Science.gov

Sample records for earth probe toms

  1. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)

  2. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Product User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, R.; Bhartia, P. K.; Krueger, A.; Herman, J.; Wellemeyer, C.; Seftor, C.; Jaross, G.; Torres, O.; Moy, L.; Labow, G.; Byerly, W.; Taylor, S.; Swissler, T.; Cebula, R.

    1998-01-01

    Two data products from the Earth Probe Total Ozone Mapping Spectrometer (EP/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The EP/ TOMS began taking measurements on July 15, 1996. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement are monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the first year of data. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. Level-3 files containing estimates of LTVB at the Earth surface and tropospheric aerosol information are also available, Detailed descriptions of both HDF data-files and the CD-ROM product are provided.

  3. Estimates of Spectral UV Irradiance from Earth Probe TOMS: Comparisons with Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Labow, G. J.; Herman, J. R.; Celarier, E.; Udelhofen, P.

    1998-01-01

    Estimates of the spectral UV flux incident on the Earth's surface are calculated based on total column ozone and cloud optical thickness determined from the Earth Probe Total Ozone Mapping Spectrometer (TOMS) satellite data. Spectral fluxes are calculated between 300 and 325 nanometers using a weighting function similar to the measured function of the Brewer Spectrophotometer. Comparisons of the TOMS-derived values with ground-based Brewer Spectrophotometer measurements at 3 locations from the Canadian Brewer network (Toronto, Saskatoon and Saturna Island) and 3 locations from the United States EPA network (Boston, Gaithersburg, and Boulder) show reasonably good agreement over a variety of clear and cloudy conditions. Some systematic differences are apparent, particularly when snow/ice is present and the TOMS instrument cannot distinguish between clouds and snow covered ground, thus leading to an underestimation of UV flux. The presence of absorbing aerosols near the ground or sub-pixel clouds can also lead to significant errors. There are also possible errors in the Brewer data due to radiometric calibration uncertainties and uncorrected cosine response.

  4. Ionizing radiation environment for the TOMS mission

    NASA Technical Reports Server (NTRS)

    Lauriente, M.; Maloy, J. O.; Vampola, A. L.

    1992-01-01

    The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.

  5. Small-Scale Tropopause Dynamics and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    2002-01-01

    This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.

  6. The Antarctic Ozone Hole: Initial Results from Aura / OMI Compared with TOMS

    NASA Technical Reports Server (NTRS)

    McPeters, R.; Bhartia, P. K.; Newman, P.

    2004-01-01

    A series of TOMS instruments (on November 7 , Meteor 3, and Earth Probe) has been monitoring the annual development of the Antarctic ozone hole since the 1980s. The ozone mapping instrument on Aura, OMI, is expected to take over this record of observation from the aging Earth Probe TOMS instrument. The area of the ozone hole can be taken as a sensitive indicator of the magnitude of ozone destruction each year. The timing of initial formation of the ozone hole and its duration are sensitive to the atmospheric dynamics of the southern polar regions. The entire TOMS data record (1978 - 2004) has recently been reprocessed with the new version 8 algorithm, which includes a revised calibration. The effect has been to slightly increase ozone hole area over earlier estimates, but only by 23%. OMI (ozone monitoring instrument) on Aura is a hyperspectral imaging instrument that operates in a pushbroom mode to measure solar backscattered radiation in the ultraviolet and visible. OMI has higher spatial resolution than TOMS - 14 x 24 km versus 38 km x 38 km from TOMS. OMI has now begin mapping total column ozone on a global basis in a measurement similar to TOMS. The ozone hole measurements for 2003 are compared with those from Earth Probe TOMS.

  7. A Comparison of TOMS Version 8 Total Column Ozone Data with Data from Groundstations

    NASA Technical Reports Server (NTRS)

    Labow, G. J.; McPeters, R. D.; Bhartia, P. K.

    2004-01-01

    The Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) data have been reprocessed with a new retrieval algorithm, (Version 8) and an updated calibration procedure. These data have been systematically compared to total ozone data from Brewer and Dobson spectrophotometers for 73 individual ground stations. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. Results show that the accuracy of the TOMS retrieval'is much improved when aerosols are present in the atmosphere, when snow/ice and sea glint are present, and when ozone in the northern hemisphere is extremely low. TOMS overpass data are derived from the single TOMS best match measurement, almost always located within one degree of the ground station and usually made within an hour of local noon. The version 8 Earth Probe TOMS ozone values have decreased by an average of about 1% due to a much better understanding of the calibration of the instrument. The remaining differences between TOMS and ground stations suggest that there are still small errors in the TOMS retrievals. But if TOMS is used as a transfer standard to compare ground stations, the large station-to-station differences suggest the possibility of significant instrument errors at some ground stations.

  8. Probing the Earth's Interior with SeismicTomography

    E-print Network

    52 Probing the Earth's Interior with SeismicTomography Andrew Curtis Schlumberger Cambridge propagate through the Earth's interior and either refract, diffract or re¯ect energy due to elastic®lled on the spatial distribution of the data. We show that these conditions can be used to design ideal seismological

  9. Deep drilling; Probing beneath the earth's surface

    SciTech Connect

    Rosen, J.250

    1991-06-01

    This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

  10. An earth-isolated optically coupled wideband high voltage probe powered by ambient light

    E-print Network

    Bellan, Paul M.

    An earth-isolated optically coupled wideband high voltage probe powered by ambient light Xiang Zhai) An earth-isolated optically coupled wideband high voltage probe powered by ambient light Xiang Zhaia online 9 October 2012) An earth-isolated optically-coupled wideband high voltage probe has been developed

  11. Earth-Based Observations of the Galileo Probe Entry Site

    PubMed

    Orton; Ortiz; Baines; Bjoraker; Carsenty; Colas; Dayal; Deming; Drossart; Frappa; Friedson; Goguen; Golisch; Griep; Hernandez; Hoffmann; Jennings; Kaminski; Kuhn; Laques; Limaye; Lin; Lecacheux; Martin; McCabe; Momary; Parker; Puetter; Ressler; Reyes; Sada; Spencer; Spitale; Stewart; Varsik; Warell; Wild; Yanamandra-Fisher; Fazio; Hora; Deutsch

    1996-05-10

    Earth-based observations of Jupiter indicate that the Galileo probe probably entered Jupiter's atmosphere just inside a region that has less cloud cover and drier conditions than more than 99 percent of the rest of the planet. The visual appearance of the clouds at the site was generally dark at longer wavelengths. The tropospheric and stratospheric temperature fields have a strong longitudinal wave structure that is expected to manifest itself in the vertical temperature profile. PMID:8662571

  12. Merged Long-Term Data Sets from TOMS and SBUV Total Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard; McPeters, Richard; Labow, Gordon J.; Hollandsworth, Stacey; Flynn, Larry; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total ozone has been measured by a series of nadir-viewing satellite instruments. These measurements begin with the Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter UltraViolet (SBUV) instruments on Nimbus 7, launched in late 1978. The measurements have continued with the Meteor 3 TOMS, Earth Probe TOMS, and NOAA 9,11,14 SBUV/2 instruments. The problem for producing a long-term data set is establishing the relative calibration of the various instruments to better than 1%. There was a nearly two year gap between the Meteor 3 TOMS and the Earth Probe TOMS. This gap is filled by the NOAA 9 and 11 SBUV/2 instruments, but they were in drifting orbits that result in effective gaps in the record when the equator crossing time occurs at large solar zenith angle. We have used recently re-derived calibrations of the SBUV instruments using the D-pair (306/313 nm wavelengths) data at the equator. These equatorial D-pair measurements should maintain the internal calibration of each instrument better than previous approaches. We then use the comparisons between instruments during their overlap periods to establish a consistent calibration over the entire data set. The resulting merged ozone data set is independent of the ground-based Dobson/Brewer network.

  13. Comparison of TOMS, SBW & SBUV/2 Version 8 Total Column Ozone Data with Data from Groundstations

    NASA Technical Reports Server (NTRS)

    Labow, G. J.; McPeters, R. D.; Bhartia, P. K.

    2004-01-01

    The Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) data as well as SBUV and SBUV/2 data have been reprocessed with a new retrieval algorithm (Version 8) and an updated calibration procedure. An overview will be presented systematically comparing ozone values to an ensemble of Brewer and Dobson spectrophotometers. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. Results show that the accuracy of the TOMS retrieval has been improved when aerosols are present in the atmosphere, when snow/ice and sea glint are present, and when ozone in the northern hemisphere is extremely low. TOMS overpass data are derived from the single TOMS best match measurement, almost always located within one degree of the ground station and usually made within an hour of local noon. The Version 8 Earth Probe TOMS ozone values have decreased by an average of about 1% due to a much better understanding of the calibration of the instrument. N-7 SBUV as well as the series of NOAA SBUV/2 column ozone values have also been processed with the Version 8 algorithm and have been compared to values from an ensemble of groundstations. Results show that the SBW column ozone values agree well with the groundstations and the datasets are useful for trend studies.

  14. TOMS Tropical Tropospheric Ozone Data Sets at the University of Maryland Website

    NASA Technical Reports Server (NTRS)

    Kochhar, A. K.; Thompson, A. M.; Hudson, R. D.; Frolov, A. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Since 1997, shortly after the launch of the Earth-Probe TOMS (Total Ozone Mapping Spectrometer) satellite instrument, we have been processing data in near-real time to post maps of tropical tropospheric ozone at a website: metosrv2.umd.edu/-tropo. Daily, 3-day and 9-day averages of tropical tropospheric ozone column depth (TTO) are viewable from 10N to 10S. Data can be downloaded (running 9-day means) from 20N-30S. Pollution events are trackable along with dynamically-induced variations in tropospheric ozone column. TOMS smoke aerosol (toms.gsfc.nasa.gov) can be used to interpret biomass burning ozone, as for example, during the extreme ozone and smoke pollution period during the ENSO-related fires of August November 1997. During that time plumes of ozone and smoke were frequently decoupled and ozone from Indonesian fires and from Africa merged in one large feature by late October 1997. In addition to the Earth-Probe TOMS record, data as half-month averages and as daily 9-day means from the Nimbus 7 TOMS instrument are at the metosrv2.umd.edu/-tropo website. A guide to the website and examples of ozone time-series and maps will be shown.

  15. Probing the Compositions of Two Habitable Zone Super-Earths

    NASA Astrophysics Data System (ADS)

    Benneke, Bjorn; Knutson, Heather; Crossfield, Ian; Deck, Katherine; Greene, Tom; Rogers, Leslie; Vanderburg, Andrew; Barman, Travis; Morley, Caroline; Lothringer, Josh; Werner, Michael; Beichman, Charles

    2015-10-01

    The recent discovery of two super-Earths orbiting in the habitable zones of nearby M stars have provided us with an unprecedented new opportunity to characterize the properties of small and potentially habitable planets outside of the solar system. Here, we propose to probe their atmospheric compositions, search for escaping hydrogen, and obtain the first bulk mass and densities estimate of a habitable zone super-Earth. The proposed observations will complement our approved HST WFC3 observations of K2-18b (15-orbits, GO13665, PI Benneke) as well as the approved HST STIS/MAMA observations of K2-18b by PI Ehrenreich. These observations will determine whether or not these two planets have primarily rocky or volatile-rich compositions, and in the volatile-rich case would enable the first studies of atmospheric chemistry in this regime. Mass loss also plays a critical role in the evolution of hydrogen-rich atmospheres on small planets, and our obsevations will provide the first constraints on the stability of these atmospheres.

  16. A Rare Earth-DOTA-Binding Antibody: Probe Properties and Binding Affinity across the Lanthanide Series

    E-print Network

    Fisher, Andrew J.

    1) binds transition metals and rare earths with extreme stability under physiological conditionsA Rare Earth-DOTA-Binding Antibody: Probe Properties and Binding Affinity across the Lanthanide affinity and exquisite specificity.1 An antibody that binds rare earth complexes selectively could be used

  17. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    PubMed

    Folkner; Preston; Border; Navarro; Wilson; Oestreich

    1997-01-31

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled. PMID:9005845

  18. Probing iron at Super-Earth core conditions

    NASA Astrophysics Data System (ADS)

    Amadou, N.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Brygoo, S.; Morard, G.; Guyot, F.; de Resseguier, T.; Mazevet, S.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Henry, O.; Raffestin, D.; Boehly, T.; Koenig, M.

    2015-02-01

    In this paper, we report on the quasi-isentropic compression of an iron sample using ramp shaped laser irradiation. This technique allows us to quasi-isentropically compress iron up to 700 GPa and 8500 K. To our knowledge, these data are the highest pressures reached on iron in off-Hugoniot conditions and the closest to the thermodynamic states thought to exist in Earth-like planetary cores. The experiment was performed on the Ligne d'Intégration laser facility at CESTA, Bordeaux, France.

  19. Probing the Earth from space - The Aristoteles mission

    NASA Astrophysics Data System (ADS)

    Schuyer, M.; Silvestrin, P.; Aguirre, M.

    1992-11-01

    The Aristoteles mission has been under study by the Agency since 1987. Its aim is to provide global models of the Earth's gravitational and magnetic fields with high spatial resolution and accuracy. Following earlier discussions, in 1990 NASA confirmed its intention to participate in the mission with the provision of a dedicated launch and of additional instruments. This has made it possible to enhance the scientific and application-orientated value of the mission and to optimize the spacecraft design. This article reviews the new joint ESA-NASA Aristoteles mission, as well as the status of the system definition and of the associated technological pre-development activities.

  20. Session Title: Structure, composition and dynamics of Earth's interior -probing with neutrinos Session Description

    E-print Network

    Mcdonough, William F.

    Session Title: Structure, composition and dynamics of Earth's interior - probing with neutrinos of neutrino geoscience offers novel techniques for tackling these tasks. Ongoing detections of geological neutrinos at Japan and Italy are beginning to resolve radiogenic heating in the mantle, leading

  1. Tropical Tropospheric Ozone: A Multi-Satellite View From TOMS and Other Instruments

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Guo, Hua; Witte, Jacquelyn C.; Kucsera, Tom L.; Seybold, Matthew G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument can resolve episodic pollution events in the tropics and interannual and seasonal variability. Modified-residual (MR) Nimbus 7 tropical tropospheric ozone (TTO), two maps/month (1979-1992, 1-deg latitude by 2-deg longitude) within the region in which total ozone displays a tropical wave-one pattern (maximum 20S to 20N), are available in digital form at http://metosrv2.umd.edu/tropo. Also available are preliminary 1996-1999 MR-TTO maps based on real-time Earth-Probe (EP)/TOMS observations. Examples of applications are given.

  2. Probing the Earth’s interior with a large-volume liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Hochmuth, Kathrin A.; Feilitzsch, Franz V.; Fields, Brian D.; Undagoitia, Teresa Marrodán; Oberauer, Lothar; Potzel, Walter; Raffelt, Georg G.; Wurm, Michael

    2007-02-01

    A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from ?-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction ?+p?n+e provides directional information. We investigate the requirements on such detectors to distinguish between certain geophysical models on the basis of the angular dependence of the geoneutrino flux. Our analysis is based on a Monte-Carlo simulation with different levels of light yield, considering both unloaded and gadolinium-loaded scintillators. We find that a 50 kt detector such as the proposed LENA (Low Energy Neutrino Astronomy) will detect deviations from isotropy of the geoneutrino flux significantly. However, with an unloaded scintillator the time needed for a useful discrimination between different geophysical models is too large if one uses the directional information alone. A Gd-loaded scintillator improves the situation considerably, although a 50 kt detector would still need several decades to distinguish between a geophysical reference model and one with a large neutrino source in the Earth’s core. However, a high-statistics measurement of the total geoneutrino flux and its spectrum still provides an extremely useful glance at the Earth’s interior.

  3. Probing the Kondo lattice model with alkaline-earth-metal atoms

    SciTech Connect

    Foss-Feig, Michael; Hermele, Michael; Rey, Ana Maria

    2010-05-15

    We study transport properties of alkaline-earth-metal atoms governed by the Kondo lattice Hamiltonian plus a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase diagram that can be implemented with current experimental techniques. In particular, we show how Kondo physics at strong coupling, at low density, and in the heavy fermion phase is manifest in the dipole oscillations of the conduction band upon displacement of the trap center.

  4. The magnetospheric disturbance ring current as a source for probing the deep earth electrical conductivity

    USGS Publications Warehouse

    Campbell, W.H.

    1990-01-01

    Two current rings have been observed in the equatorial plane of the earth at times of high geomagnetic activity. An eastward current exists between about 2 and 3.5 earth radii (Re) distant, and a larger, more variable companion current exists between about 4 and 9 Re. These current regions are loaded during geomagnetic substorms. They decay, almost exponentially, after the cessation of the particle influx that attends the solar wind disturbance. This review focuses upon characteristics needed for intelligent use of the ring current as a source for induction probing of the earth's mantle. Considerable difficulties are found with the assumption that Dst is a ring-current index. ?? 1990 Birkha??user Verlag.

  5. Ultrafast pump-probe dynamics of iron oxide based earth pigments for applications to ancient pottery manufacture

    NASA Astrophysics Data System (ADS)

    Villafana, Tana E.; Brown, William; Warren, Warren S.; Fischer, Martin

    2015-06-01

    We demonstrate that ultrafast pump-probe microscopy provides unique dynamics for natural iron oxide and iron hydroxide earth pigments, despite their chemical similarity. First, we conducted a pump-probe spectroscopy study on heat-treated hematite (the pure red iron oxide mineral) and found the pump-probe dynamics to be temperature dependent. Second, we investigated pottery fired under known conditions and observed firing dependent pump-probe dynamics. Finally, we imaged a New World potshard from the North Carolina Museum of Art. Our results indicate that pump-probe microscopy could be a useful tool in elucidating pottery manufacture.

  6. Van Allen Probes: Successful launch campaign and early operations exploring Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Stratton, J.

    The twin Van Allen Probe observatories developed at The Johns Hopkins University Applied Physics Laboratory for NASA's Heliophysics Division completed final observatory integration and environmental test activities and were successfully launched into orbit around the Earth on August 30, 2012. As the science operations phase begins, the mission is providing exciting new information about the impact of radiation belt activity on the earth. The on-board boom mounted magnetometers and other instruments are the most sensitive sensors of their type that have ever flown in the Van Allen radiation belts. The observatories are producing near-Earth space weather information that can be used to provide warnings of potential power grid interruptions or satellite damaging storms. The Van Allen Probes are operating in a challenging high radiation environment, and at the same time they are designed to make an insubstantial electric and magnetic field contribution to their surroundings. This paper will describe the challenges associated with observatory integration and test activities and observatory on-orbit checkout and commissioning. The lessons learned can be applied to other observatories and payloads that will be exposed to similar environments.

  7. Long-Term Variability of Airborne Asian Dust Observed from TOMS

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Hsu, N. C.; Seftor, C. J.; Holben, B. N.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Recent studies suggest that airborne Asian dust may not only play an important role in the regional radiation budget, but also influence the air quality over North America through long-range transport. In this paper, we use satellite data to investigate the long-term variability of airborne Asian dust as well as the daily variation of the dust aerosol distribution. By combining the Total Ozone Mapping Spectrometer (TOMS) aerosol index with National Centers for Environmental Prediction (NCEP) wind data, our analysis shows a strong correlation between the generation of dust storms in the region and the passage of springtime weather fronts. This is consistent with earlier studies performed by other researchers. According to both the Nimbus-7 and Earth-Probe TOMS data the Takla Makan desert, the Gobi desert, and the and region of Inner Mongolia are major sources of the eastward-flowing airborne Asian dust. Heavily populated areas in eastern China (e.g., Beijing) are often on the primary path of the dust storms originating in these desert regions. The increasing desertification north of the Beijing region has served to exacerbate problems stemming from these storms. The time series derived from 20 years of TOMS aerosol index data shows the first significant satellite evidence of the atmospheric effect of increasing desertification, indicating that the amount of dust blown eastward has increased strongly during the past few years including the year 2000.

  8. Researcher Interview: Tom Hudson

    Cancer.gov

    Tom Hudson, M.D., President and Scientific Director of the Ontario Institute for Cancer Research (OICR), Chair of the Executive Committee for the International Cancer Genome Consortium (ICGC) and Member for the Global Alliance for Genomics and Health spoke with Emma J. Spaulding, M.P.H., for this Researcher Interview.

  9. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets ("paradoxes") in tropical tropospheric ozone and smoke aerosol in regions of greatest tropical biomass burning [Thompson et at., 1996;2000b]. (4) Trans-boundary pollution tracking. With an air parcel (trajectory) model, smoke aerosol and ozone and dust plumes can be tracked across oceans (e.g., Asia to North America; North America to Europe) and national boundaries, e.g. Indonesia to Singapore and Malaysia during the 1997 ENSO fires.

  10. Functional network macroscopes for probing past and present Earth system dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Donges, J. F.

    2013-12-01

    The Earth, as viewed from a physicist's perspective, is a dynamical system of great complexity. Functional complex networks are inferred from observational data and model runs or constructed on the basis of theoretical considerations. Representing statistical interdependencies or causal interactions between objects (e.g., Earth system subdomains, processes, or local field variables), functional complex networks are conceptually well-suited for naturally addressing some of the fundamental questions of Earth system analysis concerning, among others, major dynamical patterns, teleconnections, and feedback loops in the planetary machinery, as well as critical elements such as thresholds, bottlenecks, and switches. The first part of this talk concerns complex network theory and network-based time series analysis. Regarding complex network theory, the novel contributions include consistent frameworks for analyzing the topology of (i) general networks of interacting networks and (ii) networks with vertices of heterogeneously distributed weights, as well as (iii) an analytical theory for describing spatial networks. In the realm of time series analysis, (i) recurrence network analysis is put forward as a theoretically founded, nonlinear technique for the study of single, but possibly multivariate time series. (ii) Coupled climate networks are introduced as an exploratory tool of data analysis for quantitatively characterizing the intricate statistical interdependency structure within and between several fields of time series. The second part presents applications for detecting dynamical transitions (tipping points) in time series and studying bottlenecks in the atmosphere's general circulation structure. The analysis of paleoclimate data reveals a possible influence of large-scale shifts in Plio-Pleistocene African climate variability on events in human evolution. This presentation summarizes the contents of the dissertation titled "Functional network macroscopes for probing past and present Earth system dynamics: Complex hierarchical interactions, tipping points, and beyond" by J.F. Donges, Humboldt University, Berlin, Germany, 2012. URL: http://nbn-resolving.de/urn:nbn:de:kobv:11-100207126.

  11. Probing the Extraordinary Ends of Ordinary Stars: White Dwarf Seismology with the Whole Earth Telescope

    E-print Network

    Steven D. Kawaler

    1995-03-15

    During the final evolution of most stars, they shed their outer skin and expose their core of the hot ashes of nuclear burning. As these hot and very dense cores cool into white dwarf stars, they go through episodes of multiperiodic, nonradial g-mode pulsation. The tools of stellar seismology allow us to use the pulsation spectra as powerful probes into the deep interiors of these stars. Progress in white dwarf seismology has required significant international cooperation, since another consequence of the complex pulsations of these stars is decoding the true pulsation frequencies requires a coordinated global effort involving high-speed photometric observations. Through one such effort, the Whole Earth Telescope project, we have located subsurface composition changes, detected differential rotation and magnetic fields, and measured fundamental quantities such as stellar mass, luminosity, and distance to extraordinary accuracy.

  12. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment.

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.

    1973-01-01

    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  13. The Radiation Belt Storm Probes Mission: Advancing Our Understanding of the Earth's Radiation Belts

    NASA Technical Reports Server (NTRS)

    Sibeck, David; Kanekal, Shrikanth; Kessel, Ramona; Fox, Nicola; Mauk, Barry

    2012-01-01

    We describe NASA's Radiation Belt Storm Probe (RBSP) mission, whose primary science objective is to understand, ideally to the point of predictability, the dynamics of relativistic electrons and penetrating ions in the Earth's radiation belts resulting from variable solar activity. The overarching scientific questions addressed include: 1. the physical processes that produce radiation belt enhancement events, 2. the dominant mechanisms for relativistic electron loss, and 3. how the ring current and other geomagnetic processes affect radiation belt behavior. The RBSP mission comprises two spacecraft which will be launched during Fall 2012 into low inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigee altitudes and apogee radial distances of 600 km and 5.8 RE respectively. During the two-year primary mission, the spacecraft orbits precess once around the Earth and lap each other twice in each local time quadrant. The spacecraft are each equipped with identical comprehensive instrumentation packages to measure, electrons, ions and wave electric and magnetic fields. We provide an overview of the RBSP mission, onboard instrumentation and science prospects and invite scientific collaboration.

  14. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    NASA Astrophysics Data System (ADS)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of scientists and engineers may alleviate some common stereotypes about these careers. When students engage with the scientists and engineers at APL, they see first-hand that successful science and engineering requires a diverse team with multi-disciplinary backgrounds. Activities throughout the day develop student understanding about science and technology, and address the fundamental concepts that fall under the National Science Education Content Standards. Students are immersed in a hands-on experience designed to facilitate understanding of the History and Nature of Science. Throughout the day students interact with people of diverse backgrounds and interests while hearing about the specific ways various individuals and teams of people contribute to the science and technology of the mission, addressing the concepts which fall under the headings of Science as a Human Endeavor, Nature of Science, and History of Science. Getting students outside the classroom to visit APL is an exclusive opportunity; evaluations have indicated that students became interested in learning more about space science and STEM careers after attending a Space Academy event.

  15. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    SciTech Connect

    Bétrémieux, Yan; Kaltenegger, Lisa

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 ?m model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  16. Chemistry Experiments — For Comparative Analyses for Demonstrating Environmental Differences on Venus, Earth, Mars and Titan, — Built on Educational Space Probes Hunveyor and Husar

    NASA Astrophysics Data System (ADS)

    Bérczi, Sz.; Róka, A.; Nyíri, Z.; Varga, T.; Fabriczy, A. Sz.; Peták, Cs.; Hudoba, Gy.; Hegyi, S.; Lang, A.; Gyollai, I.; Gucsik, A.

    2014-11-01

    We compared chemical environments of Venus, Earth, Mars and Titan by experiments planned for selection to realize them on educational space probe landers and rovers (Hunveyor and Husar) built by Hungarian universities and high schools.

  17. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  18. Venus's Mysterious "Aurora" Candace Gray (candaceg@nmsu.edu), Nancy Chanover, Tom Slanger, Karan

    E-print Network

    Rathbun, Julie A.

    Venus's Mysterious "Aurora" Candace Gray (candaceg@nmsu.edu), Nancy Chanover, Tom Slanger, Karan/09/2015 The Earth posses a magnetic field which funnels solar charged particles to the poles, generating aurora. The brightest aurora on Earth is the oxygen green line at 5577 Å. Venus has no magnetic field

  19. ADEOS Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    Krueger, A.; Bhartia, P. K.; McPeters, R.; Herman, J.; Wellemeyer, C.; Jaross, G.; Seftor, C.; Torres, O.; Labow, G.; Byerly, W.; Moy, L.; Taylor, S.; Swissler, T.; Cebula, R.

    1998-01-01

    Two data products from the Total Ozone Mapping Spectrometer (ADEOS/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The ADEOS/ TOMS began taking measurements on September 11, 1996, and ended on June 29, 1997. The instrument measured backscattered Earth radiance and incoming solar irradiance; their ratio was used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement were monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the 9-month data record. The Level 2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level 3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. The Level 3 files containing estimates of UVB at the Earth surface and tropospheric aerosol information will also be available. Detailed descriptions of both HDF data files and the CDROM product are provided.

  20. Exposure Fusion Tom Mertens1

    E-print Network

    Kautz, Jan

    Exposure Fusion Tom Mertens1 Jan Kautz2 Frank Van Reeth1 1 Hasselt University -- EDM transationale a bracketed exposure sequence into a high quality image, without converting to HDR first. Skipping technique blends multiple exposures, guided by simple quality measures like saturation and contrast

  1. Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Zinner, E.

    1985-01-01

    A new ion probe method for quantitative measurements of the concentrations of all the REE down to the ppm level in 5-20 micron spots is presented. The first application of the method is the determination of REE abundances in meteoritic phosphates. Results are shown to be in good agreement with previous INAA and ion probe determinations. The merrillites in the St. Severin amphoterite are richer in REE than the apatites (the enrichment factors, for various REE, range from 2.3 to 14.2) in contradiction with the results of Ebihara and Honda (1983). Provided good standards for other mineral phases are found or implanted marker ion techniques are used, the method should find a wide range of applications for the study of both terrestrial and extraterrestrial crystals at the microscopic level.

  2. Optical probes for the detection of protons, and alkali and alkaline earth metal cations.

    PubMed

    Hamilton, Graham R C; Sahoo, Suban K; Kamila, Sukanta; Singh, Narinder; Kaur, Navneet; Hyland, Barry W; Callan, John F

    2015-07-01

    Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed. PMID:25742963

  3. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling

    PubMed Central

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César de la; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  4. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    PubMed

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  5. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling

    NASA Astrophysics Data System (ADS)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César De La; Arnaudas, José Ignacio

    2015-09-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  6. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  7. Probing the microburst source region using low energy electron measurements made in low-Earth orbit

    NASA Astrophysics Data System (ADS)

    Crew, A. B.; Clemmons, J. H.; Spence, H. E.; Boehm, M. H.

    2009-12-01

    Presented is an analysis of measurements of low-energy (below 30 keV) electron fluxes made by the low-Earth orbit satellite, Freja. These fluxes exhibit signatures characteristic of the electron microburst phenomenon, but are at the low end of the energy spectrum of such events. As previously reported, the good energy, time, and pitch angle resolution of the measurements allow determination of source position along the field line via a time-of-flight technique. The present analysis exploits these characteristics to analyze the full 20-month set of observations to gain a new statistical look at the microburst source region in three spatial dimensions. Also discussed is the dependence of the source position as a function of geomagnetic activity.

  8. Total Ozone Mapping Spectrometer (TOMS) Level-3 Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Wellemeyer, Charles G.; Seftor, Colin J.; Byerly, William; Celarier, Edward A.

    2000-01-01

    Data from the TOMS series of instruments span the time period from November 1978, through the present with about a one and a-half year gap from January 1994 through July 1996. A set of four parameters derived from the TOMS measurements have been archived in the form of daily global maps or Level-3 data products. These products are total column ozone, effective surface reflectivity, aerosol index, and erythermal ultraviolet estimated at the Earth surface. A common fixed grid of I degree latitude by 1.25 degree longitude cells over the entire globe is provided daily for each parameter. These data are archived at the Goddard Space Flight Center Distributed Active Archive Center (DAAQ in Hierarchical Data Format (HDF). They are also available in a character format through the TOMS web site at http://toms.gsfc.nasa.gov. The derivations of the parameters, the mapping algorithm, and the data formats are described. The trend uncertainty for individual TOMS instruments is about 1% decade, but additional uncertainty exists in the combined data record due to uncertainty in the relative calibrations of the various TOMS.

  9. The application of GNSS in the near-Earth navigation of China’s lunar probe CE-5T1

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Fan, Min; Hu, Xiaogong; Li, Peijia

    2015-08-01

    After CE-1, CE-2 and CE-3, China’s fourth lunar probe CE-5T1 was launched on 23 Oct., 2014, which goal is to test the returning capability of the lunar probe. On 31 Oct., the landing portion of CE-5T1 successfully landed in the North China. CE-5T1 is a high eccentricity orbit with apogee of about 413 thousand km. A GNSS receiver was installed in CE-5T1 to test the ability of GNSS navigation for a High Earth Orbit (HEO) spacecraft. The receiver performed well and GPS side lobe signals have been tracked when the probe was at an altitude from 10000 to 60000 km during about two 3-hours periods, and most of time it is above the altitude of the GPS constellation. In these two periods, the average GPS satellites tracked is about 8-9, and the GDOP is from 1 to 30. We processed these GNSS data after the mission, and the noise level of the differenced pseudo-range is less than 10 m. We used the GNSS data to determine the orbit of CE-5T1, compared with the use of ground based tracking data including range, Doppler and VLBI. The results are encouraging, and the position difference between orbit determination (OD) with GNSS data and ground based data is less than 100 m. In CE-5T1 mission, the separation point is about 5000 km altitude, where the lander will separate from the orbiter then return to the ground. The separation point prediction accuracy directly affects the landing position. As plan there is a maneuver about 5 hours before the separation (canceled in fact), so there is only 3-4 hours tracking data to be used to predict the separation point. Analysis shows that combination of two types of data can improve the orbit accuracy as well as the accuracy of the predicted orbit. CE-5T1 made a successful test of the GNSS using for HEO spacecraft. Obviously, GNSS can be used as a low-cost OD sensor and the use of GNSS technique can reduce the observing pressure of the ground antenna in the lunar and deep space exploration.

  10. A New Long Term Data Set Of SO2 Column Amount From Volcanic Eruptions Using TOMS Data

    NASA Astrophysics Data System (ADS)

    Fisher, B. L.; Krotkov, N. A.; Bhartia, P. K.; Haffner, D. P.

