as conference-style posters, 200-word abstracts and one-hour sessions with 10-15 two-minute presentations, chaired by the project leaders and their deputies. The course inspired a new textbook that will appear later this year, using a similar concept as its sister book MATLAB Recipes for Earth Sciences-3rd Edition (Trauth, Springer 2010).

  17. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    SciTech Connect

    Ciniculk, M.K. . Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  18. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    NASA Astrophysics Data System (ADS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-10-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  19. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-01-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  20. Preparing Teachers to Design Instruction in Middle School Earth Science: Comparing the Impacts of Three Professional Development Programs on Teaching and Learning

    ERIC Educational Resources Information Center

    Penuel, William R.; Gallagher, Lawrence P.

    2009-01-01

    The purpose of this study is to compare the efficacy of three different approaches to professional development in Earth science education: preparing teachers to "adopt" expert-"design" curricula; preparing teachers to use a principled approach to design curricula; and preparing teachers to use a principled approach to "adapt" curricula. The claims…

  1. Designing an Energy Drink: High School Students Learn Design and Marketing Skills in This Activity

    ERIC Educational Resources Information Center

    Martin, Doug

    2008-01-01

    A decade ago, energy drinks were almost nonexistent in the United States, but in the past five years they've become wildly popular. In fact, the $3.4 billion energy-drink market is expected to double this year alone, and the younger generation is the market targeted by manufacturers. This article presents an energy-drink designing activity. This

  2. Designing an Energy Drink: High School Students Learn Design and Marketing Skills in This Activity

    ERIC Educational Resources Information Center

    Martin, Doug

    2008-01-01

    A decade ago, energy drinks were almost nonexistent in the United States, but in the past five years they've become wildly popular. In fact, the $3.4 billion energy-drink market is expected to double this year alone, and the younger generation is the market targeted by manufacturers. This article presents an energy-drink designing activity. This…

  3. Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey

    2000-01-01

    The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.

  4. Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection

    NASA Technical Reports Server (NTRS)

    Newman, B. A.; Singh, J. P.; Rosenbaum, F. J.

    1971-01-01

    The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode.

  5. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  6. Earth to space dc to dc power transmission system utilizing a microwave beam as source of energy for electric propelled interorbital vehicles

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1985-01-01

    The paper contributes to the credibility of an electric propelled interorbital transportation system by introducing a new low-mass source of continuous dc power for electric propulsion and illustrating how the source can be economically tied to an electric utility on earth by an electronically steered microwave beam. The new thin-film rectenna, which functions as the receiving end of an earth-to-space microwave power transmission system is described. It is easily fabricated, is over 80 percent efficient, has a specific mass of no more than 2 kilograms per kilowatt of continuous dc power output, and is well adapted for deployment in space. The paper then describes a complete system consisting of the interorbital vehicle and the microwave power transmission system that supplies it with power. A design scenario is used to obtain performance data from the system in terms of vehicle transfer times, payload fractions, and costs. Electric energy costs are found to be less than $1000 per kilogram of payload delivered to geosynchronous orbit from low-earth orbit.

  7. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements.

    PubMed

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-01-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 Ah · g(-1) at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems. PMID:25011939

  8. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-07-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh.g-1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.

  9. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    PubMed Central

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-01-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh·g−1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems. PMID:25011939

  10. The Dark Energy Survey instrument design

    SciTech Connect

    Flaugher, B.; /Fermilab

    2006-05-01

    We describe a new project, the Dark Energy Survey (DES), aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx}5%, with four complementary techniques. The survey will use a new 3 sq. deg. mosaic camera (DECam) mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). DECam includes a large mosaic camera, a five element optical corrector, four filters (g,r,i,z), and the associated infrastructure for operation in the prime focus cage. The focal plane consists of 62 2K x 4K CCD modules (0.27''/pixel) arranged in a hexagon inscribed within the 2.2 deg. diameter field of view. We plan to use the 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). At Fermilab, we will establish a packaging factory to produce four-side buttable modules for the LBNL devices, as well as to test and grade the CCDs. R&D is underway and delivery of DECam to CTIO is scheduled for 2009.

  11. Interplanetary mission design handbook. Volume 1, part 3: Earth to Jupiter ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1982-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  12. Solar array design based on shadow analysis for increasing net energy collection in a competition vehicle

    NASA Astrophysics Data System (ADS)

    Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo; Suárez-Castañeda, Nicolás; Gil-Herrera, Ana; Barrera-Velásquez, Jorge

    2015-01-01

    Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel. Solar competition vehicles are some of these challenging PV applications. The design of such solar arrays needs to consider efficiency evaluation in order to optimize space; it is difficult not to install solar modules in areas impacted by shadows. A design procedure for a solar array configuration based on shadow analysis for competition vehicles is presented. The principle is that shadows in moving objects can be simulated, since the vehicle, the earth and the sun are are moving in semipredictable patterns, thus net energy collection can be forecast. The case study presented is the solar array design of a vehicle that participated in the World Solar Challenge 2013. The obtained results illustrate how the employment of the procedure gives insights on important aspects to consider and also delivers qualitative and quantitative information for decision making. In addition, the experience in competition highlights some issues to be considered, modified, or improved in further vehicle designs.

  13. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  14. ArgusE: Design and Development of a Micro-Spectrometer used for Remote Earth and Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Tsouvaltsidis, C.; Bernari, G.; Salem, N.; Quine, B.; Lee, R.

    In this paper we will discuss the design and development of the ArgusE. The ArgusE is a micro-spectrometer which has been developed for Earth and atmospheric monitoring purposes. The project is primarily focused on using the ArgusE micro-spectrometer in order to ascertain whether it is possible to obtain surface soil moisture content measurements from space using its short-wave infrared detector. The secondary objective of the project is to quantify greenhouse gases that could be studied within new spectral range. The ArgusE is built on Argus 1000 micro-spectrometer design and spaceflight heritage. Currently, on the CanX-2 mission launched in 2008, the Argus 1000 micro-spectrometer observes the infrared solar radiation reflected by Earth surface targets as small as 1.5 km2 and the atmosphere (aerosols, clouds, and constituents). Over the past five years that Argus 1000 has been in operation, we have accumulated more than 200 observations from a series of land and ocean targets. It was followed by the SRMSAT, launched in 2011 (India). Currently all space-based Argus 1000s are collecting Earth and atmospheric observation data within the 0.9-1.7 micrometers spectral range, with special focus on CO2 and other greenhouse gases, and cloud and coastline detection. GENSPECT, a line-by-line radiative Matlab-based toolbox is used to calculate gas absorption and emissivity for a custom grouping of atmospheric gases. Given gas types and amounts, temperature, pressure, path length and frequency range for an atmosphere or laboratory cell, GENSPECT computes the spectral characteristics of the gas mixture. The resulting models used to discover the potential monitoring of atmospheric greenhouse gases and topical soil moisture content will be discussed and displayed graphically. In addition, this paper will showcase the chassis redesign and change of electronics which allow the ArgusE to now showcase the spectral region of 1.7 to 2.2 micrometers. It will also discuss the laboratory experimental procedures of the new instrument calibration and spectral collection of soil moisture , and will present a study surrounding a potential for a new chassis material to homopolymer acetal Delrin (150 SA). The results of ASTM-E 595 Outgassing Test will be discussed.

  15. Impact of Interactive Energy-Balance Modeling on Student Learning in a Core-Curriculum Earth Science Course

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.

    2008-12-01

    An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.

  16. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  17. Educating the design professional: energy-conscious design for commercial buildings

    SciTech Connect

    Carlisle, N.; Franta, G.

    1981-04-01

    The energy problem in a residence is substantially different from that in a commercial building; therefore, the approach to using renewable resources in a commercial building differs from that in a residence. For this reason, educational materials, seminars, and workshops developed to teach architects and engineers basic design principles to integrate renewable energy into commercial buildings must differ from that developed for residential building designers. The purpose of this paper is to identify some of the differences in approach between residential and commercial solar design, discuss what the Solar Energy Research Institute (SERI) Commercial Buildings Group has learned about educating commercial building design professionals through experience, and describe the American Institute of Architects (AIA) national effort to educate architects about energy-conscious design.

  18. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbits

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; McWilliams, Brett; Koontz, Steven L.

    2006-01-01

    The design estimate for the materials for the International Space Station (ISS) specified in SSP 30512 was a conservative estimate. The environment dose was over estimated. The materials originally qualified for approximately 10-15 years are anticipated to be acceptable for periods of up to 20-30 years based on SSP-30512 or 40-60 years based on 2x SSP-30512. This viewgraph presentation shows charts and graphs that review the altitude, the solar minimum and maximum, and the radiation exposure of other satellite, among other graphics.

