These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Soil moisture from temperature measurements at the Earth's surface, update  

NASA Technical Reports Server (NTRS)

Soil moisture budgets at the Earth's surface were investigated based on soil and atmospheric temperature variations. A number of data sets were plotted and statistically analyzed in order to accentuate the existence and the characteristics of mesoscale soil temperature extrema variations and their relations to other parameters. The correlations between diurnal temperature extrema for air and soil in drought and non-drought periods appear to follow different characteristic patterns, allowing an inference of soil moisture content from temperature data. The recovery of temperature extrema after a precipitation event also follows a characteristic power curve rise between two limiting values which is an indicator of evaporation rates. If these indicators are applied universally to regional temperature data, soil moisture content or drought conditions can be inferred directly from temperature measurements.

Welker, J. E.

1984-01-01

2

A New Estimate of the Earth's Land Surface Temperature History  

NASA Astrophysics Data System (ADS)

The Berkeley Earth Surface Temperature team has re-evaluated the world's atmospheric land surface temperature record using a linear least-squares method that allow the use of all the digitized records back to 1800, including short records that had been excluded by prior groups. We use the Kriging method to estimate an optimal weighting of stations to give a world average based on uniform weighting of the land surface. We have assembled a record of the available data by merging 1.6 billion temperature reports from 16 pre-existing data archives; this data base will be made available for public use. The former Global Historic Climatology Network (GHCN) monthly data base shows a sudden drop in the number of stations reporting monthly records from 1980 to the present; we avoid this drop by calculating monthly averages from the daily records. By using all the data, we reduce the effects of potential data selection bias. We make an independent estimate of the urban heat island effect by calculating the world land temperature trends based on stations chosen to be far from urban sites. We calculate the effect of poor station quality, as documented in the US by the team led by Anthony Watts by estimating the temperature trends based solely on the stations ranked good (1,2 or 1,2,3 in the NOAA ranking scheme). We avoid issues of homogenization bias by using raw data; at times when the records are discontinuous (e.g. due to station moves) we break the record into smaller segments and analyze those, rather than attempt to correct the discontinuity. We estimate the uncertainties in the final results using the jackknife procedure developed by J. Tukey. We calculate spatial uncertainties by measuring the effects of geographical exclusion on recent data that have good world coverage. The results we obtain are compared to those published by the groups at NOAA, NASA-GISS, and Hadley-CRU in the UK.

Muller, R. A.; Curry, J. A.; Groom, D.; Jacobsen, B.; Perlmutter, S.; Rohde, R. A.; Rosenfeld, A.; Wickham, C.; Wurtele, J.

2011-12-01

3

Earth and Mars: Evolution of Atmospheres and Surface Temperatures  

Microsoft Academic Search

Solar evolution implies, for contemporary albedos and atmospheric composition, global mean temperatures below the freezing point of seawater less than 2.3 aeons ago, contrary to geologic and paleontological evidence. Ammonia mixing ratios of the order of a few parts per million in the middle Precambrian atmosphere resolve this and other problems. Possible temperature evolutionary tracks for Earth and Mars are

Carl Sagan; George Mullen

1972-01-01

4

Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants  

NASA Technical Reports Server (NTRS)

A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

Gupta, S. K.; Tiwari, S. N.

1976-01-01

5

Comparison of Historical CMIP5 Surface Temperatures to the Berkeley Earth Gridded Observational Temperature Field  

NASA Astrophysics Data System (ADS)

The Berkeley Earth surface temperature research program uses observations from nearly 40,000 weather stations to reconstruct monthly land-surface temperature fields over a longer duration (250 years) and with higher resolution than other comparable global efforts. This submission will compare and contrast the observation-based Berkeley Earth temperature fields to the land component of historical CMIP5 climate model temperature fields. Emphasis will be given to examining long-term trends and spatial variations in climate response. Though the models all broadly reproduce the historical warming of the last 150 years, we observe numerous differences among them. When compared to observations, many models overpredict warming at high northern latitudes and underpredict warming at mid northern latitudes. Similarly, most models predict a greater surface temperature response to volcanic eruptions than has been observed. By using these and other comparisons between models and observations, it is possible to identify both strengths and weaknesses in the current generation of models. It is hoped that such comparisons can help guide the development of the next generation of models. In addition, identifying models that are relatively more accurate in reproducing the climate change of the historical period may also suggest which models might be more reliable in their predictions of future climate change. The implications for constraining climate sensitivity will be discussed.

Rohde, R. A.; Mosher, S.; Hausfather, Z.

2013-12-01

6

Earth Observatory Data and Images - Sea Surface Temperature  

NSDL National Science Digital Library

Visitors can use sea surface temperature data to build animations that show seasonal and yearly fluctuations, and compare them to data from other selected months and years. The animations can be constructed in map or globe formats and may be viewed on the website or downloaded.

7

Heat capacity mapping mission. [satellite for earth surface temperature measurement  

NASA Technical Reports Server (NTRS)

A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

Price, J. C.

1978-01-01

8

Effects of increased CO2 concentrations on surface temperature of the early earth  

NASA Technical Reports Server (NTRS)

It is pointed out that enhanced levels of CO2 in the atmosphere could have provided the necessary warming to maintain the temperature above freezing. The processes that have been proposed for these larger amounts of CO2 are increased tectonic activity, a decrease in the solubility of CO2 in the oceans, rock weathering, and sediment deposition. It is shown here that large CO2 concentrations are necessary to maintain the early earth's surface temperature at approximately today's level. A thousand times the present atmospheric level of CO2 in the atmosphere would yield a temperature of 292 K, whereas a 100-fold increase in CO2 concentration would give a temperature of 284 K. The surface warming is highly dependent on the amount of water vapor and clouds, and knowledge of both of these during the early history of the earth is scant.

Kuhn, W. R.; Kasting, J. F.

1983-01-01

9

Controls of CO2 sources and sinks in the earth scale surface ocean - Temperature and nutrients  

NASA Technical Reports Server (NTRS)

Several regions in the ocean in which disequilibrium persists on an annual avarage between CO2 in the surface water and the overlying atmosphere were examined using various models in which CO2 does cycle in a steady state at which sources (ocean outgassing) and sinks (ingassing) are in balance. The relative values of the surface temperature and surface nutrients, the two major contributors to the CO2 source and/or sink properties, are determined. Results from models with two ocean surfaces indicate that the sink in the north Atlantic and the sources in the equatorial Atlantic and Pacific are all dominated by the global temperature patterns. Results from ocean models with three surface zones show that, in the equatorial Pacific, the temperature control is responsible for over 50 percent (and, possibly, for almost 70 percent) of the CO2 outgassing, with the balance coming from the earth scale surface nutrient structure.

Volk, Tyler; Liu, Zhongze

1988-01-01

10

Land and Ocean Surface Skin Temperature from Geostationary and Low Earth Orbit Satellite Observations  

NASA Astrophysics Data System (ADS)

Observations from imagers aboard Geostationary Earth Orbit (GEO) and Low Earth Orbit (LEO) satellites allow for spatially detailed, near-real-time retrievals of cloud and surface radiation properties. Validating and improving the quality of these observations is important for the advancement of climate studies. Compared to GEO sensors, LEO-based instruments can typically provide higher-spatial-resolution datasets, but at the cost of limited areal coverage and reduced sampling frequency at any given location. Conversely, the persistence and coverage of GEO-based imagers offer the opportunity for more frequent retrievals of near-instantaneous, near-global surface properties. Among other cloud and clear-sky retrieval parameters, NASA Langley provides pixel-level land and ocean skin temperature datasets by comparing clear-pixel top-of-atmosphere infrared temperature observations with modeled, atmospheric-absorption-corrected surface temperature values. Depending on cloud-cover thresholds, this method yields surface temperature values that are within 0.5 to 2.0 K of measurements from ground-based networks including the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility, the U.S. Climate Reference Network, and the global Baseline Surface Radiation Network. Furthermore, monthly mean sea surface temperatures (SSTs) are within 0.5 to 2.0 K of NOAA-based SST climatology records, and have an uncertainty of less than 1 K. These data will be useful for assimilation into atmospheric models, which offer improved performance when high-accuracy, high-resolution initial radiometric and surface conditions are included. Modelers should find the immediate availability and broad coverage of these skin temperature observations valuable, which can lead to improved forecasting and more advanced global climate models.

Scarino, B. R.; Minnis, P.; Palikonda, R.; Heck, P.; Bedka, K.

2013-12-01

11

Surface temperatures at the nearside of the Moon as a record of the radiation budget of Earth's climate system  

E-print Network

Surface temperatures at the nearside of the Moon as a record of the radiation budget of Earth of Earth, the Moon is a unique platform for the study of the disk-wide radiation budget of Earth. There are no complications from atmosphere, hydrosphere, or biosphere on the Moon. The nearside of the Moon allows

Huang, Shaopeng

12

Earth's Surface  

NSDL National Science Digital Library

This self-contained module on Earth's crust includes a range of fun activities that students can perform in the classroom and at home with family members. They impart important concepts such as observation, identification, measurement, and differentiation.

Houghton Mifflin Science

13

Temperature, Temperature, Earth, geotherm for  

E-print Network

Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

Treiman, Allan H.

14

A dissection of the surface temperature biases in the Community Earth System Model  

NASA Astrophysics Data System (ADS)

Based upon the climate feedback-responses analysis method, a quantitative attribution analysis is conducted for the annual-mean surface temperature biases in the Community Earth System Model version 1 (CESM1). Surface temperature biases are decomposed into partial temperature biases associated with model biases in albedo, water vapor, cloud, sensible/latent heat flux, surface dynamics, and atmospheric dynamics. A globally-averaged cold bias of -1.22 K in CESM1 is largely attributable to albedo bias that accounts for approximately -0.80 K. Over land, albedo bias contributes -1.20 K to the averaged cold bias of -1.45 K. The cold bias over ocean, on the other hand, results from multiple factors including albedo, cloud, oceanic dynamics, and atmospheric dynamics. Bias in the model representation of oceanic dynamics is the primary cause of cold (warm) biases in the Northern (Southern) Hemisphere oceans while surface latent heat flux over oceans always acts to compensate for the overall temperature biases. Albedo bias resulted from the model's simulation of snow cover and sea ice is the main contributor to temperature biases over high-latitude lands and the Arctic and Antarctic region. Longwave effect of water vapor is responsible for an overall warm (cold) bias in the subtropics (tropics) due to an overestimate (underestimate) of specific humidity in the region. Cloud forcing of temperature biases exhibits large regional variations and the model bias in the simulated ocean mixed layer depth is a key contributor to the partial sea surface temperature biases associated with oceanic dynamics. On a global scale, biases in the model representation of radiative processes account more for surface temperature biases compared to non-radiative, dynamical processes.

Park, Tae-Won; Deng, Yi; Cai, Ming; Jeong, Jee-Hoon; Zhou, Renjun

2014-10-01

15

Earth\\'s Surface  

NSDL National Science Digital Library

You have already learned about the four major parts of Earth\\'s system: atmosphere, hydrosphere, biosphere, and geosphere. Go to the following sites to learn more about rocks and minerals, continental drift, and geologic time. When you finish viewing all the sites, you will participate in a problem-based learning activity, \\"The Case of the Disappearing Dirt.\\" Topographic Maps All About Geology Answer the questions on the handout. Erosion and Weathering Summarize what your learned about erosion and weathering. Examine a landscape formed by erosion Observe the effects of mechanical weathering Plate Tectonics FAQ s About Rocks and Fossils Igneous Rocks Rocks and Minerals Slide Show Rock Cycle Observe an animation of metamorphic rocks forming Continental Drift Mineralogy 4 kids : rockin Internet site : the best place to learn about rocks and minerals Draw a picture of the rock cycle. Coasting Away ...

Ms. Mathis

2008-01-11

16

Comment on What Is the Atmosphere's Effect on Earth's Surface Temperature?  

NASA Astrophysics Data System (ADS)

A recent Forum pointed out an important, widespread error in the calculation of the atmosphere's role in raising the surface temperature of the Earth above its radiative equilibrium [Zeng, 2010]. Unfortunately, by using the inaccurate and misleading terms greenhouse effect and greenhouse gases, this Forum continues to spread an even more widespread and ancient error. The error in using the greenhouse as a model for the Earth's atmosphere is that heating of the air within a greenhouse is caused by the structure's suppression of convective heat exchange with the outside air and not by the structure's reduction of longwave radiation exchange with space. There is evidence that Joseph Fourier, to whom the phrase greenhouse effect is often attributed, realized this in 1827 (http://en.wikipedia.org/wiki/Joseph_Fourier). The correct explanation of the heating of the air within a greenhouse was experimentally demonstrated a century ago [Wood, 1909] and by quantitative analysis a half century later [Businger, 1963].

Stanhill, Gerald

2010-11-01

17

Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa  

NASA Technical Reports Server (NTRS)

The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

Meeson, Blanche W.

2000-01-01

18

Earth's Changing Surface  

NSDL National Science Digital Library

Overview: The Earth's Changing Surface SciPack explores how Earth's ever-changing surface is due to continuous natural processes such as tectonic activity, earthquakes, volcanic activities, weathering and erosion, and sedimentation and the reformation of rock. The focus is on topics supporting Standards and Benchmarks related to how and why these processes occur, and how elements cycle through the land, oceans, and atmosphere as a result of these processes. This SciPack looks at Earth as a system that exists in dynamic equilibrium. In addition to comprehensive inquiry-based learning materials tied to Science Education Standards and Benchmarks, the SciPack includes the following additional components: Pedagogical Implications section addressing common misconceptions, teaching resources and strand maps linking grade band appropriate content to standards. Access to one-on-one support via e-mail to content "Wizards". Final Assessment which can be used to certify mastery of the concepts. Learning Outcomes: Earth's Changing Surface: Changing Earth From Within Explain that both Earth's surface and interior are in motion and describe the causes the motion. Describe how heat within Earth comes from two main sources: radioactive decay and residual heat (gravitational energy left over from the formation of Earth). Explain the fact that the vast majority of earthquakes and volcanic activities which occur near plate boundaries are caused by the movement of the plates. Describe that changes on Earth's surface also happen on the ocean floor to create forms such as ocean basins, mountains and volcanoes. Earth's Changing Surface: Sculpting the Landscape Distinguish between changes in Earth's surface that are abrupt, such as earthquakes and volcanoes and changes that happen very slowly such as uplift and wearing down of mountains. Identify rates of landscape formation. Infer from present data that the processes that shape the earth today are similar to events that occurred in the past. Identify agents of change as destructive, constructive, or both. Describe how erosion by way of waves, wind, glaciers, gravity, running water, etc., causes change in geological features. Earth's Changing Surface: Humans as Agents of Change Distinguish natural processes that shape the surface of Earth from human impact factors that change the surface of Earth. Explain how human activities such as river control, mining, and deforestation have had an effect on the shape of Earth's surface. Describe how human activities do not create new processes but cause changes in the rate and scale of natural processes.

National Science Teachers Association (NSTA)

2008-01-07

19

Relationship Between the Clouds and the Earth's Radiant Energy System (CERES) Measurements and Surface Temperatures of Selected Ocean Regions  

NASA Technical Reports Server (NTRS)

Clear sky longwave radiances and fluxes are compared with the sea surface temperatures for three oceanic regions: Atlantic, Indian, and Pacific. The Clouds and the Earth's Radiant Energy System (CERES) measurements were obtained by the three thermistor bolometers: total channel which measures the radiation arising from the earth-atmosphere system between 0.3 - greater than 100 micrometers; the window channel which measures the radiation from 8-12 micrometers; and the shortwave channel which measures the reflected energy from 0.3 - less than 5.0 micrometers. These instruments have demonstrated measurement precisions of approximately 0.3% on the International Temperature Scale of 1990 (ITS-90) between ground and on-orbit sensor calibrations. In this work we have used eight months of clear sky earth-nadir-view radiance data starting from January 1998 through August 1998. We have found a very strong correlation of 0.97 between the CERES window channel's weekly averaged unfiltered spectral radiance values at satellite altitude (350 km) and the corresponding weekly averaged sea surface temperature (SST) data covering all the oceanic regions. Such correlation can be used in predicting the sea surface temperatures using the present CERES Terra's window channel radiances at satellite altitude very easily.

Pandey, Dhirendra, K.; Lee, Robert B., III; Brown, Shannon B.; Paden, Jack; Spence, Peter L.; Thomas, Susan; Wilson, Robert S.; Al-Hajjah, Aiman

2001-01-01

20

Modeling Hot and Cold Planets: Activity C Approximating the Average Surface Temperature of the Earth  

NSDL National Science Digital Library

In this activity, students explore the importance of adequate sampling strategies when conducting a scientific investigation. They are tasked with determining the average temperature of the Earth, using data sets easily found on the Internet, and determine the kind and size of sample necessary to calculate a representative average. The resource includes a student data sheet and an authentic assessment for the module, where students discuss the establishment of a habitation site on Mars. This is Activity C in module 2, titled "Modeling Hot and Cold Planets," of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.

21

Earth's Changing Surface  

NSDL National Science Digital Library

This site presents changes in the crust and climate of Earth by investigating aspects such as the rock cycle, rock dating, climate and variables that affect the climate, and other processes that change the crust of the Earth. These topics include: the atmosphere and surface of Earth; volcanoes and earthquakes; igneous, sedimentary, and metamorphic rocks; and weathering and erosion. There are also laboratory activities to explore radioactive dating and the asthenosphere as well as a rock formation quiz.

22

External Resource: Earths Surface  

NSDL National Science Digital Library

This activity guide is based around the video Science Investigations: Investigating the Earth's Surface, which is available for purchase through the Discovery Store Channel. After watching the video, students will be able to discuss the use of satellites,

1900-01-01

23

Quantizing Earth surface deformations  

NASA Astrophysics Data System (ADS)

The global analysis of Bowin (2010) used the global 14 absolute Euler pole set (62 Myr history) from Gripp and Gordon (1990) and demonstrated that plate tectonics conserves angular momentum. We herein extend that analysis using the more detailed Bird (2003) 52 present-day Euler pole set (relative to a fixed Pacific plate) for the Earth's surface, after conversion to absolute Euler poles. Additionally, new analytical results now provide new details on upper mantle mass anomalies in the outer 200 km of the Earth, as well as an initial quantizing of surface deformations.

Bowin, C. O.; Yi, W.; Rosson, R. D.; Bolmer, T. S.; Sass, W. J.

2015-03-01

24

Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the  

E-print Network

Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E Scanning Radiometer for the Earth Observing System (AMSR-E) are compared with in situ temperature warming and low wind speed, we use only AMSR-E data collected within 5 hours of the in situ observations

Gille, Sarah T.

25

Surface modification of W9Cr4V2Mo high-temperature bearing steel by rare earth ion implantation  

Microsoft Academic Search

Wear and corrosion are the main failure mechanisms of bearings and it is important to prolong their working lifetimes by improving the bearing surface properties. Incorporation of rare-earth elements is one of the viable means in many technologies such as plating, chemical heat treatment, and thermal spraying. In this work, various kinds of rare earth ions including praseodymium, lanthanum and

Fanya Jin; Paul K. Chu; Zejin Xu; Jiaxue Zhao; Ming Zhu; Ricky K. Y. Fu; Honghui Tong

2006-01-01

26

The Carbon Dioxide Concentration in Earths atmosphere and Its Possible Influence on the Temperature at the Surface - as discussed in Sweden in 1894-96  

NASA Astrophysics Data System (ADS)

On November 15, 1894, Arvid Hgbom, geologist, presented a paper at a meeting of the Swedish Chemical Society (Kemistsamfundet) in Uppsala. His title: On the probability of secular changes in the atmospheres carbonic acid concentration. The possibility that changes in the carbon dioxide concentration would produce changes in the surface temperature came up in the discussion after the talk. In the audience was Svante Arrhenius. In early 1896, at another meeting of Kemistsamfundet, Arrhenius followed up on this with a paper The influence of the carbonic acid concentration on the temperature at the surface of the Earth. Both papers were published in Svensk Kemisk Tidscrift - Vol. 6 and Vol. 7 - as part of the minutes of the corresponding meetings. Arrhenius continued to pursue the idea, presenting and writing about it outside of Sweden. Most histories credit Arrheniuss work as the first on global warming, although some mention Hgboms prior report. Hgboms paper has never been translated from the Swedish, at least not so far as I have been able to discover. I will present a translation and review of Hgboms elegant paper and Arrhenius's initial response.

Willson, Lee Anne M.

2014-01-01

27

Surface Temperature Data Analysis  

NASA Technical Reports Server (NTRS)

Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

Hansen, James; Ruedy, Reto

2012-01-01

28

Rare Earth Optical Temperature Sensor  

NASA Technical Reports Server (NTRS)

A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

2004-01-01

29

Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget  

NASA Technical Reports Server (NTRS)

The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

Cimorelli, A. J.; House, F. B.

1974-01-01

30

Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean  

Microsoft Academic Search

Satellite sea surface temperature (SST) measurements from Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) are compared with in situ temperature observations from high-resolution expendable bathythermograph and hull-mounted thermosalinograph data along two sections (south of Australia and Drake Passage) in the Southern Ocean. To eliminate the effects of diurnal warming and low wind speed, we use only AMSR-E

Shenfu Dong; Sarah T. Gille; Janet Sprintall; Chelle Gentemann

2006-01-01

31

Rare Earth Optical Temperature Sensor  

NASA Technical Reports Server (NTRS)

A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

Chubb, Donald L.; Wolford, David S.

2000-01-01

32

The Sun-Earth Connection The Temperature of the Earth  

E-print Network

AST248 The Sun-Earth Connection #12;The Temperature of the Earth The Earth is in equilibrium ­ the heat absorbed from the Sun with ­ the heat radiated by the Earth. Heat in = heat out #12;Heat constant) ­ L is the solar luminosity ­ d is the distance from the Earth to the Sun, 1AU ­ The solar

Walter, Frederick M.

33

Global Sea SurfaceTemperature  

NSDL National Science Digital Library

This illustration of Earth's sea surface temperature was obtained from two weeks of infrared observations by the Advanced Very High Resolution Radiometer (AVHRR), an instrument on board NOAA-7, during July 1984. Temperatures are color coded with red being warmest and decreasing through oranges, yellows, greens, and blues. The caption provides a brief description of the features seen in the image.

34

The Surface of the Earth  

NSDL National Science Digital Library

The Surface of the Earth is a Windows to the Universe Exploratour and provides information and images about landforms, plate tectonics, Earth's layers, the lithosphere, plates, moving plates, and the water cycle, . This tour also explains the formation of mountains, volcanoes, craters, rocks and minerals, the ocean floor, oceans, ocean levels, poles, rivers, lakes, and deserts. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging web site that spans the Earth and Space sciences and includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate, and advanced options for each topic level.

Roberta Johnson

2000-07-01

35

DIATOMACEOUS EARTH SURFACE TREATMENT FOR STORED WHEAT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Diatomaceous earth (DE) can be used as a surface treatment in stored wheat to control pest infestations. However, it is not known how the thickness of the DE-treated wheat layer or grain temperature impacts effectiveness. When adult Rhizopertha dominica (F.), lesser grain borers, were released in e...

36

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms (2009)  

E-print Network

following rifting between Australia and New Zealand 85100 Ma before present. We focus on this escarpmentEARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms (2009) Copyright 2009 John.1764 John Wiley & Sons, Ltd.Chichester, UKESPEarth Surface Processes and LandformsEARTH SURFACE

Heimsath, Arjun M.

2009-01-01

37

Sea Surface Temperatures  

NSDL National Science Digital Library

Users can search for and view sea surface temperature imagery. They may choose from the latest image, or browse archived imagery that dates back approximately two weeks. Links to other sea surface temperature datasets are included.

1999-10-30

38

Temperature, Pressure, and the Earth  

NSDL National Science Digital Library

This is a lesson where learners explore the effects of pressure on temperature and states of matter and use this information to infer the conditions of the interior of the Earth. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson 2 in the Astro-Venture Geology Training Unit that was developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with the Astro-Venture multimedia modules.

2012-08-03

39

Surface Temperature Protocol  

NSDL National Science Digital Library

The purpose of this activity is to measure surface temperature with a handheld Infrared Thermometer (IRT). The instrument is pointed at the ground to take surface temperature readings. Intended outcomes are that students will learn to use an infrared thermometer, and understand how different surfaces radiate energy. Supporting background materials for both student and teacher are included.

The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

2003-08-01

40

Zooming into temperature conditions in the city of Leipzig: how do urban built and green structures influence earth surface temperatures in the city?  

PubMed

Urban landscape and land-use structure, particularly that of built space, were found to have a significant impact on environmental exposures, e.g., on the level and spatial distribution of particle and noise exposure in cities. Climate change will increase the frequency, duration and intensity of heat waves. Hence, the question arises: how do urban structures affect the shape and intensity of urban temperature conditions? To answer this question, multiple urban structures have been quantified in terms of their structural patterns and configuration using the landscape metric (LSM) approach. The results of a linear regression analysis showed that both the edge density and patch size ratio are significantly correlated with the spread and intensity of temperatures across all urban built structures. The analysis shows that the higher the proportion and structural complexity of the built area, the higher are the morning and evening surface temperatures. LSMs were found to be very well suited as analysis models of the site-specific temperature impact beyond the aggregate city level. Hence, they may serve as a planning tool for urban adaptation measures to climate change. PMID:25087062

Weber, Nicole; Haase, Dagmar; Franck, Ulrich

2014-10-15

41

Surface Temperature Analysis  

NSDL National Science Digital Library

This site, NASA GISS Surface Temperature (GISTEMP) analysis, provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. Data for individual stations, aggregate data, graphs, charts, maps, and animations are included, and tables of data are also linked to the site.

Goddard Institute for Space Studies (GISS)

42

Bizarre Life Forms Thrive Beneath Earth's Surface  

NSDL National Science Digital Library

In the classic tale, "A Journey to the Center of the Earth," Jules Verne imagined elaborate worlds in a hollow, miles beneath our feet. More modern science-fiction novelists have dreamed of spheres in outer space where earthling astronauts encounter alien life forms. Now these two ideas are being fused in a bubbling witches' cauldron: deep within the planet may be the best place to find new life forms on our planet--and glean clues to possible life on others. Vaporous hot pools far beneath Earth's surface support microbes conducting the business of life at extreme temperatures and pressures. The microbes, some of which are bacteria, are all called extremophiles, and their potentially far-reaching domain is called the subsurface biosphere.

43

Ocean Currents and Sea Surface Temperature  

NSDL National Science Digital Library

Students will make predictions by linking current scientific satellite data to concerns about global climate change. Using maps of sea surface temperature (SST) and ocean surface winds, students will learn how differential heating of Earth results in circulation patterns in the atmosphere and oceans that globally distribute the heat. Students will learn the relationship between the rotation of Earth and the circular motions of ocean currents and air in pressure centers.

44

Dropping Two Balls Near the Earth's Surface  

NSDL National Science Digital Library

The representation depicts two balls being dropped near the Earth's surface in an interactive simulation. The user can control the initial horizontal speed of one ball and observe the path and acceleration of both balls as they fall and hit the Earth's surface at the same time.

David M. Harrison

45

Sun's Impact On Earth's Temperature  

NSDL National Science Digital Library

This lesson plan is part of the Center for Educational Resources (CERES), a series of web-based astronomy lessons created by a team of master teachers, university faculty, and NASA researchers. In this activity, students view NASA images and movies of Venus, Earth, and Mars to deduce weather patterns and manipulate computer models to test competing hypotheses. This lesson contains expected outcomes for students, materials, background information, follow-up questions, and assessment procedures.

George Tuthill

46

Platinum in Earth surface environments  

NASA Astrophysics Data System (ADS)

Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments, where Pt is commonly concentrated in manganese (Mn) oxides. When these sediments are subducted, Pt re-enters the magmatic cycle. In conclusion, this review demonstrates that geological, geochemical as well as biological and most recently anthropological processes are strongly interlinked in driving the cycling of Pt in surface environments.

Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

2014-04-01

47

Earth  

NSDL National Science Digital Library

This lithograph depicts a view of Earth taken from Apollo 10 during its journey to the Moon in May 1969. False-color satellite images showing chlorophyll concentration, sea surface temperature, topography, and ozone concentration are also featured. The images are accompanied by a brief description, some statistical facts, and a list of important dates in the history of Earth exploration.

48

Sea Surface Temperature Climatology  

NSDL National Science Digital Library

This interactive animation shows global sea surface temperature averages for the same months over a number of years. Click on the map to see values for a particular month. This takes leads to a viewer that allows users to manipulate the figure, zooming in to a particular spot, altering the size, or changing the format.

Earth Education Online

49

Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China  

NASA Technical Reports Server (NTRS)

Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

2010-01-01

50

Reducing greenhouses and the temperature history of earth and Mars  

Microsoft Academic Search

It has been suggested that NH3 and other reducing gases were present in the earth's primitive atmosphere, enhancing the global greenhouse effect; data obtained through isotopic archeothermometry support this hypothesis. Computations have been applied to the evolution of surface temperatures on Mars, considering various bolometric albedos and compositions. The results are of interest in the study of Martian sinuous channels

CARL SAGAN

1977-01-01

51

High temperature surface protection  

Microsoft Academic Search

Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed.

S. R. Levine

1978-01-01

52

Pressure-temperature Phase Diagram of the Earth  

E-print Network

Abstract. Based on a pressure-temperature (P-T) phase diagram model of the Earth, Jones & Lineweaver (2010) described uninhabited terrestrial liquid water. Our model represents the atmosphere, surface, oceans and interior of the Earth- allowing the range of P-T conditions in terrestrial environments to be compared to the phase regime of liquid water. Here we present an overview and additional results from the Earth model on the location of the deepest liquid water on Earth and the maximum possible extent of the terrestrial biosphere. The intersection of liquid water and terrestrial phase space indicates that the deepest liquid water environments in the lithosphere occur at a depth of ? 75 km. 3.5 % of the volume of the Earth is above 75 km depth. Considering the 3.5 % of the volume of the Earth where liquid water exists, ? 12 % of this volume is inhabited by life while the remaining ? 88 % is uninhabited. This is distinct from the fraction of the volume of liquid water occupied by life. We find that at least 1 % of the volume of liquid water on Earth is uninhabited. Better geothermal gradients in the Earths crust and mantle will improve the precision and accuracy of these preliminary results. 1.

E. G. Jones; C. H. Lineweaver

53

Comparing the Surfaces of Earth and Mars  

NSDL National Science Digital Library

Comparing the Surfaces of Earth and Mars is a Windows to the Universe Exploratour and provides information and images about different features found on the surface and the geography of both planets: continents, craters, volcanoes, plate tectonics, rocks, soils, water, and polar caps. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging web site that spans the Earth and Space sciences and includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate, and advanced options for each topic level.

Roberta Johnson

2000-07-01

54

Influence of Land-Surface Evapotranspiration on the Earth's Climate  

Microsoft Academic Search

Calculations with a numerical model of the atmosphere show that the global fields of rainfall, temperature, and motion strongly depend on the landsurface evapotranspiration. This confirms the long-held idea that the surface vegetation, which produces the evapotransporation, is an important factor in the earth's climate.

J. Shukla; Y. Mintz

1982-01-01

55

http://www.ustream.tv/recorded/27347154 Exploring Earth's Temperature In More Detail  

E-print Network

= 45 (solar radiation absorbed by surface ) 88 (greenhouse effect, gases and clouds) Note total input average surface temperatures from ~300 K to ~290 K. #12;Summary The Earth system receives 99% of its heat IR) emitted by the atmosphere (the "greenhouse effect"). Earth's surface maintains thermal balance

Toohey, Darin W.

56

Editor's Roundtable: Sculpting the Earth's surface  

NSDL National Science Digital Library

Our students need to know about the structure of the Earth and about the geological processes that shape its surface--both the long-term and the everyday processes, the abrupt shifts of faults, the sustained movements of tectonic plates, and slow uplift of mountains. Therefore, this issue of Science Scope focuses on Earth processes. Use this collection of activities to awaken your students to the factors that shape the continents and the hills, valleys, rivers, fields, lakes, and oceans around them.

Inez Liftig

2008-10-01

57

National Center for Earth-surface Dynamics  

NSDL National Science Digital Library

NCED (the National Center for Earth-surface Dynamics) is a National Science Foundation Science and Technology Center. We began operation in August, 2002; we're headquartered at the St. Anthony Falls Laboratory at the University of Minnesota. Our purpose is to catalyze development of an integrated, predictive science of the processes shaping the surface of the Earth in order to transform management of ecosystems, resources, and land use. In concert with our integrative research efforts, we strive to bring our methods and results to students, the public, and practitioners in agencies and industry.

National Center for Earth-surface Dynamics

58

The Human Transformation of the Earth's Surface.  

ERIC Educational Resources Information Center

Reviews the tremendous transformation that human beings have wrought on the earth's surface from the Holocene to the present. Traces this transformation through various stages: the emergence and development of agriculture, agricultural impact and land degradation, ecological and political imperialism, industrialization, and environmental

Roberts, Neil

1996-01-01

59

Did surface temperatures constrain microbial evolution?  

NASA Technical Reports Server (NTRS)

The proposition that glaciation may not have occurred before the Cenozoic--albeit not yet a consensus position--nevertheless raises for reconsideration the surface temperature history of the earth. Glacial episodes, from the Huronian (2.3 billion years ago; BYA) through the late Paleozoic (320 to 250 million years ago; MYA) have been critical constraints on estimation of the upper bounds of temperature (Crowley 1983, Kasting and Toon 1989). Once removed, few if any constraints on the upper temperature limit other than life remain. Walker (1982) recognized that life provides an upper limit to temperature in the Precambrian. We propose a more radical concept: the upper temperature limit for viable growth of a given microbial group corresponds to the actual surface temperature at the time of the group's first appearance. In particular, we propose here that two major evolutionary developments--the emergence of cyanobacteria and aerobic eukaryotes--can be used to determine surface temperature in the Precambrian, and that only subsequent cooling mediated by higher plants and then angiosperms permitted what may possibly be the earth's first glaciation in the late Cenozoic.