    2014-12-01

    Volcanic SO2 is an important trace gas in the atmosphere that affects air quality and which is also a precursor to the production of sulfate aerosols. The Total Ozone Mapping Spectrometer (TOMS) was the first NASA UV instrument to measure daily maps of ozone and volcanic sulfur dioxide globally. It has been flown on four different satellites since its first launch aboard Nimbus 7 in 1978. The instrument provides a unique global long-term record of volcanic SO2, which have been invaluable to study the response of earth's climate system to volcanic eruptions. However, complete TOMS SO2 L2 data has not yet been previously processed and properly archived. As part of the NASA MEaSUREs SO2 Program we updated heritage TOMS SO2 algorithm in preparation to re-processing and archiving TOMS data. We have also applied our TOMS algorithm to the L1B measurements of the hyperspectral UV Ozone Monitoring Instrument (OMI) that has been flown on NASA Aura EOS spacecraft since 2004. Due to its hyperspectral capability and smaller field of view OMI SO2 sensitivity is more than hundred times larger than TOMS. The unique challenge is combining TOMS and OMI SO2 records to create a continuous long-term Climate Data record (CDR) to be released to the research community. This data set will provide researchers with continuous Level 2 estimates of SO2 and will help to validate and expand the current catalog of volcanic activity.

  11. Global Surface Ultraviolet Radiation Climatology from TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    1998-01-01

    The overall goal of this project has been to develop a method for calculating the distribution of solar ultraviolet radiation (UVR) over most of the earth's surface using NASA's Total Ozone Mapping Spectrometer (TOMS) and Earth Radiation Budget Experiment (ERBE) data, and to use this method to develop a UVR climatology that is useful in the context of the global ozone depletion issue. The research carried out with this support has resulted the following accomplishments: (1) a radioactive transfer method. based on the delta-Eddington approximation, was successfully developed; (2) the method was applied to the five years of overlapping TOMS and ERBE Monthly-Hourly data to examine the impact of global variability in cloud cover on trends in surface UVR; (3) a presentation was made on effects of stratospheric ozone depletion; (4) the radioactive transfer model was finally applied to all daylight hours to make a through study of the global effect of cloud cover;and (6) a five-year global climatology of surface UVR based on all of the research has been prepared for general distribution.

  12. Tom Berlijn Eugene P. Wigner Fellow

    E-print Network

    Pennycook, Steve

    Tom Berlijn Eugene P. Wigner Fellow Nanomaterials Theory Institute Center For Nanophase Materials University Condensed Matter Physics Ph.D. 2011 Professional Experience 2013-present, Eugene P. Wigner Fellow

  13. TOMS UV Algorithm: Problems and Enhancements. 2

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Herman, Jay; Bhartia, P. K.; Seftor, Colin; Arola, Antti; Kaurola, Jussi; Kroskinen, Lasse; Kalliskota, S.; Taalas, Petteri; Geogdzhaev, I.

    2002-01-01

    Satellite instruments provide global maps of surface ultraviolet (UV) irradiance by combining backscattered radiance measurements with radiative transfer models. The models are limited by uncertainties in input parameters of the atmosphere and the surface. We evaluate the effects of possible enhancements of the current Total Ozone Mapping Spectrometer (TOMS) surface UV irradiance algorithm focusing on effects of diurnal variation of cloudiness and improved treatment of snow/ice. The emphasis is on comparison between the results of the current (version 1) TOMS UV algorithm and each of the changes proposed. We evaluate different approaches for improved treatment of pixel average cloud attenuation, with and without snow/ice on the ground. In addition to treating clouds based only on the measurements at the local time of the TOMS observations, the results from other satellites and weather assimilation models can be used to estimate attenuation of the incident UV irradiance throughout the day. A new method is proposed to obtain a more realistic treatment of snow covered terrain. The method is based on a statistical relation between UV reflectivity and snow depth. The new method reduced the bias between the TOMS UV estimations and ground-based UV measurements for snow periods. The improved (version 2) algorithm will be applied to re-process the existing TOMS UV data record (since 1978) and to the future satellite sensors (e.g., Quik/TOMS, GOME, OMI on EOS/Aura and Triana/EPIC).

  14. Probes to the Inferior Planets - A New Dawn for NEO and IEO Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth's?

    NASA Astrophysics Data System (ADS)

    Grundmann, J. T.; Mottola, S.; Drentschew, M.; Drobczyk, M.; Kahle, R.; Maiwald, V.; Quantius, D.; Zabel, P.; Van Zoest, T.

    2011-11-01

    With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. Several missions to Venus and Mercury are planned to follow in this decade. Increased interest in the inferior planets is accompanied by several missions designed to study the Sun and the interplanetary medium (IPM) from a position near or in Earth orbit, such as the STEREO probes and SDO. These augment established solar observation capabilities at the Sun-Earth L1 Lagrangian point such as the SOHO spacecraft. Thus, three distinct classes of spacecraft operate or observe interior to Earth's orbit. All these spacecraft carry powerful multispectral cameras optimized for their respective primary targets. MESSENGER is scheduled to end its six-year interplanetary cruise in March 2011 to enter Mercury orbit, but a similarly extended cruise with several gravity-assists awaits the European Mercury mission BEPICOLOMBO. Unfortunately, the automatic abort of the orbit insertion manoeuvre has also left AKATSUKI (a.k.a. Venus Climate Orbiter (VCO), Planet-C) stranded in heliocentric orbit. After an unintended fly-by, the probe will catch up with Venus in approximately six years. Meanwhile, it stays mostly interior to Venus in a planet-leading orbit. In addition to the study of comets and their interaction with the IPM, observations of small bodies akin to those carried out by outer solar system probes are occasionally attempted with the equipment available. The study of structures in the interplanetary dust (IPD) cloud has been a science objective during the cruise phase of the Japanese Venus probe AKATSUKI from Earth to Venus. IPD observations in the astronomical H-band (1.65 ?m) are supported by its IR2 camera down to 1.5 ?W/m2sr in single 2 minute exposures. In the same setting, point sources of 13 mag can be detected. Obviously, a number of large asteroids exceed this threshold. The EARTHGUARD-I study, completed in 2003 by the DLR Institute of Planetary Research and Kayser-Threde under ESA contract, proposed a dedicated steerable 020...35 cm telescope and CCD camera payload on a probe to the inner solar system, to detect Near-Earth and Inner-Earth Objects (NEOs, IEOs) in favourable opposition geometry. A ride- share on a Mercury orbiter and a dedicated low-thrust propulsion spacecraft to a heliocentric 0.5 AU orbit were studied. A similar-sized telescope is presently being developed for the ASTEROIDFINDER satellite of DLR. Therefore, the technical feasibility of a number of asteroid observation scenarios involving spacecraft and targets interior to Earth's orbit is assessed based on the latest available spacecraft information and asteroid population models. A rough estimate of the required effort in terms of ground-based spacecraft operations and on-board resources is given for selected representative scenarios.

  15. Feasibility study of a swept frequency electromagnetic probe (SWEEP) using inductive coupling for the determination of subsurface conductivity of the earth and water prospecting in arid regions

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.; Bannister, L. H.

    1974-01-01

    Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.

  16. TOMS as a monitor of the ultraviolet radiation environment: Applications to photobiology

    NASA Technical Reports Server (NTRS)

    Frederick, John E.

    1987-01-01

    The flux of biologically relevant ultraviolet radiation that reaches the surface of the Earth varies with the ozone amount, surface reflectivity, and cloudcover. The Total Ozone Mapping Spectrometer (TOMS) provides information relevant to all three items. A recent application of satellite-based ozone measurements has been to develop climatologies of the biologically significant UV-B radiation reaching the Earth's surface. A growing body of research suggests that UV-B radiation tends to suppress the immune system of laboratory mice. At tropical latitudes, it is likely that parasitical diseases develop most readily in people who have experienced immune system suppression from UV-B exposure. The computed distribution of surface radiation combined with information on disease incidence may clarify the role of UV-B as a suppressor of the human immune system. TOMS used in conjunction with radiative transfer calculations can provide information of relevance in photobiology.

  17. Efficient Rendering of Local Subsurface Scattering Tom Mertens1

    E-print Network

    Kautz, Jan

    Efficient Rendering of Local Subsurface Scattering Tom Mertens1 Jan Kautz2 Philippe Bekaert1 Frank Van Reeth1 Hans-Peter Seidel2 Limburgs Universitair Centrum1 Diepenbeek, Belgium {tom.mertens,philippe.bekaert

  18. Nimbus-7 TOMS Version 7 Calibration

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C. G.; Taylor, S. L.; Jaross, G.; DeLand, M. T.; Seftor, C. J.; Labow, G.; Swissler, T. J.; Cebula, R. P.

    1996-01-01

    This report describes an improved instrument characterization used for the Version 7 processing of the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data record. An improved internal calibration technique referred to as spectral discrimination is used to provide long-term calibration precision of +/- 1%/decade in total column ozone amount. A revised wavelength scale results in a day one calibration that agrees with other satellite and ground-based measurements of total ozone, while a wavelength independent adjustment of the initial radiometric calibration constants provides good agreement with surface reflectivity measured by other satellite-borne ultraviolet measurements. The impact of other aspects of the Nimbus-7 TOMS instrument performance are also discussed. The Version 7 data should be used in all future studies involving the Nimbus-7 TOMS measurements of ozone. The data are available through the NASA Goddard Space Flight Center's Distributive Active Archive Center (DAAC).

  19. Nimbus/TOMS Science Data Operations Support

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Projected goals include the following: (1) Participate in and provide analysis of laboratory and in-flight calibration of LTV sensors used for space observations of backscattered LTV radiation; (2) Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data; (3) Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products; (4) Process the TOMS data into Level 1, Level 2, and Level 3 data products; (5) Provide analysis of the science data products in support of NASA GSFC Code 916's research.

  20. Evolution of the Southern Hemisphere ozone hole as seen by TOMS from August 1979 to December 1991

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The computerized color images of the Total Ozone Mapping Spectrometer (TOMS) showed the ozone distribution and levels in the Earth's southern hemisphere from August 1979 to December 1991 in this video. The annual variations were presented in a monthly format and the ozone levels were measured in Dobson units.

  1. TOMS Near Realtime System design document

    NASA Technical Reports Server (NTRS)

    Puccinelli, E. F.

    1981-01-01

    The System Design Document for the TOMS (Total Mapping Spectrometer) Near Realtime System provides detailed definition of the system functions and records the system history from a data processing and development point-of-view. The system was designed to produce map products displaying ozone concentrations over the United States as measured by the TOMS flown on the NIMBUS 7 satellite. The maps were produced and delivered to the user within six hours of round receipt of the satellite data for the period March 1, 1981 through May 15, 1981 on a daily basis. Sample system products are shown and data archival locations are listed.

  2. Scientific and Operational Requirements for TOMS Data

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J. (editor)

    1987-01-01

    Global total ozone and sulfur dioxide data from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument have applications in a broad range of disciplines. The presentations of 29 speakers who are using the data in research or who have operational needs for the data are summarized. Five sessions addressed topics in stratospheric processes, tropospheric dynamics and chemistry, remote sensing, volcanology, and future instrument requirements. Stratospheric and some volcanology requirements can be met by a continuation of polar orbit satellites using a slightly modified TOMS but weather related research, tropospheric sulfur budget studies, and most operational needs require the time resolution of a geostationary instrument.

  3. Calibration and postlaunch performance of the Meteor 3/TOMS instrument

    SciTech Connect

    Jaross, G.; Krueger, A.; Cebula, R.P.; Seftor, C.; Hartmann, U.; Haring, R.; Burchfield, D.

    1995-02-01

    Prelaunch and postlaunch calibration results for the Meteor 3/total ozone mapping spectrometer (TOMS) instrument are presented here. Ozone amounts are retrieved from measurements of Earth albedo in the 312- to 380-nm range. The accuracy of albedo measurements is primarily tied to knowledge of the reflective properties of diffusers used in the calibrations and to the instrument`s wavelength selection. These and other important prelaunch calibrations are presented. Their estimated accuracies are within the bounds necessary to determine column ozone to better than 1%. However, postlaunch validation results indicate some prelaunch calibration uncertainties may be larger than originally estimated. Instrument calibrations have been maintained postlaunch to within a corresponding 1% error in retrieved ozone. Onboard calibrations, including wavelength monitoring and a three-diffuser solar measurement system, are described and specific results are presented. Other issues, such as the effects of orbital precession on calibration and recent chopper wheel malfunctions, are also discussed.

  4. GRUNDMANN Tom BEES1, Les P'tites Bulles

    E-print Network

    Jacquet, Stéphan

    GRUNDMANN Tom BEES1, Les P'tites Bulles DETENDEURS N4DETENDEURS N4DETENDEURS N4DETENDEURS N4DETENDEURS N4DETENDEURS N4DETENDEURS N4DETENDEURS N4 #12;GRUNDMANN Tom BEES1, Les P'tites Bulles DETENDEURS N ou débit continu? Principes d'étanchéité #12;GRUNDMANN Tom BEES1, Les P'tites Bulles Principes d

  5. If you saw Tom Cruise smiling like Jack Nicolson, you would still recognize the person as Tom Cruise. However, if you saw

    E-print Network

    If you saw Tom Cruise smiling like Jack Nicolson, you would still recognize the person as Tom Cruise. However, if you saw a face that looked like a mixture between the shapes of Tom Cruises' and Jack¨lthoff Could you recognize Jack Nicolson or Tom Cruise by their smiles? Would you realize, if Tom Cruise smiled

  6. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide

    NASA Technical Reports Server (NTRS)

    Mcpeters, Richard D.; Krueger, Arlin J.; Bhartia, P. K.; Herman, Jay R.; Oaks, Arnold; Ahmad, Ziuddin; Cebula, Richard P.; Schlesinger, Barry M.; Swissler, Tom; Taylor, Steven L.

    1993-01-01

    Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided.

  7. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  8. Solar UV irradiance measured at ground and compared with satellite TOMS/NASA derived data at different locations in Argentina

    NASA Astrophysics Data System (ADS)

    Wolfram, W.; Quel, E.; Paladini, A.; Orce, V.; Piacentini, R. D.

    The solar UV radiation incident on different and distant places of Argentina (Ushuaia, Puerto Madryn, Buenos Aires and Jujuy) obtained at 305, 320, 340 and 380 nm with a GUV-511/Biospherical narrowband radiometer of the CONICET Latitudinal UV-PAR radiation monitoring network, were compared with TUV model calculations in order to derive the effective aerosol optical depths in the locations indicated above. The adjusted spectral curve is employed in order to determine, -with the inclusion of the erythemal action spectrum, the corresponding integrated dose for each day. This value, usually called exposure, is compared with the data derived at noon from those taken by the satellite instrument TOMS/NASA on board of Earth Probe. Other biological UV irradiances like carcinogenesis and ADN and plant damages are also analyzed. In particular, the signals produced by the ozone hole and minihole events (with values lowers or equal to 220 DU) are clearly distinguished in the biological actions that depend strongly on the most energetic UVB radiations.

  9. Toms River Drivers Manual 1984-1985.

    ERIC Educational Resources Information Center

    Thomas, Patricia

    The procedures in this manual are designed to establish stability and continuity within the student transportation department of the Toms River Regional Schools in New Jersey. The manual is divided into three sections. Section 1 provides driver and aide specific information. It includes directives related to time clock, spare buses, and…

  10. Ron J. DECKERT1 , Tom HSIANG2

    E-print Network

    Hsiang, Tom

    305 Ron J. DECKERT1 , Tom HSIANG2 and R. Larry PETERSON1 * " Department of Botany, University that vary in density along the needle, between needle age classes, and among individual host trees (Deckert & Peterson 2000). Recent microscopic observations have suggested that needles possess multiple, small

  11. Parasite transgenerational effects on infection Tom Little,

    E-print Network

    Obbard, Darren

    Parasite transgenerational effects on infection Tom Little, 1 * Jane Birch, 1 Pedro Vale 1, British Columbia V6T 1Z4, Canada ABSTRACT Question: Do past conditions experienced by parasites mediate current levels of infectivity and virulence in the host­parasite combination of Daphnia magna

  12. Multilevel Chat (MLChat) Tom Macklin, Phyllis Jenket

    E-print Network

    1 Multilevel Chat (MLChat) Tom Macklin, Phyllis Jenket Center for High Assurance Computer Systems: Net-centric collaboration #12;3 MLChat Basics · MLChat Hybrid Architecture: ­ Provides chat services on a single multi-level secure (MLS) server ­ Connects MLS chat servers to networks of differing security

  13. Stoichiometry and population dynamics Tom Andersen,1

    E-print Network

    Elser, Jim

    Sciences, Arizona State University, Tempe, AZ 85287, USA *Correspondence: E-mail: tom.andersen@bio considering stoichiometric effects on autotroph­herbivore systems, emphasizing algae­Daphnia interactions), dealing with the balance of energy and chemical elements in ecological interactions and especially

  14. Probing the Conductivity, Composition, and Differentiation of Ultra-short-period Super-Earths with Magnetized Host Stars.

    NASA Astrophysics Data System (ADS)

    Lin, Douglas NC

    2015-12-01

    The omnipresence of super Earths around nearby stars stimulates the quest to characterize their internal structure. In addition to the average density and atmospheric composition, we show that the mantle conductivity and composition can be determined for a class of short- period super Earths which magnetically interact with their host stars. As an example, we analyze the observed properties of Kepler-78b to place limits on its Ohmic dissipation rate and to estimate the electric conductivity in its mantle. We show that its surface is primarily composed of molten/condensed rock on the day/night sides and its iron may have differentiated to its core.

  15. What on Earth is D”?

    NASA Astrophysics Data System (ADS)

    Garnero, Ed; Wysession, Michael

    Studied in earnest for 50 years time Is Earth's deep layer called Dee Double Prime. Exotic hypotheses new papers chime, But evasive big pictures halt reason or rhyme.Even before the first nuclear bomb, People like Gutenberg, Bullen, and Dahm And probably others: Dick, Harry, and Tom Proposed this new layer to address a qualm.

  16. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  17. MIDL: A Demonstration of Multi-Mission Analysis of Charged Particle Data From Van Allen Probes and the Juno Earth Flyby

    NASA Astrophysics Data System (ADS)

    Brown, L. E.; Mitchell, D. G.; Paranicas, C.; Mauk, B.; Lanzerotti, L. J.; Vandegriff, J. D.

    2013-12-01

    At the present time, a fleet of heliosphere spacecraft is producing an unprecedented number of measurements of charged particles and magnetic fields throughout the solar system - from Mercury to the local interstellar medium. It is vital to have a flexible and efficient data browsing, discovery, and analysis environment to navigate this wealth of information. We present a multi-mission tool for quick look data viewing and analysis. In addition to a rich tool and feature set, MIDL3 (Mission Independent Data Layer - 3rd version) provides environments to cater to different user classes from instrument team engineers, to team scientists, to the general science community. Furthermore, MIDL3 adds a new, highly interactive, end-user visualization environment for rapid browsing and exploration of science and engineering data. Like AMDA and MAPSVIEW, MIDL has functioned for Cassini plasma and particle data as a highly successful platform for inter-comparing different instruments/sensors with minimal preparation work on the part of the user. We present a demonstration of simultaneous analysis of the JUNO Earth flyby (October 9, 2013) data from the JEDI instruments and Van Allen Probes data from the RBSPICE instruments. Since these two instrument sets share a very similar design (see presentations by C Paranicas, et al. and J Manwiler, et al. at this conference for details) we anticipate important results from this unique opportunity to compare measurements of energetic electrons and ions made by six telescopes each for the five similar instruments on three spacecraft within Earth's magnetosphere.

  18. Tom Cruise is dangerous and irresponsible

    PubMed Central

    Neill, Ushma S.

    2005-01-01

    Yes, even the JCI can weigh in on celebrity gossip, but hopefully without becoming a tabloid. Rather, we want to shine a light on the reckless comments actor Tom Cruise has recently made that psychiatry is a “quack” field and his belief that postpartum depression cannot be treated pharmacologically. We can only hope that his influence as a celebrity does not hold back those in need of psychiatric treatment. PMID:16075033

  19. Tom Cruise is dangerous and irresponsible.

    PubMed

    Neill, Ushma S

    2005-08-01

    Yes, even the JCI can weigh in on celebrity gossip, but hopefully without becoming a tabloid. Rather, we want to shine a light on the reckless comments actor Tom Cruise has recently made that psychiatry is a "quack" field and his belief that postpartum depression cannot be treated pharmacologically. We can only hope that his influence as a celebrity does not hold back those in need of psychiatric treatment. PMID:16075033

  20. Repairing Tom Swift's electric factor analysis machine

    E-print Network

    Preacher, Kristopher J.; MacCallum, R. C.

    2003-01-01

    need to be UNDERSTANDING STATISTICS, 2(1), 13?43 Copyright ? 2003, Lawrence Erlbaum Associates, Inc. Requests for reprints should be sent to Kristopher J. Preacher, 142 Townshend Hall, 1885 Neil Avenue Mall, The Ohio State University, Columbus, OH 43210... compared. THE ELECTRIC FACTOR ANALYSIS MACHINE In 1967 an article entitled ?Derivation of Theory by Means of Factor Analysis or Tom Swift and His Electric Factor Analysis Machine? (Armstrong, 1967) 2 was pub- lished. The intended point of this article...

  1. Dr. Tom Lawrence: a life in chiropractic

    PubMed Central

    Keating, Joseph C

    2005-01-01

    He dwelt within the chiropractic orbit from the cradle to the grave. Second-generation chiropractor Tom Lawrence was a successful professional and family man who followed in his father’s footsteps and fought the good fight to improve chiropractic within his state and nation. His passing closes a chapter of living memory of the middle years of the first chiropractic century. PMID:17549212

  2. Participation in the TOMS Science Team

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Hilsenrath, Ernest (Technical Monitor)

    2002-01-01

    Because of the nominal funding provided by this grant, some of the relevant research is partially funded by other sources. Research performed for this funding period included the following items: We have investigated errors in TOMS ozone measurements caused by the uncertainty in wavelength calibration, coupled with the ozone cross sections in the Huggins bands and their temperature dependence. Preliminary results show that 0.1 nm uncertainty in TOMS wavelength calibration at the ozone active wavelengths corresponds to approx. 1% systematic error in O3, and thus potential 1% biases among ozone trends from the various TOMS instruments. This conclusion will be revised for absolute O3 Measurements as cross sections are further investigated for inclusion in the HITRAN database at the SAO, but the potential for relative errors remains. In order to aid further comparisons among TOMS and GOME ozone measurements, we have implemented our method of direct fitting of GOME radiances (BOAS) for O3, and now obtain the best fitting precision to date for GOME O3 Columns. This will aid in future comparisons of the actual quantities measured and fitted for the two instrument types. We have made comparisons between GOME ICFA cloud fraction and cloud fraction determined from GOME data using the Ring effect in the Ca II lines. There is a strong correlation, as expected, but there are substantial systematic biases between the determinations. This study will be refined in the near future using the recently-developed GOME Cloud Retrieval Algorithm (GOMECAT). We have improved the SAO Ring effect determination to include better convolution with instrument transfer functions and inclusion of interferences by atmospheric absorbers (e.g., O3). This has been made available to the general community.

  3. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  4. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE PAGESBeta

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more »Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  5. Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-01

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ˜ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ˜40 s and a dispersionless injection of electrons up to ˜3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  6. Magneto-Seebeck effect in R FeAsO (R =rare earth) compounds: Probing the magnon drag scenario

    NASA Astrophysics Data System (ADS)

    Caglieris, F.; Braggio, A.; Pallecchi, I.; Provino, A.; Pani, M.; Lamura, G.; Jost, A.; Zeitler, U.; Galleani D'Agliano, E.; Manfrinetti, P.; Putti, M.

    2014-10-01

    We investigate the Seebeck effect in R FeAsO (R =rare earth) compounds as a function of temperature and magnetic field up to 30 T. The Seebeck curves are characterized by a broad negative bump around 50 K, which is sample dependent and strongly enhanced by the application of a magnetic field. A model for the temperature and field dependence of the magnon drag contribution to the Seebeck effect by antiferromagnetic (AFM) spin fluctuation is developed. It accounts for the magnitude and scaling properties of such bump feature in our experimental data in LaFeAsO. This analysis accounts for the apparent inconsistency of literature Seebeck effect data on these compounds and has the potential to extract precious information on the coupling between electrons and AFM spin fluctuations in these parent compound systems, with implications on the pairing mechanism of the related superconducting compounds.

  7. Investigation of the Structure of Yeast tRNAPhe by Nuclear Magnetic Resonance: Paramagnetic Rare Earth Ion Probes of Structure

    PubMed Central

    Jones, Claude R.; Kearns, David R.

    1974-01-01

    The binding of paramagnetic rare earth ions to yeast tRNAPhe shifts some resonances in the low-field nuclear magnetic resonance spectrum that have been assigned to ring nitrogen protons of specific Watson-Crick base pairs. The changes in the nuclear magnetic resonance spectrum as the tRNA is titrated with Eu3+ indicate that 4 (or 5) Eu3+ ions are tightly bound, that the metal binding is in the fast exchange limit, and that the binding to different sites in the molecule is sequential rather than cooperative. The first metal bound simultaneously shifts resonances associated with the dihydrouridine and the -C-C-A stem. This permits us to conclude that the folding of the tRNAPhe in solution brings the phosphate backbone of the -C-C-A and the dihydrouridine stems into close proximity. A model of the three-dimensional structure of tRNAPhe incorporating this new information appears to be compatible with the results obtained from x-ray diffraction. PMID:4610573

  8. Modeling Loss and Rebuilding of the Earth's Outer Zone Electrons and Comparison with Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Kress, B. T.; Li, Z.; Paral, J.; Wiltberger, M. J.

    2014-12-01

    Quantifying the competition between radiation belt electron energization due to radial transport and loss to the magnetopause and to the atmosphere is critical to understanding the dynamic changes in outer zone radiation belt electron flux response to solar wind drivers. Plasmasheet electron injection, both due to enhanced convection and substorm dipolarization, provides a source population for generation of whistler mode chorus and seed population for local acceleration. We now have available ~22 months of unprecedented measurements in energy and pitch angle resolution of electrons spanning the energy range from injected plasmasheet to multi-MeV electrons from the twin Van Allen Probes spacecraft in near-equatorial plane elliptical orbits, with apogee at 5.8 Re; and two Balloon Array for Relativistic Radiation Belt Electron Losses (BARREL) campaigns during January-February 2013 and 2014, each establishing a longitudinal array of precipitation measurements extending to relativistic energies via measured Bremsstrahlung x-rays. In addition to this arsenal of data, a set of modeling tools has been developed to examine dynamics of electrons in the magnetosphere. These tools calculate electron trajectories in time-dependent magnetohydrodyanmic (MHD) fields using the Lyon-Fedder-Mobarry global MHD model coupled with the Rice Convection Model to determine the E and B field response to solar wind drivers. With these tools we can follow electron dynamics including response to Ultra Low Frequency (ULF) waves which cause radial transport and energization for inward radial gradient as well as enhanced loss to the magnetopause for outward gradient. These tools have been applied to date to the large equinoctial storms of fall 2012, spring and fall 2013, in addition to moderate storms during BARREL balloon campaigns in both winters 2013 and 2014. Isolated substorm response can clearly be identified for the latter, while plasmasheet injection of electrons during periods of strong convection sets the stage for local acceleration by whistler mode chorus during the equinoctial storm event studies.

  9. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  10. The 1991 Antarctic ozone hole - TOMS observations

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin; Schoeberl, Mark; Newman, Paul; Stolarski, Richard

    1992-01-01

    The 1991 Antarctic springtime ozone decline, as measured by the Total Ozone Mapping Spectrometer (TOMS), was similar to those of earlier deep ozone hole years, 1987, 1989, and 1990. The minimum total ozone value was recorded on October 5, 1991 at 108 Dobson units near the South Pole. This was 8 DU lower than in any of the earlier years. Four of the last five years have exhibited an extensive, deep ozone hole. The area of the hole was about the same as in 1987, 1989, and 1990. The recovery of the low total ozone values occurred in mid-November as the polar vortex broke up.

  11. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...Commission [Docket No. ID-5705-001] Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking...of the Federal Power Act, 16 U.S.C. 825d(b), Part 45 of the Federal...

  12. The Discipline of Machine Learning Tom M. Mitchell

    E-print Network

    The Discipline of Machine Learning Tom M. Mitchell July 2006 CMU-ML-06-108 #12;#12;The Discipline of Machine Learning Tom M. Mitchell July 2006 CMU-ML-06-108 Machine Learning Department School of Computer of Machine Learning has grown from the efforts of a handful of computer engineers exploring whether computers

  13. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of...

  14. The Gravity Probe B `Niobium bird' experiment: Verifying the data reduction scheme for estimating the relativistic precession of Earth-orbiting gyroscopes

    NASA Technical Reports Server (NTRS)

    Uemaatsu, Hirohiko; Parkinson, Bradford W.; Lockhart, James M.; Muhlfelder, Barry

    1993-01-01

    Gravity Probe B (GP-B) is a relatively gyroscope experiment begun at Stanford University in 1960 and supported by NASA since 1963. This experiment will check, for the first time, the relativistic precession of an Earth-orbiting gyroscope that was predicted by Einstein's General Theory of Relativity, to an accuracy of 1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a polar orbit to observe their relativistic precession. The primary sensor for measuring the direction of gyroscope spin axis is the SQUID (superconducting quantum interference device) magnetometer. The data reduction scheme designed for the GP-B program processes the signal from the SQUID magnetometer and estimates the relativistic precession rates. We formulated the data reduction scheme and designed the Niobium bird experiment to verify the performance of the data reduction scheme experimentally with an actual SQUID magnetometer within the test loop. This paper reports the results from the first phase of the Niobium bird experiment, which used a commercially available SQUID magnetometer as its primary sensor, and adresses the issues they raised. The first phase resulted in a large, temperature-dependent bias drift in the insensitive design and a temperature regulation scheme.

  15. BOREAS RSS-10 TOMS Circumpolar One-Degree PAR Images

    NASA Technical Reports Server (NTRS)

    Dye, Dennis G.; Holben, Brent; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-10 team investigated the magnitude of daily, seasonal, and yearly variations of Photosynthetically Active Radiation (PAR) from ground and satellite observations. This data set contains satellite estimates of surface-incident PAR (400-700 nm, MJ/sq m) at one-degree spatial resolution. The spatial coverage is circumpolar from latitudes of 41 to 66 degrees north. The temporal coverage is from May through September for years 1979 through 1989. Eleven-year statistics are also provided: (1) mean, (2) standard deviation, and (3) coefficient of variation for 1979-89. The PAR estimates were derived from the global gridded ultraviolet reflectivity data product (average of 360, 380 nm) from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS). Image mask data are provided for identifying the boreal forest zone, and ocean/land and snow/ice-covered areas. The data are available as binary image format data files. The PAR data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Schlesinger, Barry M.; Wellemeyer, Charles G.; Seftor, Colin J.; Jaross, Glen; Taylor, Steven L.; Swissler, Tom; Torres, Omar; Labow, Gordon; Byerly, William; Cebula, Richard P.

    1996-01-01

    Two data products from the Total Ozone Mapping Spectrometer (TOMS) onboard Nimbus-7 have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the instrument sensitivity are monitored by a spectral discrimination technique using measurements of the intrinsically stable wavelength dependence of derived surface reflectivity. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and drift is less than 1.0 percent per decade. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone amount and reflectivity in a I - degree latitude by 1.25 degrees longitude grid. The Level-3 product also is available on CD-ROM. Detailed descriptions of both HDF data files and the CD-ROM product are provided.

  17. A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria.

    PubMed

    Melin, Jonathan; Kilisch, Markus; Neumann, Piotr; Lytovchenko, Oleksandr; Gomkale, Ridhima; Schendzielorz, Alexander; Schmidt, Bernhard; Liepold, Thomas; Ficner, Ralf; Jahn, Olaf; Rehling, Peter; Schulz, Christian

    2015-08-01

    The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (AAC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor. PMID:25958336

  18. Trajectory and atmospheric structure from entry probes: Demonstration of a real-time reconstruction technique using a simple direct-to-Earth radio link

    E-print Network

    Withers, Paul

    Trajectory and atmospheric structure from entry probes: Demonstration of a real-time reconstruction 2010 Keywords: Mars Atmospheric entry Accelerometer Radio science a b s t r a c t The reconstruction of the trajectory and atmospheric structure associated with an entry probe has traditionally relied upon onboard

  19. arXiv:hep-ph/0502097v110Feb2005 Probing the absolute density of the Earth's core using a neutrino beam

    E-print Network

    Mcdonough, William F.

    - 7 500 km relevant for neutrino oscillation physics. It is an interesting fea- ture of neutrino of the Earth's interior has been seismic wave geophysics primarily using seismic waves from earthquakes to re- construct a profile of the Earth's interior. Most of the energy produced by an earthquake is deposited

  20. TOM: a web-based integrated approach for identification of candidate disease genes

    E-print Network

    Nardini, Christine

    TOM: a web-based integrated approach for identification of candidate disease genes Simona Rossi on this principle, we present here TOM, a web-based resource for the efficient extraction of candidate genes

  1. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma - Tom Giordano, TCGA Scientific Symposium 2015

    Cancer.gov

    Home News and Events Multimedia Library Videos Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma - Tom Giordano, TCGA Scientif Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma - Tom Giordano, TCGA Scientific

  2. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1983-01-01

    The reconnaissance phase of using satellite observtions to studying electromagnetic induction in the solid earth is summarized. Several points are made: (1) satellite data apparently suffer far less from the effects of near surface lateral heterogeneities in the earth than do ground-based data; (2) zonal ionospheric currents during the recovery phase of major magnetic storms appear to be minimal, at least in the dawn and dusk sectors wher MAGSAT was flown; hence the internal contributions that satellites observe during these times is in fact due primarily to induction in the Earth with little or no contribution from ionospheric currents; and (3) the interpretation of satellite data in terms of primitive electromagnetic response functions, while grossly over-simplified, results in a surprisingly well-resolved radius for an equivalent super-conductor representing the conductivity region of the Earth's interior (5,370 + or - 120 km).