  19. Implications of solar energy alternatives for community design

    SciTech Connect

    Santos, A.; Steinitz, C.

    1980-06-01

    A graduate-level studio at the Harvard School of Design explored how a policy of solar-based energy independence will influence the design of a new community of approximately 4500 housing units and other uses. Three large sites outside Tucson (a cooling problem), Atlanta (a humidity problem), and Boston (a heating problem) were selected. Each is typical of its region. A single program was assumed and designed for. Each site had two teams, one following a compact approach and one following a more dispersed approach. Each was free to choose the most appropriate mix of (solar) technology and scale, and was free to integrate energy and community in the design as it saw fit. These choice and integration issues are key areas where our experience may be of interest to those involved in community design and solar energy.

  20. Earth-model discrimination method

    NASA Astrophysics Data System (ADS)

    Omerbashich, Mensur

    Investigation of the earth's interior is attempted via gravimetric terrestrial spectroscopy from superconducting gravimeter (SG) records containing all medium and large earthquakes that affected the SG. I introduce a general (single station, all-type earthquakes; no pre- or post-processing) method that enables discrimination amongst geophysical earth models by establishing if and when there exist high direct functional correlation values between the oscillations of the earth gravity field taken at a model's low eigenfrequencies, and the earth seismicity expressed in seismic energies and seismic magnitudes. I demonstrate for the first time in geophysics the negative effect that the generating of input-data, for the purpose of completing the time-series, has on the Fourier spectral analyses. To accommodate the problem on existing computers and to create nondistorted 8-sec and 32-sec filtered records from the original one-second data, I design a non-equidistant filter that applies Gaussian weights while accounting for missing data within the filtering step. So filtered, the records are then used in computing the least-squares spectra. Earthquakes are the most common source of abrupt releases of kinetic energy on earth. I then exploit the Jeffreys's rule of thumb: in many earthquakes observations of only the horizontal earth movements during the passage of shear (S) waves cart be ccsed to estimate the order of the total released energy. From here I infer that the ratios of kinetic energy EK traveling throughout the earth and displacing the inner masses, vs. seismic energy ES as that part of kinetic energy, which is transmitted mostly through the lithosphere in the form of surface-waves and measured by the seismographs, ought to bc constant in most earthquakes. I then hypothesize that the measure of the earth gravity field oscillations, as deduced in the form of median magnitudes of gravity spectra, stands in a direct correlation with earth seismicity along the low characteristic frequencies. In order to prove the hypothesis I process some 10.1 billion observations and compute the diurnal averages of non-reduced-gravity oscillation magnitudes for the last decade and for each long normal mode for three different earth models. I then directly correlate three series against the series containing seismic energies, as well as agamst the series containing seismic magnitudes of 381, M > 6.3 earthquakes for each day in the [-30, +30] days interval. Direct cross-correlation values as high as 0.97 were obtained, and the hypothesis thus proven. The direct functional correlation values between diurnal average magnitudes of the earth gravity field and all medium-to-large earthquakes from one decade are proposed as a tool for discriminatmg amongst earth models. If high functional correlation values can be obtained using this method, a tested earth model is to be considered a successful one. The functional correlation values computed from variance-spectra are shown to possess an absolute high for periods of 821 s, which could be used as a refinement constraint in earth-model design. For all three earth models the functional correlation values are higher when seismic energies are used rather than seismic magnitudes, as well as when variance-spectra are used rather than power-spectra. The method is unique in its rigor, since it enables assessments of earth models from single-station (gravity) measurements, by using all global earthquakes above certain strength, i.e., regardless of their type, faulting mechanism, etc., and without preprocessing or post-processing to enhance and correct either raw gravity data or their spectra. As such, the method serves as a basis for a definition of different discriminatory criteria.

  1. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    PubMed

    Ganem, Joseph; Bowman, Steven R

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  2. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    NASA Astrophysics Data System (ADS)

    Ganem, Joseph; Bowman, Steven R.

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  3. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    PubMed Central

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  4. A Methodology for Evaluating Technical Performance Parameter Design Margins to Control Earth and Space Science Instrument Cost

    NASA Astrophysics Data System (ADS)

    Jones-Selden, Felicia L.

    Costs of aerospace missions have increased over the last twenty years, placing the future of the space program in jeopardy. A potential source for such growth can be attributed to the complex multidisciplinary and challenging nature of earth and space science instrument development. Design margins are additional resources carried in technical performance parameters to mitigate uncertainties throughout the product lifecycle. Margins are traditionally derived and allocated based upon historical experience intrinsic to organizations, as opposed to quantitative methods, jeopardizing the development of low-cost space-based instruments. This dissertation utilizes a methodology to evaluate the interrelationships between pre-launch and actual launch margins for the key technical performance parameters of mass, power, and data-rate to identify the extent to which excessive or insufficient margins are used in the design of space-based instruments in an effort to control instrument cost growth. The research examined 62 space-based instruments from the National Aeronautics and Space Administration, Federally Funded Research and Development Centers, and universities. Statistical analysis consisting of paired t-tests and multiple linear regression were utilized to determine the degree to which space-based instruments are over or under designed by the use of excessive or insufficient design margins and to determine the effect of design margins for the technical performance parameters of mass, power, and data-rate on the percentage instrument cost growth from the preliminary design phase to launch. Findings confirm, that in the implementation of space-based instruments, design margins are allocated to technical performance parameters above suggested government/industry standards, impacting the development of low-cost space-based instruments. The findings provide senior leadership, systems engineers, project managers, and resource managers with the ability to determine where opportunities exist to make trade-offs to reduce risk and to make informed decisions regarding achieving technical and programmatic requirements. The research forges a paradigm towards statistical analysis as a means to change existing design margin principles in an effort to reduce uncertainties in the design of the space-based instruments, improve the probability of the instruments performing to requirements, and to control cost growth.

  5. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  6. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-07-01

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The US Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1,756 K (2,700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  7. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-12-31

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The U. S. Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1756 K (2700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  8. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  9. Space shuttle seal material and design development for earth storable propellant systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.

  10. Building Design Guidelines for Solar Energy Technologies

    DOE R&D Accomplishments Database

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  11. The Earth Radiation Budget Experiment nonscanner instrument

    NASA Technical Reports Server (NTRS)

    Luther, M. R.; Cooper, J. E.; Taylor, G. R.

    1986-01-01

    Two Earth Radiation Budget Experiment (ERBE) nonscanner instruments are flying with companion scanner instruments to measure the earth's energy budget from low earth orbit. A third set of instruments will be launched in March 1986. This program is the first designed to make a comprehensive set of highly accurate measurements of the earth's energy budget on the spectral, spatial, and temporal scales specified by the scientific community for use in climatological research. The ERBE nonscanner combines the use of the highly accurate active cavity radiometer (ACR) detector with a comprehensive preflight calibration and characterization program and a design which includes operational flexibility and in-flight calibration checks to achieve and maintain, throughout its 2-year design life, a measurement accuracy capability not previously possible. This paper describes the ERBE nonscanner instrument, its operation, calibration, and mission profile.

  12. A design guide for energy-efficient research laboratories

    SciTech Connect

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  13. Solar total energy project at Shenandoah, Georgia system design

    NASA Astrophysics Data System (ADS)

    Poche, A. J.

    1980-05-01

    The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.

  14. Building design guidelines for solar energy technologies

    SciTech Connect

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  15. Space- and Earth-based solar power for the growing energy needs of future generations

    NASA Astrophysics Data System (ADS)

    Seboldt, Wolfgang

    2004-08-01

    The future global supply with terrestrial regenerative energies (solar, wind, hydro and geothermal) is discussed and compared to energy from space via Solar Power Satellites. It is shown that both have the potential to satisfy global energy needs. Obviously, regenerative solutions must be taken into account and installed with higher priority within the next decades to reduce the deposition of CO 2 into the atmosphere. This is absolutely necessary to stabilize the climate. In addition, the threatening depletion of fossil and nuclear fuels in the long run forces research into alternative solutions. Concerning solar power from space, the recently developed concepts for light-weight inflatable and deployable solar arrays/concentrators—like in the NASA 'Sun Tower' and the 'European Sail Tower SPS'—are reviewed and major problems with wireless power transmission are discussed. Compared to earlier concepts the designs have the potential to reduce significantly the masses and, thus, the costs. But the technological demands and operational uncertainties are still immense. Anyhow, major progress with cost reductions of one to two orders of magnitude is required for the space option to become competitive with terrestrial regenerative options.

