Sample records for earth ion conduction

  1. CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, G.S.; Legvold, S.

    1958-11-01

    The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)

  2. Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.

    PubMed

    Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko

    2016-12-01

    Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.

  3. Ionomers for Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  4. Single-ion conducting diblock terpolymers for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  5. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides.

    PubMed

    Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian

    2014-02-12

    Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities.

  6. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  7. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    NASA Astrophysics Data System (ADS)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  8. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  9. Ion conduction in high ion content PEO-based ionomers

    NASA Astrophysics Data System (ADS)

    Caldwell, David, II; Maranas, Janna

    Solid Polymer Electrolytes (SPEs) can enable the design of batteries that are safer and have higher capacity than batteries with traditional volatile organic electrolytes. The current limitation for SPEs is their low conductivity, resulting from a conduction mechanism strongly coupled to the dynamics of the polymer host matrix. Our previous work indicated the possibility of a conduction mechanism through the use of ion aggregates. In order to investigate this mechanism, we performed a series of molecular dynamics simulations of PEO-based ionomers at high ion content. Our results indicate that conduction through ion aggregates are partially decoupled from polymer dynamics and could enable the development of higher conductive SPEs.

  10. Evaluation Of Ion Exchange For Fabrication Of Rare-Earth Doped Waveguides

    NASA Astrophysics Data System (ADS)

    Howell, Brian P.; Beerling, Timothy

    1987-01-01

    Rare earth ions are frequently incorporated into lasers by doping common glasses with the ions in the glass melt. This paper describes the potential of using diffusion of the rare earth ion from molten salt baths to incorporate it in the glass. The paper discusses the molten salts, the rare earths as a group, the diffusion phenomena, the glasses, and finally the interaction of all these to produce the process. General predictions of the waveguide profile and potential problems are presented.

  11. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    PubMed

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  12. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  13. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  14. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  15. Ion Conductivity and Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bychkov, E.; Tveryanovich, Y.; Vlasov, Y.

    2005-03-02

    Ionic transport in glasses was discovered in the 19th century following the classical work of Warburg (1884). Since then, considerable progress has been achieved in both theoretical understanding and practical applications of ion-conducting vitreous systems (see Frischat, 1975; Malugani and Robert, 1980; Ribes, Barrau and Souquet, 1980; Kennedy and Yang, 1987; Vlasov and Bychkov, 1987; Hayashi, Tatsumisago and Minami, 1999; Doremus, 1962 and references therein). Nevertheless, this topic and especially the ion-conducting mechanisms in disordered solids need additional study using traditional macroscopic methods (ac and dc electrical conductivity, tracer diffusion, and ion transport number measurements), as well as advanced structuralmore » techniques on third generation synchrotron light sources and spallation neutron sources over a large range of the scattering vector Q. This approach led to the discovery of important features: in particular, different transport regimes at low and high mobile ion content that are closely related to a competition between the stochastic scenario and a non-random distribution of the mobile ions in the glass network. Well-known experimental findings such as compositional dependence of the Haven ratio H{sub R}, interpreted earlier by a number of drastically different ion transport models, can also be explained using a unified approach. Many of the new experimental results were obtained for silver and copper chalcogenide glasses which appear to be useful model materials, in part because of a large accessible composition domain, as well as coverage of five orders of magnitude in the mobile cation content, and corresponding dramatic changes in the ionic transport up to 10 orders of magnitude.« less

  16. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  17. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  18. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  19. On the origins of energetic ions in the earth's dayside magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Klumpar, D. M.; Shelley, E. G.

    1991-01-01

    Energetic ion events in the earth's dayside subsolar magnetosheath (0900 - 1300 Local Time) are surveyed using data from the AMPTE/CCE Hot Plasma Composition Experiment. Ion species carrying the signature of their origin O(+) and energetic He(2+) are used to distinguish between magnetospheric and solar wind origins for the energetic ion events. The results of this survey indicate that the majority of energetic (10-17 keV/e) H(+) and He(2+) ions observed in the dayside magnetosheath are accelerated from the solar wind population. The energetic He(2+) to H(+) density ratio in the magnetosheath is consistent with that predicted from first-order Fermi acceleration of solar wind ions in the turbulent regions upstream and downstream from the earth's quasi-parallel bow shock. The simultaneous occurrence of both energetic He(2+) and magnetospheric O(+) indicates that, on occasion, both Fermi acceleration of solar wind ions and leakage of magnetospheric ions occurs in the dayside magnetosheath.

  20. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  1. Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison

    NASA Astrophysics Data System (ADS)

    Lundin, R. N.

    2012-12-01

    Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced

  2. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  3. Ion distributions in the Earth's foreshock upstream from the bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.

    1995-01-01

    A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.

  4. Characteristics of solar and heliospheric ion populations observed near earth

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles.

  5. On the origins of energetic ions in the Earth's dayside magnetosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuselier, S.A.; Klumpar, D.M.; Shelley, E.G.

    1991-01-01

    Energetic ion events in the Earth's dayside subsolar magnetosheath (0900 - 1300 Local Time) are surveyed using data from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) Hot Plasma Composition Experiment. Ion species carrying the signature of their origin (O{sup +} and energetic He{sup 2+}) are used to distinguish between magnetospheric and solar wind orgins for the energetic ion events. The results of this survey indicate that the majority of energetic (10-17 keV/e) H{sup +} and He{sup 2+} ions observed in the dayside magnetosheath are accelerated from the solar wind population. The energetic He{sup 2+} to H{sup +} densitymore » ratio in the magnetosheath is consistent with that predicted from first-order Fermi acceleration of solar wind ions in the turbulent regions upstream and downstream from the Earth's quasi-parallel bow shock. Although the majority of the energetic ions appear to be of solar wind origin, magnetospheric O{sup +} is also occasionally present in the magnetosheath. The simultaneous occurence of both energetic He{sup 2+} and magnetospheric O{sup +} indicates that, on occasion, both Fermi acceleration of solar wind ions and leakage of magnetospheric ions occurs in the dayside magnetosheath.« less

  6. Controlling ion aggregation and conduction in PEO-based ionomers.

    NASA Astrophysics Data System (ADS)

    Caldwell, David, II; Maranas, Janna

    2015-03-01

    PEO-based ionomers are ideal for reducing concentration polarization found in typical solid polymer electrolytes. This is achieved by binding the anion to the polymer backbone, significantly reducing the anions mobility. Ion aggregation is prevalent in these systems, but their influence on SPE performance is difficult to study experimentally. We present results of molecular dynamics simulations that explore the relationship between ion content and temperature on ion aggregation, polymer motion, and ion conduction. An unforeseen result of ionomers is the creation of string like aggregates that form conduction pathways in the amorphous region. These conduction pathways allow for a partial decoupling of ion conduction with polymer dynamics. The improvement in conductivity through the use of ion aggregates can be quantified by calculating the inverse of the Haven Ratio, dubbed f-value. Typical SPEs have an f-value less than 0.2, while the ionomers of study exhibit f-values near unity or higher. Understanding what properties influence the development and use of these conduction pathways will provide insight for further development of solid polymer electrolytes.

  7. Lithium ion conducting electrolytes

    DOEpatents

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  8. Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion.

    PubMed

    Mak, D O; Webb, W W

    1997-03-01

    A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.

  9. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; ...

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential ( Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO 2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A)more » to –48.02 ± 1.85 kJ/mol per TO 2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO 2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  10. Production yield of rare-earth ions implanted into an optical crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  11. Ab initio spectroscopy and ionic conductivity of water under Earth mantle conditions.

    PubMed

    Rozsa, Viktor; Pan, Ding; Giberti, Federico; Galli, Giulia

    2018-06-18

    The phase diagram of water at extreme conditions plays a critical role in Earth and planetary science, yet remains poorly understood. Here we report a first-principles investigation of the liquid at high temperature, between 11 GPa and 20 GPa-a region where numerous controversial results have been reported over the past three decades. Our results are consistent with the recent estimates of the water melting line below 1,000 K and show that on the 1,000-K isotherm the liquid is rapidly dissociating and recombining through a bimolecular mechanism. We found that short-lived ionic species act as charge carriers, giving rise to an ionic conductivity that at 11 GPa and 20 GPa is six and seven orders of magnitude larger, respectively, than at ambient conditions. Conductivity calculations were performed entirely from first principles, with no a priori assumptions on the nature of charge carriers. Despite frequent dissociative events, we observed that hydrogen bonding persists at high pressure, up to at least 20 GPa. Our computed Raman spectra, which are in excellent agreement with experiment, show no distinctive signatures of the hydronium and hydroxide ions present in our simulations. Instead, we found that infrared spectra are sensitive probes of molecular dissociation, exhibiting a broad band below the OH stretching mode ascribable to vibrations of complex ions.

  12. Ion Conduction in Microphase-Separated Block Copolymer Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambe, Yu; Arges, Christopher G.; Patel, Shrayesh

    2017-01-01

    Microphase separation of block copolymers provides a promising route towards engineering a mechanically robust ion conducting film for electrochemical devices. The separation into two different nano-domains enables the film to simultaneously exhibit both high ion conductivity and mechanical robustness, material properties inversely related in most homopolymer and random copolymer electrolytes. To exhibit the maximum conductivity and mechanical robustness, both domains would span across macroscopic length scales enabling uninterrupted ion conduction. One way to achieve this architecture is through external alignment fields that are applied during the microphase separation process. In this review, we present the progress and challenges for aligningmore » the ionic domains in block copolymer electrolytes. A survey of alignment and characterization is followed by a discussion of how the nanoscale architecture affects the bulk conductivity and how alignment may be improved to maximize the number of participating conduction domains.« less

  13. Carbon nanomaterials used as conductive additives in lithium ion batteries.

    PubMed

    Zhang, Qingtang; Yu, Zuolong; Du, Ping; Su, Ce

    2010-06-01

    As the vital part of lithium ion batteries, conductive additives play important roles in the electrochemical performance of lithium ion batteries. They construct a conductive percolation network to increase and keep the electronic conductivity of electrode, enabling it charge and discharge faster. In addition, conductive additives absorb and retain electrolyte, allowing an intimate contact between the lithium ions and active materials. Carbon nanomaterials are carbon black, Super P, acetylene black, carbon nanofibers, and carbon nanotubes, which all have superior properties such as low weight, high chemical inertia and high specific surface area. They are the ideal conductive additives for lithium ion batteries. This review will discuss some registered patents and relevant papers about the carbon nanomaterials that are used as conductive additives in cathode or anode to improve the electrochemical performance of lithium ion batteries.

  14. NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth

    Science.gov Websites

    and in Space | News | NREL NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space . NREL joined forces with NASA in finding new, more precise ways to trigger internal short circuits

  15. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-01

    The effect of partial substitution of alkaline earth (AE) ions, Sr2+ and Ca2+, for the rare earth (RE) ions, La3+, Ce3+, Pr3+, and Sm3+, on the physical properties of REVO4 compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO4-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H2 fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode.

  16. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  17. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  18. The ion temperature gradient: An intrinsic property of Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.

    2017-08-01

    Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.

  19. Theory and simulation of ion conduction in the pentameric GLIC channel.

    PubMed

    Zhu, Fangqiang; Hummer, Gerhard

    2012-10-09

    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  20. Thin film method of conducting lithium-ions

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-11-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  1. The Role of the Ion Microprobe in Solid-Earth Geochemistry

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.

    2002-12-01

    Despite the early success of the electron microprobe in taking petrology to the micron scale, and the widespread use of mass spectrometers in geochemistry and geochronology, it was not until the mid-1970s that the ion microprobe came into its own as an in situ analytical tool in the Earth sciences. Despite this inauspicious beginning, secondary ion mass spectrometry (SIMS) was widely advertised as a technology that would eventually eclipse thermal ion mass spectrometry (TIMS) in isotope geology. However this was not to happen. While various technical issues in SIMS such as interferences and matrix effects became increasingly clear, an appreciation grew for the complimentary abilities of SIMS and TIMS that, even with the advent of ICP-MS, continues to this day. Today the ion microprobe is capable of abundance measurements in the parts-per-billion range across nearly the entire periodic table, and SIMS stable isotope data quality is now routinely crossing the 1 per mil threshold, all at the micron scale. Much of this success is due to the existence of multi-user community facilities for SIMS research, and the substantial efforts of interested scientists to understand the fundamentals of sputtered ion formation and their application to geochemistry. Recent discoveries of evidence for the existence of ancient crust and oceans, the emergence of life on Earth, the large-scale cycling of surficial materials into the deep Earth, and illumination of fundamental high-pressure phenomena have all been made possible by SIMS, and these (and many more) discoveries owe a debt to the vision of creating and supporting multi-user community facilities for SIMS. The ion microprobe remains an expensive instrument to purchase and maintain, yet it is also exceedingly diverse in application. Major improvements in SIMS, indeed in all mass spectrometry, are visible on the near horizon. Yet the geochemical community cannot depend on commercial manufacturers alone to design and build the next

  2. Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hilchenbach, M.; Hovestadt, D.; Klecker, B.; Moebius, E.

    1992-01-01

    Singly ionized suprathermal ions upstream of the earth's bow shock have been detected by using the time-of-flight spectrometer SULEICA on the AMPTE/IRM satellite. The data were collected between August and December 1985. The flux of the ions in the mass range between 23 and 37 amu is highly anisotropic towards the earth. The ions are observed with a period of about 29 days around new moon (+/- 3 days). The correlation of the energy of the ions with the solar wind speed and the interplanetary magnetic field orientation indicates the relation to the pick-up process. We conclude that the source of these pick-up ions is the moon. We argue that due to the impinging solar wind, atoms are sputtered off the lunar surface, ionized in the sputtering process or by ensuing photoionization and picked up by the solar wind.

  3. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  4. Thin film method of conducting lithium-ions

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-11-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  5. A Liquid Chromatography Detector for Transition and Rare-Earth Metal Ions Based on a Cupric Ion-Selective Electrode

    DTIC Science & Technology

    1981-05-01

    RARE-EARTH METAL IONS BASED ON A CUPRIC ION-SELECTIVE ELECTRODE By - 4 R. CAMERON DOREY TECHNICAL REPORT FJSRL-TR-81-0005 MAY 1981 Approved for public...FORM . REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER FJSRL-TR-81-0005BO CO ENGO 4 . TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD...common anions, including halide ions, is shown, and the advantages and limitations of the system are discussed. II ’ 4 UNCLASSIFIED SECURITY

  6. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions

    NASA Astrophysics Data System (ADS)

    Terada, Kentaro; Yokota, Shoichiro; Saito, Yoshifumi; Kitamura, Naritoshi; Asamura, Kazushi; Nishino, Masaki N.

    2017-01-01

    For five days of each lunar orbit, the Moon is shielded from solar wind bombardment by the Earth's magnetosphere, which is filled with terrestrial ions. Although the possibility of the presence of terrestrial nitrogen and noble gases in lunar soil has been discussed based on their isotopic composition 1 , complicated oxygen isotope fractionation in lunar metal 2,3 (particularly the provenance of a 16O-poor component) re­mains an enigma 4,5 . Here, we report observations from the Japanese spacecraft Kaguya of significant numbers of 1-10 keV O+ ions, seen only when the Moon was in the Earth's plasma sheet. Considering the penetration depth into metal of O+ ions with such energy, and the 16O-poor mass-independent fractionation of the Earth's upper atmosphere 6 , we conclude that biogenic terrestrial oxygen has been transported to the Moon by the Earth wind (at least 2.6 × 104 ions cm-2 s-1) and implanted into the surface of the lunar regolith, at around tens of nanometres in depth 3,4 . We suggest the possibility that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar surface.

  7. First-principles investigation of polarization and ion conduction mechanisms in hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Shusuke; Sugino, Osamu

    We report first-principles simulation of polarization mechanisms in hydroxyapatite to explain the underlying mechanism behind the reported ion conductivities and polarization under electrical poling at elevated temperatures. It is found that ion conduction occurs mainly in the column of OH$^-$ ions along the $c$-axis through a combination of the flipping of OH$^-$ ions, exchange of proton vacancies between OH$^-$ ions, and the hopping of the OH$^-$ vacancy. The calculated activation energies are consistent with those found in conductivity measurements and thermally stimulated depolarization current measurements.

  8. Characterization of Membrane Patch-Ion Channel Probes for Scanning Ion Conductance Microscopy.

    PubMed

    Shi, Wenqing; Zeng, Yuhan; Zhu, Cheng; Xiao, Yucheng; Cummins, Theodore R; Hou, Jianghui; Baker, Lane A

    2018-05-01

    Integration of dual-barrel membrane patch-ion channel probes (MP-ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP-ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2 + -activated K + channels to establish the generalizability of the methods. Next, the capability of the MP-ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof-of-principle experiment is performed and site-specific molecular/ionic flux sensing is demonstrated at single-ion-channel level, which show that the MP-ICP platform can be used to quantify local molecular/ionic concentrations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solid lithium ion conducting electrolytes and methods of preparation

    DOEpatents

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  10. Solid lithium ion conducting electrolytes and methods of preparation

    DOEpatents

    Narula, Chaitanya K.; Daniel, Claus

    2015-11-19

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  11. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  12. Electrical and thermal conductivity of Fe-C alloy at high pressure: implications for effects of carbon on the geodynamo of the Earth's core

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Lin, J. F.; Liu, Y.; Feng, S.; Jin, C.; Yoshino, T.

    2017-12-01

    Thermal conductivity of iron alloy in the Earth's core plays a crucial role in constraining the energetics of the geodynamo and the thermal evolution of the planet. Studies on the thermal conductivity of iron reveal the importance of the effects of light elements and high temperature. Carbon has been proposed to be a candidate light element in Earth's core for its meteoritic abundance and high-pressure velocity-density profiles of iron carbides (e.g., Fe7C3). In this study, we employed four-probe van der Pauw method in a diamond anvil cell to measure the electrical resistivity of pure iron, iron carbon alloy, and iron carbides at high pressures. These studies were complimented with synchrotron X-ray diffraction and focused ion beam (FIB) analyses. Our results show significant changes in the electrical conductivity of these iron-carbon alloys that are consistent previous reports with structural and electronic transitions at high pressures, indicating that these transitions should be taken into account in evaluating the electrical and thermal conductivity at high pressure. To apply our results to understand the thermal conduction in the Earth's core, we have compared our results with literature values for the electrical and thermal conductivity of iron alloyed with light elements (C, Si) at high pressures. These comparisons permit the validity of the Wiedemann-Franz law and Matthiessen's rule for the effects of light elements on the thermal conductivity of the Earth's core. We found that an addition of a light element such as carbon has an strong effect on the reducing the thermal conductivity of Earth's core, but the magnitude of the alloying effect strongly depends on the identity of the light element and the crystal and electronic structures. Based on our results and literature values, we have modelled the electrical and thermal conductivity of iron-carbon alloy at Earth's core pressure-temperature conditions to the effects on the heat flux in the Earth's core. In

  13. Lithium-Ion Batteries Being Evaluated for Low-Earth-Orbit Applications

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.

    2005-01-01

    The performance characteristics and long-term cycle life of aerospace lithium-ion (Li-ion) batteries in low-Earth-orbit applications are being investigated. A statistically designed test using Li-ion cells from various manufacturers began in September 2004 to study the effects of temperature, end-of-charge voltage, and depth-of-discharge operating conditions on the cycle life and performance of these cells. Performance degradation with cycling is being evaluated, and performance characteristics and failure modes are being modeled statistically. As technology improvements are incorporated into aerospace Li-ion cells, these new designs can be added to the test to evaluate the effect of the design changes on performance and life. Cells from Lithion and Saft have achieved over 2000 cycles under 10 different test condition combinations and are being evaluated. Cells from Mine Safety Appliances (MSA) and modules made up of commercial-off-the-shelf 18650 Li-ion cells connected in series/parallel combinations are scheduled to be added in the summer of 2005. The test conditions include temperatures of 10, 20, and 30 C, end-of-charge voltages of 3.85, 3.95, and 4.05 V, and depth-of-discharges from 20 to 40 percent. The low-Earth-orbit regime consists of a 55 min charge, at a constant-current rate that is 110 percent of the current required to fully recharge the cells in 55 min until the charge voltage limit is reached, and then at a constant voltage for the remaining charge time. Cells are discharged for 35 min at the current required for their particular depth-of-discharge condition. Cells are being evaluated in four-cell series strings with charge voltage limits being applied to individual cells by the use of charge-control units designed and produced at the NASA Glenn Research Center. These charge-control units clamp the individual cell voltages as each cell reaches its end-of-charge voltage limit, and they bypass the excess current from that cell, while allowing the full

  14. Investigation of the Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.; Evans, David (Technical Monitor)

    2000-01-01

    The objective of this study has been to infer, by statistical means, the most probable mode of entry of solar wind plasma into Earth's magnetotail, using a particular set of archived data from the Lockheed Plasma Composition Experiment on the International Sun-Earth Explorer One (ISEE-1) satellite, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) in the 1970's and 80's. Despite their considerable age, the Lockheed ISEE-1 data are still, at the time of this report, the only substantial ion composition data in the sub-keV to keV energy range available from the magnetotail beyond 9 R(sub E), because of various technical problems with ion mass spectrometers on later missions, and are therefore a unique source of information about the mixing of solar and terrestrial origin plasmas in the tail, within the ISEE-1 apogee of almost 23 R(sub E). The entire set of archived data used in this study, covering the 4.5 years of operation of the instrument and comprising not only tail measurements but also data from the inner magnetosphere as well as data from outside the magnetopause, is now available to the public via the WorldWideWeb at the address: http://cis.spasci.com/ISEE_ions The fundamental assumption of this and other studies of magnetosphere ion composition is that He++ and O+ ions are virtually certain "tags" of solar and terrestrial origins, respectively. This is an assumption with strong theoretical basis and it is corroborated by observational evidence, including the often substantial differences between the velocity distribution functions of those two species. The H+ ions can have a dual origin, in principle, but the close resemblance in the ISEE-1 data between the dynamics of H+ and He++ ions indicates a predominantly solar origin of the H+ ions in the tail, at least. By the same token, the usually minor He+ ions are probably almost entirely of terrestrial origin, because of their similarity to the O

  15. Ion Conduction through the hERG Potassium Channel

    PubMed Central

    Cavalli, Andrea; Recanatini, Maurizio

    2012-01-01

    The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway. PMID:23133669

  16. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  17. Synthesis and ion transport characterization of hot-pressed Ag+ ion conducting glass-polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Chandra, A.