Schwartzman, D.; McMenamin, M.; Volk, T.

1993-01-01

60

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 11081120 (2009)  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 1108­1120 (2009) Copyright.interscience.wiley.com) DOI: 10.1002/esp.1801 John Wiley & Sons, Ltd.Chichester, UKESPEarth Surface Processes and LandformsEARTH SURFACE PROCESSES AND LANDFORMSEarth Surface Processes and LandformsThe Journal of the British

61

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 15071521 (2009)  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 1507­1521 (2009) Copyright.interscience.wiley.com) DOI: 10.1002/esp.1836 John Wiley & Sons, Ltd.Chichester, UKESPEarth Surface Processes and LandformsEARTH SURFACE PROCESSES AND LANDFORMSEarth Surface Processes and LandformsThe Journal of the British

Heimsath, Arjun M.

62

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 12551269 (2009)  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 1255­1269 (2009) Copyright.interscience.wiley.com) DOI: 10.1002/esp.1813 John Wiley & Sons, Ltd.Chichester, UKESPEarth Surface Processes and LandformsEARTH SURFACE PROCESSES AND LANDFORMSEarth Surface Processes and LandformsThe Journal of the British

Johnson, Edward A.

63

The international surface temperature initiative  

NASA Astrophysics Data System (ADS)

The aim of International Surface Temperature Initiative is to create an end-to-end process for analysis of air temperature data taken over the land surface of the Earth. The foundation of any analysis is the source data. Land surface air temperature records have traditionally been stored in local, organizational, national and international holdings, some of which have been available digitally but many of which are available solely on paper or as imaged files. Further, economic and geopolitical realities have often precluded open sharing of these data. The necessary first step therefore is to collate readily available holdings and augment these over time either through gaining access to previously unavailable digital data or through data rescue and digitization activities. Next, it must be recognized that these historical measurements were made primarily in support of real-time weather applications where timeliness and coverage are key. At almost every long-term station it is virtually certain that changes in instrumentation, siting or observing practices have occurred. Because none of the historical measures were made in a metrologically traceable manner there is no unambiguous way to retrieve the true climate evolution from the heterogeneous raw data holdings. Therefore it is desirable for multiple independent groups to produce adjusted data sets (so-called homogenized data) to adequately understand the data characteristics and estimate uncertainties. Then it is necessary to benchmark the performance of the contributed algorithms (equivalent to metrological software validation) through development of realistic benchmark datasets. In support of this, a series of successive benchmarking and assessment cycles are envisaged, allowing continual improvement while avoiding over-tuning of algorithms. Finally, a portal is proposed giving access to related data-products, utilizing the assessment results to provide guidance to end-users on which product is the most suited to their needs. Recognizing that the expertise of the metrological community has been under-utilized historically in such climate data analysis problems, the governance of the Initiative includes significant representation from the metrological community. We actively welcome contributions from interested parties to any relevant aspects of the Initiative work.

Thorne, P. W.; Lawrimore, J. H.; Willett, K. M.; Allan, R.; Chandler, R. E.; Mhanda, A.; de Podesta, M.; Possolo, A.; Revadekar, J.; Rusticucci, M.; Stott, P. A.; Strouse, G. F.; Trewin, B.; Wang, X. L.; Yatagai, A.; Merchant, C.; Merlone, A.; Peterson, T. C.; Scott, E. M.

2013-09-01

64

Earth  

NSDL National Science Digital Library

This NASA (National Aeronautics and Space Administration) planet profile provides data and images of the planet Earth. These data include planet size, orbit facts, distance from the Sun, rotation and revolution times, temperature, atmospheric composition, density, surface materials and albedo. Images with descriptions show Earth features such as the Ross Ice Shelf in Antarctica, Simpson Desert in Australia, Mt. Etna in Sicily, the Cassiar Mountains in Canada, the Strait of Gibraltar, Mississippi River, Grand Canyon, Wadi Kufra Oasis in Libya, and Moon images such as Hadley Rille, Plum Crater, massifs and Moon rocks. These images were taken with the Galileo Spacecraft and by the Apollo missions.

65

In Situ Airborne, Surface, and Submersible Instruments for Earth Science  

E-print Network

SBIR SBIR 74 75 I In Situ Airborne, Surface, and Submersible Instruments for Earth Science In Situ Airborne, Surface, and Submersible Instruments for Earth Science Technical Abstract An autonomous airborne imaging system for earth science research, disaster response, and fire detection is proposed. The primary

66

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 35, 78101 (2010)  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 35, 78­101 (2010) Copyright future research are identified: (1) co-evolution of landforms and biological communities; and (2) humans

Cardinale, Bradley J.

67

The maximal runaway temperature of Earth-like planets  

NASA Astrophysics Data System (ADS)

In Simpsons (Simpson, G.C. [1927]. Mem. R. Meteorol. Soc. II (16), 69-95) classical derivation of the temperature of the Earth in the semi-gray model, the surface temperature diverges as the fourth root of the thermal radiations optical depth. No resolution to this apparent paradox was yet obtained under the strict semi-gray approximation. Using this approximation and a simplified approach, we study the saturation of the runaway greenhouse effect. First we generalize the problem of the semi-gray model to cases in which a non-negligible fraction of the stellar radiation falls on the long-wavelength range, and/or that the planetary long-wavelength emission penetrates into the transparent short wavelength domain of the absorption. Second, applying the most general assumptions and independently of any particular properties of an absorber, we show that the greenhouse effect saturates and that any Earth-like planet has a maximal temperature which depends on the type of and distance to its main-sequence star, its albedo and the primary atmospheric components which determine the cutoff frequency below which the atmosphere is optically thick. For example, a hypothetical convection-less planet similar to Venus, that is optically thin in the visible, could have at most a surface temperature of 1200-1300 K irrespective of the nature of the greenhouse gas. We show that two primary mechanisms are responsible for the saturation of the runaway greenhouse effect, depending on the value of ?cut, the wavelength above which the atmosphere becomes optically thick. Unless ?cut is small and resides in the optical region, saturation is achieved by radiating the thermal flux of the planet through the short wavelength tail of the thermal distribution. This has an interesting observational implication, the radiation from such a planet should be skewed towards the NIR. Otherwise, saturation takes place by radiating through windows in the FIR.

Shaviv, Nir J.; Shaviv, Giora; Wehrse, Rainer

2011-12-01

68

HCMM satellite to take earth's temperature  

NASA Technical Reports Server (NTRS)

The heat capacity mapping mission (HCMM), a low cost modular spacecraft built for the Applications Explorer Missions (AEM), was designed to allow scientists to determine the feasibility of using day/night thermal infrared remote sensor-derived data to: (1) discriminate various rock types and locate mineral resources; (2) measure and monitor surface soil moisture changes; (3) measure plant canopy temperatures at frequent intervals to determine transpiration of water and plant stress; and (4) measure urban heat islands. The design of the spacecraft (AEM-A), its payload, launch vehicle, orbit, and data collection and processing methods are described. Projects in which the HCMM data will be applied by 12 American and 12 foreign investigators are summarized.

1978-01-01

69

NEO-SURFACE: Near-Earth Objects --- SURvey oF Asteroids Close to the Earth  

NASA Astrophysics Data System (ADS)

Near-Earth Objects (NEOs) form a continuously replenished population of asteroids and dead comets that cross the Earth's orbit while orbiting the Sun. Our present knowledge of their physical properties is rather limited, especially for what concerns faint and newly-discovered objects, of which we have physical information for less than 10 % of the population. The most frequent technique to obtain physical characterizations of NEOs is the optical/NIR spectroscopy: by analyzing the object's spectral features, it is possible to detect minerals and compounds (e.g., silicates, organics, and products of aqueous-alteration processes) present on its surface, to put constraints on the thermal evolution (maximum temperature reached, aqueous alteration vs. thermal metamorphism), as well as to establish possible links with objects belonging to other populations of small bodies (e.g., main-belt asteroids, and comets) and with meteorites. In order to increase the present knowledge of the physical properties of NEOs, we are carrying out a survey called NEO-SURFACE: Near Earth Objects --- SURvey oF Asteroids Close to the Earth (http://www.oa-roma.inaf.it/planet/NEOSurface.html). We perform V+NIR spectroscopy and photometry focusing our effort, first, on NEOs with possible close approaches with the Earth (PHAs, the Potentially Hazardous Asteroids), and, second, on NEOs easily accessible for future rendezvous space missions. In cases of NEOs causing an impact hazard, physical parameters are fundamental in order to estimate their response to non-gravitational forces (mainly to the Yarkovsky effect) and therefore model their future dynamical evolution. For suitable targets for space missions, the physical characterization is needed to guarantee both the technical feasibility and the high scientific return of the mission. The results collected until now will be presented and discussed.

Dotto, E.; Perna, D.; Ieva, S.; Barucci, M.; Bernardi, F.; Fornasier, S.; Brucato, J.; De Luise, F.; Perozzi, E.; Micheli, M.; Rossi, A.

2014-07-01

70

Middle Pliocene sea surface temperatures: a global reconstruction  

Microsoft Academic Search

Identification and analyses of Pliocene marine microfossils from 64 globally distributed stratigraphic sequences have been used to produce a middle Pliocene sea surface temperature reconstruction of the Earth. This reconstruction shows little or no change from current conditions in low latitude regions and significant warming of the ocean surface at mid and higher latitudes of both hemispheres. This pattern of

Harry Dowsett; John Barron; Richard Poore

1996-01-01

71

Circle the Earth - Explore Surface Types on a Journey around Earth  

NSDL National Science Digital Library

This easy but effective lesson uses NASA CERES satellite percent coverage surface data along with a world map and asks students to locate landmasses and bodies of water at Earth's Equator. Students will map locations using latitude and longitude coordinates. Using the microset of satellite data included with the lesson to investigate surface characteristics, students will apply percentage to determine land surface characteristics. When using satellites to study Earth system processes, especially atmospheric processes, it is important to know what is the background that one is seeing on the Earth. This lesson provides an introduction to exploring Earth surface types.

Susan Moore

72

Method for measuring surface temperature  

DOEpatents

The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-07-28

73

Geodiversity of the Earth's surface and environment  

NASA Astrophysics Data System (ADS)

Geologic and geographic objects can be successfully systemized based on the mathematical theories of diversity and sets. This can give us a clear understanding of the nomenclature of the Earth's surface: its elements, forms, as well as their combinations and structures. All these surface structural units are closely related to elementary landscapes, or geotops (other elementary locations such as biotops, lythotops, edafotops, hydrotops, climatops, and etc. can also be considered). Both surface structural units and corresponding geotops should be studied on two systematic levels: 1) the morphological one that provides us with the taxonomic (by unit size) and meronomic (by unit complexity) information, and 2) the dynamical one that allows working out various interpretations: geo-flows and their influence on the Earth's surface (including new formation and complete destruction of elements and forms), sustainability of geodiversity, etc. At the present time, the dynamical level is in a process of defining clear criteria and developing relevant classification. The morphological level has in turn three sub-levels: a) relief elements, b) landforms (geomorphosystems), and c) regions (super-geomorphosystems). The entire set of two-dimensional surface elements comprises 52 variants (elementary surfaces) and more than 2,700 three-dimensional geotops. Each of the geotops is characterized by four different exposures: gravitational (hypso- and bathymetric position, steepness, vertical and horizontal curvature), insolational (dip azimuth of the location), circulating (orientation against prevailing flows - frontal, rear or flank position), and anthropogenic ones. The most contrasting geotops are tied to the upper (tops, crests and their adjacent areas) and lower (bottoms, thalwegs and their adjacent areas) relief elements. Slope elements (faces, cliffs, terraces, and feet) serve as the linking areas and determine not the diversity as such but, first of all, commonalities of the territory. The second morphological level - landforms - comprises 145 variants of geomorphosystems. They are classified according to the sign and shape in plan and profile, inner structure presented by vector lines (circle, ellipse, hyperbola, parabola, and lattice figures), outer structure presented by contours (isometric, brachy-, hemi-, bilateral, and linear ones), as well as their determinants and dominants. The determinants (in the number of 18) are the elements - mainly structural lines - that determine the whole landform (ridge, valley, trough, swell, volcanic cone, etc.); elementary surfaces dominating the landform serve as its dominants (37). The third morphological level - geomorphologic regions - reflects geodiversity of a larger scale. It follows to a certain extent the classification on the first, elementary, level but is also supplemented with the analysis of extended symmetry and anisotropy carried out on a geomorphologic map. All abovementioned fundamentals in a much more detailed way can be easily found in the monograph by Alexander Lastochkin "General theory of geosystems" (St. Petersburg, 2011, in Russian) and in the "Geomorphologic Atlas of the Antarctic" (St. Petersburg, 2012 - in Russian; 2013 - in English) produced by the team of authors.

Lastochkin, Alexander; Zhirov, Andrey; Boltramovich, Sergei

2014-05-01

74

High temperature rare earth solid lubricants  

NASA Technical Reports Server (NTRS)

Rare earth trifluorides have potential use as lubricating fillers for mechanical carbons and as coatings on metallic substrates. Friction experiments show that they are effective in reducing metallic wear.

Sliney, H. E.

1970-01-01

75

New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation  

NASA Astrophysics Data System (ADS)

Intense glaciation during the end of Cryogenian time (?635 million years ago) marks the coldest climate state in Earth history - a time when glacial deposits accumulated at low, tropical paleolatitudes. The leading idea to explain these deposits, the snowball Earth hypothesis, predicts globally frozen surface conditions and subfreezing temperatures, with global climate models placing surface temperatures in the tropics between -20 C and -60 C. However, precise paleosurface temperatures based upon geologic constraints have remained elusive and the global severity of the glaciation undetermined. Here we make new geologic observations of tropical periglacial, aeolian and fluvial sedimentary structures formed during the end-Cryogenian, Marinoan glaciation in South Australia; these observations allow us to constrain ancient surface temperatures. We find periglacial sand wedges and associated deformation suggest that ground temperatures were sufficiently warm to allow for ductile deformation of a sandy regolith. The wide range of deformation structures likely indicate the presence of a paleoactive layer that penetrated 2-4 m below the ground surface. These observations, paired with a model of ground temperature forced by solar insolation, constrain the local mean annual surface temperature to within a few degrees of freezing. This temperature constraint matches well with our observations of fluvial deposits, which require temperatures sufficiently warm for surface runoff. Although this estimate coincides with one of the coldest near sea-level tropical temperatures in Earth history, if these structures represent peak Marinaon glacial conditions, they do not support the persistent deep freeze of the snowball Earth hypothesis. Rather, surface temperatures near 0 C allow for regions of seasonal surface melting, atmosphere-ocean coupling and possible tropical refugia for early metazoans. If instead these structures formed during glacial onset or deglaciation, then they have implications for the timescale and character for the transition into or out of a snowball state.

Ewing, Ryan C.; Eisenman, Ian; Lamb, Michael P.; Poppick, Laura; Maloof, Adam C.; Fischer, Woodward W.

2014-11-01

76

Using Vegetation, Precipitation, and Surface Temperature to Study Climate Zones  

NSDL National Science Digital Library

The type of climate present in a particular location depends on several variables, including surface temperature and annual precipitation. One indicator of a locale' s climate is the vegetation present, a relationship used by the Koeppen system of climate classification. Using a microset of satellite data to investigate vegetation of a particular climate zone, students will identify factors that influence an area's climate. They will explore the relationship between amount of vegetation, precipitation, and surface temperature to study Earth's climate zones.

77

Temperature of the Martian Surface  

NASA Technical Reports Server (NTRS)

This image shows the nighttime (2 AM) temperature of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 500 orbits of the MGS mapping mission. The coldest temperatures (shown in purple) are -120C and the warmest temperatures (white) are -65C. The pattern of nighttime temperature in the equatorial region indicates variations in the particle size of the surface materials.

The coldest regions are areas of very fine (dust) grains, while the warmest regions are areas of coarse sand, gravel, and rocks. Valles Marineris (-10S, 30-90W) and the channels leading into Acidalia Planitia and the Pathfinder landing site (5-20N; 20-45W) are clearly visible as regions of warm (sand and rock) material. The cold regions in the south mark the edge of the south polar cap. The pattern of nighttime temperatures observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).

1999-01-01

78

The impacts of climate change on terrestrial Earth surface systems  

NASA Astrophysics Data System (ADS)

National and international policy initiatives have focused on reducing carbon emissions as a means by which to limit future climate warming. Much less attention has been paid by policymakers to monitoring, modelling and managing the impacts of climate change on the dynamics of Earth surface systems, including glaciers, rivers, mountains and coasts. This is a critical omission, however, as Earth surface systems provide water and soil resources, sustain ecosystem services and strongly influence biogeochemical climate feedbacks in ways that are as yet uncertain. We argue that there is a significant policy gap regarding the management of Earth surface systems' impacts under climate change that needs to be closed to facilitate the sustainability of cross-national Earth surface resource use. It is also a significant challenge to the scientific community to better understand Earth surface systems' sensitivity to climate forcing.

Knight, Jasper; Harrison, Stephan

2013-01-01

79

Rare Earth Doped High Temperature Ceramic Selective Emitters  

NASA Technical Reports Server (NTRS)

As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

1999-01-01

80

MODIS Global Sea Surface Temperature  

NASA Technical Reports Server (NTRS)

Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

2002-01-01

81

The Temperature of the Earth in 2020  

NASA Technical Reports Server (NTRS)

In spite of the confusion in the public discourse about global warming, there is no doubt that the Earth has been warming for the past century. The chemistry of the Earth's atmosphere is complex, and it is sometimes difficult to claim cause-and-effect with certainty. Nevertheless, the evidence seems clear that CO2 and non-CO2 forcings such as methane and air pollution are causally related to this warming trend. Our dependence on fossil fuels make it difficult to expect that massive reductions in CO2 will be feasible in the near-term, however. In this talk I will consider the evidence for global warming, the extent to which we can extrapolate current trends into the future if no changes in global policy are introduced, and those near-term policies that might be realistically introduced to significantly affect those trends.

Hansen, James; Einaudi, Franco (Technical Monitor)

2002-01-01

82

Evaluation of Surface Fatigue Strength Based on Surface Temperature  

NASA Astrophysics Data System (ADS)

Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.

Deng, Gang; Nakanishi, Tsutomu

83

Current Tropical Sea Surface Temperatures  

NSDL National Science Digital Library

This animation shows the most recent Sea Surface Temperature (SST) data available for the Gulf of Mexico and the Atlantic Coast region. Users can see the progression of warm waters (shown in yellow, orange, and red) slowly filling the Gulf of Mexico. This natural annual warming contributes to the possible formation of hurricanes in the Gulf. The animation updates every 24 hours, and still images of the data are also available. There is also imagery of the most recent 10-day average of SST anomalies in the Pacific Ocean, which is used by scientists for studying El Nino and La Nina. Warmer colors (yellow, red, orange) indicate positive anomalies (temperatures above normal). The imagery is from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) aboard the National Aeronautics and Space Administration's (NASA) Aqua satellite.

84

Earth Interactions Interannual Temperature Events and Shifts in  

E-print Network

Earth Interactions Interannual Temperature Events and Shifts in Global Temperature: A "Multiwavelet is based on a multivariate wavelet algorithm that identifies coherent patterns of variation simultaneously complicates attempts to identify a causal link with an anthropogenic enhanced-greenhouse effect. The Northern

85

Daily High-Resolution-Blended Analyses for Sea Surface Temperature  

Microsoft Academic Search

Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25 and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth

Richard W. Reynolds; Thomas M. Smith; Chunying Liu; Dudley B. Chelton; Kenneth S. Casey; Michael G. Schlax

2007-01-01

86

Earth Surface Patterns in 200 Years (Invited)  

NASA Astrophysics Data System (ADS)

What kinds of patterns will characterize Earth's surface in 200 years? This question is addressed using a complex systems dynamical framework for distinct levels of description in a hierarchy, in which time scale and spatial extent increase and number of variables decrease with level, and in which levels are connected nonlinearly to each other via self-organization and slaving and linearly to the external environment. Self-organized patterns linking the present to 200 years in the future must be described dynamically on a level with a time scale of centuries. Human-landscape coupling will play a prominent role in the formation of these patterns as population peaks and interactions become nonlinear over these time scales. Three related examples illustrate this approach. First, the response of human-occupied coastlines to rising sea level. Coastlines in wealthy regions develop a spatially varying boom and bust pattern, with response amplified by structures meant to delay the effects of sea level rise. Coastlines in economically disadvantaged regions experience a subdued response, with populations developing a culture of displacement that minimizes human-landscape interactions in a context of scarce resources. Second, the evolution of nation-state borders with degrading ecosystems, declining resource availability and increasing transportation costs. The maintenance of strong borders as selective filtration systems (goods, capital and people) is based on a cost-benefit analysis in which the economic benefits accruing from long distance, globalized resource exploitation are weighed against policing and infrastructure costs. As costs rise above benefits, borders fragment, with a transition to local barriers and conflicts, and mobile peoples moving to resources. Third, trends in urbanization and development of megacities under economic and environmental stress. The pattern of rapid growth of megacities through inward migration, with displaced people occupying high-risk urban landscapes such as flood plains or steep slopes and existing on the margins of the formal economic system, switches to outmigration as precarious slum dwellers respond to human-induced natural disasters, crumbling infrastructure and economic decline. Inefficient foraging along outward migration pathways from the urban center drives positive feedbacks that propel a radiating pattern and eventually lead to dispersal. These anticipated patterns represent a fragmentation of economic and power concentrations and networks, and localization of the presently globalized coupled human-landscape system. Long-time-scale models illustrating the fragmentation process and prospects for model testing will be discussed. Supported by the Geomorphology and Land Use Dynamics Program of the US National Science Foundation.

Werner, B.

2009-12-01

87

Monitoring Earth Surface Dynamics With Optical Imagery  

NASA Astrophysics Data System (ADS)

Optical images can be used to measure accurately a variety of Earth surface processes such as co-seismic ground deformation, ice-flow, landsliding and sand-dunes migration. Although the technique of correlating multi- temporal images is not new, it is not widely used yet due to technical limitations - mainly geometric distortion of the images induced by the imaging system, biased correlation techniques, and implementation difficulties. Most of these obstacles were overcome by recent methodological advances implemented in a user-friendly software package, COSI-Corr, which allows for automatic and precise ortho-rectification, co-registration, and subpixel correlation of pushbroom satellite and aerial images. The procedure does not require external information such as GPS measurements of ground control points, and is solely based on the knowledge of the topography and on the ancillary data provided with the observing platform. In particular, we take advantage of the availability of accurate digital elevation models with global coverage (SRTM). Sub-pixel change detection, i.e. correlation, is then applied on the set of ortho-images produced. COSI-Corr makes it possible to measure local displacements between temporal series of images, possibly acquired by different instruments and at different resolutions, with accuracy of the measurements on the order of a small fraction of the nominal images' resolution. We apply this methodology to the measurement of the horizontal coseismic displacement field induced by the Mw 7.1 1999 Hector Mine earthquake, California, using a 10-m SPOT 4 pre-earthquake image and a 15-m ASTER post-earthquake image. We illustrate the potential of this approach to measure glacier flow, and present the horizontal displacements in the Mer de Glace area (Alps), over 26 days derived from SPOT 5 images. Landsliding is also investigated on the La Valette landslide (southern French Alps), and we present a dense measurement of the cumulative horizontal displacement over eleven months, using SPOT 5 images. Finally, we demonstrate that sand dunes migration can also be monitored. A dense and complete picture of the displacement of the sand dunes over the Great Colorado Sand Dunes national park is obtained from the correlation of two ASTER images acquired in 2000 and 2003.

Leprince, S.; Berthier, E.; Ayoub, F.; Delacourt, C.; Avouac, J.

2007-12-01

88

Taking the temperature of Earth's hottest crust  

NASA Astrophysics Data System (ADS)

The limitations of conventional thermobarometry and petrogenetic grids for determining the peak P- T conditions of granulites are well known. These limitations have been overcome during the past decade with the calibration of single mineral thermometers, particularly Al-in-orthopyroxene, Zr-in-rutile and Ti-in-zircon, and the increased use of P- T pseudosection thermobarometry. Most recent studies of ultrahigh temperature (UHT) granulites (those formed at >900 C) have used one or other of these methods to argue for peak metamorphic temperatures up to or beyond 1000 C. Since models for the thermal evolution of orogens generally do not predict such extreme temperatures it is important to confirm their veracity. Here we combine in a single study single mineral thermometry with P- T pseudosection thermobarometry to provide a robust determination of peak temperature and tight constraints on the retrograde P- T path for one UHT granulite locality in the Eastern Ghats Province. This is the first study to apply the most recent update of the internally consistent thermodynamic dataset of Holland and Powell (2011) and the re-parameterized a- x models of White et al. (2014) and Wheller and Powell (2014) to UHT granulites. For two samples, we report Zr-in-rutile temperatures of >1000 C and Ti-in-zircon temperatures of ?900 C, supported by Al-in-orthopyroxene temperatures of ?900 C, that correspond closely to those estimated using P- T pseudosections for conditions at the thermal peak and at the solidus on the retrograde P- T path, respectively. The P- T path is counter-clockwise in common with other UHT granulite localities in the Eastern Ghats Province. By demonstrating that UHT metamorphism at T > 1000 C is real we provide a robust constraint that must be met by geodynamic models for the development of ultrahot orogens.

Korhonen, F. J.; Clark, C.; Brown, M.; Taylor, R. J. M.

2014-12-01

89

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 35, 284293 (2010)  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 35, 284­293 (2010) Copyright the general evolution of intertidal landforms. In muddy coastlines, the morphology of tidal channels terrestrial and intertidal landforms. As a result, salt marshes and chenier plains are the shoreline main

Fagherazzi, Sergio

90

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 19701984 (2009)  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 19701984 (2009) Copyright of environmental and human factors on gully incision. The effect of flow accumulation, slope, unpaved roads density areas, there is relationship between the topographic threshold coefficients a (multiplier) and b

2009-01-01

91

Secular variation prediction of the Earths magnetic field using core surface flows  

E-print Network

The Earths magnetic field is generated by fluid motion of liquid iron in the outer core. Flows at the top of the outer core are believed to be responsible for the secular variation (SV) observed at the surface of the ...

Beggan, Ciarn D.

2009-01-01

92

The evolution of the Earth surface sulfur reservoir  

Microsoft Academic Search

The surface sulfur reservoir is in intimate contact with the mantle. Over long time scales, exchange with the mantle has influenced the surface reservoir size and possibly its isotopic composition. Processes delivering sulfur to the Earth surface from the mantle include volcanic outgassing, hydrothermal input, and ocean crust weathering. The sulfide fixed in ocean crust as a consequence of hydrothermal

D. E. Canfield

2004-01-01

93

Valence state at the surface of rare-earth metals  

Microsoft Academic Search

The valence state of a rare-earth metal surface is investigated by using general properties of the surface tension of metals. Thereby it is concluded that samarium is likely to have a divalent or partly divalent surface on top of its trivalent bulk phase, which agrees with recent spectroscopic observations. Also californium metal is discussed from this point of view. Finally,

Brje Johansson

1979-01-01

94

Mission to Earth: LANDSAT Views the World. [Color imagery of the earth's surface  

NASA Technical Reports Server (NTRS)

The LANDSAT program and system is described. The entire global land surface of Earth is visualized in 400 color plates at a scale and resolution that specify natural land cultural features in man's familiar environments. A glossary is included.

Short, N. M.; Lowman, P. D., Jr.; Freden, S. C.; Finch, W. A., Jr.

1976-01-01

95

Deep drilling; Probing beneath the earth's surface  

SciTech Connect

This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

Rosen, J.250

1991-06-01

96

Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons  

PubMed Central

Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefitsincluding better sleep and reduced painfrom walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance. PMID:22291721

Chevalier, Gatan; Sinatra, Stephen T.; Oschman, James L.; Sokal, Karol; Sokal, Pawel

2012-01-01

97

Sea Surface Temperatures (SST): Significance and Measurement  

NASA Astrophysics Data System (ADS)

Oceans cover 71 percent of Earth's surface and control the global climate. Quoted global mean temperature values and trends, largely based on land thermometers, differ substantially -" mainly because of uncertainties about SST. The ongoing controversy about the relative importance of natural climate changes and Anthropogenic Global Warming (AGW) revolves mainly around disparities between temperature trends of the atmosphere and surface (in the tropics and SH, i.e. mostly SST). Accurate measurement of SST is difficult. Geographic coverage is poor and there are many different techniques, each with its own problems and uncertainties: Water temperatures from buckets and ship-engine inlets; fixed and floating buoys; air temperatures from shipboard and island stations; and remote sensing from satellites using IR and microwaves. As is evident, each technique refers to a different level below the air-water interface. Drifter buoys (at around 50 cm) measure temperatures in the euphotic layers that are generally warmer than the bulk mixed layer sampled by ships (typically around 10 m). The IR emission arises from a 10-micron-thick skin that interacts dynamically with the underlying "mixed layer." The microwave data depend also on emissivity and therefore on surface roughness and sea state. SST data derived from corals provide some support for instrumental data but are not conclusive. The majority of corals show a warming trend since 1979; others show cooling or are ambiguous. There are different ways of interpreting this result. Physical optics dictates that the downwelling IR radiation from atmospheric greenhouse gases is absorbed in the first instance within the skin. Only direct measurements can establish how much of this energy is shared with the bulk mixed layer (to which the usual SST values refer.). SST controls evaporation and therefore global precipitation. SST influences tropical cyclones and sea-level rise; but there is lively debate on those issues. Changes in SST are also responsible for changes in deep- ocean temperatures and ocean heat storage. But recent claims that an increase in heat storage is a "smoking gun" for AGW are without merit.

Singer, S. F.

2006-05-01

98

Terrestrial manganese-53 --A new monitor of Earth surface processes  

E-print Network

Terrestrial manganese-53 -- A new monitor of Earth surface processes Joerg M. Schaefer a,, Thomas of the terrestrial cosmogenic radionuclide manganese-53 (T1/2 =3.7 Ma) measured in thirteen samples from nine dolerite surfaces in the Dry Valleys, Antarctica. The terrestrial manganese-53 concentrations correlate

Winckler, Gisela

99

On the interaction of diffusing admixture with earth's surface  

Microsoft Academic Search

Semi-empirical equations describing the turbulence diffusion in the vertical direction are used when investigating propagation of alien admixtures in the surface layer. The paper attempts to determine to what extent the assumption of a complete reflection of the admixture by the earth's surface is justified, by taking into consideration the molecular transfer which substantially regulates the real interaction of the

D. L. Iordanov; G. D. Dzholov

1976-01-01

100

The energy balance of the earth' surface : a practical approach  

Microsoft Academic Search

This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This radiation originates partly from the sun, but an~

Bruin de H. A. R

1982-01-01

101

30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 ... 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth materials produced from an underground...

2011-07-01

102

30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 ... 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth materials produced from an underground...

2013-07-01

103

30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 ... 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth materials produced from an underground...

2014-07-01

104

30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 ... 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth materials produced from an underground...

2010-07-01

105

30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 ... 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth materials produced from an underground...

2012-07-01

106

Twentieth-century sea surface temperature trends  

Microsoft Academic Search

An analysis of historical sea surface temperatures provides evidence for global warming since 1900, in line with land-based analyses of global temperature trends, and also shows that over the same period, the eastern equatorial Pacific cooled and the zonal sea surface temperature gradient strengthened. Recent theoretical studies have predicted such a pattern as a response of the coupled ocean-atmosphere system

M. A. Cane; A. C. Clement; A. Kaplan

1997-01-01

107

GISS analysis of surface temperature change  

Microsoft Academic Search

We describe the current GISS analysis of surface temperature change for the period 1880-1999 based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change was higher in the past 25 years than at any previous time in the period of instrumental data. The warmth

J. Hansen; R. Ruedy; J. Glascoe; M. Sato

1999-01-01

108

Ocean Currents and Sea Surface Temperature  

NSDL National Science Digital Library

In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot data, compare data, and draw conclusions about surface current and sea surface temperature and link their gained understanding to concerns about global climate change.

2007-01-01

109

Ocean Currents and Sea Surface Temperature  

NSDL National Science Digital Library

In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot and compare data, draw conclusions about surface current and sea surface temperature, and link their gained understanding to concerns about global climate change.

Joan Carter

110

Disparity of tropospheric and surface temperature trends: New evidence  

E-print Network

Observations suggest that the earth's surface has been warming relative to the troposphere for the last 25 years; this is not only difficult to explain but also contrary to the results of climate models. We provide new evidence that the disparity is real. Introducing an additional data set, R2 2 meter temperatures, a diagnostic variable related to tropospheric temperature profiles, we find trends derived from it to be in close agreement with satellite measurements of tropospheric temperature. This suggests that the disparity likely is a result of near-surface processes. We find that the disparity does not occur uniformly across the globe, but is primarily confined to tropical regions which are primarily oceanic. Since the ocean measurements are sea surface temperatures, we suggest that the disparity is probably associated with processes at the ocean-atmosphere interface. Our study thus makes unlikely some of the explanations advanced to account for the disparity; it also demonstrates the importance of disting...