  16. Procuring low-energy design and consulting services

    SciTech Connect

    1997-07-01

    This report presents information which aids in the design of low energy building elements. The proven strategies can dramatically reduce a building`s energy consumption for little or no added cost while improving it`s comfort, economy, and environmental performance.

  17. In-house staff designs energy-saving system.

    PubMed

    Cunningham, L; Wright, L

    1978-04-16

    With a relatively small amount of money and a lot of ingenuity, an innovative engineering team developed a successful pilot program that resulted in substantial energy and dollar savings. Using commercially available component parts, the team designed a preventive maintenance and energy-saving microprocessor system that is especially geared toward the hospital setting. PMID:631790

  18. Energy codes and the building design process: Opportunities for improvement

    SciTech Connect

    Sandahl, L.J.; Shankle, D.L.; Rigler, E.J.

    1994-05-01

    The Energy Policy Act (EPAct), passed by Congress in 1992, requires states to adopt building energy codes for new commercial buildings that meet or exceed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) and Illuminating Engineers Society of North America (IES) Standard 90.1-1989 by October 24, 1994. In response to EPAct many states will be adopting a state-wide energy code for the first time. Understanding the role of stakeholders in the building design process is key to the successful implementation of these codes. In 1993, the Pacific Northwest Laboratory (PNL) conducted a survey of architects and designers to determine how much they know about energy codes, to what extent energy-efficiency concerns influence the design process, and how they convey information about energy-efficient designs and products to their clients. Findings of the PNL survey, together with related information from a survey by the American Institute of Architects (AIA) and other reports, are presented in this report. This information may be helpful for state and utility energy program managers and others who will be involved in promoting the adoption and implementation of state energy codes that meet the requirements of EPAct.

  19. Challenge Students to Design an Energy-Efficient Home

    ERIC Educational Resources Information Center

    Griffith, Jack

    2008-01-01

    This article presents an activity that gives students a practical understanding of how much energy the average home consumes and wastes, and shows how the construction technologies used in home design affect overall energy usage. In this activity, students will outline the cost of a home's electrical system, give a breakdown of how much power the…

  20. Design for Manufacturing for Energy Absorption Systems

    SciTech Connect

    Del Prete, A.; Primo, T.; Papadia, G.; Manisi, B.

    2011-05-04

    In the typical scenario of a helicopter crash, impact with the ground is preceded by a substantially vertical drop, with the result that a seated occupant of a helicopter experiences high spinal loads and pelvic deceleration during such crash due to the sudden arresting of vertical downward motion. It has long been recognized that spinal injuries to occupants of helicopters in such crash scenario can be minimized by seat arrangements which limit the deceleration to which the seated occupant is subjected, relative to the helicopter, to a predetermined maximum, by allowing downward movement of the seated occupant relative to the helicopter, at the time of impact with the ground, under a restraining force which, over a limited range of such movement, is limited to a predetermined maximum. In practice, significant benefits, in the way of reduced injuries and reduced seriousness of injuries, can be afforded in this way in such crash situations even where the extent of such controlled vertical movement permitted by the crashworthy seat arrangement is quite limited. Important increase of accident safety is reached with the installation of crashworthy shock absorbers on the main landing gear, but this solution is mostly feasible on military helicopters with long fixed landing gear. Seats can then give high contribution to survivability. Commonly, an energy absorber is a constant load device, if one excludes an initial elastic part of the load-stroke curve. On helicopter seats, this behavior is obtained by plastic deformation of a metal component or scraping of material. In the present work the authors have studied three absorption systems, which differ in relation to their shape, their working conditions and their constructive materials. All the combinations have been analyzed for applications in VIP helicopter seats.

  1. Design for Manufacturing for Energy Absorption Systems

    NASA Astrophysics Data System (ADS)

    Del Prete, A.; Primo, T.; Papadia, G.; Manisi, B.

    2011-05-01

    In the typical scenario of a helicopter crash, impact with the ground is preceded by a substantially vertical drop, with the result that a seated occupant of a helicopter experiences high spinal loads and pelvic deceleration during such crash due to the sudden arresting of vertical downward motion. It has long been recognized that spinal injuries to occupants of helicopters in such crash scenario can be minimized by seat arrangements which limit the deceleration to which the seated occupant is subjected, relative to the helicopter, to a predetermined maximum, by allowing downward movement of the seated occupant relative to the helicopter, at the time of impact with the ground, under a restraining force which, over a limited range of such movement, is limited to a predetermined maximum. In practice, significant benefits, in the way of reduced injuries and reduced seriousness of injuries, can be afforded in this way in such crash situations even where the extent of such controlled vertical movement permitted by the crashworthy seat arrangement is quite limited. Important increase of accident safety is reached with the installation of crashworthy shock absorbers on the main landing gear, but this solution is mostly feasible on military helicopters with long fixed landing gear. Seats can then give high contribution to survivability. Commonly, an energy absorber is a constant load device, if one excludes an initial elastic part of the load-stroke curve. On helicopter seats, this behavior is obtained by plastic deformation of a metal component or scraping of material. In the present work the authors have studied three absorption systems, which differ in relation to their shape, their working conditions and their constructive materials. All the combinations have been analyzed for applications in VIP helicopter seats.

  2. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  3. Interrelation between energy and time distributions of high- energy electrons during the observation of the particle bursts in the near-Earth space

    NASA Astrophysics Data System (ADS)

    Aleksandrin, S. Yu; Galper, A. M.; Koldashov, S. V.; Zharaspayev, T. R.

    2015-08-01

    Many satellite experiments showed interrelation between changes of particle fluxes in the near-Earth space and various magnetospheric and geophysical phenomena. In this report we focus on temporal and energy characteristics of bursts of high-energy electrons in the inner zone of the Earth's magnetosphere (L<2). In order to study the variations of electron characteristics during the observation of the bursts, caused by local disturbances of the radiation belt (e.g. lightning or seismic events), numerical modelling the propagation of particle cloud formed by electrons, precipitated from radiation belt, has been carried out. It was shown a relationship between energy distribution and temporal profile of electrons of burst in case of their local precipitation. The results of simulation are analyzed and compared with the data obtained in ARINA and VSPLESK satellite experiments.

  4. Design and characterization of an electromagnetic energy harvester for vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Zuo, Lei; Scully, Brian; Shestani, Jurgen; Zhou, Yu

    2010-04-01

    During the everyday usage of an automobile, only 10-16% of the fuel energy is used to drive the car—to overcome the resistance from road friction and air drag. One important loss is the dissipation of vibration energy by shock absorbers in the vehicle suspension under the excitation of road irregularity and vehicle acceleration or deceleration. In this paper we design, characterize and test a retrofit regenerative shock absorber which can efficiently recover the vibration energy in a compact space. Rare-earth permanent magnets and high permeable magnetic loops are used to configure a four-phase linear generator with increased efficiency and reduced weight. The finite element method is used to analyze the magnetic field and guide the design optimization. A theoretical model is created to analytically characterize the waveforms and regenerated power of the harvester at various vibration amplitudes, frequencies, equilibrium positions and design parameters. It was found that the waveform and RMS voltage of the individual coils will depend on the equilibrium position but the total energy will not. Experimental studies of a 1:2 scale prototype are conducted and the results agree very well with the theoretical predictions. Such a regenerative shock absorber will be able to harvest 16-64 W power at 0.25-0.5 m s - 1 RMS suspension velocity.

  5. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  6. On the relationship of the earth radiation budget to the variability of atmospheric available potential and kinetic energies

    NASA Technical Reports Server (NTRS)

    Randel, David L.; Vonder Haar, Thomas H.

    1990-01-01

    The zonal and eddy kinetics energies and available potential energies are examined for both the Northern and the Southern Hemispheres, using a data set produced by 8 years of continuous simultaneous observations of the circulation parameters and measurements of the earth radiation budget (ERB) from the Nimbus-7 ERB experiment. The relationships between the seasonal cycles in ERB and those of the energetics are obtained, showing that the solar annual cycle accounts for most of the seasonal variability. It was found that the ERB midlatitude gradients of the net balance and the outgoing radiation lead the annual cycle of the energetics by 2-3 weeks.

  7. Design of the low energy astrophysics research facility CLAIRE

    NASA Astrophysics Data System (ADS)

    Todd, D. S.; Leitner, D.; Leitner, M.; Maruyama, R.; Vetter, P. A.; Xu, K. N.