    2013-07-01

    Synthesis and ion transport characterization of a new Ag+ ion conducting glass-polymer electrolyte (GPE) films: (1- x) PEO: x [0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)], where 0 < x < 50 wt%, are reported. The composition: 70PEO: 30[0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)] with conductivity ( σ) 7.7 × 10-7 Ω-1 cm-1 is identified as highest conducting composition referred to as the optimum conducting composition (OCC). Approximately two and half orders of conductivity enhancement have been achieved in OCC from that of the pure polymer poly(ethylene oxide). The glass-polymer complexation is confirmed by the XRD, FTIR, DSC and TGA techniques. The ion transport behavior has been reported on the basis of experimental measurements on some basic ionic parameters. A solid state polymeric battery has been fabricated by using GPE OCC as an electrolyte and their important cell parameters have been also calculated from the discharge profiles.

  18. Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators.

    PubMed

    Zahn, Raphael; Lagadec, Marie Francine; Hess, Michael; Wood, Vanessa

    2016-12-07

    The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.

  19. Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth

    NASA Technical Reports Server (NTRS)

    Buffett, Bruce A.

    1992-01-01

    The possibility of a presence of a conducting layer at the base of the mantle, as suggested by Knittle and Jeanloz (1986, 1989), was examined using observations of the earth's nutations. Evidence favoring the presence of a conducting layer is found in the effect of ohmic dissipation, which can cause the amplitude of the earth's nutation to be out-of-phase with tidal forcings. It is shown that the earth's magnetic field can produce observable signatures in the forced nutations of the earth when a thin conducting layer is located at the base of the mantle. The present theoretical calculations are compared with VLBI determinations of forced nutations.

  20. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  1. Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices

    NASA Astrophysics Data System (ADS)

    Tudryn, Gregory J.

    A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading

  2. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  3. Origins of Energetic Ions in the Earth's Magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselter, S. A.; Shelley, E. G.; Klumpar, D. M.

    1992-01-01

    The analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the Active Mesospheric Particle Tracer Experiment (AMPTE) Charge Composition Explorer (CCE) spacecraft are discussed. These combined data sets have and will be used to survey the energetic ion environment in the Earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there. A computer code was developed to analyze and interpret the data sets. The focus of the first year was on the determination of the contribution of leaked magnetospheric protons to the total energetic proton population. Emphasis was placed on intervals when the AMPTE spacecraft was in the plasma depletion layer because it was argued that in this region, only the leaked population contributes to the energetic ion population. Manipulation of the CHEM data and comparison of the CHEM and HPCE data over their common energy range near the magnetopause also contributed directly to a second study of that region.

  4. The Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 R(sub E), in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most

  5. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  6. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  7. MAVEN-Measured Meteoritic Ions on Mars - Tracers of Lower Ionosphere Processes With and Without Analogues On Earth

    NASA Astrophysics Data System (ADS)

    Benna, M.; Grebowsky, J. M.; Collinson, G.; Plane, J. M. C.; Mitchell, D.; Srivastava, N.

    2017-12-01

    MAVEN observations of meteoritic metal ion populations during "deep dip" campaigns at Mars have revealed unique non-Earth like behavior that are not yet understood. These deep dip campaigns (6 so far) consisted each of more than a score of repeated orbits through the Martian molecular-ion-dominated lower ionosphere, whose terrestrial parallel (Earth's E-region) has been rather sparcely surveyed in situ by sounding rockets. In regions of weak Mars magnetic fields, MAVEN found ordered exponentially decreasing metal ion concentrations above the altitude of peak meteor ablation. Such an ordered trend has never been observed on Earth. Isolated anomalous high-altitude layers in the metal ion are also encountered, typically on deep dip campaigns in the southern hemisphere where large localized surface remanent magnetic fields prevail. The source of these anomalous layers is not yet evident, although the occurrences of some high-altitude metal ion enhancements were in regions with measured perturbed magnetic fields, indicative of localized electrical currents. Further investigation shows that those currents are also sometimes associated with superthermal/energetic electron bursts offering evidence that that impact ionization of neutral metal populations persisting at high altitudes are the source of metal ion enhancement - a rather difficult assumption to accept far above the ablation region where the metal neutrals are deposited. The relationship of the anomalous layers to the coincident electron populations as well as to the orientation of the magnetic fields which can play a role in the neutral wind generated ion convergences as on Earth is investigated.

  8. Ion conduction in crystalline superionic solids and its applications

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  9. Effects of pipette modulation and imaging distances on ion currents measured with scanning ion conductance microscopy (SICM).

    PubMed

    Chen, Chiao-Chen; Baker, Lane A

    2011-01-07

    Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.

  10. Ionomer Design, Synthesis and Characterization for Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph H.

    2013-03-01

    For ionic actuators and battery separators, it is vital to utilize single-ion conductors that avoid the detrimental polarization of other ions; the commonly studied dual-ion conductors simply will not be used in the next generation of materials for these applications. Ab initio quantum chemistry calculations at 0 K in vacuum characterize ion interactions and ion solvation by various functional groups, allowing identification of constituents with weak interactions to be incorporated in ionomers for facile ion transport. Simple ideas for estimating the ion interactions and solvation at practical temperatures and dielectric constants are presented that indicate the rank ordering observed at 0 K in vacuum should be preserved. Hence, such ab initio calculations are useful for screening the plethora of combinations of polymer-ion, counterion and polar functional groups, to decide which are worthy of synthesis for new ionomers. Single-ion conducting ionomers are synthesized based on these calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for ionic actuators and battery separators. Characterization by X-ray scattering, dielectric spectroscopy, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. Examples are shown of how ab initio calculations can be used to understand experimental observations of dielectric constant, glass transition temperature and conductivity of polymerized ionic liquids with counterions being either lithium, sodium, fluoride, hydroxide (for batteries) or bulky ionic liquids (for ionic actuators). This work was supported by the Department of Energy under Grant BES-DE-FG02-07ER46409.

  11. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fluorine-ion conductivity of different technological forms of solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (LaF{sub 3} Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P.

    We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which providesmore » (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.« less

  13. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  14. Ion funnel with extended mass range and reduced conductance limit aperture

    DOEpatents

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2008-04-01

    An improved ion funnel design is disclosed that decreases the axial RF (parasite) fields at the ion funnel exit. This is achieved by addition of one or more compensation electrodes after the conductance limit electrode. Various RF voltage profiles may be applied to the various electrodes minimizing the parasite axial potential wells. The smallest RF aperture that serves as the conductance limiting electrode is further reduced over standard designs. Overall, the ion funnel improves transmission ranges of both low m/z and high m/z ions, reducing RF activation of ions and decreasing the gas load to subsequent differential pumping stages.

  15. Mars Ionosphere Meteoritic Ion Distributions -A Mixture of Earth and Venus Characteristics

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Benna, M.; Collinson, G.; Mahaffy, P. R.

    2016-12-01

    The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution mission repeatedly observes metallic ions on MAVEN's traversals below 155 kilometers during special deep-dipping orbital campaigns. On such orbits which sample the topside of the main metal ion peak in the ablation region, three of the major metal ions seen at Earth (Na+, Mg+ and Fe+) are always detected. The relative composition of these species varies with the planetary locations of the deep-dip orbits as does the complexity of the altitude profiles of the metal ion concentrations. Quite frequently the decrease of the concentrations with altitude (observed on inbound or outbound legs of the orbit relative to periapsis) tracks the atmospheric density scale height, but only in the average sense. The individual concentration altitude profiles themselves typically have large coherent oscillations indicative of atmospheric gravity wave effects. The monotonically decreasing altitude trends are most characteristic of observations in the northern hemisphere, but there are orbits that encounter large concentration disturbances in the metal ion profiles. The latter are more prevalent in the southern hemisphere. The major background environment differences between the northern and southern hemispheres are the existence of large remanent magnetic fields in the southern hemisphere atmosphere, but not the north. It appears that there are two types of metal ion distributions. One type is associated with vertical diffusion profiles from the main metal ion peak arising in weak or no-magnetic field regions (like Venus). The other type exhibits the complex disturbances. The latter occur in regions where transport of the metal ions is controlled by the magnetic fields, through externally imposed electric fields and/or neutral wind-driven electrodynamic processes as at Earth. A comparison is made between the onset of the disturbed metal ion profiles with the ambient magnetic fields to isolate the

  16. Synthesis and characterization of Ag+ ion conducting glassy electrolytes

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh; Bhatt, Alok; Chandra, Archana

    2013-07-01

    Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.

  17. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.

    PubMed

    Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki

    2013-04-01

    The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.

  18. Near Earth Inner-Source and Interstellar Pickup Ions Observed with the Hot Plasma Composition Analyzer of the Magnetospheric Multiscale Mission Mms-Hpca

    NASA Astrophysics Data System (ADS)

    Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.

    2017-12-01

    Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.

  19. Single Nanopore Investigations with Ion Conductance Microscopy

    PubMed Central

    Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.

    2011-01-01

    A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184

  20. Short wavelength ion waves upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Gurnett, D. A.

    1984-01-01

    The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328

  1. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  2. A rare-earth-magnet ion trap for confining low-Z, bare nuclei

    NASA Astrophysics Data System (ADS)

    Brewer, Samuel M.; Tan, Joseph N.

    2009-05-01

    Simplifications in the theory for Rydberg states of hydrogenlike ions allow a substantial improvement in the accuracy of predicted levels, which can yield information on the values of fundamental constants and test theory if they can be compared with precision frequency measurements.[1] We consider the trapping of bare nuclei (fully-stripped) to be used in making Rydberg states of one-electron ions with atomic number 1< Z < 11. Numerical simulation is used here to study ion confinement in a compact, Penning-style ion trap consisting of electrodes integrated with rare-earth permanent magnets, and to model the capture of charge-state-selected ions extracted from an electron beam ion trap (EBIT). An experimental apparatus adapted to the NIST EBIT will also be discussed. Reference: [1] U.D. Jentschura, P.J. Mohr, J.N. Tan, and B.J. Wundt, ``Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions,'' Phys. Rev. Lett. 100, 160404 (2008).

  3. An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Miller, Thomas B.; McKissock, Barbara I.; Bennett, William

    2007-01-01

    A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium-ion

  4. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Gitelman, L.; Israeli, M.; Averbuch, A.; Nathan, M.; Schuss, Z.; Golodnitsky, D.

    2007-12-01

    Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.

  5. Ion-conducting membranes

    DOEpatents

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  6. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  7. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced

  8. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  9. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Clustermore » spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.« less

  10. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  11. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.

    PubMed

    Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  12. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    PubMed

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  13. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    DOEpatents

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  14. Ion-conducting membranes

    DOEpatents

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2017-02-28

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums, pyridiniums, pyrazoliums, pyrrolidiniums, pyrroliums, pyrimidiums, piperidiniums, indoliums, and triaziniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  15. Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.

    PubMed

    Murugavel, S; Vaid, C; Bhadram, V S; Narayana, C

    2010-10-28

    In this article, we report non-Arrhenius behavior in the temperature-dependent dc conductivity of alkali ion conducting silicate glasses well below their glass transition temperature. In contrast to the several fast ion-conducting and binary potassium silicate glasses, these glasses show a positive deviation in the Arrhenius plot. The observed non-Arrhenius behavior is completely reproducible in nature even after prolonged annealing close to the glass transition temperature of the respective glass sample. These results are the manifestation of local structural changes of the silicate network with temperature and give rise to different local environments into which the alkali ions hop, revealed by in situ high-temperature Raman spectroscopy. Furthermore, the present study provides new insights into the strong link between the dynamics of the alkali ions and different sites associated with it in the glasses.

  16. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    NASA Astrophysics Data System (ADS)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  17. Radiated and conducted EMI from a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Peer, W.

    1981-01-01

    In order to properly assess the interaction of a spacecraft with the EMI environment produced by an ion thruster, the EMI environment was characterized. Therefore, radiated and conducted emissions were measured from a 30-cm mercury ion thruster. The ion thruster beam current varied from zero to 2.0 amperes and the emissions were measured from 5 KHz to 200 MHz. Several different types of antennas were used to obtain the measurements. The various measurements that were made included: magnetic field due to neutralizer/beam current loop; radiated electric fields of thruster and plume; and conducted emissions on arc discharge, neutralizer keeper and magnetic baffle lines.

  18. Effect of variation in the glass-former network structure on the relaxation properties of conductive Ag+ ions in AgI-based fast ion conducting glasses

    NASA Astrophysics Data System (ADS)

    Hanaya, Minoru; Nakayama, Michiko; Hatate, Atsuo; Oguni, Masaharu

    1995-08-01

    Heat capacities and ac conductivities of AgI-based fast ion conducting glasses of AgI-Ag2O-P2O5 and AgI-Ag2O-B2O3 systems with different P-O or B-O network structures but with the same AgI concentration of 1.55×104 mol m-3 were measured in the temperature range 14-400 K and in the temperature and frequency ranges 100-200 K and 10 Hz-1 MHz, respectively. The β-glass transition due to a freezing-in of the rearrangement of Ag+ ions was observed by adiabatic calorimetry for the glasses in the liquid-nitrogen temperature region, and the conductometry was suggested to see the same mode of Ag+-ion motion as the calorimetry. It was found that the development of the network structure of the glass former at constant AgI concentration resulted in the decrease of the β-glass transition temperature and the activation energy for the diffusional motion of Ag+ ions and in the increase of the heat-capacity jump associated with the glass transition. The results support the amorphous AgI aggregate model for the structure of the conductive region in the glasses with relatively high AgI compositions, indicating that Ag+-ion conductivity is mainly dominated by the degree of development of the AgI aggregate region dependent on the glass-former network structure as well as the AgI composition.

  19. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    NASA Astrophysics Data System (ADS)

    Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.

    2017-09-01

    First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.

  20. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    PubMed Central

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-01-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948

  1. Source Distributions of Substorm Ions Observed in the Near-Earth Magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.

  2. High H⁻ ionic conductivity in barium hydride.

    PubMed

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  3. Rod/Coil Block Copolyimides for Ion-Conducting Membranes

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.

    2003-01-01

    Rod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase

  4. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  5. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  6. Electron traps in Gd3Ga3Al2O12:Ce garnets doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Khanin, V. M.; Rodnyi, P. A.; Wieczorek, H.; Ronda, C. R.

    2017-05-01

    The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80-550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.

  7. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  8. Performance and Comparison of Lithium-Ion Batteries Under Low-Earth-Orbit Mission Profiles

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Smart, Marshall C.; Bugga, Ratnakumar V.; Manzo, Michelle A.; Miller, Thomas B.; Gitzendanner, Rob

    2007-01-01

    The performance of two 28 V, 25 Ah lithium-ion batteries is being evaluated under low-Earth-orbit mission profiles for satellite and orbiter applications. The batteries are undergoing life testing and have achieved over 12,000 cycles to 40 percent depth-of-discharge.

  9. Toward lithium ion batteries with enhanced thermal conductivity.

    PubMed

    Koo, Bonil; Goli, Pradyumna; Sumant, Anirudha V; dos Santos Claro, Paula Cecilia; Rajh, Tijana; Johnson, Christopher S; Balandin, Alexander A; Shevchenko, Elena V

    2014-07-22

    As batteries become more powerful and utilized in diverse applications, thermal management becomes one of the central problems in their application. We report the results on thermal properties of a set of different Li-ion battery electrodes enhanced with multiwalled carbon nanotubes. Our measurements reveal that the highest in-plane and cross-plane thermal conductivities achieved in the carbon-nanotube-enhanced electrodes reached up to 141 and 3.6 W/mK, respectively. The values for in-plane thermal conductivity are up to 2 orders of magnitude higher than those for conventional electrodes based on carbon black. The electrodes were synthesized via an inexpensive scalable filtration method, and we demonstrate that our approach can be extended to commercial electrode-active materials. The best performing electrodes contained a layer of γ-Fe2O3 nanoparticles on carbon nanotubes sandwiched between two layers of carbon nanotubes and had in-plane and cross-plane thermal conductivities of ∼50 and 3 W/mK, respectively, at room temperature. The obtained results are important for thermal management in Li-ion and other high-power-density batteries.

  10. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1994-01-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  11. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.

    PubMed

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping

    2018-01-15

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  12. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    PubMed Central

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei

    2018-01-01

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research. PMID:29342950

  13. Venus, Earth, Mars: Comparative ion escape caused by the interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    Barabash, Stas

    For the solar system planets the non-thermal atmospheric escape exceeds by far the Jean escape for particles heavier than helium. In this talk we consider only ion escape and compare the total ion escape rates for Venus, Earth, and Mars caused by the interaction with the solar wind. We review the most recent data on the escape rates based on measurements from Mars Express, Venus Express, and Cluster. The comparison of the available numbers show that despite large differences in the atmospheric masses between these three planets (a factor of 100 -200), different types of the interactions with the solar wind (magnetized and non-magnetized obstacles), the escape rates for Mars, Venus, and the Earth are within the range 1024 - 1025 s-1 . Surprisingly, the expected shielding of the Earth atmosphere by the intrinsic magnetic field is not as efficient as one may think. The reason for this is the non-thermal escape caused by the solar wind interaction is a energy -limited process. Indeed, normalizing the escape rates to the planet-dependent escape energy and power available in the solar wind results in the normalized escape rates deferring only on a factor between three planets. The larger Earth's magnetosphere intercepts and tunnels down to the ionosphere more energy from the solar wind than more compact interaction regions of non-magnetized planets.

  14. Conductivity studies of Chitosan doped with different ammonium salts: Effect of ion size

    NASA Astrophysics Data System (ADS)

    Mohan, C. Raja; Senthilkumar, M.; Jayakumar, K.

    2015-06-01

    In the present investigation influence of ion size on the electrical properties of various ammonium salts of various concentrations doped with Chitosan liquid electrolyte has been studied. The attachment of ammonium salts with Chitosan has been confirmed through FTIR Spectrum. Polarizability is calculated from the refractive index data. Addition of ammonium salts increases the conductivity. It is also observed that increase in ion size, increases the ionic conductivity due to increase in amorphous nature of the material. Increase in concentration leads to increase in conductivity due to the presence of more number of free ions.

  15. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  16. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    EPA Science Inventory

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  17. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  18. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    PubMed Central

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2015-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency. PMID:26213457

  19. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    PubMed

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  20. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle: Reduced Conductivity of Fe-Bridgmanite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo

    Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermalmore » conductivity of Fe-bearing bridgmanite to 120 GPa using optical pump-probe spectroscopy. The conductivity of Fe-bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.« less

  1. Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated ETFE films

    NASA Astrophysics Data System (ADS)

    Kimura, Yosuke; Chen, Jinhua; Asano, Masaharu; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2007-10-01

    Poly(ethylene-co-tetrafluoroethylene) (ETFE) films were irradiated by swift heavy ion-beams of 129Xe 23+ with fluences of 0, 3 × 10 6, 3 × 10 7, 3 × 10 8 and 3 × 10 9 ions/cm 2, followed by γ-ray pre-irradiation for radiation grafting of styrene onto the ETFE films and sulfonation of the grafted ETFE films to prepare highly anisotropic proton-conducting membranes. The fluence of Xe ions and the addition of water in the grafting solvent were examined to determine their effect on the proton conductivity of the resultant membranes. It was found that the polymer electrolyte membrane prepared by grafting the styrene monomer in a mixture of 67% isopropanol and 33% water to the ETFE film with an ion-beam irradiation fluence of 3.0 × 10 6 ions/cm 2 was a highly anisotropic proton-conducting material, as the proton conductivity was three or more times higher in the thickness direction than in the surface direction of the membrane.

  2. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  3. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  4. Construction of nanostructures for selective lithium ion conduction using self-assembled molecular arrays in supramolecular solids

    NASA Astrophysics Data System (ADS)

    Moriya, Makoto

    2017-12-01

    In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.

  5. Lithium-ion conducting electrolyte salts for lithium batteries.

    PubMed

    Aravindan, Vanchiappan; Gnanaraj, Joe; Madhavi, Srinivasan; Liu, Hua-Kun

    2011-12-16

    This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multifunctional scanning ion conductance microscopy

    PubMed Central

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  7. Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.

    2015-06-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.

  8. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives.

    PubMed

    Zhang, Heng; Li, Chunmei; Piszcz, Michal; Coya, Estibaliz; Rojo, Teofilo; Rodriguez-Martinez, Lide M; Armand, Michel; Zhou, Zhibin

    2017-02-06

    Electrochemical energy storage is one of the main societal challenges to humankind in this century. The performances of classical Li-ion batteries (LIBs) with non-aqueous liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues, and the energy density of the state-of-the-art LIBs cannot satisfy the practical requirement. Therefore, rechargeable lithium metal batteries (LMBs) have been intensively investigated considering the high theoretical capacity of lithium metal and its low negative potential. However, the progress in the field of non-aqueous liquid electrolytes for LMBs has been sluggish, with several seemingly insurmountable barriers, including dendritic Li growth and rapid capacity fading. Solid polymer electrolytes (SPEs) offer a perfect solution to these safety concerns and to the enhancement of energy density. Traditional SPEs are dual-ion conductors, in which both cations and anions are mobile and will cause a concentration polarization thus leading to poor performances of both LIBs and LMBs. Single lithium-ion (Li-ion) conducting solid polymer electrolytes (SLIC-SPEs), which have anions covalently bonded to the polymer, inorganic backbone, or immobilized by anion acceptors, are generally accepted to have advantages over conventional dual-ion conducting SPEs for application in LMBs. A high Li-ion transference number (LTN), the absence of the detrimental effect of anion polarization, and the low rate of Li dendrite growth are examples of benefits of SLIC-SPEs. To date, many types of SLIC-SPEs have been reported, including those based on organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this review, a brief overview of synthetic strategies on how to realize SLIC-SPEs is given. The fundamental physical and electrochemical properties of SLIC-SPEs prepared by different methods are discussed in detail. In particular, special attention is paid

  9. Ionic conductivity and mixed-ion effect in mixed alkali metaphosphate glasses.

    PubMed

    Tsuchida, Jefferson Esquina; Ferri, Fabio Aparecido; Pizani, Paulo Sergio; Martins Rodrigues, Ana Candida; Kundu, Swarup; Schneider, José Fabián; Zanotto, Edgar Dutra

    2017-03-01

    In this work, mixed alkali metaphosphate glasses based on K-Na, Rb-Na, Rb-Li, Cs-Na and Cs-Li combinations were studied by differential scanning calorimetry (DSC), complex impedance spectroscopy, and Raman spectroscopy. DSC analyses show that both the glass transition (T g ) and melting temperatures (T m ) exhibit a clear mixed-ion effect. The ionic conductivity shows a strong mixed-ion effect and decreases by more than six orders of magnitude at room temperature for Rb-Na or Cs-Li alkali pairs. This study confirms that the mixed-ion effect may be explained as a natural consequence of random ion mixing because ion transport is favoured between well-matched energy sites and is impeded due to the structural mismatch between neighbouring sites for dissimilar ions.