Douglass, D H; Singer, F; Knappenberger, P C; Michaels, P J

2004-01-01

111

Solar activity, cosmic rays, and earth temperature reconstructions for the past two millennia. Part 1. Analysis of temperature reconstructions  

NASA Astrophysics Data System (ADS)

The data on a change in the Earth's surface temperature during the time interval of the past 2000 years, which were obtained using the instrumental, historical, and indirect methods, were reviewed and analyzed. In addition, data on borehole termometry were analyzed, and it was shown that this method can be used to reconstruct long-term trends in climate change, which is among the main causes of differences in interpreting indirect data on long timescales (several hundred and thousand years).

Dergachev, V. A.

2015-01-01

112

A Low Temperature Limit for Life on Earth  

PubMed Central

There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between ?10C and ?26C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below ?50C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above ?20C) and multicellular organisms (typically below ?20C). Few multicellular organisms can, however, complete their life cycle at temperatures below ??2C. PMID:23840425

Clarke, Andrew; Morris, G. John; Fonseca, Fernanda; Murray, Benjamin J.; Price, Hannah C.

2013-01-01

113

External Resource: Using Vegetation, Precipitation, and Surface Temperature to Study Climate Zones  

NSDL National Science Digital Library

This My NASA Data activity explores the relationship between amount of vegetation, precipitation, and surface temperature to study Earth's climate zones. Each fifty minute activity allows learners/students to use a micro-set of satellite data to investiga

1900-01-01

114

COMPARISON OF LAND SURFACE EMISSIVITY AND RADIOMETRIC TEMPERATURE DERIVED FROM MODIS AND ASTER SENSORS  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study compares surface emissivity and radiometric temperature products derived using data collected with the MODerate resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission Reflectance Radiometer (ASTER) sensors, on the Earth Observation System (EOS) - Terra satel...

115

Role of surface temperature in fluorocarbon plasma-surface interactions  

SciTech Connect

This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

2012-07-15

116

Atmospheric CO2: principal control knob governing Earth's temperature.  

PubMed

Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state. PMID:20947761

Lacis, Andrew A; Schmidt, Gavin A; Rind, David; Ruedy, Reto A

2010-10-15

117

Atmospheric CO2: Principal Control Knob Governing Earth's Temperature  

NASA Technical Reports Server (NTRS)

Ample physical evidence shows that carbon dioxide (CO2) is the single most important climate-relevant greenhouse gas in Earth s atmosphere. This is because CO2, like ozone, N2O, CH4, and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO2 and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.

Lacis, Andrew A.; Schmidt, Gavin A.; Rind, David; Ruedy, Reto A.

2010-01-01

118

Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars  

NASA Technical Reports Server (NTRS)

The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

Murray, B.; Malin, M. C.; Greeley, R.

1981-01-01

119

EARTH AND ROCK SURFACE SPILLWAY EROSION RISK ASSESSMENT  

Technology Transfer Automated Retrieval System (TEKTRAN)

The outlet works are a critical element in the safe operation of a dam that must be protected from damage that could lead to complete failure from earth and rock surface spillway erosion. However, since there are several critical elements that comprise a dam each with associated high costs in maint...

120

On the Concentration of Certain Elements at the Earth's Surface  

Microsoft Academic Search

A survey of the abundances of elements in the ocean and sedimentary rocks as compared to their abundances in the weathered igneous rocks shows that carbon, nitrogen, oxygen as water, chlorine, bromine and boron are highly concentrated in the surface materials and that thicknesses of from 17 to 89 km of the outer part of the earth would be required

H. C. Urey

1953-01-01

121

Sea surface temperature measurements with AIRS  

NASA Technical Reports Server (NTRS)

The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

Aumann, H.

2003-01-01

122

Surface Temperature Fronts in the Great Lakes  

Microsoft Academic Search

The distribution and variability of surface temperature fronts in the Great Lakes is studied using an 11 year time series (1985 to 1995) of Advanced Very High Resolution Radiometer (AVHRR) images. After the removal of cloud contaminated pixels as well as those potentially ice covered, an edge detection algorithm identifies surface temperature fronts in each image. The probability of detecting

David Ullman; Jamie Brown; Peter Cornillon; Timothy Mavor

1998-01-01

123

Radiometric surface temperature components for row crops  

Technology Transfer Automated Retrieval System (TEKTRAN)

Land surface temperature is a boundary condition often used in assessing soil moisture status and energy exchange from the soil-vegetation-atmosphere interface. For row crops having incomplete canopy cover, the radiometric surface temperature is a composite of sunlit and shaded vegetation and substr...

124

MY NASA DATA Lesson Plan A: Circle the Earth-Explore Surface Types on a Journey around Earth  

NSDL National Science Digital Library

This lesson plan uses NASA Clouds and Earth's Radiant Energy System (CERES) instrument percent coverage surface data with a world map to locate landmasses and bodies of water at the Earth's Equator. When using satellites to study Earth system processes, especially atmospheric processes, it is important to know what is the background that one is seeing on the Earth. This lesson provides an introduction to exploring Earth surface types. The percent water along the Equator is about 77 percent, which is surprisingly representative of the entire planet. At 40N latitude, the percentage water is about 55 percent, so any single latitude is not necessarily representative of the Earth as a whole.

2006-01-01

125

Titan Surface Temperatures from Cassini CIRS  

NASA Technical Reports Server (NTRS)

Thermal radiation from the surface of Titan reaches space through a spectral window at 19-microns wavelength. After removing the effects of the atmosphere, measurement of this radiance gives the brightness temperature of the surface. The Composite Infrared Spectrometer (CIRS) has made such measurements during the Cassini prime mission. These observations cover a wide range of emission angles, thereby constraining the contributions from atmospheric radiance and opacity. With the more complete latitude coverage and much larger dataset, we have been able to improve upon the original results from Voyager IRIS. CIRS measures an equatorial surface brightness temperature, averaged over longitude, of 93.7 +/- 0.6 K. This agrees with the HASI temperature at the Huygens landing site. The latitude dependence of surface brightness temperature exhibits an approximately 2 K decrease toward the South Pole and 3 K decrease toward the North Pole. The lower surface temperatures seen at high latitudes are consistent with conditions expected for lake formation.

Jennings, Donald E.; Flasar, F.M.; Kundle, V.G.; Samuelson, R.E.; Pearl, J.C.; Nixon, C.A.; Carlson, R.C.; Mamoutkine, A.A.; Brasunas, J.C.; Guandique, E.; Achterberg, R.K.; Bjoraker, M.H.; Romani, P.N.; Segura, M.E.; Albright, S.A.; Elliott, M.H.; Tingley, J.S.; Calcutt, S.; Coustenis, A.; Bezard, B.; Courtin, R.

2008-01-01

126

Ground surface temperature and continental heat gain: uncertainties from underground  

NASA Astrophysics Data System (ADS)

Temperature changes at the Earth?s surface propagate and are recorded underground as perturbations to the equilibrium thermal regime associated with the heat flow from the Earth?s interior. Borehole climatology is concerned with the analysis and interpretation of these downward propagating subsurface temperature anomalies in terms of surface climate. Proper determination of the steady-state geothermal regime is therefore crucial because it is the reference against which climate-induced subsurface temperature anomalies are estimated. Here, we examine the effects of data noise on the determination of the steady-state geothermal regime of the subsurface and the subsequent impact on estimates of ground surface temperature (GST) history and heat gain. We carry out a series of Monte Carlo experiments using 1000 Gaussian noise realizations and depth sections of 100 and 200 m as for steady-state estimates depth intervals, as well as a range of data sampling intervals from 10 m to 0.02 m. Results indicate that typical uncertainties for 50 year averages are on the order of 0.02 K for the most recent 100 year period. These uncertainties grow with decreasing sampling intervals, reaching about 0.1 K for a 10 m sampling interval under identical conditions and target period. Uncertainties increase for progressively older periods, reaching 0.3 K at 500 years before present for a 10 m sampling interval. The uncertainties in reconstructed GST histories for the Northern Hemisphere for the most recent 50 year period can reach a maximum of +/- 0.5 K in some areas. We suggest that continuous logging should be the preferred approach when measuring geothermal data for climate reconstructions, and that for those using the International Heat Flow Commission database for borehole climatology, the steady-state thermal conditions should be estimated from boreholes as deep as possible and using a large fitting depth range (100 m).

Beltrami, Hugo; Matharoo, Gurpreet S.; Smerdon, Jason E.

2015-01-01

127

Satellite mapping of solar energy reaching the earth`s surface  

SciTech Connect

This paper summarizes the equations and technical procedures used to map solar radiation reaching the earth`s surface in Pakistan and presents examples of the results obtained plus conclusions drawn from these. The research has been conducted jointly by the University of Miami in the US and in the National institute of silicon Technology of Pakistan. Digital data in the visible spectrum from the Indian Geostationary Meteorological Satellite, INSAT-1B, were used for input to the computer model. Pyranometer stations in Pakistan were used for ground truth checks of the results.

Hiser, H.W. [Univ. of Miami, Coral Gables, FL (United States)

1996-05-01

128

A much warmer Earth surface for most of geologic time: implications to biotic weathering  

NASA Technical Reports Server (NTRS)

The authors present two scenarios for the temperature history of Earth. One scenario is conventional, the other relies on a warmer history. Both scenarios include surface cooling determined by the evolution of the biosphere and are similar until the Proterozoic period. The warmer scenario requires a higher plant/lichen terrestrial biota to increase weathering intensity. Justification for a warmer surface includes period temperatures from the oxygen isotope record of coexisting phosphates and cherts, an upper limit of 58 degrees C from primary gypsum precipitation, and the lack of fractionation of sulfur isotopes between sulfide and sulfates in Archean sediments.

Schwartzman, D. W.; McMenamin, M.

1993-01-01

129

Titan's Surface Temperatures Measured by Cassini CIRS  

NASA Technical Reports Server (NTRS)

A large fraction of 19-micron thermal radiation from the surface of Titan reaches space through a spectral window of low atmospheric opacity. The emergent radiance, after removing the effect of the atmosphere, gives the brightness temperature of the surface. This atmospheric window is covered by the far-infrared channel of the Composite Infrared spectrometer1 (CIRS) on Cassini. In mapping Titan surface temperatures, CIRS is able to improve upon results of Voyager IRIS, by taking advantage of improved latitude coverage and a much larger dataset. Observations are from a wide range of emission angles and thereby provide constraints on the atmospheric opacity and radiance that are used to derive the surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, virtually identical to the HASI temperature at the Huygens landing site. Mapping in latitude shows that the surface temperature decreases toward the poles by about 2 K in the south and 3 K in the north. This surface temperature distribution is consistent with the formation of lakes seen at high latitudes on Titan.

Jennings, Donald E.; Flasar, F. M.; Kundle, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; Arhterberg, R. K.; Bjoraker, G. L.; Romani, P. N.; Segura, M. E.; Albright, S. A.; Elliott, M. H.; Tingley, J. S.; Calcutt, S.; Coustenis, A.; Bezard, B.; Courtin, R.

2008-01-01

130

Tropical Cyclones, Sea Surface Temperature, and Beyond  

NSDL National Science Digital Library

Part 1 The SAGUARO Exploring GIS Investigations for Earth Science curriculum requries the use of ESRI's ArcView GIS software version 3.0 for Macintosh or 3.2 and higher for PC. Use ArcGIS and data files from the SAGUARO Project's (http://www.scieds.com/saguaro/etc.html) Exploring Tropical Cyclones investigations. After the students are introduced to the program they are asked to determine what criteria are required for the formation of tropical cyclones. Exploring Tropical Cyclones Unit 1 has a great deal of data for the students to use. The data is presented as layers on a world map. Different features can be turned on and off at will, and layers can be brought in from other units if desired. Features they can work with are: August SST February SST tropical cyclone tracks locations of tropical cyclone formation for Jun-Sep locations of tropical cyclone formation for Dec-Mar Part 2 Students are divided into small groups (3-4 students works well) where they compare their findings (including what evidence they used) with the findings of the other group members. Each group is then asked to determine the threshold temperature for tropical cyclone formation as well as to calculate the area of the ocean that has SST equal to or above this threshold temperature (you can have them calculate this for each season, or as a total area including both February and August data). Part 3 Class discussion of what they have found so far. Introduce them to model predictions of SST for different atmospheric CO2 levels. Propose a 2 degree C increase in tropical SST and ask what they think that will mean. What other factors might influence the formation of tropical cyclones? Part 4 Assign an article or two (ideally a published peer reviewed article - to introduce them to this type of scientific writing - that is if you can find one that you consider appropriate for your students) that introduces them to other factors required for tropical cyclone formation and predictions of how climate change might affect them. For example an article that discusses the role of wind speed near the surface of the ocean, or vertical wind shear, or one that shows that the threshold temperature is actually predicted to increase by the same magnitude as the SST increase. Have them write a report that summaries the criteria for cyclogenesis as well as explaining how they would go about predicting where tropical cyclones will form as a result of an increased SST. They do not need to perform all of the tests they propose! They should state what sort of information they would like to obtain and why.

Danielle Schmitt

131

MY NASA DATA: Circle the Earth - Explore Surface Types on a Journey around Earth  

NSDL National Science Digital Library

The CERES (Clouds and Earth's Radiant Energy System) satellite instrument gathers data on Earth's surface coverage; this lesson provides an introduction to coverage types and percentages by using that data from two geographic areas: the equator and 40N. Students will use a world map to locate a series of points by latitude and longitude, determine if each point is covered by land or water, and then compare their findings to those from the CERES data. Accompanying questions prompt students to offer possible explanations for differences between their assessment of coverage type and the satellite data. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, and an online glossary.

2012-08-03

132

Surface Wave Propagation Around the Earth: A Problem Solving Exercise  

NSDL National Science Digital Library

In this activity, students examine a seismogram display called a seismic record section in which each trace is a seismogram recorded at a specific seismograph station. The seismograms are plotted according to the distance (in degrees, geocentric angle) from the earthquake location and time from the earthquake origin. The traces are of the vertical component of ground motion, and have been filtered to include only periods longer than 125 seconds. Students look for the prominent arrivals, called phases, that angle across the record section and are labeled and discover that they are called long-period Rayleigh waves. Students learn that these waves travel along the surface of the Earth and that surface waves penetrate (have particle motion) to depths of tens to hundreds of km but travel approximately parallel to the Earth's surface. Since the surface waves propagate in all directions from the source, the arrival times are approximately the same as if the stations were all located along a great circle path from the epicenter. From this, students are able to measure the distance traveled and calculate the velocity in kilometers per second and how long it takes for the wave to go around the Earth.

Larry Braile

133

Common oscillations in Global Earth Temperature, Sea Level, and Earth rotation  

NASA Astrophysics Data System (ADS)

Singular Spectrum Analysis (SSA) of Global Mean Sea Level (GMSL) and Global Average Earth Temperature (HadCRUT4) data after global warming trends subtraction revealed presence of quasi-periodic components with periods of 60, 20 and 10 years in both time series. 60-year component of sea level is anticorrelated with long-periodic changes in temperature, while 10 and 20-year components are correlated. Simultaneous presence of 60-year component in secular Earth rotation rate changes rises a question of interrelations between Earth rotation and Climate. Quasi-20-year changes in GMSL and HadCRUT4 have maxima and minima well corresponding to the amplitude changes of recently reconstructed Chandler wobble excitation, which could be caused by the 18.6-year cycle of the Moon orbital nodes regression. The cause of 10-year oscillations in climate characteristics is enigmatic. It could be related to El Nino variability, Volcanoes, or Solar activity, but correlation with each of those processes found to be small. Looks like it is correlated with 9.3 yr tidal wave.

Zotov, Leonid; Bizouard, Christian; Sidorenkov, Nikolay

2014-05-01

134

Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature  

NASA Technical Reports Server (NTRS)

Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

Shen, Suhung; Leptoukh, Gregory G.

2011-01-01

135

Ocean Remote Sensing: Sea Surface Temperature Imagery  

NSDL National Science Digital Library

This site presents rapidly processed estimates of sea surface temperature for various regions along the east coast of the United States, including the Gulf Stream, Chesapeake Bay, the Gulf of Mexico and the Bahamas. The imagery includes both single pass data and composite data from multiple passes. Included at this site is a primer on the measurement of sea surface temperature. Additional links satellite links are provided. See related links for the topics.

136

Seasonal Changes in Surface Temperatures on Titan  

NASA Technical Reports Server (NTRS)

The surface brightness temperatures on Titan have been measured by the Composite Infrared Spectrometer (CIRS) aboard Cassini during the period spanning late northern winter through vernal equinox. CIRS observes radiance from the surface through a spectral window at 19 microns where the atmosphere has an opacity minimum [I]. CIRS is now seeing a shift in the latitudinal distribution of temperatures froth a distinctly warmer south to a more symmetrical north -south pattern, similar to that found by Voyager IRIS [2,3] at the time of the previous vernal equinox. Near the equator the temperatures remain close to the 93.7 K value found at the surface by Huygens [4]. From the equator to the poles the temperature gradients are 2-3 K. When compared with predictions froth general circulation models [5] the measured temperatures and their seasonal changes constrain the possible types of surface material. As Cassini continues through Titan's northern spring CiRS will extend its, global coverage to took for correlations between surface temperatures and albedo and to search for diurnal temperature variations

Jennings, D. E.; Cottini, V.; Nixon, C. A.

2010-01-01

137

Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth's atmosphere  

NASA Astrophysics Data System (ADS)

A spaceborne Fourier-transform infrared (FTIR) spectrometer was designed for measuring the spectra of the outgoing Earth's atmosphere radiation and serves for providing for the needs of online meteorology and climatology with regard to obtaining the following kinds of data: vertical profiles of temperature and humidity profiles in the troposphere and the lower stratosphere, the general and altitudinal ozone distribution, concentrations of small gaseous constituents, temperature of the underlying surface, etc. At present, works are underway at the Keldysh Research Centre for creating IKFS-series FTIR spectrometers for satellites in Sun-synchronous orbits: the IKFS-2 instrument for the Meteor-M spacecraft no. 2 of the Meteor-3M space complex (developed and supplied for testing together with the spacecraft) and an advanced IKFS-3 instrument for the Meteor-MP fourth-generation hydrometeorological and oceanographic space complex for Earth monitoring (at the developmental stage). The composition, functional diagram, and technical specifications of the FTIR spectrometers are presented.

Golovin, Yu. M.; Zavelevich, F. S.; Nikulin, A. G.; Kozlov, D. A.; Monakhov, D. O.; Kozlov, I. A.; Arkhipov, S. A.; Tselikov, V. A.; Romanovskii, A. S.

2014-12-01

138

Global trends of measured surface air temperature  

Microsoft Academic Search

We analyze surface air temperature data from available meteorological stations with principal focus on the period 1880-1985. The temperature changes at mid- and high latitude stations separated by less than 1000 km are shown to be highly correlated; at low latitudes the correlation falls off more rapidly with distance for nearby stations. We combine the station data in a way

James Hansen; Sergej Lebedeff

1987-01-01

139

Modes of variability of global sea surface temperature, free atmosphere temperature and oceanic surface energy flux  

Microsoft Academic Search

Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears

Wenjie Hu; Reginald E. Newell; Zhong-Xiang Wu

1994-01-01

140

Global climate models bias in surface temperature trends and variability  

NASA Astrophysics Data System (ADS)

The Earth has warmed in the last century with the most rapid warming occurring near the surface in the Arctic. This Arctic amplification occurs partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The amount of warming depends upon the extent of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). Global climate models (GCMs) tend to over-estimate the depth of stably-stratified ABLs, and here we show that GCM biases in the ABL depth are strongly correlated with biases in the surface temperature variability. This highlights the need for a better description of the stably-stratified ABL in GCMs in order to constrain the current uncertainty in climate variability and projections of climate change in the surface layer.

Davy, Richard; Esau, Igor

2014-11-01

141

Surface modification of high temperature iron alloys  

DOEpatents

A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

Park, Jong-Hee (Clarendon Hills, IL)

1995-01-01

142

Agents for Development of Earth's Surface Interactive Dynamic Processes at the Surface  

E-print Network

of the Global Environment Plate Tectonics: Unifying ConceptPlate Tectonics: Unifying Concept Ground shaking's surface as plates Plates and Plate Boundaries Concept and justification of plate divisions Types of plate boundaries and processes History of the Earth' Surface Reconstructing the ancient face

Polly, David

143

Applications of surface analytical techniques in Earth Sciences  

NASA Astrophysics Data System (ADS)

This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several ?m, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences to show how each technique is applied and used to obtain specific information and to resolve real problems, which forms the central theme of this review. Although this review focuses on applications of these techniques to study mineralogical and geological samples, we also anticipate that researchers from other research areas such as Material and Environmental Sciences may benefit from this review.

Qian, Gujie; Li, Yubiao; Gerson, Andrea R.

2015-03-01

144

A Bayesian approach to retrieve surface temperatures  

NASA Astrophysics Data System (ADS)

The inference of surface temperature of planetary targets has been a major scientific objective of infrared instrumentation since its first usage in the spaceborn platforms. Nonetheless, this study requires a number of assumptions, for the complexity of radiative transfer involved. We have developed a Bayesian approach to nonlinear inversion for mapping surface temperature of Vesta by using the Dawn Visual and Infrared Mapping Spectrometer (VIR). A Bayesian approach relies on the knowledge of the general properties of the physical system before it is measured: in our case, this translates into knowledge of the target body in terms of composition and expected range of temperatures. Upon selection of initial guesses for the temperature and the spectral emissivity, combined with the standard deviation of these unknown parameters, the method iteratively and simultaneously computes surface temperature and spectral emissivity from the measured radiance. We successfully implemented this method to data of asteroid 2867 Steins and 21 Lutetia returned by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) onboard Rosetta. Knowledge of the surface temperature allows one to retrieve information on surface properties such as thermal conductivity, porosity, and thermal inertia.

Tosi, F.; Grassi, D.; Capaccioni, F.; Coradini, A.

2011-10-01

145

Climatic change by cloudiness linked to the spatial variability of sea surface temperatures  

NASA Technical Reports Server (NTRS)

An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.

Otterman, J.

1975-01-01

146

Profiles of electron temperature and Bz along Earth's magnetotail  

NASA Astrophysics Data System (ADS)

We study the electron temperature distribution and the structure of the current sheet along the magnetotail using simultaneous observations from THEMIS spacecraft. We perform a statistical study of 40 crossings of the current sheet when the three spacecraft THB, THC, and THD were distributed along the tail in the vicinity of midnight with coordinates XB \\in [-30 RE, -20 RE], XC \\in [-20 RE, -15 RE], and XD ~ -10 RE. We obtain profiles of the average electron temperature \\mlab Te\\mrab and the average magnetic field \\mlab Bz\\mrab along the tail. Electron temperature and \\mlab Bz\\mrab increase towards the Earth with almost the same rates (i.e., ratio \\mlab Te\\mrab/\\mlab Bz\\mrab ? 2 keV/7 nT is approximately constant along the tail). We also use statistics of 102 crossings of the current sheet from THB and THC to estimate dependence of Te and Bz distributions on geomagnetic activity. The ratio \\mlab Te \\mrab/\\mlab Bz\\mrab depends on geomagnetic activity only slightly. Additionally we demonstrate that anisotropy of the electron temperature \\mlab T?/T?\\mrab ? 1.1 is almost constant along the tail for X \\in [-30 RE, -10 RE].

Artemyev, A. V.; Petrukovich, A. A.; Nakamura, R.; Zelenyi, L. M.

2013-06-01

147

Anthropogenic disturbance of element cycles at the Earth's surface.  

PubMed

The extent to which humans are modifying Earth's surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts (Klee and Graedel, 2004). We quantify anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compare it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions, and for helium, hydrodynamic escape from the Earth's atmosphere. We introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporate uncertainties of element mass fluxes through Monte Carlo simulations. We find that at the Earth's surface anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium currently exceed natural fluxes. For these elements mining is the major factor of anthropogenic influence, whereas petroleum burning strongly influences the surficial cycle of rhenium. Our assessment indicates that if anthropogenic contributions to soil erosion and eolian dust are considered, anthropogenic fluxes of up to 62 elements surpass their corresponding natural fluxes. PMID:22803636

Sen, Indra S; Peucker-Ehrenbrink, Bernhard

2012-08-21

148

GISS Analysis of Surface Temperature Changes  

NASA Technical Reports Server (NTRS)

We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.

Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M.

1999-01-01

149

Earth encounters as the origin of fresh surfaces on near-Earth asteroids.  

PubMed

Telescopic measurements of asteroids' colours rarely match laboratory reflectance spectra of meteorites owing to a 'space weathering' process that rapidly reddens asteroid surfaces in less than 10(6) years. 'Unweathered' asteroids (those having spectra matching the most commonly falling ordinary chondrite meteorites), however, are seen among small bodies the orbits of which cross inside Mars and the Earth. Various explanations have been proposed for the origin of these fresh surface colours, ranging from collisions to planetary encounters. Less reddened asteroids seem to cross most deeply into the terrestrial planet region, strengthening the evidence for the planetary-encounter theory, but encounter details within 10(6) years remain to be shown. Here we report that asteroids displaying unweathered spectra (so-called 'Q-types') have experienced orbital intersections closer than the Earth-Moon distance within the past 5 x 10(5) years. These Q-type asteroids are not currently found among asteroids showing no evidence of recent close planetary encounters. Our results substantiate previous work: tidal stress, strong enough to disturb and expose unweathered surface grains, is the most likely dominant short-term asteroid resurfacing process. Although the seismology details are yet to be worked out, the identification of rapid physical processes that can produce both fresh and weathered asteroid surfaces resolves the decades-long puzzle of the difference in colour of asteroids and meteorites. PMID:20090748

Binzel, Richard P; Morbidelli, Alessandro; Merouane, Sihane; Demeo, Francesca E; Birlan, Mirel; Vernazza, Pierre; Thomas, Cristina A; Rivkin, Andrew S; Bus, Schelte J; Tokunaga, Alan T

2010-01-21

150

Spatial correlations of interdecadal variation in global surface temperatures  

NASA Technical Reports Server (NTRS)

We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.

Mann, Michael E.; Park, Jeffrey

1993-01-01

151

SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES  

SciTech Connect

Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 {mu}m in two time periods: one in late northern winter (LNW; L{sub s} = 335 deg.) and another centered on northern spring equinox (NSE; L{sub s} = 0 deg.). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of {approx}0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of {Delta}L{sub S} {approx} 9{sup 0} in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65{sup 0} S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

Jennings, D. E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Carlson, R. C.; Gorius, N. J. P. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [LESIA, Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Institut fuer Geophysik und Meteorologie, Universitaet zu Koeln, Albertus-Magnus-Platz, 50923 Koeln (Germany)

2011-08-10

152

A Study of Surface Temperatures, Clouds and Net Radiation  

NASA Technical Reports Server (NTRS)

This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.

Dhuria, Harbans

1996-01-01

153

30 CFR 18.23 - Limitation of external surface temperatures.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources... 18.23 Limitation of external surface temperatures. The temperature of the external surfaces of mechanical or...

2011-07-01

154

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2014 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2014-01-01

155

30 CFR 18.23 - Limitation of external surface temperatures.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources... 18.23 Limitation of external surface temperatures. The temperature of the external surfaces of mechanical or...

2010-07-01

156

30 CFR 18.23 - Limitation of external surface temperatures.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources... 18.23 Limitation of external surface temperatures. The temperature of the external surfaces of mechanical or...

2013-07-01

157

30 CFR 18.23 - Limitation of external surface temperatures.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources... 18.23 Limitation of external surface temperatures. The temperature of the external surfaces of mechanical or...

2012-07-01

158

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2013 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2013-01-01

159

30 CFR 18.23 - Limitation of external surface temperatures.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources... 18.23 Limitation of external surface temperatures. The temperature of the external surfaces of mechanical or...

2014-07-01

160

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2012 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2012-01-01

161

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2011 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2011-01-01

162

Twentieth-century sea surface temperature trends  

SciTech Connect

An analysis of historical sea surface temperatures provides evidence for global warming since 1900, in line with land-based analyses of global temperature trends, and also shows that over the same period, the eastern equatorial Pacific cooled and the zonal sea surface temperature gradient strengthened. Recent theoretical studies have predicted such a pattern as a response of the coupled ocean-atmosphere system to an exogenous heating of the tropical atmosphere. This pattern, however, is not reproduced by the complex ocean-atmosphere circulation models currently used to simulate the climatic response to increased greenhouse gases. Its presence is likely to lessen the mean 20th-century global temperature change in model simulations. 31 refs., 4 figs.

Cane, M.A.; Clement, A.C.; Kaplan, A. [Lamont-Doherty Earth Observatory, Palisades, NY (United States)] [and others] [Lamont-Doherty Earth Observatory, Palisades, NY (United States); and others

1997-02-14

163

Simulations of ultra-long wavelength interferometers in Earth orbit and on the lunar surface  

NASA Astrophysics Data System (ADS)

We present simulations of interferometers in Earth orbit and on the lunar surface to guide the design and optimization of space-based ultra-long wavelength missions, such as those pioneered by China's Chang'e Program. We choose parameters and present simulations using simulated data to identify inter-dependencies and constraints on science and engineering parameters. A regolith model is created for the lunar surface array simulation, and the results show that the lunar regolith will have an undesirable effect on the observations. We estimate data transmission requirements, calculate sensitivities for both cases, and discuss the trade-off between brightness temperature sensitivity and angular resolution for the Earth orbit array case.

Zhang, Mo; Huang, Mao-Hai; Yan, Yi-Hua

2015-03-01

164

Factors Changing Earth's Surface (title provided or enhanced by cataloger)  

NSDL National Science Digital Library

This Classroom Connectors lesson plan discusses the factors which cause changes to the surface of the Earth. This includes identifying various types of landforms, geologic structures and movements, processes that form rocks, and understanding rock and soil cycles. The site provides goals, objectives, an outline, time required, materials, activities, and closure ideas for the lesson. The Classroom Connectors address content with an activity approach while incorporating themes necessary to raise the activity to a higher cognition level. The major motivation is to employ instructional strategies that bring the students physically and mentally into touch with the science they are studying.

165

Modelling global fresh surface water temperature  

Microsoft Academic Search

Temperature directly determines a range of water physical properties including vapour pressure, surface tension,\\u000adensity and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong\\u000acontrol on fresh water biogeochemistry, influencing sediment concentration and transport, water quality parameters\\u000a(e.g. pH, nitrogen, phosphor, dissolved oxygen), chemical reaction rates, phytoplankton and zooplankton\\u000acomposition and the

L. P. H. van Beek; T. Eikelboom; M. T. H. van Vliet; M. F. P. Bierkens

2011-01-01

166

20-Year Arctic Surface Temperature Trend  

NSDL National Science Digital Library

Here the 20-year surface temperature trend is shown over the Arctic region. This animation shows the warming and cooling regions in steps from the regions of least change to the areas of greatest change. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -0.4 to +0.4 degrees Celsius in increments of .02 degrees. (See color bar below)

Cindy Starr

2003-10-23

167

22-Year Arctic Surface Temperature Trend  

NSDL National Science Digital Library

This image shows the 22-year surface temperature trend over the Arctic region. Blue hues indicate areas that are cooling; gold hues depict areas that are warming. Lighter colors indicate less change while darker colors indicate more. The temperature scale steps from zero degrees Celsius in increments of .02 degrees. (See color bar below) The data ranges from -0.162 to +0.487 degrees Celsius.

Cindy Starr

2004-12-13

168

Spacecraft ram glow and surface temperature  

NASA Technical Reports Server (NTRS)

Space shuttle glow intensity measurements show large differences when the data from different missions are compared. In particular, on the 41-G mission the space shuttle ram glow was observed to display an unusually low intensity. Subsequent investigation of this measurement and earlier measurements suggest that there was a significant difference in temperature of the glow producing ram surfaces. The highly insulating properties coupled with the high emissivity of the shuttle tile results in surfaces that cool quickly when exposed to deep space on the night side of the orbit. The increased glow intensity is consistent with the hypothesis that the glow is emitted from excited NO2. The excited NO2 is likely formed through three body recombination (OI + NO + M = NO2*) where ramming of OI interacts with weakly surface bound NO. The NO is formed from atmospheric OI and NI which is scavenged by the spacecraft moving through the atmosphere. It is postulated that the colder surfaces retain a thicker layer of NO thereby increasing the probability of the reaction. It has been found from the glow intensity/temperature data that the bond energy of the surface bound precursor, leading to the chemical recombination producing the glow, is approximately 0.14 eV. A thermal analysis of material samples of STS-8 was made and the postulated temperature change of individual material samples prior to the time of glow measurements above respective samples are consistent with the thermal effect on glow found for the orbiter surface.

Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.

1987-01-01

169

Solar turbulence in earth's global and regional temperature anomalies Nicola Scafetta,1,2  

E-print Network

Solar turbulence in earth's global and regional temperature anomalies Nicola Scafetta,1,2 Paolo a study of the influence of solar activity on the earth's temperature. In particular, we focus on the repercussion of the fluctuations of the solar irradiance on the temperature of the Northern and Southern

Scafetta, Nicola

170

Surface temperature determination of small bodies  

NASA Astrophysics Data System (ADS)

We illustrate a Bayesian approach to nonlinear inversion which allows, upon selection of initial guesses for the unknown parameters, i.e. surface temperature and spectral emissivity, constrained by their expected range of variability, to simultaneously compute them from the measured spectral radiance. We show spatially-resolved temperature maps of asteroids 2678 Steins and 21 Lutetia obtained by using this approach on infrared data acquired by the VIRTIS imaging spectrometers onboard the ESA Rosetta spacecraft in 2008 and 2010 respectively, and temperature maps of asteroid Vesta obtained from infrared data acquired by the VIR mapping spectrometer onboard the NASA Dawn spacecraft in 2011-2012.

