Science.gov

Sample records for earth science information

  1. SOURCES OF EARTH SCIENCE INFORMATION.

    ERIC Educational Resources Information Center

    MATTHEWS, WILLIAM H., III

    U.S. AND CANADIAN SOURCES OF INFORMATION ABOUT EARTH SCIENCE FOR ELEMENTARY AND SECONDARY SCHOOL TEACHERS ARE CONTAINED IN THIS MANUAL. MAJOR SECTIONS ARE DEVOTED TO ASTRONOMY, GEOLOGY, METEOROLOGY, OCEANOGRAPHY, AND PHYSICAL GEOGRAPHY. EACH SECTION CONTAINS LISTS OF (1) DEGREE-GRANTING DEPARTMENTS IN COLLEGES AND UNIVERSITIES, (2) GOVERNMENT…

  2. Earth Science Information System (ESIS)

    USGS Publications Warehouse

    U.S. Geological Survey

    1982-01-01

    The Earth Science Information System (ESIS) was developed in 1981 by the U.S. Geological Survey's Office of the Data Administrator. ESIS serves as a comprehensive data management facility designed to support the coordination, integration, and standardization of scientific, technical, and bibliographic data of the U.S. Geological Survey (USGS). ESIS provides, through an online interactive computer system, referral to information about USGS data bases, data elements which are fields in the records of data bases, and systems. The data bases contain information about many subjects from several scientific disciplines such as: geology, geophysics, geochemistry, hydrology, cartography, oceanography, geography, minerals exploration and conservation, and satellite data sensing.

  3. Automated information for Earth science

    NASA Astrophysics Data System (ADS)

    Detailed descriptions of nearly 300 digital data bases and the systems operating them are featured in a revised edition of a comprehensive report on the automated earth science information systems and data bases of the U.S. Geological Survey (USGS), the Bureau of Land Management, and the Minerals Management Service.Among the earth science data bases available are lunar geochemical data from the Apollo missions; data on newly identified coal resources in the United States; seismic data on earthquake magnitudes from 2,700 stations worldwide; data on more than 2 million place names nationwide; data from more than 200,000 aerial photographs used in USGS mapping efforts; the locations and ages of aquifer systems throughout the country; and water use data for the nation. The publication also provides indexes of titles, acronyms, and contact persons. A keyword list contains 2,000 subject words with references to specific data bases and systems.

  4. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  5. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  6. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  7. Activity Sourcebook for Earth Science. Science Education Information Report.

    ERIC Educational Resources Information Center

    Mayer, Victor J., Ed.

    Designed to provide teachers of earth science with activities and information that will assist them in keeping their curricula up to date, this publication contains activities grouped into six chapters. Chapter titles are: (1) Weather and Climate, (2) Oceans, (3) The Earth and Its Surface, (4) Plate Tectonics, (5) Uses of Space Photography, and…

  8. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  9. The Federation of Earth Science Information Partners ESIP

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2013-01-01

    A broad-based, distributed community of science, data and information technology practitioners. With over 150 member organizations, the ESIP Federation brings together public, academic, commercial, and nongovernmental organizations to share knowledge, expertise, technology and best practices to improve opportunities for increasing access, discovery, integration and usability of Earth science data.

  10. Geographic information systems help teach introductory Earth science

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, Michelle K.; Walker, C. Scott; Wallace, Terry C.; Butler, Robert F.

    A growing challenge facing college Earth science instructors is how to maximize learning in large, introductory lecture courses. These courses cover a great deal of information, yet students' gains in understanding science concepts and processes are often limited. Research shows that real learning occurs when students investigate scientific questions first hand [Halloun and Hestenes, 1985; DeLaughter et al., 1998; Kusnick, 2002] and faculty are able to challenge students' preconceived notions about Earth. Inquiry the process of seeking knowledge through questioning and investigations, is the most effective teaching method [NRC, 1996; Dykstra, 1997], but it can be challenging to implement in large lecture courses.

  11. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  12. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  13. Information Technology for Harvesting NASA Earth Science Research Results

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; Shaw, D.; O'Hara, C.; Frisbie, T.

    2007-12-01

    The NASA Applied Sciences Program has funded the Mississippi Research Consortium (MRC) to develop information technology that will facilitate searches for potential applications of NASA assets to various needs in the earth sciences community. In particular, it will help generate ideas for new ways to use NASA missions, research, and/or models in conjunction with operational decision-making processes (or decision support systems) to achieve a particular benefit to society. In this paper, we describe the development of information technology that will facilitate that ability. The resulting system is called the Earth Science Knowledge Base (ESKB). The ESKB contains and index relevant NASA research result publications in a database that is compatible with the evolving NASA "Mission to Models" (M2M) database and shares relevant table space with it. In particular, fields from this system identifying relevant NASA missions, models, and data products are used to cross-index the data collected on published results of research projects. Fields characterizing the research results based on the six earth science focus areas and the twelve applications of national priority are included. In the course of developing the ESKB, novel uses of existing online databases and search tools have been developed. In addition, data mining tools have been developed for facilitating the proper characterization of research results. In addition to research results, the ESKB includes data that characterizes the current network of NASA earth science partners. This includes information on organizations and agencies funded by or partnered with NASA to conduct earth science research, technology, and applications projects. The relationships between NASA programs and project sponsors are also captured in this knowledge base. The ESKB is implemented as a client-server system that will allow access and updates from a distributed network of users. It has a user-friendly interface designed to facilitate the

  14. New Center Links Earth, Space, and Information Sciences

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  15. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  16. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  17. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  18. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  19. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  20. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  1. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  2. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  3. Earth Science Week evolves

    NASA Astrophysics Data System (ADS)

    Earth Science Week, October 7-13, is an annual grassroots effort sponsored by the American Geological Institute (AGI) and its member societies, of which AGU is the largest. This year, for the first time, Earth Science Week has a general theme, evolution in Earth history. The Earth Science Week information kit for 2001, available from AGI, includes a variety of posters, bookmarks, and other materials that illustrate this concept. The kit contains a new 32-page “Ideas and Activities” booklet that emphasizes evolution in Earth history through an array of activities about rocks, fossils, and geologic time. It also has information on the upcoming Public Broadcasting Service series, “Evolution,” which is to be aired in late September.

  4. Incorporating Informal Learning Environments and Local Fossil Specimens in Earth Science Classrooms: A Recipe for Success

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2009-01-01

    In an online graduate paleontology course taken by practicing Earth Science teachers, we designed an investigation using teachers' local informal educational environments. Teachers (N = 28) were responsible for photographing, describing, and integrating fossil specimens from two informal sites into a paleoenvironmental analysis of the landscape in…

  5. Ensuring and Improving Information Quality for Earth Science Data and Products: Role of the ESIP Information Quality Cluster

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Peng, Ge; Moroni, David; Shie, Chung-Lin

    2016-01-01

    Quality of products is always of concern to users regardless of the type of products. The focus of this paper is on the quality of Earth science data products. There are four different aspects of quality - scientific, product, stewardship and service. All these aspects taken together constitute Information Quality. With increasing requirement on ensuring and improving information quality, there has been considerable work related to information quality during the last several years. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) has been active with membership from multiple organizations. Its objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are discussed briefly.

  6. Ensuring and Improving Information Quality for Earth Science Data and Products Role of the ESIP Information Quality Cluster

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K. (Rama); Peng, Ge; Moroni, David; Shie, Chung-Lin

    2016-01-01

    Quality of products is always of concern to users regardless of the type of products. The focus of this paper is on the quality of Earth science data products. There are four different aspects of quality scientific, product, stewardship and service. All these aspects taken together constitute Information Quality. With increasing requirement on ensuring and improving information quality, there has been considerable work related to information quality during the last several years. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) has been active with membership from multiple organizations. Its objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are discussed briefly.

  7. The role of Facilities in Engaging and Informing the Public of EarthScope Science

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.

    2013-12-01

    The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development

  8. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  9. Use of MCIDAS as an earth science information systems tool

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.

    1988-01-01

    The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.

  10. Independent Technology Assessment within the Federation of Earth Science Information Partners (ESIP) Testbed

    NASA Astrophysics Data System (ADS)

    Burgess, A. B.; Robinson, E.; Graybeal, J.

    2015-12-01

    The Federation of Earth Science Information Partners (ESIP) is a community of science, data and information technology practitioners. ESIP's mission is to support the networking and data dissemination needs of our members and the global community. We do this by linking the functional sectors of education, observation, research and application with the ultimate use of Earth science. Amongst the services provided to ESIP members is the Testbed; a collaborative forum for the development of technology standards, services, protocols and best practices. ESIP has partnered with the NASA Advanced Information Systems Technology (AIST) program to integrate independent assessment of Testing Readiness Level (TRL) into the ESIP Testbed. In this presentation we will 1) demonstrate TRL assessment in the ESIP Testbed using three AIST projects, 2) discuss challenges and insights into creating an independent validation/verification framework and 3) outline the versatility of the ESIP Testbed as applied to other technology projects.

  11. NASA Earth science missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  12. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  13. Using Visualization of Seismic Waves in Teaching Earth Science Informed by Cognitive Science Research

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Waite, G. P.; Huntoon, J. E.; Hungwe, K.

    2011-12-01

    Seismologists have found visualization of scientific data to be useful in analysis and therefore expect that using visualizations as a pedagogical tool will increase student understanding of seismic waves. This project examines how seismic wave visualization activities should be designed to best take advantage of how students think and learn science as determined by research in cognitive science. Student activities using visualization and auditization of seismic waves as they propagate through the earth and activities using real-time seismometry, the Quake Catcher Network sensors, have been designed or modified for use in 7-12 Earth System Science classrooms, taking into account how students learn science. The activities will incorporate three visualizations introduced at the 2011 On the Cutting Edge workshop, Visualizing Seismic Waves for Teaching and Research: the USArray Visualizations developed by Dr. Charles Ammon, Penn State University; the Quake Catcher Network sensors in conjunction with IRIS's Exploring Seismic Data with Accelerometers; and The Sound of Seismic, John N. Louie's auditization of seismic waves. As part of the Michigan Teacher Excellence Program, a NSF funded Math Science Partnership between Michigan Tech University and Michigan public schools, these activities are being implemented and tested to determine in what ways and to what extent these visualizations impact student learning and understanding of seismic waves.

  14. Earth Science, K-12.

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Enochs, Larry G.

    1987-01-01

    Argues that the teaching of earth science is largely neglected in the elementary science curriculum. Provides examples of how more instruction in the earth sciences at all levels can enhance decision-making skills. Discusses the relationship between various learning theories and certain instructional strategies in earth science. (TW)

  15. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  16. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  17. Text Mining to inform construction of Earth and Environmental Science Ontologies

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their

  18. Enhancing Earth Science And IT Literacy Through Environmental Science Information Technology Activities

    NASA Astrophysics Data System (ADS)

    Cuff, K. E.; Molinaro, M.

    2004-12-01

    The Environmental Science Information Technology Activities (ESITA) program provides grades 9 and 10 students with under-represented minority backgrounds in the East San Francisco Bay Area with real-world opportunities to learn about and apply information technologies through a series of project-based activities related to environmental science. Supported by the NSF Information Technology Experiences for Students and Teachers (ITEST) program, ESITA activities engage students in the use of newly acquired information technology (IT) skills and understandings while performing air and water quality research investigations. One project that ESITA students have become involved in relates to the currently relevant issue of elevated levels of lead found in drinking waters in Washington, D.C. Students based in the Bay Area have initiated and maintained E-mail correspondence with children who attend elementary schools in the D.C. area. After receiving a thorough explanation of required sampling procedures devised by the Bay Area students, the elementary school children have sent 500 ml water samples from their homes and schools to Berkeley along with information about the locations from which the water samples were collected. These samples were then prepared for lead analysis at Lawrence Hall of Science by ESITA students, who used resulting data to perform a preliminary assessment of the geospatial distribution of lead trouble spots throughout Washington, DC. Later, ESITA student scientists will work with students from the UC Berkeley School of Public Health to develop surveys and questionnaires that generate high quality information useful with regard to assessing the impact of the current lead crisis on younger children in the Washington, D.C. area. Through the application of new understandings to current, real-world environmental problems and issues such as that related to lead, positive changes in students' attitudes towards IT and science have occurred, which accompany

  19. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    NASA Technical Reports Server (NTRS)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  20. My NASA DATA: Earth System Science Data for Formal and Informal Education

    NASA Astrophysics Data System (ADS)

    Lewis, P. M., Jr.; Oostra, D.; Harte, T.; Crecelius, S.; Chambers, L. H.

    2014-12-01

    The Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA or MND) project was launched in 2004 to bring authentic science data to the K-12 classroom and informal education communities. One of the main features is its Live Access Server (LAS). The LAS is an open source tool that allows users to customize data sets to suit their individual needs, choosing from among 250 global Level III data sets. The MY NASA DATA project hosts over 120 lesson plans and activities that utilize this library of Earth system science data as collected by NASA satellites. This collection of data parameters are offered to help teachers easily add data exploration to their current curriculum, and give them an easy to use tool to keep coming back for all of their data needs. Through the built in inquiry of the lesson plans and the easy to navigate layout of the LAS, educators have numerous ways connect their students to the data, giving their students a unique hands on experience with authentic NASA data. With a shift in many states science standards, classroom teachers are rethinking how science can be taught in the classroom. Through the use of data exercises in the classroom, teachers now have the ability to introduce their students to the many possibilities of data. By using authentic data, students can immerse themselves in place based learning exercises and be driven by inquiry to answer all of their questions through immersion in the data. The MY NASA DATA lesson plans, activities, and the data itself, give formal and informal audiences a place to go for science understanding and the answers to many questions in the science classroom. By utilizing authentic data sets and materials on MY NASA DATA that are prepared specificaly for all areas of education, users will be more readily prepared to answer their own questions about the world around them meet the needs of classroom assessment.