  10. Nickel nanowires mesh fabricated by ion beam irradiation-induced nanoscale welding for transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Honey, S.; Ahmad, I.; Madhuku, M.; Naseem, S.; Maaza, M.; Kennedy, J. V.

    2017-07-01

    In this report, random nickel nanowires (Ni-NWs) meshes are fabricated by ions beam irradiation-induced nanoscale welding of NWs on intersecting positions. Ni-NWs are exposed to beam of 50 KeV Argon (Ar+) ions at various fluencies in the range ~1015 ions cm-2 to 1016 ions cm-2 at room temperature. Ni-NWs are welded due to accumulation of Ar+ ions beam irradiation-induced sputtered atoms on crossing positions. Ar+ ions irradiated Ni-NWs meshes are optically transparent and optical transparency is enhanced with increase in beam fluence of Ar+ ions. Ar+ ions beam irradiation-induced welded and optically transparent mesh is then exposed to 2.75 MeV hydrogen (H+) ions at fluencies 1  ×  1015 ions cm-2, 3  ×  1015 ions cm-2 and 1  ×  1016 ions cm-2 at room temperature. MeV H+ ions irradiation-induced local heat cause melting and fusion of NWs on intersecting points and eventually lead to reduce contact resistance between Ni-NWs. Electrical conductivity is enhanced with increase in beam fluence of H+ ions. These welded highly transparent and electrically conductive Ni-NWs meshes can be employed as transparent conducting electrodes in optoelectronic devices.

  11. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Borm, B.; Piriz, A. R.; Shutov, A.; Neumayer, P.; Bagnoud, V.; Piriz, S. A.

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  12. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in; Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{supmore » 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.« less

  13. Ion Thermal Conductivity and Ion Distribution Function in the Banana Regime

    DTIC Science & Technology

    1988-04-01

    approximate collision operator which is more general than the model operator derived by HIRSHMAN and SIGMAR is presented. By use of this collision...by HIRSHMAN and SIGMAR (1976). The finite aspect ratio correction is shown to increase the ion thermal conductivity by a factor of two in the...operator (12) is more general than that of Hirshman and Sigmar which can be derived by approximating Ct(1=0,1,2)in (12) by more simple forms. Let us

  14. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  15. Radiation from lightning return strokes over a finitely conducting earth

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Gesell, L.; Kao, Michael

    1986-01-01

    The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.

  16. Ion Composition and Energization in the Earth's Inner Magnetosphere and the Effects on Ring Current Buildup

    NASA Astrophysics Data System (ADS)

    Keika, K.; Kistler, L. M.; Brandt, P. C.

    2014-12-01

    In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.

  17. Upper mantle electrical conductivity for seven subcontinental regions of the Earth

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors

  18. Surface vertical magnetic field produced by a finite loop buried in an earth containing a thin conducting sheet

    NASA Astrophysics Data System (ADS)

    Durkin, John

    1997-01-01

    The effect of a thin conducting sheet located at the earth-to-air interface on the surface vertical magnetic field created by a buried finite loop was studied. Expected field values as a function of frequency are provided for variations in the sheet's conductivity-thickness product. Since the results would be most beneficial for purposes of through-the-earth communications, such as communicating with trapped miners following a mine emergency, field values were derived for a range of frequencies, mine depths, and earth conductivity values that would be typically found in such an application.

  19. Flexible probe for measuring local conductivity variations in Li-ion electrode films

    NASA Astrophysics Data System (ADS)

    Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian

    2018-04-01

    Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.

  20. Saturation of conductance in single ion channels: the blocking effect of the near reaction field.

    PubMed

    Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S

    2004-11-01

    The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance

  1. Ion Acceleration at Earth, Saturn and Jupiter and its Global Impact on Magnetospheric Structure

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2016-07-01

    The ion plasma pressures at Earth, Saturn and Jupiter are significant players in the electrodynamic force-balance that governs the structure and dynamics of these magnetospheres. There are many similarities between the physical mechanisms that are thought to heat the ion plasma to temperatures that even exceed those of the solar corona. In this presentation we compare the ion acceleration mechanisms at the three planetary magnetospheres and discuss their global impacts on magnetopsheric structure. At Earth, bursty-bulk flows, or "bubbles", have been shown to accelerate protons and O+ to high energies by the earthward moving magnetic dipolarization fronts. O+ ions display a more non-adiabatic energization in response to these fronts than protons do as they are energized and transported in to the ring-current region where they reach energies of several 100's keV. We present both in-situ measurements from the NASA Van Allen Probes Mission and global Energetic Neutral (ENA) images from the High-Energy Neutral Atom (HENA) Camera on board the IMAGE Mission, that illustrate these processes. The global impact on the magnetospheric structure is explored by comparing the empirical magnetic field model TS07d for given driving conditions with global plasma pressure distributions derived from the HENA images. At Saturn, quasi-periodic energization events, or large-scale injections, occur beyond about 9 RS around the post-midnight sector, clearly shown by the Ion and Neutral Atom Camera (INCA) on board the Cassini mission. In contrast to Earth, the corotational drift dominates even the energetic ion distributions. The large-scale injections display similar dipolarization front features can be found and there are indications that like at Earth the O+ responds more non-adiabatically than protons do. However, at Saturn there are also differences in that there appears to be energization events deep in the inner magnetosphere (6-9 RS) preferentially occurring in the pre

  2. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young

    2014-10-01

    Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.

  3. Accelerated ions and self-excited Alfvén waves at the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.

    2011-07-01

    The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.

  4. Polymerized Paired Ions as Polymeric Ionic Liquid-Proton Conductivity.

    PubMed

    Gu, Hong; Yan, Feng; Texter, John

    2016-07-01

    A new polymerized ionic liquid has been derived by photopolymerization of a stimuli-responsive ionic liquid surfactant, ILAMPS, which is composed of polymerizable, paired ions. The cation is 1-methyl-3-[11-(acryloyloxy)undecyl] imidazolium (IL), and the anion is 2-acrylamido-2-methyl-1-propanesulfonate (AMPS). This ion combination is a new ionic liquid. The resulting hygroscopic resins are highly polarizable, suitable for sensor design and for ultracapacitor fabrication and proton conducting. Interactions of imidazolium with anions provide basis for stimuli-responsiveness, and are used to promote proton transport. Doping with one equivalent of HPF6 at 0% relative humidity produces a 100-fold increase in proton conductivity at 100-125 °C and activation energies for proton transport lower than those of Nafion at water loadings less than 5 per sulfonate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In situ recording of particle network formation in liquids by ion conductivity measurements.

    PubMed

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  6. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  7. Dramatic pressure-sensitive ion conduction in conical nanopores.

    PubMed

    Jubin, Laetitia; Poggioli, Anthony; Siria, Alessandro; Bocquet, Lydéric

    2018-04-17

    Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson-Nernst-Planck-Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.

  8. The role of tortuosity on ion conduction in block copolymer electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Kambe, Yu; Arges, Christopher G.; Nealey, Paul F.

    This talk discusses the role of grain tortuosity on ion conductivity in block copolymer electrolyte (BCE) thin films. In particular, we studied lamellae forming BCEs with both domains oriented perpendicular to the substrate surface and connected directly from one electrode to another - i.e., tortuosity of one. The BCE is composed of ion-conducting, poly(2-vinyl n-methylpyridinium) blocks and non-ionic polystyrene blocks. Prior to creating the BCE, the pristine block copolymer, poly(styrene- b-2-vinyl pyridine), was directly self-assembled (DSA) on topographical or chemical patterns via graphoepitaxy and chemoepitaxy. A chemical vapor infiltration reaction modified the P2VP block into positively charged, fixed quaternary ammonium groups paired with mobile counteranions. The graphoepitaxy process utilized topographical interdigitated gold nanoelectrodes (100s of nanometers spacing between electrodes) created via e-beam lithography. Alternatively, chemical patterns had gold electrodes incorporated into them with 10s to 100s of microns spacing using conventional optical lithography. The interdigitated gold electrodes enabled in-plane ion conductivity measurements of the DSA BCEs to study the role of grain tortuosity on ion conductivity. U.S. Department of Energy Office of Science: Contract No. DE-AC02-06CH11357.

  9. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    NASA Astrophysics Data System (ADS)

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-01

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10-11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10-5 S/cm.

  10. Computational Studies of Thermodynamics and Kinetics of Metal Oxides in Li-Ion Batteries and Earth's Lower Mantle Materials

    NASA Astrophysics Data System (ADS)

    Xu, Shenzhen

    Metal oxide materials are ubiquitous in nature and in our daily lives. For example, the Earth's mantle layer that makes up about 80% of our Earth's volume is composed of metal oxide materials, the cathode materials in the lithium-ion batteries that provide power for most of our mobile electronic devices are composed of metal oxides, the chemical components of the passivation layers on many kinds of metal materials that protect the metal from further corrosion are metal oxides. This thesis is composed of two major topics about the metal oxide materials in nature. The first topic is about our computational study of the iron chemistry in the Earth's lower mantle metal oxide materials, i.e. the bridgmanite (Fe-bearing MgSiO3 where iron is the substitution impurity element) and the ferropericlase (Fe-bearing MgO where iron is the substitution impurity element). The second topic is about our multiscale modeling works for understanding the nanoscale kinetic and thermodynamic properties of the metal oxide cathode interfaces in Li-ion batteries, including the intrinsic cathode interfaces (intergrowth of multiple types of cathode materials, compositional gradient cathode materials, etc.), the cathode/coating interface systems and the cathode/electrolyte interface systems. This thesis uses models based on density functional theory quantum mechanical calculations to explore the underlying physics behind several types of metal oxide materials existing in the interior of the Earth or used in the applications of lithium-ion batteries. The exploration of this physics can help us better understand the geochemical and seismic properties of our Earth and inspire us to engineer the next generation of electrochemical technologies.

  11. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will becomemore » operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.« less

  12. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work

  13. Recent progress on exploring exceptionally high and anisotropic H+/OH– ion conduction in two-dimensional materials

    PubMed Central

    Sun, Pengzhan; Sasaki, Takayoshi

    2017-01-01

    Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H+/OH– ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H+/OH– conducting membranes. PMID:29629071

  14. Recent progress on exploring exceptionally high and anisotropic H+/OH- ion conduction in two-dimensional materials.

    PubMed

    Sun, Pengzhan; Ma, Renzhi; Sasaki, Takayoshi

    2018-01-07

    Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H + /OH - ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H + /OH - conducting membranes.

  15. Reduced Lattice Thermal Conductivity of Fe-bearing Bridgmanite in Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Hsieh, W. P.; Deschamps, F.; Okuchi, T.; Lin, J. F.

    2017-12-01

    Complex seismic and thermo-chemical features have been revealed in Earth's lowermost mantle. Particularly, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, which, in turn, may alter the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion in bridgmanite could affect its lattice thermal conductivity, but this effect remains largely unknown. Here we report our measurements of the lattice thermal conductivity of Fe-bearing and (Fe,Al)-bearing bridgmanites to 120 GPa using optical pump-probe spectroscopy. The thermal conductivity of Fe-bearing bridgmanite increases monotonically with pressure, but drops significantly around 45 GPa presumably due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000-km depth. Modeling of our results applied to the LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that, while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.

  16. Role of succinonitrile in improving ionic conductivity of sodium-ion conductive polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Mohapatra, Saumya R.

    2018-05-01

    Sodium ion conducting solid polymer electrolytes were prepared using poly (ethylene oxide) (PEO) as polymer matrix, sodium perchlorate (NaClO4) as salt and succinonitrile (SN) as a plasticizer by solution casting technique. By blending a plastic crystal such as succinonitrile (SN) with PEO-NaClO4 electrolyte system, we aimed at improving the ionic conductivity by weakening the ether oxygen-Na+ interactions. The XRD and FTIR studies revealed structural and micro-structural changes in the blended electrolytes which aids in improving ionic conductivity. Also, DSC measurements showed improved segmental motion in the blended polymer electrolytes due to plasticizing effect of SN. The maximum ionic conductivity observed at room temperature is 1.13×10-5 S cm-1 merely for 7 wt. % of SN, which is one order higher than pure polymer-salt complex. The thermo-gravimetric analysis (TGA) suggests that blending of SN with polymer electrolyte had no detrimental effect on its thermal stability.

  17. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  18. Evidence for solar wind origin of energetic heavy ions in the earth's radiation belt

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1978-01-01

    Analysis of data from our energetic ion composition experiment on ISEE-1 has revealed the presence of substantial fluxes of carbon, oxygen, and heavier ions above 400 keV/nucleon at L values between approximately 2.5 and 4 earth radii. The measured C/O ratio varies systematically from 1.3 at 450 keV/nucleon to 4.1 at 1.3 MeV/nucleon, and no iron is observed above 200 keV/nucleon. These results provide strong evidence for a solar wind origin for energetic ions in the outer radiation belt. The absence of iron and the increase of the carbon-to-oxygen ratio with energy suggest that the condition for the validity of the first adiabatic invariant may have a strong influence on the trapping of these particles.

  19. Kinetic theory for the ion humps at the foot of the Earth's bow shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovanovic, D.; Krasnoselskikh, V. V.

    2009-10-15

    The nonlinear kinetic theory is presented for the ion acoustic perturbations at the foot of the Earth's quasiperpendicular bow shock, that is characterized by weakly magnetized electrons and unmagnetized ions. The streaming ions, due to the reflection of the solar wind ions from the shock, provide the free energy source for the linear instability of the acoustic wave. In the fully nonlinear regime, a coherent localized solution is found in the form of a stationary ion hump, which is traveling with the velocity close to the phase velocity of the linear mode. The structure is supported by the nonlinearities comingmore » from the increased population of the resonant beam ions, trapped in the self-consistent potential. As their size in the direction perpendicular to the local magnetic field is somewhat smaller that the electron Larmor radius and much larger that the Debye length, their spatial properties are determined by the effects of the magnetic field on weakly magnetized electrons. These coherent structures provide a theoretical explanation for the bipolar electric pulses, observed upstream of the shock by Polar and Cluster satellite missions.« less

  20. Raman scattering of rare earth hexaborides

    NASA Astrophysics Data System (ADS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-06-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  1. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor

    PubMed Central

    Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.

    2006-01-01

    A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.

  2. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte.

    PubMed

    Arya, Anil; Sharma, A L

    2018-04-25

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO 8 -NaPF 6 +  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ([Formula: see text]) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ([Formula: see text]) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole-Cole plot ([Formula: see text]) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  3. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  4. Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

  5. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  6. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  7. GeS2–In2S3–CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence

    PubMed Central

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-01-01

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm3+, Er3+, and Dy3+) doped 65GeS2–25In2S3–10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm3+, Er3+, and Dy3+ ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions. PMID:27869231

  8. Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi

    2018-02-01

    Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.

  9. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom; Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E.

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.Themore » conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.« less

  10. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sharma, A. L.

    2018-04-01

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ({{τ }{{\\varepsilon \\prime}}}>~{{τ }tanδ }>{{τ }z}>{{τ }m} ) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ({{σ }\\prime\\prime}~versus~{{σ }\\prime} ) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole–Cole plot ({{\\varepsilon }\\prime\\prime}~versus~{{\\varepsilon }\\prime} ) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  11. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd 2Ti 2O 7

    DOE PAGES

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...

    2015-11-10

    In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd 2Ti 2O 7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region ismore » predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  12. Coordination chemistry of vitamin C. Part I. Interaction of L-ascorbic acid with alkaline earth metal ions in the crystalline solid and aqueous solution.

    PubMed

    Tajmir-Riahi, H A

    1990-10-01

    The interaction of L-ascorbic acid with alkaline earth metal ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type Mg(L-ascorbate)2.4H2O, Ca(L-ascorbate)2.2H2O, Sr(L-ascorbate)2.2H2O and Ba(L-ascorbate)2.2H2O were isolated and characterized by means of 13C NMR and FT-IR spectroscopy. Spectroscopic and other evidence suggested that in aqueous solution, the binding of the alkaline earth metal ions is through the O-3 atom of the ascorbate anion, while in the solid state the binding of the Mg(II) is different from those of the other alkaline earth metal ion salts. The Mg(II) ion binds to the O-3, O-1 atom of the two ascorbate anions and to two H2O molecules, while the eight-coordination around the Ca(II), Sr(II), and Ba(II) ions would be completed by the coordination of three acid anions, through O-5, O-6 of the first, O-3, O-5, O-6 of the second and O-1 of the third anion as well as to two H2O molecules. The structural properties of the alkaline earth metal-ascorbate salts are different in the solid and aqueous solution.

  13. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  14. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  15. Stochastic Growth of Ion Cyclotron And Mirror Waves In Earth's Magnetosheath

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Grubits, K. A.

    2001-01-01

    Electromagnetic ion cyclotron and mirror waves in Earth's magnetosheath are bursty, have widely variable fields, and are unexpectedly persistent, properties difficult to reconcile with uniform secular growth. Here it is shown for specific periods that stochastic growth theory (SGT) quantitatively accounts for the functional form of the wave statistics and qualitatively explains the wave properties. The wave statistics are inconsistent with uniform secular growth or self-organized criticality, but nonlinear processes sometimes play a role at high fields. The results show SGT's relevance near marginal stability and suggest that it is widely relevant to space and astrophysical plasmas.

  16. Novel polymeric LIT and divalent cation fast ion conducting materials

    NASA Astrophysics Data System (ADS)

    Angell, C. A.

    Solid state energy devices require a component which conducts electricity by ionic migration. The conductivity of this element of the system must be very high. Four types of materials show the promise to provide the necessary conductivity characteristics, while offering other desirable features such as the ability to distort in shape under mechanical stresses: (1) crystalline; (2) plastic crystal; (3) inorganic glassy; and (4) polymer salt solutions. This document reports on the following materials: lead halide-containing fast ion conducting glasses (LiF-PbF2-Al(PO3)3), mixed ionic electronic conduction (Na2O-V2O5-TeO2), alpha relaxation in ionic glasses, glass transition in P2O2, and conductivity transition between all-halide and all-oxide glasses.

  17. Electron and Ion Conductivity Calculations using the Model of Lee and More

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, John C.

    The following notes describe the ARES implementation of the inverse of the electron conduction coefficient, using the model of Lee and More, Physics of Fluids 27, page 1273, 1984. An addendum describing the modifications for analogous ion conduction coeffiecient appears at the bottom.

  18. Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.

    2013-12-01

    Thermoelectric properties of SrTiO3 ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO3 ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO3 ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr0.8La0.18Yb0.02TiO3 ceramics were prepared, whose ZT value at 1 023 K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr0.8La0.2TiO3 (ZT = 0.26).

  19. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    NASA Astrophysics Data System (ADS)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  20. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

    DOE PAGES

    Pulavarthy, Raghu; Wang, Baoming; Hattar, Khalid; ...

    2017-07-15

    Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr + beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 10 10 to 3.26 × 10 14 ions/cm 2, corresponding to displacement per atom (dpa) of 2.1 × 10 –4 to 2.28. Transmission electron microscopy showed significant grainmore » growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. As a result, up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 10 14 ions/cm 2).« less

  1. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulavarthy, Raghu; Wang, Baoming; Hattar, Khalid

    Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr + beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 10 10 to 3.26 × 10 14 ions/cm 2, corresponding to displacement per atom (dpa) of 2.1 × 10 –4 to 2.28. Transmission electron microscopy showed significant grainmore » growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. As a result, up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 10 14 ions/cm 2).« less

  2. Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals.

    PubMed

    Di Lieto, Alberto; Sottile, Alberto; Volpi, Azzurra; Zhang, Zhonghan; Seletskiy, Denis V; Tonelli, Mauro

    2014-11-17

    We investigated the effect of rare earth impurities on the cooling efficiency of Yb³⁺:LiYF₄ (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance.

  3. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment

    NASA Astrophysics Data System (ADS)

    Cerrato, Erik; Gionco, Chiara; Berruti, Ilaria; Sordello, Fabrizio; Calza, Paola; Paganini, Maria Cristina

    2018-08-01

    This work reports the effect of doping zinc oxide with lanthanide ions on structural, EPR and UV visible properties. Bare and doped samples were synthesized using the simple and green hydrothermal process. Different rare earth ions (RE = La, Ce, Pr, Er and Yb) with 1% molar ratio RE/Zn were used. The samples have been studied using X Ray Diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV visible diffuse reflectance spectroscopy. Finally, electron paramagnetic resonance (EPR) spectroscopy, was used to assess the materials photoactivity under UV irradiation, both in solid state, to see the charge carriers' generation and in solution, evaluating the OH• radical formation using the DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide) spin trapping technique. The results suggest that the synthesized materials could be interesting systems for the photocatalytic abatement of emerging organic persistent pollutants in wastewater treatment plants.

  4. Method for producing dense lithium lanthanum tantalate lithium-ion conducting ceramics

    DOEpatents

    Brown-Shaklee, Harlan James; Ihlefeld, Jon; Spoerke, Erik David; Blea-Kirby, Mia Angelica

    2018-05-08

    A method to produce high density, uniform lithium lanthanum tantalate lithium-ion conducting ceramics uses small particles that are sintered in a pressureless crucible that limits loss of Li2O.

  5. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  8. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  9. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  10. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2008-01-01

    Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825

  11. Decoupling of ion conductivity from segmental dynamics in oligomeric ethylene oxide functionalized oxanorbornene dicarboximide homopolymers

    DOE PAGES

    Adams, Marisa; Richmond, Victoria; Smith, Douglas; ...

    2017-03-24

    Here, in order to design more effective solid polymer electrolytes, it is important to decouple ion conductivityfrom polymer segmental motion. To that end, novel polymers based on oxanorbornene dicarboximidemonomers with varying lengths of oligomeric ethylene oxide side chains have been synthesized usingring opening metathesis polymerization. These unique polymers have a fairly rigid and bulky backboneand were used to investigate the decoupling of ion motion from polymer segmental dynamics. Ionconductivity was measured using broadband dielectric spectroscopy for varying levels of added lithiumsalt. The conductivity data demonstrate six to seven orders of separation in timescale of ion conductivityfrom polymer segmental motion formore » polymers with shorter ethylene oxide side chains. However,commensurate changes in the glass transition temperatures T g reduce the effect of decoupling in ionconductivity and lead to lower conductivity at ambient conditions. These results suggest that both anincrease in decoupling and a reduction in T g might be required to develop solid polymer electrolytes withhigh ion conductivity at room temperature.« less

  12. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with firstmore » principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.« less

  13. Unambiguously identifying spin states of transition-metal ions in the Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Hsu, H.