    2007-08-01

    A novel nuclear astrophysics facility, CLAIRE (Center for Low Energy Astrophysics and Interdisciplinary REsearch), is being designed at Lawrence Berkeley National Laboratory to address the need for precise fusion cross section measurements at near-solar energies (20 keV). At these low energies, fusion cross sections decrease exponentially with energy and are expected to approach femtobarn levels or less. In order to measure such small cross sections, the CLAIRE facility will incorporate a versatile accelerator capable of transporting high current (>100 mA), low energy (50 300 keV) ion beams with a tight focus (<1 cm) to a cooled, dense gas-jet target. The conceptual design for this accelerator is discussed, and simulations of both beam extraction and transport are presented.

  8. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced dissipation of auroral currents. The participation of the ionosphere in the substorm energization processes seems to be closely, although not solely, associated with the solar wind/magnetosphere coupling. That is, the ionosphere influences actively the substorm energization processes by responding to the increased solar wind/magnetosphere coupling as well as to the unloading dissipation of stored energy, with the increased feeding of new material into the magnetosphere.

  9. Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, R.; Shie, M.; Olson, R.; Collimore, C.; Friedman, M.

    1997-01-01

    Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region.

  10. Axial focusing of impact energy in the Earth's interior: Proof-of-principle tests of a new hypothesis

    NASA Astrophysics Data System (ADS)

    Boslough, M. B.; Chael, E. P.; Trucano, T. G.; Kipp, M. E.; Crawford, D. A.

    A causal link between major impact events and global processes would probably require a significant change in the thermal state of the Earth's interior, presumably brought about by coupling of impact energy. One possible mechanism for such energy coupling from the surface to the deep interior would be through focusing due to axial symmetry. Antipodal focusing of surface and body waves from earthquakes is a well-known phenomenon which has previously been exploited by seismologists in studies of the Earth's deep interior. Antipodal focusing from impacts on the Moon, Mercury, and icy satellites has also been invoked by planetary scientists to explain unusual surface features opposite some of the large impact structures on these bodies. For example, 'disrupted' terrains have been observed antipodal to the Caloris impact basis on Mercury and Imbrium Basin on the Moon. Very recently there have been speculations that antipodal focusing of impact energy within the mantle may lead to flood basalt and hotspot activity, but there has not yet been an attempt at a rigorous model. A new hypothesis was proposed and preliminary proof-of-principle tests for the coupling of energy from major impacts to the mantle by axial focusing of seismic waves was performed. Because of the axial symmetry of the explosive source, the phases and amplitudes are dependent only on ray parameter (or takeoff angle) and are independent of azimuthal angle. For a symmetric and homogeneous Earth, all the seismic energy radiated by the impact at a given takeoff angle will be refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Mantle material near the axis of symmetry will experience more strain cycles with much greater amplitude than elsewhere and will therefore experience more irreversible heating. The situation is very different than for a giant earthquake, which in addition to having less energy, has an asymmetric focal mechanism and a larger area. Two independent proof-of-principle approaches were used. The first makes use of seismic simulations, which are being performed with a realistic Earth model to determine the degree of focusing along the axis and to estimate the volume of material, if any, that experiences significant irreversible heating. The second involves two-dimensional hydrodynamic code simulations to determine the stress history, internal energy, and temperature rise as a function of radius along the axis.

  11. Axial focusing of impact energy in the Earth's interior: Proof-of-principle tests of a new hypothesis

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Chael, E. P.; Trucano, T. G.; Kipp, M. E.; Crawford, D. A.

    1994-01-01

    A causal link between major impact events and global processes would probably require a significant change in the thermal state of the Earth's interior, presumably brought about by coupling of impact energy. One possible mechanism for such energy coupling from the surface to the deep interior would be through focusing due to axial symmetry. Antipodal focusing of surface and body waves from earthquakes is a well-known phenomenon which has previously been exploited by seismologists in studies of the Earth's deep interior. Antipodal focusing from impacts on the Moon, Mercury, and icy satellites has also been invoked by planetary scientists to explain unusual surface features opposite some of the large impact structures on these bodies. For example, 'disrupted' terrains have been observed antipodal to the Caloris impact basis on Mercury and Imbrium Basin on the Moon. Very recently there have been speculations that antipodal focusing of impact energy within the mantle may lead to flood basalt and hotspot activity, but there has not yet been an attempt at a rigorous model. A new hypothesis was proposed and preliminary proof-of-principle tests for the coupling of energy from major impacts to the mantle by axial focusing of seismic waves was performed. Because of the axial symmetry of the explosive source, the phases and amplitudes are dependent only on ray parameter (or takeoff angle) and are independent of azimuthal angle. For a symmetric and homogeneous Earth, all the seismic energy radiated by the impact at a given takeoff angle will be refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Mantle material near the axis of symmetry will experience more strain cycles with much greater amplitude than elsewhere and will therefore experience more irreversible heating. The situation is very different than for a giant earthquake, which in addition to having less energy, has an asymmetric focal mechanism and a larger area. Two independent proof-of-principle approaches were used. The first makes use of seismic simulations, which are being performed with a realistic Earth model to determine the degree of focusing along the axis and to estimate the volume of material, if any, that experiences significant irreversible heating. The second involves two-dimensional hydrodynamic code simulations to determine the stress history, internal energy, and temperature rise as a function of radius along the axis.

  12. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  13. Relationship Between the Clouds and the Earth's Radiant Energy System (CERES) Measurements and Surface Temperatures of Selected Ocean Regions

    NASA Technical Reports Server (NTRS)

    Pandey, Dhirendra, K.; Lee, Robert B., III; Brown, Shannon B.; Paden, Jack; Spence, Peter L.; Thomas, Susan; Wilson, Robert S.; Al-Hajjah, Aiman

    2001-01-01

    Clear sky longwave radiances and fluxes are compared with the sea surface temperatures for three oceanic regions: Atlantic, Indian, and Pacific. The Clouds and the Earth's Radiant Energy System (CERES) measurements were obtained by the three thermistor bolometers: total channel which measures the radiation arising from the earth-atmosphere system between 0.3 - greater than 100 micrometers; the window channel which measures the radiation from 8-12 micrometers; and the shortwave channel which measures the reflected energy from 0.3 - less than 5.0 micrometers. These instruments have demonstrated measurement precisions of approximately 0.3% on the International Temperature Scale of 1990 (ITS-90) between ground and on-orbit sensor calibrations. In this work we have used eight months of clear sky earth-nadir-view radiance data starting from January 1998 through August 1998. We have found a very strong correlation of 0.97 between the CERES window channel's weekly averaged unfiltered spectral radiance values at satellite altitude (350 km) and the corresponding weekly averaged sea surface temperature (SST) data covering all the oceanic regions. Such correlation can be used in predicting the sea surface temperatures using the present CERES Terra's window channel radiances at satellite altitude very easily.

  14. On-orbit solar calibration methods using the Clouds and Earth's Radiant Energy System (CERES) in-flight calibration system: lessons learned

    NASA Astrophysics Data System (ADS)

    Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip; Shankar, Mohan; Smith, Nathaniel; Szewczyk, Peter

    2013-09-01

    The Clouds and Earth's Radiant Energy System (CERES) scanning thermistor bolometers measure earth-reflected solar and earth-emitted long-wave radiances, at the top- of-the-atmosphere. The bolometers measure the earth radiances in the broadband shortwave solar (0.3-5.0 microns) and total (0.3->100 microns) spectral bands as well as in the 8->12 microns water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. December 1999, the second and third set of CERES bolometers was launched on the Earth Observing Mission Terra Spacecraft. May 2003, the fourth and fifth set of bolometers was launched on the Earth Observing Mission Aqua Spacecraft. Recently, (October 2011) the sixth instrument was launched on the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (Suomi NPP) Spacecraft. Ground vacuum calibrations define the initial count conversion coefficients that are used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define on-orbit shifts or drifts in the sensor responses. It followed a similar design as the Earth Radiation Budget Experiment (ERBE) scanners with improvements from lessons learned. The shortwave and shortwave part of the total-wave sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields of view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, over-coated with SIOx (SIO2 for PFM). Thermistors are located within each MAM plate and the total channel baffle. The CERES MAM is designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. The Terra FM1 and FM2 shortwave channels and the FM1 and FM2 total channels MAM calibration systems showed shifts in their solar calibrations of 1.5, 2.5, 1.5 and 6 percent, respectively within the first year. The Aqua FM3, and FM4 shortwave channels and the FM3 and FM4 total channels MAM calibration systems showed shifts in their solar calibrations of 1.0, 1.2, 2.1 and .8 percent, respectively within the first year. A possible explanation has attributed the MAM reflectance change to on-orbit solar ultraviolet/atomic oxygen/out-gassing induced chemical changes to the SIOx coated MAM assembly during ram and solar exposure. There is also changes to the sensor telescope shortwave filters as well as the Total channel mirrors and/or sensors. The Soumi NPP FM5 is still after 2.5 years displaying a stability of less than .5 percent. In this presentation, lessons learned from the ERBE MAM and application of knowledge of how the space environment affected the CERES FM1-4 solar calibrations will be presented along with on-orbit measurements for the thirteen years the CERES instruments have been on-orbit.