  1. Improving Information Quality for Earth Science Data and Products - An Overview

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Moroni, D. F.; Peng, G.

    2015-12-01

    In recent years, the quality of Earth science data has received much attention from several points of view. First, the scientific quality, defined in terms of accuracy, precision, uncertainty, validity and suitability for use (fitness for purpose) in various applications is considered paramount. In addition, the product quality is important as well. Product quality addresses how well the scientific quality is assessed and documented, how complete the metadata and documentation are, etc. Stewardship quality addresses questions such as how well data are being managed and preserved by an archive or repository, how easy it is for users to find, get, understand, trust, and use data, and whether the archive has people who understand the data available to help users. In general, we can refer to all these aspects of quality together as Information Quality. The purpose of this paper is to discuss the context of and ideas for further work on Earth science information quality. Several related prior activities will be discussed such as: QA4EO, ISO Metadata Quality Standards, NOAA CDR Maturity Matrix, NOAA Data Stewardship Maturity Matrix, NCAR Community Contribution Pages, NASA MEaSUREs Product Quality Checklists, and NASA Earth Science Data System Working Groups (ESDSWG) Data Quality Working Group recommendations. The ESIP Information Quality Cluster is proceeding in this context to: identify additional needs for consistently capturing, describing, and conveying quality information through use case studies with broad and diverse applications; establish and provide community-wide guidance on roles and responsibilities of key players and stakeholders including users and management; prototype conveying quality information to users in a consistent and easily understandable manner; establish a baseline of standards and best practices for data quality; and engage data providers, data managers, and data user communities as resources to improve our standards and best practices.

  2. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  3. Accessing Earth science data from the EOS data and information system

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kenneth R.; Calvo, Sherri

    1993-01-01

    An overview of the Earth Observing System Data and Information System (EOSDIS) is presented, concentrating on the users' interactions with the system and highlighting those features that are driven by the unique requirements of the Global Change Research Program and the supported science community. However, a basic premise of the EOSDIS is that the system must evolve to meet changes in user needs and to incorporate advances in data system technology. Therefore, the development process which is being used to accommodate these changes and some of the potential areas of change are also addressed.

  4. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    NASA Astrophysics Data System (ADS)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  5. Reducing barriers to interoperability through collaborative development of standards for Earth science information systems

    NASA Astrophysics Data System (ADS)

    Percivall, G. S.; Arctur, D. K.

    2010-12-01

    Increasingly, Earth science research must make effective use of interdisciplinary data sources and processes. Non-interoperability impedes sharing of data and computing resources. Standards from the Open Geospatial Consortium (OGC) and other organizations are the basis for successfully deploying a seamless, distributed information infrastructure for the geosciences. Collaborative development of the standards has proven effective in reducing barriers to standards adoption. Standards are the basis for the success of the Internet and the World Wide Web. A standard describes a set of rules that have been agreed to in some consensus forum, such as the Internet Engineering Task Force (IETF), the International Organization for Standardization (ISO), or the OGC. As described in The Importance of Going Open, “non-interoperability causes organizations to spend much more than necessary on geospatial information technology development”. In the context of e-Science, the National Science Foundation’s Cyberinfrastructure Council argues that “The use of standards creates economies of scale and scope for developing and deploying common resources, tools, software, and services that enhance the use of cyberinfrastructure in multiple science and engineering communities.” Barriers to adoption include misperceptions and misuse of standards. “Adhering to standards costs more” - typically this statement is made when a research program considers implementing standards as a one-time modification to an existing system. Multiple economic studies have shown lower development costs when using standards over the life of a project. “Standards stifle innovation” - a key decision in research is to consider what assumptions to consider fixed and what to challenge. The long history of standards in research, e.g., SI units, is fundamental to assessing repeatable results by independent researchers. Similar need for common standards exist in the information systems used for Earth

  6. Information Technology Infrastructure for the NASA Earth Science Enterprise Solutions Network

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; Shaw, D. R.; O'Hara, C. G.; Frisbie, T. E.

    2006-12-01

    The NASA Applied Sciences Program uses the term Solutions Network in the context of its Enterprise Architecture to describe the ability of different components of the enterprise to generate ideas for new ways to use NASA missions, research, and/or models in conjunction with operational decision-making processes (or decision support systems) to achieve a particular benefit to society. In this paper, we describe the development of an information technology infrastructure that will facilitate that ability. The two main components of this infrastructure are: the Research Projects Knowledge Base (RPKB); and the Partner Network Knowledge Base (PNKB). The RPKB aims to index all relevant NASA research result publications in a database that will be interoperable with the evolving NASA enterprise architecture system and will share relevant table space with it. In particular, fields from this system identifying relevant NASA missions, models, and data products will be used to cross-index the data collected on published results of research projects. Fields characterizing the research results based on the seven Earth-Sun system science focus areas and the twelve applications of national priority are included. In the course of developing the RPKB, novel uses of existing online databases and search tools have been developed. In addition, data mining tools are being developed for facilitating the location of candidate results and the indexing of relevant matches. The PNKB database will characterize the current network of NASA Earth-Sun system partners. This includes information on organizations and agencies funded by or partnered with NASA to conduct Earth-Sun system scientific research, technology, and applications projects. The relationships between NASA programs and project sponsors are also captured in this database. Both the PNKB and the RPKB will be integrated with an existing, evolving model of the NASA Earth Science Enterprise using an enterprise architecture modeling and

  7. The Media as an Invaluable Tool for Informal Earth System Science Education

    NASA Astrophysics Data System (ADS)

    James, E.; Gautier, C.

    2001-12-01

    One of the most widely utilized avenues for educating the general public about the Earth's environment is the media, be it print, radio or broadcast. Accurate and effective communication of issues in Earth System Science (ESS), however, is significantly hindered by the public's relative scientific illiteracy. Discussion of ESS concepts requires the laying down of a foundation of complex scientific information, which must first be conveyed to an incognizant audience before any strata of sophisticated social context can be appropriately considered. Despite such a substantial obstacle to be negotiated, the environmental journalist is afforded the unique opportunity of providing a broad-reaching informal scientific education to a largely scientifically uninformed population base. This paper will review the tools used by various environmental journalists to address ESS issues and consider how successful each of these approaches has been at conveying complex scientific messages to a general audience lacking sufficient scientific sophistication. Different kinds of media materials used to this effect will be analyzed for their ideas and concepts conveyed, as well as their effectiveness in reaching the public at large.

  8. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Alcott, Gary T.; Kempler, Steven J.; Lynnes, Christopher S.; Vollmer, Bruce E.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archives Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessarily all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users algorithm. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists to concentrate on science, while the GES DISC handles the data management, e.g., formats, integration, and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  9. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  10. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  11. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  12. Using the International Directory Network and connected information systems for research in the Earth and space sciences

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    1994-01-01

    Many researchers are becoming aware of the International Directory Network (IDN), an interconnected federation of international directories to Earth and space science data. Are you aware, however, of the many Earth-science-relevant information systems which can be accessed automatically from the directories? After determining potentially useful data sets in various disciplines through directories such as the Global Change Master Directory, it is becoming increasingly possible to get detailed information about the correlative possibilities of these data sets through the connected guide/catalog and inventory systems. Such capabilities as data set browse, subsetting, analysis, etc. are available now and will be improving in the future.

  13. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  14. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  15. Earth Science Syllabus, 1970 Edition.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This syllabus outlines a year earth science program designed to be activity oriented, investigatory in approach, and interdisciplinary in content. Each topic section contains a topic abstract and topic outline, major understandings, and information to teachers. The topic abstract lists behavioral objectives and general information about the topic…

  16. Libraries and Information Science: the Profession. Alternative Career Opportunities for Atmospheric, Earth, and Geo-scientists.

    NASA Astrophysics Data System (ADS)

    Love, A. M.

    2003-12-01

    Many graduate students, researchers and scientists may not be aware that there are other career opportunities available to them as scientists besides the traditional academic, government, industrial and private sector tracks. Subject specialists with science backgrounds are in great demand. Knowledge management and information services affiliated with science and research is an exciting and creative profession. Contributing to, finding and delivering the range of information now emerging from new and established disciplines in all formats defines Information Science and Librarianship with a multitude of opportunities. This poster will offer information to encourage students and researchers with these skills and backgrounds to consider Information and Library Science as an exciting career path.

  17. Experiences in Bridging the Gap between Science and Decision Making at NASA's GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Teng, Bill; Friedl, Lawrence; Lynnes, Chris; Leptoukh, Gregory

    2008-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet s natural environment, NASA has implemented the Decision Support Through Earth Science Research Results program (NASA ROSES solicitations). a) This successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations. b) The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. c) In addition, GES DISC s understanding of Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, enables the GES DISC to identify challenges that come with bringing science data to decision makers. d) The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding of how decisions are made, and the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that really evaluate success will be exemplified.

  18. Auscope: Australian Earth Science Information Infrastructure using Free and Open Source Software

    NASA Astrophysics Data System (ADS)

    Woodcock, R.; Cox, S. J.; Fraser, R.; Wyborn, L. A.

    2013-12-01

    Since 2005 the Australian Government has supported a series of initiatives providing researchers with access to major research facilities and information networks necessary for world-class research. Starting with the National Collaborative Research Infrastructure Strategy (NCRIS) the Australian earth science community established an integrated national geoscience infrastructure system called AuScope. AuScope is now in operation, providing a number of components to assist in understanding the structure and evolution of the Australian continent. These include the acquisition of subsurface imaging , earth composition and age analysis, a virtual drill core library, geological process simulation, and a high resolution geospatial reference framework. To draw together information from across the earth science community in academia, industry and government, AuScope includes a nationally distributed information infrastructure. Free and Open Source Software (FOSS) has been a significant enabler in building the AuScope community and providing a range of interoperable services for accessing data and scientific software. A number of FOSS components have been created, adopted or upgraded to create a coherent, OGC compliant Spatial Information Services Stack (SISS). SISS is now deployed at all Australian Geological Surveys, many Universities and the CSIRO. Comprising a set of OGC catalogue and data services, and augmented with new vocabulary and identifier services, the SISS provides a comprehensive package for organisations to contribute their data to the AuScope network. This packaging and a variety of software testing and documentation activities enabled greater trust and notably reduced barriers to adoption. FOSS selection was important, not only for technical capability and robustness, but also for appropriate licensing and community models to ensure sustainability of the infrastructure in the long term. Government agencies were sensitive to these issues and Au

  19. Experiences in Bridging the Gap Between Science and Decision Making at NASAs GSFC Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Teng, W.; Friedl, L.; Lynnes, C.

    2008-12-01

    In recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA has implemented the 'Decision Support Through Earth Science Research Results' program to solicit "proposals that develop and demonstrate innovative and practicable applications of NASA Earth science observations and research"that focus on improving decision making activities", as stated in the NASA ROSES-2008, A.18 solicitation. This very successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations in the areas of agriculture, air quality, disaster management, ecosystems, public health, water resources, and aviation weather. The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. Coupling this experience with the GES DISC's total understanding and vast experience regarding Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, the GES DISC is in the unique position to more readily identify challenges that come with bringing science data to decision makers. These challenges consist of those that can be met within typical science data usage frameworks, as well as those challenges that arise when utilizing science data for previously unplanned applications, such as decision support systems. The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding how

  20. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  1. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.

    2014-12-01

    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website http://climate.nasa.gov/ and Earth Right Now campaign http://www.nasa.gov/content/earth-right-now/ partnered together this year to launch the Earth Right Now blog http://climate.nasa.gov/blog. It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  2. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  3. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  4. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  5. NASA Earth Science Data Stewardship

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Ramapriyan, H. K.

    2009-12-01

    The Earth Science Data and Information System (ESDIS) Project at NASA Goddard Space Flight Center was established in the early 1990s to develop and maintain a core collection of NASA’s critical earth science data. Its mission was to provide an archive and distribution system for the huge volume of data and products from the major EOS missions. We have encountered and addressed engineering, scientific and organizational challenges that show stewardship is more than preserving the bits. Engineering - including petabyte scale archives that appeared daunting when we got started, but not so anymore, thanks to advances in hardware and information systems technology. Scientific - having knowledgeable people familiar with data being archived responsible for data in their respective disciplines; understanding what needs to be preserved; defining appropriate metadata; preserving usability; determining active research period vs. “inactive” preservation for potential future use, and the value of peer review processes. Organizational - setting up DAACs, getting them to work together, interoperability, enforcing standards and the producer’s point view as well as the end users’ point of view. This presentation will highlight organizational and technical aspects of being good data stewards for the data and information from the EOS missions. A timeline of key events, activities and accomplishments illustrate the fundamental elements of Earth science data stewardship over the course of the 15 year program. These range from the backup of raw instrument datasets at the onset to extending a common data model across a broad and diverse Earth science community. The relative advantages of standard and unique data formats, standard and extended metadata and data representation, and documentation continue to be specific to each Earth science discipline community practices. Best practices for sizing and technology refresh vary by data center but have application in planning future

  6. The TRUST Project: A Formal-Informal Teacher Education Partnership for the Promotion of Earth Science Teacher Certification

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.

    2004-12-01

    The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and

  7. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho, (Edited By); Diggles, M.F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  8. MATLAB® and Design Recipes for Earth Sciences: How to Collect, Process and Present Geoscientific Information

    NASA Astrophysics Data System (ADS)

    Trauth, M.; Sillmann, E.