    2010-12-01

    The spin state of a transition-metal ion in crystalline solids, defined by the number of unpaired electrons in the ion’s incomplete 3d shell, may vary with many factors, such as temperature, pressure, strain, and the local atomic configuration, to name a few. Such a phenomenon, known as spin-state crossover, plays a crucial role in spintronic materials. Recently, the pressure-induced spin-state crossover in iron-bearing minerals has been recognized to affect the minerals’ structural and elastic properties. However, the detailed mechanism of such crossover in iron-bearing magnesium silicate perovskite, the most abundant mineral in the Earth, remains unclear. A significant part of this confusion arises from the difficulty in reliably extracting the spin state from experiments. For the same reason, the thermally-induced spin-state crossover in lanthanum cobaltite (LaCoO3) has been controversial for more than four decades. In this talk, I will discuss how first-principle calculations can help clarifying these long-standing controversies. In addition to the total energy, equation of state, and elastic properties of each spin state, first-principle calculations also predict the electric field gradient (EFG) at the nucleus of each transition-metal ion. Our calculations showed that the nuclear EFG, a quantity that can be measured via Mössbauer or nuclear magnetic resonance (NMR) spectroscopy, depends primarily on the spin state, irrespective of the concentration or configuration of transition-metal ions. Such robustness makes EFG a unique fingerprint to identify the spin state. The combination of first-principle calculations and Mössbauer/NMR spectroscopy can therefore be a reliable and efficient approach in tackling spin-state crossover problems in the Earth. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The

  14. Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber

    NASA Astrophysics Data System (ADS)

    Berrehail, Tahar; Zemmouri, Noureddine; Agoudjil, Boudjemaa

    2018-05-01

    Recently, some cheap materials are available and adaptable to climate seem to meet current requirements. This paper investigates the thermal and mechanical properties of cement stabilized earth bricks(CSEB) reinforced with date palm fibers (DPF). The main goal is to develop and expand the field of use of these materials in the construction sector, and investigate the possibility of new bio composite as renewable, insulating building material with low cost, made of earth and reinforced with palm wood waste. In this study, a particular interest is brought to the thermal and mechanical characteristics, which constitute a decisive character for the choice of a building material. A series of earthen samples stabilized at 5% and reinforced with DPF of various fiber weight fractions, (5%, 10%), were manufactured and compacted applying two levels compacting, (5MPa and 10MPa). Compressive strength and thermal conductivity were experimentally studied; heating capacity and diffusivity were indirectly calculated. It was found that the fibrous reinforcement proved thermal conductivity and compressive strength. it also enhanced thermal performances. Thus, the results found allow us to investigate hygrothermal behaviour and its impact on occupants comfort.

  15. Structure and size of ions electrochemically doped in conducting polymer

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito

    2018-05-01

    Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.

  16. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  17. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  18. Ions in Wine and Their Relation to Electrical Conductivity Under Ultrasound Irradiation.

    PubMed

    Yan, Yan-Ying; Zhang, Qing-An; Li, Er-Chun; Zhang, Ya-Feng

    2017-09-01

    Change in electrical conductivity is considered a potential indicator for the on-line monitoring of wine aging accelerated by ultrasound, as determined in our previous study; however, the exact mechanism of change is currently unclear. In this study, the ion content and the total ionic strength were analyzed by ion-exchange chromatography to investigate the change mechanism of the electrical conductivity of wine under ultrasound irradiation. The results indicate that the changes in wine electrical conductivity during ultrasound treatment correlate with the changes in the cations (Na+, K+, Ca2+, Mg2+, and NH4+) and in the anions from the organic acids (malic acid, citric acid, tartaric acid, oxalic acid, and formic acid) and inorganic acids (Cl-, SO42-, and PO43-), especially for the ionic strength of the wine. Overall, electrical conductivity may be used to reflect the chemical reactions related to wine aging to a certain extent because the reactions can be initiated by the conversion of cations and by the degradation or auxiliary function of organic acids.

  19. Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance

    NASA Astrophysics Data System (ADS)

    Wilson, Michael A.; Nguyen, Thuy Hien; Pohorille, Andrew

    2014-12-01

    Establishing the relation between the structures and functions of protein ion channels, which are protein assemblies that facilitate transmembrane ion transport through water-filled pores, is at the forefront of biological and medical sciences. A reliable way to determine whether our understanding of this relation is satisfactory is to reproduce the measured ionic conductance over a broad range of applied voltages. This can be done in molecular dynamics simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive we develop a markedly more efficient alternative in which molecular dynamics is combined with an electrodiffusion equation. This alternative approach applies if steady-state ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. The theory refers only to line densities of ions in the channel and, therefore, avoids ambiguities related to determining the surface area of the channel near its endpoints or other procedures connecting the line and bulk ion densities. We apply the theory to a simple, model system based on the trichotoxin channel. We test the assumptions of the electrodiffusion equation, and determine the precision and consistency of the calculated conductance. We demonstrate that it is possible to calculate current/voltage dependence and accurately reconstruct the underlying (equilibrium) free energy profile, all from molecular dynamics simulations at a single voltage. The approach developed here applies to other channels that satisfy the conditions of the electrodiffusion equation.

  20. Low-Power Ion Propulsion for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Oleson, Steven R.

    1997-01-01

    Analyses were conducted which indicate that sub kW-class ion thrusters may provide performance benefits for near-Earth space commercial and science missions. Small spacecraft applications with masses ranging from 50 to 500 kg and power levels less than 0.5 kW were considered. To demonstrate the efficacy of propulsion systems of this class, two potential missions were chosen as examples; a geosynchronous north-south station keeping application, and an Earth orbit magnetospheric mapping satellite constellation. Xenon ion propulsion system solutions using small thrusters were evaluated for these missions. A payload mass increase of more than 15% is provided by a 300-W ion system for the north-south station keeping mission. A launch vehicle reduction from four to one results from using the ion thruster for the magnetospheric mapping mission. Typical projected thruster performance over the input power envelope of 100-300 W range from approximately 40% to 54% efficiency and approximately 2000 to 3000 seconds specific impulse. Thruster technologies required to achieve the mission-required performance and lifetime are identified.

  1. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Hyangpyo; Park, Jaeheung; Lee, Jaejin

    2018-03-01

    Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites ( 10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a highend formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  2. Formation of the high-energy ion population in the earth's magnetotail: spacecraft observations and theoretical models

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Vasko, I. Y.; Lutsenko, V. N.; Petrukovich, A. A.

    2014-10-01

    We investigate the formation of the high-energy (E ∈ [20,600] keV) ion population in the earth's magnetotail. We collect statistics of 4 years of Interball / Tail observations (1995-1998) in the vicinity of the neutral plane in the magnetotail region (X <-17 RE, |Y| ≤ 20 RE in geocentric solar magnetospheric (GSM) system). We study the dependence of high-energy ion spectra on the thermal-plasma parameters (the temperature Ti and the amplitude of bulk velocity vi) and on the magnetic-field component Bz. The ion population in the energy range E ∈ [20,600] keV can be separated in the thermal core and the power-law tail with the slope (index) ~ -4.5. Fluxes of the high-energy ion population increase with the growth of Bz, vi and especially Ti, but spectrum index seems to be independent on these parameters. We have suggested that the high-energy ion population is generated by small scale transient processes, rather than by the global reconfiguration of the magnetotail. We have proposed the relatively simple and general model of ion acceleration by transient bursts of the electric field. This model describes the power-law energy spectra and predicts typical energies of accelerated ions.

  3. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  4. Measurement of interfacial thermal conductance in Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok; Nimmagadda, Amulya; Marconnet, Amy

    2017-03-01

    Increasing usage and recent accidents due to Lithium ion (Li-ion) batteries exploding or catching on fire has inspired research on the thermal management of these batteries. In cylindrical 18650 cells, heat generated during the charge/discharge cycle must dissipate to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work develops a technique to measure the thermal resistance across the case-separator interface, which ultimately limits heat transfer out of the jelly roll. Commercial 18650 batteries are discharged and opened using a battery disassembly tool, and the 25 μm thick separator and the 200 μm thick metallic case are harvested to make samples. A miniaturized version of the conventional reference bar method (ASTM astm:D5470)

  5. A Self-Binding, Melt-Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction.

    PubMed

    Chinnam, Parameswara Rao; Fall, Birane; Dikin, Dmitriy A; Jalil, AbdelAziz; Hamilton, Clifton R; Wunder, Stephanie L; Zdilla, Michael J

    2016-12-05

    The preparation and characterization of the cocrystalline solid-organic sodium ion electrolyte NaClO 4 (DMF) 3 (DMF=dimethylformamide) is described. The crystal structure of NaClO 4 (DMF) 3 reveals parallel channels of Na + and ClO 4 - ions. Pressed pellets of microcrystalline NaClO 4 (DMF) 3 exhibit a conductivity of 3×10 -4  S cm -1 at room temperature with a low activation barrier to conduction of 25 kJ mol -1 . SEM revealed thin liquid interfacial contacts between crystalline grains, which promote conductivity. The material melts gradually between 55-65 °C, but does not decompose, and upon cooling, it resolidifies as solid NaClO 4 (DMF) 3 , permitting melt casting of the electrolyte into thin films and the fabrication of cells in the liquid state and ensuring penetration of the electrolyte between the electrode active particles. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  8. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  9. Temperature profiles in the earth of importance to deep electrical conductivity models

    NASA Astrophysics Data System (ADS)

    Čermák, Vladimír; Laštovičková, Marcela

    1987-03-01

    Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.

  10. Theoretical Crystal-Field Calculations for Rare-Earth Ions in III-V semiconductor Compounds

    DTIC Science & Technology

    1991-10-01

    AD-A243 098 TIC HDL-TM-91-16 1 Ii! 1 I!EiIII ’ii F CT F October 1991 aC7 1991J Theoretical Crystal-Field Calculations for Rare-Earth Ions in III-V...0188). Washngton. DC 20503 1 . AGENCY USE ONLY (Leave bia*) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED October 1991 Summary, from Jan 91 toJul 91...Laboratories HDL-TM-9 1 -16 2800 Powder Mill Road Adelphi, MD 20783-1197 9. SPONSORNG#AONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING

  11. Discovery of ions with nuclear charge Z greater than or equal to 9 stability trapped in the earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-11-01

    Observations of MeV heavy ions obtained by Explorer 45 in an equatorial earth orbit during a 7 month period in 1972 are presented, including data from four major magnetic storms. The spacecraft contained a heavy ion detector telescope and heavy ion discriminator electronics. Heavy ions were distinguished from protons and electrons, and He ions and ions heavier than F were recorded on separate data channels. The L equals 2.25 to L equals 4 zones were probed, and it was found that the relative enhancement in heavy ion fluxes in the radiation belts over the prestorm ion flux intensities tends to increase with increasing ion mass and/or increasing ion energy in the MeV range. The radial profiles of ions with nucleon number greater than nine peak at L equals 2.9, and MeV ions in this class decay on time scales from 23 days at L equals 3.25 to 55 days at L equals 2.25. Indirect evidence indicated a solar source for the very heavy ions in the magnetosphere.

  12. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  13. Application of Laser Induced Breakdown Spectroscopy to Monitor Rare Earth Ions in Glass Matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Prakash; Carter, Michael; Kumar, Akshaya

    2013-05-01

    The Laser Induced breakdown spectroscopy (LIBS) is a real time online technique that can be used to monitor the concentration of rare earth ions in amorphous glass matrix. This study has significant application in the glass industry where the composition of the glass can be monitored in real time using LIBS technology for quality control. The Eu3 + ions doped silicate glasses were developed via sol gel method. The glasses of varying molar percentages of Eu3 + (0.02, 0.05 and 0.08 mole percent), were prepared to study the effect of variation in concentration of Eu3 + ions on the LIBS signal and to calculate its limit of detection (LOD). The spectral assignment of the observed LIBS spectrum has been made. In order to find the maximum signal to noise ratio, we also recorded the intensity of LIBS signal for various integration start delay (ISD) time at a constant power of (pulsed Nd: YAG) laser. The ocean optics LIBS 2500plus spectrometer along with a Q switched Nd:YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum.

  14. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  15. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    DTIC Science & Technology

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  16. Rare-Earth Ions in Niobium-Based Devices as a Quantum Memory: Magneto-Optical Effects on Room Temperature Electrical Transport

    DTIC Science & Technology

    2016-09-01

    rare-earth neodymium by ion implantation in thin films of niobium and niobium-based heterostructure devices. We model the ion implantation process...the films and devices so they can properly designed and optimized for utility as quantum memory. We find that the magnetic field has a strong effect...thin films of niobium. Simulations are made at low 1013 cm-2 and high 1014 cm-2 dose at 60 keV. At high dose, disorder induced is significantly

  17. Ion engine propelled Earth-Mars cycler with nuclear thermal propelled transfer vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Baker, Myles; Melko, Joseph

    1994-01-01

    The goal of this project was to perform a preliminary design of a long term, reusable transportation system between earth and Mars which would be capable of providing both artificial gravity and shelter from solar flare radiation. The heart of this system was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion system. Several Mars transportation system architectures and their associated space vehicles were designed.

  18. Thermally conductive lithium ion electrodes and batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, Elena; Sumant, Anirudha V.; Balandin, Alexander

    A thermally conductive electrochemical cell comprises a lithium ion-containing liquid electrolyte contacting a cathode and anode. The cathode and anode are in the form of electroactive sheets separated from each other by a membrane that is permeable to the electrolyte. One or more of the cathode and anode comprises two or more layers of carbon nanotubes, one of which layers includes electrochemically active nanoparticles and/or microparticles disposed therein or deposited on the nanotubes thereof. The majority of the carbon nanotubes in each of the layers are oriented generally parallel to the layers. Optionally, one or more of the layers includesmore » an additional carbon material such as graphene, nanoparticulate diamond, microparticulate diamond, and a combination thereof.« less

  19. Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2006-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

  20. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  1. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Gomès, Séverine; Isaiev, Mykola; Burbelo, Roman; Termentzidis, Konstantinos; Chantrenne, Patrice; Fréchette, Luc G.; Lysenko, Vladimir

    2013-07-01

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 °C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  2. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Pascal J.; Institut Interdisciplinaire d'Innovation Technologique; Canut, Bruno

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first timemore » such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.« less

  3. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  4. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  5. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    NASA Astrophysics Data System (ADS)

    Bannister, M. E.; Hijazi, H.; Meyer, H. M.; Cianciolo, V.; Meyer, F. W.

    2014-11-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R&D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 1016 cm-2, where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5-6.2 × 1016 cm-2. Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities.

  6. Scanning Ion Conductance Microscopy of Live Keratinocytes

    NASA Astrophysics Data System (ADS)

    Hegde, V.; Mason, A.; Saliev, T.; Smith, F. J. D.; McLean, W. H. I.; Campbell, P. A.

    2012-07-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (

  7. A hybrid scanning mode for fast scanning ion conductance microscopy (SICM) imaging

    PubMed Central

    Zhukov, Alex; Richards, Owen; Ostanin, Victor; Korchev, Yuri; Klenerman, David

    2012-01-01

    We have developed a new method of controlling the pipette for scanning ion conductance microscopy to obtain high-resolution images faster. The method keeps the pipette close to the surface during a single line scan but does not follow the exact surface topography, which is calculated by using the ion current. Using an FPGA platform we demonstrate this new method on model test samples and then on live cells. This method will be particularly useful to follow changes occurring on relatively flat regions of the cell surface at high spatial and temporal resolutions. PMID:22902298

  8. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-01

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.

  9. A Three-State Multi-Ion Kinetic Model for Conduction Properties of ClC-0 Chloride Channel

    PubMed Central

    Wang, Xiao-Qing; Yu, Tao; Sang, Jian-Ping; Zou, Xian-Wu; Chen, Tsung-Yu; Bolser, Diana; Zou, Xiaoqin

    2010-01-01

    Abstract A three-state, multiion kinetic model was proposed to enable the conduction properties of the mammalian channel ClC-0 to be well characterized. Using this rate-theory based model, the current-voltage and conductance-concentration relations were obtained. The five parameters needed were determined by fitting the data of conduction experiments of the wild-type ClC-0 and its K519C mutant. The model was then tested against available calculation and simulation data, and the energy differences between distinct chloride-occupancy states computed agreed with an independent calculation on the binding free energies solved by using the Poisson-Boltzmann equation. The average ion number of conduction and the ion passing duration calculated closely resembled the values obtained from Brownian dynamics simulations. According to the model, the decrease of conductance caused by mutating residue K519 to C519 can be attributed to the effect of K519C mutation on translocation rate constants. Our study sets up a theoretical model for ion permeation and conductance in ClC-0. It provides a starting point for experimentalists to test the three-state model, and would help in understanding the conduction mechanism of ClC-0. PMID:20643064

  10. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition

    NASA Astrophysics Data System (ADS)

    Kim, Gee Yeong; Senocrate, Alessandro; Yang, Tae-Youl; Gregori, Giuliano; Grätzel, Michael; Maier, Joachim

    2018-05-01

    In the same way as electron transport is crucial for information technology, ion transport is a key phenomenon in the context of energy research. To be able to tune ion conduction by light would open up opportunities for a wide realm of new applications, but it has been challenging to provide clear evidence for such an effect. Here we show through various techniques, such as transference-number measurements, permeation studies, stoichiometric variations, Hall effect experiments and the use of blocking electrodes, that light excitation enhances by several orders of magnitude the ionic conductivity of methylammonium lead iodide, the archetypal metal halide photovoltaic material. We provide a rationale for this unexpected phenomenon and show that it straightforwardly leads to a hitherto unconsidered photodecomposition path of the perovskite.

  11. Electrically conductive polyimide film containing gold (III) ions, composition, and process of making

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)

    1996-01-01

    An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.

  12. Origin, transport, and losses of energetic He(+) and He(2+) ions in the magnetosphere of the Earth - AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Kremser, G.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.; Ipavich, F. M.; Kistler, L. M.; Tanskanen, P.

    1993-01-01

    Data from the ion charge-energy-mass spectrometer CHEM flown on AMPTE/CCE spacecraft are used to investigate the origin, transport, and losses of energetic He(+) and He(2+) ions in the earth's magnetosphere. The L profiles of the average ion phase space density f were determined as a function of the magnetic momentum. It is shown that the L profiles have an inner part, where f increases with L for both He(+) adn He(2+) and where steady-state conditions are fulfilled. The outer boundary L(lim) of this region is located at a distance that depends on the ion species and the geomagnetic activity level. Steady-state conditions continue outside L(lim) for He(+) ions, while the He(2+) ion distribution outside L(lim) is strongly influenced by ion convection causing a lack of steady-state conditions. It is concluded that solar wind is the origin of the He(2+), while a mixed origin is suggested for the He(+) ions, in which the major contribution is from the solar wind via charge exchange production from the He(2+) ions.

  13. Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides

    PubMed Central

    Wang, Lili; Li, Bin; Zhao, Xiaohong; Chen, Chunxia; Cao, Jingjing

    2012-01-01

    Background The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. Methodology/Principal Findings The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. Conclusions/Significance S-Ni0.1MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni0.1MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites. PMID:22693627

  14. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2016-01-01

    release; distribution is unlimited. 1 1. Introduction Lithium (Li)- ion batteries are currently one of the leading energy storage device technologies...ARL-TR-7584 ● JAN 2016 US Army Research Laboratory Grain Boundary Engineering of Lithium - Ion - Conducting Lithium Lanthanum...Titanate for Lithium -Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public

  15. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    PubMed

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  16. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    EPA Science Inventory

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  17. Swift heavy ion irradiation reduces porous silicon thermal conductivity

    NASA Astrophysics Data System (ADS)

    Massoud, M.; Canut, B.; Newby, P.; Frechette, L.; Chapuis, P. O.; Bluet, J. M.

    2014-12-01

    While the electrical conductivity of semiconductors can be easily changed over order of magnitudes (8 in silicon) by playing on the doping, the thermal conductivity (TC) control is a challenging issue. Nevertheless, numerous applications require TC control in Si down to 1 W m-1 K-1. Among them, there are thermal insulation requirements in MEMS, thermal management issues in 3D packaging or TC reduction for thermoelectric applications. Towards this end, the formation of nanoporous Si by electrochemical anodisation is efficient. Nevertheless, in this case the material is too fragile for MEMS application or even to withstand CMOS technological processes. In this work, we show that ion irradiation in the electronic regime is efficient for reducing TC in meso-porous Si (PSi), which is more mechanically robust than the nanoporous PSi. We have studied three different mass to energy ratios (238U at 110 MeV and 130Xe at 91 MeV and 29 MeV) with fluences ranging from 1012 cm-2 to 7 × 1013 cm-2. The sample properties, after irradiation, have been measured by infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The TC has been measured using scanning thermal microscopy. Although, bulk Si is insensitive to ion interaction in the electronic regime, we have observed the amorphisation of the PSi resulting in a TC reduction even for the low dose and energy. For the highest irradiation dose a very important reduction factor of four was obtained.

  18. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle.

    PubMed

    Novella, Davide; Jacobsen, Benjamin; Weber, Peter K; Tyburczy, James A; Ryerson, Frederick J; Du Frane, Wyatt L

    2017-07-13

    Nominally anhydrous minerals formed deep in the mantle and transported to the Earth's surface contain tens to hundreds of ppm wt H 2 O, providing evidence for the presence of dissolved water in the Earth's interior. Even at these low concentrations, H 2 O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2 O in the Earth's upper mantle, but is not fully understood for olivine ((Mg, Fe) 2 SiO 4 ) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750-900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9 , 10 -12.8 and 10 -11.9 m 2 /s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σ H  = 10 2.12 S/m·C H2O ·exp -187kJ/mol/(RT) . Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2 O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2 -10 -1  S/m) observed in the asthenosphere.

  19. Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.

    2007-01-01

    Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.

  20. Absorption and emission spectra of Ga1.7Ge25As8.3S65 glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Lupan, E. V.; Iaseniuc, O. V.; Ciornea, V. I.; Iovu, M. S.

    2016-12-01

    Excellent optical properties of chalcogenide glasses make them interesting for optoelectronic devices in the visible (VIS) and, especially, in the near- and mid-infrared (NIR and MIR) spectral regions. The rare-earth (RE3+) doped Ga17Ge25As8.3S65 glasses were prepared in evacuated ( 10-5 Pa) silica-glass ampoules which were heated up to 1000 °C at 2-4°C min-1, and then the melt was quenched. The absorption and photoluminescence spectra in the visible and near IR regions for GA1.7Ge25As8.3S65 doped with rare-earth RE+) ions (Sm3+, Nd3+, Pr3+, Dy3+ and co-doped with Ho3++Dy3+) are investigated. The energy transfer of the absorbed light in the broad band Urbach region of the host glass to the RE3+ ions is suggested for increasing the emission efficiency. The investigated Ga17Ge25As8.3S65 glasses doped with RE3+ ions are promising materials for optical amplifiers operating at 1300 and 1500 nm telecommunication windows.