Tosi, F.; Capria, M. T.; Capaccioni, F.; De Sanctis, M. C.

2014-04-01

171

Toward a unified science of the Earth's surface: Opportunities for synthesis among hydrology,  

E-print Network

Toward a unified science of the Earth's surface: Opportunities for synthesis among hydrology of a predictive science of Earth surface dynamics integrates many disciplines and approaches, including hydrology. Power, I. Rodriguez-Iturbe, V. Voller, and P. Wilcock (2006), Toward a unified science of the Earth

Power, Mary Eleanor

172

Discrete Surface Modeling Based on Google Earth: A Case Study  

E-print Network

Google Earth (GE) has become a powerful tool for geological, geophysical and geographical modeling; yet GE can be accepted to acquire elevation data of terrain. In this paper, we present a real study case of building the discrete surface model (DSM) at Haut-Barr Castle in France based on the elevation data of terrain points extracted from GE using the COM API. We first locate the position of Haut-Barr Castle and determine the region of the study area, then extract elevation data of terrain at Haut-Barr, and thirdly create a planar triangular mesh that covers the study area and finally generate the desired DSM by calculating the elevation of vertices in the planar mesh via interpolating with Universal Kriging (UK) and Inverse Distance Weighting (IDW). The generated DSM can reflect the features of the ground surface at Haut-Barr well, and can be used for constructingthe Sealed Engineering Geological Model (SEGM) in further step.

Mei, Gang; Xu, Nengxiong

2012-01-01

173

Land-surface atmosphere coupling in an earth system model  

NASA Astrophysics Data System (ADS)

The interaction between the atmosphere and the strongly heterogeneous land surface is one of the central scientific topics within Earth system sciences and especially climate research. Many processes, such as vegetation dynamics and the development of spatial patterns in the Subtropics and permafrost regions, take place on scales much below the scale of model resolution. Thus, it is an important scientific challenge to consider the influence of sub-scale heterogeneity on the vertical near-surface fluxes of energy and water. Most climate models do not take into account the actual scale of surface heterogeneities. When coupling a heterogeneous surface to the atmosphere often coupling methods are employed, which include the underlying assumption that the horizontal extent of the individual heterogeneity is so small that the turbulent vertical fluxes stemming from the different surface heterogeneities within one grid-box have mixed horizontally below the lowest model level of the atmosphere. This assumption allows a comparatively simple land-surface-atmosphere coupling with a horizontally homogeneous state of the atmosphere, but it may also be the source of significant errors. In order to access the extent of error introduced we designed an experiment in which the results of three different coupling schemes were compared. The first one is a parameter-aggregation scheme, the second a flux-aggregation scheme based on the assumption of a horizontally homogeneous atmosphere on the lowest atmospheric model level and the third one is a coupling scheme which allows, up to a given height, for the atmosphere to be horizontally heterogeneous within a grid-box. These coupling methods were implemented in the land-surface model JSBACH which was then coupled to the general circulation model ECHAM6, both part of the Max Planck Institute for Meteorology's earth system model MPI-ESM. In a first step sensitivity studies are being carried out to gain process understanding and to disentangle the direct effects of the land-surface-atmosphere coupling and the atmospheric response. To evaluate the overall impact, of a given coupling scheme, 20-year-AMIP-type simulations were performed. First analysis indicates that the results obtained with the three coupling schemes do significantly differ. These differences are not only visible on a sub-grid scale e.g. the sub-grid fluxes, but also on the grid-scale the choice of the coupling scheme significantly affects the simulated global climate and large-scale patterns. Furthermore the difference in the simulated climate between using the improved and the standard flux-aggregation scheme are in the same order of magnitude as those between the parameter aggregation scheme and the standard flux-aggregation scheme.

de Vrese, Philipp; Hagemann, Stefan

2014-05-01

174

22 Years of Sea Surface Temperatures  

NSDL National Science Digital Library

This NOAA visualization video on YouTube shows the seasonal variations in sea surface temperatures and ice cover for the 22 years prior to 2007 based on data collected by NOAA polar-orbiting satellites (POES). El Nio and La Nia are easily identified, as are the trends in decreasing polar sea ice.

NOAA (National Oceanic and Atmospheric Administration) Visualizations

175

DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY  

Technology Transfer Automated Retrieval System (TEKTRAN)

Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

176

A Rough Surface Model to Explain Surface Temperatures on Vesta  

NASA Astrophysics Data System (ADS)

We modeled the spatially resolved temperature of the surface of Vesta controlling for high resolution topography, Bond albedo and 1D thermal conduction. We determined a systematic difference between the temperatures measured by the Visual and Infrared spectrometer (VIR) and computer models.We analyzed a highly degraded crater that shows negligible variations in regolith gardening and albedo. Using this crater, where the only variation in temperature is based upon illumination conditions, we were able to calculate a correction factor, and ultimately identify a thermal model based on surface roughness. This requires that the grains are small enough to be illuminated individually but large enough that they do not thermally equilibrate.We will present a "rough-surface" thermal model that takes into account how irregular grains create sub-pixel variations in the thermal spectrum and describes the effect this has on the observed surface temperatures of Vesta. We have applied this method to the VIR observations of Vesta, which produced a high level of agreement between the model and the observations.

Palmer, Eric; Sykes, Mark V.

2014-11-01

177

Earth's core-mantle boundary - Results of experiments at high pressures and temperatures  

NASA Technical Reports Server (NTRS)

Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (above 2.4 x 10 to the 10th Pa) and temperatures. In particular, (Mg,Fe)SiO3 perovskite, the most abundant mineral of earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO2 stishovite and MgSiO3 perovskite) at the pressures of the core-mantle boundary, 14 x 10 to the 10th Pa. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 km of earth's mantle, the D-double-prime layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence earth's magnetic field observed at the surface.

Knittle, Elise; Jeanloz, Raymond

1991-01-01

178

Trends in Surface Temperature at High Latitudes  

NASA Technical Reports Server (NTRS)

The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record started. Also, the SST in the Arctic basin is observed to be anomalously high in 2007 when the perennial ice cover declined dramatically to its lowest extent. In the Antarctic, surface temperature trends are much more moderate with the most positive trends occurring in the Antarctic Peninsula and parts of Western Antarctica while some cooling are observed in the Antarctic Plateau and the Ross Sea. The trends in SST in the region is similar to global averages but precipitation from more evaporation may have a key role in the spatial distribution of surface temperature in the ice covered region

Comiso, Josefino C.

2012-01-01

179

Method and apparatus for measuring temperature of an earth formation in the presence of a radio frequency electromagnetic field  

SciTech Connect

A method and apparatus for measuring the temperature in a subsurface earth formation that is being heated in situ by subjection to a radio frequency electromagnetic field. It includes lowering a maximum registering thermometer into the formation on a non-conductive flexible line, and holding it there long enough to reach the ambient temperature at that location. Then, the thermometer is raised to the surface fast enough to avoid any significant change on the way up to read that registered maximum.

Kunetka, R.E.; Dowling, D.J.

1984-09-04

180

Trends in surface air temperature and temperature extremes in the Great Basin during 1901-2010  

NASA Astrophysics Data System (ADS)

Guoping Tang and John A. Arnone III Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada 89512, USA Abstract: We analyzed natural trends in surface air temperature and temperature extremes in the Great Basin during 1901-2010. We found that annual average daily minimum temperature increased significantly (0.90.2 C) during the study period, with daily maximum temperature increasing only slightly. The asymmetric increase in daily minimum and maximum temperature resulted in daily diurnal temperature range (DTR) decreasing significantly from 1901 to 2010. Seasonally, increase in daily minimum temperature and decrease in DTR occurred in all seasons but more significantly in summer. In contrast, daily maximum temperature showed no significant trend in any season. Increases in daily minimum temperature resulted in a decrease in the number of frost days (0.140.05 day yr-1) and cool nights (0.130.04 night yr-1) during each year from 1901 to 2010, while the number of warm nights increased significantly (0.170.03 night yr-1). Surprisingly, the number of warm and cool days and the length of the annual growing season showed no significant trend during the study period. None of these temporal patterns differed by elevation of the station. Thus, the results of this study suggest that continuation of these trends would lead to markedly warmer conditions in upcoming decades that may be drier than in past decades if precipitation does not increase.t;

Tang, G.; Arnone, J. A., III

2012-12-01

181

EARTH SURFACE PROCESSES AND LANDFORMS, VOL 22, 11971205 (1997) RING PERMEAMETRY: DESIGN, OPERATION AND ERROR  

E-print Network

EARTH SURFACE PROCESSES AND LANDFORMS, VOL 22, 1197­1205 (1997) RING PERMEAMETRY: DESIGN, OPERATION of permeability estimates is illustrated. © 1997 John Wiley & Sons, Ltd. Earth surf. process. landforms, 22, 1197

Chappell, Nick A

182

Design of a Surface Albedo Modification Payload for Near Earth Asteroid (NEA) Mitigation  

E-print Network

The development of the Surface Albedo Treatment System (SATS) onboard a spacecraft mission to the near earth asteroid (NEA) Apophis in 2012 is an innovative concept of deflecting NEAs from possible impact with the Earth through altering...

Ge, Shen

2011-10-21

183

High-temperature Mars-to-Earth transfer of meteorite ALH84001  

NASA Astrophysics Data System (ADS)

Martian meteorites provide crucial insights into Martian evolution and interplanetary mass transfer, including the potential for exogenesis. ALH84001 is the oldest Martian meteorite discovered so far, and has been used to derive important conclusions about Martian surface temperatures and very low-temperature Mars-to-Earth transfer. To better constrain the thermal evolution and shock metamorphic history of ALH84001, we applied (U-Th)/He thermochronometry to single grains of phosphate (merrillite) from ALH84001. The (U-Th)/He ages of individual phosphate grains in ALH84001 range from 60 Ma to 1.8 Ga, with a weighted mean of ~830 Ma. This broad age distribution reflects multiple diffusion domains, and requires a relatively high-temperature resetting event younger than 60 Ma. These new data are combined with the published whole-rock (maskelynite as a main Ar reservoir) 40Ar/ 39Ar age spectra which show 5-8% fractional loss of radiogenic 40Ar since 4.0 Ga. He diffusion in both terrestrial and extraterrestrial apatite has a significantly higher activation energy (138 184 kJ/mol) than Ar diffusion in maskelynite (75 kJ/mol), leading to an important "kinetic crossover" in fractional loss contours for these systems. Taken together, the phosphate (U-Th)/He and whole-rock 40Ar/ 39Ar ages require both very low surface temperatures on Mars, and one or more short-lived, high-temperature, shock events after 4.0 Ga. We suggest that the last shock event occurred with ejection of ALH84001 from Mars, and reached a peak temperature of approximately 400 C. These results undermine the proposed low-temperature ejection hypothesis for ALH84001, but support long-lived extremely cold Martian surface temperatures.

Min, Kyoungwon; Reiners, Peter W.

2007-08-01

184

Global modeling of fresh surface water temperature  

NASA Astrophysics Data System (ADS)

Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF ERA40 re-analysis data. We compared our simulation results with daily temperature data from rivers and lakes (USGS, limited to the USA) and compared mean monthly temperatures with those recorded in the GEMS data set. Results show that the model is able to capture well the mean monthly surface temperature for the majority of the GEMS stations both in time as well as in space, while the inter-annual variability as derived from the USGS data was captured reasonably well. Results are poorest for the arctic rivers, possibly because the timing of ice-breakup is predicted too late in the year due to the lack of including a mechanical break-up mechanism. The spatio-temporal variation of water temperature reveals large temperature differences between water and atmosphere for the higher latitudes, while considerable lateral transport of heat can be observed for rivers crossing hydroclimatic zones such as the Nile, the Mississippi and the large rivers flowing into the Arctic. Overall, our model results show great promise for future projection of global fresh surface water temperature under global change.

Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

2011-12-01

185

Efficacy of surface applications with diatomaceous earth to control Rhyzopertha dominica (F.) (Coleoptera: Boxtrichidae) in stored wheat  

Technology Transfer Automated Retrieval System (TEKTRAN)

Commercial formulations of diatomaceous earth (DE) products are labeled for use as surface treatments in stored wheat. However, they have not been evaluated as such against the lesser grain borer, Rhyzopertha dominica (F.), a major pest of stored wheat. An experiment was conducted at two temperature...

186

UV 380 nm Reflectivity of the Earth's Surface  

NASA Technical Reports Server (NTRS)

The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.

Herman, J. R.; Celarier, E.; Larko, D.

2000-01-01

187

Fitting the observed changes of global surface temperatures  

NASA Astrophysics Data System (ADS)

The quality of the fit of a trivial or, conversely, delicately-designed model to the observed natural phenomena is the fundamental pillar stone of any forecasting, including forecasting of the Earth's Climate. Using precise mathematical and logical systems outside their range of applicability can be scientifically groundless, unwise, and even dangerous. The temperature data sets are naturally in the basis of any hypothesizing on variability and forecasting the Earth's Climate. Leaving open the question of the global temperature definitions and their determination (T), we have analyzed hemispheric and global monthly temperature anomaly series produced by the Climate Research Unit of the University of East Anglia (CRUTEM4 database) and more recently by the Berkeley Earth Surface Temperature consortium (BEST database). We first fit the data in 1850-2010 with polynomials of degrees 1 to 9 and compare it with exponential fit by the adjusted R-squared criterion that takes into consideration the number of free parameters of the model. In all the cases considered, the adjusted R-squared values for polynomials are larger than for the exponential as soon as the degree exceeds 1 or 2. The polynomial fits become even more satisfactory as soon as degree 5 or 6 is reached. Extrapolations of these trends outside of the data domain show quick divergence. For example, the CRUTEM4vNH fit in the decade 2010-2020, for degrees 2 to 5, rises steeply then, for degrees 6 to 9, reverses to steep decreasing: the reversal in extrapolated trends arises from improved ability to fit the observed "~60-yr" wave in 150 years of data prior to 2010. The extrapolations prior to 1850 are even more erratic, linked with the increased dispersion of the early data. When focusing the analysis of fits on 1900-2010 we find that the apparent oscillations of T can be modeled by a series of linear segments: An optimal fit suggests 4 slope breaks indicating two clear transitions in 1940 and 1975, and two that are less certain in 1905 and 2005. Interestingly, the Pacific Decadal Oscillation index underwent major changes around 1940-1950 and 1974-1984, i.e. the time of the breaks in slope of the T curve, suggesting a good correlation at the multi-decadal scale between the derivatives of T and PDO index. Therefore, one may speculate that the Earth's climate system may have entered a new multi-decadal regime in the last years of the 20th century and we should expect global temperature to remain constant or decrease slightly while the PDO index remains dominantly negative up to about 2030.

Courtillot, V.; Le Moul, J.; Kossobokov, V. G.; Gibert, D.; Lopes, F.

2012-12-01

188

Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces  

NASA Technical Reports Server (NTRS)

Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

Cross, Jon B.

1990-01-01

189

Electromagnetic Pulse Propagation over Nonuniform Earth Surface: Numerical Simulation  

E-print Network

We simulate EM pulse propagation along the nonuniform earth surface using so called time-domain parabolic equation. To solve it by finite differences, we introduce a time-domain analog of the impedance boundary condition and a nonlocal BC of transparency reducing open computational domain to a strip of finite width. Numerical examples demonstrate influence of soil conductivity on the wide-band pulse waveform. For a high-frequency modulated EM pulse, we develop an asymptotic approach based on the ray structure of the monochromatic wave field at carrier frequency. This radically diminishes the computation costs and allows for pulsed wave field calculation in vast domains measured by tens of thousands wavelengths.

Alexei V. Popov; Vladimir V. Kopeikin

2007-04-14

190

Surface Impedance of the High Temperature Superconductors  

NASA Astrophysics Data System (ADS)

The surface impedance Z_{ rm s} of the new high temperature superconductors has been measured using copper TE_{011 } cylindrical resonance cavities operating between 60-150 GHz. The materials studied are YBa _2Cu_3O_ {7-delta} and Tl_2 Ba_2CaCu_2 O_8. Thin films of Tl _2Ba_2CaCu _2O_8 and both ceramic and thin films of YBa_2Cu _3O_{7-delta} were measured. The ceramic YBa_2Cu _3O_7^ecimens, at low temperatures, have a surface resistance several orders of magnitude larger than the thin film samples. This is due to the unoriented nature of the ceramics and the large number of weakly coupled grains. Also, the early YBa _2Cu_3O_7 c-axis oriented thin films were found to have a linearly temperature dependent surface resistance and a quadratically temperature dependent surface reactance at low temperature. This temperature dependence is unlike s-wave BCS behavior and is indicative of either the presence of nodes in the energy gap or an extrinsic loss mechanism. However, higher quality YBa_2Cu_3 O_7 c-axis thin films did not display a similar temperature dependence. These high quality films reached the sensitivity limit of the experiment and the low temperature response was temperature independent. The temperature dependence of R_{rm s} and X_{rm s} obtained on the earlier films was due to material defects, most notably weak coupling between the superconducting grains in the film. Studies on both the earlier and later high quality YBa_2Cu_3 O_7 films show that the surface resistance scales as the frequency squared (i.e. R _{rm s}~omega^2 ), indicating that both the extrinsic and intrinsic mechanisms measured scale as omega^2 . High quality in-situ laser deposited c-axis oriented YBa_2Cu_3O _7 thin films were measured extensively at 100 GHz. Radiation leakage through the film is important in the normal state and close to T_{ rm c} and certain corrections were made for this leakage. The results of these measurements are compared to detailed calculations based on a BCS theory for a 2-D superconductor which includes finite mean free path effects. The results indicate a gap which opens more rapidly than a weak coupling BCS superconductor as T/T _{rm c} decreases. We obtain a gap of 2Delta(0)/k _{rm B}T_ {rm c}~eq 5 which is larger than the weak coupling BCS value of 3.52. In addition, our results are consistent with a nodeless gap. The Tl_2Ba_2 CaCu_2O_8 films were also measured at 100 GHz and corrections were made for radiation leakage. The results were compared to the YBa_2Cu_3 O_7 films and showed very similar normalized surface resistances.

Drabeck, Lawrence Milton

191

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2  

E-print Network

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2 and Bruce J; published 17 June 2003) We argue that Earth's short-term temperature anomalies and the solar flare data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean

Scafetta, Nicola

192

A global monthly sea surface temperature climatology  

Microsoft Academic Search

The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio

Dennis J. Shea; Keyin E. Trenberth; Richard W. Reynolds

1992-01-01

193

Martian Meteorites Record Surface Temperatures on Mars  

NSDL National Science Digital Library

This site from Planetary Science Research Discoveries at the University of Hawaii uses recent research on using the ages of Martian meteorites to explore the history of surface temperature on Mars. Results of geochemical analyses from two very different meteorites indicate that Mars has experienced only very brief warm, wet periods during the past 4 billion years. Photographs, satellite images, thin sections, and graphs help illustrate the research.

G. Jeffrey Taylor

194

Earthquake Lights: Time-dependent Earth Surface - Ionosphere Coupling Model  

NASA Astrophysics Data System (ADS)

Co-seismic luminescence, commonly referred to as Earthquake lights (EQLs), is an atmospheric luminous phenomenon occurring during strong earthquakes and lasting from a fraction of a second to a few minutes [e.g., Derr, J. S., Bull. Seismol. Soc. Am., 63, 2177, 1973; St-Laurent, F., et al., Phys. Chem. Earth, 31, 305, 2006; Herauld and Lira, Nat. Hazards Earth Syst. Sci., 11, 1025, 2011]. Laboratory experiments of Freund, F. T., et al. [JGR, 105, 11001, 2000; JASTP, 71, 1824, 2009, and references therein] demonstrate that rocks subjected to stress force can generate electric currents. During earthquakes these currents can deliver significant amounts of net positive charge to the ground-air interface leading to enhancements in the electric field and corona discharges around ground objects [Freund et al., 2009]. The eyewitness reports [Herauld and Lira, 2011] indicate similarities of the blue glow observed during EQLs to St. Elmo's fire observed during thunderstorms around wing tips of airplanes or around the tall masts of sailing ships [e.g., Wescott, E.M., et al., GRL, 23, 3687, 1996]. Recent work indicates that the vertical currents induced in the stressed rock can map to ionospheric altitudes and create 10s of % variations in the total electron content in the Earth's ionosphere above the earthquake active region [Kuo, C. L., et al., JGR, 116, A10317, 2011]. The magnitudes of the vertical currents estimated by Kuo et al. [2011] based on work by Freund et al. [2009] range from 0.01 to 10 ?A/m2. In this talk we report results from a new time-dependent model allowing to calculate currents induced in the ambient atmosphere and corona currents under application of vertical stressed rock currents with arbitrary time variation. We will report test results documenting the model performance under conditions: (1) relaxation toward the classic global electric circuit conditions in fair weather regions when ionosphere is maintained at 300 kV with respect to the ground; (2) relaxation toward the steady state conditions when the earth-air surface charge is maintained by balance of the current induced by stressed rock and ambient atmospheric current [Kuo et al., 2011]; and (3) a 2 min duration model episode in which the stressed rock current reaches value of 0.4 ?A/m2 producing electric fields at the ground on the order of 0.5 kV/cm leading to an additional injection of positive corona current. One of the interesting results of this modeling is that the reduced electric field (i.e., field normalized by air density) remains low at the ground-air interface due to the injection of the positive corona charge and at high altitudes due to the naturally high conductivity of the Earth's atmosphere. At the intermediate altitudes in clear air above earthquake region the reduced electric field can dynamically reach values exceeding both relativistic (~2 kV/cm when scaled to the ground level) and conventional (~30 kV/cm ground value) breakdown thresholds. The exact geometry would depend on the spatial extent of the earthquake active region, ambient atmospheric conductivity and the time dynamics of the driving stress rock current. We suggest that the enhancements of the reduced electric field in clear air at high altitudes in the Earth atmosphere is a likely scenario leading to transient (sub-second duration) flashes some time observed during earthquakes [Herauld and Lira, 2011].

Pasko, V. P.

2012-12-01

195

High temperature low friction surface coating  

DOEpatents

A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

Bhushan, Bharat (Watervliet, NY)

1980-01-01

196

MODIS Surface Temperatures for Cryosphere Studies (Invited)  

NASA Astrophysics Data System (ADS)

We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

2013-12-01

197

High-Temperature Sprayable Phosphor Coating Developed for Measuring Surface Temperatures  

NASA Technical Reports Server (NTRS)

The use of phosphor thermography for noncontact temperature measurements in harsh environments has been proven over the last decade, but it has suffered from difficult application procedures such as vapor deposition or sputtering techniques. We have developed a high-temperature-sensitive paint that is easily applied with commercially available paint-spraying equipment and have successfully demonstrated it to temperatures up to 1500 C. Selected phosphors have also shown measurable signals to 1700 C, thus allowing a combination of phosphors to be used in high-temperature binders to make surface temperature measurements from ambient to over 1500 C. Phosphor thermography is an optical technique that measures the time response of fluorescence light, which is a function of the phosphor temperature. The phosphors are excited with short wavelength light (ultraviolet or blue), and they emit light at a longer wavelength. This technique has a benefit over other temperature measurements, such as thermocouples and infrared thermography, in difficult environments such as high blackbody backgrounds, vibration, flames, high electromagnetic noise, or where special windows may be needed. In addition, the sprayable phosphor paints easily cover large or complicated structures, providing full-surface information with a single measurement. Oak Ridge National Laboratories developed and tested the high-temperature binders and phosphors under the direction of the NASA Glenn Research Center. Refractory materials doped with rare earth metals were selected for their performance at high temperature. Survivability, adhesion, and material compatibility tests were conducted at high temperatures in a small furnace while the fluorescent response from the phosphors was being measured. A painted sample in a furnace with a clearly visible fluorescing dot excited by a pulsed laser is shown. Measuring the decay time of this fluorescence yields the surface temperature. One new paint was recently tested in a rocket test stand at Glenn. The floor of a square duct nozzle was painted, and full-field lifetime decay measurements were acquired for multiple firings of the rocket. Good agreement with predicted results was obtained, matching temperature gradients along the length of the nozzle and clearly showing shock structures. These good results were very satisfactory given that the measurements were made looking through the combustion plume. Infrared pyrometry was incapable of making the surface measurements because of the interference from the rocket exhaust, which contaminated the infrared signature.

Bencic, Timothy J.

2003-01-01

198

Hot as You Like It: Models of the Long-term Temperature History of Earth Under Different Geological Assumptions  

NASA Astrophysics Data System (ADS)

The long-term temperature history of the Earth is a subject of continued, vigorous debate. Past models of the climate of early Earth that utilize paleosol contraints on carbon dioxide struggle to maintain temperatures significantly greater than 0C. In these models, the incoming stellar radiation is much lower than today, consistent with an expectation that the Sun was significantly fainter at that time. In contrast to these models, many proxies for ancient temperatures suggest much warmer conditions. The surface of the planet seems to have been generally free of glaciers throughout this period, other than a brief glaciation at ~2.9 billion years ago and extensive glaciation at ~2.4 billion years ago. Such glacier-free conditions suggest mean surface temperatures greater than 15C. Measurements of oxygen isotopes in phosphates are consistent with temperatures in the range of 20-30C; and similar measurements in cherts suggest temperatures over 50C. This sets up a paradox. Models constrained by one set of geological proxies cannot reproduce the warm temperatures consistent with another set of geological proxies. In this presentation, we explore several potential resolutions to this paradox. First, we model the early Earth under modern-day conditions, but with the lower solar luminosity expected at the time. The next simulation allows carbon dioxide concentrations to increase up to the limits provided by paleosol constraints. Next, we lower the planet's surface albedo in a manner consistent with greater ocean coverage prior to the complete growth of continents. Finally, we remove all constraints on carbon dioxide and attempt to maximize surface temperatures without any geological constraints on model parameters. This set of experiments will allow us to set up potential resolutions to the paradox, and to drive a conversation on which solutions are capable of incorporating the greatest number of geological and geochemical constraints.

Domagal-Goldman, S.; Sheldon, N. D.

2012-12-01

199

Bioeffectiveness of Cosmic Rays Near the Earth Surface  

NASA Astrophysics Data System (ADS)

Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October, 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA).A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. Calculations of the total flux of particles with the greatest bioeffectiveness and ambient dose equivalent neutron fluxes in different energy ranges showed that taking into account the duration of all cases GLE (19, 22, 24 October 1989), the cellular cultures were irradiated by ambient dose equivalent equal 217 microSv cm^2, which corresponds to a little less than half of the radiation dose astronauts during the day in Earth orbit (Reitz et.all, 2005; Semkova et al, 2012) and more than the average dose received by pilots per flying hour in 1997 (2.96 mSv h -1) (Langner et all, 2004). These doses are sufficient to cause genetic damages as material for the variability and the subsequent evolution of biological systems. Results of experiments conducted on cellular cultures during a great solar proton events showed that the main damages of the genetic material in the cellular nuclei appeared with increasing of the spectral hardness of solar protons that corresponded to the arrival of the particles with energies > 850 MeV in the near Earth space. The analysis shows that the prevalence of certain forms of congenital malformations in children (CDF) at high latitudes was associated with increases in fluxes of CR and with solar proton events accompanied b

Belisheva, N. K.

2014-10-01

200

Five Years of Monitoring Mars' Daytime Surface Temperatures (Animation)  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] Animation

This movie shows the daytime temperature of the surface of Mars as measured by the Thermal Emission Spectrometer instrument on NASA's Mars Global Surveyor orbiter. These temperatures clearly show the growth and retreat of the martian northern and southern polar ice caps. The caps grow in winter and are composed of carbon dioxide ice with temperatures as low as minus 125 degrees Celsius (minus 195 degrees Fahrenheit). In the summer the caps retreat to relatively small areas around the poles. The movie also demonstrates the large difference in temperatures between the northern hemisphere's summer (beginning when solar longitude, or Ls, is 90 degrees) and the southern hemisphere's summer (beginning when Ls is 270 degrees). This difference is because the orbit of Mars around the Sun is more elliptical than Earth's orbit. As on Earth, a hemisphere's summer is when that hemisphere is tilted toward the Sun, but on Mars, the planet's distance from the Sun varies much more than on Earth. Mars is closest to the Sun, and therefore warmest, during the southern summer season. In northern summer, when Mars' northern hemisphere is tilted toward the Sun, the planet is farther from the Sun.

Seasons on Mars are determined by the position of Mars in its orbit around the Sun. The position is measured in degrees of solar longitude (Ls) around the orbit, beginning at 0 degrees Ls at the northern spring equinox, progressing to 90 degrees Ls at the start of northern summer, 180 degrees Ls at the fall equinox, 270 degrees Ls at the start of northern winter, and finally back to 360 degrees, or 0 degrees, Ls at the spring equinox.

The Thermal Emission Spectrometer is operated by a team led at Arizona State University, Tempe. Mars Global Surveyor left Earth on Nov. 7, 1996, and began orbiting Mars on Sept. 12, 1997. JPL, a division of the California Institute of Technology, Pasadena, manages Mars Global Surveyor for NASA's Science Mission Directorate, Washington.

2005-01-01

201

Speciation of adsorbed yttrium and rare earth elements on oxide surfaces  

E-print Network

Speciation of adsorbed yttrium and rare earth elements on oxide surfaces Wojciech Piasecki, Dimitri 10 June 2008 Abstract The distribution of yttrium and the rare earth elements (YREE) between natural. INTRODUCTION The relative abundances of yttrium and the rare earth elements (YREE) are widely used tracers

Sverjensky, Dimitri A.

202

Earth surface effects on active faults: An eigenvalue asymptotic analysis  

NASA Astrophysics Data System (ADS)

We study in this paper an eigenvalue problem (of Steklov type), modeling slow slip events (such as silent earthquakes, or earthquake nucleation phases) occurring on geological faults. We focus here on a half space formulation with traction free boundary condition: this simulates the earth surface where displacements take place and can be picked up by GPS measurements. We construct an appropriate functional framework attached to a formulation suitable for the half space setting. We perform an asymptotic analysis of the solution with respect to the depth of the fault. Starting from an integral representation for the displacement field, we prove that the differences between the eigenvalues and eigenfunctions attached to the half space problem and those attached to the free space problem, is of the order of d-2, where d is a depth parameter: intuitively, this was expected as this is also the order of decay of the derivative of the Green's function for our problem. We actually prove faster decay in case of symmetric faults. For all faults, we rigorously obtain a very useful asymptotic formula for the surface displacement, whose dominant part involves a so called seismic moment. We also provide results pertaining to the analysis of the multiplicity of the first eigenvalue in the line segment fault case. Finally we explain how we derived our numerical method for solving for dislocations on faults in the half plane. It involves integral equations combining regular and Hadamard's hypersingular integration kernels.

Ionescu, Ioan R.; Volkov, Darko

2008-10-01

203

The international surface temperature initiative's global land surface databank  

NASA Astrophysics Data System (ADS)

The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

2013-09-01

204

Observations of Lightning on Earth from the Lunar Surface  

NASA Technical Reports Server (NTRS)

The NASA Optical Transient Detector (OTD) launched into a 70deg inclination orbit in April 1995 aboard the MicroLab-1 satellite and the Lightning Imaging Sensor (LIS) launched into a 35deg inclination orbit in November 1997 (and still operating today) aboard the Tropical Rainfall Measuring Mission have produced the most comprehensive global observations of lightning activity on Earth. The OTD collected data for 5-yr from an altitude of 740 km while the LIS, in its 10th year of operations, is still collecting data from its current altitude of 402 km. From these altitudes the OTD observes an individual storm within its field of view for approx.3 min and the LIS for approx.90 sec as the satellites orbit the earth. Figures 1-4 show the combined LIS/OTD distribution of lightning for day and night during the Northern Hemisphere warm season from April through August (Fig. 1,2) and the cool season from October through February (Fig. 3,4) as might be observed from the lunar surface (12-h daylight and 12-h nighttime observations). The day and night plots are for the twelve hour periods centered on local noon and midnight. The total viewtime of the global lightning activity is 200 hours or less, depending on latitude (Fig. 5). Most of the observed lightning occurs over the northern hemisphere land areas as reported in previous studies. More lightning activity is seen at the higher northern latitudes during the day. The greatest lightning maxima occurs in the southeastern US, during the day. The corresponding region at night shows much less lightning activity. In contrast, there is a maxima in lightning activity at night over the high Plains area of the U.S. This region had lower lightning rates during the daytime period. During the cold season, the southern hemisphere has significantly more lightning. The maxima in Central Africa is still present, and a secondary maxima is observed in South Africa. In South America, the maxima in Argentina occurs at night in association with large-scale mesoscale convective storm complexes. This is the region on the earth having the greatest frequency of extreme storms with flash rates exceeding 1000 flashes/min. daytime maxima is seen extending from Northern Argentina to Brazil. In the US., the Gulf of Mexico and the Gulf Coast states exhibit a maximum in lightning activity both day and night.

Goodman, S. J.; Buechler, D. E.; Christian, H. J., Jr.; Stahl, H. P.