  15. Energy Design Plugin: An EnergyPlus Plugin for SketchUp; Preprint

    SciTech Connect

    Ellis, P. G.; Torcellini, P. A.; Crawley, D. B.

    2008-08-01

    This paper describes the Energy Design Plugin, a new software plugin that aims to integrate simulation as a tool during the earliest phases of the design process. The plugin couples the EnergyPlus whole-building simulation engine to the Google SketchUp drawing program.

  16. On the formulation of gravitational potential difference between the GRACE satellites based on energy integral in Earth fixed frame

    NASA Astrophysics Data System (ADS)

    Zeng, Y. Y.; Guo, J. Y.; Shang, K.; Shum, C. K.; Yu, J. H.

    2015-09-01

    Two methods for computing gravitational potential difference (GPD) between the GRACE satellites using orbit data have been formulated based on energy integral; one in geocentric inertial frame (GIF) and another in Earth fixed frame (EFF). Here we present a rigorous theoretical formulation in EFF with particular emphasis on necessary approximations, provide a computational approach to mitigate the approximations to negligible level, and verify our approach using simulations. We conclude that a term neglected or ignored in all former work without verification should be retained. In our simulations, 2 cycle per revolution (CPR) errors are present in the GPD computed using our formulation, and empirical removal of the 2 CPR and lower frequency errors can improve the precisions of Stokes coefficients (SCs) of degree 3 and above by 1-2 orders of magnitudes. This is despite of the fact that the result without removing these errors is already accurate enough. Furthermore, the relation between data errors and their influences on GPD is analysed, and a formal examination is made on the possible precision that real GRACE data may attain. The result of removing 2 CPR errors may imply that, if not taken care of properly, the values of SCs computed by means of the energy integral method using real GRACE data may be seriously corrupted by aliasing errors from possibly very large 2 CPR errors based on two facts: (1) errors of bar C_{2,0} manifest as 2 CPR errors in GPD and (2) errors of bar C_{2,0} in GRACE data-the differences between the CSR monthly values of bar C_{2,0} independently determined using GRACE and SLR are a reasonable measure of their magnitude-are very large. Our simulations show that, if 2 CPR errors in GPD vary from day to day as much as those corresponding to errors of bar C_{2,0} from month to month, the aliasing errors of degree 15 and above SCs computed using a month's GPD data may attain a level comparable to the magnitude of gravitational potential variation signal that GRACE was designed to recover. Consequently, we conclude that aliasing errors from 2 CPR errors in real GRACE data may be very large if not properly handled; and therefore, we propose an approach to reduce aliasing errors from 2 CPR and lower frequency errors for computing SCs above degree 2.

  17. NASA Now: Earth Science Week: Exploring Energy - Duration: 7 minutes, 32 seconds.

    NASA Video Gallery

    During this installment of NASA Now, you’ll see some of the ways NASA studies Earth. You’ll meet Eric Brown de Colstoun, a physical scientist at NASA’s Goddard Space Flight Center in Greenbel...

  18. The concepts of energy, environment, and cost for process design

    SciTech Connect

    Abu-Khader, M.M.; Speight, J.G.

    2004-05-01

    The process industries (specifically, energy and chemicals) are characterized by a variety of reactors and reactions to bring about successful process operations. The design of energy-related and chemical processes and their evolution is a complex process that determines the competitiveness of these industries, as well as their environmental impact. Thus, we have developed an Enviro-Energy Concept designed to facilitate sustainable industrial development. The Complete Onion Model represents a complete methodology for chemical process design and illustrates all of the requirements to achieve the best possible design within the accepted environmental standards. Currently, NOx emissions from industrial processes continue to receive maximum attention, therefore the issue problem of NOx emissions from industrial sources such as power stations and nitric acid plants is considered. The Selective Catalytic Reduction (SCR) is one of the most promising and effective commercial technologies. It is considered the Best Available Control Technology (BACT) for NOx reduction. The solution of NOx emissions problem is either through modifying the chemical process design and/or installing an end-of-pipe technology. The degree of integration between the process design and the installed technology plays a critical role in the capital cost evaluation. Therefore, integrating process units and then optimizing the design has a vital effect on the total cost. Both the environmental regulations and the cost evaluation are the boundary constraints of the optimum solution.

  19. HELIPLAT: design of high altitude very-long endurance solar powered platform for telecommunication and earth observation

    NASA Astrophysics Data System (ADS)

    Romeo, Giulio; Frulla, Giacomo

    2002-07-01

    A research is being carried out at the Turin Polytechnic University aiming at the design of an HAVE/UAV (High Altitude Very-long Endurance/Uninhabited Air Vehicle) and manufacturing of a scale-sized solar-powered prototype. The vehicle should climg to 17-20 km by taking advantage, mainly, of direct sun radiation and maintaining; electric energy not requeired for propulsion and payload operation is pumped back into the fuel cells energy storage system for the night. A computer program has been developed for carrying out a parametric study for the platform design, by taking into account the solar radiation change over one year, the altitude, masses and efficiencies of solar cells and fuel cells, aerodynamic performances, etc. A parametric study shows as fuel cells and solar cells efficiency and mass give the most influence on the platform dimensions. A wide use of high modulus CFRP has been made in designing the structure in order to minimise the airframe weight. The whole mass resulted of 70 kg. The classical hydraulic loading rig was designed for applying the ultimate shear-bending-torsion load to the structure and to verify the theoretical behaviour. A finite element analysis has been carried out by using the MSC/PATRAN/NASTRAN code in order to predict th static and dynamic behaviour. A good correlation has been obtained between the theoretical, numerical and experimental results up to a load corresponding to 5g.

  20. Orbital simulations on the deflection of Near Earth Objects by directed energy

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Walsh, Kevin J.; Melis, Carl; Hughes, Gary B.; Lubin, Philip M.

    2015-09-01

    Laser ablation of a Near Earth Object (NEO) on a collision course with Earth produces a cloud of ejecta which exerts a thrust on the asteroid, deflecting it from its original trajectory. The DE-STAR system provides such a thrust by illuminating an Earth-targeting asteroid or comet from afar with a stand-off system consisting of a large phased-array laser in Earth orbit. A much smaller version of the same system called DE-STARLITE travels alongside the target, operating in a stand-on mode, slowly deflecting it over a long period. Such a stand-on system would also permit directing the thrust in any desired direction through careful positioning of the laser relative to the asteroid. We present orbital simulations comparing the effectiveness of both systems across a range of laser and asteroid parameters. Simulated parameters include magnitude, duration and, for the stand-on system, direction of the thrust, as well as the size and orbital characteristics of the target asteroid. These simulations indicate that deflection distance is, in general, proportional to the magnitude of thrust, proportional to the square of the laser on time, and inversely proportional to the mass. Furthermore, deflection distance shows strong dependence on thrust direction with optimal direction varying with the asteroid's orbital eccentricity. As one example, we consider a 325 m asteroid in an orbit of eccentricity e=0.2; given 15 years of warning, a force of just 2 N from a stand-on DE-STARLITE system is sufficient to deflect the asteroid by 2 Earth radii. We discuss numerous scenarios and discuss a practical implementation of such a system consistent with current launch vehicle capabilities.

  1. Commercial building design and energy conservation: A preliminary assessment

    NASA Astrophysics Data System (ADS)

    Nieves, A. L.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titled windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given.

  2. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    SciTech Connect

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.; Liu, Bing

    2010-06-30

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50% saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.

  3. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  4. Tribological design constraints of marine renewable energy systems.