  1. Counter-ion Dependent, Longitudinal Unzipping of Multi-Walled Carbon Nanotubes to Highly Conductive and Transparent Graphene Nanoribbons

    PubMed Central

    Shinde, Dhanraj B.; Majumder, Mainak; Pillai, Vijayamohanan K.

    2014-01-01

    Here we report for the first time, a simple hydrothermal approach for the bulk production of highly conductive and transparent graphene nanoribbons (GNRs) using several counter ions from K2SO4, KNO3, KOH and H2SO4 in aqueous media, where, selective intercalation followed by exfoliation gives highly conducting GNRs with over 80% yield. In these experiments, sulfate and nitrate ions act as a co-intercalant along with potassium ions resulting into exfoliation of multi-walled carbon nanotubes (MWCNTs) in an effective manner. The striking similarity of experimental results in KOH and H2SO4 that demonstrates partially damaged MWCNTs, implies that no individual K+, SO42− ion plays a key role in unwrapping of MWCNTs, rather this process is largely effective in the presence of both cations and anions working in a cooperative manner. The GNRs can be used for preparing conductive 16 kΩsq−1, transparent (82%) and flexible thin films using low cost fabrication method. PMID:24621526

  2. Population gratings in saturable optical fibers with randomly oriented rare-earth ions

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.

    2015-07-01

    Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.

  3. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.

    PubMed

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-04-18

    Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.

  4. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates.

    PubMed

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    The local structure of apatite-type lanthanum silicates of general formula La 9.33+x (SiO 4 ) 6 O 2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO 4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  5. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

    PubMed Central

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    Abstract The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions. PMID:28970872

  6. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-12-01

    The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  7. Nanoscale live cell imaging using hopping probe ion conductance microscopy

    PubMed Central

    Novak, Pavel; Li, Chao; Shevchuk, Andrew I.; Stepanyan, Ruben; Caldwell, Matthew; Hughes, Simon; Smart, Trevor G.; Gorelik, Julia; Ostanin, Victor P.; Lab, Max J.; Moss, Guy W. J.; Frolenkov, Gregory I.; Klenerman, David; Korchev, Yuri E.

    2009-01-01

    We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions. PMID:19252505

  8. Understanding conductivity anomalies in Cu(I)-based delafossite transparent conducting oxides: Theoretical insights.

    PubMed

    Scanlon, David O; Godinho, Kate G; Morgan, Benjamin J; Watson, Graeme W

    2010-01-14

    The Cu(I)-based delafossite structure, Cu(I)M(III)O(2), can accommodate a wide range of rare earth and transition metal cations on the M(III) site. Substitutional doping of divalent ions for these trivalent metals is known to produce higher p-type conductivity than that occurring in the undoped materials. However, an explanation of the conductivity anomalies observed in these p-type materials, as the trivalent metal is varied, is still lacking. In this article, we examine the electronic structure of Cu(I)M(III)O(2) (M(III)=Al,Cr,Sc,Y) using density functional theory corrected for on-site Coulomb interactions in strongly correlated systems (GGA+U) and discuss the unusual experimental trends. The importance of covalent interactions between the M(III) cation and oxygen for improving conductivity in the delafossite structure is highlighted, with the covalency trends found to perfectly match the conductivity trends. We also show that calculating the natural band offsets and the effective masses of the valence band maxima is not an ideal method to classify the conduction properties of these ternary materials.

  9. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    NASA Astrophysics Data System (ADS)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  10. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  11. A DIM model for sodium cluster-ions interacting with a charged conducting sphere

    NASA Astrophysics Data System (ADS)

    Kuntz, P. J.

    A diatomics-in-molecules (DIM) model for the energy, shape and charge distribution of metal cluster ions in the presence of a charged insulated conducting sphere is presented. The electrostatic interaction between the sphere and the cluster-ion is introduced in a self-consistent manner which allows the sphere to be polarized by the ion and the ion by the sphere. This interaction appears in the diagonal elements of the model Hamiltonian matrix in such a way that the lowest eigenvalue includes the correct electrostatic energy for the charge distribution in the ground state. The model is applied to the calculation of fusion barriers for Na+2 and Na+3 ions. When both the charge distribution and the geometric configuration of the cluster-ion are allowed to relax freely, the energy as a function of distance from the sphere is nearly the same as that calculated from the electrostatic energy alone, which implies that details of the molecular structure of the cluster-ion can be neglected in calculating fusion barriers from charge polarization alone. That the fusion barriers lie sufficiently far away from the sphere so that the molecule does not dissociate under the influence of the Coulomb interaction confirms that it is meaningful to speak of two separate entities at the barrier position.

  12. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  13. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor

  14. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions.

    PubMed

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-15

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu 3+ ) ion. Upon addition of Eu 3+ ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Yb 3+ and Lu 3+ , into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu 3+ ions were investigated, including solution pH value, Eu 3+ ion concentration and interfering substances. The detection mechanism of Eu 3+ ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of Eu III -dtpa-bis(cytosine) at 375nm in the concentration range of 0.50×10 -5 mol∙L -1 -5.00×10 -5 mol∙L -1 of Eu 3+ ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65×10 -7 mol∙L -1 and the corresponding correlation coefficient (R 2 ) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu 3+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Correlation between cation conduction and ionic morphology in a PEO-based single ion conductor

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2011-03-01

    We use molecular dynamics simulation to study ion transport and backbone mobility of a PEO-based single ion conductor. Ion mobility depends on the chemical structure and the local environment of the ions, which consequently impact ionic conductivity. We characterize the aggregation state of the ions, and assess the role of ion complexes in ionomer dynamics. In addition to solvated cations and pairs, higher order ion clusters are found. Most of the ion clusters are in string-like structure and cross-link two or more different ionomer chains through ionic binding. Ionic crosslinks decrease mobility at the ionic co-monomer; hence the mobility of the adjacent PEO segment is influenced. Na ions show slow mobility when they are inside large clusters. The hopping timescale for Na varies from 20 ns to 200. A correlation is found between Na mobility and the number of hops from one coordination site to another. Besides ether oxygens, Na ions in the ionomer also use the anion and the edge of the cluster as hopping sites. The string-like structure of clusters provide less stable sites at the two ends thus ions are more mobile in those regions. We observed Grotthus like mechanism in our ionomer, in which the positive charge migrates within the string-like cluster without the cations actually moving.

  16. On fabrication procedures of Li-ion conducting garnets

    NASA Astrophysics Data System (ADS)

    Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina

    2017-04-01

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.

  17. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-01-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440

  18. Electrical conductivity of the Earth's mantle from the first Swarm magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, F.; Thébault, E.; Verhoeven, O.; Langlais, B.; Saturnino, D.

    2015-05-01

    We present a 1-D electrical conductivity profile of the Earth's mantle down to 2000 km derived from L1b Swarm satellite magnetic field measurements from November 2013 to September 2014. We first derive a model for the main magnetic field, correct the data for a lithospheric field model, and additionally select the data to reduce the contributions of the ionospheric field. We then model the primary and induced magnetospheric fields for periods between 2 and 256 days and perform a Bayesian inversion to obtain the probability density function for the electrical conductivity as function of depth. The conductivity increases by 3 orders of magnitude in the 400-900 km depth range. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations leading to a temperature gradient in the lower mantle that is close to adiabatic.

  19. Structural and Na-ion conduction characteristics of Na 3 PS x Se 4-x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4-x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4-x more » identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4-x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  20. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  1. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Poppe, Andrew R.; Fillingim, Matt O.; Kistler, Lynn M.; Mouikis, Christopher G.; Rème, Henri

    2017-04-01

    Heavy molecular ions escaping from a planetary atmosphere can contribute to the long-term evolution of its composition. The ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft has recently observed outflowing molecular ions at lunar distances in the terrestrial magnetotail (Poppe et al., 2016). Backward particle tracing indicated that these ions should originate from the terrestrial inner magnetosphere. Here we have examined Cluster data acquired by the CIS-CODIF (Cluster Ion Spectrometry-Composition Distribution Function) ion mass spectrometer, obtained in the terrestrial magnetosphere. An event was selected where the orbital conditions were favourable and the Cluster spacecraft were in the high-latitude inner magnetosphere a few hours before the ARTEMIS molecular ion detection. Analysis shows that the CIS-CODIF instrument detected a series of energetic ion species, including not only O+ but also a group of molecular ions around 30 amu. Given the 5-7 m/Δm mass resolution of the instrument, these could include N2+, NO+, or O2+. These ions were detected by Cluster about 14 hours before the ARTEMIS observation in the lunar environment, a time which is compatible with the transfer to lunar distances. The event was during an active period followed by a northward rotation of the IMF. Although energetic heavy molecular ions have been detected in the storm time magnetosphere in the past (e.g. Klecker et al., 1986; Christon et al., 1994), this event constitutes the first coordinated observation in the Earth's inner magnetosphere and at the Moon. Additional events of coordinated outflowing molecular ion observations are currently under analysis. Future missions, as the proposed ESCAPE mission, should investigate in detail the mechanisms of molecular ion acceleration and escape, their link to the solar and magnetospheric activity, and their role in the magnetospheric dynamics and in the long-term evolution

  2. Large-payload earth-orbit transportation with electric propulsion

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1976-01-01

    Economical unmanned earth orbit transportation for large payloads is evaluated. The high exhaust velocity achievable with electric propulsion is attractive because it minimizes the propellant that must be carried to low earth orbit. Propellant transport is a principal cost item. Electric propulsion subsystems utilizing advanced ion thrusters are compared to magnetoplasmadynamic (MPD) thrust subsystems. For very large payloads, a large lift vehicle is needed to low earth orbit, and argon propellant is required for electric propulsion. Under these circumstances, the MPD thruster is shown to be desirable over the ion thruster for earth orbit transportation.

  3. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGES

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; ...

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10 -4 S cm -1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to t Li+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting designmore » parameters for further development of this new class of solid electrolytes.« less

  4. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    NASA Astrophysics Data System (ADS)

    Alumbaugh, D. L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (less than 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  5. 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Reddy, M. Jaipal; Chu, Peter P.

    A composite of mesoporous silica (SBA-15) with a polyethylene oxide (PEO) polymer electrolyte is examined for use in various electrochemical devices. Incorporation of SBA-15 in a PEO:LiClO 4 polymer electrolyte facilitates salt dissociation, enhances ion conductivity, and improves miscibility between organic and inorganic moieties. Optimized conductivity is found at 10 wt.% SBA-15 composition, above this concentration the conductivity is reduced due to aggregation of a SBA-15:Li rich phase. Heating above melt temperature of PEO allows more of the polymer segments to interact with SBA-15. This results in a greater degree of disorder upon cooling, and the ion conductivity is enhanced. A 7Li MAS NMR study reveals three types of lithium-ion coordination. Two major types of conduction mechanism can be identified: one through conventional amorphous PEO; a second via hopping in a sequential manner by replacing the nearby vacancies ('holes') on the surface (both interior and exterior) of the SBA-15 channels.

  6. Ion Conduction in Perfectly Aligned Block Copolymer-Ionic Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Elabd, Yossef A.; Winey, Karen I.

    2011-03-01

    Our earlier work to correlate the transport measurements in diblock copolymer-ionic liquid mixtures was limited by our bulk samples that have only partial alignment. Here, thin films with perfect alignment of lamellar microdomains from mixtures of a poly(methyl methacrylate- b -styrene) diblock copolymer and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, have been studied. The morphologies will be characterized by cross-sectional transmission electron microscopy. Ion conduction will be presented within and through the thin film.

  7. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe

    2013-01-01

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less

  8. Stabilized finite element methods to simulate the conductances of ion channels

    NASA Astrophysics Data System (ADS)

    Tu, Bin; Xie, Yan; Zhang, Linbo; Lu, Benzhuo

    2015-03-01

    We have previously developed a finite element simulator, ichannel, to simulate ion transport through three-dimensional ion channel systems via solving the Poisson-Nernst-Planck equations (PNP) and Size-modified Poisson-Nernst-Planck equations (SMPNP), and succeeded in simulating some ion channel systems. However, the iterative solution between the coupled Poisson equation and the Nernst-Planck equations has difficulty converging for some large systems. One reason we found is that the NP equations are advection-dominated diffusion equations, which causes troubles in the usual FE solution. The stabilized schemes have been applied to compute fluids flow in various research fields. However, they have not been studied in the simulation of ion transport through three-dimensional models based on experimentally determined ion channel structures. In this paper, two stabilized techniques, the SUPG and the Pseudo Residual-Free Bubble function (PRFB) are introduced to enhance the numerical robustness and convergence performance of the finite element algorithm in ichannel. The conductances of the voltage dependent anion channel (VDAC) and the anthrax toxin protective antigen pore (PA) are simulated to validate the stabilization techniques. Those two stabilized schemes give reasonable results for the two proteins, with decent agreement with both experimental data and Brownian dynamics (BD) simulations. For a variety of numerical tests, it is found that the simulator effectively avoids previous numerical instability after introducing the stabilization methods. Comparison based on our test data set between the two stabilized schemes indicates both SUPG and PRFB have similar performance (the latter is slightly more accurate and stable), while SUPG is relatively more convenient to implement.

  9. Simplified power processing for ion-thruster subsystems

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.

    1983-01-01

    Compared to chemical propulsion, ion propulsion offers distinct payload-mass increases for many future low-thrust earth-orbital and deep-space missions. Despite this advantage, the high initial cost and complexity of ion-propulsion subsystems reduce their attractiveness for most present and near-term spacecraft missions. Investigations have, therefore, been conducted with the objective to attempt to simplify the power-processing unit (PPU), which is the single most complex and expensive component in the thruster subsystem. The present investigation is concerned with a program to simplify the design of the PPU employed in a 8-cm mercury-ion-thruster subsystem. In this program a dramatic simplification in the design of the PPU could be achieved, while retaining essential thruster control and subsystem operational flexibility.

  10. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  11. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd 2Ti 2O 7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environmentmore » and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiO x polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd 2Ti 2O 7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less

  12. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    NASA Astrophysics Data System (ADS)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum

  13. Lithium/water battery with lithium ion conducting glass-ceramics electrolyte

    NASA Astrophysics Data System (ADS)

    Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru

    Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.

  14. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity

    NASA Astrophysics Data System (ADS)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl

    2017-11-01

    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  15. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li 3PS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3PS 4 and Li 10GeP 2S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice,more » maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3PS 4. In addition, for β-Li 3PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant

  16. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li 3PS 4

    DOE PAGES

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; ...

    2016-12-09

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3PS 4 and Li 10GeP 2S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice,more » maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3PS 4. In addition, for β-Li 3PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant

  17. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  18. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  19. Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte

    NASA Astrophysics Data System (ADS)

    Joge, Prajakta; Kanchan, D. K.; Sharma, Poonam; Jayswal, Manish; Avasthi, D. K.

    2014-07-01

    In the present work, effect of swift heavy O7+ ion of 80 MeV of different fluences, on conductivity of [PVA(47.5)-PEO(47.5)-LiCF3SO3(5)]-EC(8) polymeric films has been investigated using ac impedance spectroscopy. The power law exponent n, hopping frequency ωh and activation energies for conduction Eac and relaxation Ear, have been investigated for different fluences. The DSC measurements are carried out in order to investigate the variations in the degree of crystallinity and thermal parameters (Tm) of the blend specimen prior and after irradiation. The Fourier Transform Infrared (FT-IR) measurements are carried out in order to investigate the changes in the vibrational modes of molecules upon irradiation. The FT-IR measurements corroborate the formation of amorphous phase in the blend matrix after irradiation. The conductivity is found to be optimum at the fluence of 1×1012 ions/cm2. The enhancement and the improvement in the electrolytic properties of PVA-PEO blend upon O7+ ion irradiation have been observed.

  20. Tunable dielectric response and electronic conductivity of potassium-ion-doped tunnel-structured manganese oxides

    NASA Astrophysics Data System (ADS)

    He, Gaihua; Duan, Yuping; Song, Lulu; Zhang, Xuefeng

    2018-06-01

    Potassium-ion-doped MnO2 has been successfully synthesized using the hydrothermal method, and the influence of the doped potassium ions on the electrical conductivity and permittivity is studied. X-ray powder diffraction, scanning electron microscopy, electron-probe micro-analysis, and a vector network analyzer are used to perform characterization. The densities of states of doped and undoped MnO2 tunnel structures are also discussed based on first-principles calculations. Results show that the conductivity and dielectric resonance of MnO2 can be elevated by means of K+ doping. The conductivity of K+-doped MnO2 prepared at different reaction times shows a decreasing trend and is generally 1 order of magnitude higher than that of pure MnO2. The electrical conductivity of K+-doped MnO2 (R3) shows the highest value of 3.33 × 10-2 S/cm at the reaction time of 24 h, while that of pure MnO2 is 8.50 × 10-4 S/cm. When treated with acid, the conductivity of samples remains basically stable along with the increase of treatment time. In addition, acid treatment plays a very significant role in controlling the amount of K+ ions in crystals. The K+ contents of acid-treated samples are 5 times lower than that of the untreated R1. The dielectric losses of the samples with different reaction times are enhanced markedly with frequency increment. The complex permittivity of pure MnO2 only exhibits a resonance at ˜12 GHz, while K+-doped MnO2 exhibits another resonance behavior at ˜9 GHz. The capacity of the dielectric property in the net structure is enhanced by the interfacial polarization, dielectric relaxation, multiple internal reflections, and multiple scattering benefiting.

  1. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review).

    PubMed

    Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas

    2018-07-04

    Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.

  2. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  3. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  4. Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  5. Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    2016-05-19

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  6. Rare-Earth Ion-Host Lattice Interactions: 15. Analysis of the Spectra of Nd3+ in Gd3Sc2Ga3O12.

    DTIC Science & Technology

    1984-05-01

    Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet CT’stals, Soy. J. Quant. Electron. 12 (1982), 1124. 6M. Dutoit, J. C...Shcherbakov, Absolute Quantum Efficiency of the Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet Crystals, Soy. J...HDL Project: 324332 19. KEY WORDS (Continue on reverse side it necessary end Identify by block number) Rare earth Mixed garnet Spectra Laser Judd-Ofelt

  7. Effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 (R =rare -earth ion ) double perovskites

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Jian; Liu, Xiao Qiang; Chen, Xiang Ming; Bellaiche, L.

    2014-11-01

    The effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 double perovskites, with R being a rare-earth ion, have been systematically studied by using specific first-principles calculations. These latter reproduce well the correlation between several properties (e.g., lattice parameters, Ni-O-Mn bond angles, magnetic Curie temperature, and electronic band gap) and the rare-earth ionic radius (i.e., the chemical pressure). They also provide novel predictions awaiting experimental confirmation, such as (i) that many physical quantities respond in dramatically different manners to chemical versus hydrostatic pressure, unlike as commonly thought for perovskites containing rare-earth ions, and (ii) a dependence of antipolar displacements on chemical and hydrostatic pressures, which would further explain why the recently predicted electrical polarization of L a2NiMn O6/R2NiMn O6 superlattices [H. J. Zhao, W. Ren, Y. Yang, J. Íñiguez, X. M. Chen, and L. Bellaiche, Nat. Commun. 5, 4021 (2014), 10.1038/ncomms5021] can be created and controlled by playing with the rare-earth element.

  8. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    NASA Astrophysics Data System (ADS)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  9. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses A 2O–2MO–4SiO 2 with molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-05-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observedmore » that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.« less

  10. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    PubMed

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  11. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei

    2015-12-22

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Limore » +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.« less

  12. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    PubMed Central

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-01-01

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512

  13. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    PubMed Central

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-01-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m−1·K−1 with a bulk density of 453 kg·m−3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m−1·K−1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g−1 at a current density of 100 mA·g−1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes. PMID:27671848

  14. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.

    PubMed

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-27

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m -1 ·K -1 with a bulk density of 453 kg·m -3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m -1 ·K -1 ) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g -1 at a current density of 100 mA·g -1 , and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  15. Lunisolar Tides Influence on Electrical Conductivity of the Earth's Crust in the Territory of Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Korotkova, T. G.

    2018-05-01

    The results of studying the influence of lunisolar tides on the electrical conductivity of the Earth's crust in the territory of the Kola Peninsula are presented. Along with the results obtained by the authors, the data of other researchers are also considered. All the studies are based on the analysis of the field produced by the Zevs facility transmitting extremely low frequency (ELF) signals at 82-83 Hz. The measurements were carried out in different years at the Avva-Guba (1998), Lovozero (2009), and Imandra-Varzuga polygon (IVP) monitoring sites (2013) located 180, 90, and 160 km from the transmitter, respectively. The negative correlation between the tides and crustal electrical resistivity is revealed at all the points. This means that tidal rises of the Earth's surface are accompanied by a decrease in resistivity and vice versa. The overview shows that the higher the resistivity of separate Earth's crustal blocks the higher the relative amplitudes of the corresponding tidal responses that are observed.

  16. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    NASA Astrophysics Data System (ADS)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  17. Magnetic holes in the dipolarized magnetotail: ion and electron anisotropies

    NASA Astrophysics Data System (ADS)

    Shustov, P.; Artemyev, A.; Zhang, X. J.; Yushkov, E.; Petrukovich, A. A.

    2017-12-01

    We conduct statistics on magnetic holes observed by THEMIS spacecraft in the near-Earth magnetotail. Groups of holes are detected after dipolarizations in the quiet, equatorial plasma sheet. Magnetic holes are characterized by significant magnetic field depressions (up to 50%) and strong electron currents ( 10-50 nA/m2), with spatial scales much smaller than the ion gyroradius. These magnetic holes are populated by hot (>10 keV), transversely anisotropic electrons supporting the pressure balance. We present statistical properties of these sub-ion scale magnetic holes and discuss possible mechanisms on the hole formation.

  18. Ionic conductivity of binary fluorides of potassium and rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru

    2016-01-15

    The ionic conductivity s of KYF{sub 4} and K{sub 2}RF{sub 5} single crystals (R = Gd, Ho, Er) and KNdF{sub 4} and K{sub 2}RF{sub 5} ceramic samples (R = Dy, Er) has been studied in the temperature range of 340–500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100–150 MPa) in the R{sub 2}O{sub 3}–KF–H{sub 2}O systems. The σ values of tetraf luorides are 3 × 10{sup –5} S/cm (KYF{sub 4} single crystal) and 3 × 10{sup –6}more » S/cm (KNdF{sub 4} ceramics) at 435°C. A K{sub 2}ErF{sub 5} single crystal with σ = 1.2 × 10{sup –4} S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K{sub 2}HoF{sub 5} single crystals, σ{sub ∥c}/σ{sub ⊥c} = 2.5, where σ{sub ∥c} and σ{sub ⊥c} are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.« less

  19. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution.