    2012-04-01

    The overall aim of the class was to introduce undergraduate students to the typical course of a project. The project starts with searching of the relevant literature, reviewing and ranking of the published books and journal articles, extracting the relevant information as text, data or graphs from the literature, searching, processing and visualizing data, and compiling and presenting the results as posters, abstracts and oral presentations. In the first lecture, an unexpectedly-large number (ca. 65) of students subscribed to the course urging us to teach the course in a lecture hall with a projector, microphone and speaker system, a table for the teacher's laptop and equipment, private laptops of the students and wireless Internet. We used a MOODLE eLearning environment to handle the large number of participants in a highly interactive, tutorial-style course environment. Moreover, the students were organized in five GOOGLE groups not accessed by the course instructor, but led by elected student group leaders and their deputies. During the course, the instructor defined three principle topics for each of the groups within the overall theme Past Climate Changes. After having defined sub-themes within the groups for each student, the course culminated in the presentation of the project work as conference-style posters, 200-word abstracts and one-hour sessions with 10-15 two-minute presentations, chaired by the project leaders and their deputies. The course inspired a new textbook that will appear later this year, using a similar concept as its sister book MATLAB Recipes for Earth Sciences-3rd Edition (Trauth, Springer 2010).

  9. Common Earth Science Misconceptions in Science Teaching

    ERIC Educational Resources Information Center

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics" categories; the most…

  10. Testing Earth science

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The Keck Geology Consortium is offering students from ethnic minorities an opportunity to test their interest in careers in Earth science by conducting research on their own and in groups. Collegiate sophomores and juniors of African American, American Indian, Native Alaskan, Hispanic, or Native Pacific Island heritage will work for as long as a year on research projects that originate during a month of field and laboratory work in the summer of 1997.

  11. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  12. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  13. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  14. Strategies Which Foster Broad Use and Deployment of Earth and Space Science Informal and Formal Education Resources

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.; Gabrys, Robert; Ireton, M. Frank; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Education projects supported by federal agencies and carried out by a wide range of organizations foster learning about Earth and Space systems science in a wide array of venues. Across these agencies a range of strategies are employed to ensure that effective materials are created for these diverse venues. And that these materials are deployed broadly so that a large spectrum of the American Public, both adults and children alike, can learn and become excited by the Earth and space system science. This session will highlight some of those strategies and will cover representative examples to illustrate the effectiveness of the strategies. Invited speakers from selected formal and informal educational efforts will anchor this session. Speakers with representative examples are encouraged to submit abstracts for the session to showcase the strategies which they use.

  15. NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Ramapriyan, H. K. " Rama"

    2016-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.

  16. The Reality of the Earth Science Classroom.

    ERIC Educational Resources Information Center

    Yates, Billy Charles; And Others

    A 1991 survey of Kansas earth science teachers provides findings concerning earth science students, earth science teachers, and some current practices in earth science instruction. Generally students take earth science in seventh, eighth, or ninth grade. About two-thirds of the students taking earth science do so at the ninth grade level. The…

  17. The Earth Science Vision

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rychekewkitsch, Michael; Andrucyk, Dennis; McConaughy, Gail; Meeson, Blanche; Hildebrand, Peter; Einaudi, Franco (Technical Monitor)

    2000-01-01

    NASA's Earth Science Enterprise's long range vision is to enable the development of a national proactive environmental predictive capability through targeted scientific research and technological innovation. Proactive environmental prediction means the prediction of environmental events and their secondary consequences. These consequences range from disasters and disease outbreak to improved food production and reduced transportation, energy and insurance costs. The economic advantage of this predictive capability will greatly outweigh the cost of development. Developing this predictive capability requires a greatly improved understanding of the earth system and the interaction of the various components of that system. It also requires a change in our approach to gathering data about the earth and a change in our current methodology in processing that data including its delivery to the customers. And, most importantly, it requires a renewed partnership between NASA and its sister agencies. We identify six application themes that summarize the potential of proactive environmental prediction. We also identify four technology themes that articulate our approach to implementing proactive environmental prediction.

  18. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  19. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  20. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  1. Approach to Managing MeaSURES Data at the GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce; Kempler, Steven J.; Ramapriyan, Hampapuram K.

    2009-01-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects.

  2. Towards open applied Earth sciences

    EPA Science Inventory

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizatio...

  3. Earth System Science and the Internet

    NASA Astrophysics Data System (ADS)

    Johnson, Donald R.; Ruzek, Martin; Kalb, Mike

    2000-07-01

    In 1991, NASA and the Universities Space Research Association (USRA) initiated a program to introduce college undergraduates to the interdisciplinary challenges of an emerging Earth system science approach to understanding our planet. Earth system science views the Earth as a synergistic physical system of interrelated phenomena, processes and cycles which remain largely unexplored in traditional disciplinary Earth science course offerings. The ongoing Cooperative University-based Program for Earth System Science Education (ESSE) challenges colleges and universities to develop and offer classroom courses which examine the Earth as a system and to share their progress, course materials and learning modules. Concurrent with the development of the ESSE community and its shared learning resources has been the exponential growth of the Internet and its suite of communication tools, which are a central resource for the ESSE Program. The Internet has enabled the rapid deployment of information and resources through shared repositories of learning materials and general Earth system science knowledge, all of which serve to create and maintain an active informed education community. ESSE participants are organizing to develop a suite of web-based Earth system science learning modules and sharing course materials and learning resources via the ESSE web site. The modular approach more easily assimilates peer-reviewed learning resources into a wide range of classroom environments. A web-based peer-reviewed Journal of Earth System Science Education is proposed to provide educators with quality classroom materials addressing the Earth as a system and to reward ESS resource developers with citable references. More sophisticated web search and retrieval functions, as well as advanced communication tools will be needed to maintain automated databases of networked resources and an informed user community as Earth system science and the Internet enter the new millennium.

  4. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  5. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  6. The CERES S'COOL Project: Dynamic NASA Earth Science Education and Public Outreach for Formal and Informal Audiences.

    NASA Astrophysics Data System (ADS)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M., Jr.; Harte, T.

    2014-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) Students' Cloud Observations On-Line (S'COOL) Project began in 1997 as a collaboration between a Virginia Middle School teacher, and several NASA Langley Research Center scientists. The project's aim is to involve classroom students in observing and reporting cloud parameters to assist in the validation of NASA's CERES satellite instruments, thus connecting classroom science work to the outside world. In 2007, S'COOL added a Citizen Science component called ROVER. ROVER is geared toward informal observers not tied to one observation location. The S'COOL Project has been successful due to a combination of its flexibility of implementation, training and involvement opportunities, intuitive and free resources, and this authentic connection to an ongoing scientific activity. Through S'COOL's multiple participation avenues, all participants are invited to collect cloud data following S'COOL guidelines. Their cloud data is later matched with corresponding satellite data. Within a week of submitting their report, a participant will be sent a "match" email, if their observation aligns to a satellite overpass. This "match" shows their ground report next to the satellite data for comparison and analysis. All ground observations and satellite matches are archived in a S'COOL database, accessible to the public. This multi-step process enables an on-going, two-way interaction between students and NASA, which is much more engaging than more typical one-way outreach experiences. To complement and enable the cloud observation component, the S'COOL website offers formal and informal education communities a wide variety of atmospheric science related learning resources. These educator created resources are supplemented with carefully crafted background information from the science team. Alignment of the project to the Next Generation Science Standards is underway now, and will highlight the many science process skills involved

  7. Earth Science Enterprise: 2002 Education Catalog.

    ERIC Educational Resources Information Center

    Schwerin, Theresa, Ed.

    The National Aeronautics and Space Administration's (NASA) Earth Science Enterprise (ESE) aims to understand Earth systems from every component including land surface, oceans, atmosphere, ice sheets, and biota from an interdisciplinary approach. This catalog provides information on ESE programs and resources for all educational audiences including…

  8. Earth Science Imagery Registration

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Morisette, Jeffrey; Cole-Rhodes, Arlene; Johnson, Kisha; Netanyahu, Nathan S.; Eastman, Roger; Stone, Harold; Zavorin, Ilya

    2003-01-01

    The study of global environmental changes involves the comparison, fusion, and integration of multiple types of remotely-sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, as well as for the validation of new instruments or for new data analysis. Furthermore, future multiple satellite missions will include many different sensors carried on separate platforms, and the amount of remote sensing data to be combined is increasing tremendously. For all of these applications, the first required step is fast and automatic image registration, and as this need for automating registration techniques is being recognized, it becomes necessary to survey all the registration methods which may be applicable to Earth and space science problems and to evaluate their performances on a large variety of existing remote sensing data as well as on simulated data of soon-to-be-flown instruments. In this paper we present one of the first steps toward such an exhaustive quantitative evaluation. First, the different components of image registration algorithms are reviewed, and different choices for each of these components are described. Then, the results of the evaluation of the corresponding algorithms combining these components are presented o n several datasets. The algorithms are based on gray levels or wavelet features and compute rigid transformations (including scale, rotation, and shifts). Test datasets include synthetic data as well as data acquired over several EOS Land Validation Core Sites with the IKONOS and the Landsat-7 sensors.

  9. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  10. What K-12 Teachers of Earth Science Need from the Earth Science Research Community: Science Teaching and Professional Learning in the Earth Sciences (STAPLES), a Minnesota Case Study

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Pound, K. S.; Rosok, K.; Baumtrog, J.

    2009-12-01

    NSF-style Broader Impacts activities in the Earth Sciences take many forms, from long term partnerships between universities and informal science institutions to one-time K-12 classroom visits by scientists. Broader Impacts that include K-12 teachers range from those that convey broad Earth Science concepts to others stressing direct connections to very specific current research methods and results. Design of these programs is often informed by prior successful models and a broad understanding of teacher needs, but is not specifically designed to address needs expressed by teachers themselves. In order to better understand teachers’ perceived needs for connections to Earth Science research, we have formed the Science Teaching and Professional Learning in the Earth Sciences (STAPLES) research team. Our team includes a geology faculty member experienced in undergraduate and professional Earth Science teacher training, two in-service middle school Earth Science teachers, and the Education Director of the National Center for Earth-surface Dynamics (NCED), a National Science Foundation Science and Technology Center. Members of the team have designed, taught and experienced many of these models, from the Andrill ARISE program to NCED’s summer institutes and teacher internship program. We are administering the STAPLES survey to ask Earth Science teachers in our own state (Minnesota) which of many models they use to 1) strengthen their own understanding of current Earth Science research and general Earth Science concepts and 2) deepen their students’ understanding of Earth Science content. Our goal is to share survey results to inform more effective Broader Impacts programs in Minnesota and to stimulate a wider national discussion of effective Broader Impacts programs that includes teachers’ voices.

  11. Provenance for Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Hua, H.; Tilmes, C.; Ramapriyan, H. K.; Duggan, B.; Wilson, B. D.; Manipon, G. J. M.

    2014-12-01

    Earth Science Data Systems across NASA play a critical role in data processing, management, and analysis of NASA observations. However, there is a growing need to provide the provenance of these datasets as scientists increasingly need more transparency of the data products to improve their understanding and trust of the science results. Lessons learned from Climategate show that there is public demand for more transparency and understanding in the science process. Science data systems are key to enabling the capture, management, and use of production provenance information. Science analysis now also may involve merging multi-sensor datasets where lineage can facilitate the understanding of the data. But there does not exist a formal recommendation for an interoperable standard for provenance representation for use in NASA's Earth Science Data Systems. The W3C Provenance Working Group has a specification for the representation of provenance information. The standard is very general and intended to support the breadth of any domain. To better serve the needs of specific domain communities, the standard has several built in points of extensibility. We will present efforts by NASA's Earth Science Data Systems Working Group (ESDSWG) on Provenance to develop an Earth Science extension to the PROV specification (PROV-ES) and how it can be used in science data system to capture, consume, and interpret provenance information.

  12. Bayesian framework for assessing the value of scientific space systems: Value of information approach with application to earth science spacecraft

    NASA Astrophysics Data System (ADS)

    Brathwaite, Joy; Saleh, Joseph H.

    2013-03-01

    Space systems play an important role in today's society by generating or transmitting information from source to sink(s). The acquisition of the space system is often justified by the type, quantity and quality of information provided or transmitted. This work posits that the value of a class of space systems derives from and can be assessed through the value of information these systems provide. To this effect, a Bayesian framework is developed to assess system value in which systems are viewed as information sources, and stakeholders as information recipients. Information has value to stakeholders as it helps to update their beliefs, enabling them to make decisions that can yield higher expected pay-offs than in the absence of information. This increase in expected pay-offs is ascribed to the value of the system. Based on this idea, a new metric, Value-of-Design (VOD), is introduced to quantify the value of a class of space systems with unpriced services. The Bayesian framework assesses the Value-of-Design for the space system by considering the impact of the information transmitted on the actions taken by stakeholders, and estimating the resulting pay-offs from these actions. The framework here developed is then applied to the case of an Earth Science satellite that provides hurricane information to oil rig operators in the Gulf of Mexico. Probability models of stakeholders' beliefs, and economic models of pay-offs are developed and integrated with a spacecraft design tool. Results from the application point to clusters of payload instruments that yielded higher information value, and minimum information thresholds below which it is difficult to justify the acquisition of the system. Additionally, the system is analyzed in Cost-VOD trade space to provide program managers with additional insights into the coupling of a system's predicted value generation and its associated lifecycle cost.