  3. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1981-01-01

    Model simulations show that induction in a spherical Earth by distant magnetospheric sources can contribute magnetic field fluctuations at MAGSAT altitudes which are 30 to 40 percent of the external field amplitudes. When the characteristic dimensions (e.g. depth of penetration, etc) of a particular situations are small compared with the Earth's radius, the Earth can be approximated by a plane horizontal half space. In this case, electromagnetic energy is reflected with close to 100 percent efficiency from the Earth's surface. This implies that the total horizontal field is twice the source field when the source is above the satellite, but is reduced to values which are much smaller than the source field when the source is below the satellite. This latter effect tends to enhance the signature of gross electrical discontinuities in the lithosphere when observed at satellite altitudes.

  4. Tropospheric Chemistry Studies using Observations from GOME and TOMS

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Spurr, Robert J. D.; Kurosu, Thomas P.; Jacob, Daniel J.; Gleason, James F.

    2003-01-01

    Studies to quantitatively determine trace gas and aerosol amounts from the Global Ozone Monitoring Experiment (GOME) and the Total Ozone Monitoring Experiment (TOMS) and to perform chemical modeling studies which utilize these results are given. This includes: 1. Analysis of measurements from the GOME and TOMS instruments for troposphere distributions of O3 and HCHO; troposphere enhancements of SO2, NO2 and aerosols associated with major sources; and springtime events of elevated BrO in the lower Arctic troposphere. 2. Application of a global 3-dimensional model of troposphere chemistry to interpret the GOME observations in terms of the factors controlling the abundances of troposphere ozone and OH.

  5. The relationship between growth of commercial toms and linear skeletal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted to study the relationship between the growth of commercial toms (Nicholas) and linear skeletal development. All toms were fed a commercial turkey starter diet for the entire experiment. At two week intervals, 10 toms were randomly selected and weighed. The right half of t...

  6. Contact: Tom Rogers, rogerstc@ornl.gov 865-241-2149 Director, Industrial Partnerships

    E-print Network

    Contact: Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic

  7. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1981-01-01

    An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.

  8. Fresh Direct: A Rotten Deal By Tom Angotti

    E-print Network

    Qiu, Weigang

    will have access to healthy food. On closer inspection, however, it's a bad deal for taxpayers, South BronxFresh Direct: A Rotten Deal By Tom Angotti Fresh Direct delivers food to households all over, a company that delivers prepared food to households all over the city. The deal would allow them to move

  9. Thomas "Tom" Hayden, ORS Associate Director for Program

    E-print Network

    Bandettini, Peter A.

    on August 25. Tom Hayden started his fed- eral service as a "Stay-In- School" appointment with the USDA's work touched nearly everyone in the NIH community. He was a mentor, friend and colleague to many of us Cause Serious Injury Beware of Immigration Scams Proper Return Address- ing for Official Mail CAPS

  10. Good Guys Finish Last: "Tom Brown's School Days" and "Flashman."

    ERIC Educational Resources Information Center

    Riga, Frank P.

    Instructors and students of literature should look to George McDonald Fraser's "Flashman: From the Flashman Papers, 1839-1842" for a clever critique of 19th-century notions of character, virtue, and moral teleology. Written to criticize Thomas Hughes's famous 19th-century novel, "Tom Brown's School Days," Fraser's 20th-century novel turns on end…

  11. The Discipline of Machine Learning Tom M. Mitchell

    E-print Network

    Mitchell, Tom

    The Discipline of Machine Learning Tom M. Mitchell July 2006 CMU-ML-06-108 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Machine Learning Department School of Computer of Machine Learning has grown from the efforts of a handful of computer en- gineers exploring whether

  12. On the Value of a Liberal Education Tom Sullivan

    E-print Network

    Hayden, Nancy J.

    when education was rooted in moral understandings and purpose (Brooks). Reading these debates, oneOn the Value of a Liberal Education Tom Sullivan October 2014 Over the last several months, a debate has ensued across higher education on a fundamental question: What should be the responsibility

  13. Magnitude of Metric Spaces II Tom Leinster & Simon Willerton

    E-print Network

    Willerton, Simon

    Magnitude of Metric Spaces II Tom Leinster & Simon Willerton Universities of Glasgow & Sheffield Integral Geometry and Valuation Theory, CRM Barcelona 8th September 2010 #12;Weighting and magnitude Recall: Suppose A is a finite metric space. 1/12 #12;Weighting and magnitude Recall: Suppose A is a finite metric

  14. Tom DePietro Consequences and Animal Experimentation

    E-print Network

    Firestone, Jeremy

    research, often times in studies which if they were conducted on humans would be considered unethical, the numbers of animals used in studies is far exceeded by the number of humans who benefit over time fromTom DePietro Consequences and Animal Experimentation Animal studies play a major role in medical

  15. The Discipline of Machine Learning Tom M. Mitchell

    E-print Network

    Mitchell, Tom

    The Discipline of Machine Learning Tom M. Mitchell July 2006 CMU-ML-06-108 Machine Learning 50 years the study of Machine Learning has grown from the efforts of a handful of computer en- tems for speech recognition, computer vision, and a variety of other tasks, and has spun off

  16. Culture of the Tomato Micro-Tom Cultivar in Greenhouse.

    PubMed

    Rothan, Christophe; Just, Daniel; Fernandez, Lucie; Atienza, Isabelle; Ballias, Patricia; Lemaire-Chamley, Martine

    2016-01-01

    Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development. PMID:26577781

  17. TOM: Teaching flow over Mountains Worksheet at the radar site

    E-print Network

    1 TOM: Teaching flow over Mountains Worksheet at the radar site Exercise 1: Sign in Names) Look at the radar screen, choose a low elevation angle (mountains or foothills: At what range do mountains to the west show up on the radar screen? Write down the elevation

  18. Fast Pseudo-Hadamard Transforms Tom St Denis

    E-print Network

    International Association for Cryptologic Research (IACR)

    Fast Pseudo-Hadamard Transforms Tom St Denis tomstdenis@iahu.ca Abstract. We prove that the fast present a proof that the branch of the fast pseudo-Hadamard transform (FPHT) is bounded by taking of implementing MDS codes. We shall also demonstrate that MDS and FPHT codes can be combined to produce fast

  19. Tuna Longline Catch Rates in the Indian Ocean Tom Polacheck

    E-print Network

    Hawai'i at Manoa, University of

    1 Tuna Longline Catch Rates in the Indian Ocean Tom Polacheck CSIRO Marine Research, Hobart e and the main billfish species harvested in the Indian Oceans1 . Note that this paper considers effects have also chosen to present the data for each species for the entire Indian Ocean since all

  20. Splicing and regularity Tom Head and Dennis Pixton

    E-print Network

    Pixton, Dennis

    simplified indication of a technology used in gene splicing, a fundamental feature of genetic engineeringSplicing and regularity Tom Head and Dennis Pixton Binghamton University #12;#12;1 Splicing was introduced and has since received extensive theoretical development. This new formalism, splicing

  1. Splicing and regularity Tom Head and Dennis Pixton

    E-print Network

    Pixton, Dennis

    simplified indication of a technology used in gene splicing, a fundamental feature of genetic engineeringSplicing and regularity Tom Head and Dennis Pixton Binghamton University #12; #12; 1 Splicing was introduced and has since received extensive theoretical development. This new formalism, splicing

  2. A Genetic Algorithm for Simultaneous Localization and Mapping Tom Duckett

    E-print Network

    Duckett, Tom

    A Genetic Algorithm for Simultaneous Localization and Mapping Tom Duckett Centre for Applied. The fitness values in the genetic algorithm are obtained with a heuristic function that measures of the maps produced, and the search proceeds using a genetic algorithm (GA). GAs are a well-known search

  3. A Genetic Algorithm for Simultaneous Localization and Mapping Tom Duckett

    E-print Network

    Duckett, Tom

    A Genetic Algorithm for Simultaneous Localization and Mapping Tom Duckett Centre for Applied. The fitness values in the genetic algorithm are obtained with a heuristic function that measures of the maps produced, and the search proceeds using a genetic algorithm (GA). GAs are a well­known search

  4. Affective Speech Elicited With a Computer Game Tom Johnstone

    E-print Network

    Reading, University of

    Affective Speech Elicited With a Computer Game Tom Johnstone University of Western Australia the degree to which emotional changes in speech reflect factors other than arousal, such as valence, the authors used a computer game to induce natural emotional speech. Voice samples were elicited following

  5. Towards a prokaryotic genomic taxonomy q Tom Coenye a,*,1

    E-print Network

    Gent, Universiteit

    Towards a prokaryotic genomic taxonomy q Tom Coenye a,*,1 , Dirk Gevers a,b,1 , Yves Van de Peer b of the potential implications of these novel approaches for bacterial taxonomy in general and our thinking about by Elsevier B.V. All rights reserved. Keywords: Microbial taxonomy; Whole-genome sequences; Comparative

  6. Towards a Taxonomy of Software Evolution Tom Mens Jim Buckley

    E-print Network

    Zenger, Matthias

    Towards a Taxonomy of Software Evolution Tom Mens Jim Buckley Vrije Universiteit Brussel Pleinlaan taxonomies of software evolution have focused on the purpose of the change (i.e., the why) rather than the underlying mechanisms. This paper proposes a taxonomy of software evolution based on the characterizing

  7. Procedural Modeling of Urban Land Use Tom Lechner1

    E-print Network

    Young, R. Michael

    1 Procedural Modeling of Urban Land Use Tom Lechner1 , Benjamin Watson2 Dept. EECS, Dept. CS not model land use, meaning artists must arrange the buildings in the cities they create manually. We describe a method for procedurally generating typical patterns of urban land use using agent

  8. New Whole-House Solutions Case Study: Tom Walsh & Co.

    SciTech Connect

    none,

    2013-02-01

    Tom Walsh & Company’s homes in an urban infill project in Portland achieved meets 2012 IECC insulation requirements in the marine climate with R-21 fiberglass batt walls, R-25 slab insulation and R-49 spray foam and cellulose attic floors.

  9. Team Leader: Tom Peters--TAP Information Services

    ERIC Educational Resources Information Center

    Library Journal, 2005

    2005-01-01

    Tom Peters packs 36 hours of work into the confines of a 24-hour day. Without breaking a sweat, he juggles multiple collaborative projects, which currently include an Illinois academic library shared storage facility; a multistate virtual reference and instruction service for blind and visually impaired individuals (InfoEyes); a virtual meeting…

  10. Temperature fluctuations in the intergalactic medium Tom Theuns,1P

    E-print Network

    Zaroubi, Saleem

    Temperature fluctuations in the intergalactic medium Tom Theuns,1P Saleem Zaroubi,2 Tae-Sun Kim,3-density intergalactic medium (IGM) is set by the balance between adiabatic cooling resulting from the expansion ­ intergalactic medium ­ quasars: absorption lines ­ cosmology: theory ­ large-scale structure of Universe. 1 I NT

  11. Random walks in random environment Tom Schmitz (MPI Leipzig)

    E-print Network

    Thalmaier, Anton

    Random walks in random environment Tom Schmitz (MPI Leipzig) The model of random walks in random environment (RWRE) originates from physical and biological sciences and describes a random motion random variables, creating thus a "random environment" for the walker. More specifically, we only allow

  12. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1981-01-01

    Efforts continue in the development of a computer program for looking at the coupling of finite dimensioned source fields with a laterally heterogeneous Earth. An algorithm for calculating a time-varying reference field using ground-based magnetic observatory data is also under development as part of the production of noise-free estimates of global electromagnetic response functions using Magsat data.

  13. Preliminary X-ray crystallographic studies of yeast mitochondrial protein Tom70p

    SciTech Connect

    Wu, Yunkun; McCombs, Debbie; Nagy, Lisa; DeLucas, Lawrence; Sha, Bingdong

    2006-03-01

    Tom70p is an important translocase of the outer membrane complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) has been crystallized. Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tom70p is an important TOM-complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) was crystallized. The crystals diffract to 3.2 Å using a synchrotron X-ray source and belong to space group P2{sub 1}, with unit-cell parameters a = 44.89, b = 168.78, c = 83.41 Å, ? = 90.00, ? = 102.74, ? = 90.00°. There are two Tom70p molecules in one asymmetric unit, which corresponds to a solvent content of approximately 51%. Structure determination by MAD methods is under way.

  14. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  15. Using PlayDoh Astronomy for Understanding the Size and Scale of the Earth-Moon System and as a Probe for Spatial Translation Ability

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika

    2013-01-01

    To help students love science more and to help them understand the vast distances that pervade astronomy, we use kinesthetic modeling of the Earth-Moon system using PlayDoh. When coupled with discussion, we found (in a pilot study) that students of all ages (children up through adults) acquired a more accurate mental representation of the Earth-Moon system. During early September 2012, we devised and implemented a curriculum unit that focused on the Earth-Moon system and how that relates to eclipses for six middle-Tennessee 6th grade public school classrooms. For this unit, we used PlayDoh as the kinesthetic modeling tool. First, we evaluated what the students knew about the size and scale prior to this intervention using paper and model pre-tests. Second, we used the PlayDoh to model the Earth-Moon system and when possible, conducted an immediate post-test. The students then engaged with the PlayDoh model to help them understand eclipses. Third, we conducted a one-month-later delayed post-test. One thing to note is that about half of the students had experienced the PlayDoh modeling part of a 5th grade pilot lesson during May 2012 therefore the pre-test acted as a four-month-later delayed post-test for these students. We find, among other things, that students retain relative size information more readily than relative distance information. We also find differences in how consistent students are when trying to translate the size/scale they have in their heads to the different modes of assessment utilized.

  16. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1980-01-01

    The applicability of electromagnetic deep sounding experiments using natural sources in the magnetosphere by incorporating Magsat data with other geophysical data was evaluated. Magsat satellite data, ground based magnetic observations, appropriate reference field models, and other satellite data was analyzed. The optimal combination of observations which lead first to a global and then to a regional characterization of the conductivity of the Earth's upper mantle is sought.

  17. Earth Sciences Environmental Earth Sciences,

    E-print Network

    Brierley, Andrew

    94 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint placement. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society

  18. Earth Sciences Environmental Earth Sciences,

    E-print Network

    Brierley, Andrew

    86 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society of London

  19. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice.

    PubMed

    Nozoye, Tomoko; Nagasaka, Seiji; Kobayashi, Takanori; Sato, Yuki; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-11-13

    Iron is an essential metal element for all living organisms. Graminaceous plants produce and secrete mugineic acid family phytosiderophores from their roots to acquire iron in the soil. Phytosiderophores chelate and solubilize insoluble iron hydroxide in the soil. Subsequently, plants take up iron-phytosiderophore complexes through specific transporters on the root cell membrane. Phytosiderophores are also thought to be important for the internal transport of various transition metals, including iron. In this study, we analyzed TOM2 and TOM3, rice homologs of transporter of mugineic acid family phytosiderophores 1 (TOM1), a crucial efflux transporter directly involved in phytosiderophore secretion into the soil. Transgenic rice analysis using promoter-?-glucuronidase revealed that TOM2 was expressed in tissues involved in metal translocation, whereas TOM3 was expressed only in restricted parts of the plant. Strong TOM2 expression was observed in developing tissues during seed maturation and germination, whereas TOM3 expression was weak during seed maturation. Transgenic rice in which TOM2 expression was repressed by RNA interference showed growth defects compared with non-transformants and TOM3-repressed rice. Xenopus laevis oocytes expressing TOM2 released (14)C-labeled deoxymugineic acid, the initial phytosiderophore compound in the biosynthetic pathway in rice. In onion epidermal and rice root cells, the TOM2-GFP fusion protein localized to the cell membrane, indicating that the TOM2 protein is a transporter for phytosiderophore efflux to the cell exterior. Our results indicate that TOM2 is involved in the internal transport of deoxymugineic acid, which is required for normal plant growth. PMID:26432636

  20. The 1989 Antarctic ozone hole as observed by TOMS

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Schoeberl, Mark R.; Mcpeters, Richard D.; Krueger, Arlin J.; Newman, Paul A.

    1990-01-01

    In 1989 the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus 7 satellite observed the springtime decrease in Antarctic total ozone for the 11th consecutive year. The 1989 minimum values of total ozone measured by TOMS declined throughout the month of September at a rate nearly identical to 1987. The area of the ozone hole as defined by the 220 DU contour grew rapidly during early September. It reached a mid-September peak of 7.5 percent of the Southern Hemisphere, or 19 million square kilometers, essentially the same as observed in 1987. From mid-October through November 1989, minimum polar total ozone values increased and the area within the 220 DU contour decreased more rapidly than during the comparable period of 1987. The more rapid erosion of the 1989 ozone hole resulted from strong wave number one perturbations of the vortex dynamics in late October.

  1. Highlights of TOMS Version 9 Total Ozone Algorithm

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side benefit of this algorithm is that it is considerably simpler than the present algorithm that uses a database of 1512 profiles to retrieve total ozone. These profiles are tedious to construct and modify. Though conceptually similar to the SBUV V8 algorithm that was developed about a decade ago, the SBUV and TOMS V9 algorithms differ in detail. The TOMS algorithm uses 3 wavelengths to retrieve the profile while the SBUV algorithm uses 6-9 wavelengths, so TOMS provides less profile information. However both algorithms have comparable total ozone information and TOMS V9 can be easily adapted to use additional wavelengths from instruments like GOME, OMI and OMPS to provide better profile information at smaller SZAs. The other significant difference between the two algorithms is that while the SBUV algorithm has been optimized for deriving monthly zonal means by making an appropriate choice of the a priori error covariance matrix, the TOMS algorithm has been optimized for tracking short-term variability using month and latitude dependent covariance matrices.

  2. Nimbus-7 TOMS Antarctic ozone atlas: August through November, 1989

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.

    1990-01-01

    Because of the great environmental significance of ozone and to support continuing research at the Antarctic and other Southern Hemisphere stations, the development of the 1989 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 30, 1989. The 1989 ozone hole developed in a manner similar to that of 1987, reaching a comparable depth in early October. This was in sharp contrast to the much weaker hole of 1988. The 1989 ozone hole remained at polar latitudes as it filled in November, in contrast to other recent years when the hole drifted to mid-latitudes before disappearing. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1989 ozone distribution to that of other years.

  3. Global ozone data from the meteor-3/TOMS ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Krueger, Arlin; Cote, C.; Ahmad, Zia; Forman, M.; Wellemeyer, C.; Byerly, W.; Pan, L.; Jaross, Glen; Hudson, R.

    1994-01-01

    A new TOMS instrument (Total Ozone Mapping Spectrometer) was launched from the Plesetsk Cosomodrome, Russia on August 15, 1991. The purpose of the joint project between the U.S. and Russia was to continue the long-term record of ozone measurements from Nimbus-7/TOMS (launched in October 1978). Ozone data from the two satellites compare very closely. When the orbital positions were nearly the same, the comparison over the entire globe showed an offset of 2 percent with a standard deviation of 5 percent. Comparisons were made with several ground based M124 and Dobson stations showing good agreement in absolute value and with the day-to-day variations seen by the ground stations.

  4. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1981-01-01

    Efforts continue in the development of a computer program for looking at the coupling of finite-dimensional source fields with a laterally heterogeneous Earth. An algorithm is also being developed for calculating a time-varying reference field using ground-based magnetic observatory data. It was discovered that ground-based standard magnetic observation is not as so available for the time of the MAGSAT mission as might be expected. Attempts are being made to determine the exact times and observatories from which data are avaliable.

  5. TOMS: The Antarctic ozone hole and ozone trends

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1987-01-01

    The Total Ozone Mapping Spectrometer (TOMS) instrument aboard Nimbus 7 has proved invaluable for the investigation of the recent rapid decline in the springtime total ozone over the Antarctic. The principle problem discussed is that of observing the atmosphere over long periods of time to determine whether or not trends and/or slow oscillations are taking place. Total ozone is an excellent summary parameter for the state of the stratosphere. It responds to temperature changes, and in the long term, is expected to respond to chemical changes. Thus, when changes take place in total ozone, such as the springtime Antarctic decrease it is a clear indication of an important problem, both because of environmental potential and scientific importance. TOMS is actually an overkill for this problem. Significantly more data is taken than is necessary. Tests have shown that maps produced on a 2 by 4 degree grid are essentially equivalent to those produced from the entire gridded data set. Because the critical aspect of the search for changes in ozone is continuous data, reflight of a polar orbiting TOMS is important. Included in the flight should be a stratospheric temperature sensor and, if possible, a modification to obtain some ozone altitude information. A critical aspect of the problem is timeliness of the data. This is the only drawback of the existing TOMS. It is expected that in the very near future the processing will be done within two weeks of real time. This is critical to the process of discovery of phenomena such as the Antarctic ozone hole.

  6. Numerical simulations of positively-biased probes and dielectric-conductor disks in a plasma. [for low earth orbit plasma densities

    NASA Technical Reports Server (NTRS)

    Brandon, S. T.; Kessel, R. L.; Enoch, J.; Armstrong, T. P.

    1984-01-01

    Plasma densities in the low-earth orbit range may be sufficient to cause difficulties for spacecraft operating at high voltages in this environment. The present investigation is concerned with the results of a continuing effort to develop a particle-in-cell (PIC), cylindrically-symmetric, 2-1/2 dimensional, self-consistent numerical simulation code. The simulation has the objective to explore the interactions of an ambient plasma with a conducting disk, which may be partially covered by a dielectric material. The disk and the surrounding dielectric material represent a hole in an insulator covering a conductor. Attention is given to a review of the simulation model, plain disk calculations, the disk and dielectric configuration, and the 'pinhole' effect.

  7. Implementation of the TOMS contamination control requirements in the former USSR

    NASA Technical Reports Server (NTRS)

    Abrams, Eve M.

    1992-01-01

    The American Total Ozone Mapping Spectrometer (TOMS) was integrated with the Russian Meteor-3 spacecraft and launched on August 15, 1991. Although the TOMS instrument was sensitive to both particulate and molecular contamination, the program for Meteor-3 had not formerly addressed contamination control in ground operations. In order to accommodate the TOMS cleanliness requirements, a contamination control program was successfully established from inception at both the Meteor-3 spacecraft plant near Moscow and at the launch site in Plesetsk.

  8. Molecular Chaperone Hsp70/Hsp90 Prepares the Mitochondrial Outer Membrane Translocon Receptor Tom71 for Preprotein Loading

    SciTech Connect

    Li, Jingzhi; Qian, Xinguo; Hu, Junbin; Sha, Bingdong

    2010-11-03

    The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.

  9. TESTING THE EARTH'S RESILIENCE

    E-print Network

    in societies. They probe the way the environ- ment affects our genes, the history of the Earth's climate them. As Wired magazine put it, "Hinton and NCAP have changed the face of the community." On page 8 in another. With the planet facing an uncertain future as a result of global climate change, this work has

  10. Solid Earth: Introduction

    NASA Astrophysics Data System (ADS)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  11. Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix.

    PubMed

    Melin, Jonathan; Schulz, Christian; Wrobel, Lidia; Bernhard, Olaf; Chacinska, Agnieszka; Jahn, Olaf; Schmidt, Bernhard; Rehling, Peter

    2014-09-15

    More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagement of the presequence with inner membrane-bound receptors are less well defined. Using a photoaffinity-labeling approach with modified presequence peptides, we identified Tom40 as a presequence interactor of the TOM complex. Utilizing mass spectrometry, we mapped Tom40's presequence-interacting regions to both sides of the ?-barrel. Analysis of a phosphorylation site within one of the presequence-interacting regions revealed altered translocation kinetics along the presequence pathway. Our analyses assess the relation between the identified presequence-binding region of Tom40 and the intermembrane space domain of Tom22. The identified presequence-interacting region of Tom40 is capable of functioning independently of the established trans-acting TOM presequence-binding domain during matrix import. PMID:25002531

  12. In Their Own Words: Tom Simon - Duration: 4 minutes, 21 seconds.

    NASA Video Gallery

    Tom Simon, a contracting officer's representative for NASA's Commercial Crew Program, discusses the importance of certifying commercial transportation systems are safe to carry NASA astronauts to t...

  13. X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior

    SciTech Connect

    Lin, J.-F.; Struzhkin, V.V.; Jacobsen, S.D.; Shen, G.; Prakapenka, V.B.; Mao, H.-K.; Hemley, R.J.

    2010-07-19

    Synchrotron-based X-ray emission spectroscopy (XES) is well suited to probing the local electronic structure of 3d transition metals such as Fe and Mn in their host phases. The laser-heated diamond anvil cell technique is uniquely capable of generating ultra-high static pressures and temperatures in excess of 100 GPa and 3000 K. Here X-ray emission spectroscopy and X-ray diffraction have been interfaced with the laser-heated diamond cell for studying the electronic spin states of iron in magnesiowuestite-(Mg{sub 0.75},Fe{sub 0.25})O and its crystal structure under lower-mantle conditions. X-ray emission spectra of the ferrous iron in a single crystal of magnesiowuestite-(Mg{sub 0.75},Fe{sub 0.25})O indicate that a high-spin to low-spin transition of ferrous iron occurs at 54 to 67 GPa and 300 K and the ferrous iron remains in the high-spin state up to 47 GPa and 1300 K. This pilot study points to the unique capability of the synchrotron-based XES and X-ray diffraction techniques for addressing the issue of electronic spin transition or crossover in 3d transition metals and compounds under extreme high-P-T conditions.

  14. X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior.

    PubMed

    Lin, Jung-Fu; Struzhkin, Viktor V; Jacobsen, Steven D; Shen, Guoyin; Prakapenka, Vitali B; Mao, Ho-Kwang; Hemley, Russell J

    2005-09-01

    Synchrotron-based X-ray emission spectroscopy (XES) is well suited to probing the local electronic structure of 3d transition metals such as Fe and Mn in their host phases. The laser-heated diamond anvil cell technique is uniquely capable of generating ultra-high static pressures and temperatures in excess of 100 GPa and 3000 K. Here X-ray emission spectroscopy and X-ray diffraction have been interfaced with the laser-heated diamond cell for studying the electronic spin states of iron in magnesiowüstite-(Mg0.75,Fe0.25)O and its crystal structure under lower-mantle conditions. X-ray emission spectra of the ferrous iron in a single crystal of magnesiowüstite-(Mg0.75,Fe0.25)O indicate that a high-spin to low-spin transition of ferrous iron occurs at 54 to 67 GPa and 300 K and the ferrous iron remains in the high-spin state up to 47 GPa and 1300 K. This pilot study points to the unique capability of the synchrotron-based XES and X-ray diffraction techniques for addressing the issue of electronic spin transition or crossover in 3d transition metals and compounds under extreme high-P-T conditions. PMID:16120988

  15. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1981-01-01

    A spherical harmonic analysis program is being tested which takes magnetic data in universal time from a set of arbitrarily space observatories and calculates a value for the instantaneous magnetic field at any point on the globe. The calculation is done as a least mean-squares value fit to a set of spherical harmonics up to any desired order. The program accepts as a set of input the orbit position of a satellite coordinates it with ground-based magnetic data for a given time. The output is a predicted time series for the magnetic field on the Earth's surface at the (r, theta) position directly under the hypothetically orbiting satellite for the duration of the time period of the input data set. By tracking the surface magnetic field beneath the satellite, narrow-band averages crosspowers between the spatially coordinated satellite and the ground-based data sets are computed. These crosspowers are used to calculate field transfer coefficients with minimum noise distortion. The application of this technique to calculating the vector response function W is discussed.

  16. The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum.

    PubMed

    Wojtkowska, Ma?gorzata; Buczek, Dorota; Stobienia, Olgierd; Karachitos, Andonis; Antoniewicz, Monika; Slocinska, Ma?gorzata; Maka?owski, Wojciech; Kmita, Hanna

    2015-07-01

    Protein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins. Available data indicate that mitochondria of representative organisms from across the major phylogenetic lineages of eukaryotes differ in subunit organization of the TOM complex. The subunit organization of the TOM complex in the Amoebozoa is still elusive, so we decided to investigate its organization in the soil amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. They represent two major subclades of the Amoebozoa: the Lobosa and Conosa, respectively. Our results confirm the presence of Tom70, Tom40 and Tom7 in the A. castellanii and D. discoideum TOM complex, while the presence of Tom22 and Tom20 is less supported. Interestingly, the Tom proteins display the highest similarity to Opisthokonta cognate proteins, with the exception of Tom40. Thus representatives of two major subclades of the Amoebozoa appear to be similar in organization of the TOM complex, despite differences in their lifestyle. PMID:26074248

  17. On the Study of Richard Tom Robert Identity

    E-print Network

    Yeong-Shyeong Tsai

    2008-11-05

    In order to estimate the average speed of mosquitoes, a simple experiment was designed by Richard (Lu-Hsing Tsai), Tom (Po-Yu Tsai) and Robert (Hung-Ming Tsai). The result of the experiment was posted in the science exhibitions Taichung Taiwan 1993. The average speed of mosquitoes is inferred by the simple relation that is obtained easily. In this paper, we will show how the data generated by computer. Though the rigorous proof is not shown, a sketch proof will be shown in this paper. There are five figures one table and one fortran computer source program in the end of the paper.

  18. Spectrophotometric probe

    DOEpatents

    Prather, William S. (Augusta, GA); O'Rourke, Patrick E. (Martinez, GA)

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  19. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  20. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  1. THE YOGA OF THE CASSELS-TATE PAIRING TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL

    E-print Network

    Stoll, Michael

    THE YOGA OF THE CASSELS-TATE PAIRING TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL Abstract Classification. Primary 11G05; Secondary 11G07. Key words and phrases. Cassels-Tate pairing, elliptic curve, 2;2 TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL Recently, Swinnerton-Dyer [13] has generalised

  2. THE YOGA OF THE CASSELS-TATE PAIRING TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL

    E-print Network

    Stoll, Michael

    THE YOGA OF THE CASSELS-TATE PAIRING TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL Abstract Mathematics Subject Classification. Primary 11G05; Secondary 11G07. Key words and phrases. Cassels and a Fulbright Award. 1 #12;2 TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL in Section 6 to prove our main

  3. Adding Vision to Khepera: An Autonomous Robot toms@cogs.susx.ac.uk

    E-print Network

    Choset, Howie

    Adding Vision to Khepera: An Autonomous Robot Footballer Tom Smith toms@cogs.susx.ac.uk School making those features unreliable, are used to construct a simulated environment for a robot with vision system. A xed architecture neural network provides a sensorimotor control system for the simulated robot

  4. 33 CFR 80.501 - Tom's River, NJ to Cape May, NJ.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Tom's River, NJ to Cape May, NJ. 80.501 Section 80.501 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.501 Tom's River, NJ to Cape May,...

  5. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sandy Hook, NJ to Tom's River, NJ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet...

  6. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sandy Hook, NJ to Tom's River, NJ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet...

  7. 33 CFR 80.501 - Tom's River, NJ to Cape May, NJ.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tom's River, NJ to Cape May, NJ. 80.501 Section 80.501 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.501 Tom's River, NJ to Cape May,...

  8. Carn et al. 2002 TOMS volcanic emissions database Volcanic eruption detection by the Total Ozone Mapping Spectrometer

    E-print Network

    Bluth, Gregg

    Carn et al. 2002 ­ TOMS volcanic emissions database 1 Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions S. A. 9616 Words 84 References 9 Tables 5 Figures TOMS volcanic emissions database #12;Carn et al. 2002

  9. Radiation belt probes launched

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    Storms on Earth delayed by only a few days the launch of NASA's Radiation Belt Storm Probes (RBSP), which blasted off on 30 August for a 2-year tour to explore the Van Allen radiation belts. The two satellites will help scientists learn about the processes that affect electrons and ions in the donut-shaped belts and how the belts change in the context of geomagnetic storms. “The information collected from these probes will benefit the public by allowing us to better protect our satellites and understand how space weather affects communications and technology on Earth,” said John Grunsfeld, associate administrator for NASA's Science Mission Directorate. Each probe carries an identical suite of instruments, including an Energetic Particle, Composition, and Thermal Plasma Suite; Electric and Magnetic Field Instrument Suite and Integrated Science; Electric Field and Waves Suite; Radiation Belt Storm Probes Ion Composition Experiment; and Relativistic Proton Spectrometer. RBSP is part of NASA's Living With a Star program and is managed for NASA by the Johns Hopkins University's Applied Physics Laboratory. For more information, see http://rbsp.jhuapl.edu.

  10. Tom, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4

    SciTech Connect

    Shields, M.S.; Reagin, J.J.; Campbell, R.

    1995-04-01

    Burkholderia (Pseudomonas) cepacia PR1{sub 23} has been shown to constitutively express a toluene catabolic pathway distinguished by a unique toluene ortho-monooxygenase (Tom). This strain has also been shown to contain two extrachromosomal elements of <70 and> 100 kb. A derivative strain cured of the largest plasmid, PR1{sub 23} Cure, was unable to grow on phenol or toluene as the sole source of carbon and energy, which requires expression of the Tom pathway. Transfer of the larger plasmid from strain G4 J(the parent strain inducible for Tom) enabled PR1{sub 23} Cure to grow on toluene or phenol via inducible Tom pathway expression. Conjugal transfer of TOM{sub 23c} from PR1{sub 23} to an antibiotic-resistant derivative of PR1{sub 23} Cure enabled the transconjugant to grow with either phenol or toluene as the sole source of carbon and energy through constitutive expression of the Tom pathway. A cloned 11.2-kb EcoRI restriction fragment of Tom{sub 23c} resulted in the expression of both Tom and catechol 2,3-dioxygenase in Escherichia coli, as evidenced by its ability to oxidize trichloroethylene, toluene, m-cresol, o-cresol, phenol, and catechol. The largest resident plasmid of PR1 was identified as the source of these genes by DNA hybridization. These results indicate that the genes which encode Tom and catechol 2,3-dioxygenase are located on TOM, an approximately 108-kb degradative plasmid of B. cepacia G4. 35 refs., 3 figs., 3 tabs.