2007-01-01

205

Low temperature magnetoelectric measurements on rare earth substituted bismuth layered structure ferroelectromagnetic ceramic  

Microsoft Academic Search

Rare earth (La, Sm. Gd and Dy) substituted five-layered Bi6Fe2Ti3O18 (BFT) compounds were prepared by solid-state route. Room temperature and low temperature magnetoelectric measurements were performed on these samples. The variation of magnetoelectric susceptibility (dE\\/dH) with the applied magnetic field shows a signature of the presence of rare earth ions in the compound. The low temperature magnetoelectric measurements are corroborated

N. Venkata Prasad; G. Subramanya Kumar

2004-01-01

206

Low Temperature Surface Carburization of Stainless Steels  

SciTech Connect

Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels Demonstration of LTCSS ability for a variety of different component shapes and sizes Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys Thermodynamic modeling to explain the high degree of carbon solubility possible in austenitic grades under the LTCSS process and experimental validation of model results Corrosion testing to determine the corrosion resistance improvement possible from the LTCSS process Erosion testing to determine the erosion resistance improvement possible from the LTCSS process Wear testing to quantify the wear resistance improvement possible from the LTCSS process Fatigue testing for quantifying the extent of improvement from the LTCSS process Component treating and testing under simulated and in-line commercial operations XRD verified expanded austenite lattice, with no evidence of carbide precipitation. Carbon concentration profiles via Auger and electron dispersion spectroscopy (EDS) showed carbon levels in excess of 12 at. % in treated, type 316 SS. Scanning electron microscopy (SEM) of pulled-to-failure treated tensile specimens showed slip bands and no de-cohesion of the treated layer, verifying that the layer remains ductile. Compressive stresses in excess of 2 GPa (300 ksi) have been calculated at the surface of the case. Phase diagram (CALPHAD) (ThermoCalc) and Wagner dilute solution thermodynamic models were developed that calculate the solubility of carbon in austenite as a function of alloying content for the process time and temperature. Several commercial alloys have been modeled, and the model has been used to design experimental alloys with enhanced affinity for carbon solubility at treatment temperatures. Four experimental alloys were melted, rolled, and manufactured into test specimens, and the LTCSS treatment indicated successfully enhanced results and validated the predictions based on thermodynamic modeling. Electrochemical polarization curves show a 600 to 800 mV increase in pitting potential in treated (900-1000 mV) versus non-treated (200-300 mV) type 316 in chloride solutions. Treated 316L showed crevice-corrosion behavior similar to that of Ti-6Al-4V and Hastelloy C22. Cavitation tests showed significant increases in cavitatio

Collins, Sunniva R.; Heuer, Arthur H.; Sikka, Vinod K.

2007-12-07

207

Cylinder surface, temperature may affect LPG odorization  

SciTech Connect

A study of possible odorant fade in propane by the Arthur D. Little Co. (Boston) has indicated that oxidation of interior surfaces of LPG containers may cause the odorant, ethyl mercaptan, to fade. The oxidation, ferous oxide, is a black, easily oxidizable powder that is the monoxide of iron. The study, contracted for by the Consumer Product Safety Commission (CPSC), is part of that agency's study of residential LP-gas systems. Another study is currently underway by an NLPGA task force headed by Bob Reid of Petrolane (Long Beach, Calif.). It may not be finished until the end of next year. Recently, the Propane Gas Association of Canada completed a study of odorant fade with the conclusion that much more study is needed on the subject. In addition to the cylinder surface problem, the CPSC study indicated that ambient temperatures might also affect the presence of odorant in product. This article reviews some of the results.

McWilliams, H.

1988-01-01

208

High temperature surface protection. [10 gas turbines  

NASA Technical Reports Server (NTRS)

Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed. Coatings covered range from simple aluminides formed by pack cementation to the more advanced physical vapor deposition overlay coatings and developmental plasma spray deposited thermal barrier coatings.

Levine, S. R.

1978-01-01

209

A global monthly sea surface temperature climatology  

NASA Technical Reports Server (NTRS)

The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

1992-01-01

210

Sea Surface Temperature and Vegetation Index  

NASA Technical Reports Server (NTRS)

This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values.

2002-01-01

211

The Clear-Sky Greenhouse Effect Sensitivity to a Sea Surface Temperature Change  

Microsoft Academic Search

The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment (ERBE). Considering geographical distributions for July 1987, the relation between the SST, the greenhouse efect G (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content

J. Ph. Duvel; F. M. Bron

1991-01-01

212

Surface Temperature Humidity Reference System Handbook - November 2005  

SciTech Connect

The Surface Temperature and Humidity Reference (SURTHREF) system is intended to provide accurate reference values of ambient temperature and relative humidity for comparison with radiosonde prelaunch values.

MT Ritsche

2005-11-30

213

The Propagation of Radio Waves over the Surface of the Earth and in the Upper Atmosphere  

Microsoft Academic Search

Simple formulas and graphs are given which represent the ground-wave field intensity at the surface of the earth as radiated from a short vertical antenna at the surface of the earth. The theory is compared to some experimental results reported by other investigators to determine its range of application. The diffraction formula given is theoretically valid only at the lower

K. A. Norton

1936-01-01

214

VQ6. Earth Surface, Snow/Ice and Shallow Water Benthic  

E-print Network

, algae,SAV, etc) of the shallow water regions of the Earth? What fundamentally new concepts for mineral of the terrestrial surface is not accurately known globally. Surface rock and soil composition is closely linked composition (sand, rock, mud, coral, algae,SAV, etc) of the shallow water regions of the Earth? Science

Christian, Eric

215

Science Syllabus for Middle and Junior High Schools. Block D, The Earth's Changing Surface.  

ERIC Educational Resources Information Center

This syllabus begins with a list of program objectives and performance criteria for the study of three general topic areas in earth science and a list of 22 science processes. Following this information is a listing of concepts and understandings for subtopics within the general topic areas: (1) the earth's surface--surface features, rock

New York State Education Dept., Albany. Bureau of General Education Curriculum Development.

216

Radon progeny in hydrometeors at the earth's surface.  

PubMed

During atmospheric thermal inversions, dew and hoarfrost concentrate gamma emitting radionuclides of the short-lived (222)Rn progeny ((214)Pb and (214)Bi), causing an increase in the total natural gamma background from the ground. To highlight this phenomenon, a volcanic zone of high (222)Rn flux was studied during the winter season 2010-11. High-specific short-lived radon progeny activities up to 122 Bq g(-1) were detected in hydrometeors forming at the earth's surface (ESHs), corresponding to a mean increase of up to 17 % of the normal gamma background value. A theoretical model, depending on radon flux from soil and predicting the radon progeny concentrations in hydrometeors forming at the ESHs is presented. The comparison between model and field data shows a good correspondence. Around nuclear power plants or in nuclear facilities that use automatic NaI or CsI total gamma spectroscopy systems for monitoring radioactive contamination, hydrometeors forming at the ESHs in sites with a high radon flux could represent a relevant source of false alarms of radioactive contamination. PMID:22039270

Voltaggio, M

2012-07-01

217

Global Interannual Variations in Sea Surface Temperature and Land Surface Vegetation, Air Temperature, and Precipitation.  

NASA Astrophysics Data System (ADS)

Anomalies in global vegetation greenness, SST, land surface air temperature, and precipitation exhibit linked, low-frequency interannual variations. These interannual variations were detected and analyzed for 1982-90 with a multivariate spectral method. The two most dominant signals for 1982-90 had periods of about 2.6 and 3.4 yr. Signals centered at 2.6 years per cycle corresponded to variations in the El Nio-Southern Oscillation index and explained about 28% of the variance in anomalies of SST, land surface air temperature, precipitation, and vegetation; these signals were most pronounced in 1) SST anomalies in the eastern equatorial Pacific Ocean, 2) land surface vegetation and precipitation anomalies in tropical and subtropical regions, and 3) land surface vegetation, precipitation, and temperature anomalies in North America. Signals at 3.4 years per cycle corresponded to variations in the North Atlantic oscillation index and explained 8.6% of the variance in the combined datasets; their occurrence was most pronounced in 1) Atlantic SST anomalies, 2) in land surface temperature and vegetation anomalies in Europe and eastern Asia, and 3) in precipitation and vegetation anomalies in sub-Saharan Africa, southern Africa, and eastern North America. Anomalies in vegetation were positively related to anomalies in precipitation throughout the Tropics and subtropics and in midlatitudes in the central parts of continents. Anomalies in vegetation and temperature were positively linked in coastal temperate climates such as in Europe and eastern Asia. These associations between temperature and vegetation may be explained by the sensitivity of the length of growing season to variations in temperature.

Los, Sietse O.; Collatz, G. James; Bounoua, Lahouari; Sellers, Piers J.; Tucker, Compton J.

2001-04-01

218

Activity in mantle could influence Earth's surface features  

NASA Astrophysics Data System (ADS)

Convection in the Earth's mantle can cause crustal plates to be pushed aside or even reverse direction, according to a new paper, whose lead author is Scott King, professor of Earth and atmospheric sciences at Purdue University in West Lafayette, Indiana. King said that while other theories consider plates as essentially flat objects that break into smaller pieces or slide under each other during a collision, this theory focuses more attention on movement in the Earth's depths.

Showstack, Randy

219

Surface formation of HCOOH at low temperature  

NASA Astrophysics Data System (ADS)

The production of formic acid (HCOOH) in cold and hot regions of the interstellar medium is not well understood. Recent gas-phase experiments and gas-grain models hint at a solid-state production process at low temperatures. Several surface reaction schemes have been proposed in the past decades, even though experimental evidence for their efficiency was largely lacking. The aim of this work is to give the first experimental evidence for an efficient solid-state reaction scheme providing a way to form HCOOH under astronomical conditions. Several surface reaction channels have been tested under fully controlled experimental conditions by using a state-of-the-art ultrahigh vacuum set-up through co-deposition of H atoms and CO:O2 mixtures with 4:1, 1:1 and 1:4 ratios. During deposition spectral changes in the ice are monitored by means of a Fourier transform infrared (FTIR) spectrometer in reflection absorption infraRed (RAIR) mode. After co-deposition a temperature programmed desorption (TPD) experiment is performed and gas-phase molecules are detected by a quadrupole mass spectrometer (QMS). Formation of HCOOH is observed at low temperatures mainly through hydrogenation of the HO-CO complex, while reactions with the HCO radical as intermediate are found to be inefficient. The HO-CO complex channel, which was previously not considered as an important HCOOH formation route, can explain the presence of HCOOH in dense cold clouds, at the beginning of the warm-up phase of a protostar, and, therefore, is likely to be astrochemically relevant.

Ioppolo, S.; Cuppen, H. M.; van Dishoeck, E. F.; Linnartz, H.

2011-01-01

220

Long-term changes in net radiation at the Earth's surface: uncertainties and implications  

NASA Astrophysics Data System (ADS)

Net radiation at the earth's surface plays a key role in terrestrial water, energy and carbon fluxes, but there is large uncertainty in its variation over decadal time scales. Globally, surface and satellite measurements indicate global dimming in solar radiation over many regions since the mid-20th century and then brightening over recent decades due to changes in cloudiness and aerosols. Changes in longwave radiation are driven by long-term increases in greenhouse gases and inter-annual variations in short-lived constituents such as dust and black carbon. These increases are partially offset, however, by increases in surface temperature. Current estimates of these components of the net radiation balance from satellite remote sensing are inconsistent because of inhomogeneities from changes in satellites, sensor calibration, retrieval algorithms, and so on, in addition to systematic biases. Estimates from direct ground observations are hampered by sparse spatial networks and often short-term records, and estimates based on denser networks of meteorological data are affected by errors in empirical radiation models. Some of the largest uncertainties are in the characterization of the global distribution and temporal changes in surface shortwave albedo and infrared emissivity, especially in regions with seasonal and patchy snow cover. This paper presents comparisons of legacy satellite-derived datasets (e.g. ISCCP, GEWEX/SRB) and recently developed datasets based on updated algorithms and homogenized data sources (e.g. NASA Princeton-Measures, HIRS) in the context of long-term changes in the net radiation balance at the earth's surface. We compare these with ground observations and empirical estimates based on meteorological data from in-situ sources and reanalysis. In particular we focus on the uncertainties in the magnitude and variation in surface albedo and emissivity, and their contribution to uncertainties in net radiation. We discuss the implications of these uncertainties on estimates of long-term changes in the terrestrial water cycle and trends in drought severity.

Sheffield, Justin; Coccia, Gabriele; Siemann, Amanda; Wood, Eric

2014-05-01

221

TWO SURFACE TEMPERATURE RETRIEVAL METHODS COMPARED OVER AGRICULTURAL LAND  

Technology Transfer Automated Retrieval System (TEKTRAN)

Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of esti...

222

Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

223

Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

224

Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

225

Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

226

Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

227

Earth's surface fluid variations and deformations from GPS and GRACE in global warming  

E-print Network

Global warming is affecting our Earth's environment. For example, sea level is rising with thermal expansion of water and fresh water input from the melting of continental ice sheets due to human-induced global warming. However, observing and modeling Earth's surface change has larger uncertainties in the changing rate and the scale and distribution of impacts due to the lack of direct measurements. Nowadays, the Earth observation from space provides a unique opportunity to monitor surface mass transfer and deformations related to climate change, particularly the global positioning system (GPS) and the Gravity Recovery and Climate Experiment (GRACE) with capability of estimating global land and ocean water mass. In this paper, the Earth's surface fluid variations and deformations are derived and analyzed from global GPS and GRACE measurements. The fluids loading deformation and its interaction with Earth system, e.g., Earth Rotation, are further presented and discussed.

Jin, Shuanggen; Feng, Guiping

2011-01-01

228

Understanding and predicting changes in North Atlantic Sea Surface Temperature  

E-print Network

Understanding and predicting changes in North Atlantic Sea Surface Temperature by S. G. Yeager B and predicting changes in North Atlantic Sea Surface Temperature written by S. G. Yeager has been approved associated with sea surface temperature variability in the North Atlantic are explored using observation

Fox-Kemper, Baylor

229

Satellite Sensed Skin Sea Surface Temperature  

NASA Technical Reports Server (NTRS)

Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to be confidently detected. Some of these activities are focussed to develop and deploy instrumentation suitable for the collection of precise in situ measurements of the SSST which can be used to improve the accuracy of satellite measurements, while others develop techniques to generate improved global analyses of sea surface temperature using historical data.

Donlon, Craig

1997-01-01

230

Surface Color and Effect of Temperature Change  

NSDL National Science Digital Library

This activity builds the basic understanding that the heating (indicated by temperature differences) of an object is related to the objects surface color. Materials required for this investigation include a pair of thermometers, light and dark construction paper, a heat lamp, and two foam cups and two large containers. The resource includes teaching tips and questions to guide student discussion. This is chapter 3 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.

231

Linkages between Surface Temperature and Tropospheric Ozone  

NSDL National Science Digital Library

This lesson is designed to help students gain knowledge in using the MY NASA DATA Live Access Server (LAS) to obtain a microset of data, in using Excel to graph the data, then using the graphs to investigate the relationship between surface temperature and tropospheric ozone. They will also analyze changes in tropospheric ozone and then hypothesize about the consequences of these changes. The measurements are taken over Chattanooga, TN. Students are provided content-related activities to enhance background knowledge, and then are provided detailed instructions on how to download data from the MY NASA DATA Live Access Server (LAS) and to use Excel to graph the data. The lesson provides detailed procedure, related links and sample graphs, follow-up questions and extensions, and Teacher Notes.

2010-03-14

232

Sea surface temperatures from VAS MSI data  

NASA Technical Reports Server (NTRS)

A procedure is developed for estimating sea surface temperatures from multispectral image data acquired from the VISSR atmospheric sounder on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys. The empirical regression equations are then used to produce daily regional analyses of SST. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the SST Intercomparison Workshop Series. Workshop results showed VAS SST's have a scatter of 0.8-1.0 C and a slight warm bias with respect to the other measurements of SST. The VAS SST's show no discernible bias in the region of El Chichon volcanic aerosol cloud.

Bates, J. J.

1984-01-01

233

Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements  

NASA Technical Reports Server (NTRS)

A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

1993-01-01

234

Gravitational large bolides influence on the Earth's surface  

NASA Astrophysics Data System (ADS)

The authors consider the zones of elongate negative gravity anomalies that accompany some astroblemes and conclude that the formation of such "tails" associated with the energy influence of the asteroids. After analyzing the morphological elements of Popigai crater and concluding that the ballistic trajectory of Popigai cosmic body (CB) had orientation from SE to NW [1], the authors found that this direction corresponds to the position of the linear zone of negative gravity anomalies [2]. Earlier, in the analysis of this zone with using a gravity model EGM08, Czech researchers concluded that it was formed by the fall of three satellites of Popigai CB. However, traces of large impact events here are unknown and unlikely to be detected. Earlier analysis of the Russian Gravity maps 2010, scale 1:2500,000 [2], showed the presence of gravity tails for all large craters (D ? 15 km) produced by bodies for which we can assume a trajectory with a relatively low angle to the Earth's surface. However, the proven structures of large diameter are quite few in Russia. That is why it is important to check this pattern on a global scale. Indeed, the gravity imprints of CB trajectories show up in the new shaded model of "Global marine gravity" [3] for hundreds of astroblemes not specified in [2]. The data obtained can be an additional basis for definition of the CB trajectory direction along with other morphological elements of astroblemes considered by the authors earlier [4]. Furthermore, gravity can be useful to prove the impact origin of many less certain structures, such as submerged structures. Visual observation of submerged craters is difficult, and analysis of geophysical evidence in this case is simpler than the analysis of morphology. The surface gravity anomalies mimic round shape of craters and it can be assigned to the impact category in the presence of tails, even if in the absence of data, which can reveal rootless anomalies. Question "what are the linear tail zones of negative gravity anomalies and how were they formed" is waiting for his answer. Taking into account the often-observed bends of tail-shaped depressions, a more likely explanation would be in terms of gradual destruction of the body on its way through the atmosphere. As a result, there forms a chain of smaller fragments and particles after the body (the tail), which impacts a longer area of land. References 1. Khazanovitch-Wulff K.K., Mikheeva A.V. and Kuznetsov V.F. Structural elements of some astroblemes indicating directions of cosmic body trajectories // New Concepts in Global Tectonics JOURNAL, Volume 1, Number 3, p.11-19. September 2013. www.ncgt.org 2. Khazanovitch-Wulff K. K. and Mikheeva A. V. Negative gravity anomalies as the tails of astroblemes // NCGT Journal, v. 1, no. 2, p.4-15. June 2013. www.ncgt.org 3. Sandwell D.T., Smith W. H. F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. J. Geophys. Res., 2009. V.114, B01411. 4. Mikheeva A.V. The complete catalog of the Earth's impact structures - 2013. URL: labmpg.sscc.ru/impact/index1.html.

Mikheeva, Anna; Khazanovitch-Wulff, Konstantin

2014-05-01

235

Sea surface salinity has a massive influence on Earth's climate. With Aquarius, scientists will have a new way to measure that influence in a  

E-print Network

Sea surface salinity has a massive influence on Earth's climate. With Aquarius, scientists global temperatures. But when it comes to ocean salinity, the picture gets fuzzier. Researchers use surface salinity is influencing the ocean. Aquarius is poised to provide a missing link in satellite

Waliser, Duane E.

236

Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates.  

PubMed

Plate tectonics, which shapes the surface of Earth, is the result of solid-state convection in Earth's mantle over billions of years. Simply driven by buoyancy forces, mantle convection is complicated by the nature of the convecting materials, which are not fluids but polycrystalline rocks. Crystalline materials can flow as the result of the motion of defects--point defects, dislocations, grain boundaries and so on. Reproducing in the laboratory the extreme deformation conditions of the mantle is extremely challenging. In particular, experimental strain rates are at least six orders of magnitude larger than in nature. Here we show that the rheology of MgO at the pressure, temperature and strain rates of the mantle is accessible by multiscale numerical modelling starting from first principles and with no adjustable parameters. Our results demonstrate that extremely low strain rates counteract the influence of pressure. In the mantle, MgO deforms in the athermal regime and this leads to a very weak phase. It is only in the lowermost lower mantle that the pressure effect could dominate and that, under the influence of lattice friction, a viscosity of the order of 10(21)-10(22) pascal seconds can be defined for MgO. PMID:22237109

Cordier, Patrick; Amodeo, Jonathan; Carrez, Philippe

2012-01-12

237

Temperature distribution along the surface of evaporating droplets.  

PubMed

The surface temperature can significantly affect the flow field of drying droplets. Most previous studies assumed a monotonic temperature variation along the droplet surface. However, the present analyses indicate that a nonmonotonic spatial distribution of the surface temperature should occur. Three different patterns of the surface temperature distribution may appear during the evaporation process of liquid droplets: (i) the surface temperature increases monotonically from the center to the edge of the droplet; (ii) the surface temperature exhibits a nonmonotonic spatial distribution along the droplet surface; (iii) the surface temperature decreases monotonically from the center to the edge of the droplet. These surface temperature distributions can be explained by combining the evaporative cooling at the droplet surface and the heat conduction across the substrate and the liquid. Furthermore, a "phase diagram" for the distribution of the surface temperature is introduced and the effect of the spatial temperature distribution along the droplet surface on the flow structure of the droplet is discussed. The results may provide a better understanding of the Marangoni effect of drying droplets and provide a potential way to control evaporation-driven deposition as well as the assembly of colloids and other materials. PMID:24730849

Zhang, Kai; Ma, Liran; Xu, Xuefeng; Luo, Jianbin; Guo, Dan

2014-03-01

238

Barometric pressure, dry bulb temperature and vapor pressure at the lowest terrestrial site on earth, Dead Sea basin, Neve Zohar, Israel  

Microsoft Academic Search

SummaryThe Dead Sea basin is located at the lowest terrestrial site on the earth and, thereby, has the tallest atmospheric air column\\u000a above its surface. Consequently, the Dead Sea basin is expected, a priori, to have the highest terrestrial barometric pressure\\u000a and, thereby, the highest molecular oxygen density on the earth. The barometric pressure and dry bulb temperature have been

A. I. Kudish; E. G. Evseev

2006-01-01

239

Monitoring temperature and pressure over surfaces using sensitive paints  

NASA Astrophysics Data System (ADS)

Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

Guerrero-Viramontes, J. Ascencin; Moreno Hernndez, David; Mendoza Santoyo, Fernando; Morn Loza, Jos Miguel; Garca Arreola, Alicia

2007-03-01

240

The effect of Mars surface and Phobos propellant production on Earth launch mass  

NASA Technical Reports Server (NTRS)

Fuel and oxidizer produced on the surface of Mars and on the Martian Moon Phobos can reduce the cumulative mass of fuel and oxidizer which must be launched to low Earth orbit for Mars exploration missions. A scenario in which ten conjunction class trajectory missions over a twenty year period land a surface base and propellant production facilities on the Martian surface and on Phobos was examined. Production of oxygen on Phobos provides the greatest benefit. If all the propellant for Mars operations and Earth return is produced at Phobos and on Mars, a 30% reduction in cumulative low Earth orbit mass can be achieved at the end of the 20 year period.

Babb, Gus R.; Stump, William R.

1986-01-01

241

Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

2006-01-01

242

Oxidation resistance of 9-12% Cr steels: effect of rare earth surface treatment  

SciTech Connect

Medium Cr steels have been used in fossil fired power plants for many years because of their excellent high temperature stability and mechanical properties. The environment in a fossil fired power plant is extremely aggressive in terms of corrosion, especially oxidation. This is only accelerated as the operating temperature increases to 650C and beyond. For any new steel to be qualified for power plant use, in addition to adequate strength at the operating temperature, material wastage from all corrosion processes must be kept to a minimum acceptable level. The use of medium Cr steels provides a means to improve overall corrosion resistance. Three medium Cr are under development for use as high temperature power plant steels: 0.08C-(9-12)Cr-1.2Ni-0.7Mo-3.0Cu-3.0Co-0.5Ti. Oxidation tests were performed on the steels for times greater than 1000 hours in order to determine the oxidation kinetics and extent of material wastage. Also, rare earth oxides were incorporated into the outer surface layers of the steels to see if the oxidation resistance could be improved. These results will be compared to current power plant steels.

Dogan, Omer N.; Alman, David A.; Jablonski, Paul D.

2005-02-01

243

Earth  

NASA Technical Reports Server (NTRS)

The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

Carr, M. H.

1984-01-01

244

On the inhomogeneity of the transition surface layer of the solid core of the earth  

SciTech Connect

Different geophysical data and conclusions of theoretical models, which can give information about the behavior of the solid and liquid cores of the Earth as well as about the existence of a transition layer as a temperature-hysteresis region at a relatively weak first-order phase transition, are compared. It is concluded that liquid inclusions inevitably exist in this region; these inclusions are involved (due to the complex convective processes occurring in the liquid core) in the transport of light materials from some areas of the solid-core surface. The porosity and permeability of the transition layer determine the seismic acoustic inhomogeneities in these areas, which contact the convective flows in the liquid core. In particular, this explains the well-known 'east-west' effect. Obviously, the model of the crystalline core is not the only possible alternative for a model of a core with a metallic glasslike structure.

Pikin, S. A., E-mail: pikin@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2012-05-15

245

Evolution of land surface air temperature trend  

NASA Astrophysics Data System (ADS)

The global climate has been experiencing significant warming at an unprecedented pace in the past century. This warming is spatially and temporally non-uniform, and one needs to understand its evolution to better evaluate its potential societal and economic impact. Here, the evolution of global land surface air temperature trend in the past century is diagnosed using the spatial-temporally multidimensional ensemble empirical mode decomposition method. We find that the noticeable warming (>0.5 K) started sporadically over the global land and accelerated until around 1980. Both the warming rate and spatial structure have changed little since. The fastest warming in recent decades (>0.4 K per decade) occurred in northern mid-latitudes. From a zonal average perspective, noticeable warming (>0.2 K since 1900) first took place in the subtropical and subpolar regions of the Northern Hemisphere, followed by subtropical warming in the Southern Hemisphere. The two bands of warming in the Northern Hemisphere expanded from 1950 to 1985 and merged to cover the entire Northern Hemisphere.

Ji, Fei; Wu, Zhaohua; Huang, Jianping; Chassignet, Eric P.

2014-06-01

246

30 CFR 7.101 - Surface temperature tests.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Surface temperature tests. 7.101 Section 7.101...Equipment is Required 7.101 Surface temperature tests. The test for determination...2). (ii) Install sufficient temperature measuring devices to determine the...

2010-07-01

247

30 CFR 7.101 - Surface temperature tests.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Surface temperature tests. 7.101 Section 7.101...Equipment is Required 7.101 Surface temperature tests. The test for determination...2). (ii) Install sufficient temperature measuring devices to determine the...

2014-07-01

248

30 CFR 7.101 - Surface temperature tests.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Surface temperature tests. 7.101 Section 7.101...Equipment is Required 7.101 Surface temperature tests. The test for determination...2). (ii) Install sufficient temperature measuring devices to determine the...

2012-07-01

249

30 CFR 7.101 - Surface temperature tests.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Surface temperature tests. 7.101 Section 7.101...Equipment is Required 7.101 Surface temperature tests. The test for determination...2). (ii) Install sufficient temperature measuring devices to determine the...

2011-07-01

250

30 CFR 7.101 - Surface temperature tests.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Surface temperature tests. 7.101 Section 7.101...Equipment is Required 7.101 Surface temperature tests. The test for determination...2). (ii) Install sufficient temperature measuring devices to determine the...

2013-07-01

251

Specific heat anomalies at magnetic ordering temperatures of rare earth iron Laves compounds  

Microsoft Academic Search

The magnetic-ordering temperatures of rare earth and yttrium-iron Laves ; compounds have been determined by measuring the specific heat anomalies in a ; differential scanning calorimeter. The results are in general agreement with ; those deduced from magnetization measurements. The specific heat discontinuities ; at the magnetic-ordering temperatures are not consistent with the theoretical ; expressions derived for ferrites. (auth);

M. P. Dariel; U. Atzmony; R. Guiser

1974-01-01

252

Temperature and concentration dependence of hydrogen site occupancy in several rare-earth dihydrides  

SciTech Connect

Neutron inelastic scattering and diffraction techniques were used to study the hydrogen site distribution in several rare earth dihydrides as a function of temperature and concentration. For Y, La, and Ce the fraction of hydrogen on octahedral sites is approximately a constant from 15K to 200K followed by a decrease with increasing temperature. A model is presented which qualitatively explains this behavior.

Goldstone, J.A.; Eckert, J.; Richards, P.M.; Venturini, E.L.

1985-01-01

253

A free plate surface and weak oceanic crust produce single-sided subduction on Earth  

E-print Network

A free plate surface and weak oceanic crust produce single-sided subduction on Earth F. Crameri,1 P features of terrestrial plates: (1) the presence of a free deformable upper surface and (2) the presence of weak hydrated crust atop subducting slabs. We show that assuming a free surface, rather than

Kaus, Boris

254

A Look at the Berkeley Earth Surface Temperature Project  

NSDL National Science Digital Library

In this activity, students analyze a 2011 article by physicist Dr. Richard Muller addressing the climate change skeptic's claim that the scientific data used to support global warming is poor or unreliable. He headed a two-year study where his research team examined sources of data independently of climate scientists, and concluded that despite the imperfections in the available data sets, scientists have managed to avoid bias in data collection and correction. A student worksheet provides questions to guide the investigation. This activity is supported by a textbook chapter, What is Global Warming?, part of the unit, Climate Change, in Global Systems Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact.

255

Surface Temperature Assimilation in the Global Land Data Assimilation System (GLDAS)  

NASA Technical Reports Server (NTRS)

The Global Land Data Assimilation System (GLDAS) is a global land parameterization that uses prescribed meteorology as forcing in order to determine regular gridded land surface states (temperature and moisture) and other properties (e.g. water and heat fluxes). In the present experiment, the assimilation of surface skin temperature is incorporated into the land parameterizations. The meteorological forcing was derived from the Goddard Earth Observing System (GEOS-3) Data Assimilation System (DAS) for the full year of 1998 GLDAS can use several land parameterizations, but here we use the Mosaic land surface model and the Common Land Model (CLM). TOVS surface temperature observations are assimilated into GLDAS. The TOVS observations are less frequent that observations used in previous experiments (ISCCP). The purpose of this presentation is to evaluate the impact of the TOVS assimilation on both Mosaic and CLM. We will especially consider the impact of coarse temporal observations on the assimilation and bias correction.

Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Houser, Paul R.; Atlas, Robert M. (Technical Monitor)

2002-01-01

256

Technique for the Estimation of Surface Temperatures from Embedded Temperature Sensing for Rapid, High Energy Surface Deposition  

SciTech Connect

Temperature histories on the surface of a body that has been subjected to a rapid, high-energy surface deposition process can be di#14;fficult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves fitting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature {+-}~20#14;{degrees}C.

Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott A.

2014-07-01

257

Low Temperature Resistivity of Yttrium-Based Alloys Containing Small Amounts of Rare Earth Metals  

Microsoft Academic Search

The resistivity of the dilute alloys of rare earth metals with yttrium has been measured at low temperatures. The result is in qualitative agreement with the recent theories due to Kondo and others on the s--d or s--f scattering. The effective s--f exchange integrals for various rare-earth solutes have been derived from the analysis of the resistivity data and compared

Tadashi Sugawara

1965-01-01

258

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 11261135 (2009)  

E-print Network

Geomorphological Research GroupEarth Surf. Process. Landforms0197-93371096-9837Copyright 2006 John Wiley & SonsResearch ArticlesCopyright 2006 John Wiley & Sons, Ltd.John Wiley & Sons, Ltd.2006 Geospatial analysis of controls glacier activity. Copyright 2009 John Wiley & Sons, Ltd. KEYWORDS: geospatial analysis; subglacial

Briner, Jason P.

2009-01-01

259

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 10391059 (2009)  

E-print Network

Geomorphological Research GroupEarth Surf. Process. Landforms0197-93371096-9837Copyright 2006 John Wiley & Sons 2008 * Correspondence to: Carl J. Legleiter, USGS Geomorphology and Sediment Transport Laboratory, 4620 algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which

Lawrence, Rick L.

2009-01-01

260

Surface Temperature Measurement Using Hematite Coating  

NASA Technical Reports Server (NTRS)

Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

Bencic, Timothy J. (Inventor)

2015-01-01

261

Sea surface temperature as an indicator of ocean currents  

E-print Network

on composite charts represent the envelopes of the major cur- rents which are responsible for the observed distribution of sea surface temperature. This is perhaps the first in- dication of an attempt to tie together observations of sea surface temperature... by subsurface data. From these observations then, it is hoped to deter- mine something of the nature of the relationship existing between sea surface temperature patterns and currents. In addition, for specific areas and under specific condi- tions...

Chesbrough, Geoffrey Lynn

1967-01-01

262

Interdecadal changes of surface temperature since the late nineteenth century  

Microsoft Academic Search

The authors present global fields of decadal annual surface temperature anomalies, referred to the period 1951-1980, for each decade from 1881-1890 to 1981-1990 and for 1984-1993. In addition, they show decadal calendar-seasonal anomaly fields for the warm decades 1936-1945 and 1981-1990. The fields are based on sea surface temperature (SST) and land surface air temperature data. The SSTs are corrected

D. E. Parker; C. K. Folland; A. Bevan; P. D. Jones

1994-01-01

263

Examine infrared images that show variation in surface temperature  

NSDL National Science Digital Library

Find a somewhat blurry Flash animation exhibiting five years worth of surface average temperatures. Note seasonal land/water temperature contrasts. The animation can be paused and rewound to emphasize important points.

NASA Earth Observatory

264

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2010 CFR

...SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR ELECTRICALLY OPERATED TOYS OR OTHER ELECTRICALLY OPERATED ARTICLES INTENDED FOR USE BY CHILDREN...maximum acceptable surface temperatures for electrically operated toys shall be as follows: Surface type (as describedin ...