  13. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  14. The new space and Earth science information systems at NASA's archive

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, Total Ozone Mapping Spectrometer (TOMS) data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.

  15. The new space and earth science information systems at NASA's archive

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.

  16. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  17. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  18. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  19. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  20. Mapping Earth Science Concepts.

    ERIC Educational Resources Information Center

    McDuffie, Thomas E., Jr.; Van Dine, William E.

    1978-01-01

    Presents two experiments concerned with mapping skills. Directions are given for calculating the circumference of the earth and for developing a model of the solar system using familiar territory as a frame of reference. (MA)

  1. Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1999-01-01

    Workshop for middle and high school teachers to enhance their knowledge of the Earth as a system. NASA data and materials developed by teachers (all available via the Internet) will be used to engage participants in hands-on, investigative approaches to the Earth system. All materials are ready to be applied in pre-college classrooms. Remotely-sensed data will be used in combination with familiar resources, such as maps, to examine global climate change.

  2. Earth Sciences report, 1989--1990

    SciTech Connect

    Younker, L.W.; Peterson, S.J.; Price, M.E.

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  3. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  4. List of Core Journals in Earth Sciences.

    ERIC Educational Resources Information Center

    International Council for Scientific and Technical Information, Paris (France).

    Selection and acquisition of relevant materials for building and developing an information infrastructure are modern worldwide problems. This document provides a core listing of journals in the earth sciences in an effort to develop a tool for the improvement of information handling and transfer. The core list was generated using several databases…

  5. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  6. Earth System science

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.

    1992-01-01

    Recent research has solidified a view of the Earth as a global-scale interactive system with complex chemical, physical, biological and dynamical processes that link the ocean, atmosphere, land (soils, ice, snow) and marine and terrestrial living organisms. These processes both within and between the major parts of the system help determine global and regional climate and control the biogeochemical and hydrologic cycles essential to life. The study of the Earth System requires measurements ranging from the scales of the smallest processes to the global scale. An ambitious satellite observational program, the Earth Observing System (EOS), carried out along with the complementary and ongoing World Climate Research Program (WCRP) and International Geosphere-Biosphere Program (IGBP) represents a major international effort to understand this System and predict its future changes. The complex and intriguing nature of the Earth System is discussed along with a number of closely coupled processes occurring within it. These are: clouds, precipitation and vegetation; ocean circulation, sea-surface temperature and phytoplankton; coupled oceanic and atmospheric circulation (the Southern Oscillation); biological activity, atmospheric chemistry and climate; and biological emissions and the ozone layer.

  7. Google Earth Science

    ERIC Educational Resources Information Center

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  8. Earth Science Education in Eritrea

    NASA Astrophysics Data System (ADS)

    Teklay, Mengist

    1999-05-01

    In Eritrea, Earth Science Education is taught only by the Earth Sciences Department based at the College of Science, University of Asmara. Currently, the University of Asmara has eight teaching Colleges: Agriculture & Aquatic Sciences, Arts and Social Sciences, Business and Economics, Education, Engineering, Health Sciences, Law, and Science offering Bachelor degrees, Diplomas and Certificates in various fields. The Earth Sciences Department was established as a Geology Unit in 1983 and until 1996 offered minor and service geology courses for students of Science and Agriculture. The Department started a four-year degree programme in Geology (B.Sc. in Geology) at the beginning of the 1996/97 academic year. The B.Sc. programme in Geology provides students with a Geology major and a minor in Physics or Chemistry. Potential major organisations which employ the geology graduates include the Ministry of Mines and Energy, and the Ministry of Land, Water and Environment, as well as mining and petroleum companies which are currently active in mineral resources exploration in the country.

  9. Science information systems: Visualization

    NASA Technical Reports Server (NTRS)

    Wall, Ray J.

    1991-01-01

    Future programs in earth science, planetary science, and astrophysics will involve complex instruments that produce data at unprecedented rates and volumes. Current methods for data display, exploration, and discovery are inadequate. Visualization technology offers a means for the user to comprehend, explore, and examine complex data sets. The goal of this program is to increase the effectiveness and efficiency of scientists in extracting scientific information from large volumes of instrument data.

  10. A Science Information Infrastructure

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Hawkins, I.; Malina, R. F.; Dow, K.; Murray, S.

    1994-12-01

    We have created a partnership of science museums, research institutions, teachers, and other centers of informal science education to enable access to the rich resources of remote sensing data available from NASA and other sources and to deliver this information to the general community. We are creating science resource centers in the nation's science museums and planetarium facilities, linking them together through a national Science Information Infrastructure (SII). The SII framework is being founded on Internet connections between the resource centers, which are in turn linked to research institutions. The most up-to-date and exciting science data, related information, and interpretive material will be available from the research institutions. The science museums will present this information in appropriate ways that respond to the needs and interest of the general public and K--12 communities. The science information will be available through the World Wide Web using a Mosaic interface that individuals will use to explore the on-line materials through self-guided learning modules. K--12 teachers will have access to the materials and, in a workshop forum, learn to find and use the information to create lesson plans and curricula for their classrooms. Eventually, as the connectivity of schools and libraries improves, students and teachers will have access to the resource centers from their own locations. The core partnership of the SII includes the Center for EUV Astrophysics (CEA), and Smithsonian Astrophysical Observatory, Exploratorium, Lawrence Hall of Science, Smithsonian National Air and Space Museum, Science Museum of Virginia, New York Hall of Science, Adler Museum of Chicago, University of California Museum of Paleontology, Boston Museum of Science, and the Earth Observing Satellite Company (EOSAT). A demonstration of the application of resource center materials in the K--12 community is being conducted through the Science On-Line project at the Center

  11. Theorizing Information for Information Science.

    ERIC Educational Resources Information Center

    Cornelius, Ian

    2002-01-01

    Considers whether information science has a theory of information. Highlights include guides to information and its theory; constructivism; information outside information science; process theories; cognitive views of information; measuring information; meaning; and misinformation. (Contains 89 references.) (LRW)

  12. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  13. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  14. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  15. Integrated Modeling in Earth and Space Sciences: An Information Theoretic Framework

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Kalnay, E.

    2011-12-01

    Most natural phenomena exhibit multiscale behavior, which is an underlying reason for the challenges in modeling them. The recognition that the key problems, such as extreme events, natural hazards and climate change, require multi-disciplinary approaches to develop models that integrate many natural and anthropogenic phenomena, demand new approaches in the modeling of such systems. Information theory, which emphasizes the inherent features in observational data independent of modeling assumptions, can be used to develop a framework for multi-disciplinary models by integrating the data of the leading processes in multiple systems. An important measure of the inter-relationship among the different phenomena is the lead time among them. The widely used quantities such as the cross-correlation function represent the linear dependence among the variables and are limited in their ability to describe complex driven systems which are essentially nonlinear. The mutual information function, which represents the expectation of the average degree of dependence incorporating all orders of nonlinearity, provides the characteristic times inherent in the data and can be used as the first step to the development of integrated models. This function is used in two systems with widely separated time scales. The first case is the solar wind - magnetosphere interaction and the correlated data yield ~ 5 hr as the inherent time scale for the magnetospheric processes. The second case is a study of the inter-relationship between natural and anthropogenic phenomena and the mutual information functions were computed from the data of the global gross product, temperature and population. These functions show a time delay of ~15 yrs between the changes in global temperature and population as well as gross product, thus providing a measure of the interdependency among the variables underlying climate change. The results from studies of extreme events and an information theoretic modeling

  16. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  17. A survey of geographical information systems applications for the Earth Science and Applications Division, Space Sciences Laboratory, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rickman, D.; Butler, K. A.; Laymon, C. A.

    1994-01-01

    The purpose of this document is to introduce Geographical Information System (GIS) terminology and summarize interviews conducted with scientists in the Earth Science and Applications Division (ESAD). There is a growing need in ESAD for GIS technology. With many different data sources available to the scientists comes the need to be able to process and view these data in an efficient manner. Since most of these data are stored in vastly different formats, specialized software and hardware are needed. Several ESAD scientists have been using a GIS, specifically the Man-computer Interactive Data Access System (MCIDAS). MCIDAS can solve many of the research problems that arise, but there are areas of research that need more powerful tools; one such example is the multispectral image analysis which is described in this document. Given the strong need for GIS in ESAD, we recommend that a requirements analysis and implementation plan be developed using this document as a basis for further investigation.

  18. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2007-12-01

    The Earth System Science Education Alliance (ESSEA) professional development program is providing in-depth geoscience content and teaching methods to pre- and in-service teachers. The program is building and expanding on NASA's successful ESSEA program that was funded from 2000-2005. Now sponsored by NSF, the network has expanded to nearly 40 institutions of higher learning committed to teacher Earth system science education. The program supports participating institutions with funding, training, and standards-aligned courses and resources for pre- and in-service teachers. As a result, teachers are prepared to teach Earth system science using inquiry-based classroom methods, geoscience data and tools. From 1999-2005, the NASA funded ESSEA Program delivered online Earth system science professional development for K-12 teachers through a network of 20 colleges and universities. The program was led by the Institute for Global Environmental Strategies (IGES) and based on a trio of 16-week online courses (for elementary, middle, and high school teachers) that had been developed and piloted by NASA's Classroom of the Future at Wheeling Jesuit University. The ESSEA program's mission was to: 1) support universities, colleges, and science education organizations delivering the K-12 online graduate courses; 2) strengthen teachers' understanding of Earth system science; 3) demonstrate the ability to deliver exceptional professional development to a national audience; and 4) create a solid infrastructure to sustain the program. As of spring 2006, the courses had been used by 40 faculty at 20 institutions educating over 1,700 K-12 teachers in Earth system science. Through NSF funding beginning in late 2006, IGES is enhancing and building on the ESSEA foundation by: 1. Introducing extensive use of data, models and existing Earth system educational materials to support the courses; 2. Implementing a rigorous evaluation program designed to demonstrate growth in teachers' Earth

  19. Earth Science: 49 Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book offers a large collection of Earth science projects and project ideas for students, teachers, and parents. The projects described are complete but can also be used as spring boards to create expanded projects. Overviews, organizational direction, suggested hypotheses, materials, procedures, and controls are provided. The projects…

  20. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  1. Modeling Activities in Earth Science

    NASA Astrophysics Data System (ADS)

    Malone, Kathy

    2014-05-01

    Students usually find science to be quite abstract. This is especially true of disciplines like Earth Science where it is difficult for the students to conduct and design hands-on experiments in areas such as Plate Tectonics that would allow them to develop predictive models. In the United States the new Next Generation Science Standards explicitly requires students to experience the science disciplines via modeling based activities. This poster presentation will discuss an activity that demonstrates how modeling, plate tectonics and student discourse converge in the earth science classroom. The activities featured on the poster will include using cardboard and shaving cream to demonstrate convergent plate boundaries, a Milky Way candy bar to demonstrate divergent boundaries and silly putty to demonstrate a strike slip boundary. I will discuss how students report back to the group about the findings from the lab and the techniques that can be used to heighten the student discourse. The activities outlined in this poster were originally designed for a middle school Earth Science class by Suzi Shoemaker for a graduate thesis at Arizona State University.

  2. PLANETARIUMS, OBSERVATORIES AND EARTH SCIENCE EXHIBITS.

    ERIC Educational Resources Information Center

    MATTHEWS, WILLIAM H., III

    THIS EARTH SCIENCE CURRICULUM PROJECT (ESCP) REFERENCE SERIES PROVIDES INFORMATION ON SOURCES OF MATERIALS, CLASSROOM TEACHING AIDS, LABORATORY AND FIELD PROJECT SUGGESTIONS, AND OTHER RELATED TOPICS IN THE FIELDS OF (1) ASTRONOMY, (2) GEOLOGY, (3) METEOROLOGY, (4) OCEANOGRAPHY, AND (5) PHYSICAL GEOGRAPHY. THESE PAMPHLETS ARE INTENDED TO AID THE…

  3. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  4. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2006-12-01

    The Earth System Science Education Alliance (ESSEA) professional development program is providing in- depth geoscience content and teaching methods to pre- and in-service teachers. The program is building and expanding on NASA's successful ESSEA program that was funded from 2000-2005. Beginning in 2006 NSF funding will enable ESSEA will expand to 40 institutions of higher learning that are committed to teacher education in Earth system science. The program will support participating institutions with funding, training, and standards-aligned courses and resources for pre- and in-service teachers. As a result, teachers will be prepared to teach Earth system science using inquiry-based classroom methods, geoscience data and tools. From 1999-2005, the NASA funded ESSEA Program delivered online Earth system science professional development for K-12 teachers through a network of 20 colleges and universities. The program was led by the Institute for Global Environmental Strategies (IGES) and based on a trio of 16-week online courses (for elementary, middle, and high school teachers) that had been developed and piloted by NASA's Classroom of the Future at Wheeling Jesuit University. The ESSEA program's mission was to: 1) support universities, colleges, and science education organizations delivering the K-12 online graduate courses; 2) strengthen teachers' understanding of Earth system science; 3) demonstrate the ability to deliver exceptional professional development to a national audience; and 4) create a solid infrastructure to sustain the program. As of spring 2006, the courses had been used by 40 faculty at 20 institutions educating over 1,700 k-12 teachers in Earth system science. Although NASA funding ended in late 2005, the courses continue to be offered by 17 of the original 20 institutions. Through NSF funding beginning in late 2006, IGES will enhance and build upon the ESSEA foundation by: 1.Using the ESSEA courses as a model to introduce newly upgraded Earth

  5. Lessons learned in deploying a cloud-based knowledge platform for the Earth Science Information Partners Federation (ESIP)

    NASA Astrophysics Data System (ADS)

    Pouchard, L. C.; Depriest, A.; Huhns, M.