  11. Early Earth

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2015-05-01

    Earth has continents, subduction and mobile lid plate tectonics, but details of the early evolution are poorly understood. Here I summarize the Hadean-Archean record, review evidence for a hotter Earth and consider geodynamic models for early Earth.

  12. Earth's Three

    E-print Network

    Hacker, Randi

    2010-11-17

    Broadcast Transcript: From Mongolia, land of fermented mare's milk, comes this beguiling morsel of nomadic oral tradition. It's called yertonciin gorav or Earth's Three. Earth's three what? Well, Earth's three top things in a number of categories...

  13. Atmospheric probes: needs and prospects

    NASA Astrophysics Data System (ADS)

    Owen, Tobias

    2004-02-01

    There is only one Rosetta Stone in the Solar System; it's in the British Museum. We cannot understand the inner planets by simply studying the Earth, nor can we apprehend the giants by examining only Jupiter. Despite the stunning successes of previous probes to Venus and the Galileo probe to Jupiter, our knowledge of the atmospheres of even these two planets remains tantalizingly incomplete. We must therefore return to Venus and consider the challenge of exploring all of the outer planets with a family of identical probes, a project that could commemorater the vision of multiple worlds championed by Giordano Bruno.

  14. Huygens probe on target

    NASA Astrophysics Data System (ADS)

    1995-07-01

    In October 1997, a Titan/Centaur rocket lifting-off from Cape Canaveral will boost the spacecraft into a 6.7 year trajectory to reach Saturn. The trajectory will use two swing-bys of Venus in April 1998 and June 1999, followed by an Earth swing-by in August 1999 and a Jupiter swing-by in December 2000 to boost speed and reach Saturn in July 2004. A few months after going into orbit around Saturn, the Cassini spacecraft will release the Huygens probe for its descent through the atmosphere of Titan, the largest satellite of Saturn. The Huygens probe will measure the abundance of elements and compounds in Titan's atmosphere, the distribution of trace gases and aerosols, winds, temperature, pressure and surface state and its composition. A multi-spectral camera on the probe will provide images of the landscape of Titan. Titan is a unique planetary body in the solar system. It has an atmosphere which is primarily nitrogen. but is also rich in hydrocarbons. Due to the vast distance of the Saturnian system from the Sun, this atmosphere is at a very low temperature, thus greatly slowing down all the chemical processes. A study of this atmosphere will throw light on the development of our own atmosphere and contribute to our understanding of the origins of life on Earth. The Huygens probe is being developed by ESA with Aerospatiale (F) as the industrial prime contractor. Since the start of the programme in April 1990, very good progress has been made in design and hardware development. The entry into the Titan atmosphere will result in a very high surface temperature on the probe, generated as it decelerates due to the friction of the upper atmospheric layers. After the probe has slowed down sufficiently, a system of parachutes ensures a slow descent to the surface of Titan in approximately two and a half hours. The scientific measurements can only begin after the heat shield, which is needed to protect the probe during the high temperature entry phase, has been ejected. This occurs at an altitude of around 170 km above Titan's surface. In order to validate this complex sequence, a Balloon Drop Test was recently carried out on a full size model of the probe. The balloon carried the probe to an altitude of 36 km above the test range (ESRANGE) near Kiruna in Sweden. The probe was automatically released and all the descent control systems were operated. This test was completely successfully and the Descent Module was recovered on ground intact and functioning (pictures are available upon request). In addition, all the environmental testing has been carried out on another model to prove the structural and thermal integrity of the probe. The Structure Thermal and Pyro Model (SIAM) of the Huygens probe was delivered to NASA's Jet Propulsion Laboratory (JPL) on 5 th July, 1995 for combined testing with the Cassini spacecraft. For the electrical systems, a special Engineering Model has been subjected to functional testing and the results to date are successful. This model will also be delivered to JPL for combined testing in the near future. Currently-, the Flight Model hardware is being delivered to Daimler Benz in Munich, by the industrial subcontractors, where integration of the Flight Probe will take place. "The design and the production of this complex system in a relatively short time of four years has proceeded very smoothly thanks to the motivation of the European space industry", said Huygens ESA Project Manager Hamid Hassan. The Flight Probe will be delivered to NASA/JPL in early 1997 for a launch of Cassini-Huygens on a Titan IV/Centaur rocket in October 1997.

  15. Ultrastructure of the domestic tom cat (Felis domestica ) and tiger (Panthera tigris altaica ) spermatozoa.

    PubMed

    Schmehl, M L; Graham, E F

    1989-04-01

    The ultrastructure of spermatozoa from the domestic tom cat and the Siberian tiger was studied. Semen was collected from anesthetized tom cats and Siberian tigers by electroejaculation. Spermatozoa were fixed and processed for examination by transmission electron microscopy. The principle differences between the spermatozoa from the two species were the head shape, mitochondrial organization in the neck area and structure of the fibrous sheath. Tom cat spermatozoa had an elongated oval-shaped head, while tiger spermatozoa had a more rounded head shape. Circularly oriented mitochondria in the neck area, near the proximal centriole, were frequently observed in tiger cells but rarely observed in tom cat cells. The semicircular ribs of tom cat spermatozoa were larger than the ribs of tiger spermatozoa. Also, the dense fibers (Numbers 3 and 8) of the corresponding microtubule doublets were fused or connected to the longitudinal columns in tiger spermatozoa but showed only occasional attachment in tom cat spermatozoa. These differences could influence results when the tom cat is used as a model for studying tiger semen. PMID:16726601

  16. Situ Discovery Electrostatic Potential, Trapping Electrons and Mediating Fast Reconnection Earth's Magnetotail

    E-print Network

    Egedal, Jan

    phase distributions, measured Wind spacecraft a rare crossing diffusion region in Earth's magnetotailSitu Discovery Electrostatic Potential, Trapping Electrons and Mediating Fast Reconnection Earth (60 Earth radii), analyzed. measured probe electrostatic magnetic geometry diffusion region. time

  17. Satellite Mapping of the Earth's Ozone and Sulfur Dioxide

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Total Ozone Mapping Spectrometer (TOMS) instruments are spatially-scanning UV spectrometers that have produced daily global images of total ozone over the last 21 years since the launch of the Nimbus 7 satellite. The instruments use a total ozone retrieval algorithm pioneered by J.V. Dave and C. L. Mateer for the Nimbus 4 Backscatter Ultraviolet (BUV) instrument, designed by D.F. Heath. The TOMS ozone maps have revealed the relations between total ozone and atmospheric dynamics, and shown the dramatic losses of ozone in the Antarctic ozone hole and the Northern hemisphere. The accepted long-term trends in global, regional, and local ozone are derived from data from the Nimbus 7 TOMS and three successive TOMS flights on Russian, Japanese, and American satellites. The next TOMS flight will be launched in 2000. The contiguous mapping design and fortuitous choice of TOMS wavelengths bands also permitted imaging of a second atmospheric gas, sulfur dioxide, which is transient due to its short lifetime. The importance of this measurement was first realized after the eruption of El Chichon volcano in 1982. The extreme range of sizes of volcanic eruptions and the associated danger require observations from a distant observing platform. The first quantitative time series of the input of sulfur dioxide by explosive volcanic eruptions into the atmosphere thus was developed from the TOMS missions. Finally, the Rayleigh and aerosol scattering spectral characteristic and reflectivity complete the four dominant pieces of information in the near UV albedo of the Earth. The four parameters are derived with a linear algorithm, the absorption coefficients of the gases, and effective paths computed from radiative transfer tables. Absorbing aerosol clouds (smoke, dust, volcanic ash) are readily identified by their deviation from a Rayleigh signature. The greatest shortcoming of the TOMS dataset is the 24 hour time resolution that is produced by the polar orbit of the satellite. Dynamic phenomena, such as upper air fronts that modulate total ozone and volcanic eruptions of sulfur dioxide and ash, cannot be adequately resolved. It is hoped that UV observations from geostationary satellites will soon be made to test the value of this unique information in weather forecasting and aviation safety.

  18. Satellite Mapping of the Earth's Ozone and Sulfur Dioxide

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin; Bhartia, P. K.

    2000-01-01

    The Total Ozone Mapping Spectrometer (TOMS) instruments are spatially-scanning UV spectrometers that have produced daily global images of total ozone over the last 21 years since the launch of the Nimbus 7 satellite. The instruments use a total ozone retrieval algorithm pioneered by J.V. Dave and C. L. Mateer for the Nimbus 4 Backscatter Ultraviolet (BUV) instrument, designed by D.F. Heath. The TOMS ozone maps have revealed the relations between total ozone and atmospheric dynamics, and shown the dramatic losses of ozone in the Antarctic ozone hole and the Northern hemisphere. The accepted long-term trends in global, regional, and local ozone are derived from data from the Nimbus 7 TOMS and three successive TOMS flights on Russian, Japanese, and American satellites. The next TOMS flight will be launched in 2000. The contiguous mapping design and fortuitous choice of TOMS wavelengths bands also permitted imaging of a second atmospheric gas, sulfur dioxide, which is transient due to its short lifetime. The importance of this measurement was first realized after the eruption of El Chichon volcano in 1982. The extreme range of sizes of volcanic eruptions and the 'associated danger require observations from a distant observing platform. The first quantitative time series of the input of sulfur dioxide by explosive volcanic eruptions into the atmosphere thus was developed from the TOMS missions. Finally, the Rayleigh and aerosol scattering spectral characteristic and reflectivity complete the four dominant pieces of information in the near UV albedo of the Earth. The four parameters are derived with a linear algorithm, the absorption coefficients of the gases, and effective paths computed from radiative transfer tables. Absorbing aerosol clouds (smoke, dust, volcanic ash) are readily identified by their deviation from a Rayleigh signature. The greatest shortcoming of the TOMS dataset is the 24 hour time resolution that is produced by the polar orbit of the satellite. Dynamic phenomena, such as upper air fronts that modulate total ozone and volcanic eruptions of sulfur dioxide and ash, cannot be adequately resolved. It is hoped that UV observations from geostationary satellites will soon be made to test the value of this unique information in weather forecasting and aviation safety.

  19. User's guide for SBUV/TOMS ozone derivative products

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Wellemeyer, C.; Oslik, N.; Lee, D.; Miller, J.; Magatani, R.

    1984-01-01

    A series of products are available derived from the total-ozone and ozone vertical profile results for the Solar Backscattered Ultraviolet/Total-Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus-7 operation. Products available are (1) orbital height-latitude cross sections of the SBUV profile data, (2) daily global total ozone contours in polar coordinates, (3) daily averages of total ozone in global 5x5 degree latitude-longitude grid, (4) daily, monthly and quarterly averages of total ozone and profile data in 10 degree latitude zones, (5) tabular presentation of zonal means, (6) daily global total ozone and profile contours in polar coordinates. The ""Derivative Products User's Guide'' describes each of these products in detail, including their derivation and presentation format. Information is provided on how to order the tapes and microfilm from the National Space Science Data Center.

  20. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  1. Meteor 3/TOMS launch of 15 August 1991 in Plesetsk, USSR

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The TOMS launch of August 15, 1991, was a joint effort between the U.S.S.R. and the United States. The pre-launch briefing, a tour of the TOMS storage site, it's delivery and setup at the launch site, and the actual launch were viewed in this video, along with a post-launch conference and a dinner. The launch occurred in Plesetsk, U.S.S.R., with the TOMS payload being launched on a Soviet Meteor. Officials from NASA were present for the launch.

  2. Spin of Planetary Probes in Atmospheric Flight

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  3. Probing the Proteome on Earth and Beyond

    NASA Astrophysics Data System (ADS)

    Ostrom, P.

    2008-12-01

    Less than a decade ago, protein sequencing was the bane of paleobiology. Since that time researchers have completely sequenced proteins in >50 Ka fossils, been dazzled by reports of collagen peptides in dinosaur bones, and witnessed the development of phylogenetic trees from ancient protein sequences. Enlisting proteomics as biosignature is now in our grasp. In this talk the pitfalls and challenges of mass spectrometric approaches to protein sequencing will be illustrated and phylogenetic applications will be discussed. Work on extinct organisms at Michigan State University, University of Michigan and York University will provide a vantage point to assess methodologies, explore diagenetic alterations, evaluate mass spectra and illustrate issues associated with data base searching. Challenges encountered in the study of paleoproteomics, such as the absence of sequences for extinct organisms in commercially available databases, protein diagenesis and low concentrations of target are parallel to those that will be encountered when protein sequencing is extended to extreme and extraterrestrial environments. Thus, lessons learned from interrogating the ancient proteome are important and necessary step in developing proteomics as a biosignature tools.

  4. ISS Update: Orion Recovery and Rescue Lead Tom Walker - Duration: 5 minutes, 3 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Tom Walker, Orion Recovery and Rescue Lead, about how the Neutral Buoyancy Laboratory (NBL) is being used to train rescue and recovery personnel f...

  5. Multi-cue mid-level grouping Tom Lee, Sanja Fidler, Sven Dickinson

    E-print Network

    Dickinson,Sven

    Multi-cue mid-level grouping Tom Lee, Sanja Fidler, Sven Dickinson University of Toronto {tshlee,fidler Fidler, Sven Dickinson (a) (b) (c) (d) (e) (f) Fig. 1. Given an input image as shown in (a), our method

  6. Cooling laser system for quantum computing with barium-137 ions Tom Chartrand

    E-print Network

    Blinov, Boris

    Cooling laser system for quantum computing with barium-137 ions Tom Chartrand Department of Physics for essentially any application. We have been trapping 137-barium with this end in mind. The odd isotope has

  7. ISS Update: Progress 50 Launch and Docking with Tom Erkenswick - Duration: 12 minutes.

    NASA Video Gallery

    NASA Public Affairs Officer Rob Navias conducts an interview with Visiting Vehicle Officer Tom Erkenswick about the launch of the ISS Progress 50 resupply ship and its docking to the International ...

  8. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet South Breakwater Light 1. (b) A line drawn from Manasquan Inlet North...

  9. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet South Breakwater Light 1. (b) A line drawn from Manasquan Inlet North...

  10. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet South Breakwater Light 1. (b) A line drawn from Manasquan Inlet North...

  11. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet South Breakwater Light 1. (b) A line drawn from Manasquan Inlet North...

  12. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light 2 to Shark River Inlet South Breakwater Light 1. (b) A line drawn from Manasquan Inlet North...

  13. Comparison of TOMS retrievals and UVMRP measurements of surface spectral UV radiation in the United States

    NASA Astrophysics Data System (ADS)

    Xu, M.; Liang, X.-Z.; Gao, W.; Krotkov, N.

    2010-04-01

    Surface noontime spectral ultraviolet (UV) irradiances during May-September of 2000-2004 from the total ozone mapping spectrometer (TOMS) satellite retrievals are systematically compared with the ground measurements at 27 climatological sites maintained by the USDA UV-B Monitoring and Research Program. The TOMS retrievals are evaluated by two cloud screening methods and local air quality conditions to determine their bias dependencies on spectral bands, cloudiness, aerosol loadings, and air pollution. Under clear-sky conditions, TOMS retrieval biases vary from -3.4% (underestimation) to 23.6% (overestimation). Averaged over all sites, the relative mean biases for 305, 311, 325, and 368 nm are respectively 15.4, 7.9, 7.6, and 7.0% (overestimation). The bias enhancement for 305 nm by approximately twice that of other bands likely results from absorption by gaseous pollutants (SO2, O3), and aerosols that are not included in the TOMS algorithm. For all bands, strong positive correlations of the TOMS biases are identified with aerosol optical depth, which explains nearly 50% of the variances of TOMS biases. The more restrictive in-situ cloud screening method reduces the biases by 3.4-3.9% averaged over all sites. This suggests that the TOMS biases from the in-situ cloud contamination may account for approximately 25% for 305 nm and 50% for other bands of the total bias. The correlation coefficients between total-sky and clear-sky biases across 27 sites are 0.92, 0.89, 0.83, and 0.78 for 305, 311, 325, and 368 nm, respectively. The results show that the spatial characteristics of the TOMS retrieval biases are systematic, representative of both clear and total-sky conditions.

  14. Comparison of TOMS retrievals and UVMRP measurements of surface spectral UV radiation in the United States

    NASA Astrophysics Data System (ADS)

    Xu, M.; Liang, X.-Z.; Gao, W.; Krotkov, N.

    2010-09-01

    Surface noontime spectral ultraviolet (UV) irradiances during May-September of 2000-2004 from the total ozone mapping spectrometer (TOMS) satellite retrievals are systematically compared with the ground measurements at 27 climatological sites maintained by the USDA UV-B Monitoring and Research Program. The TOMS retrievals are evaluated by two cloud screening methods and local air quality conditions to determine their bias dependencies on spectral bands, cloudiness, aerosol loadings, and air pollution. Under clear-sky conditions, TOMS retrieval biases vary from -3.4% (underestimation) to 23.6% (overestimation). Averaged over all sites, the relative mean biases for 305, 311, 325, and 368 nm are respectively 15.4, 7.9, 7.6, and 7.0% (overestimation). The bias enhancement for 305 nm by approximately twice that of other bands likely results from absorption by gaseous pollutants (SO2, O3), and aerosols that are not included in the TOMS algorithm. For all bands, strong positive correlations of the TOMS biases are identified with aerosol optical depth, which explains nearly 50% of the variances of TOMS biases. The more restrictive in-situ cloud screening method reduces the biases by 3.4-3.9% averaged over all sites. This suggests that the TOMS biases from the in-situ cloud contamination may account for approximately 25% for 305 nm and 50% for other bands of the total bias. The correlation coefficients between total-sky and clear-sky biases across 27 sites are 0.92, 0.89, 0.83, and 0.78 for 305, 311, 325, and 368 nm, respectively. The results show that the spatial characteristics of the TOMS retrieval biases are systematic, representative of both clear and total-sky conditions.

  15. Traffic dynamics in empirical probe vehicle data studied with three-phase theory: Spatiotemporal reconstruction of traffic phases and generation of jam warning messages

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Rehborn, Hubert; Schäfer, Ralf-Peter; Klenov, Sergey L.; Palmer, Jochen; Lorkowski, Stefan; Witte, Nikolaus

    2013-01-01

    Empirical and theoretical analyses of the spatiotemporal dynamics of traffic flow reconstructed from randomly distributed probe vehicle data are presented. For the empirical analysis, probe vehicle data generated by TomTom’s navigation devices in the commercial TomTom’s HD-traffic service as well as road detector data measured at the same road section are used. A stochastic microscopic (car-following) three-phase model is further developed for simulations of a real empirical complex spatiotemporal traffic dynamics measured over a three-lane long road stretch with several different bottlenecks. Physical features and limitations of simulations of real spatiotemporal traffic dynamics are revealed. Phase transition points between free flow (F), synchronized flow (S), and wide moving jam (J) are identified along trajectories of empirical and simulated probe vehicles randomly distributed in traffic flow. As predicted by three-phase theory, the empirical probe vehicle data shows that traffic breakdown is an F?S transition and wide moving jams emerge only in synchronized flow, i.e., due to S?J transitions. Through the use of the simulations, it has been found that already about 2% of probe vehicle data allows us to reconstruct traffic dynamics in space and time with an accuracy that is high enough for most applications like the generation of jam warning messages studied in the article.

  16. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  17. Optical probe

    SciTech Connect

    Hencken, K.; Flower, W.

    1999-09-14

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  18. Optical probe

    DOEpatents

    Hencken, Kenneth (Pleasanton, CA); Flower, William L. (Livermore, CA)

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  19. Combining Probes

    NASA Astrophysics Data System (ADS)

    Rassat, Anaïs; Lanusse, François; Kirk, Donnacha; Host, Ole; Bridle, Sarah

    2014-05-01

    With the advent of wide-field surveys, cosmology has entered a new golden age of data where our cosmological model and the nature of dark universe will be tested with unprecedented accuracy, so that we can strive for high precision cosmology. Observational probes like weak lensing, galaxy surveys and the cosmic microwave background as well as other observations will all contribute to these advances. These different probes trace the underlying expansion history and growth of structure in complementary ways and can be combined in order to extract cosmological parameters as best as possible. With future wide-field surveys, observational overlap means these will trace the same physical underlying dark matter distribution, and extra care must be taken when combining information from different probes. Consideration of probe combination is a fundamental aspect of cosmostatistics and important to ensure optimal use of future wide-field surveys.

  20. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  1. Straight talk with... Tom Inglesby. Interview by Kevin Jiang.

    PubMed

    Inglesby, Tom

    2013-06-01

    When letters containing anthrax spores were mailed to several US senators and media offices in September 2001, just one week after the 9/11 attacks, bioterrorism catapulted to the national stage. Political leaders and public health officials, desperate for guidance on this once-theoretical scenario, turned to experts including Tom Inglesby, then deputy director of the Johns Hopkins Center for Civilian Biodefense Strategies, a bioterrorism research and analysis think tank in Baltimore. In the years that followed, Inglesby and his colleagues ran exercises to simulate bioterror incidents, established a peer-reviewed journal on biodefense and advised government agencies on how to reduce the public health impact of biological threats.Today, he continues his work with the think tank, which moved to the University of Pittsburgh Medical Center (UPMC) in 2003 (although it stayed headquartered in Baltimore) and which was recently renamed the UPMC Center for Health Security. As director and chief executive officer for the past four years, Inglesby has expanded the center's focus toward preventing public health crises arising from infectious diseases, pandemics and major natural disasters, in addition to biological, chemical and nuclear accidents or threats. Inglesby spoke with Kevin Jiang about how responses to bioterrorism, pandemics and natural disasters aren't all that different. PMID:23744137

  2. The Pro-Apoptotic BH3-Only Protein Bim Interacts with Components of the Translocase of the Outer Mitochondrial Membrane (TOM)

    PubMed Central

    Frank, Daniel O.; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated. PMID:25875815

  3. Observing Conditions and Mid-IR Data Quality Rachel Masona, Andre Wonga, b, Tom Geballea, Kevin Volka, Tom Haywardc, Matt Dillmana,

    E-print Network

    Harrison, Thomas

    Observing Conditions and Mid-IR Data Quality Rachel Masona, Andre Wonga, b, Tom Geballea, Kevin La Serena, Chile ABSTRACT Ground-based mid-infrared (mid-IR) observations appear to be widely specific information on exactly how mid-IR data can be affected by environmental conditions. Understanding

  4. The 1987 Airborne Antarctic Ozone Experiment: the Nimbus-7 TOMS Data Atlas

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Ardanuy, Philip E.; Sechrist, Frank S.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Galimore, Reginald N.

    1988-01-01

    Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the 1987 Airborne Antarctic Ozone Experiment. The near-real-time TOMS total ozone observations were suppled within hours of real time to the operations center in Punta Arenas, Chile, over a telecommunications network designed specifically for this purpose. The TOMS data preparation and method of transfer over the telecommunications links are reviewed. This atlas includes a complete set of the near-real-time TOMS orbital overpass data over regions around the Palmer Peninsula of Antarctica for the period of August 8 through September 29, 1987. Also provided are daily polar orthographic projections of TOMS total ozone measurements over the Southern Hemisphere from August through November 1987. In addition, a chronology of the salient points of the experiment, along with some latitudinal cross sections and time series at locations of interest of the TOMS total ozone observations are presented. The TOMS total ozone measurements are evaluated along the flight tracks of each of the ER-2 and DC-8 missions during the experiment. The ozone hole is shown here to develop in a monotonic progression throughout late August and September. The minimum total ozone amount was found on 5 October, when its all-time lowest value of 109 DU is recorded. The hole remains well defined, but fills gradually from mid-October through mid-November. The hole's dissolution is observed here to begin in mid-November, when it elongates and begins to rotate. By the end of November, the south pole is no longer located within the ozone hole.

  5. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  6. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  8. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    PubMed

    Waegemann, Karin; Popov-?eleketi?, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. PMID:25083920

  9. Correlations of TOMS total ozone data (Nimbus-7 satellite) with tropopause height

    NASA Technical Reports Server (NTRS)

    Munteanu, Marie-Jeanne

    1987-01-01

    Two correlation studies of Total Ozone Mapping Spectrometer (TOMS) data with tropopause height from radiosondes performed over Europe showed a correlation coefficient of 0.94 and 0.96. As a result, the rms error in the prediction of tropopause height from total ozone was found to be 20 mb. Correlation between tropopause height and TOMS data was the highest of all the other correlations with variables directly derived from radiosondes or simulated thermal radiances over the location of radiosondes. Comparing the two dimensional fields of TOMS, tropopause height from radiosondes and tropopause height field from TIROS-N retrievals, we can say that the first field is much closer to the true field from radiosondes than the third. The correlation coefficient for a ten-day study between TOMS data and tropopause height from radiosondes is between 0.85 and 0.9 for 30-70N. Tropopause analysis provided by GLA model also shows a very high correlation with TOMS data.

  10. The Sounds of Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Flying board Voyagers 1 and 2 are identical 'golden' records, carrying the story of Earth far into deep space. The 12 inch gold-plated copper discs contain greetings in 60 languages, samples of music from different cultures and eras, and natural and man-made sounds from Earth. They also contain electronic information that an advanced technological civilization could convert into diagrams and photographs. The cover of each gold plated aluminum jacket, designed to protect the record from micrometeorite bombardment, also serves a double purpose in providing the finder a key to playing the record. The explanatory diagram appears on both the inner and outer surfaces of the cover, as the outer diagram will be eroded in time. Currently, both Voyager probes are sailing adrift in the black sea of interplanetary space, having left our solar system years ago.

  11. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  12. Moon Probe

    E-print Network

    Hacker, Randi; Tsutsui, William

    2007-11-26

    launched something a good deal larger than a potato: Chang 'e 1, a moon probe named for the Chinese goddess of the moon. At a cost of 1.4 billion Yuan--or $175 million dollars--it seems lunacy to spend this sum on this celestial body. What with skies dim...

  13. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  14. The 1989 Airborne Arctic Stratospheric Expedition Nimbus-7 TOMS data atlas

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.

    1989-01-01

    Over the past several years, world scientific attention was focused on the rapid and unanticipated decrease in the abundance of ozone over Antarctica during the Austral spring. A major aircraft campaign was conducted from December 1988 to February 1989 in response to the recently published Ozone Trends Panel Report which found that the largest decreases in Arctic ozone occurred during January to February at latitudes near the edge of the Arctic vortex. This atlas provides a complete set of TOMS ozone measurements over Europe and the North Atlantic for the duration of the experiment. These were the orbital TOMS measurements provided to the experimenters in near-real-time. In addition, a set of Northern Hemisphere TOMS ozone measurements for the period December 26, 1988 to March 20, 1989 is presented. A comparison of January and February 1989 mean ozone values to prior years is also presented.

  15. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    PubMed

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density.Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom. PMID:26577780

  16. The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination

    NASA Technical Reports Server (NTRS)

    Aikin, A.C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.

  17. For more information, contact Tom Mason (303) 492-8257

    E-print Network

    Mojzsis, Stephen J.

    Earth from orbit--how can I possibly describe space flight? LASP holds a special place in my heart days in space during two space flights, and...beyond. -- NASAAstronaut, Sam Durrance To LASP at the Laboratory for Atmospheric and Space Physics for our next public lecture Riding a rocket into space

  18. Training Preschoolers on First-Order False Belief Understanding: Transfer on Advanced ToM Skills and Metamemory

    ERIC Educational Resources Information Center

    Lecce, Serena; Bianco, Federica; Demicheli, Patrizia; Cavallini, Elena

    2014-01-01

    This study investigated the relation between theory of mind (ToM) and metamemory knowledge using a training methodology. Sixty-two 4- to 5-year-old children were recruited and randomly assigned to one of two training conditions: A first-order false belief (ToM) and a control condition. Intervention and control groups were equivalent at pretest for…

  19. Effect of stratospheric aerosol layers on the TOMS/SBUV ozone retrieval

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Zia; Pan, L.; Herman, J. R.; Bhartia, P. K.; Mcpeters, R.

    1994-01-01

    An evaluation of the optical effects of stratospheric aerosol layers on total ozone retrieval from space by the TOMS/SBUV type instruments is presented here. Using the Dave radiative transfer model we estimate the magnitude of the errors in the retrieved ozone when polar stratospheric clouds (PSC's) or volcanic aerosol layers interfere with the measurements. The largest errors are produced by optically thick water ice PSC's. Results of simulation experiments on the effect of the Pinatubo aerosol cloud on the Nimbus-7 and Meteor-3 TOMS products are presented.

  20. Study of Air Pollution from Space Using TOMS: Challenges and Promises for Future Missions

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2002-01-01

    A series of TOMS instruments built by NASA has flown on US, Russian, and Japanese satellites in the last 24 years. These instruments are well known for producing spectacular maps of the ozone hole that forms over Antarctica each spring. However, it is less well known that these instruments also provided first evidence that space-based measurements in UV of sufficiently high precision and accuracy can provide valuable information to study global air quality. We will use the TOMS experience to highlight the promises and challenges of future space-based missions designed specifically for air quality studies.

  1. Gravity Probe B Assembled

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  2. Probing Earth's smallProbing Earth's small--scale structurescale structure array seismologyarray seismology

    E-print Network

    Rost, Sebastian

    seismologyarray seismology Dr. SebastianDr. Sebastian RostRost Department of Geological SciencesIntroduction Array seismologyArray seismology Upper mantle structureUpper mantle structure -- scatteringscattering., 2005 RostRost andand GarneroGarnero, 2004, 2004 #12;Array SeismologyArray Seismology Seismic Array

  3. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40.

    PubMed

    Kuszak, Adam J; Jacobs, Daniel; Gurnev, Philip A; Shiota, Takuya; Louis, John M; Lithgow, Trevor; Bezrukov, Sergey M; Rostovtseva, Tatiana K; Buchanan, Susan K

    2015-10-23

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning ?-barrel domain with conserved ?-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  4. Active Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2015-08-01

    Past activity from Near Earth Asteroids is recorded in the meteoroid streams that cause our meteor showers. Automated meteoroid orbit surveys by photographic, low-light video, specular radar, and head-echo radar reflections are providing the first maps of meteor shower activity at different particle sizes. There are distinct differences in particle size distributions among streams. The underlaying mechanisms that created these streams are illuminated: fragmentation from spin-up or thermal stresses, meteoroid ejection by water vapor drag, and ejection of icy particles by CO and CO2 sublimation. The distribution of the meteoroid orbital elements probe the subsequent evolution by planetary perturbations and sample the range of dynamical processes to which Near Earth Asteroids are exposed. The non-stream "sporadic" meteors probe early stages in the evolution from meteoroid streams into the zodiacal dust cloud. We see that the lifetime of large meteoroids is generally not limited by collisions. Results obtained by the CAMS video survey of meteoroid orbits are compared to those from other orbit surveys. Since October 2010, over 200,000 meteoroid orbits have been measured. First results from an expansion into the southern hemisphere are also presented, as are first results from the measurement of main element compositions. Among the many streams detected so far, the Geminid and Sextantid showers stand out by having a relatively high particle density and derive from parent bodies that appear to have originated in the main belt.

  5. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1996-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  6. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  7. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  8. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  9. Earth’s Earliest Atmospheres

    PubMed Central

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  10. The Radiation Belt Storm Probes - Duration: 3 minutes, 26 seconds.

    NASA Video Gallery

    The Radiation Belt Storm Probe mission (RBSP) will explore the Van Allen Radiation Belts in the Earth's magnetosphere. The charge particles in these regions can be hazardous to both spacecraft and ...