    PubMed

    Wood, Robert J K; Bahaj, AbuBakr S; Turnock, Stephen R; Wang, Ling; Evans, Martin

    2010-10-28

    Against the backdrop of increasing energy demands, the threat of climate change and dwindling fuel reserves, finding reliable, diverse, sustainable/renewable, affordable energy resources has become a priority for many countries. Marine energy conversion systems are at the forefront of providing such a resource. Most marine renewable energy conversion systems require tribological components to convert wind or tidal streams to rotational motion for generating electricity while wave machines typically use oscillating hinge or piston within cylinder geometries to promote reciprocating linear motion. This paper looks at the tribology of three green marine energy systems, offshore wind, tidal and wave machines. Areas covered include lubrication and contamination, bearing and gearbox issues, biofouling, cavitation erosion, tribocorrosion, condition monitoring as well as design trends and loading conditions associated with tribological components. Current research thrusts are highlighted along with areas needing research as well as addressing present-day issues related to the tribology of offshore energy conversion technologies. PMID:20855321

  5. Energy-storage-flywheel housing-design-concept development

    NASA Astrophysics Data System (ADS)

    Coppa, A. P.

    1981-09-01

    A low cost vehicular flywheel housing conceptual design was obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheet metal components for automotive vehicles provided budgetary quotations for steel housings. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.

  6. Department of Energy's team's analyses of Soviet designed VVERs

    SciTech Connect

    Not Available

    1989-09-01

    The purpose of this report is to summarize the results of the US Department of Energy (DOE) Analysis Team's analyses of Soviet designed VVERs (Water-cooled, Water-moderated Energy Reactor). The principle objective of this undertaking is to provide a basis to better understand the safety related features of the Soviet designed VVERs to be better prepared to respond domestically in the event of an accident at such a unit. The USDOE Team's analyses are presented together with supporting and background information. The report is structured to allow the reader to develop an understanding of safety related features of Soviet designed VVERs (as well as the probable behavior of these units under a variety of off normal conditions), to understand the USDOE Team's analyses of Soviet designed VVERs, and to formulate informed opinions.

  7. A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haque, Ahasanul; Reza, Ahmed Wasif; Kumar, Narendra

    2015-11-01

    In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun's energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna's geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz-40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.

  8. System implementation for earth radiation budget satellite system

    NASA Technical Reports Server (NTRS)

    Cooper, J. E.; Woerner, C. V.

    1978-01-01

    The earth-orbiting satellite provides a platform, outside the earth's atmosphere, which is capable of simultaneously monitoring the outgoing reflection of the sun's energy from the earth's surface and atmosphere, and the longwave radiation emitted by the earth and its atmosphere. These capabilities provide the opportunity to conduct detailed studies of the variations in the earth's radiation budget, the effects of natural and manmade changes in the environment on this budget, and the effects which changes in the energy budget produce on earth's weather and climate. A description is presented of the instrument system requirements and a conceptual design of an instrument approach to meet these requirements for providing the earth radiation budget data.

  9. Geology and Earth Sciences Sourcebook for Elementary and Secondary Schools, Second Edition.

    ERIC Educational Resources Information Center

    Heller, Robert L.

    This earth science resource book, designed for use by elementary and secondary school teachers, presents aspects of earth science which illustrate the significance of matter, energy, forces, motion, time, and space in the dynamics and history of the earth. The major content of this resource manual consists of authoritative information about earth…

  10. Fluid manifold design for a solar energy storage tank

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  11. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    PubMed

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices. PMID:23272188

  12. Energy Efficient Neural Stimulation: Coupling Circuit Design and Membrane Biophysics

    PubMed Central

    Kilgore, Kevin L.; McIntyre, Cameron C.

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson’s disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices. PMID:23272188

  13. Mesoscale mapping of available solar energy at the earth's surface by use of satellites

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1980-01-01

    A method is presented for use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on the mesoscale. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Seasonal geographic distributions of cloud cover/sunshine are converted to joules of solar radiation received at the earth's surface through relationships developed from long-term measurements of these two parameters at six widely distributed stations. The technique can be used to generate maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface.

  14. Optical and thermal properties of rare earth containing low-phonon-energy glasses

    NASA Astrophysics Data System (ADS)

    Scheffler, Michael; Kirchhof, Johannes; Kobelke, Jens; Schuster, Kay; Schwuchow, Anka

    1998-09-01

    Doping of arsenic sulfide with small amounts of germanium and gallium ca be used to improve the rare-earth ion solubility, whereby optical nd thermal properties are modified.Here the influence of germanium and gallium on refractive index, fluorescence and glass transition temperature is systematically studied and discussed. It is shown that material properties suitable for variable lightguide structures can be tailored. In addition, we present our studies of properties of lead germanate glasses. Variations of the matrix composition were made an the effects in glass transition temperature, crystallization behavior, refractive index, solubility of rare earths and UV-VIS-IR transmission were studied. Reducing the lead content and partial substitution of oxides by fluorides causes a shift of the optical bandgap of bulk material. First fluorescence investigations on Tm3+ doped lead germanate glasses show blue, red and IR emission under 980 nm excitation.

  15. Designing an energy-efficient quick service restaurant

    SciTech Connect

    Young, R.; Spata, A.J.; Turnbull, P.; Allen, T.E.

    1999-07-01

    Food service operators typically focus on controlling labor and food costs in order to increase profits. Energy, which typically represents 2% to 6% of the total cost to operate, is often a lower priority due to the complexity of food service operations and the lack of practical information. However, in an increasing competitive market, operators are actively seeking opportunities to further reduce overhead, and energy represents a good candidate. This paper presents an overview of the design and application of energy-efficient technologies to a quick service restaurant (QSR) and the resulting energy savings. Included in the discussion are the relevance of energy efficiency in a QSR, the criteria for choosing appropriate energy-efficient technologies, the replication of results to other restaurants, and the performance of the individual energy-saving technologies. Three different techniques were used to estimate energy savings of the energy-efficient technologies, with results in the range of 12% to 18% savings in overall annual restaurant energy costs.

  16. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    NASA Astrophysics Data System (ADS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  17. Orbital Simulations on Deflecting Near-Earth Objects by Directed Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Walsh, Kevin J.; Melis, Carl; Hughes, Gary B.; Lubin, Philip M.

    2016-04-01

    Laser ablation of a near-Earth object (NEO) on a collision course with Earth produces a cloud of ejecta that exerts a thrust on the NEO, deflecting it from its original trajectory. Ablation may be performed from afar by illuminating an Earth-targeting asteroid or comet with a stand-off “DE-STAR” system consisting of a large phased-array laser in Earth orbit. Alternatively, a much smaller stand-on “DE-STARLITE” system may travel alongside the target, slowly deflecting it from nearby over a long period. This paper presents orbital simulations comparing the effectiveness of both systems across a range of laser and NEO parameters. Simulated parameters include magnitude, duration and, for the stand-on system, direction of the thrust, as well as the type, size, and orbital characteristics of the target NEO. These simulations indicate that deflection distance is approximately proportional to the magnitude of thrust and to the square of the duration of ablation, and is inversely proportional to the mass. Furthermore, deflection distance shows strong dependence on thrust direction with the optimal direction of thrust varying with the duration of laser activity. As one example, consider a typical 325 m asteroid: beginning 15 years in advance, just 2 N of thrust from a ∼20 kW stand-on DE-STARLITE system is sufficient to deflect the asteroid by 2 {R}\\oplus . Numerous scenarios are discussed as is a practical implementation of such a system consistent with current launch vehicle capabilities.

  18. Home Sweet Earth. [Project ECOLogy ELE Pak, Meaney Pak].

    ERIC Educational Resources Information Center

    Meaney, Marie

    This is one of a series of units for environmental education developed by the Highline Public Schools. The emphasis of the 10 lessons in this unit is on energy, the earth's resources, and the use of earth resources, by man and other living things. The materials are designed for use at grade 1, but could be used in higher grades. Each lesson…

  19. Multi objective decision making in hybrid energy system design

    NASA Astrophysics Data System (ADS)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component, dominated when the 'Environment' objective or the 'User/System compatibility' objectives were more important than the 'Financial' objectives and they also dominated when the three criteria were considered equally important.