    2012-12-01

    Ontologies and semantic technologies are an essential infrastructure component of systems supporting knowledge integration in the Earth Sciences. Numerous earth science ontologies exist, but are hard to discover because they tend to be hosted with the projects that develop them. There are often few quality measures and sparse metadata associated with these ontologies, such as modification dates, versioning, purpose, number of classes, and properties. Projects often develop ontologies for their own needs without considering existing ontology entities or derivations from formal and more basic ontologies. The result is mostly orthogonal ontologies, and ontologies that are not modular enough to reuse in part or adapt for new purposes, in spite of existing, standards for ontology representation. Additional obstacles to sharing and reuse include a lack of maintenance once a project is completed. The obstacles prevent the full exploitation of semantic technologies in a context where they could become needed enablers for service discovery and for matching data with services. To start addressing this gap, we have deployed BioPortal, a mature, domain-independent ontology and semantic service system developed by the National Center for Biomedical Ontologies (NCBO), on the ESIP Testbed under the governance of the ESIP Semantic Web cluster. ESIP provides a forum for a broad-based, distributed community of data and information technology practitioners and stakeholders to coordinate their efforts and develop new ideas for interoperability solutions. The Testbed provides an environment where innovations and best practices can be explored and evaluated. One objective of this deployment is to provide a community platform that would harness the organizational and cyber infrastructure provided by ESIP at minimal costs. Another objective is to host ontology services on a scalable, public cloud and investigate the business case for crowd sourcing of ontology maintenance. We deployed the

  6. Earth Science in the News.

    ERIC Educational Resources Information Center

    Jackson, Julia A.; Paty, Alma Hale

    2000-01-01

    Offers two activities to help students explore the geosciences during Earth Science Week. Uses a fossil collection simulation that has students digging through strata of newspaper. Presents an interdisciplinary research project that has students investigate the fossils, minerals, and rocks of their home state. (ASK)

  7. Information sciences experiment system

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Murray, Nicholas D.; Benz, Harry F.; Bowker, David E.; Hendricks, Herbert D.

    1990-01-01

    The rapid expansion of remote sensing capability over the last two decades will take another major leap forward with the advent of the Earth Observing System (Eos). An approach is presented that will permit experiments and demonstrations in onboard information extraction. The approach is a non-intrusive, eavesdropping mode in which a small amount of spacecraft real estate is allocated to an onboard computation resource. How such an approach allows the evaluation of advanced technology in the space environment, advanced techniques in information extraction for both Earth science and information science studies, direct to user data products, and real-time response to events, all without affecting other on-board instrumentation is discussed.

  8. The NASA Earth Science Flight Program

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2014-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 17 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission and the Orbiting Carbon Observatory-2 (OCO-2). The ESD has 18 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small competitively selected orbital and instrument missions of opportunity belonging to the Earth Venture (EV) Program. The International Space Station (ISS) is being used to host a variety of NASA Earth science instruments. An overview of plans and current status will be presented.

  9. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  10. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  11. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  12. Identifying Data in the Earth Sciences (Invited)

    NASA Astrophysics Data System (ADS)

    Duerr, R. E.

    2010-12-01

    The problem of identity has vexed humanity throughout all of recorded history. A wide variety of methods; from assigned identifiers to taxonomic techniques and beyond; have historically been used to resolve the issue of whether this thing, whatever or whomever it may be, is what it purports to be. Yet none have ultimately proved to be flawless. Not surprisingly then, the issue of identity is just as much an issue in this digital era as it has ever been. Given the mutability of digital objects it would be surprising indeed if it were not more of an issue. This presents a quandary for science given its foundations in the concept of repeatability. How can one repeat what cannot be identified? In the Earth sciences the problem is even more acute. Unlike other fields of research, the majority of observations in the Earth sciences are not repeatable, they occur at a distinct place and time and are therefore unique and irreplaceable. One would think that this uniqueness would make identification easier; yet the realities of current scientific practice and technology means that it just isn't so. Not surprisingly then, a number of identification schemes have been implemented by various communities - academic, commercial, and non-profit. Many of these schemes purport to be the answer to the question of identification, at least for that community. But is this so for the Earth Sciences? That is the question that was posed to the data lifecycle focus group of the Earth Science Data Systems Technology Infusion Working Group (ESDSWG TIWG) and the Preservation Cluster of the Federation of Earth Science Information Partners (ESIP). In this talk, an assessment of the applicability of these technologies and identification schemes to the Earth Sciences is summarized, and ongoing identifier test-bed activities within the ESIP Federation are described.

  13. EarthScope: Earth Science Education and Outreach on a Continental Scale

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Taylor, W. L.

    2011-12-01

    EarthScope, funded by the National Science Foundation, enables the exploration of the structure and evolution of the North American continent by scientists accessing a range of seismological, geodetic, in situ fault-zone sampling, geochronology, and high resolution topography resources. Interdisciplinary EarthScope science produces transformative knowledge for studying Earth processes and structures, addressing hazards, and informing resource exploration and environmental management. In addition, these data and technologies offer superb opportunities to enhance formal and informal science education in the solid Earth and Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves the broad and diverse community of EarthScope stakeholders, including EarthScope researchers, formal and informal educators in Earth science, and the general public. ESNO supports and promotes education and outreach (E&O) at a level comparable to that of its support for EarthScope science. This is accomplished through effective programs such as the EarthScope E&O website, Speaker Series, Interpretive Workshops for informal educators, newsletters, and the biannual EarthScope National Meeting. ESNO is adding further value to the programmatic E&O portfolio through new initiatives to: rapidly channel EarthScope science through social media; pilot and disseminate exemplary new Earth science content for K-12 science, technology, engineering, and mathematics (STEM) teacher professional development (in partnership with organizations such as American Geological Institute); use regional and local results from EarthScope research in promoting place-based teaching; and deliver continuing education for university researchers and educators. EarthScope E&O, infused with a place-based and educator-centered ethos, coordinates the compilation and presentation of the spectacular findings and scientific legacy of the continental-scale EarthScope program.

  14. Earth Science Mining Web Services

    NASA Technical Reports Server (NTRS)

    Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken

    2008-01-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  15. Earth Science Mining Web Services

    NASA Astrophysics Data System (ADS)

    Pham, L. B.; Lynnes, C. S.; Hegde, M.; Graves, S.; Ramachandran, R.; Maskey, M.; Keiser, K.

    2008-12-01

    To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at the GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADaM components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestrates the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to this infusion is the loosely coupled, Web- Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.

  16. Earth Systems Science and Engineering

    SciTech Connect

    Rotman, D A

    2006-02-21

    Providing the essential energy and water systems to support human needs while understanding and addressing their environmental consequences is a watershed problem for the 21st century. The LLNL Earth System Science and Engineering Program seeks to provide the scientific understanding and technological expertise to help provide solutions at both global and regional scales. Our work is highly collaborative with universities, laboratories and industrial partners across the world and involves observational data, laboratory experiments, and numerical simulations. The energy systems we have enjoyed for the last 100 years have resulted in the advanced standard of living in the developed world and a major emerging problem with climate change. Now we face a simultaneous realization that our reliance on fossil fuels is a source of conflict and economic disruption as well as causing potentially abrupt, even catastrophic global climate change. The climate and energy problem is perhaps the greatest challenge ever faced by mankind. Fossil fuel remains the least expensive and most available source of energy and the basis of our economy. The use of fossil fuels, especially over the last 100 years has led to a 30% increase in CO{sub 2} in the atmosphere. The problem is growing. The population of the Earth will increase by several billion people in the next 50 years. If economic growth is to continue, the demand for energy is estimated to approximately double in the next 50 years so that we will need approximately 10 TW more energy than the 15 TW we use now. Much of this demand will come from the developing world where most of the population growth will occur and where advanced energy technology is not generally used. The problem affects and is affected by a complex system of systems. The climate and energy problem will affect resources, social structure and the probability of increased conflict. No one person, no one nation, no one technology can solve the problem. There is no

  17. Solid Earth Science ESDR System

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Bock, Y.; Moore, A. W.; Squibb, M. B.; Liu, Z.; Hasse, J.; Fang, P.

    2013-12-01

    The Solid Earth Science ESDR System (SESES) provides mature, long-term calibrated and validated Earth System Data Records (ESDRs) that support NASA's Earth Surface and Interiors (ESI) focus area, routinely processing data from Earthscope's Plate Boundary Observatory GPS network, NASA's Real-time Earthquake Analysis for Disaster Mitigation network (READI), as well as from several global GPS networks. The project, which was initiated in 2006, provides multi-decade calibrated and validated GPS-derived deformation time series and deformation vectors, based on daily GPS data. The time series are a unique product in terms of number of stations and duration (over 20 years), and have been modeled and catalogued for coseismic, postseismic and transient deformation, as well as instrumental offsets. Calibration and validation of the GPS measured deformation time series are done through a combined solution of two independently derived GPS position time series. Improved sensitivity to real signals is provided by a Principal Component Analysis tool that is routinely applied to the Western North America time series. At its current stage SESES is in the process of generating and distributing the following new ESDRs: (a) Troposphere delay time series for calibrating atmospheric delay errors in Interferometric Synthetic Aperture Radar (InSAR) that are one of the limiting InSAR error sources. (b) Precipitable Water Vapor (PWV) time series for use in Probable Maximum Precipitation studies, historical weather event analysis, and studies of long-term water vapor trends. (c) Fusion of GPS and seismic measurements at collocated stations to estimate three-dimensional high-rate displacement time series with mm precision, during significant historic seismic events (e.g., 2003 Mw 8.3 Tokachi-oki earthquake in Japan; 2010 Mw 7.2 El Mayor-Cucapah earthquake in northern Baja California; 2011 Mw 9.0 Tohoku-oki earthquake in Japan) and new events during the project duration. Data sets to be used

  18. Earth Science Remote Sensing Technology Overview

    NASA Astrophysics Data System (ADS)

    Buckner, J. L.

    2006-12-01

    From instruments to data access, the NASA Earth Science Technology Office (ESTO) develops technologies that enable a full range of scientific measurements, operational requirements, and practical applications that benefit society at large. The Advanced Sensors Group leads developments in remote sensing technologies through the Advanced Component Technologies and Instrument Incubator Programs. The Advanced Information Systems Group pursues sensor webs, computing, automation, interoperability, networking, communication protocols, and other technologies to enhance the production, collection, handling, transmission, analysis, and comprehension of data. This presentation will provide a brief overview of the ESTO and serve as a "kick-off " session for the Frontiers in Advanced Information Systems and Earth System Observation Technology session.

  19. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  20. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  1. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  2. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  3. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  4. TeraGrid Gateways for Earth Science

    NASA Astrophysics Data System (ADS)

    Wilkins-Diehr, Nancy

    2010-05-01

    The increasingly digital component of science today poses exciting challenges and opportunities for researchers. Whether it's streaming data from sensors to computations, tagging video in the study of language patterns or the use of geographic information systems to anticipate the spread of disease, the challenges are enormous and continue to grow. The existence of advanced cyberinfrastructure (CI) tools or science gateways can significantly increase the productivity of researchers facing the most difficult challenges - in some cases making the impossible possible. The TeraGrid Science Gateways program works to incorporate high end resources through these community-designed interfaces. This talk will present an overview of TeraGrid's gateway program and highlight several gateways in atmospheric science, earth sciences and geography and regional science, geophysics, global atmospheric research, materials research and seismology.

  5. Distinguishing Provenance Equivalence of Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Yesha, Ye; Halem, M.

    2010-01-01

    Reproducibility of scientific research relies on accurate and precise citation of data and the provenance of that data. Earth science data are often the result of applying complex data transformation and analysis workflows to vast quantities of data. Provenance information of data processing is used for a variety of purposes, including understanding the process and auditing as well as reproducibility. Certain provenance information is essential for producing scientifically equivalent data. Capturing and representing that provenance information and assigning identifiers suitable for precisely distinguishing data granules and datasets is needed for accurate comparisons. This paper discusses scientific equivalence and essential provenance for scientific reproducibility. We use the example of an operational earth science data processing system to illustrate the application of the technique of cascading digital signatures or hash chains to precisely identify sets of granules and as provenance equivalence identifiers to distinguish data made in an an equivalent manner.

  6. Earth Science Capability Demonstration Project

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  7. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  8. Earth Science Education in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  9. The Role of Advanced Information System Technology in Remote Sensing for NASA's Earth Science Enterprise in the 21st Century

    NASA Technical Reports Server (NTRS)

    Prescott, Glenn; Komar, George (Technical Monitor)

    2001-01-01

    Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.

  10. Coping with all the Earth science data

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    Even today, the volume of data collected by remote sensing instruments challenges the processing and interpretation capabilities of the Earth science community. By the mid-1990s an additional terabit (1012 bits) per day is expected from the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) spacecraft alone. The Washington, D.C., phone book (white pages) contains only about 1/10,000 this amount (108 bits) of information. To put this another way, if you could read and absorb a quantity of data comparable to two 200-page books per week, it would take over 5000 years to ingest a single day's data (Moses lived about 3300 years ago!).However, there is a growing appreciation for the interconnected nature of processes shaping the terrestrial environment [e.g., Earth System Science Committee, 1988]. This is driving the need to collect and study such large data sets. A range of time and space scales must be sampled if critical phenomena affecting the surface of Earth are to be captured by the observations. Data from multiple sources, measuring different aspects of the phenomena, must be intercompared. As a result, many of the important new insights that we hope to gain with future Earth-observing spacecraft can only be achieved if there are data-handling tools that are adequate for coping with the volume of new information.