  11. A Traceability Attack Against e-Passports Tom Chothia and Vitaliy Smirnov

    E-print Network

    Chothia, Tom

    A Traceability Attack Against e-Passports Tom Chothia and Vitaliy Smirnov School of Computer "e-passports" containing an RFID tag that, when powered, broadcasts information. It is claimed that these passports are more secure and that our data will be protected from any possible unauthorised attempts

  12. Software Documents: Comparison and Measurement Tom Arbuckle, Adam Balaban, Dennis K. Peters and Mark Lawford

    E-print Network

    Lawford, Mark

    Software Documents: Comparison and Measurement Tom Arbuckle, Adam Balaban, Dennis K. Peters of Newfoundland, St. John's NL, Canada A1B 3X5. Email: dpeters@engr.mun.ca §Department of Computing and Software@mcmaster.ca Abstract-- For some time now, researchers have been seeking to place software measurement on a more firmly

  13. TerraService.NET: An Introduction to Web Services Tom Barclay

    E-print Network

    Mock, Kenrick

    Ekblad Jeffrey Richter June 2002 Technical Report MS-TR-2002-53 Microsoft Research Advanced Technology to Web Services Tom Barclay. Jim Gray, Steve Ekblad, Eric Strand, Jeffrey Richter {TBarclay, Gray enable applications that aggregate and interact with information and resources from Internet-scale

  14. nr 1/2012 tom 66 7 One more function for microbial fuel cells in treating

    E-print Network

    science nr 1/2012 · tom 66 · 7 One more function for microbial fuel cells in treating wastewater production, and water recovery. Microbial fuel cells (MFCs) have gained significant attention because and lab-prototype of microbial fuel cells In general, MFC research focuses on reactor architecture

  15. UC Davis Weed Science 1 Brad Hanson, Tom Lanini, and Lynn Sosnoskie, UC Davis Weed Science

    E-print Network

    Hanson, Brad

    2/21/2012 2012 CWSS UC Davis Weed Science 1 Brad Hanson, Tom Lanini, and Lynn Sosnoskie, UC Davis Weed Science bhanson@ucdavis.edu Cuttings first brought to North America from France in 1856 floors are managed for a number of reasons Facilitate crop production and harvest practices Weed

  16. REU PROJECT ON BRANCH POLYMERS SARA BILLEY, TOM BOOTHBY, MORGAN EICHWALD, AND CHRIS FOX

    E-print Network

    Billey, Sara

    REU PROJECT ON BRANCH POLYMERS SARA BILLEY, TOM BOOTHBY, MORGAN EICHWALD, AND CHRIS FOX 1. A branched polymer of order n in R2 is obtained by plac- ing these disks in the plane in any configuration so at the origin. Branched polymers have been studied in con- nection with molecular chemistry, statistical physics

  17. The Future of the Digital Library: An Interview with Tom Peters

    ERIC Educational Resources Information Center

    Morrison, James L.; Peters, Tom

    2005-01-01

    This article presents an interview with Tom Peters, an academic librarian and founder of TAP Information Services, a firm that provides consulting services to libraries and other organizations in the information industry. Peters also serves as a consultant to LibraryCity, an ambitious project that seeks to make thousands of e-books in easy-to-use…

  18. Coupling Perception and Action Using Minimax Optimal Control Tom Erez and William D. Smart

    E-print Network

    Smart, William

    Coupling Perception and Action Using Minimax Optimal Control Tom Erez and William D. Smart Abstract-- This paper proposes a novel approach for coupling perception and action through minimax dynamic programming of the eye allots attentional resources. We propose a unified framework that treats both perception

  19. Blood Glucose Measurements in Critically Ill Patients Tom Van Herpe, Ph.D.,1,2

    E-print Network

    22 Blood Glucose Measurements in Critically Ill Patients Tom Van Herpe, Ph.D.,1,2 and Dieter) blood glucose, (Hct) hematocrit, (ICU) intensive care unit, (ISO) International Organization for Standardization, (NICE-SUGAR) Normoglycemia in Intensive Care Evaluation and Survival Using Glucose Algorithm

  20. ONCE UPON A TIME Words and music by Tom Dermody, Peoria, IL

    E-print Network

    Robins, Gabriel

    ONCE UPON A TIME Words and music by Tom Dermody, Peoria, IL Dedicated to Randy Pausch and family, Copyright 2008 Once upon a time there lived A boy who dreamed of rocket ships And floating weightless Once upon a time He wanted to be Captain Kirk Impossible? There's no such word And brick walls only made him

  1. An Open Letter to Suzanne deCastell and Tom Walker.

    ERIC Educational Resources Information Center

    Assinck, Beverly Belvin

    1993-01-01

    Responds to "Identity, Metamorphosis, and Ethnographic Research: What Kind of Story Is Ways with Words?" by Suzanne deCastell and Tom Walker (1991). Describes the author's reaction to "Ways with Words--Language, Life and Work in Communities and Classrooms" by Shirley Brice Heath (1983). (SLD)

  2. TomAS Tomographic Algorithms and Ultrasound Simulation D. Zerfowski a

    E-print Network

    Zerfowski, Detlef

    and diagnostics. The CT package of TomAS generates raw data by simulating tomographic scans us- ing interactively tool to simulate medical imaging techniques such as computer tomog- raphy (CT) and ultrasound (US tools for simulated ultrasound imaging, approximating wave propagation by finite difference methods

  3. Application of a clustering framework to UK domestic electricity Ian Dent, Uwe Aickelin, Tom Rodden

    E-print Network

    Aickelin, Uwe

    Application of a clustering framework to UK domestic electricity data Ian Dent, Uwe Aickelin, Tom Rodden Abstract--The UK electricity industry will shortly have available a massively increased amount intrusive household level monitoring of electricity. The paper takes an approach to clustering domestic load

  4. Issues in Comparative Fungal Genomics Tom Hsiang1 and David L. Baillie2

    E-print Network

    Hsiang, Tom

    Issues in Comparative Fungal Genomics Tom Hsiang1 and David L. Baillie2 1 Department. By the middle of 2005, there were almost 300 complete genomes that were publicly accessible. Most of these were archeal or bacterial since prokaryotic genomes are much smaller than eukaryotic genomes. Among eukaryotes

  5. Scouting Canola for Diamondback Moth Tom A. Royer and Kris Giles

    E-print Network

    Dyer, Bill

    Scouting Canola for Diamondback Moth Tom A. Royer and Kris Giles There are reports of diamondback moth infesting canola in several locations in southwest Oklahoma and Texas. Diamondback moth have any research-based economic thresholds from Oklahoma for managing diamondback moth, so my

  6. Wake Up, It Is 2013! Commentary on Luiz Amaral and Tom Roeper's Article

    ERIC Educational Resources Information Center

    Muysken, Pieter

    2014-01-01

    This article examines the Multiple Grammars (MG) theory proposed by Luiz Amaral and Tom Roeper in the present issue and presents a critique of the research that went into the theory. Topics discussed include the allegation that the bilinguals and second language learners in the original article are primarily students in an academic setting, Amaral…

  7. The Dangers of Replication and a Solution Jim Gray (Gray@Microsoft.tom)

    E-print Network

    Cai, Jin-Yi

    The Dangers of Replication and a Solution Jim Gray (Gray@Microsoft.tom) Pat Helland (PHelland-anytime-anyway transactional replication has unstable behavior as the workload scales up: a ten-fold increase in nodes-tier replication algorithm is proposed that allows mobile (disconnected) applications to propose tentative update

  8. Environmental Impact of Wastewater Disposal in the Florida Keys, Monroe County Tom Higginbotham

    E-print Network

    Ma, Lena

    Environmental Impact of Wastewater Disposal in the Florida Keys, Monroe County Tom Higginbotham University of Florida Soil and Water Science #12;Environmental Impact of Wastewater Disposal in the Florida affecting the normally oligotrophic marine waters. Typical methods of wastewater disposal include large

  9. Samuel Langhorne Clemens: A Centennial for Tom Sawyer; An Annotated, Selected Bibliography.

    ERIC Educational Resources Information Center

    Haviland, Virginia, Comp.; Coughlan, Margaret N., Comp.

    This annotated bibliography, prepared by the Children's Book Section of the Library of Congress to celebrate the centennial of "The Adventures of Tom Sawyer," lists editions of the Mark Twain classics most widely read by young people, biographical or autobiographical and travel works significant for relevent background, and miscellaneous items…

  10. Commentary to "Multiple Grammars and Second Language Representation," by Luiz Amaral and Tom Roeper

    ERIC Educational Resources Information Center

    Pérez-Leroux, Ana T.

    2014-01-01

    In this commentary, the author defends the Multiple Grammars (MG) theory proposed by Luiz Amaral and Tom Roepe (A&R) in the present issue. Topics discussed include second language acquisition, the concept of developmental optionality, and the idea that structural decisions involve the lexical dimension. The author states that A&R's…

  11. Refined Statistic-based Localisation for Ad-Hoc Sensor Networks Tom Parker Koen Langendoen

    E-print Network

    Langendoen, Koen

    Refined Statistic-based Localisation for Ad-Hoc Sensor Networks Tom Parker Koen Langendoen Faculty-ordinate system based purely on the existing topology of the nodes, which provides the nodes with a location to integrate it with other co-ordinate systems (e.g. latitude/longitude). We are concentrating on anchor- based

  12. Passive Microwave Radiometry of Land:Contributions of Tom Schmugge and Anatoli Shutko

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances and the state of the art of land surface remote sensing using passive microwave techniques owes its heritage to the contributions of Tom Schmugge and Anatolij Shutko over the last 30 years. These contributions cover a range of activities including fundamental theory, controlled condi...

  13. Best Practices Case Study: Tom Walsh and Co. - New Columbus, Portland, OR

    SciTech Connect

    none,

    2010-09-01

    Case study of Tom Walsh, who achieved 50% in heating and cooling energy savings over the 2004 IECC with advanced framing, superior air sealing, extra insulation, and ducts in conditioned space. Surface water runoff in the large urban rebuild development was handled with pervious pavers, swales, retention of existing trees, and green spaces.

  14. On the design of the ECMAScript Reflection API TOM VAN CUTSEM, Vrije Universiteit Brussel

    E-print Network

    Cortes, Corinna

    A On the design of the ECMAScript Reflection API TOM VAN CUTSEM, Vrije Universiteit Brussel MARK S. MILLER, Google Research We describe in detail the new reflection API of the upcoming Javascript standard. The most prominent feature of this new API is its support for creating proxies: virtual objects that behave

  15. Indonesia 82 (October 2006) Tom Boellstorff. The Gay Archipelago: Sexuality and Nation in Indonesia.

    E-print Network

    Chen, Zhongping

    Indonesia 82 (October 2006) Tom Boellstorff. The Gay Archipelago: Sexuality and Nation in Indonesia expression and social enactments of nationhood in postcolonial Indonesia often find themselves, implicitly, too, in the anthropological literature on Indonesia an emphasis on difference has always served

  16. Instructions to: TOM: Teaching flow over Mountains -Worksheet at the radar site

    E-print Network

    1 Instructions to: TOM: Teaching flow over Mountains - Worksheet at the radar site in (provide all students' names, ATOC course, beginning and end time at the radar) on a new worksheet: 1 km = 1.6 miles, 1 mile = 0.6 km b) Mountains are relatively easy to identify. a. If the radar beam

  17. Mapping the Arabidopsis organelle proteome Tom P. J. Dunkley*, Svenja Hester*, Ian P. Shadforth

    E-print Network

    Mapping the Arabidopsis organelle proteome Tom P. J. Dunkley*, Svenja Hester*, Ian P. Shadforth to increase our understanding of the functions of different organelles. Previous proteomic studies to organelles. Here we have used the localization of organelle proteins by the isotope tagging technique

  18. Optical effects of polar stratospheric clouds on the retrieval of TOMS total ozone

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Z.; Herman, J. R.

    1992-01-01

    Small areas of sharply reduced ozone density appear frequently in the maps produced from polar region total ozone mapping spectrometer (TOMS) data. These mini-holes are of the order of 1000 km in extent with a lifetime of a few days. On the basis of measurements from ground-based instruments, balloon-borne ozonesondes, and simultaneous measurements of aerosol and ozone concentrations during aircraft flights in the Arctic and Antarctic regions, the appearance of polar stratospheric clouds (PSCs) are frequently associated with false reductions in ozone derived from the TOMS albedo data. By combining radiative transfer calculations with the observed PSC and ozone data, it is shown that PSCs located near or above the ozone density maximum (with optical thickness greater than 0.1) can explain most of the differences between TOMS ozone data and ground or in situ ozone measurements. Several examples of real and false TOMS mini-hole phenomenon are investigated using data from the 1989 Airborne Arctic Stratospheric Expedition (AASE) and from balloon flights over Norway and Sweden.

  19. Calibration For Augmented Reality Experimental Testbeds Valerie A. Summers*& Kellogg S. Booth Tom Calvert

    E-print Network

    Calibration For Augmented Reality Experimental Testbeds Valerie A. Summers*& Kellogg S. Booth Tom.3.7[ComputerGraphics]: Three-Dimensional GraphicsandRealism-virtual reality Keywords: augmentedreality "augment" theuser's view of thereal 3D world with computer-generatedvirtual objects. Thesevirtual

  20. Pullman's Weather and Air Quality Station James O'Malley, Brian Lamb, Tom Jobson

    E-print Network

    Collins, Gary S.

    Pullman's Weather and Air Quality Station James O'Malley, Brian Lamb, Tom Jobson Thanks at Washington State University has operated a combined air monitoring and weather station located on the roof of Dana Hall for a number of years. This summer the weather station was upgraded, to allow for more

  1. Cryptography as a Network Service Tom Berson Drew Dean Matt Franklin

    E-print Network

    Dean, Drew

    Cryptography as a Network Service Tom Berson Drew Dean Matt Franklin Diana Smetters Michael@parc.xerox.com franklin@cs.ucdavis.edu smetters@parc.xerox.com mspreitz@us.ibm.com Abstract Cryptography is a powerful. This is especially true for public key cryptography. Con- ventional wisdom dictates that cryptography must be done

  2. ASSESSING MERGED DRAM/LOGIC 'TECHNOLOGY Yong-Bin Kim* Tom Chen**

    E-print Network

    Ayers, Joseph

    ASSESSING MERGED DRAM/LOGIC 'TECHNOLOGY Yong-Bin Kim* Tom Chen** *Engineering Systems Lab. MS-55 of DRAM pro- cess on the logic circuit performance of Memory/Logic Merged Integrated Circuit GB/s bandwidth. DRAM/Logic merged technology now permits very significant amount of logic

  3. Crowdsourcing Semantics for Big Data in Geoscience Applications Tom Narock1

    E-print Network

    Hitzler, Pascal

    Crowdsourcing Semantics for Big Data in Geoscience Applications Tom Narock1 and Pascal Hitzler 1 the potential to overcome some of the issues currently surrounding Big Data. Semantic technologies, and complexity of data sources ­ the very definition of Big Data. Yet, for some tasks, semantic algorithms do

  4. How to Teach for Social Justice: Lessons from "Uncle Tom's Cabin" and Cognitive Science

    ERIC Educational Resources Information Center

    Bracher, Mark

    2009-01-01

    The author explains how principles of cognitive science can help teachers of literature use texts as a means of increasing students' commitment to social justice. Applying these principles to a particular work, Uncle Tom's Cabin, he calls particular attention to the relationship between cognitive science and literary schemes for building reader…

  5. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  6. Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Weaver, Clark

    1999-01-01

    The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.

  7. Effect of severity of early protein restriction on large turkey toms. 2. Carcass characteristics.

    PubMed

    Ferket, P R; Sell, J L

    1989-05-01

    The effect of early protein (Pr) nutrition on the carcass characteristics of turkey toms was studied. Four levels of dietary protein [100, 80, 70, or 60% of National Research Council (NRC) recommendations in 1984] were fed as isocaloric diets ad libitum from 1 to 6 wk of age. Subsequently, the four treatment groups were fed according to NRC recommendations in 1984 to 20 wk of age. Toms from all treatment groups were sampled at 6, 12, and 20 wk of age, and New York-dressed carcasses were evaluated for chemical composition and yield of commercial cuts. Fat and DM content in the carcass increased, whereas ash and crude Pr content decreased as the toms aged. Yields of breast and back increased, drumsticks and wings decreased, and thighs did not change as the toms aged. At 6 wk, percentages of carcass Pr and ash were not affected by Pr, but fat increased linearly as the level of Pr decreased (P less than .005). Breast and thigh meat yields decreased, and skin yield increased as the level of Pr decreased. Yields of bone and other carcass parts were not influenced by Pr. At 12 and 20 wk, breast and thigh meat yields and chemical composition were restored to normal proportions, irrespective of early Pr nutrition. At 20 wk of age, only breast yield was significantly reduced by 60% Pr (P less than .05). The amount of dietary Pr consumed per carcass Pr gain decreased at all stages of growth as the level of Pr decreased. Early Pr had minimal effects on relative organ weights. Toms recover from the effects of early Pr restriction on carcass parts, but restriction to the 60% level may reduce breast meat yield. PMID:2755895

  8. Scorched Earth

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    For the past three years, leading scientists from more than 40 countries have been conducting a physical of the planet. They have monitored its vital signs, probed its parts, taken its temperature, measured its bodily fluids. This article deals with the global-warming report for the United Nations released by a panel of 1,200 scientists at a news…

  9. Multiple seismic reflectors in Earth’s lowermost mantle

    PubMed Central

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-01-01

    The modern view of Earth’s lowermost mantle considers a D? region of enhanced (seismologically inferred) heterogeneity bounded by the core–mantle boundary and an interface some 150–300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth’s deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth’s mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D? region sensu stricto. PMID:24550266

  10. Global Lifetime Measurements of Highly-Deformed and Other Rotational Structures in the A~135 Light Rare-Earth Region: Probing the Single-Particle Motion in a Rotating Potential

    E-print Network

    M. A. Riley; R. W. Laird; F. G. Kondev; D. J. Hartley; D. E. Archer; T. B. Brown; R. M. Clark; M. D evlin; P. Fallon; I. M. Hibbert; D. T. Joss; D. R. LaFosse; P. J. Nolan; N. J. O'Brien; E. S. Paul; J. Pfohl; D. G. Sarantites; R. K. Sheline; S. L. Shepherd; J. Simpson; R. Wadsworth; M. T. Matev; A. V. Afanasjev; J. Dobaczewski; G. A. Lalazissis; W. Nazarewicz; W. Satula

    2001-05-15

    It has been possible, using GAMMASPHERE plus Microball,to extract differential lifetime measurements free from common systematic errors for over 15 different nuclei (various isotopes of Ce, Pr, Nd, Pm, and Sm) at high spin within a single experiment. This comprehensive study establishes the effective single-particle quadrupole moments in the A~135 light rare-earth region. Detailed comparisons are made with calculations using the self-consistent cranked mean-field theory.

  11. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  12. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  13. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  14. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum over the tropical Pacific during all seasons. The photochemical effects of mineral dust have only a minor role on the modeled distribution of TTOCs, including over northern Africa, due to multiple competing effects. The photochemical effects of mineral dust globally decease annual mean OH concentrations by 9%. A global lightning NOx source of 6 Tg N yr(sup -1) in the model produces a simulation that is most consistent with TOMS and in situ observations.

  15. Outer Planets/Solar Probe Project: Solar Probe

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.

    2000-01-01

    Solar Probe, the first mission to the Sun and the third of three missions in NASA's Outer Solar System/Solar Probe Program, is a voyage of exploration, discovery, and comprehension. This near-Sun flyby will provide in situ measurements in the solar corona and high-resolution pictures and magnetograms of the photosphere and polar atmosphere. These measurements are also needed as "ground truth" for interpreting the many measurements of the Sun and solar activity that have been made from a distance of 1 AU. Solar Probe is scheduled for launch in February 2007. It will arrive at the Sun along a polar trajectory perpendicular to the Sun-Earth line with a perihelion of 4 solar radii (R(sub s)) from the Sun's center. Two perihelion passages will occur, the first in 2010 (near solar sunspot maximum) and the second in 2015 (near solar minimum) ensuring measurement of both coronal hole and streamer-related solar wind properties. To reach the Sun, probe must first fly to Jupiter and use a gravity assist to lose its angular momentum about the Sun. The imaging and in situ miniaturized instruments will provide the first 3-dimensional view of the corona, high spatial- and temporal-resolutions of the magnetic fields, and helioseismic measurements of the polar regions, as well as sporadic high-spatial-resolution local sampling of plasmas and fields at all latitudes.

  16. TenniVis: Visualization for Tennis Match Analysis Tom Polk, Member, IEEE, Jing Yang, Yueqi Hu, and Ye Zhao

    E-print Network

    Ras, Zbigniew W.

    by player one/two. Solid/hollow balls represent good (ace, winner, forced error) /bad (double in helping tactics analysts find insights into soccer games they would not have otherwise been able to · Tom

  17. Comparison of TOMS and AVHRR volcanic ssh retrievals from the August 1992 eruption of Mt. Spurr

    USGS Publications Warehouse

    Krotkov, N.A.; Torres, O.; Seftor, C.; Krueger, A.J.; Kostinski, A.; Rose, William I., Jr.; Bluth, G.J.S.; Schneider, D.; Schaefer, S.J.

    1999-01-01

    On August 19, 1992, the Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-12 and NASA's Total Ozone Mapping Spectrometer (TOMS) onboard the Nimbus-7 satellite simultaneously detected and mapped the ash cloud from the eruption of Mt. Spurr, Alaska. The spatial extent and geometry of the cloud derived from the two datasets are in good agreement and both AVHRR split window IR (11-12??m brightness temperature difference) and the TOMS UV Aerosol Index (0.34-0.38??m ultraviolet backscattering and absorption) methods give the same range of total cloud ash mass. Redundant methods for determination of ash masses in drifting volcanic clouds offer many advantages for potential application to the mitigation of aircraft hazards.

  18. Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura

    NASA Technical Reports Server (NTRS)

    Haffner, David P.; Bhartia, Pawan K.; McPeters, Richard D.; Joiner, Joanna; Ziemke, Jerald R.; Vassilkov, Alexander; Labow, Gordon J.; Chiou, Er-Woon

    2014-01-01

    Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions.

  19. Instrument Drift Uncertainties and the Long-Term TOMS/SBUV Total Ozone Record

    NASA Technical Reports Server (NTRS)

    Solarski, Richard S.; Frith, Stacey

    2005-01-01

    Long-term climate records from satellites are often constructed from the measurements of a sequence of instruments launched at different times. Each of these instruments is calibrated prior to launch. After launch they are subjected to potential offsets and slow drifts in calibration. We illustrate these issues in the construction of a merged total ozone record from two TOMS and three SBUV instruments. This record extends from late 1978 through the present. The question is "How good are these records?". We have examined the uncertainty in determining the relative calibration of two instruments during an overlap period in their measurements. When comparing a TOMS instrument, such as that on Nimbus 7, with an SBUV instrument, also on Nimbus 7, we find systematic differences and random differences. We have combined these findings with estimates of individual instrument drift into a monte- carlo uncertainty propagation model. We estimate an instrument drift uncertainty of a little larger than 1 percent per decade over the 25-year history of the TOMS/SBUV measurements. We make an independent estimate of the drift uncertainty in the ground-based network of total ozone measurements and find it to be of similar, but slightly smaller magnitude. The implications of these uncertainties for trend and recovery determination will be discussed.

  20. Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.

    1988-01-01

    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.

  1. Ocean Color and Evidence of Chlorophyll Signature in the TOMS Minimum Reflectivity Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Z.; Herman, J. R.; Bhartia, P. K.

    2003-01-01

    Analysis of the TOMS minimum reflectivity data for 380 nm channel (R380) show regions of high reflectivity values (approx. 7 to 8%) over Sargasso Sea in the Northern Atlantic, anti-cyclonic region in the Southern Atlantic, and a large part of the ocean in the Southern Pacific, and low values (5 approx. 6 %) over the rest of the open ocean. Through radiative transfer simulations we show that these features are highly correlated with the distribution of chlorophyll in the ocean. Theoretical minimum reflectivity values derived with the help of CZCS chlorophyll concentration data as input into a vector ocean-atmosphere radiative transfer code developed by Ahmad and Fraser show very good agreement with TOMS minimum reflectivity data for the winter season of year 1980. For the summer season of year 1980, good qualitative agreement is observed in the equatorial and northern hemisphere but not as good in the southern hemisphere. Also, for cloud-free conditions, we find a very strong correlation between R340 minus R380 values and the chlorophyll concentration in the ocean. Results on the possible effects of absorbing and non-absorbing aerosols on the TOMS minimum reflectivity will also be presented. The results also imply that ocean color will affect the aerosol retrieval over oceans unless corrected.

  2. The School of Earth and Space

    E-print Network

    Rhoads, James

    the subatomic scale to distances measured in light years. We explore time ranging from billions of years the $24M mark in FY2011. Major funding sources include the national Science Foundation, the national and foundations. SESE researchers conduct field work on every continent on Earth; they send probes to the Moon

  3. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  4. Gravity Probe B Gyroscope Rotor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)

  5. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A. (Livermore, CA); Conti, Armond E. (San Jose, CA)

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  6. Tropospheric Ozone Pollution Transport Traced from the TOMS (Total Ozone Mapping Spectrometer) Instrument During the Nashville-1999 Campaign

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.

  7. X-24B with Test Pilot Tom McMurtry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    In this 1975 photo, research pilot Thomas C. McMurtry stands in front of the X-24B on Rogers Dry lake, adjacent to the NASA Flight Research Center, Edwards, California. A former U.S. Navy pilot and graduate of the U.S. Navy Test Pilot School, Patuxent River, Maryland, McMurtry was a consultant for Lockheed Corporation before joining NASA in 1967. The X-24B was the last aircraft to fly in Dryden's manned lifting body program. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph-Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated that accurate unpowered reentry vehicle landings were operationally feasible. Top speed achieved by the X-24B was 1,164 mph and the highest altitude it reached was 74,130 feet. The vehicle is on display at the Air Force Museum, Wright-Patterson Air Force Base, Ohio. The pilot on the last powered flight of the X-24B was Bill Dana, who also flew the last X-15 flight about seven years earlier. The X-24A shape was later borrowed for the X-38 Crew Return Vehicle (CRV) technology demonstrator for the International Space Station.

  8. From frozen Super Earth to habitable Earth via microlensing

    NASA Astrophysics Data System (ADS)

    Beaulieu, J.-P.; Fouqué, P.; Batista, V.; Cassan, A.; Coutures, C.; Kubas, D.; Marquette, J.-B.

    2010-10-01

    In the last fifteen years, astronomers have found over 415 exoplanets including some in systems that resemble our very own solar system. These discoveries have already challenged and revolutionized our theories of planet formation and dynamical evolution. Several different methods have been used to discover exoplanets, including radial velocity, stellar transits, direct imaging, pulsar timing, astrometry, and gravitational microlensing which is based on Einstein's theory of general relativity. So far 10 exoplanets have been published with this method. While this number is relatively modest compared with that discovered by the radial velocity method, microlensing probes a part of the parameter space (host separation vs. planet mass) not accessible in the medium term to other methods. The mass distribution of microlensing exoplanets has already revealed that cold super-Earths (at or beyond the "snow line" and with a mass of around 5 to 15 Earth mass appear to be common (Beaulieu et al., 2006, Gould et al., 2006, Sumi et al. 2010) . We detected a scale 1/2 model of our solar system (Gaudi et al., 2008), several hot Neptunes/Super Earth, shown that our detection efficiencies extends to 1 Earth mass planets (Batista et al., 2009). We have made the first measurement of the frequency of ice and gas giants beyond the snow line, and have shown that this is about 7 times higher than closer-in systems probed by the Doppler method (Gould et al. 2010). This comparison provides strong evidence that most giant planets do not migrate very far (Gould et al. 2010). Microlensing is currently capable of detecting cool planets of super-Earth mass from the ground (and on favourable circumstances down to 1 Earth), with a network of wide-field telescopes strategically located around the world, could routinely detect planets with mass as low as the Earth. I will stress the importance of high angular resolution using adaptive optics on 8m class telescopes during microlensing events in order to nail down the physical parameters of the star and planet systems to 10%.

  9. Monitoring Physiological Variables with Membrane Probes

    NASA Technical Reports Server (NTRS)

    Janle, Elsa M.

    1997-01-01

    This project has demonstrated the possibility of using membrane probes in rodents to monitor physiological variables for extended periods of time. The utility of these probes in physiological studies of microgravity has been demonstrated. The feasibility of developing on-line sensors has also been demonstrated and allows for the possibility of developing real-time automated monitoring systems which can be used in ground-base physiological research as well as in research and medical monitoring in space. In addition to space applications these techniques can be extended to medical monitoring in critical care situations on earth as well as facilitating research in many human and animal diseases.

  10. Paramagnetic interactions in 31P NMR spectroscopy as a probe for short-range order/disorder of flux-grown rare earth element orthophosphate (monazite/xenotime) solid solutions

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Stebbins, J. F.; Boatner, L. A.

    2013-12-01

    Many models of inorganic solid solutions relevant to earth scientists start with the assumption of a completely random distribution of substitutional species. This is, in large part, due to the difficulty of obtaining robust experimental confirmation of short-range order/disorder using standard diffraction techniques that provide information about long-range order. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has long been used in this capacity, as the technique is characteristically sensitive to variations in local atomic structure around specific NMR-active nuclei. NMR studies of geologically important inorganic materials have historically concentrated on diamagnetic systems in which the complicating effects of unpaired electrons from paramagnetic species (most ions of the transition metals or rare-earth elements) can be ignored. In these diamagnetic materials, variations in small-scale atomic structure in the solid state typically cause shifts in the frequencies of NMR peaks of up to a few tens of ppm. However, NMR spectroscopy is increasingly being applied to inorganic solid solutions in which one of the end members is paramagnetic. In many cases, this leads to the observation of parmagnetically-shifted peaks. Paramagnetic interactions can be much stronger than in ordinary diamagnetic materials and these peaks are typically shifted from tens to thousands of ppm. In this study we present the results of a 31P NMR investigation of a series of flux-grown solid solutions of La1-xCexPO4 ('x' between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, 'x' between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted resonances were observed in the spectra of all samples shifted by up to -204 ppm due to the presence of paramagnetic Vn+, Ce3+, or Nd3+ in the diamagnetic host phase - either LaPO4 or YPO4. Analysis of the spectra and comparison to the crystal structures leads to the assignment of these peaks to PO4 groups having paramagnetic neighbors up to 5.685 Å or four bond lengths away. Several low-intensity peaks were also seen in most samples and are determined to be caused by PO4 groups having more than one paramagnetic neighbor. An analysis of relative peak areas and comparison with predictions for simple models provides evidence for complete disorder (random distribution) of substitutional species in these solid solutions. The presence of paramagnetic species can lead to increased resolution in the types and proportions of different atomic configurations observed using NMR spectroscopy due to the associated larger frequency shifts and the slightly longer interaction distances involved. The more detailed information available because of these paramagnetic interactions can potentially be used to provide previously inaccessible information concerning short-range ordering in geologically and technologically important inorganic solid solutions.

  11. Saturn Science from Entry Probes

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Coustenis, Athena; Lunine, Jonathan; Simon-Miller, Amy; Atreya, Sushil; Brinckerhoff, William; Colaprete, Anthony; Guillot, Tristan; Mahaffy, Paul; Reh, Kim; Spilker, Linda; Spilker, Tom; Webster, Chris

    2013-04-01

    Data from atmospheric entry probe missions at the giant planets could uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres, providing for valuable comparative studies of giant planets as well as providing a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. For these reasons, a Saturn Probe mission with a shallow probe is ranked by the recent U.S. Planetary Science Decadal Survey as a high priority for a New Frontiers class mission. Atmospheric constituents needed to constrain theories of solar system formation and the origin and evolution of the giant planets could be accessed and sampled by shallow entry probes. Many important constituents are either spectrally inactive or are beneath an atmospheric overburden that is optically thick at useful wavelengths and are therefore not remotely accessible by flyby or orbiting spacecraft. A small, scientifically focused shallow entry probe mission could make critical abundance measurements of key constituents, and could measure profiles of atmospheric structure and dynamics at a vertical resolution that is significantly higher than could be achieved by remote sensing techniques. The Galileo mission began the detailed study of the solar system's two gas giants by dropping an entry probe into the atmosphere of Jupiter and deploying an orbiter around Jupiter. In 2016-2017 the Juno mission will make measurements of Jupiter's deep oxygen abundance, and gravitational and magnetic fields. In the same epoch, the Cassini orbiter is planned to pursue a set of Juno-like orbits to make comparable gravitational and magnetic field measurements of Saturn. A Saturn atmospheric entry probe would complete the quartet of missions needed for a comparative study of the two gas giants, leading to improved models of solar system formation. A highly focused entry probe mission at Saturn carrying a minimal science payload could address unique and critical science while fitting within existing program budget caps. Fundamental measurements include abundances of the noble gases He, Ne, Ar, Kr, and Xe and, abundances of key isotopic ratios 4He/3He, D/H, 15N/14N, 18O/16O, and 13C/12C. Detection of disequilibrium species CO, PH3, AsH3, and GeH4 is diagnostic of deeper internal processes and dynamics of the atmosphere along the probe descent. Abundances of these key constituents, as well as carbon which does not condense at Saturn, sulfur which is expected to be well-mixed below the 4 to 5-bar ammonium hydrosulfide (NH4SH) cloud, and gradients of nitrogen below the NH4SH cloud and oxygen in the upper layers of the H2O and H2O-NH4 solution cloud, could be measured by an entry probe descending through 10 bars. In concert with the results from Galileo, Cassini, and Juno, a shallow Saturn probe capable of measuring abundances of key constituents not accessible by a remote sensing mission would provide critical measurements enabling a comparison of composition and dynamical processes on the giant planets while also providing an improved context for understanding exoplanets.

  12. Cross Calibration of TOMS, SBUV/2 and SCIAMACHY Radiances from Ground Observations

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Bhartia, P. K.; Bojkov, B.; Kowaleski, M.; Labow, G.; Ahmad, Z.

    2002-01-01

    We have shown that validation of radiances is a very effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called 'Skyrad', employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS, SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOMEZ, OMI, and OMPS. Additional information is included in the original extended abstract.

  13. Reinterpreting funerals and pastoral care: a pastoral theology response to Tom Long's Accompany Them with Singing.

    PubMed

    Fowler, Gene

    2012-03-01

    This article addresses Tom Long's (2009) criticism that a traditional pastoral care approach to funerals is responsible for significant distortions in contemporary Christian funeral practices in the United States. The article will show that his criticism should be affirmed but that his solution for a contemporary understanding of pastoral care and funerals is not adequate. A critique and reinterpretation of pastoral care and funerals will show that Long's reform of Christian funerals needs to incorporate a contemporary understanding of caring for the bereaved in funerals. PMID:23045757

  14. The Medicare world from both sides: a conversation with Tom Scully. Interview by Uwe E. Reinhardt.

    PubMed

    Scully, Tom

    2003-01-01

    Tom Scully, administrator of the Centers for Medicare and Medicaid Services (CMS), the nation's largest health insurer, discusses the Medicare program with Princeton University economist Uwe Reinhardt. Scully's previous appointments in both the public and private sectors have given him a diverse set of experiences from which to draw in his current position. He praises the agency's staff for devising innovations to cope with a changing health care environment, praises the program for continuing to meet most seniors' needs, and staunchly defends the Bush administration's focus on the private sector as the way forward for Medicare. PMID:14649443

  15. Gravitational experiments on solar probe. [covariance analysis for a solar probe trajectory

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.