    PubMed

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-19

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  20. Relaxation and transport properties of Li+ ion conducting biocompatible material for battery application

    NASA Astrophysics Data System (ADS)

    Hegde, Shreedatta; Ravindrachary, V.; Praveena, S. D.; Guruswamy, B.; Sagar, Rohan N.; Sanjeev, Ganesh

    2018-04-01

    Solid polymer electrolyte based on lithium chloride doped Poly (vinyl) alcohol composites are prepared by solution casting method. XRD results show that the crystallinity of the polymer interrupted upon LiCl doping and amorphous nature increases with dopant concentration. Impedance analysis revealed that conductivity of PVA increases with doping level and maximum ionic conductivity is observed to be 6.69 × 10-3 S/cm for 15 wt% LiCl doped PVA composite at 353K. Wagner's polarization technique has been followed to calculate ion transport number for high conducting electrolyte and transient study confirmed the presence of single charge species within the polymer electrolyte.

  1. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  2. Ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.

  3. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    PubMed

    Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  4. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  5. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  6. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  7. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    PubMed

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  8. A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction

    PubMed Central

    Kim, Young-Soo; Cho, Yoon-Gyo; Odkhuu, Dorj; Park, Noejung; Song, Hyun-Kon

    2013-01-01

    Electrolytes are characterized by their ionic conductivity (σi). It is desirable that overall σi results from the dominant contribution of the ions of interest (e.g. Li+ in lithium ion batteries or LIB). However, high values of cationic transference number (t+) achieved by solid or gel electrolytes have resulted in low σi leading to inferior cell performances. Here we present an organogel polymer electrolyte characterized by a high liquid-electrolyte-level σi (~101 mS cm−1) with high t+ of Li+ (>0.8) for LIB. A conventional liquid electrolyte in presence of a cyano resin was physically and irreversibly gelated at 60°C without any initiators and crosslinkers, showing the behavior of lower critical solution temperature. During gelation, σi of the electrolyte followed a typical Arrhenius-type temperature dependency, even if its viscosity increased dramatically with temperature. Based on the Li+-driven ion conduction, LIB using the organogel electrolyte delivered significantly enhanced cyclability and thermal stability. PMID:23715177

  9. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  10. A scenario for solar wind penetration of earth's magnetic tail based on ion composition data from the ISEE 1 spacecraft

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1992-01-01

    Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.

  11. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    NASA Astrophysics Data System (ADS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  12. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE PAGES

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; ...

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  13. Low Temperature Life-cycle Testing of a Lithium-ion Battery for Low-earth-orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2004-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned mission. This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.

  14. Understanding electrical conduction in lithium ion batteries through multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Pan, Jie

    Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design

  15. Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

    PubMed Central

    Chang, Hongjin; Xie, Juan; Zhao, Baozhou; Liu, Botong; Xu, Shuilin; Ren, Na; Xie, Xiaoji; Huang, Ling; Huang, Wei

    2014-01-01

    The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs), such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs. PMID:28346995

  16. Role of semiconductivity and ion transport in the electrical conduction of melanin

    PubMed Central

    Mostert, Albertus B.; Powell, Benjamin J.; Pratt, Francis L.; Hanson, Graeme R.; Sarna, Tadeusz; Gentle, Ian R.; Meredith, Paul

    2012-01-01

    Melanins are pigmentary macromolecules found throughout the biosphere that, in the 1970s, were discovered to conduct electricity and display bistable switching. Since then, it has been widely believed that melanins are naturally occurring amorphous organic semiconductors. Here, we report electrical conductivity, muon spin relaxation, and electron paramagnetic resonance measurements of melanin as the environmental humidity is varied. We show that hydration of melanin shifts the comproportionation equilibrium so as to dope electrons and protons into the system. This equilibrium defines the relative proportions of hydroxyquinone, semiquinone, and quinone species in the macromolecule. As such, the mechanism explains why melanin at neutral pH only conducts when “wet” and suggests that both carriers play a role in the conductivity. Understanding that melanin is an electronic-ionic hybrid conductor rather than an amorphous organic semiconductor opens exciting possibilities for bioelectronic applications such as ion-to-electron transduction given its biocompatibility. PMID:22615355

  17. On the influence of Aerosols in measurement of electric field from Earth surface using a Field-Mill

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Sundar De, Syam; Paul, Suman; Hazra, Pranab; Guha, Gautam

    2016-07-01

    Aerosol particles influence the electrical conductivity of air. The value is reduced through the removal of small ions responsible for the conductivity. The metropolitan city, Kolkata (latitude 22.56° N, longitude 88.5° E) is densely populated surrounded by various types of Industries. Air is highly invaded by pollutant particles here for which the city falls under small-scale fair-weather condition where electric field and air-earth current get perturbed by ionization and different aerosols produced locally. Fine particles having diameter < 0.1 μm (Aitken nuclei) are distributed in air which decreases the electrical conductivity and increases the columnar resistance. Aerosol particles steadily change the status at different times of the day through coagulation, sedimentation, charge-transfer initiated by precipitation. The diurnal variation of potential gradient is caused mainly due to urbanization, emission from industry and traffic. The rate of production of haze (atmospheric suspension) and their vertical transportation control the daily variation of atmospheric potential. The nuclei of pollutant particles combine with ions and decrease the concentration of small ions thereby reducing the conductivity. The pollutants, influenced by CO _{2} and other green house gas emission from fossil fuels are also responsible for the variation of electric field. Variation in consumption of Oil and Gasoline due to traffic in the city contributes a high Aitken count and there are changes in atmospheric dispersion following reduction of conductivity of the medium. Outcome of some important measurement of potential gradient and air-earth current will be presented. Different parameters like air-conductivity, relative abundance of smoke, visibility would offer new signatures of aerosol-influence on electric potential gradient. Some of those will be reported here.

  18. Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer

    NASA Astrophysics Data System (ADS)

    Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa

    Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.

  19. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less

  20. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  1. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy.

    PubMed

    Rettenwander, Daniel; Redhammer, Günther J; Guin, Marie; Benisek, Artur; Krüger, Hannes; Guillon, Olivier; Wilkening, Martin; Tietz, Frank; Fleig, Jürgen

    2018-03-13

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σ bulk of sub-mm-sized flux grown Na 3 Sc 2 (PO 4 ) 3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies E a . Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σ bulk turned out to be as high as 3 × 10 -4 S cm -1  at RT ( E a, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.

  2. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy

    PubMed Central

    2018-01-01

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals. PMID:29606799

  3. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.

    2018-06-01

    A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

  4. Ion transport and loss in the Earth's quiet ring current. 2: Diffusion and magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.

    1994-01-01

    We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.

  5. Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance

    PubMed Central

    Abdullayeva, Nazrin; Sankir, Mehmet

    2017-01-01

    By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future. PMID:28772946

  6. Swift heavy ion irradiation effects on structural, optical properties and ac conductivity of polypyrrole nanofibers

    NASA Astrophysics Data System (ADS)

    Hazarika, J.; Kumar, A.

    2016-12-01

    Polypyrrole (PPy) nanofibers have been synthesized by interfacial polymerization method and irradiated with 160 MeV Ni12+ ions under vacuum with fluences in the range of 1010-1012 ions/cm2. High-resolution transmission electron microscopy results show that upon swift heavy ion (SHI) irradiation the PPy nanofibers become denser. The crystallinity of PPy nanofibers increases upon SHI irradiation, while their d-spacing decreases. Upon SHI irradiation, the polaron absorption band gets red-shifted indicating reduction in the optical band gap energy of the irradiated PPy nanofibers. The indirect optical band gap energy is decreased as compared to corresponding direct optical band gap energy. The number of carbon atoms per conjugation length (N) and carbon atoms per cluster (M) of the SHI-irradiated PPy nanofibers increase with increasing the irradiation fluence. Fourier transform infrared spectra reveal the enhancement in intensity of some characteristic vibration bands upon SHI irradiation. The thermal stability of the PPy nanofibers is enhanced on SHI irradiation. The charge carriers in both pristine and irradiated PPy nanofibers follow the correlated barrier hopping mechanism. Scaling of ac conductivity reveals that the conduction mechanism is independent of the SHI irradiation fluence.

  7. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Khasa, S.; Yadav, Arti; Dahiya, M. S.; Seema, Ashima, Agarwal, A.

    2015-06-01

    The DC conductivities of glasses having composition x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3 (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO.23 Li2O.20Bi2O3.50B2O3 and 7V2O5.23Li2O.20Bi2O3.50B2O3 (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott's small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  8. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  9. Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.

    2017-07-01

    Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2]  +  x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2  ×  10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2]  +  3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14  ×  10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C  +  I2  +  Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz

  10. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGES

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; ...

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn 2O 3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn 2O 3 andmore » BaSn 2O 3, which can be stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO 3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn 2O 3) to 3.15 (SrSn 2O 3) eV, and hole effective masses ranging from 0.87 (BaSn 2O 3) to above 6.0 (SrSn 2O 3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  11. A study of environmental effects caused by cesium from ion thrusters

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ATS-F satellite will carry two cesium ion thrusters. Cesium is a material that is not present in the upper atmosphere, and there is concern that the introduction of this material may result in some unexpected behavior. A study has been conducted to assess the magnitude of the effects that are to be expected. No observable effects were found as a result of the study. Consideration was given to the origin and destination of the material and the various reactions that could occur. The origin was considered to be anywhere in space from altitudes of about 100 km upward. The probable short term destination is in the form of cesium ions trapped in the earth's magnetic field or as ions and atoms in the heterosphere. The maximum possible number of cesium atoms in the field of view of an earth based observer is of the order of one million per square centimeter, far too few to be observable by visible, near-visible, or radio-frequency means. Further, no phenomena could be found that would result in the occurance of an observable event.

  12. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    NASA Astrophysics Data System (ADS)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  13. The manipulated left-handedness in a rare-earth-ion-doped optical fiber by the incoherent pumping field

    NASA Astrophysics Data System (ADS)

    Zhao, Shun-Cai; Guo, Hong-Wei; Wei, Xiao-Jing

    2017-10-01

    The left-handedness was demonstrated by the simulation with a three-level quantum system in an Er3+ -dopped ZrF4-BaF2-LaF3- AlF3-NaF (ZBLAFN) optical fiber. And the left-handedness can be regulated by the incoherent pumping field. Our scheme may provide a solid candidate other than the coherent atomic vapor for left-handedness, and may extend the application of the rare-earth-ion-doped optical fiber in metamaterials and of the incoherent pumping light field in quantum optics.

  14. Shaking stack model of ion conduction through the Ca(2+)-activated K+ channel.

    PubMed Central

    Schumaker, M F

    1992-01-01

    Motivated by the results of Neyton and Miller (1988. J. Gen. Physiol. 92:549-586), suggesting that the Ca(2+)-activated K+ channel has four high affinity ion binding sites, we propose a physically attractive variant of the single-vacancy conduction mechanism for this channel. Simple analytical expressions for conductance, current, flux ratio exponent, and reversal potential under bi-ionic conditions are found. A set of conductance data are analyzed to determine a realistic range of parameter values. Using these, we find qualitative agreement with a variety of experimental results previously reported in the literature. The exquisite selectivity of the Ca(2+)-activated K+ channel may be explained as a consequence of the concerted motion of the "stack" in the proposed mechanism. PMID:1420923

  15. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  16. Modeling the near-Earth interaction between ring current ions and exospheric neutrals: escape through energetic neutral atoms (ENAs)

    NASA Astrophysics Data System (ADS)

    LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2016-12-01

    The two major loss processes for ring current decay are precipitation and energetic neutral atoms (ENAs). Since the exospheric neutral density increases with decreasing altitudes, precipitating ring current ions (reaching down to 200 - 800 km in altitude) also produce low-altitude ENA signatures that can be stronger than the ring current emission at equatorial distances ( 2 - 9 Re). The higher density results in multiple collisions between the ring current ions and exospheric oxygen. The affect on hydrogen ions is the focus of this study. Since the H particle sustains energy loss ( 36 eV) at each neutralizing or re-ionizing interaction, the escaped ENAs do not directly reflect the ring current properties. We model the energy loss due to multiple charge exchange and electron stripping interactions of 1 - 100 keV precipitating ring current ions undergo before emerging as low-altitude ENAs. The H particle is either an ion or an ENA throughout the simulation. Their lifetime is analytically determined by the length of one mean free path. We track the ion state with Lorentz motion while the ENA travels ballistically across the geomagnetic field. Our simulations show the energy loss is greater than 20% for hydrogen ring current ions below 30 keV (60 keV for the simulations that wander equatorward). This is the first quantification of the energy loss associated with the creation of low-altitude ENAs. Our model (currently constrained in the meridional plane) has revealed characteristics on how precipitation is affected by the near-Earth neutral exosphere. This ion-neutral interaction removes particles from the loss cone but promotes loss through ENA generation. These findings should be implemented in models predicting the ring current decay and used as an analysis tool to reconstruct the ring current population from observed low-altitude ENAs.

  17. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  18. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    PubMed

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  19. Development of High Conductivity Lithium-Ion Electrolytes for Low Temperature Cell Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    1998-01-01

    NASA has continued interest in developing power sources which are capable of operating at low temperatures (-20 C and below) to enable future missions, such as the Mars Rover and Lander. Thus, under a program sponsored by the Mars Exploration Program, we have been involved in developing Li-ion batteries with improved low temperature performance. To accomplish this task, the focus of the research has been upon the development of advanced electrolyte systems with improved low temperature properties. This had led to the identification of a carbonate-based electrolyte, consisting of 1.0 M LiPF6 in EC + DEC + DMC (33:33:34), which has been shown to have excellent performance at -20 C in Li-ion AA-size prototype cells. Other groups are also actively engaged in developing electrolytes which can result in improved low temperature performance of Li-ion cells, including Polystor, Yardney, and Covalent. In addition to developing cells capable of operation at -20 C, there is continued interest in systems which can successfully operate at even lower temperatures (less than -30 C) and at high discharge rates (greater than C/2). Thus, we are currently focusing upon developing advanced electrolytes which are highly conductive at low temperatures and will result in cells capable of operation at -40 C. One approach to improve the low temperature conductivity of ethylene carbonate-based electrolytes involves adding co-solvents which will decrease the viscosity and extend the liquid range. Candidate solvent additives include formates, acetates, cyclic and aliphatic ethers, lactones, as well as other carbonates. Using this approach, we have prepared a number of electrolytes which contain methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), ethyl proprionate (EP), and 1,2-dimethoxyethane (DME), some of which have been characterized and reported. Other groups have also reported electrolytes based on mixtures of carbonates and acetates. In the present study, electrolytes which

  20. The Earth's Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  1. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid.

    PubMed

    Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S

    2009-04-23

    Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.

  2. Rare Earth Polyoxometalates.

    PubMed

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  3. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.

    PubMed

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo

    2004-04-07

    We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.

  4. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    ERIC Educational Resources Information Center

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  5. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  6. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  7. Simultaneous Interfacial Reactivity and Topography Mapping with Scanning Ion Conductance Microscopy.

    PubMed

    Momotenko, Dmitry; McKelvey, Kim; Kang, Minkyung; Meloni, Gabriel N; Unwin, Patrick R

    2016-03-01

    Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing.

  8. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  9. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  10. A divalent rare earth oxide semiconductor: Yttrium monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminaga, Kenichi; Sei, Ryosuke; Department of Chemistry, Tohoku University, Sendai 980-8578

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor.more » Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.« less

  11. Influence of rare earth ions on microstructural and optical properties of ZnO nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riyajuddin, Sk., E-mail: riyaj5303@gmail.com; Ahmad, Shabbir; Faizan, M.

    2016-05-23

    Pure and 3% rare earth ions (Nd{sup 3+} & Gd{sup 3+}) doped ZnO samples were synthesized by sol-gel method, followed by annealing at temperature 450°C for 2hr. The samples were characterized by XRD, FTIR and UV-visible spectroscopy. XRD result confirmed single phase nature of all samples with crystalline structure. The average crystallite size of the doped samples found to be decreases as caculated using Debye-Scherrer’s formula. FTIR spectra indicate absorption band centered at 464 cm{sup −1} which is attributed to Zn-O lattice vibration. It confirms the formaton of compounds. UV-visible spectroscopy was used to study the optical properties and band gapmore » of the synthesised materials using Tauc’s relation.« less

  12. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  13. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  14. A CMOS-Compatible, Low-Noise ISFET Based on High Efficiency Ion-Modulated Lateral-Bipolar Conduction

    PubMed Central

    Chang, Sheng-Ren; Chen, Hsin

    2009-01-01

    Ion-sensitive, field-effect transistors (ISFET) have been useful biosensors in many applications. However, the signal-to-noise ratio of the ISFET is limited by its intrinsic, low-frequency noise. This paper presents an ISFET capable of utilizing lateral-bipolar conduction to reduce low-frequency noise. With a particular layout design, the conduction efficiency is further enhanced. Moreover, the ISFET is compatible with the standard CMOS technology. All materials above the gate-oxide are removed by simple, die-level post-CMOS process, allowing ions to modulate the lateral-bipolar current directly. By varying the gate-to-bulk voltage, the operation mode of the ISFET is controlled effectively, so is the noise performance measured and compared. Finally, the biasing conditions preferable for different low-noise applications are identified. Under the identified biasing condition, the signal-to-noise ratio of the ISFET as a pH sensor is proved to be improved by more than five times. PMID:22408508

  15. Is There Segregation of Rare Earth Ions in Garnet Optical Ceramics?

    NASA Astrophysics Data System (ADS)

    Boulon, Georges; Epicier, T.; Zhao, W.; Guzik, M.; Pan, Y.; Jiang, B.

    Research on advanced optical materials for a large variety of applications is always increasing. As an example, we can note high progress in solid-state laser sources like laser-diode (LD) - pumped solid-state lasers (DPSSL) including developments of new materials and high-power laser diode led to high-power and tuneable solid-state lasers. A wide variety of materials has been studied to develop more efficient and high power microchip lasers [1]. In end-pumping schemes, in particular, materials with a short absorption length for the LD pump beam are strongly anticipated for highly efficient operations because of the excellent match between the mode and pump beam profiles. High Nd3+ concentrations were so considered such as NdP5O14, LiNdP4O12 (LNP), and NdAl3(BO3)O4. However, crystal growths of these compositions are not so easy. Cubic crystals are much more researched. When looking at the literature for actual applications, we see immediately the importance of cubic garnet crystals for which dodecahedral (Y3+), octahedral (Al3+) and tetrahedral (Al3+) sites are considered as a reservoir for many activators like: Ce3+, Nd3+, Er3+, Tm3+, Ho3+, Yb3+ rare earth ions in dodecahedral symmetry sites and transition metal ions like Cr3+ in the octahedral symmetry sites or Cr4+ in the tetrahedral symmetry sites. Among garnet crystals, Y3Al5O12 (YAG) host is the most used, commercially produced by the Czochralski method. However, in the case of the most used Nd3+: YAG laser crystal, the Nd3+ concentration that affects the performance in laser applications, is strongly limited to 0.2-1.4 Nd3+ at. % as a result of the segregation distribution coefficient [1].

  16. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  17. Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Wei, Yang; Wang, Cheng; ...

    2018-01-15

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  18. The European Alps as an interrupter of the Earth's conductivity structures

    NASA Astrophysics Data System (ADS)

    Al-Halbouni, D.

    2013-07-01

    Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10-105 s in the Western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western Alps. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European Alps and serves as a background for further upcoming studies.

  19. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  20. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  1. A novel method for structure-based prediction of ion channel conductance properties.

    PubMed Central

    Smart, O S; Breed, J; Smith, G R; Sansom, M S

    1997-01-01

    A rapid and easy-to-use method of predicting the conductance of an ion channel from its three-dimensional structure is presented. The method combines the pore dimensions of the channel as measured in the HOLE program with an Ohmic model of conductance. An empirically based correction factor is then applied. The method yielded good results for six experimental channel structures (none of which were included in the training set) with predictions accurate to within an average factor of 1.62 to the true values. The predictive r2 was equal to 0.90, which is indicative of a good predictive ability. The procedure is used to validate model structures of alamethicin and phospholamban. Two genuine predictions for the conductance of channels with known structure but without reported conductances are given. A modification of the procedure that calculates the expected results for the effect of the addition of nonelectrolyte polymers on conductance is set out. Results for a cholera toxin B-subunit crystal structure agree well with the measured values. The difficulty in interpreting such studies is discussed, with the conclusion that measurements on channels of known structure are required. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 10 PMID:9138559

  2. Probing Molecular Ions With Laser-Cooled Atomic Ions

    DTIC Science & Technology

    2017-10-11

    Sept. 23, 2015 Precision Chemical Dynamics and Quantum Control of Ultracold Molecular Ion Reactions , Cold Molecular Ions at the Quantum limit (COMIQ...ken.brown@chemistry.gatech.edu This work solved an old mystery about the lifetime of Ca+ due to reactions with background gases in laser-cooling experiments...Relative to other alkaline earths, Ca+ had a much slower reaction rate. We discovered the reason is that the Doppler cooling laser is near

  3. Novel online security system based on rare-earth-doped glass microbeads

    NASA Astrophysics Data System (ADS)

    Officer, Simon; Prabhu, G. R.; Pollard, Pat; Hunter, Catherine; Ross, Gary A.

    2004-06-01

    A novel fluorescent security label has been produced that could replace numerous conventional fluorescent dyes in document security. This label utilizes rare earth ions doped in a borosilicate glass matrix to produce sharp spectral fluorescence peaks with characteristic long lifetimes due to the rare earth ions. These are subsequently detected by an online detection system based on fluorescence and the long lifetimes to avoid any interference from other fluorophores present in the background. Security is further enhanced by the interaction of the rare earth ions with each other and the effect of the host on the emission spectra and therefore the number of permutations that could be produced. This creates a very secure label with various applications for the security market.

  4. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  5. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  6. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    DOE PAGES

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO 2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO 2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO 2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between thismore » electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li + diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li +.« less

  7. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  8. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  9. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  10. Increasing ion sorption and desorption rates of conductive electrodes

    DOEpatents

    DePaoli, David William; Kiggans, Jr., James O; Tsouris, Costas; Bourcier, William; Campbell, Robert; Mayes, Richard T

    2014-12-30

    An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.

  11. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation.

    PubMed

    Zhao, Yunshan; Liu, Dan; Chen, Jie; Zhu, Liyan; Belianinov, Alex; Ovchinnikova, Olga S; Unocic, Raymond R; Burch, Matthew J; Kim, Songkil; Hao, Hanfang; Pickard, Daniel S; Li, Baowen; Thong, John T L

    2017-06-27

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed.