  11. Russian Earth Science Research Program on ISS

    SciTech Connect

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements to the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.

  12. Global Issues in an Introductory Earth Science Course.

    ERIC Educational Resources Information Center

    Pierce, James P.

    Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…

  13. Evolving NASA's Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Walter, J.; Behnke, J.; Murphy, K. J.; Lowe, D. R.

    2013-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth science data. The system supports a multitude of missions and serves diverse science research and other user communities. Keeping up with ever-changing information technology and figuring out how to leverage those changes across such a large system in order to continuously improve and meet the needs of a diverse user community is a significant challenge. Maintaining and evolving the system architecture and infrastructure is a continuous and multi-layered effort. It requires a balance between a "top down" management paradigm that provides a coherent system view and maintaining the managerial, technological, and functional independence of the individual system elements. This presentation will describe some of the key elements of the current system architecture, some of the strategies and processes we employ to meet these challenges, current and future challenges, and some ideas for meeting those challenges.

  14. Importance of Earth Science in the Precollege Curriculum.

    ERIC Educational Resources Information Center

    Carpenter, John R.

    1990-01-01

    Discussed are the importance of earth science, how earth science should be taught, and when and to whom earth science should be taught. Topics which should be taught in a modern earth science course are suggested. (CW)

  15. Functional requirements document for NASA/MSFC Earth Science and Applications Division: Data and information system (ESAD-DIS). Interoperability, 1992

    NASA Technical Reports Server (NTRS)

    Stephens, J. Briscoe; Grider, Gary W.

    1992-01-01

    These Earth Science and Applications Division-Data and Information System (ESAD-DIS) interoperability requirements are designed to quantify the Earth Science and Application Division's hardware and software requirements in terms of communications between personal and visualization workstation, and mainframe computers. The electronic mail requirements and local area network (LAN) requirements are addressed. These interoperability requirements are top-level requirements framed around defining the existing ESAD-DIS interoperability and projecting known near-term requirements for both operational support and for management planning. Detailed requirements will be submitted on a case-by-case basis. This document is also intended as an overview of ESAD-DIs interoperability for new-comers and management not familiar with these activities. It is intended as background documentation to support requests for resources and support requirements.

  16. Requirements for Expanding the Role of Science and Technology through the Group on Earth Observations (GEO) to meet the Information Needs of Water Managers (Invited)

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2010-12-01

    Earth Observations provide broad support for the management of renewable resources including water. In the past and even today, water managers do not have access to the best scientific understanding and information to support their decision making. Through the Group on Earth Observations (GEO), initiatives are underway to bring together science and information systems in three broad areas related to water management namely: 1) integrated data sets using both emerging and operational remote sensing technologies, 2) integrated information systems that rely on water cycle science to focus on floods and droughts, and 3) capacity building through technology transfer and training. Specific areas of progress that rely on science and new technological developments include new observational capabilities for ground water (e.g. GRACE), soil moisture (e.g. SMOS) and precipitation (e.g., Global Precipitation Measurement (GPM)). The development of information systems builds upon the Hydrologic Ensembles Prediction Experiment (HEPEX), drought studies, and aspects of the former Coordinated Energy and Water Cycle Observations Project (CEOP) that was developed through the Global Energy and Water Cycle Experiment (GEWEX). In addition to outlining the contributions of science to the GEO water tasks this talk will seek to draw some more fundamental lessons about the interface of science with GEO in the water sector. Although progress is being made, this progress is sometimes sub-optimal for reasons unrelated to science. The talk will conclude with a short discussion of some emerging priority areas being considered for the 2012-2015 GEO Work Plan where more scientific inputs are required. It also will provide suggestions for interested experts on how they could become more actively involved in GEO water-related activities.

  17. Earth Sciences annual report, 1987

    SciTech Connect

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  18. Geostationary earth science platform concepts

    NASA Technical Reports Server (NTRS)

    Herardian, M. M.

    1989-01-01

    The new concepts are presented for the Geostationary Earth Science Platform. Bus and payload arrangements, with instrument locations on the payload module and basic payload dimensions, are depicted and compared for each concept. The Titan 4 SRMU (with solid rocket motor upgrage) launch vehicle is described and compared to the standard Titan 4. The upgraded Titan 4 is capable of launching a 13,500 lb payload to GEO. The launch configuration showing each concept packaged within the 16 ft diameter payload envelope is presented. This presentation is represented by viewgraph only.

  19. Earth sciences and emergency management

    USGS Publications Warehouse

    Andrews, R.

    1990-01-01

    As understanding of California's earthquake risk had increased over the past decade, there has been a concurrent expansion of interactions between emergency management professionals and earth scientists. The effort have resulted not from a formal plan-though the U.S National Earthquake Hazards Reduction Program has provided much of the support for scientific advances since 1977-but from interactions focused on specific projects. three examples stand out, perhaps suggesting how mutually beneficial exchanges can simultaneously enhance science and public safety. 

  20. Public Access to NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; James, N.

    2013-12-01

    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  1. Earth Sciences Electronic Theater ''999

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Manyin, Mike

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  2. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  3. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  4. The Earth Science Platform (Invited)

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Folk, M. J.

    2013-12-01

    Interoperable data and understanding across the Earth Science community requires convergence towards a standard set of data formats and services, metadata standards, and conventions for effective use of both. Although large legacy archives still exist in netCDF3, HDF4, and many custom formats, we have achieved considerable convergence in the data format layer with the merger of the netCDF4 and HDF5 formats. The way forward seems clear as more groups in many disciplines join the HDF5 community. The data service layer has experienced similar convergence as OGC Service Standards are adopted and used in increasing numbers and connections across former chasms are deployed (ncWMS, ncSOS, netCDF/CF as OGC Standards). Many data providers around the world are in the process of converging towards ISO Standards for documenting data and services. Connections are also helping here (ncISO). Many groups are now working towards convergence in the conventions layer. The HDF-EOS and Climate-Forecast conventions have been used successfully for many datasets spanning many Earth Science disciplines. These two sets of conventions reflect different histories and approaches that provide a rich set of lessons learned as we move forward.

  5. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  6. Earth Science Literacy: Big Ideas and Supporting Concepts

    NASA Astrophysics Data System (ADS)

    Ladue, N. D.; Wysession, M.; Budd, D. A.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    The Earth Science Literacy Initiative seeks to create community consensus regarding what every person should know about earth science. This NSF-sponsored, inter-agency effort complements the Ocean, Climate, and Atmospheric Science Literacy Principles. The Earth Science Literacy draft document contains the Big Ideas and Supporting Concepts that underlie the research fields funded through the NSF-EAR division. The draft document is written for a high school graduate reading level. Community feedback on this draft is essential to the creation of a robust document that can effectively communicate current scientific understanding of the earth sciences. The draft document has eight Big Ideas which follow the themes of (1)Earth's history, (2) Earth's complex interacting systems, (3) the evolving geosphere, (4) water-related processes, (5) Earth's controls on the evolution of life, (6) Earth's resources, (7) natural hazards and human risks, and (8) human impacts on the Earth. Supporting concepts provide the related detail necessary to understand the Big Ideas. The Earth Science Literacy document has a decidedly anthropomorphic bias with three of the Big Ideas (resources, hazards and human impacts) relating directly to human interactions with the Earth. This human bias is justified by the increasing significance of Earth science-related topics such as increasing population, climate change, and scarcity of resources. Literacy documents from the ocean, atmosphere and climate communities have already had large impacts and the same is expected for the earth science literacy framework. The document will provide a foundation for future K-12 educational standards and K-16 textbooks, provide the basis for the displays and programs of informal education venues, and provide guidance for future governmental agency decisions in the earth sciences.

  7. From Observation to Impacts: Provenance for Earth Science Resources

    NASA Astrophysics Data System (ADS)

    Hua, H.; Tilmes, C.; Fox, P. A.; Zednik, S.; Duggan, B.; Aulenbach, S.; Wilson, B. D.; Manipon, G. J. M.; Privette, A. P.

    2014-12-01

    NASA's Earth Science Data Systems Working Group (ESDSWG) on Provenance is working on a provenance specification for use in Earth science data systems to capture, consume, and interpret the end-to-end data life cycle information. Based on W3C PROV, this Earth Science extension can be used as an interoperable specification for representing Earth science resources that includes observations by instruments, data producers, data processing systems, data archive centers, data users, analysis findings, and societal impacts. NASA is participating in the Big Earth Data Initiative (BEDI) and also leading a related Climate Data Initiative (CDI) effort. Under CDI, NASA is also working with the U.S. Global Change Research Program (USGCRP) and the U.S. Group on Earth Observations (USGEO) to identify and make interoperable relevant data from multiple interagency sources. These interagency efforts will improve the discoverability, accessibility, and usability of Federal data and information products derived from civil Earth observations. We will present our progress to develop a provenance specification for representing Earth science resources from observation to impacts and how it can be used to support these initiatives. We will show how it can be used in earth science data systems to automatically capture, consume, and interpret provenance information using semantic technologies.

  8. Experience our Planet - Interpreting Earth Sciences in a Museum Environment

    NASA Astrophysics Data System (ADS)

    Schneider, S.

    2012-12-01

    Earth science interpretation is more than giving your audience facts and figures. It is about relating Earth sciences to something within the personality or experience of your audience. It is about revelation based on information rather than just giving away information per se. And: The chief aim of interpretation is not instruction but provocation. A great environment for Earth science interpretation is a museum. Whether it is an art gallery, a technology exhibition or a national park's visitor center is irrelevant. Earth science interpretation is possible everywhere and sometimes even more successful in unsuspected locations than in natural history museums. Earth sciences have just started to use the potential which lies within museum environments. A historic view on Earth sciences and natural hazard research can be given in art galleries. The technology used in research can be showcased and - sometimes - even tested in science centers and technology museums. National Parks provide the best opportunity to actually experience the dynamic planet Earth live. This talk aims towards giving an insight view on how to conduct interpretive programs in museums, how to utilize the treasures and possibilities provided by museums and national parks and to encourage scientists to go to these places for face-to-face Earth science interpretation.

  9. An Analysis of Earth Science Data Analytics Use Cases

    NASA Astrophysics Data System (ADS)

    Shie, C. L.; Kempler, S. J.

    2015-12-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https://earthdata.nasa.gov/about/system-performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co-analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  10. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  11. National Earth Science Teachers Association Achievements in Earth Science Education Leadership

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Johnson, R. M.; Pennington, P.; Herrold, A.; Holzer, M.; Ervin, T.; Hall, B.

    2008-12-01

    The National Earth Science Teachers Association (NESTA) continues its 25-year-long effort to advance geoscience education at all levels. NESTA especially employs multiple approaches to provide leadership, support, and resources to teachers so that all K - 12 students may receive a quality Earth and Space Science education. NESTA presents Share-a-thons, Earth and Space Science Resources Days, lectures, Rock and Mineral Raffles, field experiences, and social events that foster networking at national and regional science education conferences. Our quarterly journal,The Earth Scientist,provides quality classroom activities as well as background science information and news of opportunities of value to classroom teachers and their students. Recent issues have focused on the International Polar Year, professional development in the Earth Sciences, and recent advances in astronomy. These have included contributions from classroom and university educators and researchers. NESTA's web site, www.nestanet.org, provides timely information about upcoming events and opportunities, links to useful resources for geoscience teachers, access to the current and archived journals, and organizational information. A revised website, supported by an NSF grant, will be unveiled before the next NSTA National Conference on Science Education. These are supplemented by a monthly E-News and special "e-blasts". NESTA's leadership engages in frequent teleconferences to keep current with organizational planning. Among other accomplishments during the past year, NESTA revitalized our State contact network, identifying a member in almost every state plus some Canadian Provinces. This network will help disseminate information from NESTA, as well as provide feedback on issues of importance to members around the country. NESTA leaders and members interact with other national geoscience education organizations, including NAGT, GSA, AGI, AMS, and the Triangle Coalition. NESTA representatives also serve

  12. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  13. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  14. Grid for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  15. Sainte Victoire Mountain - International Earth Science Olympiads

    NASA Astrophysics Data System (ADS)

    Berenguer, Jean-Luc

    2013-04-01

    The IESO is an annual competition for secondary school students. The students have to test their skills in all major areas of Earth sciences, including geology, geophysics, meteorology, oceanography, terrestrial astronomy and environmental sciences. The theoretical examination includes problems which are supposed to measure the participants' knowledge and understanding of Earth science areas. The practical examination consists of tasks which are designed to assess participants' abilities to carry out scientific investigations in earth science inquiries. he IESO is the only International Olympiad that includes an International Team Field Investigation. Each national team has also to present a special geological site from his country. This poster will show the fieldwork made with and by the French students/teachers team for the last IESO which took place in Argentina. The main aim of the IESO is to encourage students' interest and public awareness of Earth Science and to enhance Earth science learning.