    1978-01-01

    A covariance analysis was performed for a solar probe trajectory which encounters the sun at four solar radii. The unknown parameters in the analysis are the six initial cartesian coordinates for the probe, six initial cartesian coordinates for the earth, the astronomical unit, the solar gravitational quadrupole coefficient and two post Newtonian meters (beta, gamma). Errors in the unknown parameters were computed as a function of standard errors on the radio tracking data and on the nongravitational forces which act on the probe. Results were obtained for several tracking geometries and for several orbital inclinations to the ecliptic. The analysis shows that the principal scientific result from the radio tracking of a solar probe would be the determination of the quadrupole moment, which would place a constraint on models of the solar interior.

  16. Detecting solar axions using Earth's magnetic field.

    PubMed

    Davoudiasl, Hooman; Huber, Patrick

    2006-10-01

    We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy omega approximately 4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses m(a) less, similar10(-4) eV, a low-Earth-orbit x-ray detector with an effective area of 10(4) cm(2), pointed at the solar core, can probe the photon-axion coupling down to 10(-11) GeV-1, in 1 yr. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits. PMID:17155238

  17. Clinical and Research Implications of an Investigation into Theory of Mind (TOM) Task Performance in Children and Adults with Non-Specific Intellectual Disabilities

    ERIC Educational Resources Information Center

    Jervis, Nicola; Baker, Martyn

    2004-01-01

    Background: Theory of Mind (TOM) has rarely been studied in people with intellectual disabilities. Wherever it has been studied, differing results have been found. These may be attributed to a variety of factors (e.g. the different chronological ages of samples). The validity of relating TOM performance to social behaviour has also been questioned…

  18. Go ahead with the panel closure calculations when ready Tom Peake to: russ.patterson 06/19/2012 05:08 PM

    E-print Network

    Go ahead with the panel closure calculations when ready Tom Peake to: russ.patterson 06/19/2012 05 (etc.) of the panel closures and we agree with the proposed data values and ranges that you have the panel closure rulemaking when you have the analysis plan, etc, ready. Tom Peake Director Center

  19. Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Jianxiong Pang, Tom Gray, Peter Perry and Joe Ireland (pre-publication version, copyright Elsevier).

    E-print Network

    Reiff-Marganiec, Stephan

    Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Jianxiong Pang, Tom Gray, Peter Perry-Marganiec b , Lynne Blair a , Jianxiong Pang a , Tom Gray c , Peter Perry c and Joe Ireland d a Computing@cs.stir.ac.uk (Kenneth J. Turner), srm13@le.ac.uk (Stephan Reiff- Marganiec), lb@comp.lancs.ac.uk (Lynne Blair), j

  20. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  1. Precise VLBI tracking of planetary probes revisited

    NASA Astrophysics Data System (ADS)

    Gurvits, L. I.; Huygens VLBI Tracking Team

    VLBI technique has a long and successful record of precise tracking of deep space missions. Latest technological developments - higher data rates, lower noise characteristics of radio telescopes, advanced data processing equipment and algorithms - enable applications of VLBI tracking for extremely distant missions. In some cases, VLBI is the only method of providing navigation data sufficiently accurate for trajectory maneuvers and various in-situ experiments. We present the current status of VLBI tracking technique based on the assessment study of the Huygens Planetary Probe VLBI experiment. The aim of the experiment is to tie the position of the Probe to the framework of background extragalactic radio sources. We demonstrate the feasibility of direct detection and receipt of the S-band radio signal from the Huygens Probe during descent to the surface of Titan. We analyse the power budget of the Huygens-Earth radio link, the potential accuracy of the VLBI determination of the Probe's coordinates in the atmosphere of Titan, and some scientific applications of these measurements. Special attention is given to the calibration procedures and preparatory studies of the background field of celestial radio sources around the position of Titan during the Huygens atmosphere descent. We also discuss the prospects of the VLBI technique for tracking future planetary and deep space missions using the next generation of Earth-based radio telescopes, in particular the Square Kilometre Array (SKA).

  2. The observation of atmospheric structure with TOMS and some potential advancements. [Total Ozone Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Krueger, A. J.

    1985-01-01

    An overview is given of the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which was designed to observe the spatial characteristics of total ozone that were not resolved by the nadir-viewing Nimbus BUV and SBUV instruments. At the wavelengths suitable for total ozone measurements, the radiance is large enough that the entire daytime atmosphere could be surveyed with about 50-km resolution from a polar orbiting satellite. The resulting high spatial resolution TOMS ozone images are found to reflect the internal dynamic structure of the lower atmosphere. Features which can be identified and tracked include: planetary wave scale troughs and ridges, mesoscale cutoff lows and rapidly moving troughs, jet stream confluence and difluence areas, hurricanes, and polar night lows. These features control the ozone above any given location and account for nearly all the variance in the total ozone. The instrument has been used to track the volcanic eruption clouds from El Chichon, Mount St. Helens, Alaid, and smaller eruptions such as Galunggung. It would be feasible to use a similar instrument on a geostationary platform to obtain half-hourly maps. Determination of the vertical ozone distribution in the lower stratosphere using Radon transform principles would be of importance in measuring jet stream folds and the related troposphere-stratosphere exchange.

  3. The Effect of New Ozone Cross Sections Applied to SBUV and TOMS Retrievals

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Labow, Gordon J.

    2010-01-01

    The ozone cross sections as measured by Bass and Paur have been used for processing of SBUV and TOMS data since 1986. While these cross sections were a big improvement over those previously available, there were known minor problems with accuracy for wavelengths longward of 330 nm and with the temperature dependance. Today's requirements to separate stratospheric ozone from tropospheric ozone and for the derivation of minor species such as BrO and N02 place stringent new requirements on the accuracy needed. The ozone cross section measurements of Brion, Daumont, and Malicet (BDM) are being considered for use in UV-based ozone retrievals. They have much better resolution, an extended wavelength range, and a more consistent temperature dependance. Tests show that BDM retrievals exhibit lower retrieval residuals in the satellite data; i.e., they explain our measured atmospheric radiances more accurately. Total column ozone retrieved by the TOMS instruments is about 1.5% higher than before. Ozone profiles retrieved from SBUV using the new cross sections are lower in the upper stratosphere and higher in the lower stratosphere and troposphere.

  4. Spectral analyses, climatology, and interannual variability of Nimbus-7 TOMS version 6 total column ozone

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Ziemke, J. R.; Mcpeters, R. D.; Krueger, A. J.; Bhartia, P. K.

    1995-01-01

    This reference publication presents selected results from space-time spectral analyses of 13 years of version 6 daily global ozone fields from the Total Ozone Mapping Spectrometer (TOMS). One purpose is to illustrate more quantitatively the well-known richness of structure and variation in total ozone. A second purpose is to provide, for use by modelers and for comparison with other analysts' work, quantitative measures of zonal waves 1, 2, 3, and medium-scale waves 4-7 in total ozone. Their variations throughout the year and at a variety of latitudes are presented, from equatorial to polar regions. The 13-year averages are given, along with selected individual years which illustrate year-to-year variability. The largest long wave amplitudes occur in the polar winters and early springs of each hemisphere, and are related to strong wave amplification during major warning events. In low attitudes total ozone wave amplitudes are an order of magnitude smaller than at high latitudes. However, TOMS fields contain a number of equatorial dynamical features, including Rossby-gravity and Kelvin waves.

  5. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P<=0.015), with smaller but significant increases at five of the nine South American sites (r(exp 2) = 0.24-0.42; P<=0.05). The contribution of the highest UV-B(sub ery) exposure levels (>= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  6. Inter annual variations in the TOMS AI values and the aerosol transport in the Subtropical Northeast Atlantic region

    NASA Astrophysics Data System (ADS)

    Díaz, A. M.; García, O. E.; Elmrissaní, M.; Díaz, J. P.; Expósito, F. J.

    2003-04-01

    The role play by the atmospheric aerosols in the radiative transfer in the Earth Atmosphere system presents the biggest uncertainties, among the elements to be account. One of the most important parameters to study absorbing aerosols is the TOMS Aerosol Index. We study inter annual transport patterns variations, and the AI seasonal behaviour in two measurements stations in the Subtropical Northeast Atlantic region. Back trajectories were calculated for these stations, one is located in the free troposphere (IZO, 28.3º N 16.5º W, 2367m asl) and the other one within the marine boundary layer MBL (SCO, 28.78º N 16.31º W, 10m asl) from January 1997 to December 2002. These trajectories had been classified according to its aerosol load. There are mainly three aerosol types in both stations with differences in its frequency and in the seasonal pattern. Thus, air masses type A, with origin in the African continent that loads high amount of mineral dust, has an annual frequency very similar in both stations, around the 5%. However its seasonal pattern and the AI values associated are very different. At IZO station, they appear mainly in summer months which AI values are in the range (0.7, 3.3) and with less frequency and low AI values in winter mainly from January to March. While at SCO station these air masses appear only in winter and its AI values are lower than 1.0. The second aerosol contribution is the maritime one, associated with low air masses type M. These air masses appear in both stations the whole year with annual frequency of 4% and 20% for IZO and SCO station respectively. The AI values associated are generally below 0.7, except in the summer months at SCO station. The third one is associated with air masses type FTA (free troposphere) like the previous ones they are maritime air masses but which is developed above 2km. In that case, the annual frequencies are around 36% and 4% for IZO and SCO, and also are presented the whole year and with negative AI values and 0. Finally, SCO station is also characterized by air masses type ME, with origin in Europe and which transport anthropogenic aerosols. The associated AI values are in the range (-0.7, 0.7) in winter and in the range (0.0, 2.0) on the summer months.

  7. Searching for Frozen Super Earth via Microlensing

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. P.; Batista, V.; Cassan, A.; Coutures, C.; Donatowicz, J.; Fouqué, P.; Kubas, D.; Marquette, J. B.

    Microlensing planet hunt is a unique method to probe efficiently for frozen Super Earth orbiting the most common stars of our galaxy. It is nicely complementing the parameter space probed by very high accuracy radial velocity measurements and future space based detections of low mass transiting planets. In order to maximize the planet catch, the microlensing community is engaged in a total cooperation among the different groups (OGLE, MicroFUN, MOA, PLANET/RoboNET) by making the real time data available, and mutual informing/reporting about modeling efforts. Four planets have been published so far by combinations of the different groups, 2 Jovian analogues, one Neptune and a Super Earth. Given the microlensing detection efficiency, it suggests that these Neptunes/Super Earths may be quite common. Using networks of dedicated 1-2m class telescopes, the microlensing community has entered a new phase of planet discoveries, and will be able to provide constraints on the abundance of frozen Super-Earths in the near future. Statistics about Mars to Earth mass planets, extending to the habitable zone will be achieved with space based wide field imagers at the horizon 2015.

  8. The Toms River Childhood Cancer Cluster: Coupled Groundwater and Water Distribution System Modeling

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Normani, S. D.

    2003-12-01

    Toms River, New Jersey is the location of a statistically significant childhood cancer cluster. A 1995 cancer investigation indicated that relative to the state, the Toms River section of Dover Township had excess childhood cancer incidence for all malignant cancers combined, brain and central nervous system (CNS) cancers, and leukemia. Children under the age of five were found to have a seven-fold increase in brain and CNS cancer. The community's concern focused on the possibility that exposure to environmental contaminants may be related to the incidence of these childhood cancers. Two Superfund sites in Dover Township were implicated as having a possible impact on the local water supply. One of these, the Reich Farm site, is a source of contaminants to the aquifer that serves a major well field for Toms River. Contaminants in the aquifer include TCE, PCE and styrene-acrylonitrile (SAN) trimer. In 1997, the New Jersey Department of Health and Senior Services and the Agency for Toxic Substances and Disease Registry began an epidemiology study to evaluate the relationship between the environmental exposure pathways and the elevated childhood cancer incidence. Toxicity studies for the SAN trimer were also initiated. Groundwater modeling was undertaken to establish the historical relationship between the Reich Farm site and the municipal well field and to aid in the management and protection of the aquifer and well field to ensure both water quality and quantity. The modeling of the water distribution system for Toms River was also part of the study. Groundwater flow from the Reich Farm Superfund site to the municipal well field for Toms River was modeled for a thirty-year time period using MODFLOW. To account for the growth and development of the well field within the modeling domain, a transient model was constructed. The use of Geographic Information Systems (GIS) and databases to manage, maintain, and compile field observations for model input and calibration was an important part of the work. GIS and databases were important tools in assessing the quality of the data, discovering and correcting errors in the field data (including surveying inconsistencies), as well as providing an efficient and automated means to visualize the data. Model calibration exercises indicated that a more physically based spatial and temporally variable recharge was necessary to account for dramatic fluctuations in water levels due to seasonal variations. The accurate simulation of the transient groundwater flow system was essential for the subsequent prediction of contaminant migration from the superfund site to the municipal wells and then subsequently into the modeled water distribution system. The independent estimation of the adsorption parameters of the SAN trimer on the porous media of the aquifer was an important aspect of the determination of both the average travel time and the breakthrough of the chemical at the municipal well field. The modeling methodology included an uncertainty analysis of the estimated exposure concentration in the water distribution system given uncertain groundwater parameters. Distributed computing with a Monte Carlo analysis was used for this work. The results of the modeling study were used to assist in the definition of the temporal integration periods in the epidemiology study. The predicted historical breakthrough curve of the SAN trimer in the municipal wells correlates with the period with the excess childhood cancer incidence.

  9. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  10. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  11. Flattening Earth acceleration in atomic fountains

    SciTech Connect

    Bertoldi, Andrea

    2010-07-15

    A method to compensate for Earth's gravity tide over an extended axial region is reported. Flattening acceleration is important in experiments where the coupling of the dynamics of free-falling probes to the gravity gradient generates stochastic noise on the measurement. Optimized cylindrically symmetric mass distributions lower Earth's tidal effect over 10 cm by a factor 10{sup 3}. A multimass compensation system with comparable performance is devised for tall atom interferometers. Reducing the gravity gradient is essential in terrestrial experiments based on atom fountain configurations being developed to precisely test general relativity or the neutrality of matter.

  12. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  13. Earth's Mineral Evolution

    E-print Network

    Downs, Robert T.

    Earth's Mineral Evolution :: Astrobiology Magazine - earth science - evol...rth science evolution Extreme Life Mars Life Outer Planets Earth's Mineral Evolution Summary (Nov 14, 2008): New research. Display Options: Earth's Mineral Evolution Based on a CIW news release Mineral Kingdom Has Co

  14. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  15. Earth Sciences Further Information

    E-print Network

    Chauve, Cedric

    SCIENCE SFU.CA/ SCIENCE Earth Sciences #12;Further Information Student info, academic calendar, registration students.sfu.ca Science advising sfu.ca/science/undergrad/advising Earth Sciences Earth Sciences students have a natural curiosity about the Earth and a desire to find, invent or create things that help

  16. Earth Structure Introduction

    E-print Network

    Earth Structure Introduction Earth Structure (2nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm © WW Norton, unless noted otherwise #12;© EarthStructure (2nd ed) 210/4/2010 Aerial views #12;© EarthStructure (2nd ed) 310/4/2010 http://www.globalchange.umich.edu/Ben/ES/ #12

  17. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  18. Earth from Above

    ERIC Educational Resources Information Center

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  19. Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy

    E-print Network

    Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation,16-19 Aerosol reactivity and growth are vital to understand as the climate forcing effects of aerosols on Earth

  20. Early Results from the Floating Potential Probe on the International Space Station

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    2001-01-01

    This viewgraph presentation provides information on the Floating Potential Probe (FPP) on the International Space Station (ISS). The FPP measures the body voltage (electric potential) of the, and the measurements are then transmitted to Earth.

  1. Directional and Single-Driver Wires in FPGA Interconnect Guy Lemieux Edmund Lee Marvin Tom Anthony Yu

    E-print Network

    Lemieux, Guy

    Directional and Single-Driver Wires in FPGA Interconnect Guy Lemieux Edmund Lee Marvin Tom Anthony away from allowing multiple drivers to connect to each interconnect wire. This paper ad- vocates the need for this shift to single-driver wiring by investigating the necessary architectural and cir- cuit

  2. Common themes in the function of transcription and splicing Klemens J Hertel, Kristen W Lynch and Tom Maniatis

    E-print Network

    Hertel, Klemens J.

    350 Common themes in the function of transcription and splicing enhancers Klemens J Hertel, Kristen W Lynch and Tom Maniatis Regulation of both transcription and RNA splicing requires enhancer degree of regulatory specificity observed for both transcription and splicing is due, in large part

  3. Environmental Applications of Geographic Information Systems Dr. Tom Frank www.sdal.uiuc.edu tdfrank@illinois.edu

    E-print Network

    Frank, Thomas D.

    Environmental Applications of Geographic Information Systems Dr. Tom Frank www.sdal.uiuc.edu tdfrank@illinois.edu Office: 216 Davenport Hall syllabus #12;What is a Geographic Information System you to the data sources and software, geographic information systems, that can be used to analyze

  4. Multi-Vehicle Path Planning for Non-Line of Sight Communication Tom Schouwenaars, Eric Feron, and Jonathan How

    E-print Network

    Multi-Vehicle Path Planning for Non-Line of Sight Communication Tom Schouwenaars, Eric Feron. This coordination problem can be formulated as a connectivity-constrained multi-vehicle path planning prob- lem and the ground station is always main- tained. The corresponding coordinated multi-vehicle trajectory

  5. Developing Alternative Markets for peach cull fruit --A new Michigan State University GREEEN project -Bill Shane and Tom

    E-print Network

    Developing Alternative Markets for peach cull fruit -- A new Michigan State University GREEEN project - Bill Shane and Tom Zabadal, Michigan State University Michigan's fresh market peach crop averages approximately 30 million pounds per year. Currently there is no alternative market for cull peach

  6. Tom Frank's research interests Remote Sensing Science and applications of GIS to environmental problems in arid lands

    E-print Network

    Frank, Thomas D.

    availability of water for plant growth. #12;#12;The Mojave Desert is a rainshadow desert, defined call again! Tom #12;TarantulaTarantula spiderspider Tarantulas are very large spiders, often with a leg their sense of smell to find the burrow of a tarantula. There they may be able to induce the spider to come

  7. Scaling Semantic Parsers with On-the-fly Ontology Matching Tom Kwiatkowski Eunsol Choi Yoav Artzi Luke Zettlemoyer

    E-print Network

    Zettlemoyer, Luke

    Scaling Semantic Parsers with On-the-fly Ontology Matching Tom Kwiatkowski Eunsol Choi Yoav Artzi,eunsol,yoav,lsz}@cs.washington.edu Abstract We consider the challenge of learning seman- tic parsers that scale to large, open-domain problems on a recent Freebase QA corpus. 1 Introduction Semantic parsers map sentences to formal represen- tations

  8. Seasonal Characteristics of Tropical Ozone Profiles using the SHADOZ Ozonesonde Data Set: Comparisons with TOMS Tropical Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Advances in tropospheric ozone data products being developed for tropical and subtropical regions using TOMS (Total Ozone Mapping Spectrometer) and other satellites are motivating efforts to renew and expand the collection of balloon-borne ozonesonde observations. The SHADOZ (Southern Hemisphere ADditional OZonesondes) project is a web-based archive established since 1998. It's goals are to support validation of TOMS and SBUV (Solar Backscatter UV) satellite ozone measurements and to improve remote sensing techniques for estimating tropical and subtropical ozone. Profile data are taken from balloon-borne ozonesondes, currently at 11 stations coordinating weekly to bi-weekly launches. Station data are publically available at a central location via the internet: . Since the start of the project, the SHADOZ archive has accumulated over 1500 ozonesonde profiles. Data also includes measurements from various SHADOZ supported field campaigns, such as, the Indian Ocean Experiment (INDOEX), Sounding of Ozone and Water in the Equatorial Region (SOWER) and Aerosols99 Atlantic Cruise. Using data from the archive, profile climatologies from selected stations will be shown to 1/characterize the variability of tropospheric tropical ozone among stations, 2/illustrate the seasonal offsets with respect to the tropical profile used in the TOMS v7 algorithm, and 3/estimate the potential error in TOMS retrieval estimates of the tropospheric portion of the atmosphere.

  9. Language and ToM Development in Autism versus Asperger Syndrome: Contrasting Influences of Syntactic versus Lexical/Semantic Maturity

    ERIC Educational Resources Information Center

    Paynter, Jessica; Peterson, Candida

    2010-01-01

    Theory of mind (ToM) development by a sample of 63 children aged 5-12 years (24 with Asperger syndrome, 19 with high-functioning autism, and 20 age-matched typical developers) was assessed with a five-task false-belief battery in relation to both lexical (vocabulary) and syntactic (grammar) language skills. Contrary to some previous research, no…

  10. 2001 MICHIGAN DRY BEAN TRIALS COUNTY& COOPERATOR: BAY-Al and TomDrescher; ARENAC-Richard Gingerich

    E-print Network

    2001 MICHIGAN DRY BEAN TRIALS COUNTY& COOPERATOR: BAY-Al and TomDrescher; ARENAC-Richard Gingerich B00136 96 MSU 3424 2160 LSD=114 LSD=251 LSD=390 CV=10.5% CV=5.3% CV=12.8% PINTO OTHELLO 84 USDA 1004 2466 ORIGIN KEY Greg Varner MSU=MICHIGAN STATE UNIVERSITY Michigan Dry Bean Production Research

  11. U.S. EPA’s Technical Support for the Reich Farm (Toms River, NJ) Superfund Site Remediation

    EPA Science Inventory

    PowerPoint slide file that gives a brief history of the SAN Trimer contamination in Toms River, NJ as well as the EPA's provided technical support, specifically the development and application of the Provisional Peer-Reviewed Toxicity Value (PPRTV) assessment for SAN Trimer.

  12. From the External to the Internal: Behavior Clarifications Facilitate Theory of Mind (ToM) Development in Chinese Children

    ERIC Educational Resources Information Center

    Liu, Yanchun; Wang, Yijie; Luo, Rufan; Su, Yanjie

    2016-01-01

    The present study investigated how Chinese children develop theory of mind (ToM) in a language environment with limited mental state talk that is rich in behavior discourse. In Study 1, 60 mothers shared a wordless storybook with their 3-4-year-olds. The children completed two false-belief tasks and the Peabody Picture Vocabulary Test-Revised at…

  13. Automation and Customization of Rendered Web Pages Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller

    E-print Network

    Williams, Brian C.

    1 Automation and Customization of Rendered Web Pages Michael Bolin, Matthew Webber, Philip Rha, Tom to the browser. This cre- ates an opportunity for end-users who want to automate and customize their web enables end-users to automate, customize, and inte- grate web applications without examining their source

  14. Noise reduction efforts for the ALS infrared beamlines Tom Scarvie *, Nord Andresen, Ken Baptiste, John Byrd, Mike Chin,

    E-print Network

    Physics & Technology 45 (2004) 403­408 www.elsevier.com/locate/infrared #12;2. Details 2.1. HistoricalNoise reduction efforts for the ALS infrared beamlines Tom Scarvie *, Nord Andresen, Ken Baptiste 94720, USA Available online 16 March 2004 Abstract The quality of infrared microscopy and spectroscopy

  15. The Shuttle Radar Topography Mission Farr, Tom G., Paul A. Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott Hensley, Michael

    E-print Network

    1 The Shuttle Radar Topography Mission Farr, Tom G., Paul A. Rosen, Edward Caro, Robert Crippen Barbara, CA Douglas Alsdorf Ohio State University Columbus, OH The Shuttle Radar Topography Mission Agencies, and flew in February 2000. It used dual radar antennas to acquire interferometric radar data

  16. Profiles in Online Learning: A Series on Leadership--Tom Layton: Judo and the Art of Technology Innovation.

    ERIC Educational Resources Information Center

    Danielson, Larry

    1998-01-01

    Profiles a high school technology teacher and creator of CyberSchool, a distance learning program of the Eugene (Oregon) School District. Discusses Tom Layton's education, early work experience, establishment of a high school English-as-a-Second-Language (ESL) program, integration of computers into the classroom, reputation as a technology leader,…

  17. IB 140, Human Reproduction Spring 2015, Instructor: Tom Carlson tcarlson@berkeley.edu IB 140: HUMAN REPRODUCTION

    E-print Network

    California at Berkeley, University of

    -28; Book Ed 3 & 4, Chap 1 2) Lecture Topic #2, Female reproductive system: Reader Pages 29-51; Book Ed 3 Topic #4, Male reproductive system: Reader Pages 63-84; Book Ed 3&4, Chap 4 5) Lecture Topic #5, SexualIB 140, Human Reproduction Spring 2015, Instructor: Tom Carlson tcarlson@berkeley.edu 1 IB 140

  18. Out-of-PlanePermalloy Magnetic Actuators for Delta-Wing Control Chang Liu, Tom Tsao, Yu-Chong Tai

    E-print Network

    Leu, Tzong-Shyng "Jeremy"

    Out-of-PlanePermalloy Magnetic Actuators for Delta-Wing Control Chang Liu, Tom Tsao, Yu-Chong Tai- ear array of out-of-plane magnetic actuators to cre- ate a rolling moment on a tail-less delta-wing model, utilizing a known mechanism in delta-wing theory that allows micro actuation to have an amplified

  19. Magnetic nanostructures: radioactive probes and recent developments

    NASA Astrophysics Data System (ADS)

    Prandolini, M. J.

    2006-05-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at 111Cd probes using time-differential perturbed angular correlation (TDPAC), it was possible to distinguish the interaction of Cd probes located at various surface sites, i.e. atop terraces, within terraces, at steps and at corners. These experimental results are compared with the ground-state properties determined by ab initio density-functional theory. This article was invited by Professor S Washburn.

  20. Scientific Value of a Saturn Atmospheric Probe Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.

    2012-01-01

    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].

  1. Cross Calibration of TOMS, SBUV/2 and Sciamachy Radiances from Ground Observations

    NASA Technical Reports Server (NTRS)

    Hillsenrath, Ernest; Ahmad, Ziauddin; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify recovery. We have shown that validation of radiances is the most effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. Validation of radiances will also improve all higher level data products derived from the satellite observations. Backscatter algorithms suffer from several errors such as unrepresentative a-priori data and air mass factor corrections. Radiance comparisons employ forward models but are inherently more accurate and than inverse (retrieval) algorithms. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called "Skyrad", employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS. SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOME-2, OMI, and OMPS. Initial ground observations taken from Goddard Space Flight Center compared with radiative transfer calculations has indicated the feasibility of this method.

  2. Undergraduate Prospectus Environmental & Earth Sciences

    E-print Network

    Marshall, Ian W.

    Undergraduate Prospectus Environmental & Earth Sciences Environmental and Earth Sciences and Earth Sciences (at LEC) The Degree Programmes Teaching & Learning Environmental Science Earth* and within the top 15% in the world** for environmental and Earth sciences. Lancaster University itself

  3. High temperature probe

    DOEpatents

    Swan, Raymond A. (Fremont, CA)

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  4. The gravity probe B relativity gyroscope program

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. Francis; Parkinson, B. W.; Turneaure, J. P.

    1989-01-01

    The idea of testing general relativity through observations on Earth orbiting gyroscopes was suggested in 1959 to 1960. The direction, it was noted, of spin of a suitably oriented gyroscope should change with respect to the line of sight to a guide star for two reasons: a geodetic effect from the motion of the gyroscope through the curved space-time around the Earth, and a frame-dragging effect from the Earth's rotation. NASA began supporting laboratory research on the experiment, now called Gravity Probe B, in 1964. Technologies for it were progressively established, and an error analysis demonstrated the potential of measuring frame-dragging to 1 to 2 percent and the geodetic effect to 1 part in 10(exp 4). Later analyses, discussed herein, suggest possibilities for further improving those precisions each by a further factor of 10. In 1984, after technical and scientific reviews by the Space Science Board and other bodies, and completion by NASA Marshall Center of a Phase B Study, the NASA Administrator approved the start of a program known as STORE (Shuttle Test Of the Relativity Experiment). The purpose of STORE is to verify the final Gravity Probe B science payload, perform on the Shuttle a 7-day experiment rehearsal (including sophisticated gyro tests in low gravity), and then return the payload to Earth for refurbishment and integration into the Science Mission spacecraft. The payload comprises four gyroscopes, a telescope, and a drag-free proof mass, all mounted in a quartz block assembly within an evacuated magnetically shielded probe, which in turn is inserted into a 10-ft long, 6-ft diameter liquid helium dewar, operating at 1.8 K and maintaining low temperature for 2 years. STORE is manifested on Shuttle OV-105, for launch MSSN 69 in February 1993. The Science Mission is set tentatively for June 1995.

  5. UV 380 nm Reflectivity of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2000-01-01

    The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.

  6. Seismic Earth: Array Analysis of Broadband Seismograms

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Nolet, Guust

    Seismology is one of the few means available to Earth scientists for probing the mechanical structure of the Earth's interior. The advent of modern seismic instrumentation at the end of the 19th century and its installation across the globe was shortly followed by mankind's first general understanding of the Earth's interior: The Croatian seismologist Andrija Mohorovi?i? discovered the crust-mantle boundary in central Europe in 1909, the German Beno Gutenberg determined the radius of the Earth's core in 1913, Great Britian's Sir Harold Jeffreys established its fluid character by 1926, and the Dane Inge Lehman discovered the solid inner core in 1936. It is notable that seismology, even in its earliest days, was an international science. Unlike much of the Earth sciences, seismology has its roots in physics, notably optics (many university seismology programs are, or initially were, attached to meteorology, astronomy, or physics departments), and draws from the literatures of imaging systems and statistical communications theory developed by, or employed in, astronomy, electrical engineering, medicine, ocean acoustics, and nondestructive materials testing. Seismology has close ties to petro-physics and mineral physics, the measurements of the disciplines being compared to infer the chemical and physical structure of the Earth's interior.

  7. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D? region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D? region sensu stricto. PMID:24550266

  8. The Sounds of Earth Record Cover

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This gold aluminum cover was designed to protect the Voyager 1 and 2 'Sounds of Earth' gold-plated records from micrometeorite bombardment, but also serves a double purpose in providing the finder a key to playing the record. The explanatory diagram appears on both the inner and outer surfaces of the cover, as the outer diagram will be eroded in time. Flying aboard Voyagers 1 and 2 are identical 'golden' records, carrying the story of Earth far into deep space. The 12 inch gold-plated copper discs contain greetings in 60 languages, samples of music from different cultures and eras, and natural and man-made sounds from Earth. They also contain electronic information that an advanced technological civilization could convert into diagrams and photographs. Currently, both Voyager probes are sailing adrift in the black sea of interplanetary space, having left our solar system years ago.

  9. Application of probe manipulator to repair probe cards

    NASA Astrophysics Data System (ADS)

    Konno, Takeshi; Kobayashi, Mikihiko; Egashira, Mitsuru; Machida, Kazumichi; Urata, Atsuo

    2006-03-01

    We fabricated an apparatus for manipulation and welding of fine metal objects using a probe. The apparatus is composed of a work probe of a tungsten alloy needle, stages, a DC power supply, and an observation system. The work probe is held vertically above a gold substrate placed on stages to control the relative position against the work probe. The DC power supply is equipped to apply voltage of 0-10kV between the work probe and the substrate. One application of the apparatus is to repair probe cards. Thousands of contact probes (needles) are mounted on the printed circuit board (PCB) in the probe card. The contact probes are mounted one by one by the hands. Recently, an array of the contact probe on the PCB is produced by the LIGA process in response to narrower semiconductor pitch length. The problem is that there are no methods to repair a wrong contact probe. Whole of the contact probes should be a waste owing to one wrong contact probe. We propose to replace a wrong contact probe with a good one using our apparatus. Experiments to remove a contact probe by the apparatus is carried out using the specimen of a mimic probe card, where a cantilever type contact probes are arranged with a pitch of 25 micrometers. Removal of the wrong contact probe is carried out by a non-contact discharge and a contact discharge using the apparatus. High voltage of about 1-2kV is applied after the work probe is moved to above the target contact probe for the non-contact discharge. While high voltage of about10kV is applied after the work probe is positioned in contact with the target contact probe for the contact discharge. The target contact probe is removed by both methods, though the neighboring contact probes are damaged. The latter method is hopeful for removal for repair of the probe card.

  10. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  11. Magnetically driven filament probe

    SciTech Connect

    Schmid, A.; Herrmann, A.; Rohde, V.; Maraschek, M.; Mueller, H. W.

    2007-05-15

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma.

  12. Formative Assessment Probes

    ERIC Educational Resources Information Center

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  13. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes specified back reflection. This 3 to 6dB increase in back reflection from the surface relative to the probes specified back reflection is the optimal level for acquiring data from the flyer. Data obtained with the LLNL system is shown in Figure 5.

  14. Circumferential pressure probe

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K. (inventor); Moore, Thomas C. (inventor); Fantl, Andrew J. (inventor)

    1989-01-01

    A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.

  15. Winds on Titan from ground-based tracking of the Huygens probe

    E-print Network

    ; published 20 July 2006. [1] Large radio telescopes on Earth tracked the radio signal transmitted.) Several large radio telescopes on Earth, however, were able to receive and record the Huygens radio signal the Doppler shift associated with a radio signal transmitted from the probe and received on both the Cassini

  16. Exploring Spaceship Earth

    ERIC Educational Resources Information Center

    McInnis, Noel F.