  12. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

    PubMed Central

    Zhao, Yunshan; Liu, Dan; Chen, Jie; Zhu, Liyan; Belianinov, Alex; Ovchinnikova, Olga S.; Unocic, Raymond R.; Burch, Matthew J.; Kim, Songkil; Hao, Hanfang; Pickard, Daniel S.; Li, Baowen; Thong, John T. L.

    2017-01-01

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed. PMID:28653663

  13. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

    DOE PAGES

    Zhao, Yunshan; Liu, Dan; Chen, Jie; ...

    2017-06-27

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. Here, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism ismore » understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Finally, we observed threshold dose beyond a crystalline-amorphous transition.« less

  14. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yunshan; Liu, Dan; Chen, Jie

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. Here, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism ismore » understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Finally, we observed threshold dose beyond a crystalline-amorphous transition.« less

  15. Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.

    2014-12-01

    How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.

  16. Insulated Conducting Cantilevered Nanotips and Two-Chamber Recording System for High Resolution Ion Sensing AFM

    PubMed Central

    Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh

    2014-01-01

    Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394

  17. Conduction of thermal energy in the neighborhood of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hohlfeld, R. G.

    1976-01-01

    The Rankine-Hugoniot equations for MHD shocks are generalized by the addition of a term to the energy conservation equation representing a nonzero heat flow in the plasma in the neighborhood of the shock. This generalization is found to be compatible with the assumption of infinite electrical conductivity. The effects of plasma waves in this treatment are of the order of the reciprocal Alfvenic Mach number squared and hence are neglected. The effect of alpha particles in the solar wind is discussed. Seven crossings of the earth's bow shock by Explorer 35 in lunar orbit are analyzed. Sufficient data are available so that the determination of a dimensionless parameter, psi, characterizing the heat-flow difference across the bow shock is possible. The values of psi indicate energy-flux densities due to heat flow which are a nonnegligible fraction of the total energy flux. Two possible interpretations of psi are discussed.

  18. Synthesis, structural, optical and electrical properties of metal nanoparticle-rare earth ion dispersed in polymer film

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Singh, P.; Rai, S. B.

    2013-03-01

    Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV-Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15-30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz-1 MHz and in the temperature range 318-338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.

  19. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  20. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  1. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  2. [An investigation of ionizing radiation dose in a manufacturing enterprise of ion-absorbing type rare earth ore].

    PubMed

    Zhang, W F; Tang, S H; Tan, Q; Liu, Y M

    2016-08-20

    Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.

  3. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  4. Earth Science

    NASA Image and Video Library

    1991-01-01

    In July 1990, the Marshall Space Flight Center, in a joint project with the Department of Defense/Air Force Space Test Program, launched the Combined Release and Radiation Effects Satellite (CRRES) using an Atlas I launch vehicle. The mission was designed to study the effects of artificial ion clouds produced by chemical releases on the Earth's ionosphere and magnetosphere, and to monitor the effects of space radiation environment on sophisticated electronics.

  5. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  6. Short Wavelength Electrostatic Waves in the Earth’s Magnetosheath.

    DTIC Science & Technology

    1982-07-01

    to an antenna effect. Emissions likely to be ion-acoustic mode waves have been found up- stream of the bow shock ( foreshock ) in the solar wind...particles apparently reflected at the bow shock and associated with ion- acoustic mode waves in the Earth’s foreshock are also observed [Eastman et al...Res., 86, A 4493-4510, 1981. Eastman, T.E., 1.R. Anderson, L.A. Frank, and G.K. Parks, Upstream particles observed in the Earth’s foreshock region

  7. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    NASA Astrophysics Data System (ADS)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  8. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-01

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8–10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  9. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.

    PubMed

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-17

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  10. The adsorption kinetics of metal ions onto different microalgae and siliceous earth.

    PubMed

    Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C

    2001-03-01

    In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.

  11. Microsecond Simulations of DNA and Ion Transport in Nanopores with Novel Ion-Ion and Ion-Nucleotides Effective Potentials

    PubMed Central

    De Biase, Pablo M.; Markosyan, Suren; Noskov, Sergei

    2014-01-01

    We developed a novel scheme based on the Grand-Canonical Monte-Carlo/Brownian Dynamics (GCMC/BD) simulations and have extended it to studies of ion currents across three nanopores with the potential for ssDNA sequencing: solid-state nanopore Si3N4, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the Inverse Monte-Carlo protocol, which maps the relevant ion-nucleotide distribution functions from an all-atom MD simulations. Combined with the previously developed simulation platform for Brownian Dynamic (BD) simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations. PMID:24738152

  12. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR.

    PubMed

    Aihara, Yuichi; Sonai, Atsuo; Hattori, Mineyuki; Hayamizu, Kikuko

    2006-12-14

    To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.

  13. Enhanced pinning in mixed rare earth-123 films

    DOEpatents

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  14. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling

    NASA Astrophysics Data System (ADS)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.

    2018-04-01

    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  15. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  16. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  17. Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-12-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.

  18. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for themore » ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].« less

  19. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    DOEpatents

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  20. Novel, Solvent Free, Single Ion Conductive Polymer Electrolytes (Warsaw-2001)

    DTIC Science & Technology

    2004-10-18

    application in lithium and lithium - ion batteries , characterized by limited participation of anions in the transport of electrical charge. Studies...with studies on novel chemical energy conversion and storage devices mainly lithium or lithium ion batteries and fuel cells [1]. Our work within...this part of the project dealt with these novel ideas in the field of lithium or lithium - ion batteries based on polymeric solid electrolytes. The solid

  1. Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Xi, Guoxi; Zhao, Tingting; Wang, Lu; Dun, Changwei; Zhang, Ye

    2018-04-01

    Recovering spent Li-ion batteries is beneficial to the economy and environment. Therefore, this study synthesized nanoparticles of cobalt ferrite doped with different rare earth ions (Nd, Ce, and Pr) by a sol-gel auto-combustion method using spent Li-ion batteries. The effect of the different doping elements on grain sizes, structure, magnetic and magnetostrictive properties, and strain derivative were confirmed by X-ray diffraction, scanning election microscopy, vibrating sample magnetometer, and a magnetostrictive coefficient measuring system. Substitution of a small amount of Fe3+ with RE3+ in CoRExFe2-xO4 (x = 0.025, 0.05, and 0.1) had a large effect on magnetostrictive properties and strain derivative, which was improved compared with pure cobalt ferrite at low magnetic field. The maximum strain derivative (dλ/dH = -1.49 × 10-9 A-1 m at 18 kA m-1) was obtained for Nd, x = 0.05. Changes in the magnetostriction coefficients and strain derivatives were correlated with changes in cation distribution, microstructure, and magnetic anisotropy, which depended strongly on RE3+ substitution and distribution in the spinel structure.

  2. The influence of ion content on mobility and ion aggregation in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Caldwell, David; Maranas, Janna

    2013-03-01

    PEO-based ionomers reduce concentration polarization in solid polymer electrolytes by binding the anion to the polymer backbone. Ionomers have significant ion aggregation compared to PEO/salt systems, and the influence of these aggregates is unclear. When ion transport is coupled to the segmental dynamics of the polymer, aggregation will always reduce ion motion and conductivity. However, the conductivity of PEO ionomers is not sensitive to the degree of aggregation. We present results of molecular dynamics simulations where ion content is systematically varied. We consider the influence of ion content on ion aggregation, polymer mobility and cation motion.

  3. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  4. Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries.

    PubMed

    Li, Bao; Li, Yongjun; Dai, Dongmei; Chang, Kun; Tang, Hongwei; Chang, Zhaorong; Wang, Chunru; Yuan, Xiao-Zi; Wang, Haijiang

    2015-09-16

    Polyolefin membranes are widely used as separators in commercialized Li-ion batteries. They have less polarized surfaces compared with polarized molecules of electrolyte, leading to a poor wetting state for separators. Radiation pretreatments are often adopted to solve such a problem. Unfortunately, they can only activate several nanometers deep from the surface, which limits the performance improvement. Here we report a facile and scalable method to polarize polyolefin membranes via a chemical oxidation route. On the surfaces of pretreated membrane, layers of poly(ethylene oxide) and poly(acrylic acid) can easily be coated, thus resulting in a high Li-ion conductivity of the membrane. Assembled with this decorated separator in button cells, both high-voltage (Li1.2Mn0.54Co0.13Ni0.13O2) and moderate-voltage (LiFePO4) cathode materials show better electrochemical performances than those assembled with pristine polyolefin separators.

  5. Covalent Incorporation of Ionic Liquid into Ion-Conductive Networks via Thiol-Ene Photopolymerization.

    PubMed

    Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J

    2017-07-01

    Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural properties of buried conducting layers formed by very low energy ion implantation of gold into polymer

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-09-01

    We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter ˜2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.

  7. A statistical study of ion pitch-angle distributions

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Krimigis, S. M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt.

  8. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  9. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  10. The Role of Ionospheric Conductivity in the Response of the Magnetosphere and Ionosphere to Changes in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Wiltberger, M. J.; Richmond, A. D.; Ouellette, J.

    2014-12-01

    The strength and orientation of the Earth's magnetic field play an important role in the magnetosphere-ionosphere-thermosphere system. This is demonstrated in a set of idealized experiments with the Coupled Magnetosphere-Ionosphere-Thermosphere model using a dipolar magnetic field. A decrease of the dipole moment (M) causes an increase in ionospheric conductance. This increase in conductance results in enhanced field-aligned currents (FACs), which change the shape of the magnetosphere, and causes a deviation from theoretical scaling relations of the stand-off distance, the size of the polar cap, and the cross-polar cap potential with M. The orientation of the Earth's magnetic field determines how the angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis varies with season and universal time (UT). The angle μ can affect solar wind-magnetosphere-ionosphere coupling in two distinct ways: via variations in ionospheric conductivity over the polar caps or via a change in the coupling efficiency between the solar wind and magnetosphere as a result of changes in geometry. Simulations in which the ionospheric conductivity was either kept fixed or allowed to vary realistically demonstrated that variations in ionospheric conductance are responsible for ~10-30% of the variations in the cross-polar cap potential associated with variations in μ for southward interplanetary magnetic field (IMF). The remainder was mostly due to variations in the magnetic reconnection rate, which were associated with variations in the length of the section of the separator line along which relatively strong reconnection occurs.

  11. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  12. Non-resonant excitation of rare-earth ions via virtual Auger process

    NASA Astrophysics Data System (ADS)

    Yassievich, I. N.

    2011-05-01

    The luminescence of rare-earth ions (REI) is often intensified by defects associated with REIs or excitons bound to these defects. In this paper we show that the presence of such a state opens the possibility of non-resonance optical pumping via the process involving virtual Auger transition. It is the second order perturbation process when an electron arrives in an virtual intermediate state due to the optical transition (the first step) and the Auger transition is the second one. We have calculated the cross-section of such an excitation process when the optical transition is accompanied by creation of the exciton bound to the defect associated with REI and obtained a simple analytical expression for the cross-section. The excess energy of the excitation quanta is taken away by multiphonon emission. The electron-phonon interaction with local phonon vibrations of the bound exciton is assumed to determine the multiphonon process. It is shown that the probability of the process under study exceeds considerably the probability of direct optical 4f-4f absorption even in the case when the energy distance between the excitation quantum energy and the exciton energy is about 0.1 of the exciton energy. The excitation mechanism considered leads to the appearance of a broad unsymmetrical band in the excitation spectrum with the red side much wider and flatter than the blue one.

  13. Discrimination of ionic species from broad-beam ion sources

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.

    1993-01-01

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.

  14. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    DOE PAGES

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less

  15. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    PubMed

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  16. The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Okuda, Yoshiyuki; Ohta, Kenji; Yagi, Takashi; Sinmyo, Ryosuke; Wakamatsu, Tatsuya; Hirose, Kei; Ohishi, Yasuo

    2017-09-01

    Bridgmanite (Bdg), iron (Fe)- and aluminum (Al)-bearing magnesium silicate perovskite is the most abundant mineral in the Earth's lower mantle. Thus, its thermal conductivity governs the lower mantle thermal conductivity that critically controls the thermo-chemical evolution of both the core and the lower mantle. While there is extensive research for the lattice thermal conductivity of MgSiO3 Bdg, the effects of Fe and Al incorporation on its lattice thermal conduction are still controversial. Here we report the lattice thermal conductivity of Mg0.832Fe0.209Al0.060Si0.916O3 Bdg measured up to 142 GPa at 300 K using the pulsed light heating thermoreflectance technique in a diamond anvil cell. The results show that the lattice thermal conductivity of Bdg is 25.5 ± 2.2 W/m/K at 135 GPa and 300 K, which is 19% lower than that of Fe and Al-free Bdg at identical conditions. Considering the temperature effect on the lattice conductivity and the contribution of radiative thermal conductivity, the total thermal conductivity of Fe and Al-bearing Bdg does not change very much with temperature at 135 GPa, and could be higher than that of post-perovskite with identical chemical composition.

  17. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy

    PubMed Central

    Held, Kathryn D.; Blakely, Eleanor A.; Story, Michael D.; Lowenstein, Derek I.

    2016-01-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  18. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    PubMed

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  19. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  20. Electron-less negative ion extraction from ion-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-03-09

    This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids aremore » biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.« less

  1. Diketonylpyridinium Cations as a Support of New Ionic Liquid Crystals and Ion-Conductive Materials: Analysis of Counter-Ion Effects.

    PubMed

    Pastor, María Jesús; Cuerva, Cristián; Campo, José A; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes

    2016-05-12

    Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO R(n)pyH ]⁺ and BF₄ - , ReO₄ - , NO₃ - , CF₃SO₃ - , CuCl₄ 2- counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO R(12)pyH ][ReO₄] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl₄ 2- salts exhibit the best LC properties followed by the ReO₄ - ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO₄ - , and CuCl₄ 2- families, and for the solid phase in one of the non-mesomorphic Cl - salts. The highest ionic conductivity was found for the smectic mesophase of the ReO₄ - containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.

  2. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    NASA Technical Reports Server (NTRS)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  3. Scaling effects in sodium zirconium silicate phosphate (Na 1+ xZr 2Si xP 3- xO 12) ion-conducting thin films

    DOE PAGES

    Ihlefeld, Jon F.; Gurniak, Emily; Jones, Brad H.; ...

    2016-05-04

    Preparation of sodium zirconium silicate phosphate (NaSICon), Na 1+xZr 2Si xP 3–xO 12 (0.25 ≤ x ≤ 1.0), thin films has been investigated via a chemical solution approach on platinized silicon substrates. Increasing the silicon content resulted in a reduction in the crystallite size and a reduction in the measured ionic conductivity. Processing temperature was also found to affect microstructure and ionic conductivity with higher processing temperatures resulting in larger crystallite sizes and higher ionic conductivities. The highest room temperature sodium ion conductivity was measured for an x = 0.25 composition at 2.3 × 10 –5 S/cm. In conclusion, themore » decreasing ionic conductivity trends with increasing silicon content and decreasing processing temperature are consistent with grain boundary and defect scattering of conducting ions.« less

  4. Development of an SP simulation package for understanding fundamentals of self-potential responses at an earth dam

    NASA Astrophysics Data System (ADS)

    Kang, S.; Lim, S. K.; Oldenburg, D.

    2016-12-01

    Fluid flow in an underground porous medium pulls positive ions in the direction of flow and results in a streaming current. This movement of ions in the direction of flow creates a charge imbalance in the system which, in turn, causes conduction currents to flow in the opposite Although, the streaming current only flows in the saturated pores, the conduction currents will flow in the entire medium. The electrical potentials due to the fluid flow can be measured in the same manner as those in a direct current survey. This method is often called the self-potential (SP) method. A number of applications using the SP technique have been investigated including earthquake prediction, the vadose zone flow, locating sinkholes, mineral deposits and volcanic chambers. In this study, we particularly focus on the monitoring of seepage flow through earth dams. Earth dams are usually made of permeable materials and are designed to allow limited amounts of seepage flow from the reservoir. Due to seepage forces, the fine grains in the core can be washed out, and this internal erosion is one the most prevalent failure modes in earth dams. Therefore, identifying and monitoring the region of preferential seepage flow is a key for dam safety assessment. Usually, an earth dam is composed of fine-grained core and coarse-grained cover, which have different hydraulic conductivities. The distribution of hydraulic head, water saturation and fluid flow is found by solving hydrogeologic equations with applied boundary conditions. When a seepage path is induced due to internal erosion, the hydrological properties will be changed and this results in additional fluid flow. This is an additional source of SP signal. Understanding the impact of different sources of the SP signals is thus a crucial factor towards effective use of the SP technique for safety assessment at earth dams. Modelling SP signals requires two essential simulation capabilities: a) computing fluid flow in porous medium and b

  5. Building one-dimensional oxidenanostructure arrays on conductive metal substrates for lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized aluminamembrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  6. Resistivity and magnetoresistivity of amorphous rare-earth alloys

    NASA Astrophysics Data System (ADS)

    Borchi, E.; Poli, M.; De Gennaro, S.

    1982-05-01

    The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.

  7. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  8. Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites

    NASA Astrophysics Data System (ADS)

    Ušák, Elemír; Ušáková, Mariana; Dosoudil, Rastislav; Šoka, Martin; Dobročka, Edmund

    2018-04-01

    Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer composite material taking benefits from both components. The properties typical for polymers (elasticity, mouldability, etc.) are combined with good high-frequency magnetic parameters, thus allowing to utilize these materials, e.g., in high-frequency applications where especially flexibility of composite materials plays a key role. Small amounts of selected rare-earth (RE) ions, in particular Y3+, La3+, Eu3+ and Gd3+ have been embedded into the nickel-zinc ferrite that has been used as the magnetic filler in magnetic polymer composites with polyvinylchloride (PVC) acting as the polymeric matrix. The effect of various types of rare-earth ions on the structural as well as quasi-static and dynamic (electro)magnetic properties of the ferrite fillers as well as ferrite/PVC composites, in particular the frequency dispersion of the complex permeability, has been studied.

  9. The interplay of ion crosslinking, free ion content, and polymer mobility in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2010-03-01

    We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.

  10. Ion Conduction Path and Low-Temperature Form:. Argyrodite-Type Superionic Conductors

    NASA Astrophysics Data System (ADS)

    Onoda, M.; Wada, H.; Sato, A.; Ishii, M.

    2007-01-01

    The structures of the orthorhombic room-temperature phase of Cu8GeS6 (phase II) and the monoclinic low-temperature phase of Ag7TaS6 (phase II) have been successfully refined based on X-ray diffraction data from 12-fold twinned (Cu8GeS6 II) and 24-fold twinned (Ag7TaS6 II) crystals. Respectively among 6 major and 6 minor twin domains of Cu8GeS6 II, or among 12 major and 12 minor twin domains of Ag7TaS6 II, the argyrodite-type frameworks, GeS6 or TaS6, can be superposed to each other in principle, and only Cu-Cu or Ag-Ag network directions differ. At higher temperature, the crystals were considered to be 2-fold twinned crystals of superionic-conductor phase I with a space group F 43m. On cooling, each domain transforms into 6 domains of orthorhombic Cu8GeS6 II or 12 domains of monoclinic Ag7TaS6 II. Superposed projections along 6 directions of the structure of Cu8GeS6 II and along 12 directions of the structure of Ag7TaS6 II seem to show approximate expressions for Cu-ion and Ag-ion conduction paths in superionic-conductor phases, Cu8GeS6 I and Ag7TaS6I.

  11. Acceleration of Particles Near Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2012-12-01

    Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).

  12. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  13. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  14. Energization of Ions in near-Earth current sheet disruptions

    NASA Technical Reports Server (NTRS)

    Taktakishvili, A.; Lopez, R. E.; Goodrich, C. C.

    1995-01-01

    In this study we examine observations made by AMPTE/CCE of energetic ion bursts during seven substorm periods when the satellite was located near the neutral sheet, and CCE observed the disruption cross-tail current in situ. We compare ion observations to analytic calculations of particle acceleration. We find that the acceleration region size, which we assume to be essentially the current disruption region, to be on the order of 1 R(sub E). Events exhibiting weak acceleration had either relatively small acceleration regions (apparently associated with pseudobreakup activity on the ground) or relatively small changes in the local magnetic field (suggesting that the magnitude of the local current disruption region was limited). These results add additional support for the view that the particle bursts observed during turbulent current sheet disruptions are due to inductive acceleration of ions.

  15. Tunable transport property of oxygen ion in metal oxide thin film: Impact of electrolyte orientation on conductivity.

    PubMed

    Arunkumar, P; Ramaseshan, R; Dash, S; Babu, K Suresh

    2017-06-14

    Quest for efficient ion conducting electrolyte thin film operating at intermediate temperature (~600 °C) holds promise for the real-world utilization of solid oxide fuel cells. Here, we report the correlation between mixed as well as preferentially oriented samarium doped cerium oxide electrolyte films fabricated by varying the substrate temperatures (100, 300 and 500 °C) over anode/ quartz by electron beam physical vapor deposition. Pole figure analysis of films deposited at 300 °C demonstrated a preferential (111) orientation in out-off plane direction, while a mixed orientation was observed at 100 and 500 °C. As per extended structural zone model, the growth mechanism of film differs with surface mobility of adatom. Preferential orientation resulted in higher ionic conductivity than the films with mixed orientation, demonstrating the role of growth on electrochemical properties. The superior ionic conductivity upon preferential orientation arises from the effective reduction of anisotropic nature and grain boundary density in highly oriented thin films in out-of-plane direction, which facilitates the hopping of oxygen ion at a lower activation energy. This unique feature of growing an oriented electrolyte over the anode material opens a new approach to solving the grain boundary limitation and makes it as a promising solution for efficient power generation.

  16. Ion flow ripples in the Earth's plasma sheet

    NASA Astrophysics Data System (ADS)

    De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Norqvist, Patrik; Mann, Ingrid

    2016-04-01

    For a long time, magnetotail flows were considered rather smooth and laminar, and primarily dominated by a simple convection flow pattern. However, in the early 90's, high speed bursty bulk flows (BBFs) were discovered and found to commonly perturb the underlying convection flows. In addition, there are other disturbances complicating the magnetotail flow pattern. Instabilities such as the Kelvin-Helmholz instability and the kink instability can cause different types of magnetic field oscillations, such as field line resonances. It is expected that ions will follow these oscillations if the typical time and length scales are larger than the gyroperiod and gyroradius of the ions. Though low-velocity sloshing and ripple disturbances of the average magnetotail convection flows have been observed, their connection with magnetic field oscillations is not fully understood. Furthermore, when studying BFFs, these "Ion Flow Ripples" (IFRs) are often neglected, dismissed as noise or can even erroneously be identified as BBFs. It is therefore of utter importance to find out and understand the role of IFRs in magnetotail dynamics. In a statistical investigation, we use several years of Cluster plasma sheet data to study the low-speed flows in the magnetotail. We investigate different types of IFRs, study their occurrence, and discuss their possible causes.