  16. Earth Science Education in Zambia

    NASA Astrophysics Data System (ADS)

    Nyambe, Imasiku Anayawa

    1999-05-01

    Mining in Zambia has been practised for centuries, and in the last 70 years Zambia has risen to become one of the world's leading Cu producers as a result of the exploitation of the Zambian Copperbelt orebodies. In contrast to this long history of mining, Zambia has a relatively short history of Earth Science Education. For the past 24 years, the earth sciences have been taught within the School of Mines in University of Zambia. The School started operation on 1st June, 1973, with the purpose of training professional geologists, extractive metallurgical/mineral processing engineers and mining engineers to service the needs of the mining industry in Zambia. The School consists of three departments — Geology, Metallurgy and Mineral Processing, and Mining Engineering — which deliver a five-year undergraduate programme. Students are admitted to the School after completing a one-year programme in the School of Natural Sciences of the University of Zambia. Students with an average of C+ or better in Biology, Chemistry, Mathematics and Physics are admitted into the School of Mines. The School of Mines has a total of 36 teaching positions — 12 for each Department. To successfully complete their course, students must pass 40 courses over a period of five years. During this time, industrial training is mandatory in the vacation periods after the third and fourth years of study. This training is mainly within the mining industry who in most cases sponsor the students for their studies in the School. The School admits 50 students on average per year, of whom five students take up Geology as a career. So far only two female students have studied in the School of Mines, both of them in Geology. The student to staff ratio in the Geology Department is 3 to 1. The low enrolment in Geology is thought to be because of a lack of knowledge of geology as a possible career by prospective students and a perceived lack of progression, once employed in industry. This has lead to a

  17. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  18. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  19. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  20. Earth Science in GCSE Science Syllabuses and Examinations.

    ERIC Educational Resources Information Center

    King, Chris; Brooks, Mike; Gill, Robin; Rhodes, Alan; Thompson, David

    1999-01-01

    Finds variable coverage of Earth Science topics in the United Kingdom among General Certificate of Secondary Education (GCSE) double-award science syllabuses and examination papers. Concludes that the levels of error in the examination papers were high and that Earth Science questions showed lower levels of demand and higher levels of recall than…

  1. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  2. Coping with all the earth science data

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1988-01-01

    A report on the NASA-sponsored Earth Science and Applications Data Systems (ESADS) Workshop is presented. The ESADS report is reviewed and the task groups of the workshop are listed. The program set up to implement the recommendations of the workshop is discussed. The priorities of the ESADS committee recommendations include the development of standards and guidelines for data and metadata exchange, the creation of interoperable catalogs and directories, the development of guidelines for ancillary data archives, development of standard user interfaces, providing greater bandwidth in the user environment, collecting information about data storage technologies, and providing improved network connectivity.

  3. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  4. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  5. Windows on Earth - Virtual Globes for Earth Science Education

    NASA Astrophysics Data System (ADS)

    Barstow, D.

    2006-12-01

    Windows on Earth enables museum visitors to explore Earth from space. Under active development and testing (with funding from the National Science Foundation), the exhibit uses a digital globe and a visualization engine to provides an interactive experience, as if looking at the Earth from a large window on the International Space Station. The high-resolution Earth data have been carefully color corrected for accurate representations, and the interface provides tools for creative exploration of Earth's processes, as revealed from this unique perspective. The experience also includes data overlays and hot links to extend the learning. The project also will create a web site, with extended capabilities and a rich simulation of the orbital experience, revealing the awe-inspiring beauty of our home planet, as well as insights into Earth as a dynamic, interconnected system. Windows on Earth builds on cognitive research on how people make meaning of Earth images. The team lead is TERC (an educational R&D non-profit). Partners include GeoFusion (engine), WorldSat (data), JKA (museum design), and Dr. Jay Apt (astronaut). The exhibit will be installed in National Air and Space Museum, Boston Museum of Science, St. Louis Science Center, and Montshire Museum of Science.

  6. Software Reuse Within the Earth Science Community

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very

  7. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  8. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; Tsang, Leung; Shams, Khawaja; Jaruwatanadilok, Sermsak; Oveisgharan, Shadi; Simard, Marc; Turk, Francis J.

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  9. Preparing the Next Generation of Earth Scientists: An Examination of 25 Federal Earth Science Education Programs

    NASA Astrophysics Data System (ADS)

    Linn, A. M.; Goldstein, A.; Manduca, C. A.; Pyle, E. J.; Asher, P. M.; White, L. D.; Riggs, E. M.; Cozzens, S.; Glickson, D.

    2013-12-01

    Federal agencies play a key role in educating the next generation of earth scientists, offering programs that attract students to the field, support them through formal education, and provide training for an earth science career. In a time of reduced budgets, it is important for federal agencies to invest in education programs that are effective. A National Research Council committee examined 25 federal earth science education programs and described ways to evaluate the success of these programs and opportunities for leveraging federal education resources. Although the programs cover a wide range of objectives and audiences, they are part of a system of opportunities and experiences that attract individuals to the field and prepare them for employment. In this conceptual framework, individuals become aware of earth science, then engage in learning about the Earth and the nature of earth science, and finally prepare for a career by acquiring specialized knowledge, skills, and expertise and by exploring different employment options. The federal education programs considered in this report provide a range of opportunities for raising awareness of earth science (e.g., USDA 4-H Club), nurturing that interest to engage students in the field (e.g., USGS Youth Internship Program), and preparing students for earth science careers (NSF Research Experiences for Undergraduates, DOE Science Undergraduate Laboratory Internships). These efforts can also contribute toward the development of a robust earth science workforce by connecting programs and providing pathways for students to move through informal and formal education to careers. The conceptual framework shows how the various education opportunities fit together and where connections are needed to move students along earth science pathways. The framework can also be used by federal agencies to identify gaps, overlaps, and imbalances in existing programs; to identify potential partners in other agencies or organizations

  10. Global Change Master Directory enhances search for Earth science data

    NASA Astrophysics Data System (ADS)

    Olsen, Lola

    The Global Change Master Directory (GCMD) offers an on-line search and retrieval system for those interested in identifying Earth science data sets for educational and research needs. At the heart of the directory is a database of 3400 Earth science entries.It includes references to data held at many federal agencies, universities, and foreign countries. Content is updated and software is upgraded continuously by the GCMD staff. Earth science data set descriptions in the GCMD are written in the Directory Interchange Format (DIF). The DIF has gained interagency and international acceptance in documenting directory-level information for the Earth sciences. New fields have recently been added to bring the DIF into compliance with the Federal Geographic Data Committee's Content Standard for Digital Geospatial Metadata. These additional new fields allow more complete documentation for all data sets, including those held in Geographic Information Systems.

  11. Advanced Cyberinfrastructure Investments Addressing Earth Science Challenges

    NASA Astrophysics Data System (ADS)

    Walton, A. L.; Spengler, S. J.; Zanzerkia, E. E.

    2014-12-01

    The National Science Foundation supports infrastructure development and research into Big Data challenges as part of its long-term cyberinfrastructure strategy. This strategy highlights the critical need to leverage and partner with other agencies, resources and service providers to the U.S. research community. The current cyberinfrastructure and research activities within NSF support advanced technology development, pilot demonstrations of new capabilities for the scientific community in general, and integration and interoperability of data resources across the Geoscience community. These activities include the Data Infrastructure Building Blocks, Big Data and EarthCube programs, among others. Investments are competitively solicited; the resulting portfolio of high performance computing, advanced information systems, new software capabilities, analytics and modeling supports a range of science disciplines. This presentation provides an overview of these research programs, highlighting some of the key investments in advanced analytics, coupled modeling, and seamless collaboration. Examples related to the geosciences, computer-aided discovery and hypothesis generation are highlighted.

  12. Data Mining in Earth System Science (DMESS 2011)

    SciTech Connect

    Hoffman, Forrest M; Larson, Jay; Mills, Richard T; Brooks, Bjorn; Ganguly, Auroop R; Hargrove, William Walter; Huang, Jian; Kumar, Jitendra; Vatsavai, Raju

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques - such as cluster analysis, singular value decomposition, block entropy, Fourier and wavelet analysis, phase-space reconstruction, and artificial neural networks - are being applied to problems of segmentation, feature extraction, change detection, model-data comparison, and model validation. The size and complexity of Earth science data exceed the limits of most analysis tools and the capacities of desktop computers. New scalable analysis and visualization tools, running on parallel cluster computers and supercomputers, are required to analyze data of this magnitude. This workshop will demonstrate how data mining techniques are applied in the Earth sciences and describe innovative computer science methods that support analysis and discovery in the Earth sciences.

  13. Data mining in earth system science (DMESS 2011).

    SciTech Connect

    Hoffman, F. M.; Larson, J. W.; Mills, R. T.; Brooks, B. G. J.; Ganguly, A. R.; Hargrove, W. W.; Huang, J.; Kumar, J.; Vatsavai, R. R.; , USDA Forest Service)

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques - such as cluster analysis, singular value decomposition, block entropy, Fourier and wavelet analysis, phase-space reconstruction, and artificial neural networks - are being applied to problems of segmentation, feature extraction, change detection, model-data comparison, and model validation. The size and complexity of Earth science data exceed the limits of most analysis tools and the capacities of desktop computers. New scalable analysis and visualization tools, running on parallel cluster computers and supercomputers, are required to analyze data of this magnitude. This workshop will demonstrate how data mining techniques are applied in the Earth sciences and describe innovative computer science methods that support analysis and discovery in the Earth sciences.

  14. Earth Sciences Research Opportunities at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    With the U.S. National Science Foundation's Division of Earth Sciences (NSF EAR) facing a number of challenges and opportunities—including helping to meet a growing need for basic research in a number of Earth science disciplines and seeing significant budget growth over the past several years—a panel of the U.S. National Research Council (NRC) has begun a study entitled “New Research Opportunities in the Earth Sciences at the National Science Foundation.” The study, funded by NSF, begins nearly 10 years after NRC's 2001 influential report entitled “Basic Research Opportunities in Earth Sciences” (BROES), which helped to guide EAR, a division within NSF's Directorate of Geosciences (GEO). NRC's Board on Earth Sciences and Resources set up an ad hoc committee to direct this new study.

  15. Preparing Teachers to Teach Earth Science: Resources for Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Anderson, J. L.; Bezanson, C.; Moosavi, S. C.; Reynolds, D.; Manduca, C. A.

    2005-12-01

    Currently in the United States, there is a major push toward improving science education throughout all levels of education. While physics, biology, and chemistry are the three common sciences taught in high school, how, when and if Earth science is taught in our nation's schools varies greatly from region to region. Earth science topics are commonly incorporated into physics, chemistry, and biology classrooms and taught by teachers who may have never taken more than an introductory geoscience course. These teachers are often highly motivated to increase their understanding of the Earth sciences and need appropriate professional development opportunities in order to do so. In addition, many future elementary and middle school Earth science teachers take introductory geoscience courses in college. For these reasons, geoscience faculty play an active role in helping to educate future Earth science teachers. As part of the Digital Library for Earth System Education, the Science Education Resource Center (SERC) at Carleton College has developed a "Preparing Teachers to Teach Earth Science" website (http://serc.carleton.edu/teacherprep/). At this site geoscience faculty can learn more about supporting Earth science teachers both during their pre-service training in college, and as their careers progress through professional development opportunities. The website contains background materials and information about the necessity for geoscience faculty to get involved in supporting Earth science teachers, as well as recent science education reform initiatives. In addition, the site contains examples of geoscience courses serving pre-service teachers and Earth science professional development programs throughout the country linked to descriptions of their design and implementation. The website content draws heavily on material presented at the 2003 AGU/NAGT workshop "Developing the Earth Science Teacher Workforce: The Role of Geoscience Departments and Introductory Courses

  16. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  17. The Interstate 99 (I-99) project and geological information exchanges: A study of the interplay among selected variables from science education, geology/earth science, and environmental policy

    NASA Astrophysics Data System (ADS)

    Snowden, Daniel Eugene

    The Interstate 99 (I-99) highway project has been the source of extensive attention over the past few years. Its most infamous aspect is the excavation of a geological formation---the Bald Eagle Sandstone---that was found to contain acidic rock material, which, upon exposure to water, leached sulfuric acid to several surface water bodies and private groundwater wells. This matter managed to suspend construction of the project for several years. Numerous parties, representing academia, government (particularly the Pennsylvania Department of Environmental Protection (PA DEP) and the Pennsylvania Department of Transportation (PennDOT)), private industry (consultants), environmental organizations and advocacy groups, and the citizenry, have been involved in the development of a resolution to the I-99 acidic rock problem. The interactions among these parties are interdisciplinary by nature, given the sectors of society that they represent. Consideration of how these parties interacted with each other while evaluating the options for addressing the environmental dilemma posed by the I-99 project provides opportunities for academic research. The discipline of Science Education is viable for studying the I-99 case, with accompaniment by 2 other disciplines, which have direct relevance to this case: Geology/Earth Science (per the underlying cause of the I-99 acidic rock problem) and Environmental Policy (per the regulations and policies that had to be followed while developing a solution to the environmental dilemma). Pairing Science Education with the other two aforementioned disciplines can create additional niches for the former discipline, and enhance academic research both within itself, and, across other disciplines, as relevant.

  18. Earth Science Datacasting v2.0

    NASA Technical Reports Server (NTRS)

    Bingham, Andrew W.; Deen, Robert G.; Hussey, Kevin J.; Stough, Timothy M.; McCleese, Sean W.; Toole, Nicholas T.

    2012-01-01

    The Datacasting software, which consists of a server and a client, has been developed as part of the Earth Science (ES) Datacasting project. The goal of ES Datacasting is to provide scientists the ability to automatically and continuously download Earth science data that meets a precise, predefined need, and then to instantaneously visualize it on a local computer. This is achieved by applying the concept of podcasting to deliver science data over the Internet using RSS (Really Simple Syndication) XML feeds. By extending the RSS specification, scientists can filter a feed and only download the files that are required for a particular application (for example, only files that contain information about a particular event, such as a hurricane or flood). The extension also provides the ability for the client to understand the format of the data and visualize the information locally. The server part enables a data provider to create and serve basic Datacasting (RSS-based) feeds. The user can subscribe to any number of feeds, view the information related to each item contained within a feed (including browse pre-made images), manually download files associated with items, and place these files in a local store. The client-server architecture enables users to: a) Subscribe and interpret multiple Datacasting feeds (same look and feel as a typical mail client), b) Maintain a list of all items within each feed, c) Enable filtering on the lists based on different metadata attributes contained within the feed (list will reference only data files of interest), d) Visualize the reference data and associated metadata, e) Download files referenced within the list, and f) Automatically download files as new items become available.