2010-01-01

265

Rare-Earth Surface Alloying: A New Phase for GdAu2 M. J. Verstraete,1,2  

E-print Network

Rare-Earth Surface Alloying: A New Phase for GdAu2 M. Corso,1 M. J. Verstraete,1,2 F. Schiller,1 M refrigeration, are made pos- sible by an unusual group of elements: the rare earths (REs). The rare earths. Gadolinium is a borderline rare earth, which is naturally ferromagnetic but can easily switch to different

266

Temperature dependent droplet impact dynamics on flat and textured surfaces  

SciTech Connect

Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

2012-03-01

267

Imaging the earth's magnetosphere - Effects of plasma flow and temperature  

NASA Technical Reports Server (NTRS)

The effects of Doppler shifting on the line centers of the magnetospheric O(+) cross section are investigated, and the resulting structure of the scattering rate as a function of bulk density is explained. Whereas the Doppler shifting frequently results in a decrease of the scattering rate, it is demonstrated that for certain drift speeds the overlap of the cross section and the solar intensity profile can lead to an increased rate, thus enhancing the relative brightness of the image above that obtained when v(p) is zero. Simulated images of the magnetosphere are obtained which are used to show quantitively how the magnetospheric image responds to variations in plasma drift speed and temperature. Changes in the brightness of the magnetospheric images also depend on the variability of the solar flux at 83.4 nm. In regions where there are plasma drifts, the brightness in the image is governed by the structure of the scattering rate, assuming a fixed temperature.

Garrido, D. E.; Smith, R. W.; Swift, D. S.; Akasofu, S.-I.

1991-01-01

268

Temperature sensitive surfaces and methods of making same  

DOEpatents

Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

2002-09-10

269

The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan  

NASA Astrophysics Data System (ADS)

Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 C which are higher than the current surface air temperature (SAT) of 23.65 C. Data from Taiwan's weather stations also show 1-1.5 C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.

Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.

2013-12-01

270

A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data  

Microsoft Academic Search

AMSR-E and MODIS are two EOS (Earth Observing System) instruments on board the Aqua satellite. A regression analysis between\\u000a the brightness of all AMSR-E bands and the MODIS land surface temperature product indicated that the 89 GHz vertical polarization\\u000a is the best single band to retrieve land surface temperature. According to simulation analysis with AIEM, the difference of\\u000a different frequencies

KeBiao Mao; JianCheng Shi; ZhaoLiang Li; ZhiHao Qin; ManChun Li; Bin Xu

2007-01-01

271

Difference characteristics of sea surface temperature observed by GLI and AMSR aboard ADEOS-II  

Microsoft Academic Search

This study compares infrared and microwave measurements of sea surface temperature (SST) obtained by a single satellite. The\\u000a simultaneous observation from the Global Imager (GLI: infrared) and the Advanced Microwave Scanning Radiometer (AMSR: microwave)\\u000a aboard the Advanced Earth Observing Satellite-II (ADEOS-II) provided an opportunity for the intercomparison. The GLI-and AMSR-derived\\u000a SSTs from April to October 2003 are analyzed with other

Kohtaro Hosoda; Hiroshi Murakami; Akira Shibata; Futoki Sakaida; Hiroshi Kawamura

2006-01-01

272

Global Sea Surface Temperature Analyses: Multiple Problems and Their Implications for Climate Analysis, Modeling, and Reanalysis  

Microsoft Academic Search

A comprehensive comparison is made among four sea surface temperature (SST) datasets: the optimum interpo- lation (OI) and the empirical orthogonal function reconstructed SST analyses from the National Centers for Environ- mental Prediction (NCEP), the Global Sea-Ice and SST dataset (GISST, version 2.3b) from the United Kingdom Meteorological Office, and the optimal smoothing SST analysis from the Lamont-Doherty Earth Observatory

James W. Hurrell; Kevin E. Trenberth

1999-01-01

273

The influence of global sea surface temperature variability on the large-scale land surface temperature  

NASA Astrophysics Data System (ADS)

In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Nio Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

2015-04-01

274

Relating Major Surface Processes to the Deep Earth The Importance of the Miocene  

NASA Astrophysics Data System (ADS)

Many global scale tectonic, oceanic and climate changes began in the Tertiary with global tectonics as the underlying driving force and changed the world. In full flower by the beginning of the Middle Miocene around 16 Ma, these changes continued through the Late Miocene into the present so we can firmly say that most of our modern world, continental glaciations excepted, began in the Middle and Late Miocene. We summarize in a flow diagram how the major earth surface processes active in the Miocene are related to the Deep Earth as understood by recent advances in seismic tomography. This 11 Ma interval had two global orogenic zones, the Alpine-Tethyan orogen from Gibraltar across southern Asia into Vietnam and around the Pacific Rim, both crustal expressions of downwellings taking place, especially in the upper mantle. These downwellings are balanced by upwellings in the lower mantle in and on the rim of the African and Pacific superplumes, which are large, low-shear velocity provinces; part of the rising plumes originated from the most extensively melted regions of the core-mantle boundary layer, D", where heat flow from the outer core is highest. Together these up-and downwellings indicate that mantle convection extended, at least periodically, through the whole mantle and reflected lateral variations in convection and heat flow in the cooling and slowly crystallizing outer core. Correlation of mantle convection with surface features is most evident in the uppermost mantle whose dynamic topography is readily reflected by the subsidence and tilting of continents moving toward the downwelling zones. Because they are closely synchronous, these two orogenic belts had enormous consequences for the earth's surface, and because they are close to us in time, they are easy to study and sample. Thus the Miocene is ideal to study for both its many global intra connections and for their link to the Deep Earth. As these two orogenies developed, they changed a global warm water ocean into our present cooler, more fragmented system with a cooler atmosphere. Higher plateaus and uplifted mountains deflected jet streams, expanded rain shadows promoting desertification, favored initial mountain glaciation, and helped cool air temperatures. Upwelling was enhanced on both sides of the Pacific basin, silica production shifted from the Atlantic to the Pacific and Indian Oceans, more mud and sand were brought to the ocean causing many passive margins to prograde, and hemipelagic mud became more abundant off continental margins. At the very end of the Miocene even the Mediterranean dried up, as it was isolated by the Alpine orogeny at Gibraltar. Onshore, epeirogenic uplift was widespread both in the interiors of the continents and along many of their margins. Active convergent margins changed continental tilts, completely altered some rivers, and formed new ones with new deltas, some on the other side of a continent. The above changes greatly altered the surface environment and induced many significant changes in flora and fauna and their distribution and have great economic importance. Many of the major geochemical cycles of the ocean and atmosphere also experienced major changes at this time. We posit that the generalizations ultimately emerging from the Miocene will apply to all the Phanerozoic and far back into the Precambrian and that are all tied to Deep Earth.

Potter, P. E.; Szatmari, P.

2012-12-01

275

Downscaling MODIS Land Surface Temperature for Urban Public Health Applications  

NASA Technical Reports Server (NTRS)

This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

2013-01-01

276

Downscaling MODIS Land Surface Temperature for Urban Public Health Applications  

NASA Astrophysics Data System (ADS)

This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

2013-12-01

277

Implications of solar irradiance variability upon long-term changes in the Earth's atmospheric temperatures  

NASA Technical Reports Server (NTRS)

From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.

Lee, Robert B., III

1992-01-01

278

Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature  

PubMed Central

An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27?mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2?MPa to 1.8?MPa, while sample initial temperature varied from 600C to 900C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024?MW/m2 was estimated for a thickness of 8.5?mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8?MPa. PMID:24977219

Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

2014-01-01

279

Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.  

PubMed

An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600C to 900C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

2014-01-01

280

Inversion land surface temperature by using TM data  

NASA Astrophysics Data System (ADS)

The land surface temperature (LST) plays an important role in the process of interaction between surface and atmosphere. It is widely need in meteorology, geology, hydrology, ecological and many other fields. This article uses the ETM+ data of February 16th, 2002 and August 27th, 2002, using the single window algorithm to retrieve the LST in the southern area of Gansu province. First step is removing cloud for image. Secondly, classifies the type of surface by dividing into three types of water surface, snow surfaces (winter) and natural surface. Then, estimate the emissivity according to the classification in order to calculate surface temperature. Through the analysis of spatial distribution of land surface temperature in the study area, the result shows QinZhiHao's single window algorithm is consistent with the reality.

Guo, Jianmao; Shi, Junyi; Han, Xiangyun; Zheng, Tengfei; Wang, Qi

2012-10-01

281

Influence of lunar topography on simulated surface temperature  

NASA Astrophysics Data System (ADS)

The surface temperature of the Moon is one of the essential parameters for the lunar exploration, especially to evaluate the Moon thermophysical features. The distribution of the temperature is heavily influenced by the Moon topography, which, however, is rarely studied in the state-of-art surface temperature models. Therefore, this paper takes the Moon topography into account to improve the surface temperature model, Racca model. The main parameters, such as slopes along the longitude and latitude directions, are estimated with the topography data from Chang'E-1 satellite and the Horn algorithm. Then the effective solar illumination model is then constructed with the slopes and the relative position to the subsolar point. Finally, the temperature distribution over the Moon surface is obtained with the effective illumination model and the improved Racca model. The results indicate that the distribution of the temperature is very sensitive to the fluctuation of the Moon surface. The change of the surface temperature is up to 150 K in some places compared to the result without considering the topography. In addition, the variation of the surface temperature increases with the distance from the subsolar point and the elevation, along both latitude and longitude directions. Furthermore, the simulated surface temperature coincides well with the brightness temperature in 37 GHz observed by the microwave sounder onboard Chang'E-2 satellite. The corresponded emissivity map not only eliminates the influence of the topography, but also hints the inherent properties of the lunar regolith just below the surface. Last but not the least, the distribution of the permanently shadowed regions (PSRs) in the lunar pole area is also evaluated with the simulated surface temperature result.

Zhiguo, Meng; Yi, Xu; Zhanchuan, Cai; Shengbo, Chen; Yi, Lian; Hang, Huang

2014-11-01

282

Observe an animation of the Coriolis effect over Earth's surface  

NSDL National Science Digital Library

Find a Flash animation for the Coriolis Effect, the apparent deflection of a wind or current due to earth rotation. One animation shows a plane flying from Anchorage, Alaska toward Miami, Florida. In the second animation, a plane takes off from Tierra del Fuego toward Rio de Janeiro. In both cases, the pilots would miss their destination because the targets moved in respect to the original straight line path of the plane. For the northern hemisphere the plane would end up to the right of the target, to the left, for the southern hemisphere. The animation can be paused and rewound to stress important points.

NASA/Goddard Space Flight Center Scientific Visualization Studio

283

Microwave emission and scattering from Earth surface and atmosphere  

NASA Technical Reports Server (NTRS)

Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

Kong, J. A.; Lee, M. C.

1986-01-01

284

Surface temperature and salinity variations between Tasmania and Antarctica, 19931999  

E-print Network

Surface temperature and salinity variations between Tasmania and Antarctica, 1993­1999 Alexis ship between Tasmania and Dumont D'Urville, Antarctica, as part of the SURVOSTRAL program (Surveillance: Chaigneau, A., and R. Morrow, Surface temperature and salinity variations between Tasmania and Antarctica

285

A geomatics-based road surface temperature prediction model  

Microsoft Academic Search

A GIS-based model for the prediction of road surface temperature is presented that has the ability to explain up to 74% of the spatial variation in road surface temperature in the West Midlands, UK. The approach combines basic spatial data sets with a synergy of surveying techniques to produce a geographical parameter database that drives the spatial component of a

L. Chapman; J. E. Thornes

2006-01-01

286

Representation of heterogeneity effects in Earth system modeling: Experience from land surface modeling  

Microsoft Academic Search

The land surface is characterized by pronounced spatial heterogeneity that spans a wide range of scales. This heterogeneity affects the surface energy and water budgets, as well as the land-atmosphere exchanges of momentum, heat, water and other constituents, through a number of highly nonlinear processes. The resolution of present-day Earth (or climate) system models is still too coarse to explicitly

Filippo Giorgi; Roni Avissar

1997-01-01

287

Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling  

Microsoft Academic Search

The land surface is characterized by pronounced spatial heterogeneity that spans a wide range of scales. This heterogeneity affects the surface energy and water budgets, as well as the land-atmosphere exchanges of momentum, heat, water and other constituents, through a number of highly nonlinear processes. The resolution of present-day Earth (or climate) system models is still too coarse to explicitly

Filippo Giorgi; Roni Avissar

1997-01-01

288

REPRESENTATION OF HETEROGENEITY EFFECTS IN EARTH SYSTEM MODELING: EXPERIENCE FROM LAND SURFACE MODELING  

Microsoft Academic Search

The land surface is characterized by pro- nounced spatial heterogeneity that spans a wide range of scales. This heterogeneity affects the surface energy and water budgets, as well as the land-atmosphere exchanges of momentum, heat, water and other constituents, through a number of highly nonlinear processes. The resolution of present-day Earth (or climate) system models is still too coarse to

Filippo Giorgi

289

Determination of the surface temperature of a burning powder  

SciTech Connect

An improved method for determining the temperature of a powder combustion surface is proposed. The method is based on the following physical consideration: After extinguishing the powder, the heat accumulated in a relatively small surface layer propagates into the depths of the charge. If the change in temperature at some point within the charge is recorded, this will permit the establishment of a temperature profile and the determination of the combustion surface temperature of the powder at the beginning of the experiment. Thus, direct calorimetry is completely eliminated. Working formulas are obtained on the basis of a simplified plane problem of thermal conductivity for a half space simulating powder specimens after quenching.

Chernov, Iu.V.

1980-09-01

290

Tunguska phenomenon: Discharge processes near the earth's surface  

NASA Astrophysics Data System (ADS)

An investigation of the Tunguska cosmic body's epicenter showed that both dried trees and those that survived the catastrophe are marked with characteristic deteriorations. For the trees that survived near the epicenter (the distance is <4 km), cracks of up to 7 m in length are found on their stems. All the vegetation near the explosion epicenter has traces of uniform scorch that covered the trees even on the land parts isolated by water. On the background of this uniform scorch, a notable feature is carbonization that touched the tree tops and the earth-directed ends of broken branches. All tops of both living and dried trees in the central zone are burned and dead. Carbonization of tops and branch ends was observed up to a distance of 10-15 km from the epicenter; i.e., charge processes took place over an area of more than 500 km2 in size. Carbonized branch ends have a characteristic "bird's nail" shape, which has no analogs on the Earth. Similar deterioration is typical for the crater shape that obtains an anode during arc discharge combustion. It is supposed that the duration of these charge processes could be ?1 min.

Gladysheva, O. G.

2013-09-01

291

Low temperature self-cleaning properties of superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

2014-10-01

292

Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings  

PubMed Central

We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.10.3 C to be recorded over the biologically relevant range of temperatures from 2339 C. PMID:25407907

Schartner, Erik P.; Monro, Tanya M.

2014-01-01

293

Fibre tip sensors for localised temperature sensing based on rare earth-doped glass coatings.  

PubMed

We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1-0.3 C to be recorded over the biologically relevant range of temperatures from 23-39 C. PMID:25407907

Schartner, Erik P; Monro, Tanya M

2014-01-01

294

High-temperature electrical resistivity of rare-earth metals with variable valence  

SciTech Connect

The electrical resistivity of compounds of rare-earth metals at high temperatures is calculated on the basis of allowance for the background mechanism of scattering and the hybridization of local electron states with the states of conduction electrons. An analytic expression is obtained for resistivity in a strong hybridization approximation. It follows from the expression that electrical resistivity may have a negative temperature coefficient within a broad range of high temperatures. The use of a three-band (s, d, f) model makes it possible to explain experimental data on the resistivity of certain rare-earth metals, particularly the connection between the sign of the temperature coefficient of electrical resistivity and the curvature of the relation (T).

Povzner, A.A.; Abel'skii, S.S.

1986-11-01

295

Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)  

NASA Technical Reports Server (NTRS)

Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

2003-01-01

296

High temperature radiator materials for applications in the low Earth orbital environment  

NASA Technical Reports Server (NTRS)

Radiators must be constructed of materials which have high emittance in order to efficiently radiate heat from high temperature space power systems. In addition, if these radiators are to be used for applications in the low Earth orbital environment, they must not be detrimentally affected by exposure to atomic oxygen. Four materials selected as candidate radiator materials (304 stainless steel, copper, titanium-6% aluminum-4% vanadium (Ti-6%Al-4%V), and niobium-1% zirconium (Nb-1%Zr)) were surface modified by acid etching, heat treating, abrading, sputter texturing, electrochemical etching, and combinations of the above in order to improve their emittance. Combination treatment techniques with heat treating as the second treatment provided about a factor of two improvement in emittance for 304 stainless steel, Ti-6%Al-4%V, and Nb-1%Zr. A factor of three improvement in emittance occurred for discharge chamber sputter textured copper. Exposure to atomic oxygen in an RF plasma asher did not significantly change the emittance of those samples that had been heat treated as part of their texturing process. An evaluation of oxygen penetration is needed to understand how oxidation affects the mechanical properties of these materials when heat treated.

Rutledge, Sharon K.; Banks, Bruce A.; Mirtich, Michael J.; Lebed, Richard; Brady, Joyce; Hotes, Deborah; Kussmaul, Michael

1987-01-01

297

Possible rainfall reduction through reduced surface temperatures due to overgrazing  

NASA Technical Reports Server (NTRS)

Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.

Otterman, J.

1975-01-01

298

Perturbation of ground surface temperature reconstructions by groundwater flow?  

E-print Network

on areas of groundwater recharge. Temperature profiles in these areas exhibit temperature gradientsPerturbation of ground surface temperature reconstructions by groundwater flow? Grant Ferguson,1 of information on past climates. Most analyses neglect groundwater flow (GWF) and assume purely conductive heat

Beltrami, Hugo

299

Temperatures in the earth's core from melting-point measurements of iron at high static pressures  

Microsoft Academic Search

The most reliable method for determining the temperature gradient at the earth's core is the estimation of Fe and Fe-rich compounds' melting temperature at the pressure of the inner core boundary. Attention is presently given to melting-point measurements on Fe and Fe-O compounds at up to 2 Mbar. An extrapolation of these results to 3.3 Mbar yields an inner core

R. Boehler

1993-01-01

300

Offline land surface temperature assimilation in mumerical weather prediction output  

Technology Transfer Automated Retrieval System (TEKTRAN)

Land surface temperature plays an important role in land surface processes, and it is a key input to physically-based retrieval algorithms of important hydrological states and fluxes, such as soil moisture and evaporation. For this reason there are many independent estimates of land surface temperat...

301

Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth  

E-print Network

sliding experiments and might explain field observations of the fault wall rip-out structures associatedTemperature fields generated by the elastodynamic propagation of shear cracks in the Earth Yuri propagation of shear cracks and effects of fault heating on the dynamic fault strength. Self-similar solutions

Fialko, Yuri

302

Solar activity, cosmic rays, and Earth's temperature: A millennium-scale comparison  

E-print Network

Solar activity, cosmic rays, and Earth's temperature: A millennium-scale comparison I. G. Usoskin. We use two recently reconstructed series of the sunspot number and the cosmic ray flux to study coefficients for the cosmic rays. The significance levels reach up to 99% but vary strongly for the different

Usoskin, Ilya G.

303

Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures  

Microsoft Academic Search

Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5 and 20S with modern SST data suggests that the alkenone temperatures represent annual mean values

Ralph R. Schneider; Peter J. Mller; Gtz Ruhland

1995-01-01

304

Temperature dependent PAC studies with the rare earth 172Lu in ZnO  

NASA Astrophysics Data System (ADS)

Wide band-gap semiconductors have become an important base material for applications in optoelectronics and in high power, high temperature electronics. After doping with various rare earths, electroluminescence throughout the whole visible spectrum has been observed. We have studied the implantation behaviour of the rare earth Lu in ZnO. Our samples were implanted at the ISOLDE facility at CERN. In order to recover the sustained implantation damage the samples were treated in a rapid thermal annealing furnace. In a first attempt to measure the temperature dependence of the electric field gradient at the site of 172Lu/ 172Yb in ZnO a large jump in the quadrupole interaction frequency was observed between measurements at room temperature and 200 C. Above 200 C the frequency only changed very little. In order to understand this unusual behaviour we prepared another sample and studied the temperature range between room temperature and 200 C in more detail. The results obtained previously could be confirmed. The new data show a smooth increase of the quadrupole interaction frequency from about 146 MHz at room temperature to almost 390 MHz at 400 C. This behaviour is likely to be due to the influence of the rare earth's partially filled 4f shell.

Ndlec, R.; Vianden, R.; Isolde Collaboration

2006-05-01

305

Surface aerodynamic temperature modeling over rainfed cotton  

Technology Transfer Automated Retrieval System (TEKTRAN)

Evapotranspiration (ET) or latent heat flux (LE) can be spatially estimated as an energy balance (EB) residual for land surfaces using remote sensing inputs. The EB equation requires the estimation of net radiation (Rn), soil heat flux (G), and sensible heat flux (H). Rn and G can be estimated with ...

306

JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE  

E-print Network

, and (v) control plot. The surface coverage of sand, biogenic crust, and vegetation was monitored, and Y. Ashkenazy (2014), The effect of wind and precipitation on vegetation and biogenic crust covers on vegetation and biogenic crust covers in the Sde-Hallamish sand dunes Raz Amir1 , Shai Kinast1 , Haim Tsoar2

Ashkenazy, Yossi "Yosef"

307

Fast simulation tool for ultraviolet radiation at the earth's surface  

NASA Astrophysics Data System (ADS)

FastRT is a fast, yet accurate, UV simulation tool that computes downward surface UV doses, UV indices, and irradiances in the spectral range 290 to 400 nm with a resolution as small as 0.05 nm. It computes a full UV spectrum within a few milliseconds on a standard PC, and enables the user to convolve the spectrum with user-defined and built-in spectral response functions including the International Commission on Illumination (CIE) erythemal response function used for UV index calculations. The program accounts for the main radiative input parameters, i.e., instrumental characteristics, solar zenith angle, ozone column, aerosol loading, clouds, surface albedo, and surface altitude. FastRT is based on look-up tables of carefully selected entries of atmospheric transmittances and spherical albedos, and exploits the smoothness of these quantities with respect to atmospheric, surface, geometrical, and spectral parameters. An interactive site, http://nadir.nilu.no/~olaeng/fastrt/fastrt.html, enables the public to run the FastRT program with most input options. This page also contains updated information about FastRT and links to freely downloadable source codes and binaries.

Engelsen, Ola; Kylling, Arve

2005-04-01

308

Total ozone and surface temperature correlations during 1972 - 1981  

NASA Technical Reports Server (NTRS)

Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.

Parsons, C. L.

1983-01-01

309

Magnetic shielding in a low temperature torsion pendulum experiment. [superconducting cylinders for attenuation earth field  

NASA Technical Reports Server (NTRS)

A new type of ether drift experiment searches for anomalous torques on a permanent magnet. A torsion pendulum is used at liquid helium temperature, so that superconducting cylinders can be used to shield magnetic fields. Lead shields attenuate the earth's field, while Nb-Sn shields fastened to the pendulum contain the fields of the magnet. The paper describes the technique by which the earth's field can be reduced below 0.0001 G while simultaneously the moment of the magnet can be reduced by a factor 7 x 10 to the 4th.

Phillips, P. R.

1979-01-01

310

Estimation of subsurface thermal structure using sea surface height and sea surface temperature  

NASA Technical Reports Server (NTRS)

A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

2012-01-01

311

Waveform synthesis of surface waves in a laterally heterogeneous earth by the Gaussian beam method  

NASA Technical Reports Server (NTRS)

The present investigation is concerned with an application of the Gaussian beam method to surface waves in the laterally heterogeneous earth. The employed method has been developed for ray tracing and synthesizing seismograms of surface waves in cases involving the laterally heterogeneous earth. The procedure is based on formulations derived by Yomogida (1985). Vertical structure of the wave field is represented by the eigenfunctions of normal mode theory, while lateral variation is expressed by the parabolic equation as in two-dimensional acoustic waves or elastic body waves. It is demonstrated that a large-amplitude change can result from a slight perturbation in the phase velocity model.

Yomogida, K.; Aki, K.

1985-01-01

312

Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer  

E-print Network

turbulence-induced surface-temperature variations should also be accounted for in numerical models,turbulence above a grass surface. Water Resour Res Kormann R, Meixner FX (2001) An analytical footprint model

Garai, Anirban; Pardyjak, Eric; Steeneveld, Gert-Jan; Kleissl, Jan

2013-01-01

313

Application of Satellite-Derived Land Surface Temperature to Minimum Temperature Forecasting  

NASA Technical Reports Server (NTRS)

Satellite-derived land surface temperature (LST) is studied for the purpose of understanding regional skin temperature dependency and variability, and its relationship to corresponding, site-specific air temperature. Skin temperature is highly correlated with surface-air temperature although it differs depending on land surface characteristics, terrain, and atmospheric conditions on a diurnal and seasonal scale. The high temporal resolution of the Geostationary Operational Environmental Satellite (GOES) -12 sounder is used to compare the diurnal cycles of LST and surface-air temperature. The minimum for both temperatures occurs near sunrise and LST is found to agree closely with surface-air temperatures a period of hours before sunrise on clear sky nights. The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived LST renders more horizontal temperature structure - with its high spatial resolution (1 km at nadir) compared to the GOES-12 sounder (10 km). Nighttime MODIS-derived LST is extrapolated to the time of minimum temperature for a number of case study days and these are grouped by season and atmospheric conditions. These composites show that the variation in LST mirror the variation in minimum surface-air temperature under similar conditions.

Jones, P. R.; Jedlovec, G. J.; Suggs, R. J.; Haines, S. L.

2004-01-01

314

Langmuir-Taylor surface ionization of alkali (Li, Na, K) and alkaline earth (Ca, Sr, Ba) atoms attached to helium droplets  

Microsoft Academic Search

A beam of superfluid helium droplets (HeN, N~104) doped with alkali and alkaline earth atoms is detected by Langmuir-Taylor surface ionization. We measured detection efficiencies and time constants as a function of the temperature of a hot rhenium surface. Compared to results on free K, Na, and Ba atoms we find practically no differences in the detection properties; apparently the

F. Stienkemeier; M. Wewer; F. Meier; H. O. Lutz

2000-01-01

315

A framework for global diurnally-resolved observations of Land Surface Temperature  

NASA Astrophysics Data System (ADS)

Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017), which aims to support the wider uptake of global-scale satellite LST by the research and operational user communities, will be a particularly important element in the development and subsequent provision of global diurnal LST. References Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R., & Perdigao, R., 2013, Land surface temperature from multiple geostationary satellites, International Journal of Remote Sensing, 34, 3051-3068.

Ghent, Darren; Remedios, John

2014-05-01

316

Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth  

NASA Technical Reports Server (NTRS)

The surface and atmosphere of Titan constitute a system which is potentially as complex as that of the Earth, with the possibility of precipitation, surface erosion due to liquids, chemistry in large surface or subsurface hydrocarbon resevoirs, surface expressions of internal activity, and occasional major impacts leading to crustal melting. While none of the above have been observed as yet, the composition, density and thermal properties of Titan's atmosphere make it uniquely suited in the outer solar system as a place where such processes may occur. The one attribute of the Earth not expected on Titan is biological activity, which has had a profound effect on the evolution of the Earth's surface-atmosphere system. The earliest environment of Titan could have been warm enough for liquid ammonia-water solutions to exist on or near surface; pre-biotic organic processes may have taken place in such an environment. After a few hundred million years surface ammonia-water would have disappeard. Therefore, study of Titan through Cassini/Huygens mission, planned for launch in 1997, primarily affords the opportunity to understand planet-side surface-atmophsre interactions in the presence of fluids but in the absence of life. More speculative is the possibility that endogenic and exogenic heating continue to provide short-lived environments on Titan wherein pre-biotic organic processes in the presence of water happen.

Lunine, J. I.; Mckay, C. P.

1995-01-01

317

Surface temperature variations as measured by the Heat Capacity Mapping Mission  

NASA Technical Reports Server (NTRS)

The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

Price, J. C.

1979-01-01

318

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 35, 531548 (2010)  

E-print Network

of a geomorphic reclamation model for quarries on slopes J.F. Martín-Duque,1 * M.A. Sanz,1 J.M. Bodoque,2 A. Lucía principles to land reclamation after surface mining has been reported in the literature since the mid-1990s, mostly from Australia, Canada and the USA. This paper discusses the reclamation problems of contour

319

Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements  

NASA Technical Reports Server (NTRS)

Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.

Jarzembski, Maurice A.; Srivastava, Vandana

1999-01-01

320

Method for preparing high cure temperature rare earth iron compound magnetic material  

DOEpatents

Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

Huang, Yuhong (West Hills, CA); Wei, Qiang (West Hills, CA); Zheng, Haixing (Oak Park, CA)

2002-01-01

321

Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect  

ERIC Educational Resources Information Center

Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

2004-01-01

322

High temperature photoelectron emission and surface photovoltage in semiconducting diamond  

SciTech Connect

A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700?K, while the clean (2??1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300?K measurement to be 283.87?eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2??0.1) eV, corresponding to a valence band maximum lying 1.6?eV below the Fermi level. This is similar to that of the reconstructed (2??1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4?eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300?K and 1200?K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A., E-mail: a.evans@aber.ac.uk [Department of Physics, Aberystwyth University, Aberystwyth, Ceredigion SY23 3BZ (United Kingdom)

2014-08-11

323

Understanding and predicting changes in North Atlantic Sea Surface Temperature  

NASA Astrophysics Data System (ADS)

The mechanisms associated with sea surface temperature variability in the North Atlantic are explored using observation-based reconstructions of the historical surface states of the atmosphere and ocean as well as simulations run with the Community Earth System Model, version 1 (CESM1). The relationship between air-sea heat flux and SST between 1948 and 2009 yields evidence of a positive heat flux feedback at work in the subpolar gyre region on quasi-decadal timescales. Warming of the high latitude Atlantic precedes an atmospheric response which resembles a negative NAO state. The historical flux data set is used to estimate temporal variations in North Atlantic deep water formation which suggest that NAO variations drove strong decadal changes in thermohaline circulation strength in the last half century. Model simulations corroborate the observation-based inferences that substantial changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) ensued as a result of NAO-driven water mass perturbations, and that changes in the large-scale ocean circulation played a significant role in modulating North Atlantic SST. Surface forcing perturbation experiments show that the simulated low-frequency AMOC variability is mainly driven by turbulent buoyancy forcing over the Labrador Sea region, and that the decadal ocean variability, in uncoupled experiments, derives from low-frequency variability in the overlying atmospheric state. Surface momentum forcing accounts for most of the interannual variability in AMOC at all latitudes, and also most of the decadal AMOC variability south of the Equator. We show that the latter relates to the trend in wind stress forcing of the Southern Ocean, but that Southern Ocean forcing explains very little of the North Atlantic signal. The sea surface height in the Labrador Sea is identified as a strongly buoyancy-forced observable which supports its use as a monitor of AMOC strength. The dynamics which characterize the model mean overturning and gyre circulations, and which explain the model response to surface momentum and buoyancy forcing perturbations, are investigated in terms of mean and time-varying vorticity balances. The significant effect of bottom vortex stretching, noted in previous studies, is shown here to play a key role in a variety of time-dependent phenomena, such as the covariation of overturning and gyre circulations, the variation of the barotropic streamfunction in the intergyre-gyre region, and changes in AMOC associated with momentum forcing perturbations. We show that latitudinal changes in the AMOC vorticity balance explains the attenuation of buoyancy-forced signals south of Cape Hatteras, and that the dominant frictional balance near the Equator greatly inhibits the propagation of AMOC variability signals from one hemisphere to the other. The long persistence of buoyancy-forced, high-latitude circulation anomalies results in significant predictability of SST in the subpolar gyre. This is demonstrated with an analysis of initialized, fully coupled retrospective predictions of the mid-1990s warming in that region. The atmospheric response is shown to be relatively unimportant on timescales of up to 10 years, but skill for longer lead times is inhibited by an incorrect heat flux feedback in the North Atlantic in the coupled CESM1.

Yeager, S. G.

324

Global shortwave energy budget at the earth's surface from ERBE observations  

SciTech Connect

A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiments (ERBE) data from S4 data (monthly averaged broadband planetary albedo). Net surface shortwave irradiance is obtained for the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used along with four surface types: ocean, vegetation, desert, snow/ice. Over the tropical Pacific Ocean, the estimates compare well with the International Satellite Cloud Climatology Project (ISCCP) B3 data. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. Our values are generally higher than Esbensen and Kushnir's by as much as 80 W m[sup [minus]2] in the tropical oceans. The difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts. 33 refs., 11 figs., 2 tabs.

Breon, F.M.; Frouin, R. (California Space Institute, Scripps Institution of Oceanography, La Jolla, CA (United States)); Gautier, C. (Univ. of California, Santa Barbara, CA (United States))

1994-02-01

325

Linear analysis of surface temperature dynamics and climate sensitivity  

E-print Network

LINEAR ANALYSIS OF SURFACE TEMPERATURE DYNAMICS AND CLIMATE SENSITIVITY A Dissertation by WEI WU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Oceanography LINEAR ANALYSIS OF SURFACE TEMPERATURE DYNAMICS AND CLIMATE SENSITIVITY A Dissertation by WEI WU Submitted to the Office of Graduate...

Wu, Wei

2007-04-25

326

THERM Simulations of Window Indoor Surface Temperatures for Predicting Condensation  

SciTech Connect

As part of a ''round robin'' project, the performance of two wood windows and a Calibrated Transfer Standard was modeled using the THERM heat-transfer simulation program. The resulting interior surface temperatures can be used as input to condensation resistance rating procedures. The Radiation and Condensation Index features within THERM were used to refine the accuracy of simulation results. Differences in surface temperatures between the ''Basic'' calculations and those incorporating the Radiation and/or Condensation Index features are demonstrated and explained.