  17. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  19. Ion-conducting membranes

    DOEpatents

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  20. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  1. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  2. The effects of saxitoxin and tetrodotoxin on nerve conduction in the presence of lithium ions and of magnesium ions

    PubMed Central

    Evans, M. H.

    1969-01-01

    1. It has been shown that nerve fibres from rat cauda equina will conduct action potentials after immersion in saline in which lithium chloride is substituted for sodium chloride. 2. Both saxitoxin and tetrodotoxin inhibit lithium-generated action potentials. The concentration of toxin needed to inhibit the lithium-generated action potentials is similar to that needed to inhibit sodium-generated action potentials. 3. If magnesium chloride is added to the saline to give a concentration of 10-15 mM there is usually a slight fall in amplitude of the compound action potential. Saxitoxin and tetrodotoxin now inhibit the action potential to a greater degree than in the absence of magnesium ions. PMID:5789802

  3. Diketonylpyridinium Cations as a Support of New Ionic Liquid Crystals and Ion-Conductive Materials: Analysis of Counter-Ion Effects

    PubMed Central

    Pastor, María Jesús; Cuerva, Cristián; Campo, José A.; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes

    2016-01-01

    Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOOR(n)pyH]+ and BF4−, ReO4−, NO3−, CF3SO3−, CuCl42− counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOOR(12)pyH][ReO4] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl42− salts exhibit the best LC properties followed by the ReO4− ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO4−, and CuCl42− families, and for the solid phase in one of the non-mesomorphic Cl− salts. The highest ionic conductivity was found for the smectic mesophase of the ReO4− containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure. PMID:28773485

  4. Pore size matters for potassium channel conductance

    PubMed Central

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  5. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam.

    PubMed

    Alaie, Seyedhamidreza; Goettler, Drew F; Jiang, Ying-Bing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, D H; Chaieb, S; Leseman, Zayd C

    2015-02-27

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m(-1) K(-1) versus 71.6 W m(-1) K(-1) at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  6. Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries.

    PubMed

    Ding, Yuan-Li; Wen, Yuren; Chen, Chia-Chin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-05-20

    Nanosheets of earth-abundant jarosite were fabricated via a facile template-engaged redox coprecipitation strategy at room temperature and employed as novel anode materials for lithium-ion batteries (LIBs) for the first time. These 2D materials exhibit high capacities, excellent rate capability, and prolonged cycling performance. As for KFe3(SO4)2(OH)6 jarosite nanosheets (KNSs), the reversible capacities of above 1300 mAh g(-1) at 100 mA g(-1) and 620 mAh g(-1) after 4000 cycles at a very high current density of 10 A g(-1) were achieved, respectively. Moreover, the resulting 2D nanomaterials retain good structural integrity upon cycling. These results reveal great potential of jarosite nanosheets as low-cost and high-performance anode materials for next-generation LIBs.

  7. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    PubMed

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  8. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  9. Amorphous Fast Ion Conducting Systems, Part 1. Structure and Properties of Mid and Far IR Transmitting Materials, Part 2

    DTIC Science & Technology

    1991-10-31

    Glasses with high conductivities can also be formed with the Lewis acids GeO 2 (11 ) and no doubt Bi 20 3, TeO2 , etc., but these have been less...P age 3 1. Mechanical Relaxation and Relation to Electrical Relaxation in Fast Ion-Conducting Glasses ...relaxation although considerable information was available for the classical alkali silicate and borate glasses . Our program was to utilize the rheovibron

  10. Formation of gyrotropic and non gyrotropic field-aligned beams in the Earth's quasi-perpendicular Ion Foreshock: Full-particle 2D simulation results

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2013-12-01

    The ion foreshock located upstream of the Earth's bow shock is populated with ions reflected back by the shock front with an high energy gain. In-situ spacecraft measurements have clearly established the existence of two distinct populations in the foreshock upstream of quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned (';FAB') ion beams characterized by a gyrotropic distribution, and (ii) gyro-phase bunched (';GPB') ions characterized by a NON gyrotropic distribution, which exhibits a non-vanishing perpendicular bulk velocity. The purpose of the present work is to identify the possible sources of the different backstreaming ions and is based on the use of 2D PIC simulations of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our analysis evidences that the two populations mentionned above may have different origins identified both in terms of interaction time and distance of penetration within the shock front. In particular, ours simulations evidence that "GPB" and ';FAB' populations are characterized by a short (Δinter= 1 to 2 tci) and much larger (Δinter= 1 to 10 tci) interaction time respectively, where τci is the ion upstream gyroperiod. In addition, a deeper statistical analysis of ion trajectories evidences that: (i) both populations can be discriminated in terms of injection angle into the shock front (i.e. defined between the local normal to the shock front and the gyration velocity vector at the time ions reach the front). Such a behavior explains how reflected ions can be splitted in the observed two populations "FAB" and "GPB". (ii) ion trajectories strongly differ between the "FAB" and "GPB" populations at the shock front. In particular, ';FAB' ions suffer multi-bounces whereas ';GPB '; ions make only one bounce. Such

  11. Characterisation of Cs ion implanted GaN by DLTS

    NASA Astrophysics Data System (ADS)

    Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.

    2018-04-01

    Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.

  12. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    DOE PAGES

    Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; ...

    2015-07-07

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ionmore » lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.« less

  13. Unique, Non-Earthlike, Meteoritic Ion Behavior in Upper Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Benna, M.; Plane, J. M. C.; Collinson, G. A.; Mahaffy, P. R.; Jakosky, B. M.

    2017-01-01

    Abstract Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earths sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars.

  14. Mixed ionic and electronic conducting membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Cui, Hengdong

    Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process

  15. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  16. Melting curve of compressed barium carbonate from in situ ionic conductivity measurements: Implications for the melting behavior of alkaline earth carbonates in Earth's deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Dong, J.; Li, J.; Zhu, F.; Li, Z.; Farawi, R.

    2017-12-01

    The whereabouts of subducted carbonates place a major constraint on the Earth's deep carbon cycle, but the fraction of carbon retained in the slab and transported into the deep mantle, compared to that released from the slab and recycled to the surface, is still under debate. Knowledge of the stability of carbonated mantle rocks is pivotal for assessing the ability of slabs to carry carbonates into the deep mantle. Determination and systematic comparison of the melting curves of alkali and alkaline earth carbonates at high pressure can help construct thermodynamic models to predict the melting behavior of complex carbonated mantle rocks. Among alkaline earth carbonates, the melting behavior of barium carbonate (BaCO3) has not been adequately understood. The reported melting point of BaCO3at 1 bar differ by nearly 800 °C and constraints on the melting curve of BaCO3 at high pressure are not available. In this study, the melting temperatures of BaCO3 were determined up to 11 GPa from in situ ionic conductivity measurements using the multi-anvil apparatus at the University of Michigan. The solid-liquid boundary at high pressure was detected on the basis of a steep rise in conductivity through the sample upon melting. The melting point of BaCO3 was found to drop from 1797 °C at 3.3 GPa to 1600 °C at 5.5 GPa and then rise with pressure to 2180 °C at 11 GPa. The observed melting depression point at 5.5 GPa corresponds to the phase transition of BaCO3 from the aragonite structure (Pmcn) to post-aragonite structure (Pmmn) at 6.3 GPa, 877 °C and 8.0 GPa, 727 °C, determined from synchrotron X-ray diffraction measurements using laser-heated DAC experiments at the Advanced Photon Source, Argonne National Laboratory. These results are also compared with ex situ falling marker experiments, and the three methods together place tight constraints on the melting curve of BaCO3 and elucidates the effect of structural phase transitions on its melting behavior.

  17. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  18. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  19. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  20. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  1. Understanding the Earth's Mantle Through Advanced Elasticity Measurements

    NASA Astrophysics Data System (ADS)

    Marquardt, Hauke; Schulze, Kirsten; Kurnosov, Alexander; Buchen, Johannes; Frost, Daniel; Boffa Ballaran, Tiziana; Marquardt, Katharina; Kawazoe, Takaaki

    2017-04-01

    Constraints on the inner structure, chemical and mineralogical composition as well as dynamics of Earth's mantle can be derived through comparison of laboratory elasticity data to seismological observables. A quantitative knowledge of the elastic properties of mantle minerals, and their variations with chemical composition, at pressure and temperature conditions of Earth's mantle is key to construct reliable synthetic mineral physics-based seismic velocity models to be compared to seismic observables. We will discuss results of single-crystal elasticity measurements on Earth mantle minerals that have been conducted using the combined Brillouin scattering and x-ray diffraction (XRD) system at BGI Bayreuth in combination with advanced sample preparation using the focused ion beam (FIB) technique [1] that allows for tailoring sizes and shapes of tiny single-crystals. In our experiments, multiple FIB-prepared single-crystals were loaded in a single sample chamber of a resistively-heated diamond-anvil cell (DAC). The possiblity to measure simultaneously acoustic wave velocities and density (unit-cell parameters) in the DAC in combination with the multi-sample approach facilitates direct quantification of the effects of chemical substitution on the elasticity and seismic wave velocities at non-ambient conditions. Our experimental approach eliminates uncertainties arising from the combination of data collected under (potentially) different conditions in several DAC runs, in different laboratories and/or from using different pressure-temperature sensors. We will present our recent experiments on the elasticity of single-crystal Fe-Al-bearing bridgmanite in the lower mantle and discuss implications for the composition and oxidation state of Earth's lower mantle. We will further discuss our laboratory data on the effects of 'water' and iron on the seismic wave velocities of ringwoodite in Earth's transition zone and outline implications for mapping 'water' in the transition

  2. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection.

    PubMed

    Cao, Lidong; Li, Xiuhuan; Fan, Li; Zheng, Li; Wu, Miaomiao; Zhang, Shanxue; Huang, Qiliang

    2017-02-22

    Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination of the average degrees of polymerization (DPs) and deacetylation (DD), as well as separation and analysis of the single COSs with different DPs. However, little is known about the concentrations of inorganic cations and anions in COSs. In the present study, an efficient and sensitive ion chromatography coupled with conductivity detection (IC-CD) for the determination of inorganic cations Na⁺, NH₄⁺, K⁺, Mg 2+ , Ca 2+ , and chloride, acetate and lactate anions was developed. Detection limits were 0.01-0.05 μM for cations and 0.5-0.6 μM for anions. The linear range was 0.001-0.8 mM. The optimized analysis was carried out on IonPac CS12A and IonPac AS12A analytical column for cations and anions, respectively, using isocratic elution with 20 mM methanesulfonic acid and 4 mM sodium hydroxide aqueous solution as the mobile phase at a 1.0 mL/min flow rate. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated IC-CD method was readily applied for the quantification of various cations and anions in commercial COS technical concentrate.

  3. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection

    PubMed Central

    Cao, Lidong; Li, Xiuhuan; Fan, Li; Zheng, Li; Wu, Miaomiao; Zhang, Shanxue; Huang, Qiliang

    2017-01-01

    Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination of the average degrees of polymerization (DPs) and deacetylation (DD), as well as separation and analysis of the single COSs with different DPs. However, little is known about the concentrations of inorganic cations and anions in COSs. In the present study, an efficient and sensitive ion chromatography coupled with conductivity detection (IC-CD) for the determination of inorganic cations Na+, NH4+, K+, Mg2+, Ca2+, and chloride, acetate and lactate anions was developed. Detection limits were 0.01–0.05 μM for cations and 0.5–0.6 μM for anions. The linear range was 0.001–0.8 mM. The optimized analysis was carried out on IonPac CS12A and IonPac AS12A analytical column for cations and anions, respectively, using isocratic elution with 20 mM methanesulfonic acid and 4 mM sodium hydroxide aqueous solution as the mobile phase at a 1.0 mL/min flow rate. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated IC-CD method was readily applied for the quantification of various cations and anions in commercial COS technical concentrate. PMID:28241416

  4. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  5. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    PubMed

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  7. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application

    DOE PAGES

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; ...

    2015-11-24

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87%more » when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. Finally, the combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.« less

  8. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  9. The Effect of Precipitating Electrons and Ions on Ionospheric Conductance and Inner Magnetospheric Electric Fields 142106

    NASA Astrophysics Data System (ADS)

    Chen, M.; Lemon, C.; Hecht, J. H.; Evans, J. S.; Boyd, A. J.

    2016-12-01

    We investigate how scattering of electrons by waves and of ions by field-line curvature in the inner magnetosphere affect precipitating energy flux distributions and how the precipitating particles modify the ionospheric conductivity and electric potentials during magnetic storms. We examine how particle precipitation in the evening sector affects the development of the Sub-Auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector as well as the electric field in the morning sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating particle distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are employed. Our description for the rate of ion scattering is more simplistic. We assume that the ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. We compare simulated trapped and precipitating electron/ion flux distributions with measurements from Van Allen Probes/MagEIS, POES and DMSP, respectively, to validate the particle loss models. DMSP observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons and ions on the SAPS and the inner magnetospheric electric field through the data-model comparisons.

  10. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  11. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application

    DOE PAGES

    Zhao, Hui; Du, Allen; Ling, Min; ...

    2016-05-10

    The state-of-the-art graphite anode containing a small portion of silicon represents a promising way of applying high-capacity alloy anode in the next generation high energy density lithium-ion batteries. The conductive polymeric binders developed for Si anodes proved to be an effective binder for this graphite/nanoSi composite electrode. Without any acetylene black conductive additives in the electrode, a high areal capacity of above 2.5 mAh/cm 2 is achieved during long-term cycling over 100 cycles. Finally, this conductive polymer-enabled graphite/nanoSi composite electrode exhibits high specific capacity and high 1 st cycle efficiency, which is a significant progress toward commercial application of Simore » anodes.« less

  12. Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass

    DOE PAGES

    Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; ...

    2014-11-14

    The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonicmore » ESM response are discussed.« less

  13. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  14. Ionic conductivity and dielectric relaxation in Y doped La2Mo2O9 oxide-ion conductors

    NASA Astrophysics Data System (ADS)

    Paul, T.; Ghosh, A.

    2014-10-01

    In this work, we have studied electrical conductivity and dielectric properties of polycrystalline La2-xYxMo2O9 (0.05 ≤ x ≤ 0.3) compounds in the temperature range from 358 K to 1088 K and the frequency range from 10 Hz to 3 GHz. The bulk and grain boundary contributions to the overall conductivity of these compounds show Arrhenius type behavior at low temperatures. The random free-energy barrier model has been used to analyze the frequency dependence of the conductivity. The charge carrier relaxation time and its activation energy have been determined from the analysis of the conductivity spectra using this model. The results obtained from the random free-energy barrier model satisfy Barton-Nakajima-Namikawa relation. The conduction mechanism has been also predicted using random free-energy barrier model and the scaling formalism. We have observed that the dielectric relaxation peaks arise from the diffusion of oxygen ions via vacancies.

  15. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    PubMed

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  16. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  17. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  18. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  19. Observations of nonadiabatic acceleration of ions in Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Kivelson, M. G.

    1994-01-01

    We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity

  20. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  1. Hybrid simulation techniques applied to the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Winske, D.; Leroy, M. M.

    1985-01-01

    The application of a hybrid simulation model, in which the ions are treated as discrete particles and the electrons as a massless charge-neutralizing fluid, to the study of the earth's bow shock is discussed. The essentials of the numerical methods are described in detail; movement of the ions, solution of the electromagnetic fields and electron fluid equations, and imposition of appropriate boundary and initial conditions. Examples of results of calculations for perpendicular shocks are presented which demonstrate the need for a kinetic treatment of the ions to reproduce the correct ion dynamics and the corresponding shock structure. Results for oblique shocks are also presented to show how the magnetic field and ion motion differ from the perpendicular case.

  2. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  3. Anhydrous state proton and lithium ion conducting solid polymer electrolytes based on sulfonated bisphenol-A-poly(arylene ethers)

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Soma

    significantly to the anhydrous state proton conductivity. Third, a new category of single lithium ion conducting SPEs was developed by crosslinking a polyether epoxy, poly(ethylene glycol)diglicidyl ether (PEGDGE) (lithium ion solvent), in sulfonated polysulfone (SPSU) matrix. The effects of degree of sulfonation and electrolyte composition on ionic conductivity, thermal, and tensile properties of SPEs were investigated. It was found that ion-dipole interactions between lithium sulfonate (SO3Li) and PEGDGE were responsible for the reduction in size of the dispersed epoxy phase and increased thermal stability. Lithium sulfonate promoted compatibilization and also caused improvement in elongation at break. A low molecular weight electrolyte salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was further dissolved in PEGDGE phase prior to its crosslinking in SPSU matrix, and the ionic conductivity and thermal properties were evaluated as a function of doping level. The ionic conductivity showed remarkable improvement compared to the undoped system.

  4. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  5. Conductive Polymer Binder-Enabled SiO–Sn xCo yC z Anode for High-Energy Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Fu, Yanbao; Ling, Min; ...

    2016-05-10

    In this paper, a SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm 2 is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. Finally, bymore » achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.« less

  6. MAGNETIC PROPERTIES OF RARE EARTH ALUMINUM COMPOUNDS WITH MgCu$sub 2$ STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, H.J.; Wernick, J.H.; Nesbitt, E.A.

    1962-03-01

    The magnetic moments of some RAl/sub 2/ (R = rare earth element) cubic Laves phase compounds were measured at temperatures from 1.4 to 300 deg K. The measurements indicate that the spin moments of the rare earth ions are coupled ferromagnetically. The Curie points of the RAl/sub 2/ compounds are found to be uniformly higher than the corresponding Laves compounds, ROs/sub 2/, Rlr/sub 2/ and RRu/sub 2/. Solid solutions of some of the compounds were also investigated. For example, in the Gd/sub x/Pr/sub (1-x)/Al/sub 2/ compounds, the magnetic moments of the Gd ions are antiparallel to those of the Prmore » ions because J is antiparallel to S in the ground state of the Pr ion. Compensation points were observed in this system. (auth)« less

  7. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  8. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    NASA Astrophysics Data System (ADS)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  9. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    PubMed

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Superposition-model analysis of rare-earth doped BaY2F8

    NASA Astrophysics Data System (ADS)

    Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R.

    The energy level schemes of four rare-earth dopants (Ce3+ , Nd3+ , Dy3+ , and Er3+) in BaY2 F-8 , as determined by optical absorption spectra, were fitted with a single-ion Hamiltonian and analysed within Newman's Superposition Model for the crystal field. A unified picture for the four dopants was obtained, by assuming a distortion of the F- ligand cage around the RE site; within the framework of the Superposition Model, this distortion is found to have a marked anisotropic behaviour for heavy rare earths, while it turns into an isotropic expansion of the nearest-neighbours polyhedron for light rare earths. It is also inferred that the substituting ion may occupy an off-center position with respect to the original Y3+ site in the crystal.

  11. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus; Zhang, Fen

    2016-06-28

    The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.

  12. Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.

    PubMed

    Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung

    2018-02-05

    Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm -2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Earth orbital assessment of solar electric and solar sail propulsion systems

    NASA Technical Reports Server (NTRS)

    Teeter, R. R.

    1977-01-01

    The earth orbital applications potential of Solar Electric (Ion Drive) and Solar Sail low-thrust propulsion systems are evaluated. Emphasis is placed on mission application in the 1980s. The two low-thrust systems are compared with each other and with two chemical propulsion Shuttle upper stages (the IUS and SSUS) expected to be available in the 1980s. The results indicate limited Earth orbital application potential for the low-thrust systems in the 1980s (primarily due to cost disadvantages). The longer term potential is viewed as more promising. Of the two systems, the Ion Drive exhibits better performance and appears to have better overall application potential.

  14. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  15. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines

    NASA Astrophysics Data System (ADS)

    Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.

    2018-04-01

    We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.

  16. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  17. Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene-b-ethylene oxide-b-styrene)-Based Ion Gel Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Sipei; Lee, Keun Hyung; Sun, Jingru

    2013-03-07

    The viscoelastic properties and ionic conductivity of ion gels based on the self-assembly of a poly(styrene-b-ethylene oxide-b-styrene) (SOS) triblock copolymer (M{sub n,S} = 3 kDa, M{sub n,O} = 35 kDa) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMI][TFSA]) were investigated over the composition range of 10-50 wt % SOS and the temperature range of 25-160 C. The poly(styrene) (PS) end-blocks associate into micelles, whereas the poly(ethylene oxide) (PEO) midblocks are well-solvated by this ionic liquid. The ion gel with 10 wt % SOS melts at 54 C, with the longest relaxation time exhibiting a similar temperature dependence to that of themore » viscosity of bulk PS. However, the actual values of the gel relaxation time are more than 4 orders of magnitude larger than the relaxation time of bulk PS. This is attributed to the thermodynamic penalty of pulling PS end-blocks through the PEO/[EMI][TFSA] matrix. Ion gels with 20-50 wt % SOS do not melt and show two plateaus in the storage modulus over the temperature and frequency ranges measured. The one at higher frequencies is that of an entangled network of PEO strands with PS cross-links; the modulus displays a quadratic dependence on polymer weight fraction and agrees with the prediction of linear viscoelastic theory assuming half of the PEO chains are elastically effective. The frequency that separates the two plateaus, {omega}{sub c}, reflects the time scale of PS end-block pull-out. The other plateau at lower frequencies is that of a congested micelle solution with PS cores and PEO coronas, which has a power law dependence on domain spacing similar to diblock melts. The ionic conductivity of the ion gels is compared to PEO homopolymer solutions at similar polymer concentrations; the conductivity is reduced by a factor of 2.1 or less, decreases with increasing PS volume fraction, and follows predictions based on a simple obstruction model. Our collective results allow the

  18. Thermophysical properties of liquid rare earth metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Patel, H. P.; Jani, A. R.

    2013-06-01

    The thermodynamical properties like long wavelength limit S(0), iso-thermal compressibility (χT), thermal expansion coefficient (αV), thermal pressure coefficient (γV), specific heat at constant volume (CV) and specific heat at constant pressure (CP) are calculated for liquid rare earth metals. Our newly constructed parameter free model potential is used to describe the electron ion interaction due to Sarkar et al (S) local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermophysical properties of liquid rare earth metals.

  19. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Earliest Ion Channels in Protocellular Membranes

    NASA Technical Reports Server (NTRS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This