  20. New Instrumental Facilities to study High Energy Processes in the Sun, Interplanetary Space and their Effects in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Raulin, Jean-Pierre; Makhmutov, Vladimir

    We present a new instrumental facility to study the physical mechanisms of high-energy releases taking place in solar quiet and explosive active regions, and their signatures in the Earth's atmosphere. These facilities will be installed in the CASLEO (2550 m asl) observatory, and complement solar flare diagnostic obtained there at millimeter waves (45 and 90 GHZ), submillimeter waves (212 and 405 GHz), IR (30 THz), as well as X-ray radiation imprints in the ionosphere (VLF subionospheric propagation), and of energetic charged particles in Earth's atmosphere (Cosmic Ray CARPET sensor).Specifically, we propose to complement these existing instrumental facilities with a new detector of solar and atmospheric neutrons, a gamma-ray scintillation device, and ELF/VLF wave sensors. The main objectives are: (i) to better characterize the high-frequency radio and high-energy photon flare spectra, in order to provide new clues on the emission mechanism resulting in submillimeter and THz radiation which are still unexplained; (ii) to provide a continuous monitoring of solar energetic phenomena and investigate if they are more frequent than what we do observe nowadays; (iii) to investigate the causal relationship between atmospheric phenomena as lightning occurrence, high-energy photon and neutron production, Terrestrial Gamma-ray Flashes, and cosmic ray fluxes.

  1. Rare Earth Complex as Electron Trapper and Energy Transfer Ladder for Efficient Red Iridium Complex Based Electroluminescent Devices.

    PubMed

    Zhou, Liang; Li, Leijiao; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Zhang, Hongjie

    2015-07-29

    In this work, we experimentally demonstrated the new functions of trivalent rare earth complex in improving the electroluminescent (EL) performances of iridium complex by codoping trace Eu(TTA)3phen (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline) into a light-emitting layer based on PQ2Ir(dpm) (iridium(III)bis(2-phenylquinoly-N,C(2'))dipivaloylmethane). Compared with a reference device, the codoped devices displayed higher efficiencies, slower efficiency roll-off, higher brightness, and even better color purity. Experimental results demonstrated that Eu(TTA)3phen molecules function as electron trappers due to its low-lying energy levels, which are helpful in balancing holes and electrons and in broadening recombination zone. In addition, the matched triplet energy of Eu(TTA)3phen is instrumental in facilitating energy transfer from host to emitter. Finally, highly efficient red EL devices with the highest current efficiency, power efficiency and brightness up to 58.98 cd A(-1) (external quantum efficiency (EQE) of 21%), 61.73 lm W(-1) and 100870 cd m(-2), respectively, were obtained by appropriately decreasing the doping concentration of iridium complex. At certain brightness of 1000 cd m(-2), EL current efficiency up to 51.94 cd A(-1) (EQE = 18.5%) was retained. Our investigation extends the application of rare earth complexes in EL devices and provides a chance to improve the device performances. PMID:26173649

  2. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  3. Designing gondola using satcom services and solar cell energy

    NASA Astrophysics Data System (ADS)

    Cau, M.; Dezen, P.

    Introduction of compact, and lightweight terminals for mobile satellite communication, opens up many opportunities to design new telecommunication systems for balloons. Architecture of this gondola, named Narcisse, is built around a control process unit able to support interface with all Inmarsat services, and Iridium or Thuraya satellite network as well. A first technological gondola was launched from Brazil in February 2001, under a Infra Red Mongolfiere (hot air balloon). This gondola used an Inmarsat terminal C which can support in two ways , store and forward messages at a data rate of 600 bits per second. During the 3 turns around the earth, the system worked well, and demonstrated its ability to handle change over from one geostationary spacecraft to the next, when balloon changes ocean region. Moreover this system provides high telemetry rate (Mbits) or telecommand capability, and greatly increase the performances of the scientific payloads . On the other hand, such types of gondola can be useful to operate long duration flight (days) with large stratospheric balloons, currently limited to range capability of UHF ground station . When line of sight of view is lost, between ground station and gondola, the switch would be made from UHF to the Inmarsat or iridium system to complete the mission. In this case, the TM/TC system has no range or altitude limitation, and the gondola descent trajectory can be followed until the ground improving the localization of landing which will be helpful for recovery operation. So, using a real time duplex mini M Inmarsat terminal, the Narcisse gondola has been operationally involved early 2002 in Archeops project. Launched from Kiruna, Narcisse provided a full duplex 2400bits per second link, all along the flight across Russia. Narcisse has been again involved in march 2003 in Mipas project, using Iridium as a cold redundancy to secure Inmarsat mini M not working at extreme polar regions (latitude more than 80°). During this flight an Inmarsat mini M was also used to provide a scientific telemetry and telecomand channel. A lighter version (15 Kg) of this gondola is currently involved in the Hibiscus project (launch of Infrared montgolfieres from Brazil ). This gondola fitted with the new terminal "Ec track" which taking advantage of better RF budget link offered by Inmarsat spacecraft third generation, requires 50% : launch of hundred pressurized balloons from south pole. The target being to decrease the gondola weight to less than 10 Kg. Expecting a life duration of three months, the energy to heat and power the electronic will be only provided from solar cells and Li Ion secondary battery. Plans for the future : Until now all the terminals we have used with Narcisse have a data rate limited to 2400 bit/s. We are now considering to transmit the data from scientific stratospheric balloons gondolas , by using a high speed terminal (64kbit/s) linked to a mechanically pointed antenna under a pressurized radome.

  4. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  5. Reliability-based design optimization for nonlinear energy harvesters

    NASA Astrophysics Data System (ADS)

    Seong, Sumin; Lee, Soobum; Hu, Chao

    2015-03-01

    The power output of a vibration energy harvesting device is highly sensitive to uncertainties in materials, manufacturing, and operating conditions. Although the use of a nonlinear spring (e.g., snap-through mechanism) in energy harvesting device has been reported to reduce the sensitivity of power output with respect to the excitation frequency, the nonlinear spring characteristic remains significantly sensitive and it causes unreliable power generation. In this paper, we present a reliability-based design optimization (RBDO) study of vibration energy harvesters. For a nonlinear harvester, a purely mechanical nonlinear spring design implemented in the middle of cantilever beam harvester is considered in the study. This design has the curved section in the center of beam that causes bi-stable configuration. When vibrating, the inertia of the tip mass activates the curved shell to cause snap-through buckling and make the nature of vibration nonlinear. In this paper, deterministic optimization (DO) is performed to obtain deterministic optimum of linear and nonlinear energy harvester configuration. As a result of the deterministic optimization, an optimum bi-stable vibration configuration of nonlinear harvester can be obtained for reliable power generation despite uncertainty on input vibration condition. For the linear harvester, RBDO is additionally performed to find the optimum design that satisfies a target reliability on power generation, while accounting for uncertainty in material properties and geometric parameters.

  6. Best Practices Guide for Energy-Efficient Data Center Design

    SciTech Connect

    O. VanGeet: NREL

    2010-02-24

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery.

  7. Energy Efficient Engine core design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1982-01-01

    The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.

  8. Design for a High Energy Density Kelvin-Helmholtz Experiment

    SciTech Connect

    Hurricane, O A

    2007-10-29

    While many high energy density physics (HEDP) Rayleigh-Taylor and Richtmyer-Meshkov instability experiments have been fielded as part of basic HEDP and astrophysics studies, not one HEDP Kelvin-Helmholtz (KH) experiment has been successfully performed. Herein, a design for a novel HEDP x-ray driven KH experiment is presented along with supporting radiation-hydrodynamic simulation and theory.

  9. RESIDENTIAL BUILDING ADAPTIVE ENERGY MANAGEMENT SYSTEM (R-BAEMS) DESIGN

    EPA Science Inventory

    The expected outcomes from Phase I included 1) a set of guidelines for implementing R-BAEMS in residential structures from both a retrofit and original design perspective and 2) a cost and energy analysis of R-BAEMS impact on the environment. The status of each of the outcomes...

  10. Assessment of the clouds and the Earth's Radiant Energy System (CERES) instrument performance and stability on the Aqua, Terra, and S-NPP spacecraft

    NASA Astrophysics Data System (ADS)

    Smith, Nathaniel P.; Thomas, Susan; Shankar, Mohan; Hess, Phillip C.; Smith, Natividad M.; Walikainen, Dale R.; Wilson, Robert S.; Priestley, Kory J.

    2015-09-01

    The Clouds and the Earth's Radiant Energy System (CERES) scanning radiometer is designed to measure reflected solar radiation and thermal radiation emitted by the Earth. Five CERES instruments are currently taking active measurements in-orbit with two aboard the Terra spacecraft (FM1 and FM2), two aboard the Aqua spacecraft (FM3 and FM4), and one aboard the S-NPP spacecraft (FM5). The CERES instrument uses three scanning thermistor bolometers to make broadband radiance measurements in the shortwave (0.3 - 5.0 micrometers), total (0.3 - >100 micrometers) and water vapor window (8 - 12 micrometer) regions. An internal calibration module (ICM) used for in-flight calibration is built into the CERES instrument package consisting of an anodized aluminum blackbody source for calibrating the total and window sensors, and a shortwave internal calibration source (SWICS) for the shortwave sensor. The ICM sources, along with a solar diffusor called the Mirror Attenuator Mosaic (MAM), are used to define shifts or drifts in the sensor response over the life of the mission. In addition, validation studies are conducted to understand any spectral changes that may occur with the sensors and assess the pointing accuracy of the instrument, allowing for corrections to be made to the radiance calculations in CERES data products. This paper covers the observed trends in the internal and solar calibration data, discusses the latest techniques used to correct for sensor response, and explains the validation studies used to assess the performance and stability of the instrument.