    1973-01-01

    Describes various activities to understand the nature of the earth as a spaceship and its impact on human life. A figure depicting a holocoenotic environmental complex is given which can be used to illustrate various interacting forces on earth. (PS)

  17. Earth on the Move.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  18. Rammered Earth Wall 

    E-print Network

    Unknown

    2011-08-17

    of its applications, my research is focused on Near-Earth Asteroids (NEAs) rendezvous mission design for exploration, mitigation, and mining. Asteroids have many valuable resources such as minerals and volatiles, which can be brought back to Earth or used...

  19. Apostolate of the laity: a re-discovery of holistic post-war missiology in Scotland, with reference to the ministry of Tom Allan 

    E-print Network

    Forsyth, Alexander Craig

    2014-11-25

    This thesis offers principles for Christian mission in the present Western milieu derived from a retrieval of the missiology in post-war Scotland of Tom Allan. Allan was a minister, evangelist and theologian of particular ...

  20. Interior of the Earth

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1984-01-01

    Basic questions regarding the interior of the Earth in the 1990's are discussed. Research problems in the areas of plate tectonics, the Earth mantle the Earth core, and continental structure are discussed. Observational requirements of the GRAVSAT satellite mission are discussed.

  1. EARTH'S ASTONISHING CLIMATE HISTORY

    E-print Network

    Mills, Allen P.

    EARTH'S ASTONISHING CLIMATE HISTORY Dr. Paul Hoffman is a Professor Emeritus of Geology at Harvard in northwestern Canada and southwestern Africa. He assembled evidence that plate tectonics began early in Earth's history and is widely known for the theory of the Snowball Earth, an extraordinary series of global

  2. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  3. Earth Science, K-12.

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Enochs, Larry G.

    1987-01-01

    Argues that the teaching of earth science is largely neglected in the elementary science curriculum. Provides examples of how more instruction in the earth sciences at all levels can enhance decision-making skills. Discusses the relationship between various learning theories and certain instructional strategies in earth science. (TW)

  4. The molecular recognition mechanism for superoxide dismutase presequence binding to the mitochondrial protein import receptor Tom20 from Oryza sativa involves an LRTLA motif.

    PubMed

    Zhang, Yubo; Baaden, Marc; Yan, Junjie; Shao, Jinzhen; Qiu, Su; Wu, Yingliang; Ding, Yi

    2010-11-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor and imported into the mitochondria by Tom complexes (translocase of outer membrane complexes). Knowledge of the binding mechanism between precursor and Tom20 in plants is very limited. Here, computational methods are employed to improve our understanding of the interactions between both molecules. To this end, we model mitochondrial superoxide dismutase precursor (pSOD) in complex with Tom20 in Oryza sativa (OsTom20). In a first stage, five main binding modes were generated using clustering analysis, energy minimization, and expert knowledge. In a second stage, the quality and validity of the resulting complexes is assessed by molecular dynamics (MD) simulations with a generalized Born solvation model. The change in binding free energies is estimated using a computational alanine scanning technique. We identified a particularly favorable complex between pSOD and OsTom20, exhibiting the lowest binding free energy among all candidates and correlating well with experimental data. Furthermore, three independent explicit solvent MD simulations of this structure, each of 100 ns duration, reveal that hydrophobic interactions occur between pSOD and OsTom20, in particular between L158 of pSOD and W81 of OsTom20, as evidenced by analysis of intermolecular distances and corresponding relative free energy landscapes. L158 is part of an interacting LRTLA motif. These results provide new insight into the structural basis and dynamics of precursor recognition by Tom20 in plant, and their generality is supported by sequence alignments with seven other plants. PMID:20936826

  5. Carbon nanotube based electromechanical probes

    E-print Network

    Yaglioglu, Onnik, 1976-

    2007-01-01

    Electromechanical probing applications continuously require smaller pitches, faster manufacturing and lower electrical resistance. Conventional techniques, such as MEMS based cantilever probes have their shortcomings in ...

  6. Miniature Instrumentation for SIPR (Subsurface Ice PRobe)

    NASA Technical Reports Server (NTRS)

    Ostmo, Karl P.

    2005-01-01

    Ice coring has proved to be a valuable scientific tool for determining climate history on Earth. The goal of the SIPR project is to develop a simple extraterrestrial ice sampling method of comparable value to coring. The SIPR probe works by melting its way through glacial ice, pumping the melt water to the surface for analysis as it descends hundreds of meters. The specific geometry of the probe, along with size and power constraints, requires creative diagnostic instrumentation. A thin, vertically strung heated filament will provide continuous-level monitoring of water in down-hole containers. The filament has an appreciable temperature coefficient to resistance (TCR), so as water cools the wire, its resistance decreases. At a constant electrical current, the voltage across the filament varies linearly with water level.

  7. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q. (Pullman, WA); Wang, Wei (Pullman, WA)

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  8. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q. (Pullman, WA); Wang, Wei (Pullman, WA)

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  9. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  10. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  11. Chemical sensing flow probe

    DOEpatents

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  12. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  13. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    NASA Technical Reports Server (NTRS)

    Estes, Ronald H. (editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  14. Balancedness of ArnouxRauzy and Brun words Vincent Delecroix 1 , Toms Hejda 2,3 , and Wolfgang Steiner 3

    E-print Network

    Balancedness of Arnoux­Rauzy and Brun words Vincent Delecroix 1 , TomásŸ Hejda 2,3 , and Wolfgang@liafa.univ­paris­diderot.fr Abstract. We study balancedness properties of words given by the Arnoux­Rauzy and Brun multi­dimensional continued fraction algorithms. We show that almost all Brun words on 3 letters and Arnoux­Rauzy words over

  15. Earth Science for Society Exhibition

    E-print Network

    de Leon, Alex R.

    4th Earth Science for Society Exhibition March 1618, 2014 Big Four............................................................................................................................................ 9 Earth Science for Society Exhibitor Listing.com 3 WelcomeMessage Thank you for participating in Earth Science for Society! Earth Science

  16. Earth Science Information Center

    USGS Publications Warehouse

    U.S. Geological Survey

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  17. Down To Earth April 30, 200534 IF YOU thought depletion of stratos-

    E-print Network

    Singh, Ramesh P.

    Down To Earth · April 30, 200534 T V JAYAN IF YOU thought depletion of stratos- pheric ozone layer found the ozone layer over the Indo- Gangetic (IG) basin is getting seriously compromised, due to, among) and Earth Probe (1997-2003). Ozone layer thickness is expressed in terms of Dobson Units (DU). The nor- mal

  18. Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000

    SciTech Connect

    Massie, Steven T.; Torres, O.; Smith, Steven J.

    2004-12-01

    Emission inventories indicate that the largest increases in SO{sub 2} emissions have occurred in Asia during the last 20 years. By inference, largest increases in aerosol, produced primarily by the conversion of SO{sub 2} to sulfate, should have occurred in Asia during the same time period. Decadal changes in regional aerosol optical depths are calculated by analyzing Total Ozone Mapping Spectrometer (TOMS) vertical aerosol optical depths (converted to 550 nm) from 1979 to 2000 on a 1{sup o} by 1{sup o} global grid. The anthropogenic component of the TOMS aerosol record is maximized by examining the seasonal cycles of desert dust and Boreal fire smoke, and identifying the months of the year for which the desert dust and Boreal fire smoke are least conspicuous. Gobi and Taklimakan desert dust in Asia is prevalent in the TOMS record during spring, and eastern Siberian smoke from Boreal forest fires is prevalent during summer. Aerosol trends are calculated on a regional basis during winter (November-February) to maximize the anthropogenic component of the aerosol record. Large increases in aerosol optical depths between 1979 and 2000 are present over the China coastal plain and the Ganges river basin in India. Aerosol increased by 17% per decade during winter over the China coastal plain, while SO{sub 2} emissions over the same geographical region increased by 33% per decade.

  19. The gridded electromagnet probe

    E-print Network

    Shadman, K. (Khashayar), 1972-

    2003-01-01

    We attempted to measure the anisotropy in the electron distribution function in magnetized plasma by exploiting the adiabatic invariance of the electron's magnetic moment with a probe comprising a grid, a collector, and ...

  20. The Gravity Probe B Flight Dewar

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. This photograph is of the Gravity Probe B flight dewar, a metal container made like a vacuum bottle that is used especially for storing liquefied gases, that will maintain the experiment at a temperature just above absolute zero, staying cold for two years. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Launched in 2004 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation. (Photo Credit: Lockheed Martin Corporation/R. Underwood)

  1. Artist's Concept of Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  2. Artist's Concept of Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  3. Gravity Probe B Number 4 Gyro Inspected

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, Stanford engineer, Chris Gray, is inspecting the number 4 gyro under monochromatic light. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Stanford University.)

  4. Artist's Concept of Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  5. Gravity Probe B Completed With Solar Arrays

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  6. Rare Earth Nanoprobes for Functional Biomolecular Imaging and Theranostics

    PubMed Central

    Naczynski, Dominik J.; Tan, Mei Chee; Riman, Richard E.; Moghe, Prabhas V.

    2014-01-01

    Contrast agents designed to visualize the molecular mechanisms underlying cancer pathogenesis and progression have deepened our understanding of disease complexity and accelerated the development of enhanced drug strategies targeted to specific biochemical pathways. For the next generation probes and imaging systems to be viable, they must exhibit enhanced sensitivity and robust quantitation of morphologic and contrast features, while offering the ability to resolve the disease-specific molecular signatures that may be critical to reconstitute a more comprehensive portrait of pathobiology. This feature article provides an overview on the design and advancements of emerging biomedical optical probes in general and evaluates the promise of rare earth nanoprobes, in particular, for molecular imaging and theranostics. Combined with new breakthroughs in nanoscale probe configurations, and improved dopant compositions, and multimodal infrared optical imaging, rare-earth nanoprobes can be used to address a wide variety of biomedical challenges, including deep tissue imaging, real-time drug delivery tracking and multispectral molecular profiling. PMID:24921049

  7. Comprehensive Resources for Tomato Functional Genomics Based on the Miniature Model Tomato Micro-Tom

    PubMed Central

    Matsukura, C; Aoki, K; Fukuda, N; Mizoguchi, T; Asamizu, E; Saito, T; Shibata, D; Ezura, H

    2008-01-01

    Tomato (Solanum lycopersicum L., Solanaceae) is an excellent model plant for genomic research of solanaceous plants, as well as for studying the development, ripening, and metabolism of fruit. In 2003, the International Solanaceae Project (SOL, www.sgn.cornell.edu ) was initiated by members from more than 30 countries, and the tomato genome-sequencing project is currently underway. Genome sequence of tomato obtained by this project will provide a firm foundation for forthcoming genomic studies such as the comparative analysis of genes conserved among the Solanaceae species and the elucidation of the functions of unknown tomato genes. To exploit the wealth of the genome sequence information, there is an urgent need for novel resources and analytical tools for tomato functional genomics. Here, we present an overview of the development of genetic and genomic resources of tomato in the last decade, with a special focus on the activities of Japan SOL and the National Bio-Resource Project in the development of functional genomic resources of a model cultivar, Micro-Tom. PMID:19506732

  8. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.

  9. Temperature-Averaging Thermal Probe

    NASA Technical Reports Server (NTRS)

    Kalil, L. F.; Reinhardt, V.

    1984-01-01

    Temperature-averaging thermal probe measures long-term temperature fluctuations in fluid environment. Consists of temperature probe embedded inside thermally massive material. Probe measurements used to estimate powerplant heating and cooling loads, map temperature profiles, and calibrate more-sensitive temperature probes.

  10. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  11. The Evolving Space Weather System—Van Allen Probes Contribution

    NASA Astrophysics Data System (ADS)

    Zanetti, L. J.; Mauk, B. H.; Fox, N. J.; Barnes, R. J.; Weiss, M.; Sotirelis, T. S.; Raouafi, N.-E.; Kessel, R. L.; Becker, H. N.

    2014-10-01

    The overarching goal and purpose of the study of space weather is clear—to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA's Van Allen Probes' twin pair of satellites, launched in August of 2012 and orbiting directly through Earth's severe radiation belts. The Van Allen Probes mission, formerly the Radiation Belt Storm Probes (RBSP), was renamed soon after launch to honor the discoverer of Earth's radiation belts at the beginning of the space age, the late James Van Allen (the spacecraft themselves are still referred to as RBSP-A and RBSP-B). The Van Allen Probes are one part of NASA's Living With a Star program formulated to advance the scientific understanding of the connection between solar disturbances, the resulting heliospheric conditions, and their effects on the geospace and Earth environment.

  12. The infinite line pressure probe

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Richards, W. B.

    1984-01-01

    The infinite line pressure probe provides a means for measuring high frequency fluctuating pressures in difficult environments. A properly designed infinite line probe does not resonate; thus its frequency response is not limited by acoustic resonance in the probe tubing, as in conventional probes. The characteristics of infinite line pressure probes are reviewed and some applications in turbine engine research are described. A probe with a flat-oval cross section, permitting a constant-impedance pressure transducer installation, is described. Techniques for predicting the frequency response of probes with both circular and flat-oval cross sections are also cited.

  13. Rare Earth ? See Rare Earth, by Ward and Brownlee

    E-print Network

    Walter, Frederick M.

    Rare Earth ? See Rare Earth, by Ward and Brownlee #12;N to date N = N* fs fGHZfp nH fl fi fc L/T ·N Earth is "Just Right" Yes, life on Earth has adapted to Earth, but ... Earth has just the right mass to be ·Tectonically-active ·Retain an atmosphere Earth has had a stable climate The Sun is particularly inactive

  14. EarthExplorer

    USGS Publications Warehouse

    Houska, Treva

    2012-01-01

    The EarthExplorer trifold provides basic information for on-line access to remotely-sensed data from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The EarthExplorer (http://earthexplorer.usgs.gov/) client/server interface allows users to search and download aerial photography, satellite data, elevation data, land-cover products, and digitized maps. Minimum computer system requirements and customer service contact information also are included in the brochure.

  15. Earth observing system implementation

    NASA Technical Reports Server (NTRS)

    Donohoe, M. J.; Walton, B. A.; Vane, D.

    1985-01-01

    The Earth Observing System (EOS) is a planned major earth science program initiative using the Polar Platforms of the Space Station. The Polar Platform resource capabilities will allow a multi-disciplinary, long term mission life approach to future earth science measurements. The EOS will be the subject of an Announcement of Opportunity (AO) in 1986. The EOS concept and the planned implementation approach is outlined.

  16. Convective heat flow probe

    DOEpatents

    Dunn, James C. (Albuquerque, NM); Hardee, Harry C. (Albuquerque, NM); Striker, Richard P. (Albuquerque, NM)

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  17. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  18. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  19. Capturing near-Earth asteroids around Earth Zaki Hasnain n

    E-print Network

    Ross, Shane

    Capturing near-Earth asteroids around Earth Zaki Hasnain n , Christopher A. Lamb, Shane D. Ross Keywords: Near-Earth asteroids Asteroid capture a b s t r a c t The list of detected near-Earth asteroids metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating

  20. Evolution of Life on Earth EVOLUTION OF LIFE ON EARTH

    E-print Network

    Shirley, Yancy

    Evolution of Life on Earth #12;EVOLUTION OF LIFE ON EARTH #12;Earth ~4.5 billion years ago A bad day .... #12;Old (Archean) Rocks #12;4.4 Billion year old Zircon Earth was temperate and had water 4.4 billion years ago! #12;#12;EVOLUTION OF LIFE ON EARTH #12;Making Organic Molecules : Miller & Urey Famous

  1. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  2. Multispectral imaging probe

    DOEpatents

    Sandison, David R. (Moriarty, NM); Platzbecker, Mark R. (Albuquerque, NM); Descour, Michael R. (Tucson, AZ); Armour, David L. (Albuquerque, NM); Craig, Marcus J. (Albuquerque, NM); Richards-Kortum, Rebecca (Austin, TX)

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  3. F-8 SCW on ramp with test pilot Tom McMurtry

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing (SCW) in place of the conventional wing. The unique design of the Supercritical Wing reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In this photograph the TF-8A Crusader with Supercritical Wing is shown on the ramp with project pilot Tom McMurtry standing beside it. McMurtry received NASA's Exceptional Service Medal for his work on the F-8 SCW aircraft. He also flew the AD-1, F-15 Digital Electronic Engine Control, the KC-130 winglets, the F-8 Digital Fly-By-Wire and other flight research aircraft including the remotely piloted 720 Controlled Impact Demonstration and sub-scale F-15 research projects. In addition, McMurtry was the 747 co-pilot for the Shuttle Approach and Landing Tests and made the last glide flight in the X-24B. McMurtry was Dryden's Director for Flight Operations from 1986 to 1998, when he became Associate Director for Operations at NASA Dryden. In 1982, McMurtry received the Iven C. Kincheloe Award from the Society of Experimental Test Pilots for his contributions as project pilot on the AD-1 Oblique Wing program. In 1998 he was named as one of the honorees at the Lancaster, Calif., ninth Aerospace Walk of Honor ceremonies. In 1999 he was awarded the NASA Distinguished Service Medal. He retired in 1999 after a distinguished career as pilot and manager at Dryden that began in 1967. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the trailing edge. The Supercritical Wing was designed to delay the formation of and reduce the shock wave over the wing just below and above the speed of sound (transonic region of flight). Delaying the shock wave at these speeds results in less drag. Results of the NASA flight research at the Flight Research Center, Edwards, California, (later renamed the Dryden Flight Research Center) demonstrated that aircraft using the supercritical wing concept would have increased cruising speed, improved fuel efficiency, and greater flight range than those using conventional wings. As a result, supercritical wings are now commonplace on virtually every modern subsonic commercial transport. Results of the NASA project showed the SCW had increased the transonic efficiency of the F-8 as much as 15 percent and proved that passenger transports with supercritical wings, versus conventional wings, could save $78 million (in 1974 dollars) per year for a fleet of 280 200-passenger airliners. The F-8 Supercritical Wing (SCW) project flew from 1970 to 1973. Dryden engineer John McTigue was the first SCW program manager and Tom McMurtry was the lead project pilot. The first SCW flight took place on March 9, 1971. The last flight of the Supercritical wing was on May 23, 1973, with Ron Gerdes at the controls. Original wingspan of the F-8 is 35 feet, 2 inches while the wingspan with the supercritical wing was 43 feet, 1 inch. F-8 aircraft were powered by Pratt & Whitney J57 turbojet engines. The TF-8A Crusader was made available to the NASA Flight Research Center by the U.S. Navy. F-8 jet aircraft were built, originally, by LTV Aerospace, Dallas, Texas. Rockwell International's North American Aircraft Division received a $1.8 million contract to fabricate the supercritical wing, which was delivered to NASA in December 1969.

  4. [Digital volume tomography using the NewTom system: advantages of this new technique in children].

    PubMed

    Rouas, P; Bandon, D; Nancy, J; Delbos, Y; Hauret, L; Bar, D

    2006-08-01

    In some cases, after preliminary clinical examination, medical imaging can provide indispensable complementary information for the care of young patients. Volume imaging using two- and three-dimensional reconstructions provides the most complete information possible. Problems involving the superposition of anatomical structures, which can occur with conventional X-rays, are a thing of the past, and this technique represents the future in this field. In high-density tissue such as bone or teeth, tomodensitometry is the preferred examination as it can give a three-dimensional approach to the study. However, because of the high radiation dose required, scanner is still a second intention examination. Development of digital volume tomography using NewTom system, designed for maxillofacial exploration, produces the same type of image for a very much reduced X-ray dose, and at low cost. Although the use of this new examining technique is developing rapidly in Europe and throughout the world since its recent introduction, France is lagging behind as to date there are only seven machines in the entire country. The main uses in children, illustrated by original clinical cases, relate to preoperative surgery planning, post-trauma diagnostic workups, orthodontic checkups, postoperative follow-up and TMJ examinations. The purpose of this article is to inform dental surgeons, paediatricians and doctors about this new medical imaging examination, which will most definitely have a place in the battery of diagnostic tools available to us. After weighing the advantages/risks involved, it should be possible to reduce the number of tomodensitometry exams in favour of this new examination technique in children according to the clinical examination data and diagnostic information required. PMID:16860545

  5. TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections.

    PubMed

    Saito, Takeshi; Ariizumi, Tohru; Okabe, Yoshihiro; Asamizu, Erika; Hiwasa-Tanase, Kyoko; Fukuda, Naoya; Mizoguchi, Tsuyoshi; Yamazaki, Yukiko; Aoki, Koh; Ezura, Hiroshi

    2011-02-01

    The tomato is an excellent model for studies of plants bearing berry-type fruits and for experimental studies of the Solanaceae family of plants due to its conserved genetic organization. In this study, a comprehensive mutant tomato population was generated in the background of Micro-Tom, a dwarf, rapid-growth variety. In this and previous studies, a family including 8,598 and 6,422 M(2) mutagenized lines was produced by ethylmethane sulfonate (EMS) mutagenesis and ?-ray irradiation, and this study developed and investigated these M(2) plants for alteration of visible phenotypes. A total of 9,183 independent M(2) families comprising 91,830 M(2) plants were inspected for phenotypic alteration, and 1,048 individual mutants were isolated. Subsequently, the observed mutant phenotypes were classified into 15 major categories and 48 subcategories. Overall, 1,819 phenotypic categories were found in 1,048 mutants. Of these mutants, 549 were pleiotropic, whereas 499 were non-pleiotropic. Multiple different mutant alleles per locus were found in the mutant libraries, suggesting that the mutagenized populations were nearly saturated. Additionally, genetic analysis of backcrosses indicated the successful inheritance of the mutations in BC(1)F(2) populations, confirming the reproducibility in the morphological phenotyping of the M(2) plants. To integrate and manage the visible phenotypes of mutants and other associated data, we developed the in silico database TOMATOMA, a relational system interfacing modules between mutant line names and phenotypic categories. TOMATOMA is a freely accessible database, and these mutant recourses are available through the TOMATOMA (http://tomatoma.nbrp.jp/index.jsp). PMID:21258066

  6. Tom Kibble and the early universe as the ultimate high energy experiment

    NASA Astrophysics Data System (ADS)

    Turok, Neil

    2014-02-01

    Tom Kibble pioneered the idea that there were one or more symmetry breaking phase transitions in the very early universe, at which defects like monopoles, strings and domain walls would have formed. In the context of grand unified theories, or their extensions, this idea remains compelling: observing these defects would be one of the very few ways of directly confirming the theories. In contrast, inflationary theory invoked a strongly supercooled transition driving a period of exponential expansion which would sweep all such defects away. If inflation terminated slowly, quantum vacuum fluctuations would be amplified and stretched to cosmological scales, forming density variations of just the character required to explain the formation of galaxies. The ensuing paradigm has dominated cosmology for the last three decades. However, basic problems in the scenario remain unresolved. Extreme tuning both of the initial conditions and of the physical laws are required. There are many different versions, each with slightly different predictions. Finally, inflation brought with it the theory of a "multiverse" — a universe containing infinite number of different, infinite, universes — while providing no "measure" or means of calculating the probability of observing any one of them. I will discuss an alternative to inflation, in which the big bang was a bounce from a previous contracting epoch. The discovery of the Higgs boson at the LHC has provided new evidence for such a picture by showing that, within the minimal standard model, our current vacuum is metastable. This opens the door to a cyclic universe scenario in which the electroweak Higgs plays a central role.

  7. Telluride, Tom Cruise, and Land Use Codes: Science, Policy, and Community Response

    NASA Astrophysics Data System (ADS)

    Raby, K. S.; Williams, M. W.

    2003-12-01

    Mountain areas throughout the western US have experienced a surge in popularity in the last decade, resulting in degradation of the resources that drew people to the area in the first place. Traditional economic interests, recreational users, and environmentalists all have opposing priorities. Thus, resource managers and planners face increasingly critical and controversial decisions regarding development and protection of watersheds. Best Management Practices (BMPs) are generally an attempt to improve land and water quality after degradation. Here we report on our work with local stakeholders in the San Miguel River drainage-home of Telluride Ski Area and Hollywood moguls such as Tom Cruise-to prevent degradation of headwater catchments while providing for reasonable economic and recreational activities. We developed new tools for resource managers by mapping landscape types and associated water quality parameters so as to develop sensitivity criteria that are displayed visually using GIS maps. Using these results, San Miguel County Commissioners adopted land use codes to restrict development, including an 800-sqft building footprint, and bans on septic systems and winter plowing. This case study lays the foundation for science-based policy at the catchment scale, but is dependent on local culture and politics. Preliminary fieldwork was conducted in the summer of 2003 as the first steps toward similar work in adjacent San Juan County, which has a strong mining heritage. The San Juan County Planning Commission identified priority basins for study, and extensive physical field surveys were conducted in these drainages to map spatial distribution and aerial extent of numerous landscape types. Again, water quality parameters will be associated with different land covers to enable alpine sensitivity analysis at the landscape unit scale. Results will be provided to the San Juan Planning Commission to augment current planning tools. However, because of the different political and cultural climates of the two counties, we show that policy outcomes that ensue in San Juan County will likely differ from those achieved in San Miguel County.

  8. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    NASA Astrophysics Data System (ADS)

    Schneider, David J.; Rose, William I.; Coke, Larry R.; Bluth, Gregg J. S.; Sprod, Ian E.; Krueger, Arlin J.

    1999-02-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chichón, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1-10 ?m radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 × 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 × 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 ?m to about 4 ?m.

  9. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    USGS Publications Warehouse

    Schneider, D.J.; Rose, William I., Jr.; Coke, L.R.; Bluth, G.J.S.; Sprod, I.E.; Krueger, A.J.

    1999-01-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chicho??n, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1-10 ??m radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 ?? 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 ?? 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 ??m to about 4 ??m. Copyright 1999 by the American Geophysical Union.

  10. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  11. The Earth Needs You!

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    Celebrated annually on April 22, schools and communities organize numerous activities during Earth Day to promote awareness. To help teachers plan their own initiatives and to learn more about what is happening around the world, they can join the Earth Day Network at: http://network.earthday.net/. Once they have joined, they can create a webpage…

  12. Spaceship Earth Curriculum Project.

    ERIC Educational Resources Information Center

    McInnis, Noel; And Others

    Three separate papers from the Project are included in this document. One of these, by the Center staff, is entitled "Potentials of the Spaceship Earth Metaphor". It discusses static, dynamic, and analogic representations of spaceship earth and their educational value. A second paper, "Some Resources for Introducing Environmental Education Into…

  13. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  14. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  15. The Earth Charter

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2010

    2010-01-01

    Humanity is part of a vast evolving universe. Earth is alive with a unique community of life. The forces of nature make existence a demanding and uncertain adventure, but Earth has provided the conditions essential to life's evolution. The resilience of the community of life and the well-being of humanity depend upon preserving a healthy biosphere…

  16. Skylab Explores the Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This book describes the Skylab 4 Earth Explorations Project. Photographs of the earth taken by the Skylab astronauts are reproduced here and accompanied by an analytical and explanatory text. Some of the geological and geographical topics covered are: (1) global tectonics - some geological analyses of observations and photographs from Skylab; (2)…

  17. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  18. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  19. Planet Earth: Plate Tectonics

    E-print Network

    Watts, A. B. "Tony"

    Planet Earth: Plate Tectonics Recommended Books: An Introduction to Our Dynamic Planet (ODP), 2007, ice and sediment for long periods of geological time (>105 a). · Controlled and passive (e, Problem sets etc Lecture 1: Plate Mechanics and Kinematics The Earth comprises 7 major plates and a number

  20. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  1. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  2. Cross-Sex Hormone Use, Functional Health and Mental Well-Being among Transgender Men (Toms) and Transgender Women (Kathoeys) in Thailand

    PubMed Central

    Gooren, Louis J.; Sungkaew, Tanapong; Giltay, Erik J.; Guadamuz, Thomas E.

    2014-01-01

    There exists limited understanding of cross-sex hormone use and mental well-being among transgender women and, particularly, among transgender men. Moreover, most studies of transgender people have taken place in the Global North and often in the context of HIV. This exploratory study compared 60 transgender men (toms) with 60 transgender women (kathoeys) regarding their use of cross-sex hormones, mental well-being and acceptance by their family. Participants also completed a dispositional optimism scale (Life Orientation Test Revised; LOT-R), the Social Functioning Questionnaire (SFQ) and the Short Form Health Survey 36 (SF-36) assessing the profile of functional health and mental well-being. Cross-sex hormones were used by 35% of toms and 73% of kathoeys and were largely unsupervised by health-related personnel. There were no differences in functional health and mental well-being among toms and kathoeys. However, toms currently using cross-sex hormones scored on average poorer on bodily pain and mental health, compared to non-users. Further, compared to non-users, cross-sex hormone users were about 8 times and 5 times more likely to be associated with poor parental acceptance among toms and kathoeys, respectively. This study was the first to compare cross-sex hormone use, functional health and mental well-being among transgender women and transgender men in Southeast Asia. PMID:25270637

  3. Exploring the Diversity of Super-Earths

    NASA Astrophysics Data System (ADS)

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; Lothringer, Joshua; Dragomir, Diana; Fortney, Jonathan J.; Howard, Andrew; McCullough, Peter R.; Gilliland, Ronald L.; Kempton, Eliza; Morley, Caroline

    2016-01-01

    The discovery of planets with masses and radii intermediate between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. These "super-Earths" are an order of magnitude more abundant than close-in giant planets. Despite this ubiquity, we know little about their typical compositions and formation histories. Spectroscopic transit observations can shed new light on these mysterious worlds by probing their atmospheric compositions. In this talk, we will give an overview of our ongoing 124-orbit (200-hour) Hubble Space Telescope program to reveal the chemical diversity and formation histories of super-Earths. This unprecedented survey will provide the first comprehensive look at this intriguing new class of planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth mass planet near the habitable zone of its host star. We will discuss the scope of the program, demonstrate observational techniques to observe extremely bright exoplanet targets with HST WFC3 and STIS, and present early results.

  4. Radiation Belt Storm Probes: Resolving Fundamental Physics with Practical Consequences

    NASA Technical Reports Server (NTRS)

    Ukhorskiy, Aleksandr Y.; Mauk, Barry H.; Fox, Nicola J.; Sibeck, David G.; Grebowsky, Joseph M.

    2011-01-01

    The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.

  5. Science from Shallow Saturn Entry Probes

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Coustenis, A.; Lunine, J. I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Guillot, T.; Mahaffy, P.; Spilker, L. J.; Spilker, T. R.; Webster, C.

    2013-09-01

    Data from atmospheric entry probe missions at the giant planets could uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres, providing for valuable comparative studies of giant planets as well as providing a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. For these reasons, a Saturn Probe mission with a shallow probe is ranked by the recent U.S. Planetary Science Decadal Survey as a high priority for a New Frontiers class mission. Atmospheric constituents needed to constrain theories of solar system formation and the origin and evolution of the giant planets could be accessed and sampled by shallow entry probes. Many important constituents are either spectrally inactive or are beneath an atmospheric overburden that is optically thick at useful wavelengths and are therefore not remotely accessible by flyby or orbiting spacecraft. A small, scientifically focused shallow entry probe mission could make critical abundance measurements of key constituents, and could measure profiles of atmospheric structure and dynamics at a vertical resolution that is significantly higher than could be achieved by remote sensing techniques. The Galileo mission began the detailed study of the solar system's two gas giants by dropping an entry probe into the atmosphere of Jupiter and deploying an orbiter around Jupiter. In 2016-2017 the Juno mission will make measurements of Jupiter's deep oxygen abundance, and gravitational and magnetic fields. In the same epoch, the Cassini orbiter is planned to pursue a set of Juno-like orbits to make comparable gravitational and magnetic field measurements of Saturn. A Saturn atmospheric entry probe would complete the quartet of missions needed for a comparative study of the two gas giants, leading to improved models of solar system formation. A highly focused entry probe mission at Saturn carrying a minimal science payload could address unique and critical science while fitting within existing program budget caps. Fundamental measurements include abundances of the noble gases He, Ne, Ar, Kr, and Xe and, abundances of key isotopic ratios 4He/3He, D/H, 15N/14N, 18O/16O, and 13C/12C. Detection of disequilibrium species CO, PH3, AsH3, and GeH4 is diagnostic of deeper internal processes and dynamics of the atmosphere along the probe descent. Abundances of these key constituents, as well as carbon which does not condense at Saturn, sulfur which is expected to be well-mixed below the 4 to 5-bar ammonium hydrosulfide (NH4SH) cloud, and gradients of nitrogen below the NH4SH cloud and oxygen in the upper layers of the H2O and H2O-NH4 solution cloud, could be measured by an entry probe descending through 10 bars. In concert with the results from Galileo, Cassini, and Juno, a shallow Saturn probe capable of measuring abundances of key constituents not accessible by a remote sensing mission would provide critical measurements enabling a comparison of composition and dynamical processes on the giant planets while also providing an improved context for understanding exoplanets.

  6. carleton.ca Earth Sciences

    E-print Network

    Dawson, Jeff W.

    carleton.ca Earth Sciences #12;Earth is our home. It is a dynamic planet, integrating and recording spectrometers or electron microprobes--earth scientists investigate Earth's evolution to help understand future today and for the future is enhanced by the expertise of economic geologists. Knowledge of the Earth

  7. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Mclucas, John L.

    1989-01-01

    The Mission to Planet Earth is a research program designed to obtain information on the earth and the global changes taking place in the environment, including the 'natural'changes due to internal processes within the earth environment, the effects of energy and particles arriving from the outer space, and the effects of man and other living organisms inhabiting the earth. This paper emphasizes the need for multinational commitment to the collection of data on various global phenomena and for the 'end-to-end' management of the data handling process, which must combine data from many sources and do it properly to reveal useful information. The role of NASA and other space agencies in organizing these efforts is discussed. Special attention is given to the role of SAFISY (the Space Agency Forum for the International Space Year) formed with participation of 24 nations to coordinate the activities of various space agencies on the Mission to Planet Earth project.