Kohler, Christian; Arasteh, Dariush; Mitchell, Robin

2001-05-18

327

Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

328

Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

329

Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

330

Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

331

Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

332

Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

333

Speciation of adsorbed yttrium and rare earth elements on oxide surfaces  

NASA Astrophysics Data System (ADS)

The distribution of yttrium and the rare earth elements (YREE) between natural waters and oxide mineral surfaces depends on adsorption reactions, which in turn depend on the specific way in which YREE are coordinated to mineral surfaces. Recent X-ray studies have established that Y 3+ is adsorbed to the rutile (1 1 0) surface as a distinctive tetranuclear species. However, the hydrolysis state of the adsorbed cation is not known from experiment. Previous surface complexation models of YREE adsorption have suggested two to four cation hydrolysis states coexisting on oxide surfaces. In the present study, we investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition to rutile using the extended triple-layer surface complexation model. The reaction producing a hydrolyzed tetranuclear surface species 4>SOH+M+2HO=(>SOH)2_M(OH)2++4H was found to account for a significant fraction of the adsorbed Y 3+, La 3+, Nd 3+, Gd 3+, and Yb 3+ on rutile, hematite, alumina and silica over wide ranges of pH and ionic strength. Where adsorption data were available as a function of surface coverage for hematite and silica, an additional reaction involving a mononuclear species could be used to account for the higher surface coverages. However, it is also possible that some of the higher surface coverage data refer to surface precipitation rather than adsorption. The results of the present study provide an internally consistent basis for describing YREE adsorption which could be used to investigate more complex systems in which YREE compete both in aqueous solution and on mineral surfaces with alkaline earths and ligands such as carbonate, sulfate, chloride and organic species, in order to build a predictive adsorption model applicable to natural waters.

Piasecki, Wojciech; Sverjensky, Dimitri A.

2008-08-01

334

Hydromagnetic Steady Flow of Maxwell Fluid over a Bidirectional Stretching Surface with Prescribed Surface Temperature and Prescribed Surface Heat Flux  

PubMed Central

This paper investigates the steady hydromagnetic three-dimensional boundary layer flow of Maxwell fluid over a bidirectional stretching surface. Both cases of prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are considered. Computations are made for the velocities and temperatures. Results are plotted and analyzed for PST and PHF cases. Convergence analysis is presented for the velocities and temperatures. Comparison of PST and PHF cases is given and examined. PMID:23874523

Shehzad, Sabir Ali; Alsaedi, Ahmad; Hayat, Tasawar

2013-01-01

335

High temperature rare earth compounds: Synthesis, characterization and applications in device fabrication  

NASA Astrophysics Data System (ADS)

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. Unlike traditional single source precursor techniques such as metal-organic chemical vapor deposition, the materials produced are of extremely high chemical purity. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. Unlike previously reported synthetic techniques to generate rare earth hexaborides, my synthesis provided control over the tip diameter of the nanomaterials, was applicable to all available rare earth metals and utilized a chemical scheme that was much less toxic. Furthermore, the synthesis provided the first ever doped rare earth hexaboride nanowires. The as produced materials showed excellent electronic properties and could be applicable to many different types of electronic applications. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. The TEM based LEAP technique is the first to combine atomic resolution crystallographic imaging with angstrom scale 3D compositional mapping. This technique also provided some of the first quantitative compositional information of the rare earth hexaboride systems and is applicable to a wide range of nanowire materials. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.

Brewer, Joseph Reese

336

Investigation of Aerodynamic and Radiometric Land Surface Temperatures  

NASA Technical Reports Server (NTRS)

The surface temperature, T(sub s), of a land surface measured by a radiometer, T(sub s,r), and the temperature "felt" by the air, T(sub aero), often differ significantly and are difficult if not impossible to define rigorously. However, recent studies conducted by the principal investigators with several land surface models suggest that this problem can be largely resolved. The main goal of this project was to use model-based and empirical studies to improve understanding and reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within the models and with theory and data. The results from this effort have contributed progress towards the effective use of remotely sensed surface temperature measurements taken from an arbitrary view angle over a partial canopy cover for producing high quality sensible and latent heat flux estimates. In addition, we have developed parameterizations that are designed to improve the representation of the roughness length for heat in climate and mesoscale models. This not only provides improved representation of surface energy balance in such models, but should also facilitate the use of surface temperature measurements for validating or updating the surface temperature produced by SVATs (soil-vegetation-atmosphere schemes) in climate or mesoscale models.

Friedl, Mark; Crago, Richard D.; Kustas, William; Wang, Yeqiao

2002-01-01

337

Solar irradiance changes and photobiological effects at Earth's surface following astrophysical ionizing radiation events  

E-print Network

Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the TUV radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radi...

Thomas, Brian C; Snyder, Brock R

2015-01-01

338

From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth's Surface  

SciTech Connect

Variations in solar radiation incident at Earth's surface profoundly affect the human and terrestrial environment. A decline in solar radiation at land surfaces has become apparent in many observational records up to 1990, a phenomenon known as global dimming. Newly available surface observations from 1990 to the present, primarily from the Northern Hemisphere, show that the dimming did not persist into the 1990s. Instead, a widespread brightening has been observed since the late 1980s. This reversal is reconcilable with changes in cloudiness and atmospheric transmission and may substantially affect surface climate, the hydrological cycle, glaciers, and ecosystems.

Wild, Martin F.; Gilgen, Hans; Roesch, Andreas; Ohmura, Atsumu; Long, Charles N.; Dutton, Ellsworth G.; Forgan, B. W.; Kallis, A.; Russak, V.; Tsvetkov, Anatoly

2005-05-06

339

Magnetic Phase Transition in Rare Earth Metal Holmium at Low Temperatures and High Pressures  

NASA Astrophysics Data System (ADS)

The heavy rare earth metal Holmium has been studied under high pressures and low temperatures using a designer diamond anvil cell and neutron diffraction using a Paris-Edinburgh Cell at the Spallation Neutrons and Pressure (SNAP) Diffractometer. The electrical resistance measurement using designer diamond shows a change in slope at the Neel temperature as the temperature is lowered at high pressures. At atmospheric pressure TN=120 K and decreases with a slope of -4.7 K/GPa as pressure is increased, until reaching 9 GPa, at which pressure the magnetic ordering is lost. This correlates to the pressure at which there is a structural change from an hcp phase to an ?-Sm structure. Neutron diffraction measurements made above and below the Neel temperature at increasing pressures show the reversibility of the change between the paramagnetic and antiferromagnetic states. The parameters of the low temperature incommensurate magnetic phase will be reported at various pressures.

Thomas, Sarah; Uhoya, Walter; Wenger, Lowell; Vohra, Yogesh

2012-02-01

340

Atmospheric corrections of passive microwave data for estimating land surface temperature.  

PubMed

Quantitative analysis of the atmospheric effects on observations made by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) has been performed. The differences between observed brightness temperatures at the top of the atmosphere and at the bottom of the atmosphere were analyzed using a database of simulated observations, which were configured to replicate AMSR-E data. The differences between observed brightness temperatures at the top of the atmosphere and land surface-emitted brightness temperatures were also computed. Quantitative results show that the atmosphere has different effects on brightness temperatures in different AMSR-E channels. Atmospheric effects can be neglected at 6.925 and 10.65 GHz, when the standard deviation is less than 1 K. However, at other frequencies and polarizations, atmospheric effects on observations should not be neglected. An atmospheric correction algorithm was developed at 18.7 GHz vertical polarization, based on the classic split-window algorithm used in thermal remote sensing. Land surface emission can be estimated with RMSE = 0.99 K using the proposed method. Using the known land surface emissivity, Land Surface Temperature (LST) can be retrieved. The RMSE of retrieved LST is 1.17 K using the simulated data. PMID:23842351

Liu, Zeng-Lin; Wu, Hua; Tang, Bo-Hui; Qiu, Shi; Li, Zhao-Liang

2013-07-01

341

Surface Temperature: Contouring Isotherms (title provided or enhanced by cataloger)  

NSDL National Science Digital Library

This interactive feature shows how an isothermal map of surface temperature is drawn. Students can select an individual contour value and watch as a virtual 'pencil' correctly places the line with respect to temperature values on the map. The animation also permits the user to color the spaces between the contour lines on the map.

342

Southern Hemisphere surface air temperature variations: 1851--1984  

Microsoft Academic Search

A new compilation of monthly mean surface air temperature data for the Southern Hemisphere for 1851--1984 is presented based on land-based meteorological station data. Where possible, the station data used in the analysis have been assessed for homogeneity. Only reliable or corrected station data have been used in calculating area averages. Grid point temperature estimates have been made by interpolating

P. D. Jones; S. C. B. Raper; T. M. L. Wigley

1986-01-01

343

Mean seasonal and spatial variability in global surface air temperature  

Microsoft Academic Search

Using terrestrial observations of shelter-height air temperature and shipboard measurements, a global climatology of mean monthly surface air temperature has been compiled. Data were obtained from ten sources, screened for coding errors, and redundant station records were removed. The combined data base consists of 17 986 independent terrestrial station records and 6 955 oceanic grid-point records. These data were then

D. R. Legates; C. J. Willmott

1990-01-01

344

SPATIAL VARIABILITY OF REMOTELY SENSED SURFACE TEMPERATURE AT FIELD SCALE  

EPA Science Inventory

Bare soil surface temperatures (BST) and crop canopy temperatures (CCT) were collected from a 1-ha field in central Arizona using an infrared thermometer to determine whether they were spatially correlated. The measurements were taken from a two-dimensional random sampling patter...

345

How do Atmospheres Affect Planetary Temperatures? Activity C Can we Model an Atmosphere's Effect Upon a Planet's Surface Temperature?  

NSDL National Science Digital Library

In this activity, students simulate the interaction of variables, including carbon dioxide, in a radiation balance exercise using a spreadsheet-based radiation balance model. Through a series of experiments, students attempt to mimic the surface temperatures of Earth, Mercury, Venus and Mars, and account for the influence of greenhouse gases in atmospheric temperatures. The activity supports inquiry into the real-world problem of contemporary climate change. Student-collected data is needed from activity A in the same module, "How do atmospheres interact with solar energy?" to complete this activity. Included in the resource are several student data sheets and a teacher's guide. This activity is part of module 4, "How do Atmospheres Affect Planetary Temperatures?" in Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.

346

Low temperature direct bonding of non-hydrophilic surfaces  

NASA Astrophysics Data System (ADS)

The authors have found that extremely strong bonds can be formed between wafer surfaces of LPCVD silicon dioxide after a dry plasma pretreatment. The bonded wafers were examined for bond yield, interfacial quality, and mechanical strength. Preliminary results indicate that successful low-temperature bonds can be formed to non-hydrophilic surfaces.

Watt, V. H. C.; Bower, R. W.

1994-04-01

347

Observed twentieth century land surface air temperature and precipitation covariability  

E-print Network

consequences [IPCC, 2001]. Rising SATs and changes in precipitation patterns, phases, and intensity will affect temperatures (SATs) and precipitation were observed over 71% and 27%, respectively, of the global land surface annual values of SAT and precipitation exist over 24% of the global land surface. Regional

Dery, Stephen

348

Satellite Measurements of Sea Surface Temperature Through Clouds  

Microsoft Academic Search

Measurements of sea surface temperature (SST) can be made by satellite microwave radiometry in all weather conditions except rain. Microwaves penetrate clouds with little attenuation, giving an uninterrupted view of the ocean surface. This is a distinct advantage over infrared measurements of SST, which are obstructed by clouds. Comparisons with ocean buoys show a root mean square difference of about

Frank J. Wentz; Chelle Gentemann; Deborah Smith; Dudley Chelton

2000-01-01

349

Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front  

NASA Technical Reports Server (NTRS)

Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

1998-01-01

350

The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating  

E-print Network

The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating Jo , Christian Schluchter c , Rainer Wieler a a ETH Zurich, Isotope Geology and Mineral Resources, ETH Zentrum March 2000 Abstract Beacon Valley, Antarctica, contains unique remnants of glacier ice underneath a till

Marchant, David R.

351

Radiative Forcing - Measured at Earth's Surface - Corroborate the Increasing Greenhouse Effect  

Microsoft Academic Search

The Intergovernmental Panel of Climate Change (IPCC) confirmed concentrations of atmospheric greenhouse gases and radiative forcing to increase as a result of human activities. Nevertheless, changes in radiative forcing related to increasing greenhouse gas concentrations could not be detected with instrumental measurements at Earth's surface so far. Here we show that atmospheric longwave downward radiation significantly increased (+5.2 Wm-2) partly

Rolf Philipona; B. Duerr; Christoph Marty; Atsumu Ohmura; Martin Wild

2004-01-01

352

Radar interferometry and its application to changes in the earth's surface  

Microsoft Academic Search

Geophysical applications of radar inter- ferometry to measure changes in the Earth's surface have exploded in the early 1990s. This new geodetic technique calculates the interference pattern caused by the difference in phase between two images acquired by a spaceborne synthetic aperture radar at two distinct times. The resulting interferogram is a contour map of the change in distance between

Didier Massonnet; Kurt L. Feigl

1998-01-01

353

CLIMATE AND THE OCEAN CIRCULATION' 1. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH'S SURFACE  

Microsoft Academic Search

The effect of the hydrology of the earth's surface is incorporated into a numerical model of the general circula- tion of the atmosphere developed at the Geophysical Fluid Dynamics Laboratory of the Environmental Science Services Administration (ESSA). The primitive equation of motion is used for this study. The nine levels of the model are distributed so as to resolve the

SYUKURO MANABE

354

At the Earth's surface,a complex suite of chemical,biological,and physical processes  

E-print Network

At the Earth's surface,a complex suite of chemical,biological,and physical processes combines nutrients to nourish ecosystems and human society,mediates the transport of toxic components within the biosphere,creates water flow paths that carve and weaken bedrock, and contributes to the evolution

Chorover, Jon

355

Influence of the Size of Rare Earth Ions on the Surface Crystallization of Complexes  

Microsoft Academic Search

?-A isotherms of RE(TTA)3Phen (RE = La, Sm, Eu, Gd, Tb and Y; TTA = thenoyltrifluoroacetone; Phen = 1,10-phenanthroline) mixing with arachidic acid (AA) in molar ratio of 1:1 and influence of rare earth ions in complexes on the surface crystallization of monolayers were studied in this paper.

Guolun Zhong; Binying Pu; Yu Feng; Kongzhang Yang

1999-01-01

356

Water distribution in the top 1 m of the earth's surface soil layer  

E-print Network

as vine shoot growth, pruning weight, berry size, crop yield, sugar accu- mulation, titratible acidity, pH, and berry color. Grapevines can benefit from some water stress, as it forces the plant into ripeningWater distribution in the top 1 m of the earth's surface soil layer often controls the success

Hubbard, Susan

357

Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data  

SciTech Connect

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01

358

Scale Effect of Surface Area on the Temperature of the Ground Surface  

NASA Astrophysics Data System (ADS)

In 1980s, the satellite observations revealed that the daytime surface temperatures of the urban areas were very high compared with the rural area and the heat island was distinct in the daytime (Goward 1981, Carlson et al. 1981). The air temperature, however, shows distinct heat island in the night time and the heat island of the air temperature in the daytime is not significant. This has been a mystery of the urban climate and it has been attributed to the complicated urban structures (Roth et al. 1989, Arnfield 2003, Voogt and Oke 2003). This paper proposes a very simple mechanism which explains this old mystery. The surfaces of the urban areas are covered by large flat surfaces such as roads and walls of buildings while those of the rural areas are covered by many plants which have many small leaves. This difference in the surface geometry, especially the size of the surface area, has great impact on the temperature of the ground surface. To demonstrate the scale effect to the surface temperature, we made some fractal sunshades consist of many small "leaves" and placed under sunshine. The results showed that the fractal sunshade reduced the ground temperature without being heated themselves. The results indicate we can reduce urban ground surface temperature by changing geometry of the surface without using water.

Sakai, S.; Onishi, M.; Nakamura, M.; Furuya, K.

2011-12-01

359

Earth  

E-print Network

As in his original cosmology proposal 1,2 and in subsequent writings in its defence, 3,4 so also in New vistas of space-time rebut the critics, 5 Dr Humphreys makes sweeping physical claims without backing them up with the simple mathematical calculations which would demonstrate their truth or falsity. It is straightforward, using only undergraduate-level differential calculus, to show that Humphreys claim of a timeless zone in the Klein metric is false. In order for a timeless zone to exist, there must be a region of spacetime within which there are no spacetime trajectories which have the property ds 2> 0. However, it is easy to verify that every comoving clock in Humphreys bounded matter sphere cosmology traverses a timelike trajectory (ds 2> 0), even in the region of (?,?) space which Humphreys alleges is timeless. Consider, for example, the trajectory of the Earth, which Humphreys hypothesizes is at the center of the matter sphere. The Earths spatial trajectory in Schwarzschild coordinates is given by d?

unknown authors

360

Sessile droplet freezing and ice adhesion on aluminum with different surface wettability and surface temperature  

NASA Astrophysics Data System (ADS)

This paper focused on the sessile droplet freezing and ice adhesion on aluminum with different wettability (hydrophilic, common hydrophobic, and superhydrophobic surfaces, coded as HIS, CHS, SHS, respectively) over a surface temperature range of -9C to -19C. It was found that SHS could retard the sessile droplet freezing and lower the ice adhesion probably due to the interfacial air pockets (IAPs) on water/SHS interface. However, as surface temperature decreasing, some IAPs were squeezed out and such freezing retarding and adhesion lowering effect for SHS was reduced greatly. For a surface temperature of -19C, ice adhesion on SHS was even greater than that on CHS. To discover the reason for the squeezing out of IAPs, forces applied to the suspended water on IAPs were analyzed and it was found that the stability of IAPs was associated with surface micro-structures and surface temperature. These findings might be helpful to designing of SHS with good anti-icing properties.

Ou, JunFei; Shi, QingWen; Wang, ZhiLe; Wang, FaJun; Xue, MingShan; Li, Wen; Yan, GuiLong

2015-02-01

361

Measuring the Surface Temperature of the Cryosphere using Remote Sensing  

NASA Technical Reports Server (NTRS)

A general description of the remote sensing of cryosphere surface temperatures from satellites will be provided. This will give historical information on surface-temperature measurements from space. There will also be a detailed description of measuring the surface temperature of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data which will be the focus of the presentation. Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate data record, trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the MODIS IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now freely available to download at 6.25-km spatial resolution on a polar stereographic grid. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The consistency of this IST record, with temperature and melt records from other sources will be discussed.

Hall, Dorothy K.

2012-01-01

362

Temperature measurement on tissue surface during laser irradiation.  

PubMed

Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface. PMID:17891430

Gnyawali, Surya C; Chen, Yicho; Wu, Feng; Bartels, Kenneth E; Wicksted, James P; Liu, Hong; Sen, Chandan K; Chen, Wei R

2008-02-01

363

Measurement of transient surface temperatures during rubbing using infrared thermography  

NASA Astrophysics Data System (ADS)

Infrared thermometer could provide IR radiance information to get the corresponding temperature as the machine is working. But the emissivity coefficient, which converts IR radiance to temperature, would vary with change of surface properties during rubbing, and this would bring dynamic error in measurement. In this study, we introduced a special tester, in the side of which compact IR thermometer are mounted. The thermometer enables us to measure contact surface temperature directly during tests of a rotating ring and a flat block which had a laser diode fixed under its contact surface. Based on Kirchhoff theory, the calculate model of the spectral emissivity is constructed. The normal emissivity at target region are measured through trigonometric ray consisted of InGaAsP laser source, PbSe detector and objective surface. So the temperature value from the IR thermometer could be corrected dynamically according to the real-time emissivity. The structure and the principle of the apparatus are described. The key technologies and the corresponding solution methods are briefly discussed. The error due to the rapid variations of emissivity value with change in contact conditions was shown, and it must be taken into consideration in radiometric temperature measurement in rubbing and could be especially useful in the verification of friction surface temperature predictions.

You, Tau; Yu, Jianwei; Yu, Xiaofen

2013-10-01

364

Mantle Dynamics of Super-Earth Extrasolar Planet under Extreme Temperature and Pressure Conditions Extreme Temperature and Pressure conditions  

NASA Astrophysics Data System (ADS)

The recent discovery of an extrasolar planet with a mass 7.5 times that of the Earth has opened up new possibilities for planetary modelling because of the higher temperature T ( up to around 10,000 K ) and greater pressures P( up to 1,000 MPa ) involved. We have modelled the dynamics of this planet under these extreme conditions with an extended Boussinesq approximation , using a cartesian 2-D model. Rayleigh numbers of the order of 10**7 have been considered.Both the spinel to perovskite and perovskite to post-perovskite phase transitions have been accounted for, as well as temperature-dependent thermal conductivity, where the phonon, photon and electron thermal conductivities have been included because of the high T and P conditions. A strongly decreasing thermal expansivity for post-perovskite phase , varying by a factor of 20 across the super-earth mantle, has been included. These results reveal a tremendous difference in the style of mantle convection between constant and thermal conductivity models, all other parameters being kept the same. Temperature-dependent thermal conductivity, especially that of electron carriers, helps to develop obese plumes, even in the presence of a small value of thermal expansivity in the deep mantle, whereas weak convection is developed at the base of the mantle with constant thermal conductivity.

van den Berg, A. P.; Beebe, G.; Yuen, D. A.

2005-12-01

365

Improvement of building wall surface temperature measurements by infrared thermography  

NASA Astrophysics Data System (ADS)

By using quantitative thermal scanning of building surface structures, it is possible to access the temperature field. For further calculation of the heat flux exchanged by these structures with the environment, one must quantify as finely as possible the temperature field on the bodies surfaces. For this purpose we have to take into account that real bodies are not black, which implies that a part of the ambient radiation received by the infrared camera detectors is reflected radiation. In this paper, we present a method to quantify the reflected flux by using an infrared mirror, which allows large surface temperature measurements by infrared thermography under near-ambient conditions with improved accuracy. In order to validate the method, an experimental study was carried out on a multi-layer wall, which simulated an insulation default. A good agreement was noticed between the thermocouple temperatures and the infrared corrected ones. Then, the method is applied to outdoor measurements.

Datcu, Stefan; Ibos, Laurent; Candau, Yves; Matte, Simone

2005-08-01

366

Surface plasmon enhanced photoluminescence from copper nanoparticles: Influence of temperature  

SciTech Connect

Anomalous temperature dependence of surface plasmon enhanced photoluminescence from copper nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature increases. The key role of such an effect is the interplay between the surface plasmon resonance and the interband transitions in the copper nanoparticles occurring at change of the temperature. Namely, the increase of temperature leads to the red shift of the resonance. The shift leads to increase of the spectral overlap of the resonance with photoluminescence band of copper as well as to the decrease of plasmon damping caused by interband transitions. Such mechanisms lead to the increase of surface plasmon enhancement factor and, consequently, to increase of the quantum yield of the photoluminescence.

Yeshchenko, Oleg A., E-mail: yes@univ.kiev.ua; Bondarchuk, Illya S.; Losytskyy, Mykhaylo Yu. [Physics Department, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs'ka St., 01601 Kyiv (Ukraine)

2014-08-07

367

Land Surface Temperature Measurements form EOS MODIS Data  

NASA Technical Reports Server (NTRS)

We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

Wan, Zhengming

1996-01-01

368

A precise method of earth-based measuring infrared radiant temperature of high-speed flying target  

NASA Astrophysics Data System (ADS)

The apparent temperature of high-speed flying target is an important parameter when checking the design of heat protection system. This paper analyzes the characteristics of high-speed flying target measured by earth-based staring infrared imaging system, and found out three facts made the measured image blur, the first is energy spread described by Point Spread Function, the second is the phenomenon of target smearing, and the third is atmospheric agitation and turbulence. Also the energy reflected by the target from sun and earth to infrared measuring system should be considered. Thus the method dealt with static or low-speed target isn't adapt to high-speed target, this paper proposed an effective method dealing with High-speed flying target in infrared image. The first step is computing the luminance reflected by target with information of target's pose and surface structure, the second step is extracting the target from the infrared image then computing the emission intensity with parameters of calibration, the third step is computing the luminance of target by subtract the energy of background and energy reflected from the target, after computing the atmospheric trans, the apparent temperature is finally found.

Lu, Xiaofei; Sheng, Jie

2014-11-01

369

THE UTILITY OF HIGHER RESOLUTION SURFACE TEMPERATURE IMAGERY DERIVED FROM COARSER RESOLUTION VEGETATION INDEX-SURFACE TEMPERATURE DATA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Routine estimation of the land surface energy balance of a region with satellite remote sensing of land surface temperature at high spatial resolutions (i.e., 100s of meters) has not been possible due to low frequency in repeated satellite coverage and cloud cover. More frequent coverage from weathe...

370

Modeling the Global Solar Radiation on the Earth's Surface Using Atmospheric Deterministic and Intelligent Data-Driven Techniques.  

NASA Astrophysics Data System (ADS)

Three methods for analyzing and modeling the global shortwave radiation reaching the earth's surface are presented in this study. Solar radiation is a very important input for many aspects of climatology, hydrology, atmospheric sciences, and energy applications. The estimation methods consist of an atmospheric deterministic model and two data-driven intelligent methods.The deterministic method is a broadband atmospheric model, developed for predicting the global and diffuse solar radiation incident on the earth's surface. The intelligent data-driven methods are a new neural network approach in which the hourly values of global radiation for several years are calculated and a new fuzzy logic method based on fuzzy sets theory. The two data-driven models, calculating the global solar radiation on a horizontal surface, are based on measured data of several meteorological parameters such as the air temperature, the relative humidity, and the sunshine duration.The three methods are tested and compared using various sets of solar radiation measurements. The comparison of the three methods showed that the proposed intelligent techniques can be successfully used for the estimation of global solar radiation during the warm period of the year, while during the cold period the atmospheric deterministic model gives better estimations.

Santamouris, M.; Mihalakakou, G.; Psiloglou, B.; Eftaxias, G.; Asimakopoulos, D. N.

1999-10-01

371

Spin liquid phases of alkaline-earth-metal atoms at finite temperature  

NASA Astrophysics Data System (ADS)

We study spin liquid phases of spin-5/2 alkaline-earth-metal atoms on a honeycomb lattice at finite temperatures. Our analysis is based on a Gutzwiller projection variational approach recast to a path-integral formalism. In the framework of a saddle-point approximation we determine spin liquid phases with lowest free energy and study their temperature dependence. We identify a critical temperature, where all the spin liquid phases melt and the system goes to the paramagnetic phase. We also study the stability of the saddle-point solutions and show that a time-reversal symmetry breaking state, a so-called chiral spin liquid phase, is realized even at finite temperatures. We also determine the spin structure factor, which, in principle, is an experimentally measurable quantity and is the basic tool to map the spectrum of elementary excitations of the system.

Sinkovicz, P.; Zamora, A.; Szirmai, E.; Lewenstein, M.; Szirmai, G.

2013-10-01

372

Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.  

USGS Publications Warehouse

The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors

Alldredge, L.R.; Benton, E.R.

1986-01-01

373

Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature  

NASA Technical Reports Server (NTRS)

The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

Mintz, Y.; Walker, G. K.

1993-01-01

374

Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature  

SciTech Connect

The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite. It is shown that at locations where the net surface radiation flux has been measured. The potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor. Penman, and Budyko, and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; and the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere. 68 refs., 24 figs., 1 tab.

Mintz, Y.; Walker, G.K. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States))

1993-08-01

375

Microwave Imager Measures Sea Surface Temperature Through Clouds  

NASA Technical Reports Server (NTRS)

This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake which might last as long as two weeks. Forecasters can quantify the difference in surface temperatures between this footprint and the surrounding temperatures and use that information to better predict storm intensity. If another storm intersects with this cold water trail, it is likely to lose significant strength due to the fact that the colder water does not contain as much potential energy as warm water. TRMM Fact Sheet Predicting Hurricane Intensity Far from Land Remote Sensing Systems Image courtesy TRMM Project, Remote Sensing Systems, and Scientific Visualization Studio, NASA Goddard Space Flight Center

2002-01-01

376

Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.  

NASA Astrophysics Data System (ADS)

A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

Clapuyt, Franois; Vanacker, Veerle; Van Oost, Kristof

2014-05-01

377

Global Sea Surface Temperature Anomalies from June, 2002 to September, 2003 (WMS)  

NSDL National Science Digital Library

The temperature of the surface of the worlds oceans provides a clear indication of the state of the Earths climate and weather. The AMSR-E instrument on the Aqua satellite measures the temperature of the top 1 millimeter of the ocean every day, even through the clouds. If the average sea surface temperature for a particular date is subtracted from the measured temperature for that date, the resulting sea surface temperature anomaly can be used to accurately assess the current state of the oceans. The anomaly can serve as an early warning system for weather phenomena and can be used to indicate forthcoming problems with fish populations and coral reef health. In this visualization of the anomaly covering the period from June, 2002, to September, 2003, the most obvious effects are a successive warming and cooling along the equator to the west of Peru, the signature of an El Nino-La Nina cycle. Around January 1, 2003, a cooler than normal region of the ocean appears in this region as part of a La Nina and flows westward, driven by the trade winds. The waves that appear on the edges of this cooler area are called tropical instability waves.

Eric Sokolowsky

2004-02-12

378

Surface temperature patterns associated with the southern oscillation  

SciTech Connect

The [open quotes]typical[close quotes] global and large-scale regional temperature patterns associated with the low (warm) and high (cold) phases of the Southern Oscillation (SO) are investigated. A total of 12 separate regions were found to have consistent temperature patterns associated with low phase of the SO, while II areas were found to have temperature patterns associated with the high phase. Of these areas, 9 have expected temperature patterns during both phases of the SO. In the tropics, temperature anomalies are of the same sign as the SO-related sea surface temperature (SST) anomaly in all land regions except for one area in the west Pacific. Three extratropical responses to the low phase of the SO are found over North America and one is found in Japan. High SO-temperature patterns were found in the extratropics for Japan, western Europe, and northwestern North America. The identified temperature responses are more consistent in tropical regions than in the extratropics. The SO can influence the estimation of global surface temperature anomalies. 31 refs., 14 figs., 4 tabs.

Halpert, M.S.; Ropelewski, C.F. (Climate Analysis Center, Washington, DC (United States))

1992-06-01

379

Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth  

NASA Technical Reports Server (NTRS)

Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.

Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.

1983-01-01

380

Development of the mechanical cryocooler system for the Sea Land Surface Temperature Radiometer  

NASA Astrophysics Data System (ADS)

The Sea Land Surface Temperature Radiometer is a dual view Earth observing instrument developed as part of the European Global Monitoring for Environment and Security programme. It is scheduled for launch on two satellites, Sentinel 3A and 3B in 2014. The instrument detectors are cooled to below 85 K by two split Stirling Cryocoolers running in hot redundancy. These coolers form part of a cryocooler system that includes a support structure and drive electronics. Aspects of the system design, including control and reduction of exported vibration are discussed; and results, including thermal performance and exported vibration from the Engineering Model Cryooler System test campaign are presented.

Camilletti, Adam; Burgess, Christopher; Donchev, Anton; Watson, Stuart; Weatherstone Akbar, Shane; Gamo-Albero, Victoria; Romero-Largacha, Victor; Caballero-Olmo, Gema

2014-11-01

381

Applications of Thin Film Thermocouples for Surface Temperature Measurement  

NASA Technical Reports Server (NTRS)

Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

Martin, Lisa C.; Holanda, Raymond

1994-01-01

382

Thermostable DNA Immobilization and Temperature Effects on Surface Hybridization  

PubMed Central

Monolayer films of nucleic acids on solid supports are encountered in a range of diagnostic and bioanalytical applications. These applications often rely on elevated temperatures to improve performance; moreover, studies at elevated temperatures can provide fundamental information on layer organization and functionality. To support such applications, this study compares thermostability of oligonucleotide monolayers immobilized to gold by first coating the gold with a nanometer-thick film (an anchor layer) of a polymercaptosiloxane, to which DNA oligonucleotides are subsequently tethered through maleimide-thiol conjugation, with thermostability of monolayers formed via widely-used attachment through a terminal thiol moiety on the DNA. The temperature range covered is from 25 to 90 C. After confirming stability of immobilization and, more importantly, retention of hybridization activity even under the harshest conditions investigated, these thermostable films are used to demonstrate measurements of (1) reversible surface melting transitions and (2) temperature dependence of competitive hybridization, when fully matched and mismatched sequences compete for binding to immobilized DNA oligonucleotides. The competitive hybridization experiments reveal a pronounced impact of temperature on rates of approach to equilibrium, with kinetic freezing into nonequilibrium states close to room temperature and rapid approach to equilibrium at elevated temperatures. Modeling of competitive surface hybridization equilibria using thermodynamic parameters derived from surface melting transitions of the individual sequences is also discussed. PMID:22578171

Ge, Dongbiao; Wang, Xin; Williams, Keeshan; Levicky, Rastislav

2012-01-01

383

Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides  

NASA Astrophysics Data System (ADS)

Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of 3 and a water contact angle of 15), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (2.2) and becomes hydrophobic (contact angle of 104). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

Khan, Sami; Azimi, Gisele; Yildiz, Bilge; Varanasi, Kripa K.

2015-02-01

384

Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO) - A pioneering research facility in Cyprus  

NASA Astrophysics Data System (ADS)

The use of Unmanned Aerial Systems (UASs) has increased dramatically in the recent decades. UASs are widely used for different civil applications such as land management, earth sciences, contaminant detection and monitoring and commercial use. The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO UAS platforms will provide the unique ability to produce 3D measurements for determining: physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into: surface morphology, vegetation and land use patterns, archaeological site reconnaissance, contaminant detection and ocean surface properties (biology, waves, currents) at high spatial resolution. Through a modular design philosophy, APAESO will be very adaptable for a variety of scientific investigations enabling scientific collaborations between the Cyprus Institute and national and international research organizations. The Cyprus Institute is currently procuring the "Cruiser", which is a medium size Unmanned Aerial Vehicle (UAV) that is capable of carrying a payload of up to 10 kg, fly to altitude of 5000 m AGL with an endurance of up to 10 hours. Within the next phase of the project, the "Cruiser" will be equipped with instruments for atmospheric and earth surface observations. The poster will present the different components of the project: the UAS platform, payload to be integrated and scientific challenges that we are about to tackle and solve.