  19. ESIP meeting session: Institutionalizing the merger of Earth and information sciences for critical US federal government and academic innovation and applications – status and next steps

    EPA Science Inventory

    Earth sciences organizations from around the world – including US government agencies, federally funded efforts and academic institutions – have achieved various levels of maturity in taking advantage of our digital age. Concepts of participatory web, software interop...

  20. Earth Sciences Division collected abstracts: 1979

    SciTech Connect

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  1. Reforming Earth science education in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Improving the employability of Earth science graduates by reforming Earth science instruction is a matter of concern to universities worldwide. It should, however, be self-evident that the developing countries cannot follow the same blueprint for change as the industrialized countries due to constraints of affordability and relevance. Peanuts are every bit as nutritious as almonds; if one with limited means has to choose between a fistful of peanuts and just one almond, it is wise to choose the peanuts. A paradigm proposed here would allow institutions in developing countries to impart good quality relevant Earth science instruction that would be affordable and lead to employment.

  2. Presenting the 'Big Ideas' of Science: Earth Science Examples.

    ERIC Educational Resources Information Center

    King, Chris

    2001-01-01

    Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)

  3. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment

  4. Harnessing Earth Observations for Disaster Application Science

    NASA Astrophysics Data System (ADS)

    Green, D. S.

    2015-12-01

    Earth observations have made substantive contributions to the understanding of natural hazards, answering key science questions on the mechanisms, processes and dynamics of changes in the land, air and water. This has been achieved through the ability to advance models and interpret the results through maps and assessments. Disaster application science is focused on the two-way flow of data and information between hazard understanding and the knowledge required for disaster response, relief and recovery. This presentation will examine the integration of results from mature science and technology development in areas including optical imagery, synthetic-aperture radar and geodetic sensors, which together provide new levels of situational awareness. Specific examples will be highlighted from the recent Nepal "Gorkha" earthquake. Optical imagery from a host of satellite missions was used to create a comprehensive mosaic across the region, which when analyzed by a global network of volunteer scientists yielded insight into the extent of induced hazards and impacts. In some cases unique day/night band images provided guidance on areas where energy-dependent infrastructure of livelihoods were disrupted. Earthquake modeling and historical trend analysis revealed areas of potential vulnerability and combined with aftershock analysis to guide areas for urgent analysis and action. The combination of SAR and GPS data, innovative integration and processing approaches and nontraditional data integration approaches resulted in damage proxy maps or where combination with airborne photography, field sightings and crowd sourced reports to assess susceptibility to induced hazards (floods and landslides). Opportunities and challenges to build the science and community relationships, harness the earth observations from multiple agencies and institutions and co-develop timely applications to users will be areas for ongoing collaboration and study.Earth observations have made

  5. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  6. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  7. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  8. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  9. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  10. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  11. Annual review of earth and planetary science

    SciTech Connect

    Wetherill, G.W. )

    1992-01-01

    This volume contains papers on topics of earth and planetary science, including: volcanism and mantle plumes, primary radiation of terrestrial vertebrates, the effect of tropical topography on global climate, cosmic-ray exposure of chondrites, and planet magnetospheres.

  12. A Directory of Societies in Earth Science.

    ERIC Educational Resources Information Center

    Geotimes, 1981

    1981-01-01

    Lists the titles and addresses of approximately 450 domestic and foreign organizations which deal with earth science fields, including geology, paleontology, mining, and geophysics. Also listed are U.S. state geological surveys. (WB)

  13. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  14. Earth Sciences Division collected abstracts: 1980

    SciTech Connect

    Henry, A.L.; Hornady, B.F.

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  15. Earth Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  16. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  17. Space Science in Action: Earth [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording explains the factors that allow life to flourish on Earth, including our position within the solar system, the water cycle, and the composition of the planet. A hands-on activity demonstrates the earth's water cycle. Contents include a teacher's guide designed to help science teachers in grades 5-8 by providing a brief…

  18. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  19. Board on Earth Sciences and Resources and its activities

    SciTech Connect

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committee on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.

  20. Online Analysis Enhances Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Leptoukh, Gregory

    2007-01-01

    Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

  1. Art with Science: Connecting to Earth

    NASA Astrophysics Data System (ADS)

    Bendel, W. B.; Kirn, M.; Gupta, S.

    2013-12-01

    Why are so many people aware of climate change and sustainable solutions, but so few are actually doing anything about them? Social science research now suggests that to foster effective decision-making and action, good communication must include both cognition (e.g., intellect, facts, analysis) and affect (e.g., emotions, values, beliefs) working together. The arts have been used since prehistoric times not only to document and entertain, but to inspire, communicate, educate and motivate people to do things they might not otherwise have the interest or courage to do. Two projects, both funded by the National Oceanic and Atmospheric Administration (NOAA), are presented that explore art and science collaborations, designed to engage both the analytical and experiential information processing systems of the brain while fostering transformative thinking and behavior shifts for Earth-sustainability. The first project, Raindrop, is a smartphone application created at Butler University through a collaboration with artist Mary Miss and EcoArts Connections in the project FLOW: Can You See the River? Raindrop uses geographic information systems and GPS technology to map a raindrop's path from a user's location in Marion County to the White River as it flows through Indianapolis. Raindrop allows users to identify various flow paths and pollutant constituents transported by this water from farms, buildings, lawns, and streets along the way. Miss, with the help of scientists and others, created public art installations along the river engaging viewers in its infrastructure, history, ecology, and uses, and allowed for virtual features of the Raindrop app to be grounded in physical space. By combining art, science and technology, the project helped people not only to connect more personally to watershed and climate information, but also to understand viscerally that 'all property is river front property' connecting their own behavior with the health of the river. The second

  2. High Performance Database Management for Earth Sciences

    NASA Technical Reports Server (NTRS)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  3. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  4. Earth Science Curriculum Guide. Bulletin 1643.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in an earth science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals…

  5. LIFE AND EARTH SCIENCE, JUNIOR HIGH SCHOOL.

    ERIC Educational Resources Information Center

    MAHLER, FRED

    CURRICULUM GUIDES FOR GRADE 7 "LIFE SCIENCE" AND GRADE 8 "EARTH SCIENCE" WERE DEVELOPED BY 24 AREA TEACHERS AND THREE SAM HOUSTON STATE COLLEGE PROFESSORS. THE PROJECT WAS SUPPORTED BY THE TEXAS SMALL SCHOOL ASSOCIATION, THE LOCAL SCHOOLS, AND FUNDS FROM THE TITLE III PROGRAM. THE TEACHER GUIDES WERE PREPARED TO IMPROVE THE JUNIOR HIGH SCHOOL…

  6. Earth Science Content Guidelines Grades K-12.

    ERIC Educational Resources Information Center

    American Geological Inst., Alexandria, VA.

    Teams of teachers, other science educators, and scientists selected from a national search for project writers have proposed using the following set of questions to guide the inclusion of earth science content into the kindergarten through grade 12 curriculum. The Essential Questions are organized in a K-12 sequence by six content areas: (1) Solid…

  7. Enabling Semantic Interoperability for Earth System Science

    NASA Astrophysics Data System (ADS)

    Raskin, R.

    2004-12-01

    Data interoperability across heterogeneous systems can be hampered by differences in terminology, particularly when multiple scientific communities are involved. To reconcile differences in semantics, a common semantic framework was created as a collection of ontologies. Such a shared understanding of concepts enables ontology-aware software tools to understand the meaning of terms in documents and web pages. The ontologies were created as part of the Semantic Web for Earth and Environmental Terminology (SWEET) prototype. The ontologies provide a representation of Earth system science knowledge and associated data, organized in a scalable structure, bulding on the keywords developed by the NASA Global Change Master Directory (GCMD). An integrated search tool consults the ontologies to enable searches without an exact term match. The ontologies can be used within other applications (such as Earth Science Markup Language descriptors) and future semantic web services in Earth system science.

  8. Europe and Information Science.

    ERIC Educational Resources Information Center

    Ingwersen, Peter

    1997-01-01

    Discusses recent European library and information science (LIS) events. Describes the development and use of regional and intra-European Union networks for science. Highlights three European conferences held in 1996: ACM-SIGIR on information retrieval held in Switzerland, Information Seeking in Context (ISIC) held in Finland, and Conceptions of…

  9. Earth Science Education in Uganda

    NASA Astrophysics Data System (ADS)

    Barifaijo, E.

    1999-05-01

    Uganda has two Government funded universities, five operating private universities and four other universities are due to start soon. Geology was first taught in Uganda at Makerere University in 1968 within the Department of Geography. Through the leadership of Prof. Robert Macdonald it became established as a full department in August 1969 as part of the Faculty of Science. Both pure and applied geology are taught and the courses are designed to suit the current job market. At present, the three-term academic year is being replaced by a semester-based course unit system. At the same time, the 3:2:2 subject combination, requiring a student to do three subjects in first year and two subjects in both second and third years, is to be replaced by a major-minor subject combination. Currently, there are about 50 undergraduate students and four Ph.D. students in the Department. A student Geological Association acts as a forum for the exchange of information on matters of geological concern. An affirmative action policy has improved the intake of women students into the Department. On average, the number of women has increased from about 10% to 33.3% in the years 1984/85 to 1997/98. Their performance parallels that of the male students and they are readily employed. Of the eight members of academic staff, two are women. The Department of Geology has good links with regional and overseas universities through which a number of research programmes are currently supported. In addition, most of the training of manpower for the University and research programmes is supported by regional and international research agencies. Academic staff combine teaching with research and consultancy.

  10. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  11. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  12. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  13. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  14. Synchrotron radiation - Applications in the earth sciences

    NASA Technical Reports Server (NTRS)

    Bassett, W. A.; Brown, G. E., Jr.

    1990-01-01

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  15. Synchrotron radiation - Applications in the earth sciences

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Brown, G. E., Jr.

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  16. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment

  17. Experiential learning for education on Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  18. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  19. Earth Science Futuristic Trends and Implementing Strategies

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2003-01-01

    For the last several years, there is a strong trend among the science community to increase the number of space-based observations to get a much higher temporal and spatial resolution. Such information will eventually be useful in higher resolution models that can provide predictability with higher precision. Such desirability puts a tremendous burden on any single implementing entity in terms of budget, technology readiness and compute power. The health of planet Earth is not governed by a single country, but in reality, is everyone's business living on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to undertake. So far, each country per their means has proceeded along satisfactorily in implementing or benefiting directly or indirectly from the Earth observation data and scientific products. However, time has come that this is becoming a humongous problem to be undertaken by a single country. Therefore, this paper gives some serious thoughts in what options are there in undertaking this tremendous challenge. The problem is multi-dimensional in terms of budget, technology availability, environmental legislations, public awareness, and communication limitations. Some of these issues are introduced, discussed and possible implementation strategies are provided in this paper to move out of this predicament. A strong emphasis is placed on international cooperation and collaboration to see a collective benefit for this effort.

  20. GPS Data Products for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Webb, F. H.; Bock, Y.; Chang, R.; Dong, D.; Fang, P.; Genrich, J.; Jamason, P.; Kedar, S.; King, N.; Malveaux, D.; Newport, B.; Owen, S.; Prawirodirdjo, L.; Scharber, M.; Stark, K.

    2004-12-01

    Over the past decade, regional and global networks of continuously operating GPS ground stations have been deployed to monitor Solid Earth deformation, and to support NASA Earth Science Enterprise (ESE) priorities and flight projects. At the forefront, and the focus of this project, is the 250-station Southern California Integrated GPS Network (SCIGN), a multi-agency effort jointly sponsored by NASA, NSF, USGS, and the W.M. Keck Foundation, under the umbrella of the Southern California Earthquake Center (SCEC). Over the next five years, SCIGN will become an integral part of the multi-agency, multi-disciplinary Plate Boundary Observatory (PBO), an observatory of high-precision geodetic instruments spanning western North America. This project was selected under the NASA REASoN CAN in 2003 to enhance the delivery of GPS data and metadata products using modern IT methodology, and to produce and disseminate an entirely new set of higher-level data products to a larger community, including scientists, government agencies (Federal, State, and Local), surveyors, and GIS professionals building on current capabilities within SCIGN for data archiving, information systems, and data analysis. While the project focus is on producing data and products from SCIGN, the tools developed will be designed to be extensible to other and larger GPS and other networks of geophysical instrument.

  1. PLANETarium - Visualizing Earth Sciences in the Planetarium

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    informative as revealing the complexity and beauty of our planet. In addition to e.g. climate change and natural hazards, themes of interest may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the generation and sustainment of the magnetic field as well as of habitable conditions in the atmosphere and oceans. We believe that high-quality tax-funded science visualizations should not exclusively be used to facilitate communication amoung scientists, but also be directly recycled to raise the public's awareness and appreciation of geosciences.

  2. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Science Advisory Group....

  3. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  4. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  5. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  6. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  7. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    NASA Technical Reports Server (NTRS)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  8. Thematic Mapper research in the earth sciences

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.; Stuart, Locke

    1989-01-01

    This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.

  9. Connecting NASA science and engineering with earth science applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  10. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.