  8. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  9. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  10. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  11. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  12. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  13. Cervical Neoplasia Probe Control

    Energy Science and Technology Software Center (ESTSC)

    1997-01-24

    This software, which consists of a main executive and several subroutines, performs control of the optics, image acquisition, and Digital Signal Processing (DSP) of this image, of an optical based medical instrument that performs fluoresence detection of precancerous lesions (neoplasia) of the human cervix. The hardware portion of this medical instrument is known by the same name Cervical Neoplasia Probe (CNP)

  14. The Gravity Probe B test of general relativity

    NASA Astrophysics Data System (ADS)

    Everitt, C. W. F.; Muhlfelder, B.; DeBra, D. B.; Parkinson, B. W.; Turneaure, J. P.; Silbergleit, A. S.; Acworth, E. B.; Adams, M.; Adler, R.; Bencze, W. J.; Berberian, J. E.; Bernier, R. J.; Bower, K. A.; Brumley, R. W.; Buchman, S.; Burns, K.; Clarke, B.; Conklin, J. W.; Eglington, M. L.; Green, G.; Gutt, G.; Gwo, D. H.; Hanuschak, G.; He, X.; Heifetz, M. I.; Hipkins, D. N.; Holmes, T. J.; Kahn, R. A.; Keiser, G. M.; Kozaczuk, J. A.; Langenstein, T.; Li, J.; Lipa, J. A.; Lockhart, J. M.; Luo, M.; Mandel, I.; Marcelja, F.; Mester, J. C.; Ndili, A.; Ohshima, Y.; Overduin, J.; Salomon, M.; Santiago, D. I.; Shestople, P.; Solomonik, V. G.; Stahl, K.; Taber, M.; Van Patten, R. A.; Wang, S.; Wade, J. R.; Worden, P. W., Jr.; Bartel, N.; Herman, L.; Lebach, D. E.; Ratner, M.; Ransom, R. R.; Shapiro, I. I.; Small, H.; Stroozas, B.; Geveden, R.; Goebel, J. H.; Horack, J.; Kolodziejczak, J.; Lyons, A. J.; Olivier, J.; Peters, P.; Smith, M.; Till, W.; Wooten, L.; Reeve, W.; Anderson, M.; Bennett, N. R.; Burns, K.; Dougherty, H.; Dulgov, P.; Frank, D.; Huff, L. W.; Katz, R.; Kirschenbaum, J.; Mason, G.; Murray, D.; Parmley, R.; Ratner, M. I.; Reynolds, G.; Rittmuller, P.; Schweiger, P. F.; Shehata, S.; Triebes, K.; VandenBeukel, J.; Vassar, R.; Al-Saud, T.; Al-Jadaan, A.; Al-Jibreen, H.; Al-Meshari, M.; Al-Suwaidan, B.

    2015-11-01

    The Gravity Probe B mission provided two new quantitative tests of Einstein’s theory of gravity, general relativity (GR), by cryogenic gyroscopes in Earth’s orbit. Data from four gyroscopes gave a geodetic drift-rate of ?6601.8 ± 18.3 marc-s yr?1 and a frame-dragging of ?37.2 ± 7.2 marc-s yr?1, to be compared with GR predictions of ?6606.1 and ?39.2 marc-s yr?1 (1 marc-s = 4.848 × 10?9 radians). The present paper introduces the science, engineering, data analysis, and heritage of Gravity Probe B, detailed in the accompanying 20 CQG papers.

  15. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on ?-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric probes to really feel the environment and also shine when twisted out of conjugation. PMID:25693760

  16. Earth as art three

    USGS Publications Warehouse

    U.S. Geological Survey

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  17. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon. PMID:18826928

  18. Expanded Quantum Cryptographic Entangling Probe

    E-print Network

    Howard E. Brandt; John M. Myers

    2005-10-12

    The paper [Howard E. Brandt, "Quantum Cryptographic Entangling Probe," Phys. Rev. A 71, 042312 (2005)] is generalized to include the full range of error rates for the projectively measured quantum cryptographic entangling probe.

  19. Cryogenic liquid level measuring probe

    NASA Technical Reports Server (NTRS)

    Dinkel, J. A.; Wegner, C. R.

    1968-01-01

    Universal probe, which contains a unique frequency discriminator, measures the static and dynamic levels of cryogenic liquids in a hydrogen bubble chamber. The probe allows boiling conditions or other turbulence to be observed throughout all the transition stages.

  20. Machine Learning for Computational Sustainability Tom Dietterich, Ethan Dereszynski, Rebecca Hutchinson, Dan Sheldon

    E-print Network

    Earth's ecosystems sustainably. Viewed as a control problem, the two central challenges of ecosystem a novel approach to modeling the migration of birds. A major challenge for all of these methods distribution models; dynamical ecosystem models; hidden Markov models I. INTRODUCTION The world-wide spread

  1. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  2. Earths, Super-Earths, and Jupiters

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Lee, Eve J.

    2015-12-01

    We review and add to the theory of how planets acquire atmospheres from parent circumstellar disks. We derive (in real time) a simple and general analytic expression for how a planet's atmosphere grows with time, as a function of the underlying core mass and nebular conditions, including the gas metallicity. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. The theory can be applied in any number of settings --- gas-rich vs. gas-poor nebulae; dusty vs. dust-free atmospheres; close-in vs. far-out distances --- and is confirmed against detailed numerical models for objects ranging in mass from Mars (0.1 Mearth) to the most extreme super Earths (10--20 Mearth). We explain why heating from planetesimal accretion, commonly invoked in models of core accretion, is irrelevant. This talk sets the stage for another presentation, "Breeding Super-Earths and Birthing Super-Puffs".

  3. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring system’s orbital elements and structure. Our work concludes that rings may exist in Earth’s equatorial plane and in the plane of the lunar orbit, that such rings are filamentary structures comprising segments of geologically homogeneous material flung into earth’s orbit at distinct periods of lunar volcanism, and that earth’s weather may indeed be very strongly affected by the rings. In closing, until the time of the lunar landing in 1969, the moon was considered geologically dead. But today, we have multiple lines of evidence that the Moon is still volcanically active. According to our study, this volcanism may affect weather and climate considerably. If lunar volcanism and weather on Earth are linked, then a satisfactory understanding of lunar volcanism is called for by considerations of human welfare. The subsistence farmer has an immediate need to know what is true about our Moon; food security depends on it.

  4. Probing properties of cold radiofrequency plasma with polymer probe

    NASA Astrophysics Data System (ADS)

    Bormashenko, E.; Chaniel, G.; Multanen, V.

    2015-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows the estimation of Debye length of cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  5. Enabling interstellar probe

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Wimmer-Schweingruber, Robert F.; International Interstellar Probe Team

    2011-04-01

    The scientific community has advocated a scientific probe to the interstellar medium for over 30 years. While the Voyager spacecraft have passed through the termination shock of the solar wind, they have limited lifetimes as their radioisotope power supplies decay. It remains unclear whether they can reach the heliopause, the boundary between shocked solar wind and interstellar plasmas, and, in any case, they will not reach the undisturbed interstellar medium. As with most exploratory space missions, their ongoing observations continue to raise even more questions about the nature of the interaction of our heliosphere and the interstellar medium. Scientific questions including: What is the nature of the nearby interstellar medium? How do the Sun and galaxy affect the dynamics of the heliosphere? What is the structure of the heliosphere? How did matter in the solar system and interstellar medium originate and evolve? can only be answered by an "interstellar precursor" probe. Such a mission is required to make in situ measurements in the interaction region and interstellar medium itself at distances far from the Sun, but in a finite mission lifetime. By launching a probe toward the incoming "interstellar wind," whose direction is known, the distance to be traveled can be minimized but is still large. The current consensus is that a scientifically compelling mission must function to at least a distance of 200 astronomical units (AU) from the Sun and return a reasonable stream of data during the voyage. The central problem is that of providing a means of propulsion to accelerate a probe from the Solar System. Even with a low-mass payload and spacecraft, achieving the high speeds needed, even with gravity assists, have remained problematic. Voyager 1, the fastest object ever to leave the system is now traveling ˜3.6 AU/yr, and a credible probe must reach at least 2-3 times this speed. The use of an Ares V is an approach for enabling a fast interstellar precursor mission. Maximum capability uses the combination of an Ares V, two-engine Centaur upper stage, close fly-by of Jupiter, and radioisotope electric propulsion (REP). Deletion of any of these pieces does not disable the mission, but does increase the flyout time to a given distance. This approach is more robust and provides a faster probe than an earlier alternative, designed for launch by a Delta IV 4050H plus twin Star 48A upper stages.

  6. The Huygens probe's back cover is installed in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Daimler-Benz Aerospace staff install the back cover on the Huygens probe in the Payload Hazardous Servicing Facility at KSC in July. Instruments mounted on the probe, which was developed by the European Space Agency (ESA), will receive atmospheric and surface data on Saturn's main moon, Titan, to send back to Earth as part of the Cassini mission. The back cover, yet to be attached to the Cassini orbiter, will protect the probe during descent onto Titan. A four-year, close-up study of the Saturnian system, the mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Aerospatiale is the prime contractor for ESA.

  7. The Huygens probe's heat shield is installed in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Daimler-Benz Aerospace staff member inspects the heat shield of the Huygens probe after the shield was installed in the Payload Hazardous Servicing Facility at KSC in July. Instruments mounted on the probe, which is owned by the European Space Agency, will receive atmospheric and surface data on Saturn's main moon, Titan, to send back to Earth as part of the Cassini mission. The back cover, yet to be attached to the Cassini orbiter, will protect the probe during descent onto Titan. A four-year, close- up study of the Saturnian system, the mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Aerospatiale is the prime contractor for ESA.

  8. The Huygens probe's back cover is installed in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Daimler-Benz Aerospace staff prepare to remove the lift fixture used to install the back cover on the Huygens probe, the conical structure in the white workstand, in the Payload Hazardous Servicing Facility at KSC. Instruments mounted on the probe, which was developed by the European Space Agency (ESA), will receive atmospheric and surface data on Saturn's main moon, Titan, to send back to Earth as part of the Cassini mission. The back cover, yet to be attached to the Cassini orbiter, will protect the probe during descent onto Titan. A four-year, close- up study of the Saturnian system, Cassini is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Aerospatiale is the prime contractor for ESA.

  9. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-data-transmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-datatransmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At thime of reporting the information for this article, the system was just deployed in two boreholes

  10. Mars, earth, and ice

    SciTech Connect

    Cordell, B.M.

    1986-07-01

    Possible mechanisms to explain the global ice covering of Mars, and previous ice ages on the earth, are considered. Evidence for the Milankovitch effect is found in the close correspondence of earth's past climate with its orbital variations, as recorded principally in ocean sediments, and the role of CO/sub 2/ is discussed. Mars' range of obliquity, 10 times that of the earth, and orbital eccentricity, fluctuating over a range 2 1/2 times that of the earth, could produce an important climate-driving cycle. Mathematical models of the Martian surface and atmosphere based on Viking data suggest that escaped CO/sub 2/ could create a surface pressure of 1-3 bars. Other factors such as the effect of continental drift, the increased brightness of the sun, and planetary reversals of magnetic field polarity are discussed, and the questions of where Martian water and CO/sub 2/ have gone are considered.

  11. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  12. LANL Studies Earth's Magnetosphere

    ScienceCinema

    Daughton, Bill

    2014-08-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  13. Earth study from space

    NASA Technical Reports Server (NTRS)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  14. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  15. LANL Studies Earth's Magnetosphere

    SciTech Connect

    Daughton, Bill

    2011-04-15

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  16. This target earth

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    1991-11-01

    The paper discusses the record of past asteroid impacts on earth, and the probability of a future major collision with a large celestial body. One analytical theory suggests that the chance of a half-mile-wide object will strike earth in the next 100 years is one in 1000. Consideration is given to the KT boundary layer located between the Cretaceous and Tertiary periods where large amounts of iridium are found worldwide; this gave rise to the theory of a space body collision with earth that may have caused the extinction of the dinosaurs. A rule of thumb for calculating the energy of an asteroid striking the earth at a typical speed of 24,000 mph is given. Attention is given to the numerous asteroid strikes that have occurred and have been analyzed.

  17. Down to earth relativity

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1978-01-01

    The basic concepts of the special and general theories of relativity are described. Simple examples are given to illustrate the effect of relativity on measurements of time and frequency in the near-earth environment.

  18. Are Earths Rare?

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, G. W.; Howard, A.

    2013-01-01

    The Kepler spacecraft is the first instrument capable of detecting Earth-size planets around sun-like stars. Now in its third year, Kepler has discovered an extraordinary sample of planets with radii ranging from larger than Jupiter to smaller than Earth (Batalha et al. 2012). Cleanly measuring and debiasing this distribution will be one of Kepler's great legacies. Howard et al. (2012) took the first crucial step, showing that the planet radius distribution increases substantially with decreasing planet size down to at least 2 Earth-radii for planets with periods less than 50 days. While improving upon this analysis with an updated planet catalog and improved stellar parameters, we discovered a startling feature in this distribution: Planet occurrence rises significantly from 4 to 2.8 Earth-radii, plateaus in the range 2.8 to 2 Earth-radii, and then drops significantly for planets smaller than 2 Earth-radii. This falloff in planet occurrence can be interpreted in two ways: either the Kepler planet detection pipeline is significantly incomplete for small planets, or Earth-size planets are intrinsically rare compared to planets twice as large. Either possibility has profound implications for the Kepler mission. In an effort to scrutinize the occurrence distribution for small planets, we have developed an independent photometric reduction and transit search pipeline. We will present new planet candidates along with results from our followup campaign at Keck aimed at determining their false positive probabilities. We will also present our extensive study regarding our pipeline's completeness. Our new planet sample, taken with our completeness and false positive work, constitutes progress toward debiasing the estimated prevalence of Earth-size planets, first revealed by Kepler.

  19. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  20. Beyond earth's boundaries

    NASA Technical Reports Server (NTRS)

    Ladwig, Alan; Ramlose, Terri

    1989-01-01

    Four candidate missions for exploring the solar system and establishing human settlements beyond earth orbit are described. Human expeditions to Phobos and Mars, the establishment of a lunar observatory, and the creation of lunar outpost for use in Mars exploration are examined. Near-term programs are discussed, including studies of earth-to-orbit transportation, life science research, robotic precursor missions, and the Space Station.

  1. EarthNow!

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    EarthNow! displays live or recent acquisitions from the Landsat 5 and Landsat 7 satellites as they pass over North America. When these satellites pass within range of the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, data imagery is downloaded and displayed in near-real time. When the satellites are out of range of the South Dakota ground station at the EROS Center, recent acquisitions are displayed.

  2. Fine-scale comparison of TOMS total ozone data with model analysis of an intense Midwestern cyclone

    NASA Astrophysics Data System (ADS)

    Olsen, Mark A.; Gallus, William A.; Stanford, John L.; Brown, John M.

    2000-08-01

    High-resolution (˜40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by ˜100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above ˜600 hPa; significant positive potential vorticity at lower levels is attributable to diabatic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper-tropospheric/lower-stratospheric dynamics and kinematics.

  3. Fusion of SeaWiFS and TOMS satellite data with surface observations and topographic data during extreme aerosol events.

    PubMed

    Falke, S R; Husar, R B; Schichtel, B A

    2001-11-01

    Spaceborne sensors allow near-continuous aerosol monitoring throughout the world. This paper illustrates the fusion of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and TOMS satellite data with surface observations and topographic data during four extreme aerosol events: (1) the April 1998 Asian dust storm that impacted the west coast of North America, (2) the May 1998 Central American forest fire smoke that impacted eastern North America, (3) the intense fall 1999 northern California fires, and (4) the massive February 2000 Sahara dust storm. During these dust and smoke events, the aerosol was visualized on true color SeaWiFS images as a distinct yellowish dye, the result of the aerosol increasing the reflectance of darker surfaces (ocean and land) and decreasing the reflectance of clouds. TOMS imagery also indicated increased aerosol absorption in the affected areas, while surface monitors measured major reductions in visual range. Fusing these data aids in the determination of the aerosol's spatial, temporal, and optical properties and provides supporting evidence for characterizing what is being visualized as dust or smoke. A 3-dimensional perspective of the events is obtained when incorporating topographic data and provides insight into the vertical properties of the aerosol plumes. PMID:11720105

  4. Rapid phenotyping of the tomato fruit model, Micro-Tom, with a portable VIS-NIR spectrometer.

    PubMed

    Ecarnot, Martin; B?czyk, Paulina; Tessarotto, Lydie; Chervin, Christian

    2013-09-01

    Tomato (Solanum lycopersicum) quality traits such as juice soluble solid content (Brix), juice pH, color parameters (Hue and Chroma), firmness and water content, are critical factors for fruit quality assessment. The need for screening very large numbers of fruit has led to the development of a high-throughput method using visible-near infrared (VIS-NIR) spectrometry. We are reporting here a set of results obtained with a portable spectrometer using the 350-2500 nm range, showing good prediction of the quality traits cited above, over a wide range of developmental stages from immature green to ripe tomato fruit, cv. Micro-Tom. This is a rather good set of quality traits compared to previous publications predicting tomato quality with VIS-NIR spectrometry, and the prediction is robust, as it was obtained by grouping sets of different operators. This would be a useful tool to phenotype hundreds of Micro-Tom per day, making it possible to follow the dynamics of the described parameters on growing fruits. Thus the method can be used to study the biochemistry and physiology of fruit development in planta. PMID:23774377

  5. Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.

    2000-01-01

    High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.

  6. Experiments with probe masses

    PubMed Central

    Braginsky, V. B.

    2007-01-01

    It is reasonable to regard the experiments performed by C. Coulomb and H. Cavendish in the end of the 18th century as the beginning of laboratory experimental physics. These outstanding scientists have measured forces (accelerations) produced by electric charges and by gravitational “charges” on probe masses that were attached to torque balance. Among the variety of different research programs and projects existing today, experiments with probe masses are still playing an important role. In this short review, the achieved and planned sensitivities of very challenging LIGO (Laser Interferometer Gravitational wave Observatory) and LISA (Laser Interferometer Space Antennae) projects are described, and a list of nonsolved problems is discussed as well. The role of quantum fluctuations in high precision measurements is also outlined. Apart from these main topics, the limitations of sensitivity caused by cosmic rays and the prospects of clock frequency stability are presented. PMID:17296944

  7. ATA probe beam experiment

    SciTech Connect

    Lauer, E.J.; Chong, Y.P.; Prono, D.S.; Weir, J.T.

    1984-06-18

    The philosophy of these tests is to measure the motion of a low current, small diameter electron beam in the accelerator before running high current. By using low current, we can study particle motion in the applied fields without any extra complications associated with the self-forces of high currents. With the steering magnets off, we have measured the transverse drift of the probe beam. Also, we have used the probe beam to optimize the current in the steering magnets to compensate for the drift. There have been concurrent efforts to locate the source of the error field which is presumed to cause the drift. So far, the source has not been established but the search is continuing.

  8. Temperature averaging thermal probe

    NASA Technical Reports Server (NTRS)

    Kalil, L. F.; Reinhardt, V. (inventors)

    1985-01-01

    A thermal probe to average temperature fluctuations over a prolonged period was formed with a temperature sensor embedded inside a solid object of a thermally conducting material. The solid object is held in a position equidistantly spaced apart from the interior surfaces of a closed housing by a mount made of a thermally insulating material. The housing is sealed to trap a vacuum or mass of air inside and thereby prevent transfer of heat directly between the environment outside of the housing and the solid object. Electrical leads couple the temperature sensor with a connector on the outside of the housing. Other solid objects of different sizes and materials may be substituted for the cylindrically-shaped object to vary the time constant of the probe.

  9. THE RARE EARTH PEAK: AN OVERLOOKED r-PROCESS DIAGNOSTIC

    SciTech Connect

    Mumpower, Matthew R.; McLaughlin, G. C.; Surman, Rebecca E-mail: gail_mclaughlin@ncsu.edu

    2012-06-20

    The astrophysical site or sites responsible for the r-process of nucleosynthesis still remains an enigma. Since the rare earth region is formed in the latter stages of the r-process, it provides a unique probe of the astrophysical conditions during which the r-process takes place. We use features of a successful rare earth region in the context of a high-entropy r-process (S {approx}> 100k{sub B} ) and discuss the types of astrophysical conditions that produce abundance patterns that best match meteoritic and observational data. Despite uncertainties in nuclear physics input, this method effectively constrains astrophysical conditions.

  10. Gravity Probe B Detector Mount Assembly

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) detector mount assembly is shown in comparison to the size of a dime. The assembly is used to detect exactly how much starlight is coming through different beams from the beam splitter in the telescope. The measurements from the tiny chips inside are what keeps GP-B aimed at the guide star. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Paul Ehrensberger, Stanford University.)

  11. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  12. Phoenix Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on Sol 49, or the 49th Martian day of the mission (July 14, 2008), shows thermal and electrical conductivity probe on NASA's Phoenix Mars Lander's Robotic Arm.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum. PMID:14678658

  14. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  15. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  16. EarthScienceDepartment Department of Earth Science

    E-print Network

    Lee, Cin-Ty Aeolus

    EarthScienceDepartment Department of Earth Science Richard Gordon, Chair, rgg@rice.edu Rajdeep-348-4880 Fax 713-348-5214 Email geol@rice.edu Web earthscience.rice.edu FaceBook http://www.facebook.com/RiceEarthScience Research opportunities Most Rice Earth Science undergraduates participate in research activities under

  17. Physical Earth Science Is Physical Earth Science right for me?

    E-print Network

    Martin, Ralph R.

    Physical Earth Science Is Physical Earth Science right for me? If you are interested in learning a Physical Earth Science degree. The skills you will gain are wide-ranging and will provide a good basis for employment in almost any sector. Are all Physical Earth Science degrees the same? Universities do not have

  18. Observations of Near-Earth Asteroids Impact Hazard to Earth

    E-print Network

    Throop, Henry

    Observations of Near-Earth Asteroids and the Impact Hazard to Earth Henry Throop! Physics on Earth Potchefstroom Parys Sasolburg 20 km #12;Parys 3 km #12;Vredefort Impact Crater Looking from outer Impactor? · Origin: One of several million Near Earth Asteroids (NEAs) · a = 1.6 AU; e = 0.5; i = 4

  19. Alexandria Digital Earth ProtoType The Alexandria Digital Earth

    E-print Network

    Janée, Greg

    Alexandria Digital Earth ProtoType The Alexandria Digital Earth Prototype System Terence Smith Greg Janée James Frew Anita Coleman #12;Alexandria Digital Earth ProtoType 2Smith et al. / JCDL 2001 / 2x Earth ProtoType 3Smith et al. / JCDL 2001 / 2x-Jun-2001 Core System (inherited from ADL) Components

  20. Earth Sciences New reports on SNOWBALL EARTH and continental

    E-print Network

    Kirschvink, Joseph L.

    . The evidence includes measurements of the Earth's ancient magnetic field preserved in old rocks, which indicateEarth Sciences New reports on SNOWBALL EARTH and continental collisions captured the attention of earth scientists in 2000, while the world struggled with devastating EARTHQUAKES in Turkey, a volcanic

  1. A computer program for the determination of the solar risk in Argentina by dermatologists employing NASA TOMS satellite ozone data as a key geophysical variable

    NASA Astrophysics Data System (ADS)

    Piacentini, R.; Cede, A.; Luccini, E.; Stengel, F.

    The connection between skin cancer and solar ultraviolet radiation has been well documented (i.e., UNEP report "Environmental Effects of Ozone Depletion. 1998 Assessment"). In this work wepresent a computer software that can be used by dermatologists for determining the risk of persons that are exposed to solar UV radiation incident in Argentina, a country largely extended from low (tropical) to high southern hemisphere latitudes. In particular, its spectral distribution weighted by the CIE standard erythemal action spectrum and integrated in wavelength usually called "erythemal irradiance", is calculated including the following geophysical variables: ozone, solar elevation, Sun-Earth distance, altitude, aerosol and albedo. Other variables that have less influence in the final results are the vertical ozone, aerosol, pressure and temperature profiles, the extraterrestrial spectral solar UV irradiance and the ozone photoabsorption cross section. The ozone total column was obtained from the corresponding seasonal and latitudinal climatological NASA TOMS satellite data, including monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina. The program considers also the different skin types, in order to determine the skin risk without or with a sunscreen protection at each moment of the day and for different days of the year. We present the program output for typical examples of persons exposed in extreme conditions, like in the high altitude tropical Puna of Atacama desert in the North- West, or when the ozone hole event overpasses Ushuaia in the South, as well as in Buenos Aires, the largest populated city in the country and one of the megacities of the world. The availability of a large satellite ozone data set gives us the possibility to make a clear sky day solar risk forecast for all the year, that can be applied in all places of the country. This work was made possible through a collaboration between the Argentina Skin Cancer Foundation, the Institute of Physics Rosario (CONICET - National University of Rosario) and the Institute of Medical Physics of the University of Innsbruck, Austria. With this support and the work of physicians and physicists, now dermatologists as well as health authorities and educators can make a reliable (scientific) prediction of the risk due to solar exposure, in order to prevent health problems induced by solar UV radiation.

  2. Strong refraction near the Venus surface - Effects observed by descent probes

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1982-01-01

    The telemetry signals from Pioneer Venus probes indicated the strong downward refraction of radio waves. As the probes descended, the strength of the direct signal decreased because of absorption and refractive defocusing. During the last 30 km of descent there was a second measured component in addition to the direct signal. Strong atmospheric reaction is important in strengthening echoes that are scattered toward the earth. Such surface-reflected signals are good indicators of horizontal winds.

  3. Infrared image of Venus at the time of Pioneer Venus probe encounter

    NASA Technical Reports Server (NTRS)

    Apt, J.; Goody, R.

    1979-01-01

    An image of the infrared emission from the Earth-facing hemisphere of Venus was obtained at the time the Pioneer Venus probes penetrated the atmosphere. The thermal structure of the atmosphere at the 85-millibar level included regions of rapidly varying polar features, a solar-related postdawn warm area, and a nonsolar-fixed nighttime warm area. The probes succeeded in entering each of these three thermal regions.

  4. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  5. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  6. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  7. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    E-print Network

    Brian D. Fields; Kathrin A. Hochmuth

    2004-05-31

    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)

  8. The Sun-Earth Connection The Temperature of the Earth

    E-print Network

    Walter, Frederick M.

    The Sun-Earth Connection #12;The Temperature of the Earth The Earth is in equilibrium with the Sun absorbed from the Sun with ­the heat radiated by the Earth. Heat in = heat out #12; 4R 2T 4 (1-a) R 2 (L the Earth to the Sun, 1AU ­The solar constant is 1.4 x 106 erg/cm2/s, or 1400 W/m2/s. #12;Heat Out

  9. Global Images of Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Global images of Earth from Galileo. In each frame, the continent of Antarctica is visible at the bottom of the globe. South America may be seen in the first frame (top left), the great Pacific Ocean in the second (bottom left), India at the top and Australia to the right in the third (top right), and Africa in the fourth (bottom right). Taken at six-hour intervals on December 11, 1990, at a range of between 2 and 2.7 million kilometers (1.2 to 1.7 million miles). P-37630

    These images were taken during Galileo's first Earth flyby. This gravity assist increased Galileo's speed around the Sun by about 5.2 kilometers per second (or 11,600 miles per hour) and substantially redirected Galileo as required for its flybys of the asteroid Gaspra in October 1991 and Earth in 1992. Galileo's closest approach (960 kilometers, or 597 miles, above the Earth's surface) to the Earth was on December 8, 1990, 3 days before these pictures were taken.

    Each of these images is a color composite, made up using images taken through red, green, and violet filters. The four images are part of the Galileo Earth spin movie, a 256-frame time-lapse motion picture that shows a 25-hour period of Earth's rotation and atmospheric dynamics. The movie gives scientists a unique overall view of global weather patterns, as opposed to the limited view of weather satellite images.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  10. Probing Global Characteristics of Microburst Precipitation

    NASA Astrophysics Data System (ADS)

    Crew, A. B.; Spence, H.

    2013-12-01

    The dynamics of the Earth's radiation belts are governed by the interplay between the various source and loss terms. Electron microbursts represent a particular form of electron loss through precipitation to the atmosphere. The total loss from each individual microburst is relatively small; however microbursts are often seen in very large numbers. Utilizing a database of ~685,000 SAMPEX events and an epoch analysis of over 200 different storm events, we show that while there is substantial variability in the characteristics at the individual event level, across different storms most of the variability is seen in the changes in event frequency. We focus on changes in event frequency as a way to estimate the total impact of microburst precipitation. Furthermore, we seek to combine these measurements with those from Van Allen Probes as well as the upcoming FIREBIRD CubeSat mission.

  11. Pioneer Venus Orbiter Electron Temperature Probe

    NASA Technical Reports Server (NTRS)

    Krehbiel, J. P.; Brace, L. H.; Theis, R. F.; Cutler, J. R.; Pinkus, W. H.; Kaplan, R. B.

    1980-01-01

    The Orbiter Electron Temperature Probe (OETP) instrumentation and measurement technique has been designed to perform in-situ measurements of electron temperature and electron and ion density in the ionosphere of Venus. Adaptive sweep voltage circuitry continuously tracks the changing electron temperature and spacecraft potential while auto-ranging electrometers adjust their gain in response to the changing plasma density. Control signals used in the instrument to achieve this automatic tracking provide a continuous monitor of the ionospheric parameters without telemetering each volt-ampere curve. Internal data storage permits high data rate sampling of selected raw characteristic curves for low rate transmission to earth. These curves are used to verify or correct the inflight processed data. Sample in orbit measurements are presented to demonstrate instrument performance.

  12. Hardware development for Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Bardas, D.; Cheung, W. S.; Gill, D.; Hacker, R.; Keiser, G. M.

    1986-01-01

    Gravity Probe-B (GP-B), also known as the Stanford Relativity Gyroscope Experiment, will test two fundamental predictions of Einstein's General Theory of Relativity by precise measurement of the precessions of nearly perfect gyroscopes in earth orbit. This endeavor embodies state-of-the-art technologies in many fields, including gyroscope fabrication and readout, cryogenics, superconductivity, magnetic shielding, precision optics and alignment methods, and satellite control systems. These technologies are necessary to enable measurement of the predicted precession rates to the milliarcsecond/year level, and to reduce to 'near zero' all non-General Relativistic torques on the gyroscopes. This paper provides a brief overview of the experiment followed by descriptions of several specific hardware items with highlights on progress to date and plans for future development and tests.

  13. Bicolor pyroreflectometer using an optical fiber probe

    SciTech Connect

    Hernandez, D.; Olalde, G.; Beck, A.; Milcent, E.

    1995-12-01

    A method and a device to measure temperature using bicolor optical pyrometry are presented. The device is equipped with an optical fiber probe designed for {ital in} {ital situ} measurements in severe conditions (high temperatures, difficult accessibility, and electromagnetic fields). The directional monochromatic emissivities, at two wavelengths 1.3 and 1.55 {mu}m, were deduced from reflection measurements. The device can be used for opaque Lambertian surfaces in the temperature range from 500 to 2500 {degree}C. The method was put in practice on rare-earth metal oxide powders at temperatures up to 1000 {degree}C. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Radiation Belt Storm Probe (RBSP) Mission

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Fox, N.; Grebowsky, J. M.; Mauk, B. H.

    2009-01-01

    Scheduled to launch in May 2012, NASA's dual spacecraft Living With a Star Radiation Belt Storm Probe mission carries the field and particle instrumentation needed to determine the processes that produce enhancements in radiation belt ion and electron fluxes, the dominant mechanisms that cause the loss of relativistic electrons, and the manner by which the ring current and other geomagnetic phenomena affect radiation belt behavior. The two spacecraft will operate in low-inclination elliptical lapping orbits around the Earth, within and immediately exterior to the Van Allen radiation belts. During course of their two year primary mission, they will cover the full range of local times, measuring both AC and DC electric and magnetic fields to 10kHz, as well as ions from 50 eV to 1 GeV and electrons with energies ranging from 50 eV to 10 MeV.

  15. NASA's Radiation Belt Storm Probe Mission

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2011-01-01

    NASA's Radiation Belt Storm Probe (RBSP) mission, comprising two identically-instrumented spacecraft, is scheduled for launch in May 2012. In addition to identifying and quantifying the processes responsible for energizing, transporting, and removing energetic particles from the Earth's Van Allen radiation, the mission will determine the characteristics of the ring current and its effect upon the magnetosphere as a whole. The distances separating the two RBSP spacecraft will vary as they move along their 1000 km altitude x 5.8 RE geocentric orbits in order to enable the spacecraft to separate spatial from temporal effects, measure gradients that help identify particle sources, and determine the spatial extent of a wide array of phenomena. This talk explores the scientific objectives of the mission and the manner by which the mission has been tailored to achieve them.

  16. Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Mann, Ian R.; Lee, E. A.; Claudepierre, S. G.; Fennell, J. F.; Degeling, A.; Rae, I. J.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Ozeke, L. G.; Rankin, R.; Milling, D. K.; Kale, A.; Friedel, R. H. W.; Honary, F.

    2013-11-01

    Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modelling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents a significant shift in known Van Allen radiation belt dynamics and structure. These periodic collisionless betatron acceleration processes also have applications in understanding the dynamics of, and periodic electromagnetic emissions from, distant plasma-astrophysical systems.

  17. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.

  18. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  19. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  20. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.