Lange, Manfred; Teller, Amit; Keleshis, Christos; Ioannou, Stelios; Philimis, Panayiotis; Lelieveld, Jos; Levin, Zev

2010-05-01

385

High-Temperature Surface-Acoustic-Wave Transducer  

NASA Technical Reports Server (NTRS)

Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

Zhao, Xiaoliang; Tittmann, Bernhard R.

2010-01-01

386

Improved alkaline earth-oxyhalide electrochemical cell for low-temperature use  

SciTech Connect

This invention relates in general to an alkaline earth-oxyhalide electrochemical cell and in particular, to an improved alkaline earth oxyhalide electrochemical cell for low temperature use. A typical cell includes a calcium anode, 1M Ca(AlCl/sub 4/)/sub 2/ thionyl chloride/75% Shawinigan - 25% acetone washed Black Pearls 2000 carbon black cathode. The improvement to this cell involves the addition of 10 vol. % bromine to the electrolyte. During discharge at about -30 C, cathode potential is raised by about 0.5 volt providing a cell voltage well above the 2.0 volt minimum which is a standard military specification. Without bromine, cell capacity is about one minute. With the addition of bromine, load voltage is initially 2.5 volts, then slowly decreases to 2.0 volts over about twelve minutes.

Binder, M.; Walker, C.W.

1988-05-20

387

Low temperature magnetoelectric measurements on rare earth substituted five layered Bi6 Fe2 Ti 3 O _18 compound  

Microsoft Academic Search

Rare earth (La, Sm, Gd and Dy) substituted Bi6 Fe2 Ti 3 O _18 compound of bismuth layered structure ferroelectromagnetic compounds were prepared by normal sold state route. Room temperature and low temperature magnetoelectric measurements were performed on these samples. From the measurements Dy substituted compound Dy Bi5 Fe2 Ti 3 O _18 showed higher magnetoelectric output. Low temperature magnetoelectric

N. V. Prasad; V. Chandrasekharan; S. V. Suryanarayana; G. S. Kumar

2001-01-01

388

Field spectroscopy sampling strategies for improved measurement of Earth surface reflectance  

NASA Astrophysics Data System (ADS)

Over the last two decades extensive networks of research sites have been established to measure the flux of carbon compounds and water vapour between the Earth's surface and the atmosphere using eddy covariance (EC) techniques. However, contributing Earth surface components cannot be determined and (as the ';footprints' are spatially constrained) these measurements cannot be extrapolated to regional cover using this technique. At many of these EC sites researchers have been integrating spectral measurements with EC and ancillary data to better understand light use efficiency and carbon dioxide flux. These spectroscopic measurements could also be used to assess contributing components and provide support for imaging spectroscopy, from airborne or satellite platforms, which can provide unconstrained spatial cover. Furthermore, there is an increasing interest in ';smart' database and information retrieval systems such as that proposed by EcoSIS and OPTIMISE to store, analyse, QA and merge spectral and biophysical measurements and provide information to end users. However, as Earth surfaces are spectrally heterogeneous and imaging and field spectrometers sample different spatial extents appropriate field sampling strategies require to be adopted. To sample Earth surfaces spectroscopists adopt either single; random; regular grid; transect; or 'swiping' point sampling strategies, although little comparative work has been carried out to determine the most appropriate approach; the work by Goetz (2012) is a limited exception. Mac Arthur et al (2012) demonstrated that, for two full wavelength (400 nm to 2,500 nm) field spectroradiometers, the measurement area sampled is defined by each spectroradiometer/fore optic system's directional response function (DRF) rather than the field-of-view (FOV) specified by instrument manufacturers. Mac Arthur et al (2012) also demonstrated that each reflecting element within the sampled area was not weighted equally in the integrated measurement recorded. There were non-uniformities of spectral response with the spectral ';weighting' per wavelength interval being positionally dependent and unique to each spectroradiometer/fore optic system investigated. However, Mac Arthur et al (2012) did not provide any advice on how to compensate for these systematic errors or advise on appropriate sampling strategies. The work reported here will provide the first systematic study of the effect of field spectroscopy sampling strategies for a range of different Earth surface types. Synthetic Earth surface hyperspectral data cubes for each surface type were generated and convolved with a range of the spectrometer/fore optic system directional response functions generated by Mac Arthur et al 2013, to simulate spectroscopic measurements of Earth surfaces. This has enabled different field sampling strategies to be directly compared and their suitability for each measurement purpose and surface type to be assessed and robust field spectroscopy sampling strategy recommendations to be made. This will be particularly of interest to the carbon and water vapour flux communities and assist the development of sampling strategies for field spectroscopy from rotary-wing Unmanned Aerial Vehicles, which will aid acquiring measurements in the spatial domain, and generally further the use of field spectroscopy for quantitative Earth observation.

Mac Arthur, A.; Alonso, L.; Malthus, T. J.; Moreno, J. F.

2013-12-01

389

Global shortwave energy budget at the earth's surface from ERBE observations  

NASA Technical Reports Server (NTRS)

A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than Esbensen and Kushnir's by as much as 80 W/sq m in the tropical oceans. A cloud parameter, defined as the difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance, is also examined. This parameter, minimally affected by sun zenith angle, is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting that, on average, the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, yet sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts.

Breon, Francois-Marie; Frouin, Robert

1994-01-01

390

Determination of sea surface temperatures from microwave and IR data  

NASA Technical Reports Server (NTRS)

Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

Rangaswamy, S.; Grover, J.

1982-01-01

391

Surface air temperature variability in global climate models  

E-print Network

New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

Davy, Richard

2012-01-01

392

Phase locking of Nordeste precipitation with sea surface temperatures  

SciTech Connect

Interannual variations of precipitation in several regions around the globe are known to be influenced by sea surface temperatures. The authors describe a procedure that elicits the same frequencies of variations in the sea surface temperatures as in precipitation. The modes of variation in the two fields are phase locked, allowing them to identify regions in the oceans that vary in unison with changes in precipitation on different time scales. The method is illustrated by application to the northeast section of Brazil, the Nordeste, where flood and drought occur frequently. 15 refs., 3 figs., 1 tab.

Sperber, K.R. (Lawrence Livermore National Lab., CA (United States)); Hameed, S. (State Univ. of New York, Stony Brook (United States))

1993-01-22

393

Annual Global Surface Temperature Anomaly: 1950 through 1998  

NSDL National Science Digital Library

Global surface temperatures in 1998 set a new record for the period of instrumental measurements, report researchers at the NASA Goddard Institute for Space Studies who analyze data collected from several thousand meteorological stations around the world. This visualization shows surface temperature anomalies from 1950 through November, 1998. The 1998 warmth was associated partly with a strong El Nino that warmed the air over the eastern tropical Pacific Ocean in the first half of the year and in turn affected weather around the world. Red and yellow colors indicate warmer than normal conditions and blue colors indicates cooler than normal conditions.

Jesse Allen

1998-11-01

394

Annual North America Surface Temperature Anomaly: 1950 through 1998  

NSDL National Science Digital Library

Global surface temperatures in 1998 set a new record for the period of instrumental measurements, report researchers at the NASA Goddard Institute for Space Studies who analyze data collected from several thousand meteorological stations around the world. This visualization shows surface temperature anomalies from 1950 through November, 1998. The 1998 warmth was associated partly with a strong El Nino that warmed the air over the eastern tropical Pacific Ocean in the first half of the year and in turn affected weather around the world. Red and yellow colors indicate warmer than normal conditions and blue colors indicates cooler than normal conditions.

Jesse Allen

1998-11-01

395

Dynamics of the Cosmological Apparent Horizon: Surface Gravity & Temperature  

E-print Network

In the context of thermodynamics applied to our cosmological apparent horizon, we explicit in greater details our previous work which established the Friedmann Equations from projection of Hayward's Unified First Law. In particular, we show that the dynamical Hayward-Kodama surface gravity is perfectly well-defined and is suitable for this derivation. We then relate this surface gravity to a physical notion of temperature, and show this has constant, positive sign for any kind of past-inner trapping horizons. Hopefully this will clarify the choice of temperature in a dynamical Friedmann-Lema\\^itre-Roberston-Walker spacetime.

Alexis Helou

2015-02-14

396

Sea surface temperature forcing and phase locking of Nordeste precipitation  

SciTech Connect

Interannual variations of precipitation in several regions around the globe are known to be influenced by sea surface temperatures. We describe a procedure that elicits the same frequencies of variations in the sea surface temperatures as in precipitation. The modes of variations in the two fields are phase locked, allowing us to identify regions in the oceans that vary in unison with changes in precipitation on different time scales. The method is illustrated by application to northeast Brazil, the Nordeste, where flood and drought occur frequently.

Sperber, K.R. (Lawrence Livermore National Lab., CA (United States)); Hameed, S. (State Univ. of New York, Stony Brook, NY (United States). Inst. for Terrestrial and Planetary Atmospheres)

1992-07-01

397

Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations  

NASA Astrophysics Data System (ADS)

The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L105, 2009.

Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

398

Comparison of in-situ, aircraft, and satellite based land surface temperature measurements  

NASA Astrophysics Data System (ADS)

and surface temperature (LST) is a key variable used in surface energy budget studies, and in near-real time is assimilated into land surface models for short and medium range forecasts. Observations of LST over multiple years are also critical for climate trend assessment. However, accurate in-situ measurements of LST over continents are not yet available for the whole globe and are not routinely conducted at weather stations. Recently an effort has been underway to validate LST sensed remotely from satellites to the actual measured skin temperature using data from the United States Climate Reference Network (USCRN). The goal of this work is to quantify the spatial variability and the representativeness of the single-point skin temperature measurement already being made at USCRN sites. NOAA/ATDD is collaborating with the University of Tennessee Space Institute's (UTSI) Aviation Systems and Flight Research Department in Tullahoma, TN to utilize an instrumented aircraft to perform measurements of Earth's skin temperature over selected USCRN sites in the continental U.S. Airborne remote sensing is a powerful tool to assess the spatial variability of LST over a location with sufficient sampling density and has the operational flexibility depending on the study requirements. We will present the results from airborne campaigns made concurrently with satellite overpasses over a grassland site and a deciduous forest site, compare the relationship of surface temperature to air temperature at a number of CRN sites and show results of an intercomparison between the JPL reference skin temperature measurement and the CRN sensor.

Baker, B.; Krishna, P.; Meyers, T. P.

2013-12-01

399

Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle  

NASA Astrophysics Data System (ADS)

The distribution of sulfur isotopes in geological materials reveals information about Earth history and biogeochemical processes. Research during the last several decades has used sulfur isotope geochemistry as a tool to better understand microbial processes ( Harrison and Thode, 1958; Kaplan, 1975; Monster et al., 1979; Peck, 1959, 1962; Rees, 1973) and sediment diagenesis ( Berner, 1969, 1982; Canfield et al., 1993b). Earth historians also realized this potential, as there exists a rich record of environmental change within the sedimentary records ( Canfield and Teske, 1996; Claypool et al., 1980; Goodwin et al., 1976; Habicht et al., 2002; Kah et al., 2004; Monster et al., 1979; Shen et al., 2001; Strauss, 1993; Thode and Goodwin, 1983). These applications have championed the use of the two most abundant sulfur isotopes [ 32S and 34S], and provide a rich introduction to what the sulfur isotope record has to offer [see ( Canfield, 2004; Canfield and Raiswell, 1999)]. Within the last decade, this information has been supplemented by new data derived from the less abundant isotopes [ 33S and 36S]. The measurement of all four stable sulfur isotopes - multiple sulfur isotope geochemistry - has expanded our understanding of biological evolution and activity, atmospheric chemistry and transport, crustal recycling, and many more fields related to Earth surface processes [see ( Farquhar and Wing, 2003)]. Here, I present a review of recent works in multiple sulfur isotope geochemistry with a focus on results that inform our understanding of biogeochemical processes and Earth surface evolution.

Johnston, David T.

2011-05-01

400

Implications of a non-adiabatic density gradient for the Earth's viscoelastic response to surface loading  

NASA Astrophysics Data System (ADS)

The response of a viscoelastic Earth to the melting of the Late Pleistocene ice sheets has been the subject of a number of investigations employing PREM. In PREM, a non-adiabatic density gradient (NADG) exists in the upper mantle, and to understand the implications of this model it is thus important to examine the effects of this NADG on the Earth's response to surface loads. This paper is based on the assumption that the contribution to the depth dependence of the density that is not due to self-compression is due to compositional change. This contribution is referred to as `non-adiabatic'. We evaluate the effects of a non-adiabatic density jump (NADJ) for the 670 km discontinuity and the NADG in the upper mantle by adopting a compressible earth model with both a compositional density gradient and a density jump. Numerical calculations based on these models indicate that the magnitude of the Earth's response associated with the NADG is much smaller than that associated with the NADJ at 670 km depth. It is also confirmed that the higher modes associated with the NADJ and the NADG are much more sensitive to the existence of an elastic lithosphere than the fundamental modes associated with the density jumps at the surface and core-mantle boundary.

Nakada, Masao

1999-06-01

401

20-Year Arctic Spring Seasonal Surface Temperature Trend  

NSDL National Science Digital Library

Here the 20-year seasonal surface temperature trend for the spring is shown over the Arctic region. This animation shows the warming and cooling regions in steps from the regions of least change to the areas of greatest change. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -0.4 to +0.4 degrees Celsius in increments of .02 degrees. (See color bar below)

Cindy Starr

2003-10-23

402

20-Year Arctic Summer Seasonal Surface Temperature Trend  

NSDL National Science Digital Library

Here the 20-year seasonal surface temperature trend for the summer is shown over the Arctic region. This animation shows the warming and cooling regions in steps from the regions of least change to the areas of greatest change. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -0.4 to +0.4 degrees Celsius in increments of .02 degrees. (See color bar below)

Cindy Starr

2003-10-23

403

20-Year Arctic Autumn Seasonal Surface Temperature Trend  

NSDL National Science Digital Library

Here the 20-year seasonal surface temperature trend for the autumn is shown over the Arctic region. This animation shows the warming and cooling regions in steps from the regions of least change to the areas of greatest change. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -0.4 to +0.4 degrees Celsius in increments of .02 degrees. (See color bar below)

Cindy Starr

2003-10-23

404

20-Year Arctic Winter Seasonal Surface Temperature Trend  

NSDL National Science Digital Library

Here the 20-year seasonal surface temperature trend for the winter is shown over the Arctic region. This animation shows the warming and cooling regions in steps from the regions of least change to the areas of greatest change. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -0.4 to +0.4 degrees Celsius in increments of .02 degrees. (See color bar below)

Cindy Starr

2003-10-23

405

20-Year Arctic Surface Temperature Trend with Alternate Color Scale  

NSDL National Science Digital Library

Here the 20-year surface temperature trend is shown over the Arctic region. This still images shows the warming and cooling regions. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -0.14 to +0.4 degrees Celsius in increments of .02 degrees. (See color bar below)

Cindy Starr

2003-10-23

406

Temperature-Controlled FreeSurface Microfluidic Devices  

Microsoft Academic Search

Free-Surface MicroFluidics (FSMF) have recently received much attention for their applications especially their ability for airborne chemical detection [Piorek, 2007]. Surface tension is generally used for fluid transport through microchannels in FSMF; however, it is not simply controllable. Thus, evaporation can be utilized for the flow control. In the current study, temperature-controlled microvalves are developed to control the fluid flow

Meysam Barmi; Brian Piorek; Chrysafis Andreou; Carl Meinhart

2010-01-01

407

Implications for Core Formation of the Earth from High Pressure-Temperature Au Partitioning Experiments  

NASA Technical Reports Server (NTRS)

Siderophile elements in the Earth.s mantle are depleted relative to chondrites. This is most pronounced for the highly siderophile elements (HSEs), which are approximately 400x lower than chondrites. Also remarkable is the relative chondritic abundances of the HSEs. This signature has been interpreted as representing their sequestration into an iron-rich core during the separation of metal from silicate liquids early in the Earth's history, followed by a late addition of chondritic material. Alternative efforts to explain this trace element signature have centered on element partitioning experiments at varying pressures, temperatures, and compositions (P-T-X). However, first results from experiments conducted at 1 bar did not match the observed mantle abundances, which motivated the model described above, a "late veneer" of chondritic material deposited on the earth and mixed into the upper mantle. Alternatively, the mantle trace element signature could be the result of equilibrium partitioning between metal and silicate in the deep mantle, under P-T-X conditions which are not yet completely identified. An earlier model determined that equilibrium between metal and silicate liquids could occur at a depth of approximately 700 km, 27(plus or minus 6) GPa and approximately 2000 (plus or minus 200) C, based on an extrapolation of partitioning data for a variety of moderately siderophile elements obtained at lower pressures and temperatures. Based on Ni-Co partitioning, the magma ocean may have been as deep as 1450 km. At present, only a small range of possible P-T-X trace element partitioning conditions has been explored, necessitating large extrapolations from experimental to mantle conditions for tests of equilibrium models. Our primary objective was to reduce or remove the additional uncertainty introduced by extrapolation by testing the equilibrium core formation hypothesis at P-T-X conditions appropriate to the mantle.

Danielson, L. R.; Sharp, T. G.; Hervig, R. L.

2005-01-01

408

Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer  

NASA Technical Reports Server (NTRS)

Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

1990-01-01

409

Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer  

NASA Technical Reports Server (NTRS)

Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

1989-01-01

410

ESTIMATING SUBPIXEL SURFACE TEMPERATURES AND ENERGY FLUXES FROM THE VEGETATION INDEX-RADIOMETRIC TEMPERATURE RELATIONSHIP  

Technology Transfer Automated Retrieval System (TEKTRAN)

Routine (i.e., daily to weekly) monitoring of surface energy fluxes, particularly evapotranspiration (ET), using satellite observations of radiometric surface temperature has not been feasible at high pixel resolution because of the low frequency in satellite coverage over the region of interest (i...

411

Near-surface hydrologic response and slope stability 325 Copyright 2005 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 30, 325338 (2005)  

E-print Network

. Earth Surf. Process. Landforms 30, 325­338 (2005) Earth Surface Processes and Landforms Earth Surf. Process. Landforms 30, 325­338 (2005) Published online in Wiley InterScience (www in the forest road problem; for example, a special issue of Earth Surface Processes and Landforms was devoted

Wemple, Beverley

412

Kinetics of surface dissolution: A coupled thermodynamics-climatic approach for Titan and the Earth  

NASA Astrophysics Data System (ADS)

Titan, Saturn's major icy moon, like the Earth, possesses large bodies of present liquids on its surface under the form of seas, lakes and rivers, and likely of past liquids in currently empty topographic depressions. Titan's seas and lacustrine depressions strongly differ in shape, which likely suggests a difference in terms of geological formation processes. On the one hand, the seas have dendritic contours, are several hundreds of kilometers in width, and seem to develop in areas with significant reliefs and fluvial networks. On the other hand, lacustrine depressions, be they filled currently or not, are typically isolated, have rounded or lobate contours and seem to grow by coalescence. Their sizes vary from a few kilometers to a few tens of kilometers in diameter, and they seem to develop in relatively flat areas without visible connection with fluvial networks. The depths of the seas and lacustrine depressions have been evaluated to several hundreds of meters for the seas (recent estimates from the Cassini RADAR altimeter echoes analysis over Ligeia Mare indicates a depth of about 170 m), when they are a few hundred/tens of meters for the lacustrine depressions. Given the above morphological settings, several formation mechanisms have been proposed for Titan's lacustrine depressions, the most likely one being associated with the dissolution of the surface, such as what is seen in karstic or karsto-evaporitic areas on Earth. However, due to Titan's surface physical properties (T=90-95 K) and composition, the materials that would be involved in such dissolution processes are exotic. In karstic terrains on Earth, the solvent is water and the solutes are rock minerals (e.g., calcite, dolomite, gypsum, anhydrite and halite). On Titan, the solvent is mainly composed of liquid hydrocarbons (methane and/or ethane) and the solutes are probably made of solid hydrocarbons (acetylene, benzene, butane,...), nitriles (hydrogen cyanide, cyanogen,...), tholins and ices (water, carbon dioxide). With the help of the thermodynamic theory of solid-liquid equilibria, we are able to predict the maximum solubility of Titan's pure solids and Earth's pure minerals in the corresponding relevant liquid. The kinetics of surface dissolution are computed in the model using the estimates of the maximum solubilities associated with a reasonable range of atmospheric precipitation rates estimates for both Titan and the Earth. The comparison between terrestrial and titanian dissolution rates indicates that dissolution should be as significant for the evolution of Titan's surface as it is for Earth's. Quantitative assessment of dissolution rates on Titan will help to constrain the age of its lacustrine depressions.

Cornet, Thomas; Cordier, Daniel; Le Bahers, Tangui; Bourgeois, Olivier; Fleurant, Cyril; Le Moulic, Stphane

2014-05-01

413

Earthshine Polarimetry to Extract Signatures of Earth-like Atmosphere and Surface  

NASA Astrophysics Data System (ADS)

We present the results of our polarimetric observations of Earthshine on the Moon. We have carried out two Earthshine polarimetry projects. The first one is comparison of Earthshine polarization from land- and ocean-dominant surfaces. Polarimetry may be a method to search a planet with a liquid surface because specular reflection from a liquid surface is expected to produce a greater polarization degree than reflection from a rough surface does. This project aims to evaluate the difference between Earthshine polarization contributed by reflection at a land-dominant surface and that by an ocean-dominant surface. As viewing from Japan, we can observe Earthshine with contribution from a land-dominant surface in waxing phases of the Moon, whereas we can study that from an ocean-dominant surface in the waning phases. We utilized the 60 cm reflecting telescope at the Nishi-Harima Astronomical Observatory located in Hyogo, Japan and the simultaneous imaging/spectrometric polarimeter which enables a simultaneous measurement of four polarized components with a single exposure. In a series of observations from May 2010 to March 2012, twelve data sets were obtained for the waxing phases and seven data sets for the waning. The observations were conducted in V band. The measured polarization degrees increased as the Earth phase approaches a quadrature phase. The maximum polarization degree was roughly 8 % for the both phases. Fitting with a function for Rayleigh scattering have yielded the polarization maximum of 7.70.4% and 8.40.7% for the waxing and waning phases, respectively. Although a larger value has been derived for the waning phases when the Earthshine is contributed by an ocean-dominant surface, the difference is not significant considering uncertainty of the result. The second project is optical spectropolarimetry of Earthshine for Earth phase angles ranging from 49 to 96. This project aims to derive the phase variation of polarization spectra of the Earth to find a signature pointing toward a distinctive characteristic of the Earth. The observations were conducted on March 9-13, 2011 (UT). We utilized the spectropolarimeter HBS mounted on the 1.88 m telescope at the Okayama Astrophysical Observatory located in Okayama, Japan. The wavelength coverage is 450-850 nm with a resolution of 6 nm. The observed Earthshine polarization degree spectra decreased with increasing wavelength at any phase. We have found that the phase dependence differed with the wavelengths; the maximum polarization for the V band wavelengths occurred at a phase angle of near 90, whereas that for longer wavelengths is reached at larger phase angles. This is interpreted as indicating that Earthshine polarization at shorter wavelengths is dominated by atmospheric Rayleigh scattering, whereas that at longer wavelengths has an increasingly effective contribution from the Earth surface reflection. The observed wavelength dependence in the phase angles of the maximum polarization for the Earth is suggested to be different from the other terrestrial planetary objects in the Solar System. Therefore our observational result might be a signature pointing toward a distinctive characteristic of the Earth: the atmosphere is scattering in the shorter wavelengths but transparent in the longer wavelengths.

Takahashi, J.; Itoh, Y.; Akitaya, H.; Okazaki, A.; Kawabata, K.; Oasa, Y.; Isogai, M.; Niwa, T.

2013-12-01

414

Unexpected and Unexplained Surface Temperature Variations on Mimas  

NASA Astrophysics Data System (ADS)

Until recently it was thought one of the most interesting things about Mimas, Saturns innermost classical icy moon, was its resemblance to Star Wars Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassinis Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassinis closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145 W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundarys apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturns radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas leading hemisphere at low latitudes where they could cause surface defects. For this process to also explain the observed temperature differences it would have to affect the surfaces thermal inertia to a depth comparable to the diurnal thermal skin-depth (~0.5 cm). However, whether the formation of the giant Herschel crater (which lies in the middle of the observed portion of the cold region) contributed to the observed temperature anomaly or if electron bombardment alone is able to explain the thermal anomaly is currently unknown. Future CIRS observations should be able to map the full spatial extent of the thermal anomaly and clarify whether it is centered on (and thus likely related to) Herschel, or is centered on the trailing hemisphere and thus likely to be related to the observed color anomaly.

Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

2010-12-01

415

Earth materials and earth dynamics  

SciTech Connect

In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

Bennett, K; Shankland, T. [and others

2000-11-01

416

Titan's Surface Temperatures Maps from Cassini - CIRS Observations  

NASA Astrophysics Data System (ADS)

The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 ?m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L105, 2009.

Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

2009-09-01

417

Oxidation-resistant reflective surfaces for solar dynamic power generation in near earth orbit  

NASA Technical Reports Server (NTRS)

Reflective surfaces for Space Station power generation systems are required to withstand the atomic oxygen-dominated environment of near earth orbit. Thin films of platinum and rhodium, which are corrosion resistant reflective metals, have been deposited by ion beam sputter deposition onto various substrate materials. Solar reflectances were then measured as a function of time of exposure to a RF-generated air plasma.

Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.

1987-01-01

418

The reflection properties of planar wire-grid screens, parallel to the earth's surface  

Microsoft Academic Search

The paper examines the properties of planar wire-grid antenna components, parallel to the earth's surface. The method of averaged boundary conditions is used to determine coefficients of reflection from the screen-ground system for arbitrary plane-wave polarization and incidence. The analysis is illustrated by metallic wire gratings with rectangular mesh and wire gratings with rhombic mesh. The use of such gratings

M. I. Astrakhan; V. P. Akimov; N. V. Koroleva

1979-01-01

419

Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions  

E-print Network

Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions, and type of oxide. The tetranuclear reaction 4 > SOH M2 H2O > SOH2> SO 2 MOH 3H. In contrast, the mononuclear reaction > SOH M2 H2O > SO MOH 2H predominates for the much smaller

Sverjensky, Dimitri A.

420

Temperature and strain-rate dependence of surface dislocation nucleation.  

PubMed

Dislocation nucleation is essential to the plastic deformation of small-volume crystalline solids. The free surface may act as an effective source of dislocations to initiate and sustain plastic flow, in conjunction with bulk sources. Here, we develop an atomistic modeling framework to address the probabilistic nature of surface dislocation nucleation. We show the activation volume associated with surface dislocation nucleation is characteristically in the range of 1-10b3, where b is the Burgers vector. Such small activation volume leads to sensitive temperature and strain-rate dependence of the nucleation stress, providing an upper bound to the size-strength relation in nanopillar compression experiments. PMID:18232884

Zhu, Ting; Li, Ju; Samanta, Amit; Leach, Austin; Gall, Ken

2008-01-18

421

Surface roughness change on sandstone induced by temperature increase  

NASA Astrophysics Data System (ADS)

Optical surface profilometer allows capturing the information necessary to provide 3D surface measurements in a single image acquisition with a vertical micrometric resolution. The surface topography can be used for analyses, such as roughness evaluation. In this research, roughness changes of two types of sandstone samples were studied before and after heating to 60, 200, 400, 600 and 800 C. Measurements obtained were converted into 3D 5 mm x 5 mm (25 mm2) topographic maps with a resolution of 2.5 m. Surface roughness parameter Sq represents quantifies roughness from the maximum deviation along a mean surface and it is calculated as the root mean squared of five peaks and valleys of the specimen using Gaussian filter and 0.80 mm cut-off. The high spatial resolution obtained from visible-light optical surface profilometer is an ideal tool for observing rock surface alterations caused by decay factors. The authors present complete original process of surface roughness determination on rock samples adopting the portable profilometer using free accessible software packages. The different stability of the fabric of sandstones from Krliky and Oravsk Jasenica after heating is due to their different mineral composition and different ratio of minerals that are more or less chemically stable at high temperatures, their resistance to thermal stress and other textural factors related to the distribution of grains and matrix. Percentage of minerals chemically stable at higher temperature, such as quartz, calcite, illite and muscovite, in fresh sandstone samples from Krliky is approximately 48%. Conversely, sandstones from Oravsk Jasenica have significantly greater percentage of minerals stable at higher temperatures, such as quartz, albite, orthoclase, muscovite, illite and calcite than of other, less stable, minerals such as chlorite, biotite and kaolinite. Hence, percentage of minerals stable at higher temperatures was approximately 81 %. The results show how the ratio of stable and less stable mineral phases is an important factor affecting the resistance of rocks to high temperatures and are reflected in optical surface roughness parameters, which increase with increasing temperature. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0641-10 and No. APVV-0330-10 and by Geomateriales S2009/MAT-16.

Vlcko, J.; Kompanikova, Z.; Gomez-Heras, M.; Greif, V.; Durmekova, T.; Brcek, M.

2012-04-01

422

Rare earth oxide catalyzed oxidation of rhenium to ReO⁻ and ReO⁻ as observed by negative surface ionization mass spectrometry  

Microsoft Academic Search

A surface ionization mass spectrometer was used to observe the in situ formation of ReO⁻ and ReO⁻ gas-phase ions resulting from the rare earth oxide catalyzed reaction of water with metallic rhenium. Water was found to be 6-10-fold more efficient than oxygen as an oxidizer at temperatures around 1100°C. Normal, oxygen-18 enriched, and deuteriated water were used to elucidate the

Delmore

1987-01-01

423

Marangoni Flow and Surface Tension of High Temperature Melts  

NASA Astrophysics Data System (ADS)

Marangoni flow plays an important role in the heat and mass transport for highly value-added high-temperature processes, such as crystal growth, welding, casting, and electron beam melting. For silicon single crystal growth, the effect of the oscillatory Marangoni flow on the introduction of growth striation was discussed by Chen and Wilcox for the first time in 1972 [1]. The existence of the Marangoni flow within molten silicon was proved through microgravity experiments in space on board a sounding rocket in 1983 by Eyer et al. [2], who found formation of growth striation in single crystals even under microgravity, where buoyancy-driven flow was suppressed. To explain the Marangoni effect at the melt surface, surface tension is essential. Keene [3] discussed the oxygen contamination in the surface tension measurement and recommended the use of a levitation technique, which is a containerless process and assures the contamination-free condition from measurement devices. It is well known that flow direction in the weld pool is dependent on surface contamination and that this is related to weldability [4, 5]. Flow direction is controlled by the temperature coefficient of surface tension for molten steels; contaminants are oxygen and sulfur. In the electron beam button melting system, the Marangoni flow is dominant because of intense heating at the melt surface [5]. In this chapter, surface tension of high temperature metallic melts is discussed from the viewpoint of the Marangoni effect in the value-added high temperature processes, particularly from the viewpoint of the effect of oxygen and sulfur. Theoretical treatment for oxygen adsorption is also discussed.

Hibiya, Taketoshi; Ozawa, Shumpei

424

Temperature field beneath evaporating surface resolved by infrared thermography  

NASA Astrophysics Data System (ADS)

Land-atmosphere mass exchange is intimately linked with radiation and energy balance of terrestrial surfaces. Surface evaporation is a key hydrologic flux affected by interplay between water supply from below, surface energy input, and exchange across air boundary layer. The thermal signature depression of an evaporating surface is proportional to the magnitude of the flux which makes remote monitoring of fluxes from heterogeneous surface feasible using advanced Infrared thermography (IRT). Inversion of IRT data to evaporation fluxes relies on knowledge of thickness of thermal depression beneath evaporation zone. We develop a mathematical model for 3D temperature field induced by evaporation from a patchy evaporative surface and compare the results with direct IRT measurements of cross section beneath an evaporating surface. Results yield a universal description of evaporative temperature depression that could serve for predicting spatial and temporal evaporation rates distributions based on IRT data. The thickness of thermo-evaporative zone is typically in the range of 10-40 mm for a wide range of soil properties and fluxes.

Shahraeeni, Ebrahim; Or, Dani

2010-05-01

425

Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)  

NASA Technical Reports Server (NTRS)

We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

2014-01-01

426

Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces  

PubMed Central

This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel. PMID:23353141

Schfer, Thomas; Schubert, Markus; Hampel, Uwe

2013-01-01

427

Surface temperature measurements of heterogeneous explosives by IR emission  

NASA Astrophysics Data System (ADS)

We present measurements of the integrated IR emission (1-5 ?m) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 30 C to 250 C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which we report as the thermal emissivity. We have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. We demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

Henson, B. F.; Funk, D. J.; Dickson, P. M.; Fugard, C. S.; Asay, B. W.

1998-07-01

428

Surface temperature measurements of heterogeneous explosives by IR emission  

SciTech Connect

The authors present measurements of the integrated IR emission (1--5 {micro}m) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 300 C to 2,500 C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which the authors report as the thermal emissivity. The authors have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. They demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

Henson, B.F.; Funk, D.J.; Dickson, P.M.; Fugard, C.S.; Asay, B.W.

1998-03-01

429

A Subbasin-based framework to represent land surface processes in an Earth System Model  

SciTech Connect

Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-