  11. Solar diffusers in earth observation instruments with an illumination angle of up to 70°: design and verification of performance in BRDF

    NASA Astrophysics Data System (ADS)

    Gür, Bilgehan; Bol, Hans; Xu, Pengmei; Li, Bicen

    2015-09-01

    The present paper describes the challenging diffuser design and verification activities of TNO under contract of a customer for an earth observation instrument with observation conditions that require feasible BRDF under large angles of incidence of up to 70° with respect to the surface normal. Not only the design though but also the verification of the diffuser performance under such angles including "out-of-plane", i.e. angle theta detection of the scattered light, was an essential activity to be executed. In this paper we will summarize the R&D activities with respect to diffuser design and verification that were recently carried out at TNO and present its applicability to current and future earth observation missions with challenging observation conditions and thus challenging diffuser requirements under high illumination angles.

  12. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  13. Optimal Design of RF Energy Harvesting Device Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Mori, T.; Sato, Y.; Adriano, R.; Igarashi, H.

    2015-11-01

    This paper presents optimal design of an RF energy harvesting device using genetic algorithm (GA). In the present RF harvester, a planar spiral antenna (PSA) is loaded with matching and rectifying circuits. On the first stage of the optimal design, the shape parameters of PSA are optimized using . Then, the equivalent circuit of the optimized PSA is derived for optimization of the circuits. Finally, the parameters of RF energy harvesting circuit are optimized to maximize the output power using GA. It is shown that the present optimization increases the output power by a factor of five. The manufactured energy harvester starts working when the input electric field is greater than 0.5 V/m.

  14. Through the Past Decade: How Advanced Energy Design Guides have influenced the Design Industry

    SciTech Connect

    Liu, Bing; Athalye, Rahul A.

    2015-07-31

    Advanced Energy Design Guides (AEDGs) were originally developed intended to provide a simple approach to building professionals seeking energy efficient building designs better than ASHRAE Standard 90.1. Since its first book was released in 2004, the AEDG series provided inspiration for the design industry and were seen by designers as a starting point for buildings that wished to go beyond minimum codes and standards. In addition, U.S. Department of Energy’s successful Commercial Building Partnerships (CBP) program leveraged many of the recommendations from the AEDGs to achieve 50% energy savings over ASHRAE Standard 90.1-2004 for prototypical designs of large commercial entities in the retail, banking and lodging sectors. Low-energy technologies and strategies developed during the CBP process have been applied by commercial partners throughout their national portfolio of buildings. Later, the AEDGs served as the perfect platform for both Standard 90.1 and ASHRAE’s high performance buildings standard, Standard 189.1. What was high performance a few years ago, however, has become minimum code today. Indeed, most of the prescriptive envelope component requirements in ASHRAE Standard 90.1-2013 are values recommended in the 50% AEDGs several years ago. Similarly, AEDG strategies and recommendations have penetrated the lighting and HVAC sections of both Standard 189.1 and Standard 90.1. Finally, as we look to the future of codes and standards, the AEDGs are serving as a blueprint for how minimum code requirements could be expressed. By customizing codes to specific building types, design strategies tailored for individual buildings could be prescribed as minimum code, just like in the AEDGs. This paper describes the impact that AEDGs have had over the last decade on the design industry and how they continue to influence the future of codes and Standards. From design professionals to code officials, everyone in the building industry has been affected by the AEDGs.

  15. "Gaa-Noodin-Oke" (Alternative Energy/Wind Power): A Curriculum Implementation on the White Earth Reservation

    ERIC Educational Resources Information Center

    Guzey, Siddika Selcen; Nyachwaya, James; Moore, Tamara J.; Roehrig, Gillian H.

    2014-01-01

    A wind energy focused curriculum for grades 4-8 was designed and implemented to promote the understanding of wind energy concepts with American Indian students. 57 students who participated in the 2009 summer program of the "Reach for the Sky" (RFTS) Science, Technology, Engineering, and Mathematics (STEM) received the curriculum. The

  16. "Gaa-Noodin-Oke" (Alternative Energy/Wind Power): A Curriculum Implementation on the White Earth Reservation

    ERIC Educational Resources Information Center

    Guzey, Siddika Selcen; Nyachwaya, James; Moore, Tamara J.; Roehrig, Gillian H.

    2014-01-01

    A wind energy focused curriculum for grades 4-8 was designed and implemented to promote the understanding of wind energy concepts with American Indian students. 57 students who participated in the 2009 summer program of the "Reach for the Sky" (RFTS) Science, Technology, Engineering, and Mathematics (STEM) received the curriculum. The…

  17. Designing effective incentives for energy conservation in the public sector

    NASA Astrophysics Data System (ADS)

    Drezner, Jeffrey Alan

    Understanding why government officials behave in certain ways under particular circumstances is an important theme in political science. This research explores the design of policies and incentives targeted at public sector officials, in particular the use of market based policy tools in a non-market environment, and the influence of that organizational environment on the effectiveness of the policy. The research examines the case of Department of Defense (DoD) facility energy management. DoD energy policy includes a provision for the retention of savings generated by conservation activities: two-thirds of the savings is retained at the installation generating the savings, half to used for further investment in energy conservation, and half to be used for general morale, welfare, and recreation activities. This policy creates a financial incentive for installation energy managers to establish higher quality and more active conservation programs. A formal written survey of installation energy managers within DoD was conducted, providing data to test hypotheses regarding policy effectiveness and factors affecting policy implementation. Additionally, two detailed implementation case studies were conducted in order to gain further insights. Results suggest that policy design needs to account for the environment within which the policy will be implemented, particularly organizational culture and standard operating procedures. The retention of savings policy failed to achieve its intended outcome---retention of savings for re-investment in energy conservation---because the role required of the financial management community was outside its normal mode of operation and interests and the budget process for allocating resources did not include a mechanism for retention of savings. The policy design did not adequately address these start-up barriers to implementation. This analysis has shown that in order for retention of savings, or similar policies based on market-type mechanisms, to be effective in the public sector context, the required cultural changes and appropriate implementing mechanisms must be provided for in the policy design.

  18. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2016-05-01

    We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min‑1 for pressures up to 9.65 kPa in microfluidic channels 200 μm wide and 200 μm deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min‑1 with larger microfluidic channels of up to 1 mm wide and 500 μm deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices.

  19. Ultrasonic Spot Welding of a Rare-Earth Containing ZEK100 Magnesium Alloy: Effect of Welding Energy

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Chen, D. L.

    2016-04-01

    Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred in the nugget zone; the grain size increased and microhardness decreased with increasing welding energy arising from the increasing interface temperature and strain rate. The weld interface experienced severe plastic deformation at a high strain rate from ~500 to ~2100 s-1 with increasing welding energy from 500 to 2000 J. A relationship between grain size and Zener-Hollomon parameter, and a Hall-Petch-type relationship between microhardness and grain size were established. The tensile lap shear strength and failure energy were observed to first increase with increasing welding energy, reach the maximum values at 1500 J, and then decrease with a further increase in the welding energy. The samples welded at a welding energy ≤1500 J exhibited an interfacial failure mode, while nugget pull-out occurred in the samples welded at a welding energy above 1500 J. The fracture surfaces showed typical shear failure. Low-temperature tests at 233 K (-40 °C) showed no significant effect on the strength and failure mode of joints welded at the optimal welding energy of 1500 J. Elevated temperature tests at 453 K (180 °C) revealed a lower failure load but a higher failure energy due to the increased deformability, and showed a mixed mode of partial interfacial failure and partial nugget pull-out.

  20. Communications via the radio artificial earth satellite: Design of the tracking diagram and features for conducting QSO

    NASA Technical Reports Server (NTRS)

    Dobrozhanskiy, V.; Rybkin, V.

    1980-01-01

    A detailed examination is made of the operation of a transmitting artifical Earth satellite. A tracking diagram for the satellite is constructed. The zone of radio visibility can be determined based on the techniques proposed.